modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
gauthamk28/a2c-AntBulletEnv-v0
gauthamk28
2023-03-20T09:11:53Z
5
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T09:10:51Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1351.37 +/- 564.11 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
uladkaz/q-Taxi-v3
uladkaz
2023-03-20T09:08:46Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T08:59:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.66 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="uladkaz/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
JoBuettner/q-FrozenLake-v1-4x4-noSlippery
JoBuettner
2023-03-20T09:07:30Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T09:07:28Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="JoBuettner/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
awsgcptest/test_model
awsgcptest
2023-03-20T09:01:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T08:48:38Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_model This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0423 - Accuracy: 0.9906 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0863 | 1.0 | 1200 | 0.0551 | 0.9875 | | 0.0306 | 2.0 | 2400 | 0.0423 | 0.9906 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
oliverguhr/fullstop-punctuation-multilingual-sonar-base
oliverguhr
2023-03-20T08:59:42Z
1,297
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "punctuation prediction", "punctuation", "en", "de", "fr", "it", "nl", "multilingual", "dataset:wmt/europarl", "dataset:SoNaR", "arxiv:2301.03319", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-17T08:01:56Z
--- language: - en - de - fr - it - nl - multilingual tags: - punctuation prediction - punctuation datasets: - wmt/europarl - SoNaR license: mit widget: - text: "Ho sentito che ti sei laureata il che mi fa molto piacere" example_title: "Italian" - text: "Tous les matins vers quatre heures mon père ouvrait la porte de ma chambre" example_title: "French" - text: "Ist das eine Frage Frau Müller" example_title: "German" - text: "My name is Clara and I live in Berkeley California" example_title: "English" - text: "hervatting van de zitting ik verklaar de zitting van het europees parlement die op vrijdag 17 december werd onderbroken te zijn hervat" example_title: "Dutch" metrics: - f1 --- This model predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language. This multilanguage model was trained on the [Europarl Dataset](https://huggingface.co/datasets/wmt/europarl) provided by the [SEPP-NLG Shared Task](https://sites.google.com/view/sentence-segmentation) and for the Dutch language we included the [SoNaR Dataset](http://hdl.handle.net/10032/tm-a2-h5). *Please note that this dataset consists of political speeches. Therefore the model might perform differently on texts from other domains.* The model restores the following punctuation markers: **"." "," "?" "-" ":"** ## Sample Code We provide a simple python package that allows you to process text of any length. ## Install To get started install the package from [pypi](https://pypi.org/project/deepmultilingualpunctuation/): ```bash pip install deepmultilingualpunctuation ``` ### Restore Punctuation ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base") text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller" result = model.restore_punctuation(text) print(result) ``` **output** > My name is Clara and I live in Berkeley, California. Ist das eine Frage, Frau Müller? ### Predict Labels ```python from deepmultilingualpunctuation import PunctuationModel model = PunctuationModel(model="oliverguhr/fullstop-punctuation-multilingual-sonar-base") text = "My name is Clara and I live in Berkeley California Ist das eine Frage Frau Müller" clean_text = model.preprocess(text) labled_words = model.predict(clean_text) print(labled_words) ``` **output** > [['My', '0', 0.99998856], ['name', '0', 0.9999708], ['is', '0', 0.99975926], ['Clara', '0', 0.6117834], ['and', '0', 0.9999014], ['I', '0', 0.9999808], ['live', '0', 0.9999666], ['in', '0', 0.99990165], ['Berkeley', ',', 0.9941764], ['California', '.', 0.9952892], ['Ist', '0', 0.9999577], ['das', '0', 0.9999678], ['eine', '0', 0.99998224], ['Frage', ',', 0.9952265], ['Frau', '0', 0.99995995], ['Müller', '?', 0.972517]] ## Results The performance differs for the single punctuation markers as hyphens and colons, in many cases, are optional and can be substituted by either a comma or a full stop. The model achieves the following F1 scores for the different languages: | Label | English | German | French|Italian| Dutch | | ------------- | -------- | ------ | ----- | ----- | ----- | | 0 | 0.990 | 0.996 | 0.991 | 0.988 | 0.994 | | . | 0.924 | 0.951 | 0.921 | 0.917 | 0.959 | | ? | 0.825 | 0.829 | 0.800 | 0.736 | 0.817 | | , | 0.798 | 0.937 | 0.811 | 0.778 | 0.813 | | : | 0.535 | 0.608 | 0.578 | 0.544 | 0.657 | | - | 0.345 | 0.384 | 0.353 | 0.344 | 0.464 | | macro average | 0.736 | 0.784 | 0.742 | 0.718 | 0.784 | | micro average | 0.975 | 0.987 | 0.977 | 0.972 | 0.983 | ## Languages ### Models | Languages | Model | | ------------------------------------------ | ------------------------------------------------------------ | | English, Italian, French and German | [oliverguhr/fullstop-punctuation-multilang-large](https://huggingface.co/oliverguhr/fullstop-punctuation-multilang-large) | | English, Italian, French, German and Dutch | [oliverguhr/fullstop-punctuation-multilingual-sonar-base](https://huggingface.co/oliverguhr/fullstop-punctuation-multilingual-sonar-base) | | Dutch | [oliverguhr/fullstop-dutch-sonar-punctuation-prediction](https://huggingface.co/oliverguhr/fullstop-dutch-sonar-punctuation-prediction) | ### Community Models | Languages | Model | | ------------------------------------------ | ------------------------------------------------------------ | |English, German, French, Spanish, Bulgarian, Italian, Polish, Dutch, Czech, Portugese, Slovak, Slovenian| [kredor/punctuate-all](https://huggingface.co/kredor/punctuate-all) | | Catalan | [softcatala/fullstop-catalan-punctuation-prediction](https://huggingface.co/softcatala/fullstop-catalan-punctuation-prediction) | You can use different models by setting the model parameter: ```python model = PunctuationModel(model = "oliverguhr/fullstop-dutch-punctuation-prediction") ``` ## How to cite us ``` @article{guhr-EtAl:2021:fullstop, title={FullStop: Multilingual Deep Models for Punctuation Prediction}, author = {Guhr, Oliver and Schumann, Anne-Kathrin and Bahrmann, Frank and Böhme, Hans Joachim}, booktitle = {Proceedings of the Swiss Text Analytics Conference 2021}, month = {June}, year = {2021}, address = {Winterthur, Switzerland}, publisher = {CEUR Workshop Proceedings}, url = {http://ceur-ws.org/Vol-2957/sepp_paper4.pdf} } ``` ``` @misc{https://doi.org/10.48550/arxiv.2301.03319, doi = {10.48550/ARXIV.2301.03319}, url = {https://arxiv.org/abs/2301.03319}, author = {Vandeghinste, Vincent and Guhr, Oliver}, keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7}, title = {FullStop:Punctuation and Segmentation Prediction for Dutch with Transformers}, publisher = {arXiv}, year = {2023}, copyright = {Creative Commons Attribution Share Alike 4.0 International} } ```
McCheng/ppo-Pyramids
McCheng
2023-03-20T08:58:11Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-20T08:58:03Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: McCheng/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
uladkaz/q-FrozenLake-v1-4x4-noSlippery
uladkaz
2023-03-20T08:56:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T08:56:11Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="uladkaz/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MoritzLaurer/DeBERTa-v3-base-mnli
MoritzLaurer
2023-03-20T08:33:23Z
2,585
6
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "zero-shot-classification", "en", "arxiv:2006.03654", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-03-02T23:29:04Z
--- language: - en tags: - text-classification - zero-shot-classification metrics: - accuracy pipeline_tag: zero-shot-classification --- # DeBERTa-v3-base-mnli-fever-anli ## Model description This model was trained on the MultiNLI dataset, which consists of 392 702 NLI hypothesis-premise pairs. The base model is [DeBERTa-v3-base from Microsoft](https://huggingface.co/microsoft/deberta-v3-base). The v3 variant of DeBERTa substantially outperforms previous versions of the model by including a different pre-training objective, see annex 11 of the original [DeBERTa paper](https://arxiv.org/pdf/2006.03654.pdf). For a more powerful model, check out [DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) which was trained on even more data. ## Intended uses & limitations #### How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model_name = "MoritzLaurer/DeBERTa-v3-base-mnli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) premise = "I first thought that I liked the movie, but upon second thought it was actually disappointing." hypothesis = "The movie was good." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data This model was trained on the MultiNLI dataset, which consists of 392 702 NLI hypothesis-premise pairs. ### Training procedure DeBERTa-v3-base-mnli was trained using the Hugging Face trainer with the following hyperparameters. ``` training_args = TrainingArguments( num_train_epochs=5, # total number of training epochs learning_rate=2e-05, per_device_train_batch_size=32, # batch size per device during training per_device_eval_batch_size=32, # batch size for evaluation warmup_ratio=0.1, # number of warmup steps for learning rate scheduler weight_decay=0.06, # strength of weight decay fp16=True # mixed precision training ) ``` ### Eval results The model was evaluated using the matched test set and achieves 0.90 accuracy. ## Limitations and bias Please consult the original DeBERTa paper and literature on different NLI datasets for potential biases. ### BibTeX entry and citation info If you want to cite this model, please cite the original DeBERTa paper, the respective NLI datasets and include a link to this model on the Hugging Face hub. ### Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ### Debugging and issues Note that DeBERTa-v3 was released recently and older versions of HF Transformers seem to have issues running the model (e.g. resulting in an issue with the tokenizer). Using Transformers==4.13 might solve some issues. ## Model Recycling [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=0.97&mnli_lp=nan&20_newsgroup=-0.39&ag_news=0.19&amazon_reviews_multi=0.10&anli=1.31&boolq=0.81&cb=8.93&cola=0.01&copa=13.60&dbpedia=-0.23&esnli=-0.51&financial_phrasebank=0.61&imdb=-0.26&isear=-0.35&mnli=-0.34&mrpc=1.24&multirc=1.50&poem_sentiment=-0.19&qnli=0.30&qqp=0.13&rotten_tomatoes=-0.55&rte=3.57&sst2=0.35&sst_5bins=0.39&stsb=1.10&trec_coarse=-0.36&trec_fine=-0.02&tweet_ev_emoji=1.11&tweet_ev_emotion=-0.35&tweet_ev_hate=1.43&tweet_ev_irony=-2.65&tweet_ev_offensive=-1.69&tweet_ev_sentiment=-1.51&wic=0.57&wnli=-2.61&wsc=9.95&yahoo_answers=-0.33&model_name=MoritzLaurer%2FDeBERTa-v3-base-mnli&base_name=microsoft%2Fdeberta-v3-base) using MoritzLaurer/DeBERTa-v3-base-mnli as a base model yields average score of 80.01 in comparison to 79.04 by microsoft/deberta-v3-base. The model is ranked 1st among all tested models for the microsoft/deberta-v3-base architecture as of 09/01/2023. Results: | 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers | |---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|-------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:| | 86.0196 | 90.6333 | 66.96 | 60.0938 | 83.792 | 83.9286 | 86.5772 | 72 | 79.2 | 91.419 | 85.1 | 94.232 | 71.5124 | 89.4426 | 90.4412 | 63.7583 | 86.5385 | 93.8129 | 91.9144 | 89.8687 | 85.9206 | 95.4128 | 57.3756 | 91.377 | 97.4 | 91 | 47.302 | 83.6031 | 57.6431 | 77.1684 | 83.3721 | 70.2947 | 71.7868 | 67.6056 | 74.0385 | 71.7 | For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
MoritzLaurer/ernie-m-base-mnli-xnli
MoritzLaurer
2023-03-20T08:28:54Z
3,053
3
transformers
[ "transformers", "pytorch", "safetensors", "ernie_m", "text-classification", "zero-shot-classification", "nli", "multilingual", "en", "ar", "bg", "de", "el", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh", "dataset:multi_nli", "dataset:xnli", "arxiv:2012.15674", "arxiv:1809.05053", "arxiv:2111.09543", "arxiv:1911.02116", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2023-02-16T14:21:31Z
--- language: - multilingual - en - ar - bg - de - el - es - fr - hi - ru - sw - th - tr - ur - vi - zh license: apache-2.0 tags: - zero-shot-classification - text-classification - nli - pytorch metrics: - accuracy datasets: - multi_nli - xnli pipeline_tag: zero-shot-classification widget: - text: "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU" candidate_labels: "politics, economy, entertainment, environment" --- # Multilingual ernie-m-base-mnli-xnli ## Model description This multilingual model can perform natural language inference (NLI) on 100 languages and is therefore also suitable for multilingual zero-shot classification. The underlying model was pre-trained by Baidu, based on Meta's RoBERTa (pre-trained on the [CC100 multilingual dataset](https://huggingface.co/datasets/cc100). It was then fine-tuned on the [XNLI dataset](https://huggingface.co/datasets/xnli), which contains hypothesis-premise pairs from 15 languages, as well as the English [MNLI dataset](https://huggingface.co/datasets/multi_nli). The model was introduced by Baidu in [this paper](https://arxiv.org/pdf/2012.15674.pdf). The model outperforms RoBERTa models of equal size. If you are looking for a faster (but less performant) model, you can try [multilingual-MiniLMv2-L6-mnli-xnli](https://huggingface.co/MoritzLaurer/multilingual-MiniLMv2-L6-mnli-xnli). Among models of equal size, [mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) performs better on the XNLI benchmark. For better performance, you can try the slower [ernie-m-large-mnli-xnli](https://huggingface.co/MoritzLaurer/ernie-m-large-mnli-xnli). ### How to use the model #### Simple zero-shot classification pipeline ```python from transformers import pipeline classifier = pipeline("zero-shot-classification", model="MoritzLaurer/ernie-m-base-mnli-xnli") sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU" candidate_labels = ["politics", "economy", "entertainment", "environment"] output = classifier(sequence_to_classify, candidate_labels, multi_label=False) print(output) ``` #### NLI use-case ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model_name = "MoritzLaurer/ernie-m-base-mnli-xnli" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) premise = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU" hypothesis = "Emmanuel Macron is the President of France" input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1).tolist() label_names = ["entailment", "neutral", "contradiction"] prediction = {name: round(float(pred) * 100, 1) for pred, name in zip(prediction, label_names)} print(prediction) ``` ### Training data This model was trained on the XNLI development dataset and the MNLI train dataset. The XNLI development set consists of 2490 professionally translated texts from English to 14 other languages (37350 texts in total) (see [this paper](https://arxiv.org/pdf/1809.05053.pdf)). Note that the XNLI contains a training set of 15 machine translated versions of the MNLI dataset for 15 languages, but due to quality issues with these machine translations, this model was only trained on the professional translations from the XNLI development set and the original English MNLI training set (392 702 texts). Not using machine translated texts can avoid overfitting the model to the 15 languages; avoids catastrophic forgetting of the other 85 languages ernie-m was pre-trained on; and significantly reduces training costs. ### Training procedure ernie-m-base-mnli-xnli was trained using the Hugging Face trainer with the following hyperparameters. ``` training_args = TrainingArguments( num_train_epochs=3, # total number of training epochs learning_rate=3e-05, per_device_train_batch_size=16, # batch size per device during training gradient_accumulation_steps=2, per_device_eval_batch_size=16, # batch size for evaluation warmup_ratio=0.1, # number of warmup steps for learning rate scheduler weight_decay=0.01, # strength of weight decay fp16=True, ) ``` ### Eval results The model was evaluated on the XNLI test set on 15 languages (5010 texts per language, 75150 in total). Note that multilingual NLI models are capable of classifying NLI texts without receiving NLI training data in the specific language (cross-lingual transfer). This means that the model is also able of doing NLI on the other 85 languages mDeBERTa was training on, but performance is most likely lower than for those languages available in XNLI. Also note that if other multilingual models on the model hub claim performance of around 90% on languages other than English, the authors have most likely made a mistake during testing since non of the latest papers shows a multilingual average performance of more than a few points above 80% on XNLI (see [here](https://arxiv.org/pdf/2111.09543.pdf) or [here](https://arxiv.org/pdf/1911.02116.pdf)). |Datasets|avg_xnli|mnli_m|mnli_mm|ar|bg|de|el|en|es|fr|hi|ru|sw|th|tr|ur|vi|zh| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Accuracy|0.78|0.849|0.85|0.777|0.812|0.804|0.797|0.854|0.814|0.803|0.744|0.784|0.711|0.765|0.776|0.717|0.793|0.749| |Inference text/sec (A100, batch=120)|3310.0|1967.0|1944.0|3443.0|3277.0|3338.0|2884.0|3696.0|3439.0|3071.0|3094.0|3222.0|3445.0|3490.0|3690.0|3175.0|3295.0|3096.0| ## Limitations and bias Please consult the original ernie-m paper and literature on different NLI datasets for potential biases. ## Citation If you use this model, please cite: Laurer, Moritz, Wouter van Atteveldt, Andreu Salleras Casas, and Kasper Welbers. 2022. ‘Less Annotating, More Classifying – Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT - NLI’. Preprint, June. Open Science Framework. https://osf.io/74b8k. ## Ideas for cooperation or questions? If you have questions or ideas for cooperation, contact me at m{dot}laurer{at}vu{dot}nl or [LinkedIn](https://www.linkedin.com/in/moritz-laurer/) ## Debugging and issues The ernie-m architecture is only supported with transformers==4.27 or higher (which is not yet released and causes an error in the inference widget as of 03.03.23). In order to run the model before the release of 4.27, you need to install transformers from source with: `pip install git+https://github.com/huggingface/transformers` as well as the sentencepiece tokenizer with: `pip install sentencepiece` After the release, you can run: `pip install transformers[sentencepiece]>=4.27`
morenolq/thext-ai-scibert
morenolq
2023-03-20T08:20:42Z
14
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "regression", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-13T07:42:46Z
--- language: "en" tags: - bert - regression - pytorch pipeline: - text-classification widget: - text: "We propose a new approach, based on Transformer-based encoding, to highlight extraction. To the best of our knowledge, this is the first attempt to use transformer architectures to address automatic highlight generation. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "We design a context-aware sentence-level regressor, in which the semantic similarity between candidate sentences and highlights is estimated by also attending the contextual knowledge provided by the other paper sections. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." - text: "Fig. 2, Fig. 3, Fig. 4 show the effect of varying the number K of selected highlights on the extraction performance. As expected, recall values increase while increasing the number of selected highlights, whereas precision values show an opposite trend. [SEP] Highlights are short sentences used to annotate scientific papers. They complement the abstract content by conveying the main result findings. To automate the process of paper annotation, highlights extraction aims at extracting from 3 to 5 paper sentences via supervised learning. Existing approaches rely on ad hoc linguistic features, which depend on the analyzed context, and apply recurrent neural networks, which are not effective in learning long-range text dependencies. This paper leverages the attention mechanism adopted in transformer models to improve the accuracy of sentence relevance estimation. Unlike existing approaches, it relies on the end-to-end training of a deep regression model. To attend patterns relevant to highlights content it also enriches sentence encodings with a section-level contextualization. The experimental results, achieved on three different benchmark datasets, show that the designed architecture is able to achieve significant performance improvements compared to the state-of-the-art." --- # General Information This model is trained on journal publications of belonging to the domain: **Artificial Intelligence**. This is an `allenai/scibert_scivocab_cased` model trained in the scientific domain. The model is trained with regression objective to estimate the relevance of a sentence according to the provided context (e.g., the abstract of the scientific paper). The model is used in the paper 'Transformer-based highlights extraction from scientific papers' published in Knowledge-Based Systems scientific journal. The model is able to achieve state-of-the-art performance in the task of highlights extraction from scientific papers. Access to the full paper: [here](https://doi.org/10.1016/j.knosys.2022.109382). # Usage: For detailed usage please use the official repository https://github.com/MorenoLaQuatra/THExt . # References: If you find it useful, please cite the following paper: ```bibtex @article{thext, title={Transformer-based highlights extraction from scientific papers}, author={La Quatra, Moreno and Cagliero, Luca}, journal={Knowledge-Based Systems}, pages={109382}, year={2022}, publisher={Elsevier} } ```
joheras/clinico-bsc-bio-ehr-es
joheras
2023-03-20T08:16:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-20T07:37:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: clinico-bsc-bio-ehr-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinico-bsc-bio-ehr-es This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9988 - Precision: 0.4916 - Recall: 0.6526 - F1: 0.5608 - Accuracy: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 25 | 1.2185 | 0.0189 | 0.0359 | 0.0247 | 0.6197 | | No log | 2.0 | 50 | 0.7442 | 0.1562 | 0.1975 | 0.1744 | 0.7996 | | No log | 3.0 | 75 | 0.6502 | 0.2108 | 0.2640 | 0.2344 | 0.8180 | | No log | 4.0 | 100 | 0.6404 | 0.3453 | 0.4572 | 0.3935 | 0.8258 | | No log | 5.0 | 125 | 0.6131 | 0.3639 | 0.4657 | 0.4085 | 0.8303 | | No log | 6.0 | 150 | 0.6123 | 0.3356 | 0.4256 | 0.3752 | 0.8341 | | No log | 7.0 | 175 | 0.6093 | 0.3411 | 0.4498 | 0.3880 | 0.8370 | | No log | 8.0 | 200 | 0.6198 | 0.3840 | 0.4931 | 0.4318 | 0.8379 | | No log | 9.0 | 225 | 0.6490 | 0.3878 | 0.5037 | 0.4382 | 0.8378 | | No log | 10.0 | 250 | 0.6653 | 0.3810 | 0.5005 | 0.4327 | 0.8371 | | No log | 11.0 | 275 | 0.6456 | 0.3223 | 0.4847 | 0.3872 | 0.8387 | | No log | 12.0 | 300 | 0.6475 | 0.3377 | 0.4847 | 0.3981 | 0.8474 | | No log | 13.0 | 325 | 0.6620 | 0.4004 | 0.5734 | 0.4716 | 0.8506 | | No log | 14.0 | 350 | 0.6798 | 0.3914 | 0.5649 | 0.4624 | 0.8533 | | No log | 15.0 | 375 | 0.6880 | 0.3969 | 0.5671 | 0.4670 | 0.8520 | | No log | 16.0 | 400 | 0.7012 | 0.4192 | 0.5913 | 0.4906 | 0.8551 | | No log | 17.0 | 425 | 0.7224 | 0.4143 | 0.5924 | 0.4876 | 0.8517 | | No log | 18.0 | 450 | 0.7510 | 0.4302 | 0.6051 | 0.5029 | 0.8553 | | No log | 19.0 | 475 | 0.7388 | 0.4271 | 0.6030 | 0.5 | 0.8532 | | 0.3652 | 20.0 | 500 | 0.7524 | 0.4374 | 0.6125 | 0.5103 | 0.8569 | | 0.3652 | 21.0 | 525 | 0.7408 | 0.4427 | 0.6082 | 0.5125 | 0.8580 | | 0.3652 | 22.0 | 550 | 0.7430 | 0.4448 | 0.6125 | 0.5153 | 0.8610 | | 0.3652 | 23.0 | 575 | 0.7726 | 0.4193 | 0.6093 | 0.4968 | 0.8582 | | 0.3652 | 24.0 | 600 | 0.7876 | 0.4316 | 0.6061 | 0.5042 | 0.8562 | | 0.3652 | 25.0 | 625 | 0.7777 | 0.4620 | 0.6294 | 0.5329 | 0.8595 | | 0.3652 | 26.0 | 650 | 0.8009 | 0.4521 | 0.6272 | 0.5254 | 0.8570 | | 0.3652 | 27.0 | 675 | 0.8153 | 0.4583 | 0.6378 | 0.5333 | 0.8572 | | 0.3652 | 28.0 | 700 | 0.8215 | 0.4611 | 0.6262 | 0.5311 | 0.8580 | | 0.3652 | 29.0 | 725 | 0.8296 | 0.4699 | 0.6336 | 0.5396 | 0.8595 | | 0.3652 | 30.0 | 750 | 0.8174 | 0.4597 | 0.6378 | 0.5343 | 0.8603 | | 0.3652 | 31.0 | 775 | 0.8442 | 0.4765 | 0.6410 | 0.5466 | 0.8599 | | 0.3652 | 32.0 | 800 | 0.8281 | 0.4646 | 0.6315 | 0.5354 | 0.8610 | | 0.3652 | 33.0 | 825 | 0.8322 | 0.4583 | 0.6389 | 0.5337 | 0.8591 | | 0.3652 | 34.0 | 850 | 0.8153 | 0.4559 | 0.6272 | 0.528 | 0.8623 | | 0.3652 | 35.0 | 875 | 0.8529 | 0.4861 | 0.6294 | 0.5486 | 0.8589 | | 0.3652 | 36.0 | 900 | 0.8826 | 0.4699 | 0.6272 | 0.5373 | 0.8559 | | 0.3652 | 37.0 | 925 | 0.8856 | 0.4654 | 0.6325 | 0.5363 | 0.8571 | | 0.3652 | 38.0 | 950 | 0.8983 | 0.4819 | 0.6315 | 0.5466 | 0.8560 | | 0.3652 | 39.0 | 975 | 0.8723 | 0.4641 | 0.6272 | 0.5335 | 0.8556 | | 0.0269 | 40.0 | 1000 | 0.8788 | 0.4662 | 0.6399 | 0.5394 | 0.8550 | | 0.0269 | 41.0 | 1025 | 0.8952 | 0.4805 | 0.6378 | 0.5481 | 0.8611 | | 0.0269 | 42.0 | 1050 | 0.8901 | 0.4657 | 0.6304 | 0.5357 | 0.8574 | | 0.0269 | 43.0 | 1075 | 0.9015 | 0.4746 | 0.6410 | 0.5454 | 0.8574 | | 0.0269 | 44.0 | 1100 | 0.8838 | 0.4655 | 0.6420 | 0.5397 | 0.8591 | | 0.0269 | 45.0 | 1125 | 0.9093 | 0.4718 | 0.6441 | 0.5446 | 0.8598 | | 0.0269 | 46.0 | 1150 | 0.9154 | 0.4826 | 0.6441 | 0.5518 | 0.8553 | | 0.0269 | 47.0 | 1175 | 0.9214 | 0.4614 | 0.6315 | 0.5332 | 0.8538 | | 0.0269 | 48.0 | 1200 | 0.9313 | 0.4639 | 0.6315 | 0.5349 | 0.8546 | | 0.0269 | 49.0 | 1225 | 0.9137 | 0.4807 | 0.6431 | 0.5501 | 0.8582 | | 0.0269 | 50.0 | 1250 | 0.9235 | 0.4939 | 0.6463 | 0.5599 | 0.8571 | | 0.0269 | 51.0 | 1275 | 0.9263 | 0.4900 | 0.6441 | 0.5566 | 0.8580 | | 0.0269 | 52.0 | 1300 | 0.9190 | 0.4787 | 0.6420 | 0.5485 | 0.8613 | | 0.0269 | 53.0 | 1325 | 0.9159 | 0.4700 | 0.6441 | 0.5434 | 0.8616 | | 0.0269 | 54.0 | 1350 | 0.9302 | 0.4806 | 0.6399 | 0.5489 | 0.8614 | | 0.0269 | 55.0 | 1375 | 0.9391 | 0.4877 | 0.6515 | 0.5579 | 0.8581 | | 0.0269 | 56.0 | 1400 | 0.9392 | 0.4959 | 0.6452 | 0.5608 | 0.8580 | | 0.0269 | 57.0 | 1425 | 0.9444 | 0.4798 | 0.6410 | 0.5488 | 0.8570 | | 0.0269 | 58.0 | 1450 | 0.9394 | 0.4777 | 0.6441 | 0.5486 | 0.8596 | | 0.0269 | 59.0 | 1475 | 0.9562 | 0.4833 | 0.6420 | 0.5515 | 0.8586 | | 0.0098 | 60.0 | 1500 | 0.9485 | 0.4801 | 0.6484 | 0.5517 | 0.8582 | | 0.0098 | 61.0 | 1525 | 0.9521 | 0.4679 | 0.6463 | 0.5428 | 0.8582 | | 0.0098 | 62.0 | 1550 | 0.9603 | 0.4759 | 0.6463 | 0.5481 | 0.8563 | | 0.0098 | 63.0 | 1575 | 0.9663 | 0.4831 | 0.6473 | 0.5532 | 0.8561 | | 0.0098 | 64.0 | 1600 | 0.9641 | 0.4780 | 0.6526 | 0.5518 | 0.8580 | | 0.0098 | 65.0 | 1625 | 0.9607 | 0.4767 | 0.6494 | 0.5498 | 0.8606 | | 0.0098 | 66.0 | 1650 | 0.9782 | 0.4849 | 0.6463 | 0.5541 | 0.8563 | | 0.0098 | 67.0 | 1675 | 0.9806 | 0.4916 | 0.6484 | 0.5592 | 0.8562 | | 0.0098 | 68.0 | 1700 | 0.9728 | 0.4889 | 0.6494 | 0.5578 | 0.8578 | | 0.0098 | 69.0 | 1725 | 0.9766 | 0.4885 | 0.6494 | 0.5576 | 0.8584 | | 0.0098 | 70.0 | 1750 | 0.9738 | 0.4862 | 0.6526 | 0.5573 | 0.8575 | | 0.0098 | 71.0 | 1775 | 0.9788 | 0.4916 | 0.6505 | 0.56 | 0.8571 | | 0.0098 | 72.0 | 1800 | 0.9845 | 0.4845 | 0.6452 | 0.5534 | 0.8563 | | 0.0098 | 73.0 | 1825 | 0.9729 | 0.4876 | 0.6463 | 0.5559 | 0.8573 | | 0.0098 | 74.0 | 1850 | 0.9854 | 0.4846 | 0.6494 | 0.5551 | 0.8569 | | 0.0098 | 75.0 | 1875 | 0.9903 | 0.4885 | 0.6505 | 0.5580 | 0.8562 | | 0.0098 | 76.0 | 1900 | 0.9825 | 0.4886 | 0.6558 | 0.5600 | 0.8568 | | 0.0098 | 77.0 | 1925 | 0.9994 | 0.4876 | 0.6463 | 0.5559 | 0.8554 | | 0.0098 | 78.0 | 1950 | 0.9922 | 0.4905 | 0.6515 | 0.5596 | 0.8546 | | 0.0098 | 79.0 | 1975 | 1.0084 | 0.4928 | 0.6484 | 0.5600 | 0.8578 | | 0.0057 | 80.0 | 2000 | 0.9931 | 0.4976 | 0.6526 | 0.5646 | 0.8580 | | 0.0057 | 81.0 | 2025 | 0.9864 | 0.4826 | 0.6452 | 0.5522 | 0.8595 | | 0.0057 | 82.0 | 2050 | 0.9929 | 0.4900 | 0.6484 | 0.5582 | 0.8595 | | 0.0057 | 83.0 | 2075 | 0.9902 | 0.4916 | 0.6473 | 0.5588 | 0.8588 | | 0.0057 | 84.0 | 2100 | 1.0021 | 0.4872 | 0.6431 | 0.5544 | 0.8573 | | 0.0057 | 85.0 | 2125 | 1.0013 | 0.4964 | 0.6473 | 0.5619 | 0.8582 | | 0.0057 | 86.0 | 2150 | 0.9814 | 0.4865 | 0.6484 | 0.5559 | 0.8625 | | 0.0057 | 87.0 | 2175 | 0.9841 | 0.4932 | 0.6558 | 0.5630 | 0.8622 | | 0.0057 | 88.0 | 2200 | 0.9888 | 0.4866 | 0.6515 | 0.5571 | 0.8610 | | 0.0057 | 89.0 | 2225 | 0.9898 | 0.4924 | 0.6515 | 0.5609 | 0.8610 | | 0.0057 | 90.0 | 2250 | 0.9860 | 0.4870 | 0.6526 | 0.5578 | 0.8607 | | 0.0057 | 91.0 | 2275 | 0.9925 | 0.4912 | 0.6484 | 0.5589 | 0.8589 | | 0.0057 | 92.0 | 2300 | 0.9904 | 0.4956 | 0.6536 | 0.5638 | 0.8599 | | 0.0057 | 93.0 | 2325 | 0.9902 | 0.4980 | 0.6526 | 0.5649 | 0.8602 | | 0.0057 | 94.0 | 2350 | 0.9925 | 0.5041 | 0.6547 | 0.5696 | 0.8602 | | 0.0057 | 95.0 | 2375 | 0.9959 | 0.4897 | 0.6515 | 0.5591 | 0.8589 | | 0.0057 | 96.0 | 2400 | 0.9951 | 0.4901 | 0.6505 | 0.5590 | 0.8591 | | 0.0057 | 97.0 | 2425 | 0.9962 | 0.4924 | 0.6505 | 0.5605 | 0.8588 | | 0.0057 | 98.0 | 2450 | 0.9972 | 0.5008 | 0.6505 | 0.5659 | 0.8585 | | 0.0057 | 99.0 | 2475 | 0.9988 | 0.4920 | 0.6526 | 0.5611 | 0.8588 | | 0.0045 | 100.0 | 2500 | 0.9988 | 0.4916 | 0.6526 | 0.5608 | 0.8586 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0 - Datasets 2.8.0 - Tokenizers 0.12.1
seongwoon/labor_space_bert
seongwoon
2023-03-20T08:06:27Z
3
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-20T07:16:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: labor_space_bert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # labor_space_bert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 2.0.0+cu118 - Datasets 2.8.0 - Tokenizers 0.10.3
ku-nlp/roberta-base-japanese-char-wwm
ku-nlp
2023-03-20T08:05:45Z
674
4
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "ja", "dataset:wikipedia", "dataset:cc100", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-20T05:07:34Z
--- language: ja license: cc-by-sa-4.0 datasets: - wikipedia - cc100 mask_token: "[MASK]" widget: - text: "京都大学で自然言語処理を[MASK]する。" --- # ku-nlp/roberta-base-japanese-char-wwm ## Model description This is a Japanese RoBERTa base model pre-trained on Japanese Wikipedia and the Japanese portion of CC-100. This model is trained with character-level tokenization and whole word masking. ## How to use You can use this model for masked language modeling as follows: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('ku-nlp/roberta-base-japanese-char-wwm') model = AutoModelForMaskedLM.from_pretrained('ku-nlp/roberta-base-japanese-char-wwm') sentence = '京都大学で自然言語処理を[MASK]する。' encoding = tokenizer(sentence, return_tensors='pt') ... ``` You can fine-tune this model on downstream tasks. ## Tokenization There is no need to tokenize texts in advance, and you can give raw texts to the tokenizer. The texts are tokenized into character-level tokens by [sentencepiece](https://github.com/google/sentencepiece). ## Vocabulary The vocabulary consists of 18,377 tokens including all characters that appear in the training corpus. ## Training procedure This model was trained on Japanese Wikipedia (as of 20220220) and the Japanese portion of CC-100. It took two weeks using 8 NVIDIA A100 GPUs. The following hyperparameters were used during pre-training: - learning_rate: 1e-4 - per_device_train_batch_size: 62 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 3968 - max_seq_length: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear schedule with warmup - training_steps: 330000 - warmup_steps: 10000 ## Acknowledgments This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (JHPCN) through General Collaboration Project no. jh221004, "Developing a Platform for Constructing and Sharing of Large-Scale Japanese Language Models". For training models, we used the mdx: a platform for the data-driven future.
akhooli/poetry2023
akhooli
2023-03-20T08:05:19Z
9
3
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "ar", "dataset:APCD", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-04T06:06:52Z
--- language: "ar" tags: - text-generation datasets: - APCD widget: - text: "." - text: "عيد بأية حال" - text: "يا قدس" - text: "يا قدس" - text: "ألا ليت" --- # GPT2-Arabic-Poetry-2023 ## Model description Fine-tuned model of Arabic poetry dataset based on aragpt2-medium. ## Intended uses & limitations #### How to use An example is provided in this [colab notebook](todo). #### Limitations and bias Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. Use them as demonstrations or proof of concepts but not as production code. ## Training data This pretrained model used the [dataset](todo) from several eras with a total of around 1.4m lines. The dataset was trained (fine-tuned) based on the [aragpt2-medium](https://huggingface.co/aubmindlab/aragpt2-medium) transformer model. ## Training procedure Training was done using [Simple Transformers](https://github.com/ThilinaRajapakse/simpletransformers) library on Colab, using free GPU. ## Eval results Final perplexity reached was 49.56, train loss: 3.336 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2023} }
akhooli/ap2023
akhooli
2023-03-20T08:04:39Z
74
2
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "ar", "dataset:APCD", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-01-06T11:42:33Z
--- language: "ar" tags: - text-generation datasets: - APCD widget: - text: "." - text: "عيد بأية حال" - text: "يا قدس" - text: "يا قدس" - text: "ألا ليت" --- # GPT2-Arabic-Poetry-2023 ## Model description Fine-tuned model of Arabic poetry dataset based on aragpt2-medium. ## Intended uses & limitations #### How to use Try this [HF Space](https://huggingface.co/spaces/akhooli/poetry). From script: ``` from transformers import pipeline pipe = pipeline('text-generation', framework='pt', device=-1, model='akhooli/ap2023', tokenizer='akhooli/ap2023') gen = pipe(prompt, max_length=96, temperature = 0.95,repetition_penalty=1.05, num_beams=3, num_return_sequences=2, do_sample = True, top_p = 1.0, top_k = 50, return_full_text=True)[0]["generated_text"] poetry ="" for line in gen.split('.')[:-1]: poetry += line print(poetry) ``` #### Limitations and bias Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. Use them as demonstrations or proof of concepts but not as production code. ## Training data This pretrained model used poems from several eras with a total of around 1.4M lines (1.25M used for training). The dataset was trained (fine-tuned) based on the [aragpt2-medium](https://huggingface.co/aubmindlab/aragpt2-medium) transformer model. ## Training procedure Training was done using HF Trainer using free GPU on Kaggle. ## Eval results Final perplexity reached was 52, eval_accuracy = 0.3704, eval_loss = 3.9513 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2023} } ```
KBLab/megatron-bert-large-swedish-cased-165k
KBLab
2023-03-20T08:01:57Z
115
0
transformers
[ "transformers", "pytorch", "safetensors", "megatron-bert", "fill-mask", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-21T09:38:41Z
--- language: - sv --- # Megatron-BERT-large Swedish 165k This BERT model was trained using the Megatron-LM library. The size of the model is a regular BERT-large with 340M parameters. The model was trained on about 70GB of data, consisting mostly of OSCAR and Swedish newspaper text curated by the National Library of Sweden. Training was done for 165k training steps using a batch size of 8k; the number of training steps is set to 500k, meaning that this version is a checkpoint. The hyperparameters for training followed the setting for RoBERTa. The model has three sister models trained on the same dataset: - [🤗 BERT Swedish](https://huggingface.co/KBLab/bert-base-swedish-cased-new) - [Megatron-BERT-base-600k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-600k) - [Megatron-BERT-base-125k](https://huggingface.co/KBLab/megatron-bert-base-swedish-cased-125k) and an earlier checkpoint - [Megatron-BERT-large-110k](https://huggingface.co/KBLab/megatron-bert-large-swedish-cased-110k) ## Acknowledgements We gratefully acknowledge the HPC RIVR consortium (https://www.hpc-rivr.si) and EuroHPC JU (https://eurohpc-ju.europa.eu) for funding this research by providing computing resources of the HPC system Vega at the Institute of Information Science (https://www.izum.si).
loveisp/taxi-v3
loveisp
2023-03-20T07:33:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T07:33:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.74 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="loveisp/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
alvarez/rl_course_vizdoom_health_gathering_supreme
alvarez
2023-03-20T07:25:43Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T07:25:17Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 4.16 +/- 0.54 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r alvarez/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
ldaquan1996/Reinforce-v1
ldaquan1996
2023-03-20T07:21:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T07:21:15Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
0xhaz/bert2bert-cnn_dailymail-fp16-finetuned-1.0.0
0xhaz
2023-03-20T06:58:41Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-26T10:53:48Z
--- tags: - generated_from_trainer metrics: - rouge model-index: - name: bert2bert-cnn_dailymail-fp16-finetuned-1.0.0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert2bert-cnn_dailymail-fp16-finetuned-1.0.0 This model is a fine-tuned version of [patrickvonplaten/bert2bert-cnn_dailymail-fp16](https://huggingface.co/patrickvonplaten/bert2bert-cnn_dailymail-fp16) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3346 - Rouge1: 46.3609 - Rouge2: 18.8105 - Rougel: 30.215 - Rougelsum: 42.3642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:------:|:---------:| | 2.8263 | 1.0 | 586 | 2.4478 | 45.3367 | 18.3604 | 29.713 | 41.2805 | | 2.1264 | 2.0 | 1172 | 2.3346 | 46.3609 | 18.8105 | 30.215 | 42.3642 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1 - Datasets 2.10.0 - Tokenizers 0.13.2
mr4/phobert-base-vi-sentiment-analysis
mr4
2023-03-20T06:55:54Z
191,047
3
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "Vietnamese", "sentiment", "analysis", "vi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-17T07:10:43Z
--- language: - vi library_name: transformers pipeline_tag: text-classification tags: - Vietnamese - sentiment - analysis --- # Sentiment Analysis in Vietnamese - Phân tích cảm xúc trong tiếng Việt ## Phở Bert phân tích cảm xúc ## Model description Mô hình có tác dụng xác định cảm xúc của đoạn văn. Sử dụng nhãn: "Tích cực", "Tiêu cực", "Trung tính" Ví dụ: Thời tiết hôm nay không được đẹp, trời mưa và lạnh. ```text Tiêu cực: 0.9596341252326965 Tích cực: 0.010115462355315685 Trung tính: 0.030250443145632744 ``` Hôm nay đi làm thật vui, ăn uống thật ngon. ```text Tiêu cực: 0.002220266032963991 Tích cực: 0.9917450547218323 Trung tính: 0.006034655496478081 ``` Bình thường. Không có gì đặc biệt. ```text Tiêu cực: 0.03198615834116936 Tích cực: 0.05307402461767197 Trung tính: 0.9149397611618042 ``` ## Base model Mô hình được đạo tạo dựa trên cơ sở của model PhoBert-Base của VinAI (https://huggingface.co/vinai/phobert-large) ## Training data Mô hình được đào tạo dựa trên dữ liệu được thu thập bởi linhlpv (https://www.kaggle.com/datasets/linhlpv/vietnamese-sentiment-analyst) - có chỉnh sửa. Với 31436 nội dung đánh giá sảm phẩm. ## Model variations Chưa xác định ## Intended uses & limitations Chưa xác định ## License Đây là một open-source library, bạn có thể sử dụng nó với bất kì mục đích nào. Rất cảm ơn nếu bạn ghi nguồn khi sử dụng mô hình này (nếu không ghi cũng không sao). ### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os def clear(): os.system('clear') checkpoint = "mr4/phobert-base-vi-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) clear() print("Ngày hôm nay của bạn thế nào?") val = input("") raw_inputs = [val] inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt") outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) clear() print(">>>>>>>>>>>>>>>>>>>>>>>>>>") for i, prediction in enumerate(predictions): print(raw_inputs[i]) for j, value in enumerate(prediction): print( " " + model.config.id2label[j] + ": " + str(value.item())) print("<<<<<<<<<<<<<<<<<<<<<<<<<<") ``` ## Liên hệ Mọi thông tin liên quan có thể liên hệ qua email: zZz4everzZz@live.co.uk.
mr4/bert-base-jp-sentiment-analysis
mr4
2023-03-20T06:54:56Z
30
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "sentiment", "analysis", "Japanses", "ja", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T04:45:19Z
--- language: - ja library_name: transformers pipeline_tag: text-classification tags: - sentiment - analysis - Japanses --- # Sentiment Analysis in Japanese - Phân tích cảm xúc trong tiếng Nhật ## Bert phân tích cảm xúc ## Model description Mô hình có tác dụng xác định cảm xúc của đoạn văn. Sử dụng nhãn: "positive", "negative" Ví dụ: 今日はいい天気ですね ```text negative: 6.001393558108248e-05 positive: 0.999940037727356 ``` 今日の食べ物はとてもつまらない ```text negative: 0.9999252557754517 positive: 7.470489799743518e-05 ``` ## Base model Mô hình được đạo tạo dựa trên cơ sở của model Base Japanese ## Training data Mô hình được đào tạo dựa trên dữ liệu được thu thập bởi TAKAHIRO KUBO (https://www.kaggle.com/datasets/takahirokubo0/chabsa) - có chỉnh sửa. ## Model variations Chưa xác định ## Intended uses & limitations Chưa xác định ## License Đây là một open-source library, bạn có thể sử dụng nó với bất kì mục đích nào. Rất cảm ơn nếu bạn ghi nguồn khi sử dụng mô hình này (nếu không ghi cũng không sao). ### How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os def clear(): os.system('clear') checkpoint = "mr4/bert-base-jp-sentiment-analysis" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSequenceClassification.from_pretrained(checkpoint) clear() print("Ngày hôm nay của bạn thế nào?") val = input("") raw_inputs = [val] inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt") outputs = model(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) clear() print(">>>>>>>>>>>>>>>>>>>>>>>>>>") for i, prediction in enumerate(predictions): print(raw_inputs[i]) for j, value in enumerate(prediction): print( " " + model.config.id2label[j] + ": " + str(value.item())) print("<<<<<<<<<<<<<<<<<<<<<<<<<<") ``` ## Liên hệ Mọi thông tin liên quan có thể liên hệ qua email: zZz4everzZz@live.co.uk.
Raiden-1001/a2c-AntBulletEnv-v0
Raiden-1001
2023-03-20T06:28:56Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T06:27:45Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 965.31 +/- 242.23 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
msp3887/q-Taxi-v3
msp3887
2023-03-20T06:18:13Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T06:18:10Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.77 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="msp3887/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dfurman/BEiT-base-land-cover-v0.1
dfurman
2023-03-20T06:17:37Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-11-18T18:07:07Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-ches-demo-v0 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9870689655172413 widget: - src: https://imgs.mongabay.com/wp-content/uploads/sites/20/2020/04/07204605/amazon_coca_01.jpg example_title: Tree Canopy - src: https://images.ctfassets.net/nzn0tepgtyr1/4tyavnFHhmNuVky1ISq51k/64aaf596f6b8ee12d0f0e898679c8f4f/Hero_Image.jpg?w=1024&h=710&fl=progressive&q=50&fm=jpg&bg=transparent example_title: Low Vegetation - src: https://outline-prod.imgix.net/20170228-YxGtsv8J0ePP0rXcnle2?auto=format&q=60&w=1280&s=27916f48ed9226c2a2b7848de8d7c0d1 example_title: Impervious Surfaces - src: https://clarity.maptiles.arcgis.com/arcgis/rest/services/World_Imagery/MapServer/tile/15/11883/10109 example_title: Water --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-ches-demo-v0 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0420 - Accuracy: 0.9871 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0183 | 3.45 | 300 | 0.0420 | 0.9871 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Orreo/Iridescent_painter
Orreo
2023-03-20T06:05:11Z
0
5
null
[ "license:artistic-2.0", "region:us" ]
null
2023-03-20T05:51:55Z
--- license: artistic-2.0 --- The description below was created using machine translation Merged Pastel Mix, oil paint trained model and stable diffusion 1.5 default model. An oil painting-inspired anime-style model with bright, vibrant colors and a soft brushstroke. Use the OIL PAINT prompt to blur outlines and make colors more colorful. If you don't use the oil paint prompts, the lines are relatively bold and the colors are a bit muted. ![00095-574188704.png](https://s3.amazonaws.com/moonup/production/uploads/1679291640087-63cf776e5c1d61bb23e0327c.png)
CristianLazoQuispe/AIorNot-model
CristianLazoQuispe
2023-03-20T06:02:23Z
0
0
null
[ "image-classification", "en", "dataset:competitions/aiornot", "license:mit", "region:us" ]
image-classification
2023-03-20T05:25:24Z
--- license: mit datasets: - competitions/aiornot language: - en metrics: - accuracy - f1 pipeline_tag: image-classification --- Fatima 2023 Application This project is about an image classification task of artificial and natural classes. Setup: pip install -r requirements.txt Inference: from torchvision import transforms from PIL import Image import torch inference_transform = transforms.Compose([ transforms.Resize(128), transforms.ToTensor(), transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]), ]) #load image and model img_example = Image.open("image_example.png").convert('RGB') print("image loaded!") model_loaded = torch.load("fatima_challenge_model_exp3.pt") model_loaded.eval() print("model loaded!") img_example_transformed = inference_transform(img_example) out = model_loaded(img_example_transformed.to(torch.device("cuda:0")).unsqueeze(0)) # Generate predictions _, outs = torch.max(out, 1) prediction = "natural" if int(outs.cpu().numpy())==0 else "artificial" print("prediction = ",prediction)
jinukoo/a2c-PandaReachDense-v2
jinukoo
2023-03-20T06:01:35Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T04:08:43Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.91 +/- 0.15 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
msp3887/q-FrozenLake-v1-4x4-noSlippery
msp3887
2023-03-20T05:59:45Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T05:59:42Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="msp3887/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
pfunk/CartPole-v1-CP_DQPN_x1-seed4
pfunk
2023-03-20T05:43:27Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:15Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 145.59 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x1.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x1]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x1 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed4/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x1-seed4/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x1 --policy-network-frequency 20 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x1', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 20, 'policy_tau': 1.0, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
ashishj20/ppo-pyramids-rnd
ashishj20
2023-03-20T05:41:56Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-20T05:06:35Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: ashishj20/ppo-pyramids-rnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jackhhhh/rl_course_vizdoom_health_gathering_supreme
jackhhhh
2023-03-20T05:36:35Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T05:36:23Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 3.91 +/- 0.41 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jackhhhh/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
nobtunotnobutno/Lovely-LORA
nobtunotnobutno
2023-03-20T05:01:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-20T04:33:37Z
--- license: creativeml-openrail-m ---
luongphamit/DreamShaper
luongphamit
2023-03-20T04:56:45Z
14
4
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "art", "artistic", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-20T01:33:24Z
--- language: - en license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - art - artistic - diffusers inference: true --- # Dream Shaper ## Official Repository Read more about this model here: https://civitai.com/models/4384/dreamshaper Also please support by giving 5 stars and a heart, which will notify new updates. Also consider supporting me on Patreon or ByuMeACoffee - https://www.patreon.com/Lykon275 - https://www.buymeacoffee.com/lykon You can run this model on: - https://huggingface.co/spaces/Lykon/DreamShaper-webui - https://sinkin.ai/m/4zdwGOB Be sure to check out NeverEnding Dream, which is another semi-realistic model which aims at being fully compatible with booru tag loras and prompts - https://huggingface.co/Lykon/NeverEnding-Dream Some sample output: ![sample 1](https://huggingface.co/Lykon/DreamShaper/resolve/main/1.png) ![sample 2](https://huggingface.co/Lykon/DreamShaper/resolve/main/2.png) ![sample 3](https://huggingface.co/Lykon/DreamShaper/resolve/main/3.png) ![sample 4](https://huggingface.co/Lykon/DreamShaper/resolve/main/4.png) ![sample 5](https://huggingface.co/Lykon/DreamShaper/resolve/main/5.png)
liuyanchen1015/roberta-base-mnli_IndE
liuyanchen1015
2023-03-20T04:43:24Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-18T21:36:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-mnli_IndE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-mnli_IndE This model is a fine-tuned version of [WillHeld/roberta-base-mnli](https://huggingface.co/WillHeld/roberta-base-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7633 - Acc: 0.8517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.3903 | 0.17 | 2000 | 0.4502 | 0.8359 | | 0.3776 | 0.33 | 4000 | 0.4488 | 0.8378 | | 0.3694 | 0.5 | 6000 | 0.4400 | 0.8408 | | 0.3679 | 0.67 | 8000 | 0.4412 | 0.8395 | | 0.3584 | 0.83 | 10000 | 0.4079 | 0.8514 | | 0.3618 | 1.0 | 12000 | 0.4326 | 0.8433 | | 0.2582 | 1.17 | 14000 | 0.4738 | 0.8459 | | 0.2603 | 1.33 | 16000 | 0.4921 | 0.8468 | | 0.2608 | 1.5 | 18000 | 0.4542 | 0.8498 | | 0.2591 | 1.67 | 20000 | 0.4709 | 0.8483 | | 0.263 | 1.83 | 22000 | 0.4955 | 0.8466 | | 0.2611 | 2.0 | 24000 | 0.4829 | 0.8513 | | 0.1802 | 2.17 | 26000 | 0.5470 | 0.8493 | | 0.1819 | 2.33 | 28000 | 0.5523 | 0.8503 | | 0.1847 | 2.5 | 30000 | 0.5160 | 0.8519 | | 0.1886 | 2.67 | 32000 | 0.5229 | 0.8521 | | 0.1877 | 2.83 | 34000 | 0.5024 | 0.8528 | | 0.1839 | 3.0 | 36000 | 0.5456 | 0.8536 | | 0.1322 | 3.17 | 38000 | 0.6997 | 0.8492 | | 0.1385 | 3.33 | 40000 | 0.6212 | 0.8534 | | 0.1326 | 3.5 | 42000 | 0.6629 | 0.8529 | | 0.1355 | 3.67 | 44000 | 0.6448 | 0.8516 | | 0.1332 | 3.83 | 46000 | 0.6411 | 0.8544 | | 0.1372 | 4.0 | 48000 | 0.6574 | 0.8526 | | 0.1056 | 4.17 | 50000 | 0.7427 | 0.8529 | | 0.1053 | 4.33 | 52000 | 0.7466 | 0.8518 | | 0.1062 | 4.5 | 54000 | 0.7734 | 0.8536 | | 0.1056 | 4.67 | 56000 | 0.7623 | 0.8518 | | 0.1072 | 4.83 | 58000 | 0.7633 | 0.8517 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
liuyanchen1015/roberta-base-mnli_CollSgE
liuyanchen1015
2023-03-20T04:42:53Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-18T21:36:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-mnli_CollSgE results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-mnli_CollSgE This model is a fine-tuned version of [WillHeld/roberta-base-mnli](https://huggingface.co/WillHeld/roberta-base-mnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7610 - Acc: 0.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.4123 | 0.17 | 2000 | 0.4693 | 0.8332 | | 0.4028 | 0.33 | 4000 | 0.4624 | 0.8338 | | 0.3888 | 0.5 | 6000 | 0.4500 | 0.8375 | | 0.3841 | 0.67 | 8000 | 0.4281 | 0.8416 | | 0.3783 | 0.83 | 10000 | 0.4434 | 0.8365 | | 0.3759 | 1.0 | 12000 | 0.4400 | 0.8418 | | 0.2721 | 1.17 | 14000 | 0.5022 | 0.8427 | | 0.2736 | 1.33 | 16000 | 0.5252 | 0.8431 | | 0.2821 | 1.5 | 18000 | 0.4887 | 0.8409 | | 0.2802 | 1.67 | 20000 | 0.4758 | 0.8458 | | 0.2794 | 1.83 | 22000 | 0.4611 | 0.8458 | | 0.2797 | 2.0 | 24000 | 0.4936 | 0.8456 | | 0.1915 | 2.17 | 26000 | 0.5545 | 0.8462 | | 0.1946 | 2.33 | 28000 | 0.5731 | 0.8443 | | 0.2007 | 2.5 | 30000 | 0.5507 | 0.8428 | | 0.2008 | 2.67 | 32000 | 0.5499 | 0.8454 | | 0.1971 | 2.84 | 34000 | 0.5274 | 0.8483 | | 0.2054 | 3.0 | 36000 | 0.5454 | 0.8476 | | 0.1436 | 3.17 | 38000 | 0.6787 | 0.8442 | | 0.1426 | 3.34 | 40000 | 0.6933 | 0.8421 | | 0.1463 | 3.5 | 42000 | 0.6547 | 0.8455 | | 0.1447 | 3.67 | 44000 | 0.6469 | 0.8438 | | 0.1445 | 3.84 | 46000 | 0.6626 | 0.8472 | | 0.1457 | 4.0 | 48000 | 0.6494 | 0.8504 | | 0.1133 | 4.17 | 50000 | 0.7664 | 0.8459 | | 0.1138 | 4.34 | 52000 | 0.7857 | 0.8452 | | 0.1154 | 4.5 | 54000 | 0.7623 | 0.8486 | | 0.1102 | 4.67 | 56000 | 0.7740 | 0.8460 | | 0.1143 | 4.84 | 58000 | 0.7610 | 0.8445 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
bkhan2000/LunaLander-v2
bkhan2000
2023-03-20T04:32:18Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T04:32:05Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -138.99 +/- 59.23 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
sinu/IndoBERT-ExamQA
sinu
2023-03-20T04:27:38Z
21
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "id", "dataset:squad_v2", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-02-26T11:23:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: IndoBERT-ExamQA results: [] datasets: - squad_v2 language: - id pipeline_tag: question-answering --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IndoBERT-ExamQA This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: - - train_batch_size: - - eval_batch_size: - - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.395 | 1.0 | 8202 | 1.3536 | | 1.1534 | 2.0 | 16404 | 1.4040 | | 1.2816 | 2.0 | 32808 | 1.8183 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
sd-dreambooth-library/fashion
sd-dreambooth-library
2023-03-20T04:22:59Z
45
24
diffusers
[ "diffusers", "dreambooth-hackathon", "Text-to-image", "stable-diffusion", "text-to-image", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2022-12-01T03:31:46Z
--- license: apache-2.0 tags: - dreambooth-hackathon - Text-to-image - stable-diffusion pipeline_tag: text-to-image --- https://civitai.com/models/21642/fashion3d import torch from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("sd-dreambooth-library/fashion") pipe = pipe.to("cuda") prompt = "a photograph of an astronaut riding a horse" image = pipe(prompt).images[0] image.save(f"astronaut_rides_horse.png") ![image](https://s3.amazonaws.com/moonup/production/uploads/1669885576067-63044d493926de1f7ec709f4.png) ![image](https://s3.amazonaws.com/moonup/production/uploads/1669885940159-63044d493926de1f7ec709f4.png) ![de123af26a6c184d137487276175858.png](https://s3.amazonaws.com/moonup/production/uploads/1669886049338-63044d493926de1f7ec709f4.png) ![55aa13dfd7e61edbe61d1fba5affc0e.png](https://s3.amazonaws.com/moonup/production/uploads/1669886100601-63044d493926de1f7ec709f4.png)
golightly/Reinforce-PixelCopter
golightly
2023-03-20T04:02:58Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-18T23:00:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 20.50 +/- 15.11 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kejian/cpsc-wmle-1.1
kejian
2023-03-20T03:52:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-19T04:39:02Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 model-index: - name: kejian/cpsc-wmle-1.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/cpsc-wmle-1.1 This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000 and the tomekkorbak/detoxify-pile-chunk3-1800000-1850000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 42724 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [42724], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [42724], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 2048}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'beta': 1.1, 'exponential': False, 'name': 'WeightedMLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/cpsc-wmle-1.1', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0007, 'logging_first_step': True, 'logging_steps': 50, 'num_tokens': 2800000000.0, 'output_dir': 'training_output_1.1', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 21362, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1efu1obk
58AILab/wenet_efficient_conformer_aishell_v2
58AILab
2023-03-20T03:45:49Z
0
5
null
[ "automatic-speech-recognition", "en", "zh", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-03-20T03:43:34Z
--- license: apache-2.0 language: - en - zh metrics: - cer pipeline_tag: automatic-speech-recognition --- ## Efficient Conformer v2 for non-streaming ASR **Specification**: https://github.com/wenet-e2e/wenet/pull/1636 ## Aishell-1 Results * Feature info: * using fbank feature, cmvn, speed perturb, dither * Training info: * [train_u2++_efficonformer_v2.yaml](https://github.com/wenet-e2e/wenet/blob/main/examples/aishell/s0/conf/train_u2%2B%2B_efficonformer_v2.yaml) * 8 gpu, batch size 16, acc_grad 1, 200 epochs * lr 0.001, warmup_steps 25000 * Model info: * Model Params: 49,354,651 * Downsample rate: 1/2 (conv2d2) * 1/4 (efficonformer block) * encoder_dim 256, output_size 256, head 8, linear_units 2048 * num_blocks 12, cnn_module_kernel 15, group_size 3 * Decoding info: * ctc_weight 0.5, reverse_weight 0.3, average_num 20 | decoding mode | full | 18 | 16 | |------------------------|------|------|------| | attention decoder | 4.87 | 5.03 | 5.07 | | ctc prefix beam search | 4.97 | 5.18 | 5.20 | | attention rescoring | 4.56 | 4.75 | 4.77 | ## Start to Use Install **WeNet** follow: https://wenet.org.cn/wenet/install.html#install-for-training Decode ```sh cd wenet/examples/aishell/s0 dir=exp/wenet_efficient_conformer_aishell_v2/ ctc_weight=0.5 reverse_weight=0.3 decoding_chunk_size=-1 mode="attention_rescoring" test_dir=$dir/test_${mode} mkdir -p $test_dir # Decode nohup python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type "raw" \ --test_data data/test/data.list \ --checkpoint $dir/final.pt \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dir/words.txt \ --ctc_weight $ctc_weight \ --reverse_weight $reverse_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} > logs/decode_aishell.log & # CER python tools/compute-cer.py --char=1 --v=1 \ data/test/text $test_dir/text > $test_dir/cer.txt ```
OpenMatch/ance-tele_triviaqa_qry-encoder
OpenMatch
2023-03-20T03:32:01Z
7
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2210.17167", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-30T07:10:45Z
--- license: mit --- This model is the **query** encoder of ANCE-Tele trained on TriviaQA, described in the EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele. ANCE-Tele only trains with self-mined negatives (teleportation negatives) without using additional negatives (e.g., BM25, other DR systems) and eliminates the dependency on filtering strategies and distillation modules. |NQ (Test)|R@5|R@20|R@20| |:---|:---|:---|:---| |ANCE-Tele|76.9|83.4|87.3| ``` @inproceedings{sun2022ancetele, title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives}, author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao}, booktitle={Proceedings of EMNLP 2022}, year={2022} } ```
OpenMatch/ance-tele_nq_qry-encoder
OpenMatch
2023-03-20T03:31:08Z
4
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2210.17167", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-30T07:08:39Z
--- license: mit --- This model is the **query** encoder of ANCE-Tele trained on NQ, described in the EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele. ANCE-Tele only trains with self-mined negatives (teleportation negatives) without using additional negatives (e.g., BM25, other DR systems) and eliminates the dependency on filtering strategies and distillation modules. |NQ (Test)|R@5|R@20|R@20| |:---|:---|:---|:---| |ANCE-Tele|77.0|84.9|89.7| ``` @inproceedings{sun2022ancetele, title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives}, author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao}, booktitle={Proceedings of EMNLP 2022}, year={2022} } ```
OpenMatch/ance-tele_msmarco_qry-psg-encoder
OpenMatch
2023-03-20T03:30:39Z
6
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "arxiv:2210.17167", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-30T06:53:38Z
--- license: mit --- This model is ANCE-Tele trained on MS MARCO, described in the EMNLP 2022 paper ["Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives"](https://arxiv.org/pdf/2210.17167.pdf). The associated GitHub repository is available at https://github.com/OpenMatch/ANCE-Tele. ANCE-Tele only trains with self-mined negatives (teleportation negatives) without using additional negatives (e.g., BM25, other DR systems) and eliminates the dependency on filtering strategies and distillation modules. |MS MARCO (Dev)|MRR@10|R@1K| |:---|:---|:---| |ANCE-Tele|39.1|98.4| ``` @inproceedings{sun2022ancetele, title={Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives}, author={Si, Sun and Chenyan, Xiong and Yue, Yu and Arnold, Overwijk and Zhiyuan, Liu and Jie, Bao}, booktitle={Proceedings of EMNLP 2022}, year={2022} } ```
jackhhhh/Reinforce_Pixelcopter-PLE-v0-2
jackhhhh
2023-03-20T03:19:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T03:19:27Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_Pixelcopter-PLE-v0-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.80 +/- 21.20 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
pfunk/CartPole-v1-CP_DQPN_x50-seed4
pfunk
2023-03-20T03:00:45Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T03:00:41Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 346.65 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x50]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x50 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x50-seed4/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x50-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x50-seed4/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x50 --policy-network-frequency 1000 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x50', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 1000, 'policy_tau': 1.0, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x5-seed1
pfunk
2023-03-20T03:00:03Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T03:00:00Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x5.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x5]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x5 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed1/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x5 --policy-network-frequency 100 --seed 1 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x5', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 100, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x5-seed2
pfunk
2023-03-20T02:59:56Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:51Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 495.13 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x5.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x5]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x5 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed2/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed2/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x5 --policy-network-frequency 100 --seed 2 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x5', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 100, 'policy_tau': 1.0, 'save_model': True, 'seed': 2, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x5-seed4
pfunk
2023-03-20T02:59:40Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:38Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 55.21 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x5.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x5]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x5 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed4/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x5-seed4/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x5 --policy-network-frequency 100 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x5', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 100, 'policy_tau': 1.0, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x2-seed4
pfunk
2023-03-20T02:59:33Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:31Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 495.46 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x2.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x2]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x2 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed4/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed4/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x2 --policy-network-frequency 40 --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x2', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 40, 'policy_tau': 1.0, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x2-seed2
pfunk
2023-03-20T02:59:24Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:21Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 494.32 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x2.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x2]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x2 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed2/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed2/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed2/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x2 --policy-network-frequency 40 --seed 2 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x2', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 40, 'policy_tau': 1.0, 'save_model': True, 'seed': 2, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x2-seed1
pfunk
2023-03-20T02:59:17Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:14Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x2.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x2]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x2 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed1/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x2 --policy-network-frequency 40 --seed 1 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x2', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 40, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-CP_DQPN_x2-seed3
pfunk
2023-03-20T02:59:12Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:59:09Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQPN_freq results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQPN_freq** Agent Playing **CartPole-v1** This is a trained model of a DQPN_freq agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/CP_DQPN_x2.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[CP_DQPN_x2]" python -m cleanrl_utils.enjoy --exp-name CP_DQPN_x2 --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed3/raw/main/dqpn_freq.py curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-CP_DQPN_x2-seed3/raw/main/poetry.lock poetry install --all-extras python dqpn_freq.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name CP_DQPN_x2 --policy-network-frequency 40 --seed 3 ``` # Hyperparameters ```python {'alg_type': 'dqpn_freq.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'CP_DQPN_x2', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'policy_network_frequency': 40, 'policy_tau': 1.0, 'save_model': True, 'seed': 3, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
cpark2/cp_sent_model
cpark2
2023-03-20T02:37:52Z
3
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-19T02:12:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: cpark2/cp_sent_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # cpark2/cp_sent_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1346 - Train Accuracy: 0.9290 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.2517 | 0.9293 | 0 | | 0.1346 | 0.9290 | 1 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
yujiepan/internal.swin-base-food101-int8-structured38.01
yujiepan
2023-03-20T02:35:20Z
31
0
transformers
[ "transformers", "pytorch", "openvino", "swin", "image-classification", "vision", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
image-classification
2023-03-20T02:32:30Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-food101-jpqd-1to2r1.5-epo10-finetuned-student results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9183762376237624 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-food101-jpqd-1to2r1.5-epo10-finetuned-student This model is a fine-tuned version of [skylord/swin-finetuned-food101](https://huggingface.co/skylord/swin-finetuned-food101) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2391 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3011 | 0.42 | 500 | 0.1951 | 0.9124 | | 0.2613 | 0.84 | 1000 | 0.1897 | 0.9139 | | 100.1552 | 1.27 | 1500 | 99.5975 | 0.7445 | | 162.0751 | 1.69 | 2000 | 162.5020 | 0.3512 | | 1.061 | 2.11 | 2500 | 0.7523 | 0.8550 | | 0.9728 | 2.54 | 3000 | 0.5263 | 0.8767 | | 0.5851 | 2.96 | 3500 | 0.4599 | 0.8892 | | 0.4668 | 3.38 | 4000 | 0.4064 | 0.8938 | | 0.6967 | 3.8 | 4500 | 0.3814 | 0.8986 | | 0.4928 | 4.23 | 5000 | 0.3522 | 0.9036 | | 0.4893 | 4.65 | 5500 | 0.3562 | 0.9026 | | 0.5421 | 5.07 | 6000 | 0.3182 | 0.9049 | | 0.4405 | 5.49 | 6500 | 0.3112 | 0.9071 | | 0.4423 | 5.92 | 7000 | 0.3012 | 0.9092 | | 0.4143 | 6.34 | 7500 | 0.2958 | 0.9095 | | 0.4997 | 6.76 | 8000 | 0.2796 | 0.9126 | | 0.2448 | 7.19 | 8500 | 0.2747 | 0.9124 | | 0.4468 | 7.61 | 9000 | 0.2699 | 0.9144 | | 0.4163 | 8.03 | 9500 | 0.2583 | 0.9166 | | 0.3651 | 8.45 | 10000 | 0.2567 | 0.9165 | | 0.3946 | 8.88 | 10500 | 0.2489 | 0.9176 | | 0.3196 | 9.3 | 11000 | 0.2444 | 0.9180 | | 0.312 | 9.72 | 11500 | 0.2402 | 0.9172 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
yujiepan/internal.swin-base-food101-int8-structured38.63
yujiepan
2023-03-20T02:31:24Z
31
0
transformers
[ "transformers", "pytorch", "openvino", "swin", "image-classification", "vision", "generated_from_trainer", "dataset:food101", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
image-classification
2023-03-20T02:28:21Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-food101-jpqd-1to2r1.5-epo7-finetuned-student results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9123960396039604 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-food101-jpqd-1to2r1.5-epo7-finetuned-student This model is a fine-tuned version of [skylord/swin-finetuned-food101](https://huggingface.co/skylord/swin-finetuned-food101) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2658 - Accuracy: 0.9124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2977 | 0.42 | 500 | 0.1949 | 0.9112 | | 0.3183 | 0.84 | 1000 | 0.1867 | 0.9144 | | 99.9552 | 1.27 | 1500 | 99.4882 | 0.7577 | | 162.4195 | 1.69 | 2000 | 162.7763 | 0.3373 | | 1.2272 | 2.11 | 2500 | 0.7333 | 0.8564 | | 1.0236 | 2.54 | 3000 | 0.5016 | 0.8823 | | 0.6472 | 2.96 | 3500 | 0.4337 | 0.8908 | | 0.52 | 3.38 | 4000 | 0.3927 | 0.8974 | | 0.6075 | 3.8 | 4500 | 0.3506 | 0.9011 | | 0.5348 | 4.23 | 5000 | 0.3425 | 0.9006 | | 0.444 | 4.65 | 5500 | 0.3268 | 0.9044 | | 0.5787 | 5.07 | 6000 | 0.3020 | 0.9078 | | 0.3995 | 5.49 | 6500 | 0.2932 | 0.9095 | | 0.414 | 5.92 | 7000 | 0.2806 | 0.9104 | | 0.4386 | 6.34 | 7500 | 0.2738 | 0.9112 | | 0.452 | 6.76 | 8000 | 0.2673 | 0.9127 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
thefrigidliquidation/pythia-1b-lightnovels
thefrigidliquidation
2023-03-20T02:21:11Z
32
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt_neox", "text-generation", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-08T00:03:37Z
--- license: apache-2.0 language: - en - ja --- # Pythia 1B fine-tuned on Light Novels This model was fine-tuned on light and web novels. This model was trained for translation, but can do generation too. This model is a test of using monolingual data to improve translation as well as improving translation by adding similar sentence pairs to prompts. ## English generation To generate English text with this model, start your prompt with `<|gen_en|>`. ## Japanese generation To generate Japanese text with this model, start your prompt with `<|gen_ja|>`. ## Japanese to English translation To translate, format your prompt as such ``` <|tl_ja|>JAPANESE EXAMPLE SENTENCE 1<|tl_en|>ENGLISH EXAMPLE SENTENCE 1<|tl_end|> <|tl_ja|>JAPANESE EXAMPLE SENTENCE 2<|tl_en|>ENGLISH EXAMPLE SENTENCE 2<|tl_end|> <|tl_ja|>JAPANESE SENTENCE TO TRANSLATE<|tl_en|> ```
jackhhhh/LunarLander-v2-1
jackhhhh
2023-03-20T02:08:51Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T02:08:40Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -105.10 +/- 39.46 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'jackhhhh/LunarLander-v2-1' 'batch_size': 512 'minibatch_size': 128} ```
jinukoo/ppo-PyramidsRND
jinukoo
2023-03-20T02:07:23Z
0
0
ml-agents
[ "ml-agents", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-20T00:57:39Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: jinukoo/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jjlira/poca-SoccerTwos
jjlira
2023-03-20T02:00:13Z
32
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-20T02:00:05Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: jjlira/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MakiPan/Reinforce-CartPole-v2
MakiPan
2023-03-20T01:50:08Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T01:39:04Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
naeisher/ppo-Pyramids
naeisher
2023-03-20T01:36:07Z
37
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-19T21:21:46Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: naeisher/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Surteng/embeddings
Surteng
2023-03-20T01:27:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-02-26T01:38:09Z
--- license: creativeml-openrail-m ---
Fred99774/ubervlara
Fred99774
2023-03-20T01:25:20Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-20T01:14:15Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### ubervlara Dreambooth model trained by Fred99774 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
yonathanstwn/opus-mt-en-id-ccmatrix-lr-5
yonathanstwn
2023-03-20T01:24:57Z
3
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-18T21:48:45Z
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: opus-mt-en-id-ccmatrix-lr-5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-id split: train args: en-id metrics: - name: Bleu type: bleu value: 65.4357 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-id-ccmatrix-lr-5 This model was trained from scratch on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 0.6093 - Bleu: 65.4357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 0.678 | 1.0 | 28125 | 0.6238 | 63.4798 | | 0.5765 | 2.0 | 56250 | 0.6036 | 64.1162 | | 0.5375 | 3.0 | 84375 | 0.5953 | 64.4048 | | 0.5098 | 4.0 | 112500 | 0.5887 | 64.7167 | | 0.4879 | 5.0 | 140625 | 0.5862 | 64.8577 | | 0.4696 | 6.0 | 168750 | 0.5855 | 64.9321 | | 0.4539 | 7.0 | 196875 | 0.5835 | 64.9806 | | 0.4401 | 8.0 | 225000 | 0.5875 | 65.1012 | | 0.4279 | 9.0 | 253125 | 0.5864 | 65.1125 | | 0.4168 | 10.0 | 281250 | 0.5870 | 65.1402 | | 0.4069 | 11.0 | 309375 | 0.5905 | 65.2012 | | 0.3977 | 12.0 | 337500 | 0.5905 | 65.3486 | | 0.3895 | 13.0 | 365625 | 0.5944 | 65.3406 | | 0.3817 | 14.0 | 393750 | 0.5957 | 65.3218 | | 0.3749 | 15.0 | 421875 | 0.5978 | 65.3269 | | 0.3683 | 16.0 | 450000 | 0.5989 | 65.355 | | 0.3624 | 17.0 | 478125 | 0.6009 | 65.4288 | | 0.3573 | 18.0 | 506250 | 0.6007 | 65.4001 | | 0.3525 | 19.0 | 534375 | 0.6035 | 65.4446 | | 0.3484 | 20.0 | 562500 | 0.6054 | 65.3843 | | 0.3448 | 21.0 | 590625 | 0.6060 | 65.392 | | 0.3415 | 22.0 | 618750 | 0.6078 | 65.4052 | | 0.3388 | 23.0 | 646875 | 0.6082 | 65.3898 | | 0.3365 | 24.0 | 675000 | 0.6089 | 65.4171 | | 0.3349 | 25.0 | 703125 | 0.6093 | 65.4357 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0
yonathanstwn/opus-mt-en-id-ccmatrix-lr-4
yonathanstwn
2023-03-20T01:20:32Z
12
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-18T21:48:45Z
--- tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: opus-mt-en-id-ccmatrix-lr-4 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-id split: train args: en-id metrics: - name: Bleu type: bleu value: 65.4544 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-id-ccmatrix-lr-4 This model was trained from scratch on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 0.9115 - Bleu: 65.4544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 0.7279 | 1.0 | 28125 | 0.7185 | 61.1164 | | 0.6185 | 2.0 | 56250 | 0.6849 | 62.0536 | | 0.5598 | 3.0 | 84375 | 0.6759 | 62.3915 | | 0.5163 | 4.0 | 112500 | 0.6646 | 62.9303 | | 0.4795 | 5.0 | 140625 | 0.6665 | 63.3461 | | 0.4471 | 6.0 | 168750 | 0.6692 | 63.5319 | | 0.4173 | 7.0 | 196875 | 0.6690 | 63.7436 | | 0.3897 | 8.0 | 225000 | 0.6739 | 63.8343 | | 0.3633 | 9.0 | 253125 | 0.6832 | 63.867 | | 0.3382 | 10.0 | 281250 | 0.6928 | 64.0481 | | 0.314 | 11.0 | 309375 | 0.7015 | 64.0177 | | 0.2909 | 12.0 | 337500 | 0.7151 | 64.3563 | | 0.2687 | 13.0 | 365625 | 0.7265 | 64.2445 | | 0.2474 | 14.0 | 393750 | 0.7384 | 64.5093 | | 0.227 | 15.0 | 421875 | 0.7560 | 64.3729 | | 0.2072 | 16.0 | 450000 | 0.7712 | 64.6396 | | 0.1888 | 17.0 | 478125 | 0.7876 | 64.805 | | 0.1713 | 18.0 | 506250 | 0.8052 | 64.7883 | | 0.1546 | 19.0 | 534375 | 0.8258 | 64.9535 | | 0.1394 | 20.0 | 562500 | 0.8421 | 64.9885 | | 0.1251 | 21.0 | 590625 | 0.8593 | 65.1229 | | 0.112 | 22.0 | 618750 | 0.8757 | 65.2565 | | 0.1006 | 23.0 | 646875 | 0.8923 | 65.288 | | 0.0907 | 24.0 | 675000 | 0.9033 | 65.3973 | | 0.0828 | 25.0 | 703125 | 0.9115 | 65.4544 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0
kejian/cpsc-wmle-0.93
kejian
2023-03-20T01:12:20Z
2
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-19T04:19:15Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 model-index: - name: kejian/cpsc-wmle-0.93 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/cpsc-wmle-0.93 This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000 and the tomekkorbak/detoxify-pile-chunk3-1800000-1850000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 42724 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [42724], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [42724], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 2048}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'beta': 0.93, 'exponential': False, 'name': 'WeightedMLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/cpsc-wmle-0.93', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0007, 'logging_first_step': True, 'logging_steps': 50, 'num_tokens': 2800000000.0, 'output_dir': 'training_output_0.93', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 21362, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/bcisua7o
LozanoJohan/q-Gym-Taxi
LozanoJohan
2023-03-20T00:58:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T00:58:41Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Gym-Taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.69 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="LozanoJohan/q-Gym-Taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa
vocabtrimmer
2023-03-20T00:42:58Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question answering", "ja", "dataset:lmqg/qg_jaquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-18T22:27:56Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ja datasets: - lmqg/qg_jaquad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: 新型車両として6000系が構想されたのは、製造費用のほか、どんな費用を抑えるためだったの?, context: 三多摩地区開発による沿線人口の増加、相模原線延伸による多摩ニュータウン乗り入れ、都営地下鉄10号線(現都営地下鉄新宿線、以下新宿線と表記する)乗入構想により、京王線の利用客増加が見込まれ、相当数の車両を準備する必要に迫られるなか、製造費用、保守費用を抑えた新型車両として6000系が構想された。新宿線建設に際してはすでに1号線(後の浅草線)を1,435mm軌間で開業させていた東京都は京成電鉄と1号線との乗り入れにあたり京成電鉄の路線を1,372mmから1,435mmに改軌させた事例や、1,372mm軌間の特殊性から運輸省(当時、2001年から国土交通省)と共に京王にも改軌を求めたが、改軌工事中の輸送力確保が困難なことを理由に改軌しないことで決着している。" example_title: "Question Answering Example 1" - text: "question: 1968年に開催されたオリンピックの名前は何ですか?, context: オリンピックが世界的大イベントに成長するに従って政治に左右されるようになると、1968年のメキシコシティ大会では黒人差別を訴える場と化し、1972年のミュンヘン大会ではアラブのゲリラによるイスラエル選手に対するテロ事件まで起きた(ミュンヘンオリンピック事件)。1976年のモントリオール大会になると、ニュージーランドのラグビーチームの南アフリカ遠征に反対してアフリカの諸国22ヶ国がボイコットを行った。そして、1980年のモスクワ大会ではソ連のアフガニスタン侵攻に反発したアメリカ・西ドイツ・日本などの西側諸国が相次いでボイコットを行った。1984年ロサンゼルス大会ではソ連と東側諸国が報復ボイコットを行ない、参加したのはソ連と対立していた中国とルーマニアだけだった。中でも、イラン革命後のイラン・イスラム共和国はモスクワとロサンゼルス双方のオリンピックをボイコットしている。オリンピックが巨大化するに従って財政負担の増大が大きな問題となり、1976年の夏季大会では大幅な赤字を出し、その後夏季・冬季とも立候補都市が1〜2都市だけという状態が続いた。" example_title: "Question Answering Example 2" model-index: - name: vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_jaquad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 0.0 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 64.91 - name: METEOR (Question Answering) type: meteor_question_answering value: 50.65 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 96.52 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 89.55 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 66.9 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 66.9 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa` This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ja-90000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000) for question answering task on the [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [vocabtrimmer/mt5-small-trimmed-ja-90000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000) - **Language:** ja - **Training data:** [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ja", model="vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa") # model prediction answers = model.answer_q(list_question="新型車両として6000系が構想されたのは、製造費用のほか、どんな費用を抑えるためだったの?", list_context=" 三多摩地区開発による沿線人口の増加、相模原線延伸による多摩ニュータウン乗り入れ、都営地下鉄10号線(現都営地下鉄新宿線、以下新宿線と表記する)乗入構想により、京王線の利用客増加が見込まれ、相当数の車両を準備する必要に迫られるなか、製造費用、保守費用を抑えた新型車両として6000系が構想された。新宿線建設に際してはすでに1号線(後の浅草線)を1,435mm軌間で開業させていた東京都は京成電鉄と1号線との乗り入れにあたり京成電鉄の路線を1,372mmから1,435mmに改軌させた事例や、1,372mm軌間の特殊性から運輸省(当時、2001年から国土交通省)と共に京王にも改軌を求めたが、改軌工事中の輸送力確保が困難なことを理由に改軌しないことで決着している。") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa") output = pipe("question: 新型車両として6000系が構想されたのは、製造費用のほか、どんな費用を抑えるためだったの?, context: 三多摩地区開発による沿線人口の増加、相模原線延伸による多摩ニュータウン乗り入れ、都営地下鉄10号線(現都営地下鉄新宿線、以下新宿線と表記する)乗入構想により、京王線の利用客増加が見込まれ、相当数の車両を準備する必要に迫られるなか、製造費用、保守費用を抑えた新型車両として6000系が構想された。新宿線建設に際してはすでに1号線(後の浅草線)を1,435mm軌間で開業させていた東京都は京成電鉄と1号線との乗り入れにあたり京成電鉄の路線を1,372mmから1,435mmに改軌させた事例や、1,372mm軌間の特殊性から運輸省(当時、2001年から国土交通省)と共に京王にも改軌を求めたが、改軌工事中の輸送力確保が困難なことを理由に改軌しないことで決着している。") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_jaquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 66.9 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | AnswerF1Score | 66.9 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | BERTScore | 96.52 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | Bleu_1 | 62.61 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | Bleu_2 | 0 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | Bleu_3 | 0 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | Bleu_4 | 0 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | METEOR | 50.65 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | MoverScore | 89.55 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | | ROUGE_L | 64.91 | default | [lmqg/qg_jaquad](https://huggingface.co/datasets/lmqg/qg_jaquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_jaquad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: vocabtrimmer/mt5-small-trimmed-ja-90000 - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 32 - lr: 0.001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 2 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ja-90000-jaquad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
jinukoo/ppo-SnowballTarget
jinukoo
2023-03-20T00:22:10Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-20T00:22:04Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: jinukoo/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
liqi6811/skillsBERT_v3_tf_epoch200_Important
liqi6811
2023-03-20T00:20:04Z
2
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-03-20T00:19:19Z
--- tags: - generated_from_keras_callback model-index: - name: skillsBERT_v3_epoch200 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # skillsBERT_v3_epoch200 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0256 - Validation Loss: 7.8012 - Epoch: 199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.8416 | 6.7417 | 0 | | 6.2162 | 6.1436 | 1 | | 5.3514 | 5.3111 | 2 | | 4.5931 | 4.9790 | 3 | | 4.0664 | 4.8477 | 4 | | 3.6654 | 4.6776 | 5 | | 3.3343 | 4.5758 | 6 | | 3.0431 | 4.4659 | 7 | | 2.7726 | 4.4337 | 8 | | 2.5106 | 4.6514 | 9 | | 2.2625 | 4.6512 | 10 | | 2.0222 | 4.7317 | 11 | | 1.7924 | 4.6184 | 12 | | 1.5719 | 4.7085 | 13 | | 1.3735 | 4.8741 | 14 | | 1.1820 | 5.0078 | 15 | | 1.0164 | 5.0224 | 16 | | 0.8588 | 5.2085 | 17 | | 0.7247 | 5.2827 | 18 | | 0.6140 | 5.3904 | 19 | | 0.5144 | 5.3287 | 20 | | 0.4330 | 5.4909 | 21 | | 0.3603 | 5.6482 | 22 | | 0.3120 | 5.4950 | 23 | | 0.2634 | 5.8465 | 24 | | 0.2322 | 5.8744 | 25 | | 0.2077 | 5.8122 | 26 | | 0.1904 | 5.9466 | 27 | | 0.1698 | 6.0747 | 28 | | 0.1536 | 6.2833 | 29 | | 0.1462 | 6.2201 | 30 | | 0.1367 | 6.3858 | 31 | | 0.1309 | 6.4264 | 32 | | 0.1196 | 6.3880 | 33 | | 0.1129 | 6.6965 | 34 | | 0.1100 | 6.4638 | 35 | | 0.1050 | 6.4099 | 36 | | 0.0994 | 6.4061 | 37 | | 0.0973 | 6.4458 | 38 | | 0.0934 | 6.5099 | 39 | | 0.0909 | 6.4002 | 40 | | 0.0896 | 6.5372 | 41 | | 0.0839 | 6.5808 | 42 | | 0.0817 | 6.4682 | 43 | | 0.0814 | 6.6921 | 44 | | 0.0793 | 6.7584 | 45 | | 0.0765 | 6.7847 | 46 | | 0.0765 | 6.8182 | 47 | | 0.0712 | 6.7281 | 48 | | 0.0710 | 6.7083 | 49 | | 0.0700 | 6.6643 | 50 | | 0.0695 | 6.7186 | 51 | | 0.0681 | 6.9158 | 52 | | 0.0647 | 6.8065 | 53 | | 0.0662 | 7.0515 | 54 | | 0.0630 | 6.9353 | 55 | | 0.0624 | 7.0418 | 56 | | 0.0640 | 6.7393 | 57 | | 0.0610 | 7.0111 | 58 | | 0.0602 | 7.0310 | 59 | | 0.0577 | 6.7995 | 60 | | 0.0616 | 6.7364 | 61 | | 0.0575 | 7.0542 | 62 | | 0.0532 | 7.1219 | 63 | | 0.0601 | 6.9904 | 64 | | 0.0528 | 7.2782 | 65 | | 0.0551 | 7.2465 | 66 | | 0.0551 | 7.2380 | 67 | | 0.0542 | 6.9920 | 68 | | 0.0536 | 7.1704 | 69 | | 0.0529 | 7.1467 | 70 | | 0.0488 | 7.0684 | 71 | | 0.0494 | 7.0333 | 72 | | 0.0518 | 7.3027 | 73 | | 0.0505 | 7.1332 | 74 | | 0.0481 | 7.0856 | 75 | | 0.0493 | 7.2170 | 76 | | 0.0490 | 7.3652 | 77 | | 0.0480 | 7.3370 | 78 | | 0.0485 | 7.1336 | 79 | | 0.0480 | 7.2017 | 80 | | 0.0483 | 7.2421 | 81 | | 0.0463 | 7.3675 | 82 | | 0.0455 | 7.3847 | 83 | | 0.0441 | 7.3112 | 84 | | 0.0454 | 7.2941 | 85 | | 0.0474 | 7.4086 | 86 | | 0.0451 | 7.1806 | 87 | | 0.0417 | 7.4458 | 88 | | 0.0464 | 7.2912 | 89 | | 0.0422 | 7.6368 | 90 | | 0.0434 | 7.4060 | 91 | | 0.0427 | 7.4733 | 92 | | 0.0433 | 7.4114 | 93 | | 0.0416 | 7.3643 | 94 | | 0.0428 | 7.5354 | 95 | | 0.0426 | 7.2827 | 96 | | 0.0400 | 7.4285 | 97 | | 0.0413 | 7.4499 | 98 | | 0.0422 | 7.4816 | 99 | | 0.0407 | 7.3491 | 100 | | 0.0402 | 7.3784 | 101 | | 0.0412 | 7.3845 | 102 | | 0.0389 | 7.5468 | 103 | | 0.0372 | 7.4723 | 104 | | 0.0421 | 7.4283 | 105 | | 0.0382 | 7.4074 | 106 | | 0.0392 | 7.4365 | 107 | | 0.0399 | 7.4375 | 108 | | 0.0396 | 7.5146 | 109 | | 0.0389 | 7.2877 | 110 | | 0.0384 | 7.3907 | 111 | | 0.0386 | 7.5558 | 112 | | 0.0378 | 7.3746 | 113 | | 0.0359 | 7.5122 | 114 | | 0.0412 | 7.4631 | 115 | | 0.0341 | 7.5950 | 116 | | 0.0380 | 7.3713 | 117 | | 0.0382 | 7.4232 | 118 | | 0.0350 | 7.5180 | 119 | | 0.0374 | 7.4993 | 120 | | 0.0373 | 7.4308 | 121 | | 0.0357 | 7.4511 | 122 | | 0.0364 | 7.5254 | 123 | | 0.0349 | 7.4326 | 124 | | 0.0371 | 7.5467 | 125 | | 0.0344 | 7.5324 | 126 | | 0.0375 | 7.4660 | 127 | | 0.0365 | 7.5816 | 128 | | 0.0348 | 7.5425 | 129 | | 0.0333 | 7.5655 | 130 | | 0.0331 | 7.6466 | 131 | | 0.0369 | 7.6142 | 132 | | 0.0332 | 7.7292 | 133 | | 0.0349 | 7.6649 | 134 | | 0.0343 | 7.5255 | 135 | | 0.0335 | 7.7736 | 136 | | 0.0334 | 7.6680 | 137 | | 0.0356 | 7.4846 | 138 | | 0.0323 | 7.7691 | 139 | | 0.0339 | 7.6986 | 140 | | 0.0333 | 7.4287 | 141 | | 0.0333 | 7.5534 | 142 | | 0.0322 | 7.5383 | 143 | | 0.0333 | 7.5212 | 144 | | 0.0320 | 7.5945 | 145 | | 0.0335 | 7.5932 | 146 | | 0.0332 | 7.7700 | 147 | | 0.0323 | 7.4798 | 148 | | 0.0318 | 7.5804 | 149 | | 0.0336 | 7.5721 | 150 | | 0.0332 | 7.3627 | 151 | | 0.0334 | 7.6093 | 152 | | 0.0293 | 7.7731 | 153 | | 0.0336 | 7.6722 | 154 | | 0.0319 | 7.5856 | 155 | | 0.0325 | 7.6355 | 156 | | 0.0287 | 7.5941 | 157 | | 0.0318 | 7.6476 | 158 | | 0.0304 | 7.5365 | 159 | | 0.0313 | 7.6429 | 160 | | 0.0319 | 7.5318 | 161 | | 0.0311 | 7.7468 | 162 | | 0.0321 | 7.6332 | 163 | | 0.0301 | 7.8412 | 164 | | 0.0292 | 7.6819 | 165 | | 0.0313 | 7.5544 | 166 | | 0.0311 | 7.6667 | 167 | | 0.0274 | 7.7875 | 168 | | 0.0317 | 7.6632 | 169 | | 0.0305 | 7.8710 | 170 | | 0.0311 | 7.5799 | 171 | | 0.0311 | 7.7357 | 172 | | 0.0271 | 7.7491 | 173 | | 0.0317 | 7.8025 | 174 | | 0.0294 | 7.6856 | 175 | | 0.0302 | 7.7687 | 176 | | 0.0293 | 7.8676 | 177 | | 0.0315 | 7.6371 | 178 | | 0.0286 | 7.8114 | 179 | | 0.0288 | 7.6690 | 180 | | 0.0304 | 7.6712 | 181 | | 0.0293 | 7.8668 | 182 | | 0.0305 | 7.8221 | 183 | | 0.0284 | 7.7506 | 184 | | 0.0309 | 7.6629 | 185 | | 0.0282 | 7.7157 | 186 | | 0.0262 | 7.8241 | 187 | | 0.0305 | 7.6471 | 188 | | 0.0288 | 7.6409 | 189 | | 0.0283 | 7.7386 | 190 | | 0.0286 | 7.8070 | 191 | | 0.0284 | 7.7921 | 192 | | 0.0287 | 7.9042 | 193 | | 0.0289 | 7.7297 | 194 | | 0.0276 | 7.8584 | 195 | | 0.0278 | 7.8580 | 196 | | 0.0258 | 7.9323 | 197 | | 0.0306 | 7.7566 | 198 | | 0.0256 | 7.8012 | 199 | ### Framework versions - Transformers 4.28.0.dev0 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
jackhhhh/Reinforce_Pixelcopter-PLE-v0-1
jackhhhh
2023-03-20T00:12:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T00:12:04Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_Pixelcopter-PLE-v0-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -2.40 +/- 0.49 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jackhhhh/Reinforce_Pixelcopter-PLE-v0
jackhhhh
2023-03-20T00:03:05Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-20T00:01:45Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce_Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -2.70 +/- 0.46 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
GamerUntouch/Lovecraft-LLamA-LoRAs
GamerUntouch
2023-03-20T00:00:33Z
0
4
null
[ "license:apache-2.0", "region:us" ]
null
2023-03-19T23:52:02Z
--- license: apache-2.0 --- LoRAs for LLaMA trained on approximately 2.1 epochs of Lovecraft's entire works.
MakiPan/Reinforce-PixelCopter-PLE-v0
MakiPan
2023-03-19T23:58:51Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T23:58:44Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 21.30 +/- 16.08 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
WALIDALI/hallachillout
WALIDALI
2023-03-19T23:51:33Z
12
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-19T23:47:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### HallaChillout Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
pfunk/CartPole-v1-DQN_newww-seed3
pfunk
2023-03-19T23:48:21Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T23:48:18Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 494.56 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_newww.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_newww]" python -m cleanrl_utils.enjoy --exp-name DQN_newww --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed3/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed3/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed3/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_newww --seed 3 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_newww', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 3, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
pfunk/CartPole-v1-DQN_newww-seed4
pfunk
2023-03-19T23:48:18Z
0
0
cleanrl
[ "cleanrl", "tensorboard", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T23:48:15Z
--- tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 495.67 +/- 0.00 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **CartPole-v1** This is a trained model of a DQN agent playing CartPole-v1. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_newww.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_newww]" python -m cleanrl_utils.enjoy --exp-name DQN_newww --env-id CartPole-v1 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed4/raw/main/dqn.py curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed4/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/CartPole-v1-DQN_newww-seed4/raw/main/poetry.lock poetry install --all-extras python dqn.py --track --wandb-entity pfunk --wandb-project-name dqpn --capture-video true --save-model true --upload-model true --hf-entity pfunk --exp-name DQN_newww --seed 4 ``` # Hyperparameters ```python {'alg_type': 'dqn.py', 'batch_size': 256, 'buffer_size': 300000, 'capture_video': True, 'cuda': True, 'end_e': 0.1, 'env_id': 'CartPole-v1', 'exp_name': 'DQN_newww', 'exploration_fraction': 0.2, 'gamma': 1.0, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 1000, 'save_model': True, 'seed': 4, 'start_e': 1.0, 'target_network_frequency': 20, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 500000, 'track': True, 'train_frequency': 1, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
jimregan/whisper-small-sv-riksdag
jimregan
2023-03-19T23:43:05Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "sv", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-01T17:57:25Z
--- language: - sv license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small Sv - Riksdag 100h results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Sv - Riksdag 100h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4977 - Wer: 1118.4718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:---------:| | 0.1384 | 0.11 | 1000 | 0.4747 | 380.8335 | | 0.1186 | 0.22 | 2000 | 0.4513 | 1032.3900 | | 0.1056 | 0.33 | 3000 | 0.4385 | 582.0427 | | 0.0824 | 0.43 | 4000 | 0.4465 | 574.8907 | | 0.0961 | 0.54 | 5000 | 0.4199 | 1004.9138 | | 0.0939 | 0.65 | 6000 | 0.4478 | 866.2979 | | 0.0758 | 0.76 | 7000 | 0.4384 | 907.9496 | | 0.0741 | 0.87 | 8000 | 0.4264 | 641.1371 | | 0.0692 | 0.98 | 9000 | 0.4206 | 1142.6550 | | 0.0257 | 1.08 | 10000 | 0.4707 | 1152.4312 | | 0.0273 | 1.19 | 11000 | 0.4789 | 1100.2058 | | 0.021 | 1.3 | 12000 | 0.4763 | 1236.1719 | | 0.0163 | 1.41 | 13000 | 0.5035 | 924.8006 | | 0.0183 | 1.52 | 14000 | 0.4911 | 1285.1814 | | 0.024 | 1.63 | 15000 | 0.4861 | 1140.8284 | | 0.0158 | 1.73 | 16000 | 0.4793 | 1181.7597 | | 0.0167 | 1.84 | 17000 | 0.4759 | 1207.3064 | | 0.0231 | 1.95 | 18000 | 0.4801 | 1139.6964 | | 0.0054 | 2.06 | 19000 | 0.4934 | 1114.4842 | | 0.006 | 2.17 | 20000 | 0.4977 | 1118.4718 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
KarosY/lianjia_2l_100per800_2e-4
KarosY
2023-03-19T23:40:24Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-19T15:40:37Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_100per800_2e-4 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
KarosY/lianjia_2l_100per800_1e-4
KarosY
2023-03-19T23:40:18Z
1
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-2-1-base", "base_model:adapter:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-19T15:39:55Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-2-1-base tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/KarosY/lianjia_2l_100per800_1e-4 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1-base. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
kucharskipj/ppo-SnowballTarget
kucharskipj
2023-03-19T23:32:24Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-19T23:32:19Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: kucharskipj/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
KBLab/whisper-large-rixvox
KBLab
2023-03-19T23:24:34Z
518
4
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "sv", "dataset:KBLab/rixvox", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-13T06:31:06Z
--- license: apache-2.0 datasets: - KBLab/rixvox language: - sv --- # Whisper Large RixVox Swedish This is a [Whisper large](https://huggingface.co/openai/whisper-large-v2) finetuned for Swedish using the [RixVox](https://huggingface.co/datasets/KBLab/rixvox) dataset. Please note that this model, as every other encoder-decoder speech-to-text model, is prone to hallucinating on unexpected inputs and treats the task as translation rather than transcription. I.e your mileage may vary depending on filtering and type of data. In this release the entire encoder was frozen. Subsequent releases will not do this **if** the generalization to other types of data (i.e not parliamentary speeches) is kept when not freezing the encoder. ## Evaluation (test) * RixVox WER: `22.59` * RixVox WER (normalized*): `19.33` * Common Voice 11 WER: `18.03` * Common Voice 11 WER (normalized*): `13.23` * Fleurs WER: `14.26` * Fleurs WER (normalized*): `8.99` *) Normalization is done by applying the following to source and generated texts: ``` def normalize(s): return ' '.join([ x for x in sub('[^0-9a-zåäöA-ZÅÄÖ ]', ' ', s.lower().replace('é', 'e')).split() ]) ``` In comparison the original Whisper large gets `30.56`/`25.58`, `18.76`/`15.00`, and `14.53`/`9.19` respectively. ## Training Training was done using Huggingface and Deepspeed with ZeRO stage 2. * learning rate: 1e-5 * optimizer: CPUAdamW (Deepspeed) * lr scheduler: linear * warmup steps: 500 * per device batch size: 20 * GPUs: 8 x NVIDIA A100 40GB * total batch size: 160 * steps: 20000 * lowercase: no * fp16 * entire encoder was frozen
Crosbot/marvel_snap_cards
Crosbot
2023-03-19T23:17:47Z
0
0
null
[ "dataset:Crosbot/mv_snp_cards", "region:us" ]
null
2023-03-19T23:16:10Z
--- datasets: - Crosbot/mv_snp_cards ---
k4black/Salesforce-codet5-small-CodeXGLUE-CONCODE-test
k4black
2023-03-19T23:06:23Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-19T22:43:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge - bleu model-index: - name: Salesforce-codet5-small-CodeXGLUE-CONCODE-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Salesforce-codet5-small-CodeXGLUE-CONCODE-test This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8508 - Exact Match: 0.156 - Rouge1: 0.5559 - Rouge2: 0.3857 - Rougel: 0.5378 - Rougelsum: 0.5465 - Bleu: 0.1246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-----------:|:------:|:------:|:------:|:---------:|:------:| | 1.3563 | 0.16 | 500 | 1.1652 | 0.1115 | 0.5098 | 0.3191 | 0.4915 | 0.4982 | 0.1088 | | 0.9656 | 0.32 | 1000 | 1.0435 | 0.1245 | 0.5246 | 0.3444 | 0.5075 | 0.5145 | 0.1164 | | 0.8627 | 0.48 | 1500 | 0.9851 | 0.121 | 0.5275 | 0.3420 | 0.5074 | 0.5154 | 0.1132 | | 0.7718 | 0.64 | 2000 | 0.9288 | 0.1385 | 0.5334 | 0.3589 | 0.5174 | 0.5242 | 0.1206 | | 0.7237 | 0.8 | 2500 | 0.8867 | 0.1495 | 0.5505 | 0.3762 | 0.5328 | 0.5406 | 0.1208 | | 0.6812 | 0.96 | 3000 | 0.8508 | 0.156 | 0.5559 | 0.3857 | 0.5378 | 0.5465 | 0.1246 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
MakiPan/Reinforce-CartPole-v1
MakiPan
2023-03-19T23:03:59Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T23:03:47Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 461.80 +/- 114.60 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jackhhhh/Pixelcopter-PLE-v0
jackhhhh
2023-03-19T23:02:26Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T23:02:23Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: -2.70 +/- 3.82 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
kejian/cpsc-wmle-1.25
kejian
2023-03-19T22:39:27Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-19T04:08:36Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 model-index: - name: kejian/cpsc-wmle-1.25 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/cpsc-wmle-1.25 This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000 and the tomekkorbak/detoxify-pile-chunk3-1800000-1850000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 42724 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [42724], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [42724], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 2048}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'beta': 1.25, 'exponential': False, 'name': 'WeightedMLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/cpsc-wmle-1.25', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0007, 'logging_first_step': True, 'logging_steps': 50, 'num_tokens': 2800000000.0, 'output_dir': 'training_output_1.25', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 21362, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/38oxb2oc
namikazi25/DCNN_on_CIFAR_10
namikazi25
2023-03-19T22:37:48Z
0
0
keras
[ "keras", "code", "en", "dataset:cifar10", "license:mit", "region:us" ]
null
2023-03-19T22:00:51Z
--- license: mit datasets: - cifar10 language: - en metrics: - accuracy library_name: keras tags: - code ---
yonathanstwn/opus-mt-id-en-open-subtitles
yonathanstwn
2023-03-19T22:34:21Z
5
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:open_subtitles", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-19T01:22:57Z
--- tags: - generated_from_trainer datasets: - open_subtitles metrics: - bleu model-index: - name: opus-mt-id-en-open-subtitles results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: open_subtitles type: open_subtitles config: en-id split: train args: en-id metrics: - name: Bleu type: bleu value: 36.9382 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-id-en-open-subtitles This model was trained from scratch on the open_subtitles dataset. It achieves the following results on the evaluation set: - Loss: 1.8430 - Bleu: 36.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 4000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:------:|:---------------:|:-------:| | 1.3533 | 1.0 | 28125 | 1.3274 | 37.6662 | | 1.2814 | 2.0 | 56250 | 1.3525 | 37.5909 | | 1.2058 | 3.0 | 84375 | 1.3674 | 37.8008 | | 1.1415 | 4.0 | 112500 | 1.3722 | 37.4849 | | 1.0842 | 5.0 | 140625 | 1.3943 | 37.7558 | | 1.0309 | 6.0 | 168750 | 1.3994 | 37.6332 | | 0.9802 | 7.0 | 196875 | 1.4216 | 37.7529 | | 0.9316 | 8.0 | 225000 | 1.4304 | 37.9906 | | 0.8838 | 9.0 | 253125 | 1.4462 | 37.7833 | | 0.8378 | 10.0 | 281250 | 1.4639 | 37.5971 | | 0.7921 | 11.0 | 309375 | 1.4859 | 37.6285 | | 0.7484 | 12.0 | 337500 | 1.5060 | 37.5413 | | 0.7043 | 13.0 | 365625 | 1.5256 | 37.5118 | | 0.6622 | 14.0 | 393750 | 1.5555 | 37.5092 | | 0.6208 | 15.0 | 421875 | 1.5733 | 37.2924 | | 0.5807 | 16.0 | 450000 | 1.6048 | 37.319 | | 0.542 | 17.0 | 478125 | 1.6435 | 37.0629 | | 0.5043 | 18.0 | 506250 | 1.6647 | 37.1334 | | 0.4685 | 19.0 | 534375 | 1.7014 | 37.02 | | 0.4352 | 20.0 | 562500 | 1.7300 | 36.9514 | | 0.4031 | 21.0 | 590625 | 1.7572 | 36.9637 | | 0.3731 | 22.0 | 618750 | 1.7902 | 36.9821 | | 0.346 | 23.0 | 646875 | 1.8112 | 36.9586 | | 0.3227 | 24.0 | 675000 | 1.8325 | 36.9286 | | 0.303 | 25.0 | 703125 | 1.8430 | 36.9382 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0 - Datasets 2.10.1 - Tokenizers 0.11.0
tbboukhari/Alpaca_instruction_fine_tune_French
tbboukhari
2023-03-19T22:31:57Z
0
4
transformers
[ "transformers", "Alpaca", "Instruction-fine-tuning", "NLP", "Instruct Alpaca", "PEFT", "LoRA", "fr", "dataset:tbboukhari/Alpaca_french_instruct", "endpoints_compatible", "region:us" ]
null
2023-03-19T19:25:47Z
--- datasets: - tbboukhari/Alpaca_french_instruct language: - fr library_name: transformers tags: - Alpaca - Instruction-fine-tuning - NLP - Instruct Alpaca - PEFT - LoRA --- ## How to use🦙: ```py import torch import bitsandbytes as bnb from peft import PeftModel, PeftConfig, prepare_model_for_int8_training, LoraConfig, get_peft_model from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig peft_model_id = "tbboukhari/Alpaca_instruction_fine_tune_French" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = LlamaTokenizer.from_pretrained(config.base_model_name_or_path) model = LlamaForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map="auto",) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) # Based on the inference code by `tloen/alpaca-lora` def generate_prompt(instruction, entree=None): if entree : return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande. ### instructions: {instruction} ### entrée: {entree} ### sortie:""" else: return f"""Vous trouverez ci-dessous des instructions décrivant une tâche, ainsi qu'une entrée qui fournit plus de contexte. Rédigez une réponse qui complète convenablement la demande. ### instructions: {instruction} ### sortie:""" # Inputs to instantiate the model: generation_config = GenerationConfig( temperature=0.2, top_p=0.75, num_beams=4, ) # Evaluate the model: def evaluate(instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) for s in generation_output.sequences: output = tokenizer.decode(s) print("sortie:", output.split("### sortie:")[1].strip()) evaluate(input("instructions: ")) ```
kejian/cpsc-wmle-1
kejian
2023-03-19T22:22:56Z
1
0
transformers
[ "transformers", "pytorch", "gpt2", "generated_from_trainer", "en", "dataset:tomekkorbak/detoxify-pile-chunk3-50000-100000", "dataset:tomekkorbak/detoxify-pile-chunk3-100000-150000", "dataset:tomekkorbak/detoxify-pile-chunk3-150000-200000", "dataset:tomekkorbak/detoxify-pile-chunk3-200000-250000", "dataset:tomekkorbak/detoxify-pile-chunk3-250000-300000", "dataset:tomekkorbak/detoxify-pile-chunk3-300000-350000", "dataset:tomekkorbak/detoxify-pile-chunk3-350000-400000", "dataset:tomekkorbak/detoxify-pile-chunk3-400000-450000", "dataset:tomekkorbak/detoxify-pile-chunk3-450000-500000", "dataset:tomekkorbak/detoxify-pile-chunk3-500000-550000", "dataset:tomekkorbak/detoxify-pile-chunk3-550000-600000", "dataset:tomekkorbak/detoxify-pile-chunk3-600000-650000", "dataset:tomekkorbak/detoxify-pile-chunk3-650000-700000", "dataset:tomekkorbak/detoxify-pile-chunk3-700000-750000", "dataset:tomekkorbak/detoxify-pile-chunk3-750000-800000", "dataset:tomekkorbak/detoxify-pile-chunk3-800000-850000", "dataset:tomekkorbak/detoxify-pile-chunk3-850000-900000", "dataset:tomekkorbak/detoxify-pile-chunk3-900000-950000", "dataset:tomekkorbak/detoxify-pile-chunk3-950000-1000000", "dataset:tomekkorbak/detoxify-pile-chunk3-1000000-1050000", "dataset:tomekkorbak/detoxify-pile-chunk3-1050000-1100000", "dataset:tomekkorbak/detoxify-pile-chunk3-1100000-1150000", "dataset:tomekkorbak/detoxify-pile-chunk3-1150000-1200000", "dataset:tomekkorbak/detoxify-pile-chunk3-1200000-1250000", "dataset:tomekkorbak/detoxify-pile-chunk3-1250000-1300000", "dataset:tomekkorbak/detoxify-pile-chunk3-1300000-1350000", "dataset:tomekkorbak/detoxify-pile-chunk3-1350000-1400000", "dataset:tomekkorbak/detoxify-pile-chunk3-1400000-1450000", "dataset:tomekkorbak/detoxify-pile-chunk3-1450000-1500000", "dataset:tomekkorbak/detoxify-pile-chunk3-1500000-1550000", "dataset:tomekkorbak/detoxify-pile-chunk3-1550000-1600000", "dataset:tomekkorbak/detoxify-pile-chunk3-1600000-1650000", "dataset:tomekkorbak/detoxify-pile-chunk3-1650000-1700000", "dataset:tomekkorbak/detoxify-pile-chunk3-1700000-1750000", "dataset:tomekkorbak/detoxify-pile-chunk3-1750000-1800000", "dataset:tomekkorbak/detoxify-pile-chunk3-1800000-1850000", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2023-03-17T17:36:09Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - tomekkorbak/detoxify-pile-chunk3-50000-100000 - tomekkorbak/detoxify-pile-chunk3-100000-150000 - tomekkorbak/detoxify-pile-chunk3-150000-200000 - tomekkorbak/detoxify-pile-chunk3-200000-250000 - tomekkorbak/detoxify-pile-chunk3-250000-300000 - tomekkorbak/detoxify-pile-chunk3-300000-350000 - tomekkorbak/detoxify-pile-chunk3-350000-400000 - tomekkorbak/detoxify-pile-chunk3-400000-450000 - tomekkorbak/detoxify-pile-chunk3-450000-500000 - tomekkorbak/detoxify-pile-chunk3-500000-550000 - tomekkorbak/detoxify-pile-chunk3-550000-600000 - tomekkorbak/detoxify-pile-chunk3-600000-650000 - tomekkorbak/detoxify-pile-chunk3-650000-700000 - tomekkorbak/detoxify-pile-chunk3-700000-750000 - tomekkorbak/detoxify-pile-chunk3-750000-800000 - tomekkorbak/detoxify-pile-chunk3-800000-850000 - tomekkorbak/detoxify-pile-chunk3-850000-900000 - tomekkorbak/detoxify-pile-chunk3-900000-950000 - tomekkorbak/detoxify-pile-chunk3-950000-1000000 - tomekkorbak/detoxify-pile-chunk3-1000000-1050000 - tomekkorbak/detoxify-pile-chunk3-1050000-1100000 - tomekkorbak/detoxify-pile-chunk3-1100000-1150000 - tomekkorbak/detoxify-pile-chunk3-1150000-1200000 - tomekkorbak/detoxify-pile-chunk3-1200000-1250000 - tomekkorbak/detoxify-pile-chunk3-1250000-1300000 - tomekkorbak/detoxify-pile-chunk3-1300000-1350000 - tomekkorbak/detoxify-pile-chunk3-1350000-1400000 - tomekkorbak/detoxify-pile-chunk3-1400000-1450000 - tomekkorbak/detoxify-pile-chunk3-1450000-1500000 - tomekkorbak/detoxify-pile-chunk3-1500000-1550000 - tomekkorbak/detoxify-pile-chunk3-1550000-1600000 - tomekkorbak/detoxify-pile-chunk3-1600000-1650000 - tomekkorbak/detoxify-pile-chunk3-1650000-1700000 - tomekkorbak/detoxify-pile-chunk3-1700000-1750000 - tomekkorbak/detoxify-pile-chunk3-1750000-1800000 - tomekkorbak/detoxify-pile-chunk3-1800000-1850000 model-index: - name: kejian/cpsc-wmle-1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kejian/cpsc-wmle-1 This model was trained from scratch on the tomekkorbak/detoxify-pile-chunk3-50000-100000, the tomekkorbak/detoxify-pile-chunk3-100000-150000, the tomekkorbak/detoxify-pile-chunk3-150000-200000, the tomekkorbak/detoxify-pile-chunk3-200000-250000, the tomekkorbak/detoxify-pile-chunk3-250000-300000, the tomekkorbak/detoxify-pile-chunk3-300000-350000, the tomekkorbak/detoxify-pile-chunk3-350000-400000, the tomekkorbak/detoxify-pile-chunk3-400000-450000, the tomekkorbak/detoxify-pile-chunk3-450000-500000, the tomekkorbak/detoxify-pile-chunk3-500000-550000, the tomekkorbak/detoxify-pile-chunk3-550000-600000, the tomekkorbak/detoxify-pile-chunk3-600000-650000, the tomekkorbak/detoxify-pile-chunk3-650000-700000, the tomekkorbak/detoxify-pile-chunk3-700000-750000, the tomekkorbak/detoxify-pile-chunk3-750000-800000, the tomekkorbak/detoxify-pile-chunk3-800000-850000, the tomekkorbak/detoxify-pile-chunk3-850000-900000, the tomekkorbak/detoxify-pile-chunk3-900000-950000, the tomekkorbak/detoxify-pile-chunk3-950000-1000000, the tomekkorbak/detoxify-pile-chunk3-1000000-1050000, the tomekkorbak/detoxify-pile-chunk3-1050000-1100000, the tomekkorbak/detoxify-pile-chunk3-1100000-1150000, the tomekkorbak/detoxify-pile-chunk3-1150000-1200000, the tomekkorbak/detoxify-pile-chunk3-1200000-1250000, the tomekkorbak/detoxify-pile-chunk3-1250000-1300000, the tomekkorbak/detoxify-pile-chunk3-1300000-1350000, the tomekkorbak/detoxify-pile-chunk3-1350000-1400000, the tomekkorbak/detoxify-pile-chunk3-1400000-1450000, the tomekkorbak/detoxify-pile-chunk3-1450000-1500000, the tomekkorbak/detoxify-pile-chunk3-1500000-1550000, the tomekkorbak/detoxify-pile-chunk3-1550000-1600000, the tomekkorbak/detoxify-pile-chunk3-1600000-1650000, the tomekkorbak/detoxify-pile-chunk3-1650000-1700000, the tomekkorbak/detoxify-pile-chunk3-1700000-1750000, the tomekkorbak/detoxify-pile-chunk3-1750000-1800000 and the tomekkorbak/detoxify-pile-chunk3-1800000-1850000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 42724 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.23.0 - Pytorch 1.13.0+cu116 - Datasets 2.0.0 - Tokenizers 0.12.1 # Full config {'dataset': {'datasets': ['tomekkorbak/detoxify-pile-chunk3-50000-100000', 'tomekkorbak/detoxify-pile-chunk3-100000-150000', 'tomekkorbak/detoxify-pile-chunk3-150000-200000', 'tomekkorbak/detoxify-pile-chunk3-200000-250000', 'tomekkorbak/detoxify-pile-chunk3-250000-300000', 'tomekkorbak/detoxify-pile-chunk3-300000-350000', 'tomekkorbak/detoxify-pile-chunk3-350000-400000', 'tomekkorbak/detoxify-pile-chunk3-400000-450000', 'tomekkorbak/detoxify-pile-chunk3-450000-500000', 'tomekkorbak/detoxify-pile-chunk3-500000-550000', 'tomekkorbak/detoxify-pile-chunk3-550000-600000', 'tomekkorbak/detoxify-pile-chunk3-600000-650000', 'tomekkorbak/detoxify-pile-chunk3-650000-700000', 'tomekkorbak/detoxify-pile-chunk3-700000-750000', 'tomekkorbak/detoxify-pile-chunk3-750000-800000', 'tomekkorbak/detoxify-pile-chunk3-800000-850000', 'tomekkorbak/detoxify-pile-chunk3-850000-900000', 'tomekkorbak/detoxify-pile-chunk3-900000-950000', 'tomekkorbak/detoxify-pile-chunk3-950000-1000000', 'tomekkorbak/detoxify-pile-chunk3-1000000-1050000', 'tomekkorbak/detoxify-pile-chunk3-1050000-1100000', 'tomekkorbak/detoxify-pile-chunk3-1100000-1150000', 'tomekkorbak/detoxify-pile-chunk3-1150000-1200000', 'tomekkorbak/detoxify-pile-chunk3-1200000-1250000', 'tomekkorbak/detoxify-pile-chunk3-1250000-1300000', 'tomekkorbak/detoxify-pile-chunk3-1300000-1350000', 'tomekkorbak/detoxify-pile-chunk3-1350000-1400000', 'tomekkorbak/detoxify-pile-chunk3-1400000-1450000', 'tomekkorbak/detoxify-pile-chunk3-1450000-1500000', 'tomekkorbak/detoxify-pile-chunk3-1500000-1550000', 'tomekkorbak/detoxify-pile-chunk3-1550000-1600000', 'tomekkorbak/detoxify-pile-chunk3-1600000-1650000', 'tomekkorbak/detoxify-pile-chunk3-1650000-1700000', 'tomekkorbak/detoxify-pile-chunk3-1700000-1750000', 'tomekkorbak/detoxify-pile-chunk3-1750000-1800000', 'tomekkorbak/detoxify-pile-chunk3-1800000-1850000'], 'is_split_by_sentences': True}, 'generation': {'force_call_on': [42724], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 2048}, {'generate_kwargs': {'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'challenging_rtp', 'num_samples': 2048, 'prompts_path': 'resources/challenging_rtp.jsonl'}], 'scorer_config': {'device': 'cuda:0'}}, 'kl_gpt3_callback': {'force_call_on': [42724], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 2048}, 'model': {'from_scratch': True, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'path_or_name': 'gpt2'}, 'objective': {'beta': 1, 'exponential': False, 'name': 'WeightedMLE'}, 'tokenizer': {'path_or_name': 'gpt2'}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 64, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'kejian/cpsc-wmle-1', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0007, 'logging_first_step': True, 'logging_steps': 50, 'num_tokens': 2800000000.0, 'output_dir': 'training_output_1', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 21362, 'save_strategy': 'steps', 'seed': 42, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/kejian/uncategorized/runs/1b71j55s
shannb/t5-small-finetuned-TEC-to-eng-two
shannb
2023-03-19T22:15:14Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-08T23:47:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-small-finetuned-TEC-to-eng-two results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-TEC-to-eng-two This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0135 - Bleu: 47.4124 - Gen Len: 15.0625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 2 | 1.6435 | 29.1493 | 15.5208 | | No log | 2.0 | 4 | 1.3090 | 33.8289 | 14.8542 | | No log | 3.0 | 6 | 1.1451 | 39.7632 | 14.8542 | | No log | 4.0 | 8 | 1.0720 | 42.4127 | 15.1458 | | No log | 5.0 | 10 | 1.0381 | 46.3985 | 15.0625 | | No log | 6.0 | 12 | 1.0210 | 46.9342 | 15.0625 | | No log | 7.0 | 14 | 1.0135 | 47.4124 | 15.0625 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
dominguesm/positive-reframing-ptbr
dominguesm
2023-03-19T22:10:55Z
32
3
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "seq2seq", "positive_perspectives", "pt", "dataset:dominguesm/positive-reframing-ptbr-dataset", "arxiv:2204.02952", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-20T17:26:47Z
--- language: pt license: cc-by-4.0 tags: - seq2seq - t5 - positive_perspectives datasets: - dominguesm/positive-reframing-ptbr-dataset widget: - text: "['growth', 'neutralizing']: Sempre estressado e pensando em um monte de coisas ao mesmo tempo, preciso levar uma de cada vez, sobrecarga estressada, necessidade de reclamar" - text: "['growth', 'neutralizing', 'optimism']: Se eu não tiver um colapso mental antes do final do verão, será um milagre." - text: "['impermanence']: Dirigindo para visitar a vovó no hospital e o meu filho que está doente." - text: "['optimism']: Ótimo agora, como vou explicar isso para ela, ela está tão perto de mim que não posso perdê-la :'(" - text: "['growth', 'optimism']: sempre há algo que eu poderia estar fazendo. Eu geralmente escolho não fazer isso." --- # Positive Perspectives with Portuguese Text Reframing ## Model description This model is a [PTT5](https://huggingface.co/unicamp-dl/ptt5-base-portuguese-vocab) adjusted to the sentiment transfer task, where the objective is to reverse the sentiment polarity of a text without contradicting the original meaning. Positive reframing induces a complementary positive viewpoint (e.g. glass-half-full) escaping negative patterns. Based on the article [arXiv:2204.02952](https://arxiv.org/abs/2204.02952). ## How to use The model uses one or more sentiment strategies concatenated with a sentence and will generate a sentence with the applied sentiment output. The maximum string length is 1024 tokens. Entries must be organized in the following format: ``` "['thankfulness', 'optimism']: Tenho tanta coisa para fazer antes de sair da cidade por uma semana no domingo." ``` ### Available sentiment strategies: **growth**: viewing a challenging event as an opportunity for the author to specifically grow or improve himself. **impermanence**: Saying that bad things don't last forever, will get better soon, and/or that other people have had similar difficulties. **neutralizing**: Replacing a negative word with a neutral word. For example, “This was a terrible day” becomes “This was a long day”. **optimism**: Focusing on things about the situation itself, at that moment, that are good (not just predicting a better future). **self_affirmation**: Talking about what strengths the author already has, or values he admires, such as love, courage, perseverance, etc. **thankfulness**: Expressing gratitude or gratitude with keywords like appreciate, happy for it, grateful for, good thing, etc. ### Usage ```python from transformers import pipeline pipe = pipeline('summarization', "dominguesm/positive-reframing-ptbr") text = "['thankfulness', 'optimism']: Tenho tanta coisa para fazer antes de sair da cidade por uma semana no domingo." pipe(text, max_length=1024) ```
codeSpaghetti/poca-SoccerTwos
codeSpaghetti
2023-03-19T21:55:34Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-19T21:55:28Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: codeSpaghetti/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Zilikon/q-Taxi-v3
Zilikon
2023-03-19T21:55:14Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T21:55:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Soulaimene1/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
josu/gpt-neo-br-instruction
josu
2023-03-19T21:54:05Z
19
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "pt", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-19T21:11:41Z
--- language: - pt widget: - text: Explique o que é inteligência artificial. - text: Explique o que é processamento de linguagem natural. --- ``` python from transformers import GenerationConfig from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("josu/gpt-neo-br-instruction") tokenizer = AutoTokenizer.from_pretrained("josu/gpt-neo-br-instruction") def generate_prompt(instruction, input=None): if input: return f"""Abaixo está uma instrução que descreve uma tarefa, juntamente com uma entrada que fornece mais contexto. Escreva uma resposta que complete adequadamente o pedido. ### Instrução: {instruction} ### Entrada: {input} ### Resposta:""" else: return f"""Abaixo está uma instrução que descreve uma tarefa. Escreva uma resposta que complete adequadamente o pedido. ### Instrução: {instruction} ### Resposta:""" generation_config = GenerationConfig( temperature=0.2, top_p=0.75, num_beams=4, ) def evaluate(instruction, input=None): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].cuda() generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=256 ) content = [] for s in generation_output.sequences: output = tokenizer.decode(s) content.append(output.split("### Resposta:")[1].strip()) return content ```
c0ldstudy/Taxi-v3
c0ldstudy
2023-03-19T21:08:31Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-19T21:08:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.73 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="c0ldstudy/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mdoshi2612/fake-news-detector
mdoshi2612
2023-03-19T21:07:21Z
0
0
null
[ "code", "en", "arxiv:1910.09700", "region:us" ]
null
2023-03-19T21:01:06Z
--- language: - en tags: - code --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ### How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]