modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
FvH14/wav2vec2-XLSR-53-DutchCommonVoice12
FvH14
2023-03-30T19:41:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_12_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-29T16:10:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_12_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-nl-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_12_0 type: common_voice_12_0 config: nl split: test args: nl metrics: - name: Wer type: wer value: 0.579253889386658 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-nl-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_12_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6772 - Wer: 0.5793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.3349 | 0.52 | 250 | 0.6772 | 0.5793 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
StanleyRoberts/Nix
StanleyRoberts
2023-03-30T19:39:04Z
4
1
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "text generation", "conversational", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-03-30T13:02:29Z
--- license: creativeml-openrail-m language: - en thumbnail: tags: - text generation - conversational inference: true --- # Pygmalion 6B ## Model description This is a fork of Pygmalion allowing longer input lengths for text-generation tasks using the Inference API Pymalion 6B is a proof-of-concept dialogue model based on EleutherAI's [GPT-J-6B](https://huggingface.co/EleutherAI/gpt-j-6B). **Warning:** This model is **NOT** suitable for use by minors. It **will** output X-rated content under certain circumstances. ## Training data The fine-tuning dataset consisted of 56MB of dialogue data gathered from multiple sources, which includes both real _and_ partially machine-generated conversations. ## Training procedure Model weights were initialized from the `uft-6b` ConvoGPT model made available in [this commit](https://huggingface.co/hakurei/convogpt/tree/41b67bfddb6cd97070ffddf708e9720c9cb8d224/6b-uft). The model was then further fine-tuned on ~48.5 million tokens for ~5k steps on 4 NVIDIA A40s using DeepSpeed. ## Intended use ### The easy way We provide a notebook with a Gradio UI for playing around with the model without having to manually format inputs. This notebook can be found [here](https://github.com/PygmalionAI/gradio-ui/blob/master/notebooks/GPU.ipynb). ### The manual way The model can be used as a regular text generation model, but it'll perform best if the input prompt adheres to the following format: ``` [CHARACTER]'s Persona: [A few sentences about the character you want the model to play] <START> [DIALOGUE HISTORY] You: [Your input message here] [CHARACTER]: ``` Where `[CHARACTER]` is, as you can probably guess, the name of the character you want the model to portray, `<START>` should be used verbatim as a delimiter token to separate persona and scenario data from the dialogue, and `[DIALOGUE HISTORY]` is chat history so the model can have some conversational context to draw from. Ideally it'll be pairs of messages like: ``` [CHARACTER]: [some dialogue here] You: [your response to the dialogue above] ``` Apart from chat history, you can also just add example conversations in `[DIALOGUE HISTORY]` to show how the character should speak - ideally at the beginning, so it doesn't get confused as to what's conversation history vs. character definition. ## Known issues We haven't played around with the model enough to enumerate them. Feel free to give us some feedback!
abcdgebop/moimad
abcdgebop
2023-03-30T19:32:40Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-30T19:20:05Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### moimad Dreambooth model trained by abcdgebop with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
myklicious/dqn-SpaceInvadersNoFrameskip-v4
myklicious
2023-03-30T19:28:31Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T19:24:59Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 462.00 +/- 136.07 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga myklicious -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga myklicious -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga myklicious ``` ## Hyperparameters ```python OrderedDict([('batch_size', 128), ('buffer_size', 10000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 8), ('normalize', False)]) ```
mfidabel/ppo-LunarLander-v2
mfidabel
2023-03-30T19:24:58Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T19:24:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.91 +/- 24.88 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Seif/Reinforce-Reinforce-CartPole-v1
Seif
2023-03-30T19:05:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T19:05:11Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
FvH14/wav2vec2-large-xls-r-300m-cnh-colab
FvH14
2023-03-30T19:04:40Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_9_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-30T18:49:59Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: wav2vec2-large-xls-r-300m-cnh-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-cnh-colab This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_9_0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
Jojodecay/hollowknight3D_test
Jojodecay
2023-03-30T18:55:12Z
4
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-30T18:02:25Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### hollowknight3D-jojodecay Dreambooth model trained by Jojodecay with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![Sample picture](https://huggingface.co/Jojodecay/hollowknight3d-jojodecay/resolve/main/sample_pictures/00015-3794422699.png) ![Sample picture](https://huggingface.co/Jojodecay/hollowknight3d-jojodecay/resolve/main/sample_pictures/00017-4033180565.png) ![Sample picture](https://huggingface.co/Jojodecay/hollowknight3d-jojodecay/resolve/main/sample_pictures/00006-888158355.png) ![Sample picture](https://huggingface.co/Jojodecay/hollowknight3d-jojodecay/resolve/main/sample_pictures/00018-4033180566.png) ![Sample picture](https://huggingface.co/Jojodecay/hollowknight3d-jojodecay/resolve/main/sample_pictures/00020-467403028.png)
inigo99/clasificador-rotten-tomatoes
inigo99
2023-03-30T18:51:18Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "classification", "generated_from_trainer", "dataset:rotten_tomatoes", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T18:50:36Z
--- license: apache-2.0 tags: - classification - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy model-index: - name: clasificador-rotten-tomatoes results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8527204502814258 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-rotten-tomatoes This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.8343 - Accuracy: 0.8527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3971 | 1.0 | 1067 | 0.4166 | 0.8377 | | 0.2056 | 2.0 | 2134 | 0.7931 | 0.8218 | | 0.0672 | 3.0 | 3201 | 0.8343 | 0.8527 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
aegrif/CIS6930_DAAGR_T5_NoEmo
aegrif
2023-03-30T18:46:24Z
128
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T02:15:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: CIS6930_DAAGR_T5_NoEmo results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # CIS6930_DAAGR_T5_NoEmo This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3368 - Train Accuracy: 0.9629 - Validation Loss: 0.4438 - Validation Accuracy: 0.9496 - Epoch: 17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 0.001, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5062 | 0.9405 | 0.4590 | 0.9454 | 0 | | 0.4381 | 0.9479 | 0.4477 | 0.9472 | 1 | | 0.4249 | 0.9499 | 0.4423 | 0.9481 | 2 | | 0.4152 | 0.9513 | 0.4386 | 0.9486 | 3 | | 0.4071 | 0.9525 | 0.4365 | 0.9490 | 4 | | 0.4000 | 0.9535 | 0.4349 | 0.9493 | 5 | | 0.3935 | 0.9545 | 0.4338 | 0.9496 | 6 | | 0.3876 | 0.9553 | 0.4337 | 0.9498 | 7 | | 0.3816 | 0.9562 | 0.4338 | 0.9498 | 8 | | 0.3763 | 0.9571 | 0.4343 | 0.9499 | 9 | | 0.3708 | 0.9578 | 0.4338 | 0.9500 | 10 | | 0.3657 | 0.9586 | 0.4357 | 0.9498 | 11 | | 0.3605 | 0.9593 | 0.4355 | 0.9500 | 12 | | 0.3556 | 0.9601 | 0.4370 | 0.9499 | 13 | | 0.3507 | 0.9608 | 0.4380 | 0.9499 | 14 | | 0.3463 | 0.9615 | 0.4397 | 0.9498 | 15 | | 0.3413 | 0.9622 | 0.4427 | 0.9496 | 16 | | 0.3368 | 0.9629 | 0.4438 | 0.9496 | 17 | ### Framework versions - Transformers 4.27.4 - TensorFlow 2.11.0 - Datasets 2.11.0 - Tokenizers 0.13.2
inigo99/clasificador-poem-sentiment
inigo99
2023-03-30T18:36:07Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "classification", "generated_from_trainer", "dataset:poem_sentiment", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T18:35:16Z
--- license: apache-2.0 tags: - classification - generated_from_trainer datasets: - poem_sentiment metrics: - accuracy model-index: - name: clasificador-poem-sentiment results: - task: name: Text Classification type: text-classification dataset: name: poem_sentiment type: poem_sentiment config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8653846153846154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-poem-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the poem_sentiment dataset. It achieves the following results on the evaluation set: - Loss: 0.5413 - Accuracy: 0.8654 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 112 | 0.4332 | 0.8654 | | No log | 2.0 | 224 | 0.4227 | 0.8942 | | No log | 3.0 | 336 | 0.5413 | 0.8654 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
abhijitkalta/distilbert-base-uncased-finetuned-emotion
abhijitkalta
2023-03-30T18:21:12Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T17:57:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.933 - name: F1 type: f1 value: 0.9334700183474604 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1626 - Accuracy: 0.933 - F1: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2254 | 1.0 | 250 | 0.1806 | 0.922 | 0.9219 | | 0.1394 | 2.0 | 500 | 0.1626 | 0.933 | 0.9335 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
kenasuka/raisa-2
kenasuka
2023-03-30T18:14:21Z
32
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-30T18:04:28Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### raisa-2 Dreambooth model trained by kenasuka with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
susindhar/aiproject-bert-qa
susindhar
2023-03-30T17:47:38Z
63
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-30T17:47:25Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aiproject-bert-qa results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aiproject-bert-qa This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.4990 - Validation Loss: 1.1426 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'Adam', 'config': {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.4990 | 1.1426 | 0 | ### Framework versions - Transformers 4.28.0.dev0 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.2
BoschAI/Reinforce-pixelcopter
BoschAI
2023-03-30T17:43:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T22:40:28Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.20 +/- 17.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ManarAli/Reinforce-pixelcopter
ManarAli
2023-03-30T17:29:48Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T22:06:37Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 28.90 +/- 21.64 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
auditi41/wav2vec2-large-xlsr-53-Bangla-Common_Voice
auditi41
2023-03-30T16:36:24Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-03-30T08:05:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xlsr-53-Bangla-Common_Voice results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: bn split: train+validation args: bn metrics: - name: Wer type: wer value: 0.6576650727705051 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-Bangla-Common_Voice This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6172 - Wer: 0.6577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.922 | 4.57 | 800 | 0.7379 | 0.8157 | | 0.5136 | 9.14 | 1600 | 0.6155 | 0.7056 | | 0.2759 | 13.71 | 2400 | 0.6172 | 0.6577 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
yngbless/yngblass
yngbless
2023-03-30T16:32:02Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-30T16:21:46Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### yngblass Dreambooth model trained by yngbless with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
ghassenhannachi/a2c-PandaReachDense-v2
ghassenhannachi
2023-03-30T16:29:20Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-29T16:49:21Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.45 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
artbreguez/poca-SoccerTwos
artbreguez
2023-03-30T16:23:50Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-30T16:23:44Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: artbreguez/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
LarryAIDraw/aCertainScientificRailgun4in1_v1
LarryAIDraw
2023-03-30T16:19:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-30T16:18:24Z
--- license: creativeml-openrail-m ---
ronanki/all_mpnet_128_10_MNR_PT
ronanki
2023-03-30T16:16:13Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-30T16:06:25Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 449 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 449, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Brizape/Variome_5e-05_30_03
Brizape
2023-03-30T16:12:35Z
105
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-30T15:41:07Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Variome_5e-05_30_03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Variome_5e-05_30_03 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0631 - Precision: 0.5610 - Recall: 0.5068 - F1: 0.5325 - Accuracy: 0.9859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6582 | 0.51 | 25 | 0.1765 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1545 | 1.02 | 50 | 0.1746 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1544 | 1.53 | 75 | 0.1770 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1608 | 2.04 | 100 | 0.1752 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1552 | 2.55 | 125 | 0.1726 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1591 | 3.06 | 150 | 0.1582 | 0.0 | 0.0 | 0.0 | 0.9769 | | 0.1185 | 3.57 | 175 | 0.1142 | 0.2978 | 0.0703 | 0.1138 | 0.9778 | | 0.0979 | 4.08 | 200 | 0.1046 | 0.2865 | 0.1584 | 0.2041 | 0.9792 | | 0.0889 | 4.59 | 225 | 0.0923 | 0.3965 | 0.2151 | 0.2789 | 0.9811 | | 0.0749 | 5.1 | 250 | 0.0819 | 0.4126 | 0.3295 | 0.3664 | 0.9827 | | 0.0622 | 5.61 | 275 | 0.0756 | 0.4497 | 0.3987 | 0.4227 | 0.9838 | | 0.0635 | 6.12 | 300 | 0.0699 | 0.4970 | 0.4355 | 0.4642 | 0.9850 | | 0.048 | 6.63 | 325 | 0.0672 | 0.5225 | 0.4512 | 0.4842 | 0.9852 | | 0.0486 | 7.14 | 350 | 0.0663 | 0.5457 | 0.4827 | 0.5122 | 0.9852 | | 0.0464 | 7.65 | 375 | 0.0666 | 0.5623 | 0.4879 | 0.5225 | 0.9856 | | 0.043 | 8.16 | 400 | 0.0636 | 0.5464 | 0.5005 | 0.5225 | 0.9857 | | 0.0393 | 8.67 | 425 | 0.0636 | 0.5693 | 0.4869 | 0.5249 | 0.9860 | | 0.036 | 9.18 | 450 | 0.0636 | 0.5641 | 0.4942 | 0.5268 | 0.9858 | | 0.0373 | 9.69 | 475 | 0.0637 | 0.5735 | 0.5037 | 0.5363 | 0.9860 | | 0.0382 | 10.2 | 500 | 0.0631 | 0.5610 | 0.5068 | 0.5325 | 0.9859 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
facebook/blenderbot-1B-distill
facebook
2023-03-30T16:12:16Z
1,553
37
transformers
[ "transformers", "pytorch", "blenderbot", "text2text-generation", "convAI", "conversational", "facebook", "en", "dataset:blended_skill_talk", "arxiv:1907.06616", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- ## Model description + Paper: [Recipes for building an open-domain chatbot](https://arxiv.org/abs/1907.06616) + [Original PARLAI Code](https://parl.ai/projects/recipes/) ### Abstract Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, both asking and answering questions, and displaying knowledge, empathy and personality appropriately, depending on the situation. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter neural models, and make our models and code publicly available. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models.
pelinbalci/ppo-LunarLander-v2
pelinbalci
2023-03-30T15:31:34Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T15:31:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 260.94 +/- 16.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
educanto/my_awesome_model
educanto
2023-03-30T15:19:07Z
53
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T13:40:45Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: educanto/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # educanto/my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1332 - Validation Loss: 0.1916 - Train Accuracy: 0.9292 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.2536 | 0.1928 | 0.9291 | 0 | | 0.1332 | 0.1916 | 0.9292 | 1 | ### Framework versions - Transformers 4.27.4 - TensorFlow 2.11.0 - Datasets 2.11.0 - Tokenizers 0.13.2
EvaOr/DeepRL_chp5_MLAgents_PyramidsTraining
EvaOr
2023-03-30T15:10:27Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-30T15:10:21Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: EvaOr/DeepRL_chp5_MLAgents_PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kuanyk/robustness
kuanyk
2023-03-30T15:01:04Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-02-06T16:48:17Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: robustness results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-30000
vocabtrimmer
2023-03-30T14:58:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T14:37:08Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-koquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qa): `vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-koquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-koquad-qa | vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 30000 | 2 |
Agneev/Reinforce-PixelCopter
Agneev
2023-03-30T14:52:35Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T14:52:31Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 37.80 +/- 25.39 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vijmeister/Reinforce-CartPole-v1
vijmeister
2023-03-30T14:43:18Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T14:43:10Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Sera47/q-FrozenLake-v1-4x4-noSlippery
Sera47
2023-03-30T14:39:09Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T14:39:00Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 metrics: - type: mean_reward value: 0.74 +/- 0.44 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Sera47/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
OlgaVityuk/q-FrozenLake-v1-4x4-noSlippery
OlgaVityuk
2023-03-30T14:34:33Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T14:34:24Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="OlgaVityuk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vjsyong/my_awesome_model
vjsyong
2023-03-30T14:32:02Z
62
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T08:25:16Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vjsyong/my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vjsyong/my_awesome_model This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0536 - Validation Loss: 0.2951 - Train Accuracy: 0.9169 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3400 | 0.2347 | 0.9037 | 0 | | 0.1873 | 0.2533 | 0.9021 | 1 | | 0.1064 | 0.2473 | 0.9156 | 2 | | 0.0536 | 0.2951 | 0.9169 | 3 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
Niraya666/Reinforce-Pixelcopter-PLE-v0
Niraya666
2023-03-30T14:18:12Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T14:18:08Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 10.20 +/- 10.58 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
boudchicha/soluzione
boudchicha
2023-03-30T14:13:42Z
0
1
diffusers
[ "diffusers", "medical", "chemistry", "biology", "conversational", "en", "fr", "dataset:pubmed", "dataset:medical_questions_pairs", "dataset:wiki_bio", "license:bsd", "region:us" ]
text-generation
2023-03-30T13:46:38Z
--- license: bsd datasets: - pubmed - medical_questions_pairs - wiki_bio language: - en - fr metrics: - accuracy tags: - medical - chemistry - biology library_name: diffusers pipeline_tag: conversational ---
sp02/distilbert-base-uncased-finetuned-emotion
sp02
2023-03-30T14:13:06Z
124
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-12T03:18:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9245103641171362 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2103 - Accuracy: 0.9245 - F1: 0.9245 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8 | 1.0 | 250 | 0.3021 | 0.907 | 0.9052 | | 0.2396 | 2.0 | 500 | 0.2103 | 0.9245 | 0.9245 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.1
vocabtrimmer/mt5-small-squad-qa-trimmed-en-120000
vocabtrimmer
2023-03-30T14:11:14Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T13:49:54Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa): `vocabtrimmer/mt5-small-squad-qa-trimmed-en-120000` This model is a trimmed version of [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qa | vocabtrimmer/mt5-small-squad-qa-trimmed-en-120000 | |:---------------------------|:--------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 166,944,128 | | parameter_size_embedding | 256,103,424 | 122,882,048 | | vocab_size | 250,101 | 120,002 | | compression_rate_full | 100.0 | 55.62 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 120000 | 2 |
Corianas/64CharGPT
Corianas
2023-03-30T14:10:51Z
3
0
transformers
[ "transformers", "gpt2", "text-generation", "en", "endpoints_compatible", "region:us" ]
text-generation
2023-03-10T23:18:21Z
--- language: - en pipeline_tag: text-generation library_name: transformers --- Vocab is: ``` \n\" !$&'#,/+=-<>*@.:;[]^?0123456789abcdefghijklmnopqrstuvwxyzèé§↨ § (made from alt+21) was used as end of file/sample ↨ (made from alt+23) is the shift key (and gets removed and the next character gets replaced with an uppdercase character) ``` Model is trained on scraped youtube subtitles and whispered transcripts of youtube/tv shows. totalling approx 2.3billion tokens when processed. Data was Deduped, Had all UPPERCASE samples removed, and ran a 'ranker' that removed random data which somehow was included in the subtitles on youtube. (such as total gibberish) Training took 72 hours, and was stopped when overfitting occured. (this is checkpoint 264000 out of a planned 400000) ``` gradient_accumulation_steps = 2 # used to simulate larger batch sizes batch_size = 45 # if gradient_accumulation_steps > 1, this is the micro-batch size block_size = 768 n_layer = 12 n_head = 8 n_embd = 512 dropout = 0.00001 # for pretraining 0 is good, for finetuning try 0.1+ bias = False # do we use bias inside LayerNorm and Linear layers? learning_rate = 0.0008 # max learning rate min_lr = 0.00008 ``` function to fix text from the model: ``` def remove_caseifer(text): new_text = "" i = 0 while i < len(text): if text[i] == "↨": if i+1 < len(text): new_text += text[i+1].upper() i += 1 else: pass # skip this index else: new_text += text[i] i += 1 return new_text ``` function to prepare text for the model: ``` def add_caseifer(text): uppers = 0 lowers = 0 tokenlist = set("\n\" !$&'#,/+=-<>*@.:;[]{}()^?0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzèé") replace_map = { # Define a mapping of characters to be replaced "{": "[", "(": "[", "}": "]", ")": "]" } upperlist = set("ABCDEFGHIJKLMNOPQRSTUVWXYZ") lowerlist = set("abcdefghijklmnopqrstuvwxyz") new_text = "" for char in text: if char in tokenlist: if char in upperlist: new_text += "↨" + char.lower() elif char in replace_map: new_text += replace_map[char] else: new_text += char else: continue return new_text ```
vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-10000
vocabtrimmer
2023-03-30T14:08:00Z
114
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T13:47:11Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-koquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qa): `vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-koquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-koquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-koquad-qa | vocabtrimmer/mbart-large-cc25-koquad-qa-trimmed-ko-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ko | vocabtrimmer/mc4_validation | text | ko | validation | 10000 | 2 |
wanghao2023/uganda-labor-market-interview-text-classification
wanghao2023
2023-03-30T14:05:08Z
109
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-29T22:27:17Z
--- language: en license: mit --- # Uganda Labor Market Interview Text Classification This model is a fine-tuned [Roberta base model](https://huggingface.co/roberta-base) using text transcripts of interviews between Vocational Training Institutes (VTI) students and their successful alumni in Uganda on the subject of the labor market. ## Model description The model classifies sentences into six distinct categories, with some sentences potentially being assigned to multiple topics. The classification criteria are as follows: info: Pertinent details about the job market, working conditions, salaries, and expectations in the workplace, as well as the alumni's and students' current job market situations, career plans, and past experiences. If strategies are mentioned in this context, the sentence is also classified as a strategy. tip: Advice on workplace behavior and self-improvement, primarily emphasizing discipline, humility, treating colleagues and clients well, and avoiding illegal activities. If these tips are associated with an increased likelihood of employment, the sentence is also classified as a strategy.. strategy: Guidance aimed at enhancing students' chances of securing employment or better job opportunities, covering aspects such as company research, application creation and submission, interview conduct, networking, and general advice for enhancing job-related skills. Additionally, this category includes tips for starting a business, such as capital accumulation, location scouting, business models, equipment procurement, and client attraction and retention. motivation: General recommendations for maintaining confidence, patience, persistence, engagement, and optimism in the job market. If specific contexts are provided for these recommendations, the sentence may also be classified as a strategy or tip accordingly. referral: Directing students to companies or individuals, or providing affirmative responses to students' requests for connections. neutral: Introductions, contact exchanges, purely technical content, unrelated school or exam discussions, miscellaneous conversations that do not fit into the other five topics, and unclear content due to language deficiencies or translation issues. ### How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> pipe = pipeline("text-classification", model= "wanghao2023/uganda-labor-market-interview-text-classification", tokenizer = "wanghao2023/uganda-labor-market-interview-text-classification", return_all_scores = True) >>> pipe("if they think you know too much, they won't teach you.") [[{'label': 'is_info', 'score': 0.18128268420696259}, {'label': 'is_tip', 'score': 0.5684323310852051}, {'label': 'is_strategy', 'score': 0.22818608582019806}, {'label': 'is_motivation', 'score': 0.03250108286738396}, {'label': 'is_neutral', 'score': 0.05972086638212204}, {'label': 'is_referral', 'score': 0.013502764515578747}]] ``` ### Limitations and bias Sentence classification is heavily dependent on context. For instance, the phrase "be patient" could be categorized as a tip, strategy, and/or motivation, depending on the specific context in which the alumni advises patience. The context determines whether the advice pertains to interviews, workplace behavior, or general motivation. ## Evaluation results This model achieves the following results when tested on the validation dataset (multilabel, threshold = 0.3). There is a huge room for improvement but it performs much better than a dice roll at least: | F1 | Roc Auc | Accuracy | |:----:|:----:|:----:| | 0.655779 | 0.799979 | 0.552670 |
miugod/bibert-iwslt14ende
miugod
2023-03-30T14:03:27Z
106
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-30T13:55:20Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: bibert-ende results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bibert-ende This model is a fine-tuned version of [jhu-clsp/bibert-ende](https://huggingface.co/jhu-clsp/bibert-ende) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8713 - Accuracy: 0.6310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.12.0+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-squad-qa-trimmed-en-90000
vocabtrimmer
2023-03-30T13:41:58Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T13:22:10Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa): `vocabtrimmer/mt5-small-squad-qa-trimmed-en-90000` This model is a trimmed version of [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qa | vocabtrimmer/mt5-small-squad-qa-trimmed-en-90000 | |:---------------------------|:--------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 136,224,128 | | parameter_size_embedding | 256,103,424 | 92,162,048 | | vocab_size | 250,101 | 90,002 | | compression_rate_full | 100.0 | 45.38 | | compression_rate_embedding | 100.0 | 35.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 90000 | 2 |
ccarvajal-reyes/beto-prescripciones-medicas
ccarvajal-reyes
2023-03-30T13:35:25Z
140
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-12-17T20:26:26Z
--- language: - es widget: - text: "PARACETAMOL 500 MG COMPRIMIDO 1 COMPRIMIDO ORAL cada 6 horas durante 3 dias" --- # beto-prescripciones-medicas Fine-tunning [BETO](https://github.com/dccuchile/beto) for detection of entities in medical prescriptions. More models and detailes can be found [in our repository](https://github.com/camilocarvajalreyes/entidades-minsal). This is a fine-tuned version of [bert-clinical-scratch-wl-es](https://huggingface.co/plncmm/bert-clinical-scratch-wl-es) from [PLN group @ CMM](https://huggingface.co/plncmm). Which is a fine-tunned version [bert-base-spanish-wwm-uncased (BETO)](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) from [DCC UChile](https://huggingface.co/dccuchile). This work is part of a project that aims to have entity recognition models on prescription data from Minsal (Chile Health Minsistry), for the MDS7201 course from Data Science MSc program at UChile. We use data from a Chilean Hospital, which is not available for public use, but we do provide the files with which we trained the models. The procedure is the following one: - We use a [model using regular expresions (RegEx)](https://github.com/camilocarvajalreyes/entidades-minsal/blob/main/datos/Etiquetado/RegExV2.0.ipynb) in order to tag around 100k unique samples from the original dataset. - We fine-tune [bert-clinical-scratch-wl-es](https://huggingface.co/plncmm/bert-clinical-scratch-wl-es) using data tagged with the RegEx method. (5 epochs) - We further fine-tune the model with data human tagged data (800 samples, 20 epochs). - The data is tested on human tagged data (200 samples). The resulting evaluation metrics are the following ones | f1 | precision | recall | |:---:|---|---| | 0.93 | 0.92 | 0.94 | **Collaborators**: - Daniel Carmona G. (Ing. Civil Eléctrica) - Martín Sepúlveda (Ing. Civil Eléctrica) - Monserrat Prado (Ing. Civil en Ciencias de la Computación) - Camilo Carvajal Reyes (Ing. Civil Matemática) Supervised by: - Patricio Wolff (Minsal) - Constanza Contreras (Docente MDS7201) - Francisco Förster (Docente MDS7201) ## Example We provide a [demo](https://github.com/camilocarvajalreyes/entidades-minsal/blob/main/demo_minsal/demo.ipynb). Here we introduce those funtions that are necessary in order to translate the model's output into understandable tags. We also provide a complementary model: [beto-prescripciones-medicas-ADMIN](https://huggingface.co/ccarvajal/beto-prescripciones-medicas-ADMIN). This model tags the output of the current model of those tokens tagged as ADMIN. The [demo](https://github.com/camilocarvajalreyes/entidades-minsal/blob/main/demo_minsal/demo.ipynb) includes such model, and the output of both is shown as an example below: | ACTIVE_PRINCIPLE | FORMA_FARMA | CANT-ADMIN | UND-ADMIN | VIA-ADMIN | PERIODICITY | DURATION | |---:|---:|---:|---:|---:|---:|---:| | PARACETAMOL | 500 MG COMPRIMIDO | 1 | COMPRIMIDO | ORAL | cada 6 horas | durante 3 dias | This example is also shown in [this notebook](https://github.com/camilocarvajalreyes/entidades-minsal/blob/main/demo_minsal/demo_minimalista.ipynb), which uses the model as a blackbox. ## Reproducibility Training parameters (fine-tunning on RegEx data): ```python training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01 ) ``` Training parameters (fine-tunning on human tagged data) ```python training_args = TrainingArguments( output_dir = "./results", evaluation_strategy = "epoch", learning_rate = 2e-5, per_device_train_batch_size = 16, per_device_eval_batch_size = 16, num_train_epochs = 20, weight_decay = 0.01, ) ```
OedoSoldier/animix
OedoSoldier
2023-03-30T13:34:13Z
0
97
null
[ "stable-diffusion", "text-to-image", "dataset:embed/EasyNegative", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-24T13:14:21Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image datasets: embed/EasyNegative --- # Check the new [Ambientmix](https://huggingface.co/OedoSoldier/ambientmix)! ## Descriptions Using this model will result in clean, anatomically-correct images that accurately capture the essence of anime-style art, complete with stunning backgrounds. Two models are provided: an 18 MB LoRA model and a full base model that merges LoRA with Anything V4.5. The full model is recommended for training your character model, and is particularly effective for training anime characters using this model. ## Recommend settings: - VAE: Orangemix (the same with NAI) - LoRA Strength: 1 (if you're using the LoRA version) - Sampler: DPM++ 2M Karras - Sampling steps: 20 - Negative embedding: [EasyNegative](https://civitai.com/models/7808)、[badhandv4](https://civitai.com/models/16993/badhandv4-animeillustdiffusion) ## Samples Note: all the LoRA name used in those samples are my local name, you need to change them to your saved LoRA filename! ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/1.png) ``` masterpiece, best quality, 1girl, solo, light smile, mountain, lake, meadow, panorama, jacket, kneehighs, boots Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 738622193, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/2.png) ``` masterpiece, best quality, 1girl, solo, looking_at_viewer, smile, open_mouth, skirt, shirt, hair_ornament, pink_hair, jacket, pink_hair, :d, multicolored_hair, pleated_skirt, wings, choker, hairclip, hood, pink_eyes, hair_bun, chibi, black_shirt, double_bun, black_choker, blush, white_skirt, feathered_wings, angel_wings, white_wings, sky, flying, halo, hand up, skyscraper, angel, from top Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 4110544683, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/3.png) ``` masterpiece, best quality, 1girl, solo, looking away, expressionless, from side, white dress, colorful, floral background, rain, lake, fog, barefoot, sitting on water, from top, Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 223540873, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/4.png) ``` masterpiece, best quality,1girl, adjusting clothes, adjusting headwear, blush, bow, bowtie, breasts, brown eyes, brown hair, cloak, cloud, cloudy sky, crescent moon, dress, fantasy, flower, glowing, glowing flower, hat, light particles, lily pad, long hair, looking at viewer, moon, moonlight, mountain, mountainous horizon, night, outdoors, parted lips, pointy ears, pond, sky, small breasts, star (sky), starry sky, very long hair, wading, water lily flower, wind, witch, witch hat Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1795361781, Size: 512x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/5.png) ``` best quality, extremely detailed CG unity 8k,close up, illustration, depth of field,cowboy shot,the character is centered,symmetrical composition, (1 girl),red eyes,Wolf tail,Wolf ears,Very long hair ,Messy hair,disheveled hair, ,(beautiful detailed eyes),(Crown:1.1),pleated dress,puffy long sleeves, (moon:1.2), ((The black clouds)),(((flowing transparent black))),(floating black cloud:1.2),building architecture, depth of field,castle,black and white melt Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 4091383013, Size: 512x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/6.png) ``` masterpiece, best quality, 1man, solo, jacket, hand in pocket, school bag, black hair, black eyes, cyberpunk, street, machinery, motor vehicle, motorcycle, panorama, sunglasses Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 223585745, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/7.png) ``` masterpiece, best quality, 1boy, flat color, limited palette, low contrast, (ligne claire), long straight black hair, looking away, standing. smoke, night sky, city, sunset, sky scrapers, bridge, depth of field, black, red, orange, brown, autumn, haze, Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 646089941, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/8.png) ``` masterpiece, best quality, 1girl, smile, one eye closed, dutch angle, blonde hair, twintails, blue eyes, cowboy shot, maid dress, heart hands Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 278484553, Size: 512x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/9.png) ``` masterpiece, best quality, 1girl, solo, long_hair, looking_at_viewer, smile, dress, ribbon, jewelry, very_long_hair, hair_ribbon, flower, bracelet, two_side_up, hand_on_own_face, head_rest, hand_on_own_cheek Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1453509491, Size: 512x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/10.png) ``` masterpiece, best quality, 1girl, solo, black hair, medium hair, red eyes, blunt bangs, petite, expressionless, red skirt, white legwear, thighhighs, suspender skirt, white shirt, mary janes, night, dark, shadow Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 407943314, Size: 512x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/11.png) ``` masterpiece, best quality, 1girl, solo, long_hair, looking_at_viewer, white hair, red eyes, smile, bangs, skirt, shirt, long_sleeves, hat, dress, bow, holding, closed_mouth, flower, frills, hair_flower, petals, bouquet, holding_flower, center_frills, bonnet, holding_bouquet, flower field, flower field, colorful Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1690640466, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/12.png) ``` impasto,((((1girl)))),Metaverse,original,((an extremely delicate and beautiful)),(cyan theme),((intricate detail)),((((ultra-detailed))),((illustration)),(((masterpiece))),((extremely detailed CG unity 8k wallpaper)),highlight,sharpening,detailed face,((Perfect details)),(binary numbers),Science fiction,sense of digital,cold light,((data in the eyes)),((data adorns hair)),0 and 1 code,digitization,Running data,system screen,mathematical equation,young girl,(solo),(yubao) Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 293734715, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/13.png) ``` masterpiece, best quality, 1girl, solo, long_hair, from top, light smile, panorama, perspective, looking_at_viewer, bangs, skirt, shirt, black_hair, long_sleeves, bow, ribbon, twintails, hair_bow, heart, pantyhose, frills, shoes, choker, blunt_bangs, black_skirt, pink_eyes, frilled_skirt, pink_bow, platform_footwear, pink_theme, jirai_kei, full body, night, street, from behind, looking back, skyscraper, neon trim, panorama, perspective, starry sky, black theme, dark, shadow Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1148006396, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/14.png) ``` masterpiece,1girl,solo,incredibly absurdres,hoodie,headphones, street,outdoors,rain,neon lights, light smile, hood up, hands in pockets, looking away, from side Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3552918625, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/15.png) ``` masterpiece, best quality,1girl, solo, bangs, bare shoulders, bat wings, blonde hair, blush, breasts, bridal gauntlets, seductive smile, eyes visible through hair, fingernails, garter straps, hair ornament, long hair, looking at viewer, pointy ears, red eyes, small breasts, thighhighs, castle, vampire, white thighhighs, wings, night, standing, grin Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3007804048, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/16.png) ``` anirl, best quality, ultra high res, 1girl, hatsune miku, full body, scenery, smile, ocean, sunset, city, barefoot, footprints, sand Negative prompt: EasyNegative, badhandv4 Steps: 20, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 3051695426, Size: 576x768, Model hash: ad0e54efe2, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2.5, Hires steps: 10, Hires upscaler: SwinIR_4x ``` ![](https://huggingface.co/OedoSoldier/anime-screenshot-like-mix/resolve/main/samples/17.png) ## Models used Merged with block weights tweaked: - 2020s Anime Magazine Illustration Style - Anime-like 2D (extracted LoRA) - Anime Lineart Style - Anime Screencap Style - Avas Anime Hamster - Epi Noise Offset - Hipoly 3D Model Lora - Makoto Shinkai Substyles ## See also Original post on Civitai: https://civitai.com/models/23723
pastells/ppo-PyramidsRND
pastells
2023-03-30T13:32:38Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-30T13:30:55Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: pastells/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
JYumeko/my_awesome_billsum_model
JYumeko
2023-03-30T13:31:42Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T05:39:48Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: my_awesome_billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1538 - Rouge1: 0.1789 - Rouge2: 0.1075 - Rougel: 0.1585 - Rougelsum: 0.1584 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.2372 | 1.0 | 1635 | 0.1729 | 0.1764 | 0.1032 | 0.1554 | 0.1553 | 19.0 | | 0.2077 | 2.0 | 3270 | 0.1602 | 0.1774 | 0.1054 | 0.1569 | 0.1567 | 19.0 | | 0.197 | 3.0 | 4905 | 0.1550 | 0.1788 | 0.1073 | 0.1584 | 0.1583 | 19.0 | | 0.1924 | 4.0 | 6540 | 0.1538 | 0.1789 | 0.1075 | 0.1585 | 0.1584 | 19.0 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
yumingyi/rl_course_vizdoom_health_gathering_supreme-2
yumingyi
2023-03-30T13:17:44Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:55:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.43 +/- 6.82 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r yumingyi/rl_course_vizdoom_health_gathering_supreme-2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme-2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme-2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
manuelmaiorano/Reinforce-pixelcopter
manuelmaiorano
2023-03-30T13:13:14Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T13:13:06Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 36.80 +/- 28.76 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bingcheng45/autotrain-nlp-45198113367
bingcheng45
2023-03-30T13:06:01Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain", "en", "dataset:bingcheng45/autotrain-data-nlp", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T13:01:51Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - bingcheng45/autotrain-data-nlp co2_eq_emissions: emissions: 1.8668016992060357 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 45198113367 - CO2 Emissions (in grams): 1.8668 ## Validation Metrics - Loss: 5.278 - Accuracy: 0.051 - Macro F1: 0.057 - Micro F1: 0.051 - Weighted F1: 0.044 - Macro Precision: 0.063 - Micro Precision: 0.051 - Weighted Precision: 0.049 - Macro Recall: 0.069 - Micro Recall: 0.051 - Weighted Recall: 0.051 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/bingcheng45/autotrain-nlp-45198113367 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("bingcheng45/autotrain-nlp-45198113367", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("bingcheng45/autotrain-nlp-45198113367", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
markeidsaune/q-Taxi-v3
markeidsaune
2023-03-30T13:04:29Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T13:04:26Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="markeidsaune/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
vocabtrimmer/mt5-small-squad-qa-trimmed-en-30000
vocabtrimmer
2023-03-30T12:56:41Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T12:38:43Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa): `vocabtrimmer/mt5-small-squad-qa-trimmed-en-30000` This model is a trimmed version of [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qa | vocabtrimmer/mt5-small-squad-qa-trimmed-en-30000 | |:---------------------------|:--------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 74,784,128 | | parameter_size_embedding | 256,103,424 | 30,722,048 | | vocab_size | 250,101 | 30,002 | | compression_rate_full | 100.0 | 24.91 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 30000 | 2 |
Horken/q_taxi_v2
Horken
2023-03-30T12:45:30Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:41:24Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q_taxi_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Horken/q_taxi_v2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/mt5-small-trimmed-en-enquad-qg
vocabtrimmer
2023-03-30T12:44:28Z
107
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T12:41:23Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question generation widget: - text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-en-enquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 21.84 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 49.16 - name: METEOR (Question Generation) type: meteor_question_generation value: 23.97 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 90.06 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 62.83 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-en-enquad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-en](https://huggingface.co/ckpts/mt5-small-trimmed-en) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-en](https://huggingface.co/ckpts/mt5-small-trimmed-en) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="vocabtrimmer/mt5-small-trimmed-en-enquad-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-en-enquad-qg") output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-enquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:---------------------------------------------------------------| | BERTScore | 90.06 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 54.15 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 37.79 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 28.32 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 21.84 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 23.97 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 62.83 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 49.16 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-en - max_length: 512 - max_length_output: 32 - epoch: 14 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-enquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
dcinside1/AbyssSweetiepie
dcinside1
2023-03-30T12:43:25Z
0
0
null
[ "license:gpl-3.0", "region:us" ]
null
2023-03-30T12:32:50Z
--- license: gpl-3.0 --- copy of https://arca.live/b/aiart/72796744?mode=best&p=1
yumingyi/rl_course_vizdoom_health_gathering_supreme
yumingyi
2023-03-30T12:42:01Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:39:20Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.93 +/- 4.69 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r yumingyi/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Hgatsadrtasd/attempt2
Hgatsadrtasd
2023-03-30T12:23:02Z
118
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-30T09:10:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: attempt2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # attempt2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
Inzamam567/Useless_Dalcefo
Inzamam567
2023-03-30T12:20:57Z
0
3
null
[ "region:us" ]
null
2023-03-30T12:20:57Z
--- duplicated_from: AnaNoSleep/models_by_dalcefo ---
Horken/q_taxi
Horken
2023-03-30T12:16:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:15:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q_taxi results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Horken/q_taxi", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Saladchin/Reinforce-1
Saladchin
2023-03-30T12:14:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:14:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 452.50 +/- 142.50 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
saberzl/LunarLnder-v2
saberzl
2023-03-30T12:09:42Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T12:08:31Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 264.14 +/- 14.36 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
coreml-community/coreml-realisticVision-v20
coreml-community
2023-03-30T12:06:31Z
0
21
null
[ "coreml", "stable-diffusion", "text-to-image", "not-for-all-eyes", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-30T09:21:00Z
--- license: creativeml-openrail-m tags: - coreml - stable-diffusion - text-to-image - not-for-all-eyes --- # Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as **Mochi Diffusion** [Github](https://github.com/godly-devotion/MochiDiffusion) / [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine. - `original` version is only compatible with `CPU & GPU` option. - Custom resolution versions are tagged accordingly. - The `vae-ft-mse-840000-ema-pruned.ckpt` VAE is embedded into the model. - This model was converted with a `vae-encoder` for use with `image2image`. - This model is `fp16`. - Descriptions are posted as-is from original model source. - Not all features and/or results may be available in `CoreML` format. - This model does not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). - This model does not include a `safety checker` (for NSFW content). # realisticVision-v20: Source(s): [Hugging Face](https://huggingface.co/SG161222/Realistic_Vision_V2.0) - [CivitAI](https://civitai.com/models/4201/realistic-vision-v20) **Please read this!** My model has always been free and always will be free. There are no restrictions on the use of the model. The rights to this model still belong to me. This model is available on Mage.Space, Sinkin.ai, GetImg.ai and RandomSeed.co (NSFW content) You can find out news about this model and future models, as well as support me on Boosty. Recommended for use with [VAE](https://huggingface.co/stabilityai/sd-vae-ft-mse-original) which has already been baked into the converted `CoreML` model version here. I use this template to get good generation results: **Prompt**: RAW photo, subject, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 **Example**: RAW photo, a close up portrait photo of 26 y.o woman in wastelander clothes, long haircut, pale skin, slim body, background is city ruins, (high detailed skin:1.2), 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3 **Negative Prompt**: (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck OR (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, mutated hands and fingers:1.4), (deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation `Euler A` or `DPM++ 2M Karras` with 25 steps `CFG Scale` 7 `Hires Fix` with `Latent` upscaler 0 `Hires Steps` and `Denoising Strength` 0.25 - 0.45 `Upscaling` by 1.1 - 2.0 <br><br> ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/393713d6-c943-4c6a-7247-ad5f03583200/width=400/333323) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cf4b9664-975a-4f56-8fba-afe4b5827a00/width=400/334107) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/6777a3bb-3215-4250-22d8-556b06676c00/width=400/334752) ![image](https://imagecache.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/39475d32-266e-4775-0eff-76e7e88b3200/width=400/360392)
vocabtrimmer/mt5-small-squad-qa-trimmed-en-5000
vocabtrimmer
2023-03-30T11:59:41Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T11:40:13Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa): `vocabtrimmer/mt5-small-squad-qa-trimmed-en-5000` This model is a trimmed version of [lmqg/mt5-small-squad-qa](https://huggingface.co/lmqg/mt5-small-squad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qa | vocabtrimmer/mt5-small-squad-qa-trimmed-en-5000 | |:---------------------------|:--------------------------|:--------------------------------------------------| | parameter_size_full | 300,165,504 | 49,184,128 | | parameter_size_embedding | 256,103,424 | 5,122,048 | | vocab_size | 250,101 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 5000 | 2 |
0-hero/flan-alpaca-ul2
0-hero
2023-03-30T11:59:23Z
4
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "dataset:tatsu-lab/alpaca", "arxiv:2210.11416", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T11:11:03Z
--- license: apache-2.0 datasets: - tatsu-lab/alpaca --- ## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines Thanks to [declare-lab](https://huggingface.co/declare-lab) for the training [repository](https://github.com/declare-lab/flan-alpaca), contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416). The pretrained models and demos are available on HuggingFace 🤗 : | Model | Parameters | Training GPUs | |---------------------------------------------------------------------------|------------|-----------------| | [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | 1x A6000 | | [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | 1x A6000 | | [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | 1x A6000 | | [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | 4x A6000 (FSDP) | | [Flan-Alpaca-UL2](https://huggingface.co/0-hero/flan-alpaca-ul2) | 20B | 4x A100 (80G) (FSDP) | ### Why? [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily. Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data. The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model. However, the original implementation is less accessible due to licensing constraints of the underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416). ### Usage ``` from transformers import pipeline prompt = "Write an email about an alpaca that likes flan" model = pipeline(model="0-hero/flan-alpaca-ul2") model(prompt, max_length=128, do_sample=True) ``` Readme forked from declare-lab/flan-alpaca-xxl
EvaOr/DeepRL_chp5_MLAgents_SnowballTarget
EvaOr
2023-03-30T11:54:19Z
29
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-30T11:53:34Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: EvaOr/DeepRL_chp5_MLAgents_SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ZhihongDeng/ppo-LunarLander-v2
ZhihongDeng
2023-03-30T11:45:11Z
7
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2023-02-16T10:03:34Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -124.48 +/- 47.90 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'ZhihongDeng/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
vocabtrimmer/mbart-large-cc25-itquad-qa-trimmed-it-30000
vocabtrimmer
2023-03-30T11:38:33Z
116
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T11:11:00Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-itquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qa): `vocabtrimmer/mbart-large-cc25-itquad-qa-trimmed-it-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-itquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-itquad-qa | vocabtrimmer/mbart-large-cc25-itquad-qa-trimmed-it-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | 30000 | 2 |
Angel-IG/distilgpt2-finetuned-mecanicos
Angel-IG
2023-03-30T11:32:21Z
196
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-30T11:19:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-mecanicos results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-mecanicos This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8441 | 1.0 | 873 | 1.6876 | | 1.5373 | 2.0 | 1746 | 1.6241 | | 1.5216 | 3.0 | 2619 | 1.6138 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
DrishtiSharma/Reinforce-PixelCopter-1L
DrishtiSharma
2023-03-30T11:24:25Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T11:10:13Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PixelCopter-1.5L results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 41.90 +/- 16.89 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0**.
abush6352/sd-class-butterflies-32
abush6352
2023-03-30T11:12:23Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-03-30T11:12:06Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('abush6352/sd-class-butterflies-32') image = pipeline().images[0] image ```
vocabtrimmer/mt5-small-squad-qg-trimmed-en-120000
vocabtrimmer
2023-03-30T11:09:01Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T10:50:41Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg): `vocabtrimmer/mt5-small-squad-qg-trimmed-en-120000` This model is a trimmed version of [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qg | vocabtrimmer/mt5-small-squad-qg-trimmed-en-120000 | |:---------------------------|:--------------------------|:----------------------------------------------------| | parameter_size_full | 300,165,504 | 166,944,128 | | parameter_size_embedding | 256,103,424 | 122,882,048 | | vocab_size | 250,101 | 120,002 | | compression_rate_full | 100.0 | 55.62 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 120000 | 2 |
Ganu3010/Reinforce-Cartpole-v1
Ganu3010
2023-03-30T10:58:33Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T10:58:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
cfalholt/A2C-PandaReachDense-v2
cfalholt
2023-03-30T10:51:34Z
3
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-02-09T12:17:48Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.65 +/- 0.28 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sindri101/medical_chat-en-zh
sindri101
2023-03-30T10:51:21Z
119
9
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:zhaozh/autotrain-data-chatdoctor-reft-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-03-30T10:45:31Z
--- tags: - autotrain - translation language: - unk - unk datasets: - zhaozh/autotrain-data-chatdoctor-reft-en-zh co2_eq_emissions: emissions: 2.240193635056679 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 45173113346 - CO2 Emissions (in grams): 2.2402 ## Validation Metrics - Loss: 1.636 - SacreBLEU: 29.513 - Gen len: 176.613
koya1/videomae-base-finetuned-ucf101-subset
koya1
2023-03-30T10:50:17Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-02-24T05:10:29Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-ucf101-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8124 - Accuracy: 0.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3990 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1012 | 0.1 | 398 | 1.9809 | 0.38 | | 1.0416 | 1.1 | 796 | 1.6140 | 0.56 | | 0.2096 | 2.1 | 1194 | 1.5776 | 0.66 | | 0.7101 | 3.1 | 1592 | 1.2004 | 0.74 | | 1.2344 | 4.1 | 1990 | 1.9621 | 0.58 | | 0.1809 | 5.1 | 2388 | 1.6322 | 0.71 | | 0.0011 | 6.1 | 2786 | 1.8266 | 0.71 | | 0.0951 | 7.1 | 3184 | 1.5910 | 0.78 | | 0.4047 | 8.1 | 3582 | 1.9999 | 0.7 | | 0.0011 | 9.1 | 3980 | 1.5903 | 0.78 | | 0.001 | 10.0 | 3990 | 1.5903 | 0.78 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
yumingyi/lunarlander-v2-unit8-2
yumingyi
2023-03-30T10:38:48Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T10:38:04Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 62.22 +/- 38.23 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 1000000 'learning_rate': 0.0006 'num_envs': 64 'num_steps': 1024 'anneal_lr': True 'gae': True 'gamma': 0.98 'gae_lambda': 0.98 'num_minibatches': 64 'update_epochs': 64 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'yumingyi/lunarlander-v2-unit8-2' 'batch_size': 65536 'minibatch_size': 1024} ```
vocabtrimmer/mt5-small-squad-qg-trimmed-en-60000
vocabtrimmer
2023-03-30T10:20:18Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T10:03:40Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg): `vocabtrimmer/mt5-small-squad-qg-trimmed-en-60000` This model is a trimmed version of [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qg | vocabtrimmer/mt5-small-squad-qg-trimmed-en-60000 | |:---------------------------|:--------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 105,504,128 | | parameter_size_embedding | 256,103,424 | 61,442,048 | | vocab_size | 250,101 | 60,002 | | compression_rate_full | 100.0 | 35.15 | | compression_rate_embedding | 100.0 | 23.99 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 60000 | 2 |
danstinga/my_awesome_wnut_model
danstinga
2023-03-30T10:16:39Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-30T09:32:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.56 - name: Recall type: recall value: 0.28544949026876737 - name: F1 type: f1 value: 0.378146101903008 - name: Accuracy type: accuracy value: 0.9407464409388226 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2754 - Precision: 0.56 - Recall: 0.2854 - F1: 0.3781 - Accuracy: 0.9407 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.2826 | 0.5246 | 0.2475 | 0.3363 | 0.9384 | | No log | 2.0 | 426 | 0.2754 | 0.56 | 0.2854 | 0.3781 | 0.9407 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2
zirui3/flan-t5-large-alpaca
zirui3
2023-03-30T09:45:45Z
0
1
null
[ "region:us" ]
null
2023-03-30T09:33:47Z
# Model summary Train flan-T5-large on alpaca dataset with LoRA # training * torch==2.0.0+cu117 * transformers==4.28.0.dev0 * 8 x V100 32G # How to use ```python import transformers from peft import PeftModel base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") peft_model = PeftModel.from_pretrained("zirui3/flan-t5-large-alpaca") inputs = tokenizer("Any instruction that you like.", return_tensors="pt") outputs = peft_model.generate(**inputs, max_length=128, do_sample=True) print(tokenizer.batch_decode(outputs, skip_special_tokens=True) ```
DoctorRobotnik/ppo-CartPole-v1
DoctorRobotnik
2023-03-30T09:44:51Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T09:44:41Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -127.66 +/- 43.37 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'DoctorRobotnik/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg
vocabtrimmer
2023-03-30T09:43:32Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T09:42:11Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question generation widget: - text: "<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 1" - text: "Beyonce further expanded her acting career, starring as blues singer <hl> Etta James <hl> in the 2008 musical biopic, Cadillac Records." example_title: "Question Generation Example 2" - text: "Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, <hl> Cadillac Records <hl> ." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 22.2 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 49.3 - name: METEOR (Question Generation) type: meteor_question_generation value: 24.16 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 90.05 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 62.89 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg` This model is fine-tuned version of [ckpts/mt5-small-trimmed-en-60000](https://huggingface.co/ckpts/mt5-small-trimmed-en-60000) for question generation task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [ckpts/mt5-small-trimmed-en-60000](https://huggingface.co/ckpts/mt5-small-trimmed-en-60000) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg") # model prediction questions = model.generate_q(list_context="William Turner was an English painter who specialised in watercolour landscapes", list_answer="William Turner") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg") output = pipe("<hl> Beyonce <hl> further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:---------------------------------------------------------------| | BERTScore | 90.05 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 54.46 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 38.13 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 28.68 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 22.2 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 24.16 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 62.89 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 49.3 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: ckpts/mt5-small-trimmed-en-60000 - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-en-60000-squad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
manuelmaiorano/Reinforce-Cartpole
manuelmaiorano
2023-03-30T09:41:03Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T09:40:49Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 492.20 +/- 23.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vocabtrimmer/mt5-small-squad-qg-trimmed-en-15000
vocabtrimmer
2023-03-30T09:40:56Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T09:24:45Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg): `vocabtrimmer/mt5-small-squad-qg-trimmed-en-15000` This model is a trimmed version of [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qg | vocabtrimmer/mt5-small-squad-qg-trimmed-en-15000 | |:---------------------------|:--------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 59,424,128 | | parameter_size_embedding | 256,103,424 | 15,362,048 | | vocab_size | 250,101 | 15,002 | | compression_rate_full | 100.0 | 19.8 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 15000 | 2 |
mrsteyk/rupgt-chatml-tokenizer
mrsteyk
2023-03-30T09:39:17Z
0
0
transformers
[ "transformers", "chatml", "ru", "endpoints_compatible", "region:us" ]
null
2023-03-30T09:36:57Z
--- language: - ru library_name: transformers tags: - chatml ---
doluvor/donut-base-doluvor
doluvor
2023-03-30T09:38:29Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-03-29T10:10:59Z
--- license: mit tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-doluvor results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-doluvor This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.002 - train_batch_size: 2 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.9.0 - Tokenizers 0.13.2
marimurta/a2c-AntBulletEnv-v0-m
marimurta
2023-03-30T09:34:45Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T09:33:13Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1127.86 +/- 338.12 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
andyleeyuan/RacyTest
andyleeyuan
2023-03-30T09:34:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-20T03:24:48Z
--- license: creativeml-openrail-m ---
heziyevv/pyramids
heziyevv
2023-03-30T09:31:02Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-30T09:30:18Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: heziyevv/pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Shivraj8615/ppo-Pyramids
Shivraj8615
2023-03-30T09:29:51Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-30T09:29:45Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Shivraj8615/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vocabtrimmer/mt5-small-squad-qg-trimmed-en-10000
vocabtrimmer
2023-03-30T09:23:17Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T09:06:48Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg): `vocabtrimmer/mt5-small-squad-qg-trimmed-en-10000` This model is a trimmed version of [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qg | vocabtrimmer/mt5-small-squad-qg-trimmed-en-10000 | |:---------------------------|:--------------------------|:---------------------------------------------------| | parameter_size_full | 300,165,504 | 54,304,128 | | parameter_size_embedding | 256,103,424 | 10,242,048 | | vocab_size | 250,101 | 10,002 | | compression_rate_full | 100.0 | 18.09 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 10000 | 2 |
vorstcavry/ddosmixx
vorstcavry
2023-03-30T09:17:23Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-30T09:17:23Z
--- license: creativeml-openrail-m ---
AryaParikh/autotrain-text_summary_arp-45146113306
AryaParikh
2023-03-30T09:07:17Z
108
1
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "summarization", "en", "dataset:Hinataaa/autotrain-data-text_summary_arp", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-03-30T08:57:50Z
--- tags: - autotrain - summarization language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Hinataaa/autotrain-data-text_summary_arp co2_eq_emissions: emissions: 3.673615303025701 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 45146113306 - CO2 Emissions (in grams): 3.6736 ## Validation Metrics - Loss: 1.492 - Rouge1: 49.267 - Rouge2: 26.900 - RougeL: 46.736 - RougeLsum: 46.679 - Gen Len: 18.636 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Hinataaa/autotrain-text_summary_arp-45146113306 ```
vocabtrimmer/mt5-small-squad-qg-trimmed-en-5000
vocabtrimmer
2023-03-30T09:05:36Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T08:46:49Z
# Vocabulary Trimmed [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg): `vocabtrimmer/mt5-small-squad-qg-trimmed-en-5000` This model is a trimmed version of [lmqg/mt5-small-squad-qg](https://huggingface.co/lmqg/mt5-small-squad-qg) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-squad-qg | vocabtrimmer/mt5-small-squad-qg-trimmed-en-5000 | |:---------------------------|:--------------------------|:--------------------------------------------------| | parameter_size_full | 300,165,504 | 49,184,128 | | parameter_size_embedding | 256,103,424 | 5,122,048 | | vocab_size | 250,101 | 5,002 | | compression_rate_full | 100.0 | 16.39 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | en | vocabtrimmer/mc4_validation | text | en | validation | 5000 | 2 |
andyleeyuan/RacyMixV1
andyleeyuan
2023-03-30T09:03:57Z
0
13
null
[ "stable-diffusion", "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-04T14:26:56Z
--- license: creativeml-openrail-m tags: - stable-diffusion - text-to-image --- # RacyMixV1 Merge by Weighted Sum <strong>*PastelMix 0.6*</strong> + <strong>*RacyV1 0.4*</strong>(I forgot the recipe) vae:Recommend <strong>kl-f8-anime2</strong>(https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/vae/kl-f8-anime2.ckpt) Negative prompt: <strong>EasyNegative</strong>(https://huggingface.co/datasets/gsdf/EasyNegative) The generation of hands may be slightly unstable, please adjust the negative prompt yourself If no specific background is specified, there is a high probability of generating a city or a supermarket. # Examples ``` 1girl, sarong bikini nail polish skindentation,cowboy shot, beach, sunlight, blue sky, Negative prompt: EasyNegative, Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 3550464031, Size: 512x768, Denoising strength: 0.55, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires upscaler: Latent (nearest-exact) ``` <img src="https://i.imgur.com/DeavyG1.png" width="512" height="768"> <br> ``` ((perfect details, highres, ultra-detailed, illustration)), Hindu mythology, Chandra, deity, male, serene expression, crescent moon on forehead, white complexion, four arms, holding conch shell and discus, lotus flower, cosmic background, stars, peaceful Negative prompt: EasyNegative, Steps: 20, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 3352669632, Size: 512x768, Denoising strength: 0.55, Clip skip: 2, ENSD: 31337, Hires upscale: 1.5, Hires upscaler: Latent (nearest-exact) ``` <img src="https://i.imgur.com/PFzyRrp.png" width="512" height="768"> <br> ``` profile,charter Layout,full body,stand at attention,look at viewer,put down hands,fox girl,fancy clothes,detail clothes,white background, Negative prompt: (low quality, worst quality:1.4),(EasyNegative:1.4),(3 legs:1.3),(NG_DeepNegative_V1_75T:1.3), (painting by bad-artist:1.3), (negprompt5:1.2), (bad-image-v2-39000:1.3), lowres, ((bad anatomy)), ((bad hands)), text, missing finger, extra digits, fewer digits, blurry, ((mutated hands and fingers)), (poorly drawn face), ((mutation)), ((deformed face)), (ugly), ((bad proportions)), ((extra limbs)), extra face, (double head), (extra head), ((extra feet)), monster, logo, cropped, worst quality, low quality, normal quality, jpeg, humpbacked, long body, long neck, ((jpeg artifacts)) Steps: 25, Sampler: DPM++ SDE Karras, CFG scale: 8, Seed: 1954153806, Size: 512x768, Denoising strength: 0.5, Clip skip: 2, ENSD: 31337, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B ``` <img src="https://i.imgur.com/Jdc2VQY.png" width="512" height="768"> <br>
heziyevv/ppo-SnowballTarget
heziyevv
2023-03-30T08:57:42Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-30T08:57:35Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: heziyevv/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cper/chat
cper
2023-03-30T08:54:23Z
0
0
null
[ "license:cc-by-nc-sa-4.0", "region:us" ]
null
2023-03-30T08:54:23Z
--- license: cc-by-nc-sa-4.0 ---
research-backup/mbart-large-cc25-itquad-qa
research-backup
2023-03-30T08:47:50Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "question answering", "it", "dataset:lmqg/qg_itquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T08:41:16Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: it datasets: - lmqg/qg_itquad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: Quale batterio ha il nome del paese che colpisce di più nel suo nome?, context: Il complesso M. tubercolosi (MTBC) comprende altri quattro micobatteri causa di tubercolosi: M. bovis, M. africanum, M. canetti e M. microti. M. africanum non è molto diffuso, ma è una causa significativa di tubercolosi in alcune parti dell' Africa. M. bovis era una volta una causa comune della tubercolosi, ma l' introduzione del latte pastorizzato ha quasi completamente eliminato questo problema di salute pubblica nei paesi sviluppati. M. canetti è raro e sembra essere limitato al Corno d' Africa, anche se alcuni casi sono stati osservati negli emigranti africani. M. microti è anche raro ed è visto quasi solo in persone immunodeficienti, anche se la sua prevalenza può essere significativamente sottovalutata." example_title: "Question Answering Example 1" model-index: - name: lmqg/mbart-large-cc25-itquad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_itquad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 19.64 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 37.59 - name: METEOR (Question Answering) type: meteor_question_answering value: 33.6 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 93.12 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 80.49 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 64.73 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 50.01 --- # Model Card of `lmqg/mbart-large-cc25-itquad-qa` This model is fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) for question answering task on the [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) - **Language:** it - **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="it", model="lmqg/mbart-large-cc25-itquad-qa") # model prediction answers = model.answer_q(list_question="Quale batterio ha il nome del paese che colpisce di più nel suo nome?", list_context=" Il complesso M. tubercolosi (MTBC) comprende altri quattro micobatteri causa di tubercolosi: M. bovis, M. africanum, M. canetti e M. microti. M. africanum non è molto diffuso, ma è una causa significativa di tubercolosi in alcune parti dell' Africa. M. bovis era una volta una causa comune della tubercolosi, ma l' introduzione del latte pastorizzato ha quasi completamente eliminato questo problema di salute pubblica nei paesi sviluppati. M. canetti è raro e sembra essere limitato al Corno d' Africa, anche se alcuni casi sono stati osservati negli emigranti africani. M. microti è anche raro ed è visto quasi solo in persone immunodeficienti, anche se la sua prevalenza può essere significativamente sottovalutata.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mbart-large-cc25-itquad-qa") output = pipe("question: Quale batterio ha il nome del paese che colpisce di più nel suo nome?, context: Il complesso M. tubercolosi (MTBC) comprende altri quattro micobatteri causa di tubercolosi: M. bovis, M. africanum, M. canetti e M. microti. M. africanum non è molto diffuso, ma è una causa significativa di tubercolosi in alcune parti dell' Africa. M. bovis era una volta una causa comune della tubercolosi, ma l' introduzione del latte pastorizzato ha quasi completamente eliminato questo problema di salute pubblica nei paesi sviluppati. M. canetti è raro e sembra essere limitato al Corno d' Africa, anche se alcuni casi sono stati osservati negli emigranti africani. M. microti è anche raro ed è visto quasi solo in persone immunodeficienti, anche se la sua prevalenza può essere significativamente sottovalutata.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_itquad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:-----------------------------------------------------------------| | AnswerExactMatch | 50.01 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | AnswerF1Score | 64.73 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | BERTScore | 93.12 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_1 | 32.51 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_2 | 26.71 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_3 | 22.92 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | Bleu_4 | 19.64 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | METEOR | 33.6 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | MoverScore | 80.49 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | | ROUGE_L | 37.59 | default | [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_itquad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: facebook/mbart-large-cc25 - max_length: 512 - max_length_output: 32 - epoch: 16 - batch: 4 - lr: 0.0001 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 16 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mbart-large-cc25-itquad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
FBM/rl_course_vizdoom_health_gathering_supreme
FBM
2023-03-30T08:40:29Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-30T08:40:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 15.02 +/- 5.35 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r FBM/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
lmqg/mt5-small-squad-qa
lmqg
2023-03-30T08:40:01Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question answering", "en", "dataset:lmqg/qg_squad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-30T08:31:25Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: en datasets: - lmqg/qg_squad pipeline_tag: text2text-generation tags: - question answering widget: - text: "question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things." example_title: "Question Answering Example 1" - text: "question: who created the post as we know it today?, context: 'So much of The Post is Ben,' Mrs. Graham said in 1994, three years after Bradlee retired as editor. 'He created it as we know it today.'— Ed O'Keefe (@edatpost) October 21, 2014" example_title: "Question Answering Example 2" model-index: - name: lmqg/mt5-small-squad-qa results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_squad type: default args: default metrics: - name: BLEU4 (Question Answering) type: bleu4_question_answering value: 38.98 - name: ROUGE-L (Question Answering) type: rouge_l_question_answering value: 68.71 - name: METEOR (Question Answering) type: meteor_question_answering value: 39.9 - name: BERTScore (Question Answering) type: bertscore_question_answering value: 92.09 - name: MoverScore (Question Answering) type: moverscore_question_answering value: 82.04 - name: AnswerF1Score (Question Answering) type: answer_f1_score__question_answering value: 70.14 - name: AnswerExactMatch (Question Answering) type: answer_exact_match_question_answering value: 55.51 --- # Model Card of `lmqg/mt5-small-squad-qa` This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question answering task on the [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small) - **Language:** en - **Training data:** [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="en", model="lmqg/mt5-small-squad-qa") # model prediction answers = model.answer_q(list_question="What is a person called is practicing heresy?", list_context=" Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "lmqg/mt5-small-squad-qa") output = pipe("question: What is a person called is practicing heresy?, context: Heresy is any provocative belief or theory that is strongly at variance with established beliefs or customs. A heretic is a proponent of such claims or beliefs. Heresy is distinct from both apostasy, which is the explicit renunciation of one's religion, principles or cause, and blasphemy, which is an impious utterance or action concerning God or sacred things.") ``` ## Evaluation - ***Metric (Question Answering)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-squad-qa/raw/main/eval/metric.first.answer.paragraph_question.answer.lmqg_qg_squad.default.json) | | Score | Type | Dataset | |:-----------------|--------:|:--------|:---------------------------------------------------------------| | AnswerExactMatch | 55.51 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | AnswerF1Score | 70.14 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | BERTScore | 92.09 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_1 | 54.66 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_2 | 48.72 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_3 | 43.42 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | Bleu_4 | 38.98 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | METEOR | 39.9 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | MoverScore | 82.04 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | | ROUGE_L | 68.71 | default | [lmqg/qg_squad](https://huggingface.co/datasets/lmqg/qg_squad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_squad - dataset_name: default - input_types: ['paragraph_question'] - output_types: ['answer'] - prefix_types: None - model: google/mt5-small - max_length: 512 - max_length_output: 32 - epoch: 11 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-squad-qa/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
trainMeWell/seg_distil_manyCorpus_undersampled-3-1_5sentsContext_3epoch_class-weight
trainMeWell
2023-03-30T08:39:33Z
179
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-30T07:28:16Z
valDataset consists of GBH / NPR / DemocracyNow! [[ 1284 692] [ 7539 28555]] 0.6497975708502024 0.791128719454757