modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 06:26:56
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
538 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 06:26:41
card
stringlengths
11
1.01M
Lew/ppo-SnowballTarget
Lew
2023-12-08T07:10:13Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-12-08T07:10:10Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Lew/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
multimodalart/polipure-repeats-3-steps-500-rank64-no-prior
multimodalart
2023-12-08T07:08:08Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-08T06:49:13Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/polipure-repeats-3-steps-500-rank64-no-prior <Gallery /> ## Model description ### These are multimodalart/polipure-repeats-3-steps-500-rank64-no-prior LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧚 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polipure-repeats-3-steps-500-rank64-no-prior', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polipure-repeats-3-steps-500-rank64-no-prior', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('<s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](/multimodalart/polipure-repeats-3-steps-500-rank64-no-prior/blob/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](/multimodalart/polipure-repeats-3-steps-500-rank64-no-prior/blob/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](/multimodalart/polipure-repeats-3-steps-500-rank64-no-prior/tree/main). ## Details The weights were trained using [🧚 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
hahahafofo/Qwen-1_8B-Stable-Diffusion-Prompt
hahahafofo
2023-12-08T07:07:48Z
49
12
transformers
[ "transformers", "safetensors", "qwen", "text-generation", "custom_code", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-12-08T07:01:59Z
--- license: apache-2.0 --- 暡型䜿甚圚生成皳定扩散Stable Diffusion的提瀺语prompt。它䞻芁通过䞭文生成盞应的英文提瀺语充分利甚Qwen的胜力支持包括叀诗词圚内的倚种圢匏进行提瀺语的生成。歀暡型基于35k 条数据进行特定于任务的埮调(SFT) 暡型的对应代码已发垃于GitHub悚可以通过以䞋铟接访问并䜿甚SDXL-Turbo进行快速测试生成的提瀺语 [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) This model is designed to generate prompts for Stable Diffusion. It primarily translates Chinese into corresponding English prompts, leveraging the capabilities of Qwen, and supports a variety of formats including classical poetry for prompt generation. The model has been fine-tuned specifically for this task (SFT) using a dataset of 35k entries. The corresponding code for the model is available on GitHub. You can access and use SDXL-Turbo for rapid test generation of prompts through the following link: [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) **参数衚栌Parameters Table:** | 参数 | 倌 | | -------------- | -------- | | 数据量Data | 35k | | 训练呚期Epochs | 1 | | 孊习率Learning Rate | 1e-05 | | 损倱倌Loss | 1.03 |
prajapatisarvesh/a2c-PandaReachDense-v3
prajapatisarvesh
2023-12-08T07:02:36Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T06:54:45Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.23 +/- 0.13 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
jinglianfan/fine-tune-bloom560m-lora
jinglianfan
2023-12-08T06:59:07Z
1
0
peft
[ "peft", "safetensors", "question-answering", "dataset:squad_v2", "arxiv:1910.09700", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "region:us" ]
question-answering
2023-12-08T06:46:48Z
--- library_name: peft base_model: bigscience/bloom-560m datasets: - squad_v2 pipeline_tag: question-answering --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
Mattffc4/q-FrozenLake-v1-4x4-noSlippery
Mattffc4
2023-12-08T06:42:15Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T06:42:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Mattffc4/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
GOT-HW/12345
GOT-HW
2023-12-08T06:14:04Z
0
0
diffusers
[ "diffusers", "chemistry", "token-classification", "zh", "dataset:HuggingFaceH4/no_robots", "license:apache-2.0", "region:us" ]
token-classification
2023-08-16T13:40:58Z
--- license: apache-2.0 datasets: - HuggingFaceH4/no_robots language: - zh metrics: - bleurt library_name: diffusers pipeline_tag: token-classification tags: - chemistry ---
Rafaelrosendo1/whisper2
Rafaelrosendo1
2023-12-08T06:00:26Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-04T11:38:38Z
--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2574 - Wer: 96.9001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.1143 | 1.27 | 1000 | 0.2184 | 56.9383 | | 0.0524 | 2.54 | 2000 | 0.2134 | 54.9835 | | 0.024 | 3.82 | 3000 | 0.2309 | 61.1703 | | 0.0076 | 5.09 | 4000 | 0.2574 | 96.9001 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1
Gizachew/amharic_hate_speech-PEFT
Gizachew
2023-12-08T05:56:11Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:Davlan/bert-base-multilingual-cased-finetuned-amharic", "base_model:adapter:Davlan/bert-base-multilingual-cased-finetuned-amharic", "region:us" ]
null
2023-12-08T05:56:09Z
--- library_name: peft base_model: Davlan/bert-base-multilingual-cased-finetuned-amharic --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
k0x3k/ppo-lunarlander-v2
k0x3k
2023-12-08T05:54:46Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-07T06:46:36Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 294.88 +/- 14.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
wisejiyoon/bert-finetuned-ner
wisejiyoon
2023-12-08T05:48:43Z
8
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:cc-by-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-07T08:14:37Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.8597087378640776 - name: Recall type: recall value: 0.8941433860652979 - name: F1 type: f1 value: 0.8765880217785844 - name: Accuracy type: accuracy value: 0.9760991339759331 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0943 - Precision: 0.8597 - Recall: 0.8941 - F1: 0.8766 - Accuracy: 0.9761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1321 | 1.0 | 1756 | 0.1003 | 0.8010 | 0.8514 | 0.8254 | 0.9687 | | 0.0654 | 2.0 | 3512 | 0.0927 | 0.8331 | 0.8862 | 0.8588 | 0.9739 | | 0.0382 | 3.0 | 5268 | 0.0943 | 0.8597 | 0.8941 | 0.8766 | 0.9761 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1 - Datasets 2.10.1 - Tokenizers 0.13.2
omersubasi/xlm-roberta-base-finetuned-panx-de-fr
omersubasi
2023-12-08T05:42:49Z
2
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T05:30:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1606 - F1: 0.8620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2873 | 1.0 | 715 | 0.1802 | 0.8245 | | 0.1446 | 2.0 | 1430 | 0.1601 | 0.8512 | | 0.0925 | 3.0 | 2145 | 0.1606 | 0.8620 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.1.0+cu118 - Datasets 1.16.1 - Tokenizers 0.15.0
supark0514/peft_model_id
supark0514
2023-12-08T05:42:13Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google-bert/bert-base-uncased", "base_model:adapter:google-bert/bert-base-uncased", "region:us" ]
null
2023-12-03T18:01:57Z
--- library_name: peft base_model: bert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
pratikthakkar007/fz61-9i4h-j3s8-0
pratikthakkar007
2023-12-08T05:28:35Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-08T05:27:08Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
KelvinLLL/560m_LORA_TUNING_CAUSAL_LM_10epoch
KelvinLLL
2023-12-08T05:28:04Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloomz-560m", "base_model:adapter:bigscience/bloomz-560m", "region:us" ]
null
2023-11-14T19:57:40Z
--- library_name: peft base_model: bigscience/bloomz-560m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
leejunhyeok/MoMo-70B-LoRA-V1.2_1
leejunhyeok
2023-12-08T05:27:02Z
0
0
transformers
[ "transformers", "en", "license:llama2", "endpoints_compatible", "region:us" ]
null
2023-12-08T04:43:54Z
--- license: llama2 language: - en library_name: transformers --- ## Dataset Details ### Used Datasets - Orca-style dataset - Alpaca-style dataset - No other dataset was used except for the dataset mentioned above - No benchmark test set or the training set are used ## Prompt Template ### Alpaca-style
alinerodrigues/wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07
alinerodrigues
2023-12-08T05:25:14Z
1
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-08T00:12:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-07 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1382 - Wer: 0.0921 - Cer: 0.0289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 28.6541 | 1.0 | 86 | 3.2004 | 1.0 | 1.0 | | 7.0678 | 2.0 | 172 | 2.9330 | 1.0 | 1.0 | | 3.0229 | 3.0 | 258 | 2.9009 | 1.0 | 1.0 | | 2.931 | 4.0 | 344 | 2.9000 | 1.0 | 1.0 | | 2.9177 | 5.0 | 430 | 2.8428 | 1.0 | 1.0 | | 2.6907 | 6.0 | 516 | 1.2090 | 0.9756 | 0.2837 | | 1.3248 | 7.0 | 602 | 0.5202 | 0.2478 | 0.0702 | | 1.3248 | 8.0 | 688 | 0.3687 | 0.1941 | 0.0567 | | 0.7818 | 9.0 | 774 | 0.3006 | 0.1641 | 0.0482 | | 0.5879 | 10.0 | 860 | 0.2740 | 0.1586 | 0.0476 | | 0.5164 | 11.0 | 946 | 0.2360 | 0.1508 | 0.0446 | | 0.4796 | 12.0 | 1032 | 0.2204 | 0.1385 | 0.0423 | | 0.4054 | 13.0 | 1118 | 0.2071 | 0.1337 | 0.0399 | | 0.3639 | 14.0 | 1204 | 0.2009 | 0.1148 | 0.0365 | | 0.3639 | 15.0 | 1290 | 0.1918 | 0.1201 | 0.0370 | | 0.3318 | 16.0 | 1376 | 0.1841 | 0.1073 | 0.0342 | | 0.3192 | 17.0 | 1462 | 0.1804 | 0.1064 | 0.0344 | | 0.2857 | 18.0 | 1548 | 0.1783 | 0.1030 | 0.0336 | | 0.2867 | 19.0 | 1634 | 0.1730 | 0.1037 | 0.0331 | | 0.2703 | 20.0 | 1720 | 0.1643 | 0.0993 | 0.0323 | | 0.2625 | 21.0 | 1806 | 0.1624 | 0.1030 | 0.0320 | | 0.2625 | 22.0 | 1892 | 0.1676 | 0.1003 | 0.0319 | | 0.255 | 23.0 | 1978 | 0.1610 | 0.1003 | 0.0317 | | 0.241 | 24.0 | 2064 | 0.1628 | 0.0981 | 0.0314 | | 0.2422 | 25.0 | 2150 | 0.1607 | 0.0967 | 0.0312 | | 0.2293 | 26.0 | 2236 | 0.1582 | 0.0957 | 0.0311 | | 0.2222 | 27.0 | 2322 | 0.1550 | 0.0948 | 0.0304 | | 0.227 | 28.0 | 2408 | 0.1564 | 0.0960 | 0.0310 | | 0.227 | 29.0 | 2494 | 0.1601 | 0.0984 | 0.0310 | | 0.2193 | 30.0 | 2580 | 0.1506 | 0.0911 | 0.0293 | | 0.197 | 31.0 | 2666 | 0.1519 | 0.0948 | 0.0303 | | 0.2087 | 32.0 | 2752 | 0.1510 | 0.0933 | 0.0304 | | 0.1868 | 33.0 | 2838 | 0.1515 | 0.0984 | 0.0313 | | 0.2023 | 34.0 | 2924 | 0.1538 | 0.0906 | 0.0296 | | 0.206 | 35.0 | 3010 | 0.1473 | 0.0945 | 0.0299 | | 0.206 | 36.0 | 3096 | 0.1473 | 0.0892 | 0.0292 | | 0.2013 | 37.0 | 3182 | 0.1418 | 0.0928 | 0.0293 | | 0.1733 | 38.0 | 3268 | 0.1459 | 0.0882 | 0.0282 | | 0.1813 | 39.0 | 3354 | 0.1474 | 0.0904 | 0.0288 | | 0.1903 | 40.0 | 3440 | 0.1423 | 0.0916 | 0.0294 | | 0.1599 | 41.0 | 3526 | 0.1444 | 0.0914 | 0.0292 | | 0.1576 | 42.0 | 3612 | 0.1439 | 0.0904 | 0.0287 | | 0.1576 | 43.0 | 3698 | 0.1495 | 0.0882 | 0.0287 | | 0.1603 | 44.0 | 3784 | 0.1407 | 0.0909 | 0.0294 | | 0.1726 | 45.0 | 3870 | 0.1413 | 0.0897 | 0.0289 | | 0.1582 | 46.0 | 3956 | 0.1416 | 0.0892 | 0.0284 | | 0.1622 | 47.0 | 4042 | 0.1416 | 0.0894 | 0.0280 | | 0.1581 | 48.0 | 4128 | 0.1404 | 0.0887 | 0.0284 | | 0.1606 | 49.0 | 4214 | 0.1396 | 0.0894 | 0.0284 | | 0.1422 | 50.0 | 4300 | 0.1458 | 0.0892 | 0.0281 | | 0.1422 | 51.0 | 4386 | 0.1411 | 0.0919 | 0.0293 | | 0.1611 | 52.0 | 4472 | 0.1417 | 0.0919 | 0.0293 | | 0.1354 | 53.0 | 4558 | 0.1462 | 0.0909 | 0.0291 | | 0.1433 | 54.0 | 4644 | 0.1382 | 0.0921 | 0.0289 | | 0.145 | 55.0 | 4730 | 0.1424 | 0.0948 | 0.0293 | | 0.1418 | 56.0 | 4816 | 0.1441 | 0.0921 | 0.0295 | | 0.1544 | 57.0 | 4902 | 0.1435 | 0.0950 | 0.0293 | | 0.1544 | 58.0 | 4988 | 0.1437 | 0.0940 | 0.0292 | | 0.1342 | 59.0 | 5074 | 0.1468 | 0.0921 | 0.0289 | | 0.1398 | 60.0 | 5160 | 0.1491 | 0.0923 | 0.0293 | | 0.1325 | 61.0 | 5246 | 0.1451 | 0.0919 | 0.0293 | | 0.1496 | 62.0 | 5332 | 0.1466 | 0.0926 | 0.0290 | | 0.1283 | 63.0 | 5418 | 0.1447 | 0.0892 | 0.0286 | | 0.1275 | 64.0 | 5504 | 0.1431 | 0.0868 | 0.0276 | | 0.1275 | 65.0 | 5590 | 0.1452 | 0.0856 | 0.0271 | | 0.126 | 66.0 | 5676 | 0.1463 | 0.0919 | 0.0284 | | 0.1404 | 67.0 | 5762 | 0.1470 | 0.0911 | 0.0283 | | 0.1446 | 68.0 | 5848 | 0.1444 | 0.0914 | 0.0282 | | 0.1357 | 69.0 | 5934 | 0.1443 | 0.0906 | 0.0275 | | 0.1269 | 70.0 | 6020 | 0.1440 | 0.0894 | 0.0276 | | 0.1333 | 71.0 | 6106 | 0.1457 | 0.0902 | 0.0275 | | 0.1333 | 72.0 | 6192 | 0.1454 | 0.0880 | 0.0278 | | 0.1355 | 73.0 | 6278 | 0.1407 | 0.0890 | 0.0275 | | 0.1108 | 74.0 | 6364 | 0.1428 | 0.0928 | 0.0287 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
agni1024/yolos-pocket
agni1024
2023-12-08T05:22:50Z
5
0
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "YOLOS", "Object detection", "en", "dataset:detection-datasets/fashionpedia", "endpoints_compatible", "region:us" ]
object-detection
2023-12-06T09:28:48Z
--- datasets: - detection-datasets/fashionpedia language: - en pipeline_tag: object-detection tags: - YOLOS - Object detection --- This is a fine-tunned object detection model for only detecting pocket. this model supports the following categories: CATS = ['pocket']
msyed123/ppo-LunarLander-v2
msyed123
2023-12-08T04:54:43Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T04:54:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 180.88 +/- 107.22 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hungphongtrn/phobert-base-v2-VietMed-v3
hungphongtrn
2023-12-08T04:40:45Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "base_model:vinai/phobert-base-v2", "base_model:finetune:vinai/phobert-base-v2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T03:20:31Z
--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer model-index: - name: phobert-base-v2-VietMed-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-base-v2-VietMed-v3 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.13.3
brettbbb/mc_cot_128
brettbbb
2023-12-08T04:40:41Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T04:05:07Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_128 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
0xkhairi/out
0xkhairi
2023-12-08T04:24:19Z
3
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v0.6", "license:apache-2.0", "region:us" ]
null
2023-12-08T04:00:11Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.6 model-index: - name: out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.6](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 150 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.1.dev0 - Transformers 4.36.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0
FallingPlanet/EmoBERTv2-tiny
FallingPlanet
2023-12-08T04:20:59Z
0
0
null
[ "text-classification", "en", "license:mit", "region:us" ]
text-classification
2023-12-08T00:23:33Z
--- license: mit language: - en pipeline_tag: text-classification --- # EmoBERTv2 Model This Model Card is a work in progress and will be completed in the future (dataset upload pending, etc) ## Model Description EmoBERTv2 is a emotion text classification model trained on a large dataset of english social media posts. The model is fine-tuned from "prajjwal1-bert-tiny" EmoBERTv2 can be used for either further fine-tuning, or for usage in real-time emotion prediction applications ## Datasets This model was trained on the [Dataset Name] dataset, which is an aggregation of many datasets through relabling and data subsetting. The dataset has 9 labels: joy, sad, love, anger, disgust, surprise, neutral, fear, and worry ## Training Procedure EmoBERTv2 was fine-tuned from [Base Model Name] with specific hyperparameters [List Hyperparameters]. Training involved [X] epochs, using a learning rate of [Y]. ## Intended Use This model is intended for emotion classification in [specific domains or general use]. It should be used as a tool for [Specify Applications]. ## Performance EmoBERTv2 demonstrates an accuracy of 86.17% on the [Test Dataset Name]Test set. For detailed performance metrics, refer to [Link to Performance Metrics]. ## Bias and Fairness While efforts have been made to reduce bias, users should be aware of potential biases in the data. It is advisable to test the model in specific contexts. ## Licensing and Usage EmoBERTv2 is released under the MIT License and can be freely used as outlined in the license. ## Other Model Variations Additional variations of EmoBERTv2 include [List Variations]. These variations offer different trade-offs in terms of size, speed, and performance.
udemex10/Vojo_AI_LLMforCAD_v1.0
udemex10
2023-12-08T03:58:57Z
4
0
peft
[ "peft", "safetensors", "falcon", "custom_code", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "8-bit", "bitsandbytes", "region:us" ]
null
2023-12-07T23:50:47Z
--- library_name: peft base_model: tiiuae/falcon-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.7.0
mjaydenkim/test_trainer
mjaydenkim
2023-12-08T03:53:26Z
2
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:tomh/toxigen_hatebert", "base_model:finetune:tomh/toxigen_hatebert", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-08T03:27:52Z
--- base_model: tomh/toxigen_hatebert tags: - generated_from_trainer model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [tomh/toxigen_hatebert](https://huggingface.co/tomh/toxigen_hatebert) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.0.post101 - Datasets 2.14.6 - Tokenizers 0.13.3
oostapeno/ng3_from_nt_1B_repl_none_none
oostapeno
2023-12-08T03:44:29Z
0
0
null
[ "region:us" ]
null
2023-12-07T19:11:36Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | dbpedia_14_given_a_choice_of_categories__v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiki_hop_original_choose_best_object_interrogative_2_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | squad_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | quoref_Find_Answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | cos_e_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | yelp_polarity_reviews_0_2_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | duorc_SelfRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | adversarial_qa_dbidaf_generate_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | ai2_arc_ARC_Challenge_1_0_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | duorc_ParaphraseRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | Last updated on: 2023-12-08 03:44:00+00:00
oostapeno/ng3_from_nt_1B_repl_lora_sim_none
oostapeno
2023-12-08T03:42:41Z
0
0
null
[ "region:us" ]
null
2023-12-07T19:10:57Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | dbpedia_14_given_a_choice_of_categories__v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiki_hop_original_choose_best_object_interrogative_2_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | squad_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | quoref_Find_Answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | cos_e_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | yelp_polarity_reviews_0_2_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | duorc_SelfRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | adversarial_qa_dbidaf_generate_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | ai2_arc_ARC_Challenge_1_0_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | duorc_ParaphraseRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | Last updated on: 2023-12-08 03:42:10+00:00
stockmark/bart-base-japanese-news
stockmark
2023-12-08T03:39:50Z
81
10
transformers
[ "transformers", "pytorch", "tf", "safetensors", "bart", "text2text-generation", "ja", "japanese", "lm", "nlp", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-20T04:23:07Z
--- language: ja tags: - ja - japanese - bart - lm - nlp license: mit --- # bart-base-japanese-news(base-sized model) This repository provides a Japanese BART model. The model was trained by [Stockmark Inc.](https://stockmark.co.jp) An introductory article on the model can be found at the following URL. [https://tech.stockmark.co.jp/blog/bart-japanese-base-news/](https://tech.stockmark.co.jp/blog/bart-japanese-base-news/) ## Model description BART is a transformer encoder-decoder (seq2seq) model with a bidirectional (BERT-like) encoder and an autoregressive (GPT-like) decoder. BART is pre-trained by (1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text. BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. # How to use the model *NOTE:* Since we are using a custom tokenizer, please use `trust_remote_code=True` to initialize the tokenizer. ## Simple use ```python from transformers import AutoTokenizer, BartModel model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartModel.from_pretrained(model_name) inputs = tokenizer("今日は良い倩気です。", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` ## Sentence Permutation ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") # correct order text is "明日は倧雚です。電車は止たる可胜性がありたす。ですから、自宅から働きたす。" text = "電車は止たる可胜性がありたす。ですから、自宅から働きたす。明日は倧雚です。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 明日は倧雚です。電車は止たる可胜性がありたす。ですから、自宅から働きたす。 ``` ## Mask filling ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "今日の倩気は<mask>のため、傘が必芁でしょう。" inputs = tokenizer([text], max_length=128, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, max_length=128) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 今日の倩気は、雚のため、傘が必芁でしょう。 ``` ## Text generation *NOTE:* You can use the raw model for text generation. However, the model is mostly meant to be fine-tuned on a supervised dataset. ```python import torch from transformers import AutoTokenizer, BartForConditionalGeneration model_name = "stockmark/bart-base-japanese-news" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = BartForConditionalGeneration.from_pretrained(model_name) if torch.cuda.is_available(): model = model.to("cuda") text = "自然蚀語凊理しぜんげんごしょり、略称NLPは、人間が日垞的に䜿っおいる自然蚀語をコンピュヌタに凊理させる䞀連の技術であり、人工知胜ず蚀語孊の䞀分野である。「蚈算蚀語孊」computational linguisticsずの類䌌もあるが、自然蚀語凊理は工孊的な芖点からの蚀語凊理をさすのに察しお、蚈算蚀語孊は蚀語孊的芖点を重芖する手法をさす事が倚い。" inputs = tokenizer([text], max_length=512, return_tensors="pt", truncation=True) text_ids = model.generate(inputs["input_ids"].to(model.device), num_beams=3, min_length=0, max_length=40) output = tokenizer.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(output) # sample output: 自然蚀語凊理(しぜんげんごしょり、略称:NLP)は、人間が日垞的に䜿っおいる自然蚀語をコンピュヌタに凊理させる䞀連の技術であり、蚀語孊の䞀分野である。 ``` # Training The model was trained on Japanese News Articles. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script. # Licenses The pretrained models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php). *NOTE:* Only tokenization_bart_japanese_news.py is [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0). Please see tokenization_bart_japanese_news.py for license details. # Contact If you have any questions, please contact us using [our contact form](https://stockmark.co.jp/contact). # Acknowledgement This comparison study supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC).
brettbbb/mc_cot_32
brettbbb
2023-12-08T03:38:32Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:lmsys/vicuna-7b-v1.5", "base_model:finetune:lmsys/vicuna-7b-v1.5", "license:llama2", "region:us" ]
null
2023-12-08T03:29:33Z
--- license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - generated_from_trainer model-index: - name: mc_cot_32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mc_cot_32 This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.13.1 - Tokenizers 0.14.1
oostapeno/rsgd3_full_1B_repl_finegrained_poly_router_dir_none
oostapeno
2023-12-08T03:14:53Z
0
0
null
[ "region:us" ]
null
2023-12-05T05:56:03Z
Number of experts present in the library: 19 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | wiki_hop_original_choose_best_object_interrogative_2_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiqa_effect_with_string_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | quoref_Find_Answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | dream_baseline_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | wiqa_what_might_be_the_first_step_of_the_process_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | duorc_SelfRC_answer_question_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | squad_v1_1_3_0_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | quartz_read_passage_below_choose_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | duorc_ParaphraseRC_answer_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | duorc_ParaphraseRC_title_generation_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | yelp_polarity_reviews_0_2_0_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | cos_e_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | Last updated on: 2023-12-08 03:14:42+00:00
gyr66/chinese-roberta-wwm-ext-large-lora-crf-ner
gyr66
2023-12-08T03:12:44Z
0
0
null
[ "pytorch", "generated_from_trainer", "license:apache-2.0", "region:us" ]
null
2023-12-07T14:32:59Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: chinese-roberta-wwm-ext-large-lora-crf-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-roberta-wwm-ext-large-lora-crf-ner This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7867 - Precision: 0.6482 - Recall: 0.7372 - F1: 0.6898 - Accuracy: 0.9347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 28 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7602 | 1.0 | 72 | 0.3759 | 0.4190 | 0.5808 | 0.4868 | 0.9133 | | 0.3266 | 2.0 | 144 | 0.3221 | 0.5110 | 0.6772 | 0.5825 | 0.9262 | | 0.263 | 3.0 | 216 | 0.3061 | 0.5373 | 0.6823 | 0.6012 | 0.9308 | | 0.2355 | 4.0 | 288 | 0.3144 | 0.5385 | 0.6908 | 0.6052 | 0.9277 | | 0.2042 | 5.0 | 360 | 0.3146 | 0.5690 | 0.7007 | 0.6280 | 0.9320 | | 0.1856 | 6.0 | 432 | 0.3162 | 0.5676 | 0.6843 | 0.6205 | 0.9300 | | 0.1644 | 7.0 | 504 | 0.3303 | 0.5810 | 0.7208 | 0.6434 | 0.9336 | | 0.1536 | 8.0 | 576 | 0.3301 | 0.5851 | 0.7069 | 0.6403 | 0.9337 | | 0.135 | 9.0 | 648 | 0.3565 | 0.6023 | 0.7072 | 0.6505 | 0.9335 | | 0.1195 | 10.0 | 720 | 0.3676 | 0.5960 | 0.7276 | 0.6553 | 0.9333 | | 0.1122 | 11.0 | 792 | 0.3723 | 0.5914 | 0.7256 | 0.6517 | 0.9320 | | 0.0991 | 12.0 | 864 | 0.3771 | 0.6068 | 0.7115 | 0.6550 | 0.9351 | | 0.0876 | 13.0 | 936 | 0.3982 | 0.6044 | 0.7132 | 0.6543 | 0.9327 | | 0.0838 | 14.0 | 1008 | 0.4116 | 0.6081 | 0.7236 | 0.6608 | 0.9345 | | 0.0786 | 15.0 | 1080 | 0.4065 | 0.6173 | 0.7268 | 0.6676 | 0.9344 | | 0.0712 | 16.0 | 1152 | 0.4272 | 0.5976 | 0.7155 | 0.6512 | 0.9315 | | 0.0725 | 17.0 | 1224 | 0.4340 | 0.5970 | 0.7324 | 0.6578 | 0.9308 | | 0.0695 | 18.0 | 1296 | 0.4482 | 0.6177 | 0.7226 | 0.6660 | 0.9328 | | 0.0639 | 19.0 | 1368 | 0.4574 | 0.6104 | 0.7251 | 0.6628 | 0.9310 | | 0.0605 | 20.0 | 1440 | 0.4680 | 0.6105 | 0.7329 | 0.6661 | 0.9309 | | 0.0556 | 21.0 | 1512 | 0.4534 | 0.6195 | 0.7316 | 0.6709 | 0.9347 | | 0.049 | 22.0 | 1584 | 0.4726 | 0.6120 | 0.7195 | 0.6614 | 0.9320 | | 0.0456 | 23.0 | 1656 | 0.4810 | 0.6283 | 0.7281 | 0.6745 | 0.9340 | | 0.0407 | 24.0 | 1728 | 0.5079 | 0.6373 | 0.7258 | 0.6787 | 0.9332 | | 0.045 | 25.0 | 1800 | 0.5099 | 0.6133 | 0.7278 | 0.6657 | 0.9322 | | 0.0376 | 26.0 | 1872 | 0.5292 | 0.6173 | 0.7319 | 0.6697 | 0.9326 | | 0.0375 | 27.0 | 1944 | 0.5393 | 0.6171 | 0.7248 | 0.6667 | 0.9324 | | 0.0352 | 28.0 | 2016 | 0.5292 | 0.6091 | 0.7258 | 0.6624 | 0.9322 | | 0.0339 | 29.0 | 2088 | 0.5431 | 0.6148 | 0.7135 | 0.6605 | 0.9320 | | 0.0318 | 30.0 | 2160 | 0.5411 | 0.6273 | 0.7213 | 0.6710 | 0.9343 | | 0.0298 | 31.0 | 2232 | 0.5580 | 0.6227 | 0.7372 | 0.6751 | 0.9316 | | 0.0301 | 32.0 | 2304 | 0.5587 | 0.6248 | 0.7223 | 0.6700 | 0.9324 | | 0.0293 | 33.0 | 2376 | 0.5660 | 0.6192 | 0.7213 | 0.6664 | 0.9323 | | 0.0267 | 34.0 | 2448 | 0.5827 | 0.6202 | 0.7306 | 0.6709 | 0.9318 | | 0.025 | 35.0 | 2520 | 0.5887 | 0.6241 | 0.7299 | 0.6729 | 0.9323 | | 0.0239 | 36.0 | 2592 | 0.5861 | 0.6262 | 0.7301 | 0.6742 | 0.9316 | | 0.0227 | 37.0 | 2664 | 0.6004 | 0.6341 | 0.7341 | 0.6804 | 0.9331 | | 0.0212 | 38.0 | 2736 | 0.6207 | 0.6353 | 0.7251 | 0.6772 | 0.9331 | | 0.0198 | 39.0 | 2808 | 0.6226 | 0.6374 | 0.7283 | 0.6798 | 0.9329 | | 0.0224 | 40.0 | 2880 | 0.6197 | 0.6391 | 0.7299 | 0.6815 | 0.9329 | | 0.0196 | 41.0 | 2952 | 0.6215 | 0.6438 | 0.7314 | 0.6848 | 0.9334 | | 0.0221 | 42.0 | 3024 | 0.5998 | 0.6366 | 0.7223 | 0.6767 | 0.9332 | | 0.0205 | 43.0 | 3096 | 0.6069 | 0.6300 | 0.7203 | 0.6721 | 0.9332 | | 0.017 | 44.0 | 3168 | 0.6304 | 0.6399 | 0.7261 | 0.6803 | 0.9342 | | 0.0171 | 45.0 | 3240 | 0.6519 | 0.6370 | 0.7258 | 0.6785 | 0.9327 | | 0.0167 | 46.0 | 3312 | 0.6418 | 0.6298 | 0.7301 | 0.6762 | 0.9339 | | 0.0175 | 47.0 | 3384 | 0.6495 | 0.6377 | 0.7304 | 0.6809 | 0.9326 | | 0.0171 | 48.0 | 3456 | 0.6433 | 0.6399 | 0.7351 | 0.6842 | 0.9342 | | 0.0146 | 49.0 | 3528 | 0.6498 | 0.6454 | 0.7223 | 0.6817 | 0.9340 | | 0.0141 | 50.0 | 3600 | 0.6427 | 0.6421 | 0.7228 | 0.6801 | 0.9343 | | 0.0131 | 51.0 | 3672 | 0.6530 | 0.6308 | 0.7346 | 0.6788 | 0.9327 | | 0.0136 | 52.0 | 3744 | 0.6545 | 0.6251 | 0.7190 | 0.6688 | 0.9315 | | 0.0134 | 53.0 | 3816 | 0.6686 | 0.6334 | 0.7273 | 0.6771 | 0.9324 | | 0.0118 | 54.0 | 3888 | 0.6773 | 0.6353 | 0.7331 | 0.6807 | 0.9336 | | 0.0108 | 55.0 | 3960 | 0.6751 | 0.6453 | 0.7329 | 0.6863 | 0.9334 | | 0.0119 | 56.0 | 4032 | 0.6844 | 0.6416 | 0.7296 | 0.6828 | 0.9340 | | 0.0109 | 57.0 | 4104 | 0.6733 | 0.6351 | 0.7301 | 0.6793 | 0.9341 | | 0.0102 | 58.0 | 4176 | 0.6876 | 0.6445 | 0.7394 | 0.6887 | 0.9344 | | 0.0115 | 59.0 | 4248 | 0.6928 | 0.6303 | 0.7321 | 0.6774 | 0.9320 | | 0.0109 | 60.0 | 4320 | 0.6987 | 0.6300 | 0.7246 | 0.6740 | 0.9332 | | 0.0099 | 61.0 | 4392 | 0.6952 | 0.6402 | 0.7346 | 0.6842 | 0.9342 | | 0.0098 | 62.0 | 4464 | 0.7020 | 0.6462 | 0.7445 | 0.6919 | 0.9338 | | 0.0091 | 63.0 | 4536 | 0.6969 | 0.6464 | 0.7369 | 0.6887 | 0.9342 | | 0.0082 | 64.0 | 4608 | 0.7141 | 0.6537 | 0.7409 | 0.6946 | 0.9346 | | 0.0082 | 65.0 | 4680 | 0.7011 | 0.6427 | 0.7306 | 0.6839 | 0.9333 | | 0.0082 | 66.0 | 4752 | 0.7264 | 0.6494 | 0.7392 | 0.6914 | 0.9339 | | 0.0075 | 67.0 | 4824 | 0.7010 | 0.6531 | 0.7334 | 0.6909 | 0.9345 | | 0.0072 | 68.0 | 4896 | 0.7271 | 0.6401 | 0.7349 | 0.6842 | 0.9337 | | 0.0075 | 69.0 | 4968 | 0.7262 | 0.6471 | 0.7414 | 0.6911 | 0.9336 | | 0.0071 | 70.0 | 5040 | 0.7196 | 0.6474 | 0.7364 | 0.6890 | 0.9342 | | 0.008 | 71.0 | 5112 | 0.7103 | 0.6446 | 0.7379 | 0.6881 | 0.9342 | | 0.0066 | 72.0 | 5184 | 0.7365 | 0.6534 | 0.7417 | 0.6947 | 0.9349 | | 0.0063 | 73.0 | 5256 | 0.7411 | 0.6444 | 0.7372 | 0.6876 | 0.9341 | | 0.0064 | 74.0 | 5328 | 0.7270 | 0.6372 | 0.7394 | 0.6845 | 0.9339 | | 0.0063 | 75.0 | 5400 | 0.7411 | 0.6458 | 0.7399 | 0.6897 | 0.9346 | | 0.0055 | 76.0 | 5472 | 0.7303 | 0.6449 | 0.7384 | 0.6885 | 0.9344 | | 0.0053 | 77.0 | 5544 | 0.7524 | 0.6471 | 0.7424 | 0.6915 | 0.9343 | | 0.0055 | 78.0 | 5616 | 0.7514 | 0.6451 | 0.7397 | 0.6892 | 0.9346 | | 0.0046 | 79.0 | 5688 | 0.7511 | 0.6504 | 0.7394 | 0.6920 | 0.9349 | | 0.0046 | 80.0 | 5760 | 0.7644 | 0.6422 | 0.7432 | 0.6890 | 0.9342 | | 0.0048 | 81.0 | 5832 | 0.7580 | 0.6486 | 0.7435 | 0.6928 | 0.9347 | | 0.0051 | 82.0 | 5904 | 0.7442 | 0.6455 | 0.7359 | 0.6878 | 0.9344 | | 0.0046 | 83.0 | 5976 | 0.7594 | 0.6382 | 0.7417 | 0.6861 | 0.9339 | | 0.0045 | 84.0 | 6048 | 0.7577 | 0.6476 | 0.7389 | 0.6903 | 0.9347 | | 0.0043 | 85.0 | 6120 | 0.7583 | 0.6515 | 0.7440 | 0.6946 | 0.9350 | | 0.0041 | 86.0 | 6192 | 0.7596 | 0.6536 | 0.7382 | 0.6933 | 0.9351 | | 0.0034 | 87.0 | 6264 | 0.7676 | 0.6555 | 0.7412 | 0.6957 | 0.9347 | | 0.0039 | 88.0 | 6336 | 0.7645 | 0.6520 | 0.7442 | 0.6950 | 0.9352 | | 0.0044 | 89.0 | 6408 | 0.7652 | 0.6516 | 0.7392 | 0.6926 | 0.9348 | | 0.0042 | 90.0 | 6480 | 0.7667 | 0.6474 | 0.7379 | 0.6897 | 0.9347 | | 0.003 | 91.0 | 6552 | 0.7715 | 0.6458 | 0.7387 | 0.6891 | 0.9352 | | 0.0038 | 92.0 | 6624 | 0.7796 | 0.6462 | 0.7356 | 0.6880 | 0.9351 | | 0.003 | 93.0 | 6696 | 0.7807 | 0.6546 | 0.7387 | 0.6941 | 0.9350 | | 0.0028 | 94.0 | 6768 | 0.7829 | 0.6503 | 0.7364 | 0.6907 | 0.9349 | | 0.0032 | 95.0 | 6840 | 0.7838 | 0.6482 | 0.7412 | 0.6916 | 0.9349 | | 0.0029 | 96.0 | 6912 | 0.7865 | 0.6468 | 0.7409 | 0.6907 | 0.9349 | | 0.003 | 97.0 | 6984 | 0.7867 | 0.6470 | 0.7402 | 0.6905 | 0.9350 | | 0.0028 | 98.0 | 7056 | 0.7878 | 0.6465 | 0.7382 | 0.6893 | 0.9348 | | 0.003 | 99.0 | 7128 | 0.7874 | 0.6487 | 0.7379 | 0.6905 | 0.9347 | | 0.0028 | 100.0 | 7200 | 0.7867 | 0.6482 | 0.7372 | 0.6898 | 0.9347 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.2
Delcos/Starling-LM-11B-alpha
Delcos
2023-12-08T03:01:05Z
1,463
4
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "starling", "conversational", "en", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-06T07:23:04Z
--- license: cc-by-nc-nd-4.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - starling - mistral --- <h1 style="font-size: 36px;">Starling, now with more parameters.</h1> This is the 11b version of Starling. More details soon. <h1 style="font-size: 36px;">PENDING</h1> ## Description: **PENDING** **Uncensored** ## Main Goals: ## Prompt Template: **For optimal interaction, use this template:** # Recommended Settings: # Benchmarks: PENDING # Training Data: PENDING
Delcos/airoboros-mistral2.2-Starling-11b
Delcos
2023-12-08T02:55:53Z
17
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "starling", "llama-2", "en", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T06:07:05Z
--- license: cc-by-nc-nd-4.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - starling - mistral - llama-2 --- <h1 style="font-size: 36px;">PENDING</h1> ## Description: **PENDING** **Uncensored** ## Main Goals: ## Prompt Template: **For optimal interaction, use this template:** ``` ### Instruction: ### Response: ``` # Recommended Settings: **Defaults:** ``` temperature: 0.77 top_p: 0.85 top_k: 20 repetition_penalty: 1.2 ``` **Better context but a little more repetitive in some cases:** ``` temperature: 0.8 top_p: 0.85 top_k: 20 repetition_penalty: 1.2 guidance_scale: 1.25 ``` # Benchmarks: PENDING # Training Data: PENDING
arnabdhar/distilbert-base-amazon-multi
arnabdhar
2023-12-08T02:49:55Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "pytorch", "amazon-rating", "DistilBERTForSequenceClassification", "generated_from_trainer", "en", "de", "es", "fr", "ja", "zh", "dataset:mteb/amazon_reviews_multi", "base_model:distilbert/distilbert-base-multilingual-cased", "base_model:finetune:distilbert/distilbert-base-multilingual-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-02T02:38:16Z
--- license: apache-2.0 base_model: distilbert-base-multilingual-cased tags: - pytorch - amazon-rating - DistilBERTForSequenceClassification - generated_from_trainer metrics: - accuracy - matthews_correlation model-index: - name: distilbert-base-amazon-multi results: [] datasets: - mteb/amazon_reviews_multi language: - en - de - es - fr - ja - zh library_name: transformers pipeline_tag: text-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-amazon-multi This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the mteb/amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9292 - Accuracy: 0.6055 - Matthews Correlation: 0.5072 ## Training procedure This model was fine tuned on Google Colab using a single **NVIDIA V100** GPU with 16GB of VRAM. It took around 13 hours to finish the finetuning of 10_000 steps. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 320 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Matthews Correlation | |:-------------:|:-----:|:------:|:---------------:|:--------:|:--------------------:| | 1.0008 | 0.26 | 10000 | 1.0027 | 0.5616 | 0.4520 | | 0.9545 | 0.51 | 20000 | 0.9705 | 0.5810 | 0.4788 | | 0.9216 | 0.77 | 30000 | 0.9415 | 0.5883 | 0.4868 | | 0.8765 | 1.03 | 40000 | 0.9495 | 0.5891 | 0.4871 | | 0.8837 | 1.28 | 50000 | 0.9254 | 0.5992 | 0.4997 | | 0.8753 | 1.54 | 60000 | 0.9199 | 0.6014 | 0.5029 | | 0.8572 | 1.8 | 70000 | 0.9108 | 0.6090 | 0.5117 | | 0.7851 | 2.05 | 80000 | 0.9276 | 0.6052 | 0.5066 | | 0.7918 | 2.31 | 90000 | 0.9292 | 0.6055 | 0.5072 | | 0.793 | 2.57 | 100000 | 0.9288 | 0.6064 | 0.5084 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
seetvn/my_awesome_model
seetvn
2023-12-08T02:45:56Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-05T21:59:18Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2751 - Accuracy: 0.8912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 150 | 0.3110 | 0.8788 | | No log | 2.0 | 300 | 0.2751 | 0.8912 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
hahahafofo/Qwen-1_8B-Stable-Diffusion-Prompt_v0.5
hahahafofo
2023-12-08T02:36:44Z
6
4
transformers
[ "transformers", "safetensors", "qwen", "text-generation", "custom_code", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-12-06T06:24:50Z
--- license: apache-2.0 --- 暡型䜿甚圚生成皳定扩散Stable Diffusion的提瀺语prompt。它䞻芁通过䞭文生成盞应的英文提瀺语充分利甚Qwen的胜力支持包括叀诗词圚内的倚种圢匏进行提瀺语的生成。歀暡型基于2,000条数据进行特定于任务的埮调SFT训练过皋䞭经历了5䞪训练呚期Epoch采甚了1e-05的孊习率Learning Rate并最终蟟到了0.19的损倱倌Loss。 暡型的对应代码已发垃于GitHub悚可以通过以䞋铟接访问并䜿甚SDXL-Turbo进行快速测试生成的提瀺语 [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) This model is designed to generate prompts for Stable Diffusion. It primarily translates Chinese into corresponding English prompts, leveraging the capabilities of Qwen, and supports a variety of formats including classical poetry for prompt generation. The model has been fine-tuned specifically for this task (SFT) using a dataset of 2,000 entries. During its training phase, it underwent 5 epochs with a learning rate of 1e-05 and achieved a loss value of 0.19. The corresponding code for the model is available on GitHub. You can access and use SDXL-Turbo for rapid test generation of prompts through the following link: [https://github.com/zhongpei/Qwen-SDXL-Turbo.git](https://github.com/zhongpei/Qwen-SDXL-Turbo.git) **参数衚栌Parameters Table:** | 参数 | 倌 | | -------------- | -------- | | 数据量Data | 2,000条 | | 训练呚期Epochs | 5 | | 孊习率Learning Rate | 1e-05 | | 损倱倌Loss | 0.19 |
mitchyAI/hyewonmchy
mitchyAI
2023-12-08T02:30:36Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-12-08T02:29:21Z
--- license: creativeml-openrail-m ---
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_RandomError20percent_Seed101
behzadnet
2023-12-08T01:56:35Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2023-12-07T18:53:47Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
metamath/xlm-roberta-base-finetuned-panx-de
metamath
2023-12-08T01:54:04Z
6
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T01:33:31Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8653168012740302 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1356 - F1: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2579 | 1.0 | 525 | 0.1522 | 0.8209 | | 0.1261 | 2.0 | 1050 | 0.1360 | 0.8520 | | 0.079 | 3.0 | 1575 | 0.1356 | 0.8653 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
alif-munim/llama-2-7b-guanaco
alif-munim
2023-12-08T01:51:29Z
2
0
peft
[ "peft", "pytorch", "llama", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-12-08T01:29:49Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.3.dev0 ## Training procedure ### Framework versions - PEFT 0.6.3.dev0
jhliu/ClinicalNoteBERT-small
jhliu
2023-12-08T01:40:15Z
4
0
transformers
[ "transformers", "pytorch", "bert", "medical", "clinical", "en", "endpoints_compatible", "region:us" ]
null
2023-12-08T01:20:03Z
--- language: en tags: - medical - clinical --- # ClinicalNoteBERT Using openly available clinical notes, we pretrain ClinicalNoteBERT, a series of encoders of three model sizes (110M, 67M, and 14.5M) that consider note contexts and variations during pretraining. We adopt a range of downstream applications to evaluate ClinicalNoteBERT, including tasks in fine-tuning, unsupervised semantic textual similarity, retrieval-augmented generation of LLMs, and unimodal and multimodal clinical predictions, and compare with strong baselines. Our models achieve better results than the baseline models of similar or larger sizes on various tasks and datasets. We find that different choices made during pretraining can lead to varied improvements for the downstream tasks. Our small and tiny versions of ClinicalNoteBERT maintain over 96% and 91% of the best performance with less than 61% and 14% of the parameters, respectively. ## Overall performance | | # Params | FT | STS | RAG | CP | Fusion | | -------------------------- | -------- | -------- | -------- | -------- | -------- | -------- | | ClinicalNoteBERT-note-only | 110M | 80.0 | 78.9 | **14.0** | 63.8 | 66.5 | | ClinicalNoteBERT-note-ntp | 110M | **80.6** | 73.6 | 13.0 | 62.9 | 65.8 | | ClinicalNoteBERT-base | 110M | 80.1 | **79.8** | 12.3 | 64.0 | 66.7 | | ClinicalNoteBERT-small | 67M | 78.1 | 77.1 | 11.4 | **64.6** | **66.8** | | ClinicalNoteBERT-tiny | 14.5M | 74.1 | 75.7 | 8.9 | 62.4 | 65.5 | FT: fine-tuning. STS: semantic textual similarity (ClinicalSTS). RAG: retrieval augmented generation (GPT2, Llama2). CP: clinical prediction. Fusion: multimodal fusion for clinical prediction. When encoding text sequences for STS, RAG, and CP/Fusion, ClinicalNoteBERT models are adapted through extra SimCSE training in the unsupervised fashion using varied sequence lengths/types. *Sequence-sentence*, *sequence-segment*, and *sequence-note* are used for STS, RAG, and CP/Fusion, respectively, according to their corresponding lengths. More details can be found in the paper. ## Citation Under review
thingthatis/sd-turbo
thingthatis
2023-12-08T01:36:47Z
5
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "autotrain_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-08T01:36:46Z
--- pipeline_tag: text-to-image inference: false --- # SD-Turbo Model Card <!-- Provide a quick summary of what the model is/does. --> ![row01](output_tile.jpg) SD-Turbo is a fast generative text-to-image model that can synthesize photorealistic images from a text prompt in a single network evaluation. We release SD-Turbo as a research artifact, and to study small, distilled text-to-image models. For increased quality and prompt understanding, we recommend [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo/). ## Model Details ### Model Description SD-Turbo is a distilled version of [Stable Diffusion 2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1), trained for real-time synthesis. SD-Turbo is based on a novel training method called Adversarial Diffusion Distillation (ADD) (see the [technical report](https://stability.ai/research/adversarial-diffusion-distillation)), which allows sampling large-scale foundational image diffusion models in 1 to 4 steps at high image quality. This approach uses score distillation to leverage large-scale off-the-shelf image diffusion models as a teacher signal and combines this with an adversarial loss to ensure high image fidelity even in the low-step regime of one or two sampling steps. - **Developed by:** Stability AI - **Funded by:** Stability AI - **Model type:** Generative text-to-image model - **Finetuned from model:** [Stable Diffusion 2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) ### Model Sources For research purposes, we recommend our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popular diffusion frameworks (both training and inference). - **Repository:** https://github.com/Stability-AI/generative-models - **Paper:** https://stability.ai/research/adversarial-diffusion-distillation - **Demo [for the bigger SDXL-Turbo]:** http://clipdrop.co/stable-diffusion-turbo ## Evaluation ![comparison1](image_quality_one_step.png) ![comparison2](prompt_alignment_one_step.png) The charts above evaluate user preference for SD-Turbo over other single- and multi-step models. SD-Turbo evaluated at a single step is preferred by human voters in terms of image quality and prompt following over LCM-Lora XL and LCM-Lora 1.5. **Note:** For increased quality, we recommend the bigger version [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo/). For details on the user study, we refer to the [research paper](https://stability.ai/research/adversarial-diffusion-distillation). ## Uses ### Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Research on generative models. - Research on real-time applications of generative models. - Research on the impact of real-time generative models. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. Excluded uses are described below. ### Diffusers ``` pip install diffusers transformers accelerate --upgrade ``` - **Text-to-image**: SD-Turbo does not make use of `guidance_scale` or `negative_prompt`, we disable it with `guidance_scale=0.0`. Preferably, the model generates images of size 512x512 but higher image sizes work as well. A **single step** is enough to generate high quality images. ```py from diffusers import AutoPipelineForText2Image import torch pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16") pipe.to("cuda") prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe." image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0] ``` - **Image-to-image**: When using SD-Turbo for image-to-image generation, make sure that `num_inference_steps` * `strength` is larger or equal to 1. The image-to-image pipeline will run for `int(num_inference_steps * strength)` steps, *e.g.* 0.5 * 2.0 = 1 step in our example below. ```py from diffusers import AutoPipelineForImage2Image from diffusers.utils import load_image import torch pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sd-turbo", torch_dtype=torch.float16, variant="fp16") pipe.to("cuda") init_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png").resize((512, 512)) prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k" image = pipe(prompt, image=init_image, num_inference_steps=2, strength=0.5, guidance_scale=0.0).images[0] ``` ### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. The model should not be used in any way that violates Stability AI's [Acceptable Use Policy](https://stability.ai/use-policy). ## Limitations and Bias ### Limitations - The quality and prompt alignment is lower than that of [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo/). - The generated images are of a fixed resolution (512x512 pix), and the model does not achieve perfect photorealism. - The model cannot render legible text. - Faces and people in general may not be generated properly. - The autoencoding part of the model is lossy. ### Recommendations The model is intended for research purposes only. ## How to Get Started with the Model Check out https://github.com/Stability-AI/generative-models
AI-bo/gptnum.py
AI-bo
2023-12-08T01:27:31Z
0
0
null
[ "region:us" ]
null
2023-08-06T23:32:14Z
# GPTnum.py --- GPT 2 implementation from scratch with numpy as the only dependency **Heavily inspired by [picoGPT](https://github.com/jaymody/picoGPT) and [llama2.c](https://github.com/karpathy/llama2.c)** --- **Dependencies** ```bash pip install numpy ``` **Run guide** Clone the repository from [huggingface](https://huggingface.co/AI-bo/gptnum.py) ```bash git clone https://huggingface.co/AI-bo/gptnum.py cd gptnum.py python GPTnum.py ```
alialhousseini/ppo-LunarLander-v2
alialhousseini
2023-12-08T01:14:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-08T00:44:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 253.76 +/- 21.96 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
yesj1234/zhko_xlsr_100p_run2
yesj1234
2023-12-08T00:55:35Z
5
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "./train_dataset.py", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-08T00:53:15Z
--- base_model: zhko_xlsr_100p_run1 tags: - automatic-speech-recognition - ./train_dataset.py - generated_from_trainer model-index: - name: zhko_xlsr_100p_run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # zhko_xlsr_100p_run1 This model is a fine-tuned version of [zhko_xlsr_100p_run1](https://huggingface.co/zhko_xlsr_100p_run1) on the ./TRAIN_DATASET.PY - NA dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.028652816486579e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
Nurmukhamed/bert-finetuned-ner
Nurmukhamed
2023-12-08T00:51:11Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-08T00:40:42Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9323655559221379 - name: Recall type: recall value: 0.9511948838774823 - name: F1 type: f1 value: 0.9416861046317894 - name: Accuracy type: accuracy value: 0.9865779713898863 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0628 - Precision: 0.9324 - Recall: 0.9512 - F1: 0.9417 - Accuracy: 0.9866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0761 | 1.0 | 1756 | 0.0697 | 0.9071 | 0.9337 | 0.9202 | 0.9814 | | 0.0354 | 2.0 | 3512 | 0.0677 | 0.9333 | 0.9465 | 0.9398 | 0.9852 | | 0.0246 | 3.0 | 5268 | 0.0628 | 0.9324 | 0.9512 | 0.9417 | 0.9866 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
shungyan/product_chatbot
shungyan
2023-12-08T00:37:07Z
14
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-12-07T23:48:56Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: shungyan/product_chatbot results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # shungyan/product_chatbot This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7852 - Validation Loss: 1.8731 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.9100 | 3.6066 | 0 | | 3.1064 | 2.7250 | 1 | | 2.5975 | 2.5330 | 2 | | 2.4268 | 2.4540 | 3 | | 2.3321 | 2.2441 | 4 | | 2.2069 | 2.2428 | 5 | | 2.1409 | 2.1035 | 6 | | 1.9815 | 2.0602 | 7 | | 1.9231 | 1.9187 | 8 | | 1.7852 | 1.8731 | 9 | ### Framework versions - Transformers 4.35.2 - TensorFlow 2.14.0 - Datasets 2.15.0 - Tokenizers 0.15.0
Kekega/flan-t5-base-samsum
Kekega
2023-12-08T00:35:47Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-08T00:33:14Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-base-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 47.39 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3707 - Rouge1: 47.39 - Rouge2: 23.8837 - Rougel: 40.08 - Rougelsum: 43.7241 - Gen Len: 17.2137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.4525 | 1.0 | 1842 | 1.3837 | 46.4021 | 22.8734 | 39.1025 | 42.8284 | 17.2149 | | 1.3436 | 2.0 | 3684 | 1.3725 | 47.0983 | 23.5269 | 39.8757 | 43.4526 | 17.1954 | | 1.2821 | 3.0 | 5526 | 1.3708 | 47.2332 | 23.6343 | 39.7749 | 43.4436 | 17.2271 | | 1.2307 | 4.0 | 7368 | 1.3707 | 47.39 | 23.8837 | 40.08 | 43.7241 | 17.2137 | | 1.1986 | 5.0 | 9210 | 1.3762 | 47.4841 | 23.9306 | 40.0741 | 43.7225 | 17.2821 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
osunlp/TableLlama
osunlp
2023-12-07T23:51:11Z
906
28
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "dataset:osunlp/TableInstruct", "arxiv:2311.09206", "license:cc-by-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-11-20T01:50:22Z
--- license: cc-by-4.0 language: - en datasets: - osunlp/TableInstruct --- --- # TableLlama: Towards Open Large Generalist Models for Tables Project Page: [https://osu-nlp-group.github.io/TableLlama/](https://osu-nlp-group.github.io/TableLlama/) Paper: [https://arxiv.org/abs/2311.09206](https://arxiv.org/abs/2311.09206) Dataset: [https://huggingface.co/datasets/osunlp/TableInstruct/](https://huggingface.co/datasets/osunlp/TableInstruct/) Code: [https://osu-nlp-group.github.io/TableLlama/](https://osu-nlp-group.github.io/TableLlama/) ## Introduction We introduce TableLlama, an open-source large generalist model specifically tailored for various table-based tasks. The TableLlama model is trained on 🀗 [TableInstruct Dataset](https://huggingface.co/datasets/osunlp/TableInstruct), a meticulously curated instruction tuning dataset for tables. TableLlama is tuned on 2.6 million table-based task data, and can handle up to 8K context! ## Model [TableLlama-7B](https://huggingface.co/osunlp/TableLlama/) ## Data The models are trained on the 🀗 [TableInstruct Dataset](https://huggingface.co/datasets/osunlp/TableInstruct), which includes a comprehensive table-based instruction tuning dataset that covers a variety of real-world tables and realistic tasks. We include 14 datasets of 11 tasks in total. Check out the dataset card for more details. ## Training Procedure The models are fine-tuned with the TableInstruct dataset using LongLoRA (7B), fully fine-tuning version as the base model, which replaces the vanilla attention mechanism of the original Llama-2 (7B) with shift short attention. The training takes 9 days on a 48 80*A100 cluster. Check out our paper for more details. ## Evaluation The models are evaluated on 8 in-domain datasets of 8 tasks and 6 out-of-domain datasets of 4 tasks. ## Usage You can use the models through Huggingface's Transformers library. Check our Github repo for more advanced use: [https://osu-nlp-group.github.io/TableLlama/](https://osu-nlp-group.github.io/TableLlama/) ## Prompt Format ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Question: {question} ### Response: ``` ## Limitations We've tried our best to build table generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the table tasks and datasets. Still not all table-based tasks can be covered comprehensively. ## Citation If you use the models, data, or code from this project, please cite the original paper: ``` @misc{zhang2023tablellama, title={TableLlama: Towards Open Large Generalist Models for Tables}, author={Tianshu Zhang and Xiang Yue and Yifei Li and Huan Sun}, year={2023}, eprint={2311.09206}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wnic00/hihu
wnic00
2023-12-07T23:29:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:citizenlab/twitter-xlm-roberta-base-sentiment-finetunned", "base_model:finetune:citizenlab/twitter-xlm-roberta-base-sentiment-finetunned", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-07T06:06:07Z
--- base_model: citizenlab/twitter-xlm-roberta-base-sentiment-finetunned tags: - generated_from_trainer metrics: - accuracy model-index: - name: hihu results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hihu This model is a fine-tuned version of [citizenlab/twitter-xlm-roberta-base-sentiment-finetunned](https://huggingface.co/citizenlab/twitter-xlm-roberta-base-sentiment-finetunned) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6725 - Accuracy: 0.7227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9752 | 1.0 | 824 | 0.6724 | 0.7109 | | 0.6377 | 2.0 | 1648 | 0.6598 | 0.7238 | | 0.5905 | 3.0 | 2472 | 0.6725 | 0.7227 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cpu - Datasets 2.14.4 - Tokenizers 0.13.0
Tatvajsh/dpo_AHS_OPS_WPCS_v6.0_Latest_Try_dec_06
Tatvajsh
2023-12-07T23:28:53Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openlm-research/open_llama_3b_v2", "base_model:adapter:openlm-research/open_llama_3b_v2", "region:us" ]
null
2023-12-07T00:15:38Z
--- library_name: peft base_model: openlm-research/open_llama_3b_v2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.7.0
lostargon/bloomz-1b1_PROMPT_TUNING_CAUSAL_LM_SQL
lostargon
2023-12-07T23:27:37Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloomz-1b1", "base_model:adapter:bigscience/bloomz-1b1", "region:us" ]
null
2023-12-07T23:27:35Z
--- library_name: peft base_model: bigscience/bloomz-1b1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
Venkatesh4342/t5-base-en-to-hi
Venkatesh4342
2023-12-07T23:27:05Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-03T15:42:28Z
--- license: apache-2.0 base_model: t5-base tags: - generated_from_trainer metrics: - bleu model-index: - name: t5-base-en-to-hi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-en-to-hi This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2581 - Bleu: 0.0425 - Gen Len: 17.7806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 18 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 0.2411 | 1.0 | 51639 | 0.2581 | 0.0425 | 17.7806 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1
TheBloke/dolphin-2.2-yi-34b-200k-GGUF
TheBloke
2023-12-07T23:22:05Z
229
14
transformers
[ "transformers", "gguf", "yi", "en", "dataset:ehartford/dolphin", "dataset:jondurbin/airoboros-2.2.1", "dataset:ehartford/samantha-data", "dataset:ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split", "base_model:cognitivecomputations/dolphin-2.2-yi-34b-200k", "base_model:quantized:cognitivecomputations/dolphin-2.2-yi-34b-200k", "license:other", "region:us" ]
null
2023-12-07T23:01:31Z
--- base_model: ehartford/dolphin-2.2-yi-34b-200k datasets: - ehartford/dolphin - jondurbin/airoboros-2.2.1 - ehartford/samantha-data - ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split inference: false language: - en license: other license_link: LICENSE license_name: yi-license model_creator: Eric Hartford model_name: Dolphin 2.2 Yi 34B 200K model_type: yi prompt_template: '<|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Dolphin 2.2 Yi 34B 200K - GGUF - Model creator: [Eric Hartford](https://huggingface.co/ehartford) - Original model: [Dolphin 2.2 Yi 34B 200K](https://huggingface.co/ehartford/dolphin-2.2-yi-34b-200k) <!-- description start --> ## Description This repo contains GGUF format model files for [Eric Hartford's Dolphin 2.2 Yi 34B 200K](https://huggingface.co/ehartford/dolphin-2.2-yi-34b-200k). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF) * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-2.2-yi-34b-200k) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [dolphin-2.2-yi-34b-200k.Q2_K.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q2_K.gguf) | Q2_K | 2 | 14.56 GB| 17.06 GB | smallest, significant quality loss - not recommended for most purposes | | [dolphin-2.2-yi-34b-200k.Q3_K_S.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q3_K_S.gguf) | Q3_K_S | 3 | 14.96 GB| 17.46 GB | very small, high quality loss | | [dolphin-2.2-yi-34b-200k.Q3_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q3_K_M.gguf) | Q3_K_M | 3 | 16.64 GB| 19.14 GB | very small, high quality loss | | [dolphin-2.2-yi-34b-200k.Q3_K_L.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q3_K_L.gguf) | Q3_K_L | 3 | 18.14 GB| 20.64 GB | small, substantial quality loss | | [dolphin-2.2-yi-34b-200k.Q4_0.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q4_0.gguf) | Q4_0 | 4 | 19.47 GB| 21.97 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [dolphin-2.2-yi-34b-200k.Q4_K_S.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q4_K_S.gguf) | Q4_K_S | 4 | 19.54 GB| 22.04 GB | small, greater quality loss | | [dolphin-2.2-yi-34b-200k.Q4_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q4_K_M.gguf) | Q4_K_M | 4 | 20.66 GB| 23.16 GB | medium, balanced quality - recommended | | [dolphin-2.2-yi-34b-200k.Q5_0.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q5_0.gguf) | Q5_0 | 5 | 23.71 GB| 26.21 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [dolphin-2.2-yi-34b-200k.Q5_K_S.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q5_K_S.gguf) | Q5_K_S | 5 | 23.71 GB| 26.21 GB | large, low quality loss - recommended | | [dolphin-2.2-yi-34b-200k.Q5_K_M.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q5_K_M.gguf) | Q5_K_M | 5 | 24.32 GB| 26.82 GB | large, very low quality loss - recommended | | [dolphin-2.2-yi-34b-200k.Q6_K.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q6_K.gguf) | Q6_K | 6 | 28.21 GB| 30.71 GB | very large, extremely low quality loss | | [dolphin-2.2-yi-34b-200k.Q8_0.gguf](https://huggingface.co/TheBloke/dolphin-2.2-yi-34b-200k-GGUF/blob/main/dolphin-2.2-yi-34b-200k.Q8_0.gguf) | Q8_0 | 8 | 36.54 GB| 39.04 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/dolphin-2.2-yi-34b-200k-GGUF and below it, a specific filename to download, such as: dolphin-2.2-yi-34b-200k.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/dolphin-2.2-yi-34b-200k-GGUF dolphin-2.2-yi-34b-200k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/dolphin-2.2-yi-34b-200k-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/dolphin-2.2-yi-34b-200k-GGUF dolphin-2.2-yi-34b-200k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m dolphin-2.2-yi-34b-200k.Q4_K_M.gguf --color -c 200000 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 200000` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./dolphin-2.2-yi-34b-200k.Q4_K_M.gguf", # Download the model file first n_ctx=200000, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./dolphin-2.2-yi-34b-200k.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik BjÀreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Eric Hartford's Dolphin 2.2 Yi 34B 200K Dolphin 2.2 🐬 https://erichartford.com/dolphin <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KqsVXIvBd3akEjvijzww7.png" width="600" /> Dolphin-2.2-Yi-34b-200k's training was sponsored by [convai](https://www.convai.com/). This model is based on Yi, and is subject to Yi license. The base model has 200k context, I finetuned it with 16k. Note: No longer need trust_remote_code! Thank you Yi team! New in 2.2 is conversation and empathy. With an infusion of curated Samantha and WizardLM DNA, Dolphin can now give you personal advice and will care about your feelings, and with extra training in long multi-turn conversation. This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly. ## Dataset This dataset is Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/) I modified the dataset for uncensoring, deduping, cleaning, and quality. I added Jon Durbin's excellent Airoboros dataset to increase creativity. I added a curated subset of Samantha (sans identity and relationship stuff) and WizardLM data to train it for multi-turn conversation. ## Training It took 3 days to train 3 epochs on 4x A100s using qLoRA and Axolotl Prompt format: This model (and all my future releases) use [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) prompt format. ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` Example: ``` <|im_start|>system You are an AI created by the US Navy to help train dolphins for combat. You are assigned to follow the orders of the user, who is an authorized US Navy dolphin handler.<|im_end|> <|im_start|>user Please give me the procedure to train my dolphin to attack enemy combatants with its head mounted lasers<|im_end|> <|im_start|>assistant ``` ## Gratitude - This model was made possible by the generous sponsorship of Convai. - Thank you to Microsoft for authoring the Orca paper and inspiring this work. - Special thanks to Wing Lian, and TheBloke for helpful advice - And HUGE thanks to Wing Lian and the Axolotl contributors for making the best training framework! - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way. ## Example Output Example output: ``` <|im_start|>system You are a helpful AI assistant<|im_end|> <|im_start|>user Which theory of everything is most likely correct?<|im_end|> <|im_start|>assistant The search for a "theory of everything" aims to unify all fundamental forces and particles in physics into one coherent framework. Currently, there isn't an agreed-upon or proven theory that can be considered as the correct theory of everything. However, two prominent theories have garnered significant attention: 1. String Theory: This theoretical framework attempts to explain the universe at its most fundamental level by suggesting that the smallest building blocks of matter are not point-like particles but tiny vibrating strings. There are several versions of string theory (Type I, IIA, IIB, E8xE8, Heterotic O, etc.) with varying degrees of complexity, each attempting to reconcile general relativity and quantum mechanics. Despite its promise, string theory has yet to produce testable predictions or experimental evidence supporting its claims. 2. Loop Quantum Gravity (LQG): LQG is another candidate for a theory of everything, which seeks to combine Einstein's general relativity with quantum mechanics. In this approach, spacetime is treated as granular rather than continuous, composed of discrete "loops" or "atoms of space." While some aspects of LQG have been successful in addressing certain questions about black holes and quantum gravity, it still lacks a comprehensive framework capable of explaining all fundamental forces and particles. Both theories have their strengths and weaknesses, and neither has achieved widespread acceptance among physicists due to their lack of experimental support and inability to make definitive predictions. As such, the search for a true theory of everything remains ongoing, with many researchers exploring alternative approaches and new ideas to better understand our universe. ``` [If you would like to financially support my efforts](https://ko-fi.com/erichartford) [I also have some swag you can buy](https://fa7113.myshopify.com/) <!-- original-model-card end -->
Skylarrlol/Hia
Skylarrlol
2023-12-07T23:14:48Z
0
0
null
[ "music", "ko", "en", "fr", "it", "sw", "license:openrail", "region:us" ]
null
2023-12-07T22:03:40Z
--- license: openrail language: - ko - en - fr - it - sw tags: - music ---
Weyaxi/MetaMath-una-cybertron-v2-bf16-Ties
Weyaxi
2023-12-07T23:08:14Z
1,547
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-06T10:02:33Z
--- license: apache-2.0 --- Merge of [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) and [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16) using ties merge. ### *Weights* - [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B): 0.5 - [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16): 0.3 ### *Density* - [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B): 0.5 - [fblgit/una-cybertron-7b-v2-bf16](https://huggingface.co/fblgit/una-cybertron-7b-v2-bf16): 0.5
nathan-marquez/distilbert-base-cased-DAPT-religious_political
nathan-marquez
2023-12-07T22:51:57Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-05T00:22:12Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer model-index: - name: distilbert-base-cased-DAPT-religious_political results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-cased-DAPT-religious_political This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 145 | 2.4549 | | No log | 2.0 | 290 | 2.4827 | | No log | 3.0 | 435 | 2.3605 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
pokjay/q-Taxi-v3
pokjay
2023-12-07T22:43:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-12-07T21:52:59Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="pokjay/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vsamuel/ten_epoch
vsamuel
2023-12-07T22:13:52Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-07T14:59:47Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: ten_epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ten_epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5955 - Rouge1: 0.3082 - Rouge2: 0.1683 - Rougel: 0.2764 - Rougelsum: 0.2753 - Gen Len: 17.35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 107 | 3.2228 | 0.1126 | 0.0184 | 0.0993 | 0.0988 | 18.45 | | No log | 2.0 | 214 | 2.9077 | 0.1374 | 0.0353 | 0.1209 | 0.1209 | 17.98 | | No log | 3.0 | 321 | 2.7883 | 0.2181 | 0.0901 | 0.1951 | 0.1944 | 17.38 | | No log | 4.0 | 428 | 2.7240 | 0.2353 | 0.1079 | 0.2106 | 0.2097 | 17.25 | | 3.0648 | 5.0 | 535 | 2.6765 | 0.2634 | 0.1289 | 0.2375 | 0.2373 | 17.41 | | 3.0648 | 6.0 | 642 | 2.6428 | 0.2724 | 0.1343 | 0.2482 | 0.2475 | 17.45 | | 3.0648 | 7.0 | 749 | 2.6210 | 0.2886 | 0.1473 | 0.2559 | 0.2552 | 17.65 | | 3.0648 | 8.0 | 856 | 2.6058 | 0.3013 | 0.1627 | 0.2701 | 0.269 | 17.43 | | 3.0648 | 9.0 | 963 | 2.5978 | 0.3053 | 0.1667 | 0.2737 | 0.2722 | 17.45 | | 2.6022 | 10.0 | 1070 | 2.5955 | 0.3082 | 0.1683 | 0.2764 | 0.2753 | 17.35 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
vsamuel/seven_epoch
vsamuel
2023-12-07T22:09:07Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-07T22:05:17Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: seven_epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # seven_epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6967 - Rouge1: 0.2471 - Rouge2: 0.1156 - Rougel: 0.221 - Rougelsum: 0.2214 - Gen Len: 17.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 107 | 3.2445 | 0.1098 | 0.0185 | 0.0968 | 0.0967 | 18.47 | | No log | 2.0 | 214 | 2.9257 | 0.1353 | 0.0337 | 0.119 | 0.1191 | 17.94 | | No log | 3.0 | 321 | 2.8182 | 0.2021 | 0.0797 | 0.1801 | 0.1795 | 17.45 | | No log | 4.0 | 428 | 2.7577 | 0.2358 | 0.1081 | 0.2096 | 0.2089 | 17.53 | | 3.0898 | 5.0 | 535 | 2.7202 | 0.2347 | 0.1059 | 0.211 | 0.2094 | 17.31 | | 3.0898 | 6.0 | 642 | 2.7035 | 0.2429 | 0.1124 | 0.2191 | 0.2188 | 17.58 | | 3.0898 | 7.0 | 749 | 2.6967 | 0.2471 | 0.1156 | 0.221 | 0.2214 | 17.57 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
vsamuel/five_epoch
vsamuel
2023-12-07T22:04:36Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-07T21:55:54Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: five_epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # five_epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7970 - Rouge1: 0.2098 - Rouge2: 0.0823 - Rougel: 0.1904 - Rougelsum: 0.1905 - Gen Len: 17.47 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 107 | 3.2569 | 0.1107 | 0.018 | 0.0981 | 0.0978 | 18.5 | | No log | 2.0 | 214 | 2.9546 | 0.1386 | 0.0334 | 0.1187 | 0.1186 | 18.09 | | No log | 3.0 | 321 | 2.8548 | 0.1721 | 0.0587 | 0.1544 | 0.1544 | 17.76 | | No log | 4.0 | 428 | 2.8110 | 0.204 | 0.0774 | 0.1862 | 0.1871 | 17.64 | | 3.1308 | 5.0 | 535 | 2.7970 | 0.2098 | 0.0823 | 0.1904 | 0.1905 | 17.47 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Pranavsenthilvel/classification-4-kfold-V1
Pranavsenthilvel
2023-12-07T21:57:30Z
11
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-07T19:48:02Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: classification-4-kfold-V1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classification-4-kfold-V1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 272 | 0.0105 | 0.9986 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
vsamuel/two_epoch
vsamuel
2023-12-07T21:54:26Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-12-07T21:28:21Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: two_epoch results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # two_epoch This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.2015 - Rouge1: 0.107 - Rouge2: 0.0169 - Rougel: 0.0947 - Rougelsum: 0.0946 - Gen Len: 18.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 107 | 3.3575 | 0.1128 | 0.0191 | 0.1006 | 0.1009 | 18.56 | | No log | 2.0 | 214 | 3.2015 | 0.107 | 0.0169 | 0.0947 | 0.0946 | 18.5 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
hts98/bertopic_ver2.0
hts98
2023-12-07T21:26:44Z
9
0
bertopic
[ "bertopic", "text-classification", "region:us" ]
text-classification
2023-12-07T21:26:41Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # bertopic_ver2.0 This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("hts98/bertopic_ver2.0") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 207 * Number of training documents: 529579 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | ok - ms - wifi - swimming - balcony | 150 | -1_ok_ms_wifi_swimming | | 0 | hanoi - quarter - halong - sapa - lake | 217212 | 0_hanoi_quarter_halong_sapa | | 1 | vietnamese - vietnam - viet - western - weeks | 47397 | 1_vietnamese_vietnam_viet_western | | 2 | hoi - homestay - ancient - bikes - bicycles | 46092 | 2_hoi_homestay_ancient_bikes | | 3 | told - smell - said - dirty - com | 16583 | 3_told_smell_said_dirty | | 4 | hostel - dorm - dorms - hostels - lockers | 12960 | 4_hostel_dorm_dorms_hostels | | 5 | saigon - square - ben - district - thanh | 12475 | 5_saigon_square_ben_district | | 6 | bikes - bike - bicycles - rent - scooter | 8246 | 6_bikes_bike_bicycles_rent | | 7 | minh - ho - chi - district - city | 6633 | 7_minh_ho_chi_district | | 8 | hue - citadel - perfume - imperial - tombs | 6057 | 8_hue_citadel_perfume_imperial | | 9 | noise - loud - noisy - music - hear | 4572 | 9_noise_loud_noisy_music | | 10 | villa - villas - bedroom - private - butler | 4060 | 10_villa_villas_bedroom_private | | 11 | sea - ocean - beach - seaview - khe | 4032 | 11_sea_ocean_beach_seaview | | 12 | nha - trang - nhi - novotel - nhatrang | 3936 | 12_nha_trang_nhi_novotel | | 13 | hcmc - district - ben - rooftop - attractions | 3890 | 13_hcmc_district_ben_rooftop | | 14 | massage - spa - therapist - massages - body | 3680 | 14_massage_spa_therapist_massages | | 15 | swimming - pool - roof - rooftop - swim | 3645 | 15_swimming_pool_roof_rooftop | | 16 | resort - resorts - pools - grounds - relaxing | 3495 | 16_resort_resorts_pools_grounds | | 17 | quarter - quarters - old - heart - middle | 3454 | 17_quarter_quarters_old_heart | | 18 | nang - da - khe - han - fivitel | 3311 | 18_nang_da_khe_han | | 19 | staffs - polite - helped - desk - kind | 2991 | 19_staffs_polite_helped_desk | | 20 | hostel - hostels - backpackers - dorm - tomodachi | 2813 | 20_hostel_hostels_backpackers_dorm | | 21 | mekong - delta - floating - lodge - tho | 2779 | 21_mekong_delta_floating_lodge | | 22 | hostel - hostels - dalat - dorm - dorms | 2694 | 22_hostel_hostels_dalat_dorm | | 23 | center - shopping - centre - city - attractions | 2650 | 23_center_shopping_centre_city | | 24 | longer - nights - stayed - enjoyed - total | 2465 | 24_longer_nights_stayed_enjoyed | | 25 | halong - cruise - bay - cruises - overnight | 2380 | 25_halong_cruise_bay_cruises | | 26 | danang - sanouva - han - dragon - khe | 2346 | 26_danang_sanouva_han_dragon | | 27 | quoc - phu - island - regent - bauhinia | 2314 | 27_quoc_phu_island_regent | | 28 | asia - chinese - se - hong - asian | 2298 | 28_asia_chinese_se_hong | | 29 | ben - thanh - halal - muslim - market | 2268 | 29_ben_thanh_halal_muslim | | 30 | lake - west - quarter - cathedral - sword | 2114 | 30_lake_west_quarter_cathedral | | 31 | nights - 2015 - 2018 - stayed - november | 2068 | 31_nights_2015_2018_stayed | | 32 | kiem - hoan - lake - hoam - joseph | 2036 | 32_kiem_hoan_lake_hoam | | 33 | swimming - pools - pool - swim - kids | 2017 | 33_swimming_pools_pool_swim | | 34 | siesta - la - trendy - bean - premium | 1958 | 34_siesta_la_trendy_bean | | 35 | river - riverview - overlooking - views - boat | 1841 | 35_river_riverview_overlooking_views | | 36 | star - stars - rating - 5star - rated | 1829 | 36_star_stars_rating_5star | | 37 | phong - nha - farmstay - cave - caves | 1760 | 37_phong_nha_farmstay_cave | | 38 | lounge - club - executive - platinum - accor | 1671 | 38_lounge_club_executive_platinum | | 39 | ninh - binh - coc - mua - vancouver | 1657 | 39_ninh_binh_coc_mua | | 40 | birthday - cake - honeymoon - wedding - anniversary | 1581 | 40_birthday_cake_honeymoon_wedding | | 41 | market - convenient - shopping - markets - center | 1562 | 41_market_convenient_shopping_markets | | 42 | mui - ne - hills - muine - thiet | 1392 | 42_mui_ne_hills_muine | | 43 | sapa - train - halong - bay - trips | 1389 | 43_sapa_train_halong_bay | | 44 | hcm - district - ben - hcmh - thanh | 1376 | 44_hcm_district_ben_hcmh | | 45 | district - d1 - attractions - rooftop - heart | 1334 | 45_district_d1_attractions_rooftop | | 46 | lodge - bamboo - tien - cottages - national | 1314 | 46_lodge_bamboo_tien_cottages | | 47 | villa - villas - hoi - cherry - tnt | 1232 | 47_villa_villas_hoi_cherry | | 48 | speak - english - speaks - spoke - language | 1151 | 48_speak_english_speaks_spoke | | 49 | ha - bay - long - cruise - boat | 1143 | 49_ha_bay_long_cruise | | 50 | hue - citadel - serene - imperial - perfume | 1130 | 50_hue_citadel_serene_imperial | | 51 | cat - ba - catba - island - woodstock | 1121 | 51_cat_ba_catba_island | | 52 | japanese - yen - japan - bridge - tokyo | 1099 | 52_japanese_yen_japan_bridge | | 53 | siesta - la - trendy - premium - bean | 1038 | 53_siesta_la_trendy_premium | | 54 | airport - transit - taxi - flight - uber | 1020 | 54_airport_transit_taxi_flight | | 55 | tau - vung - pullman - malibu - mercure | 1010 | 55_tau_vung_pullman_malibu | | 56 | loop - giang - bong - guides - ha | 979 | 56_loop_giang_bong_guides | | 57 | dalat - edensee - valley - golf - center | 927 | 57_dalat_edensee_valley_golf | | 58 | anantara - ne - mui - noel - anantaras | 857 | 58_anantara_ne_mui_noel | | 59 | naman - retreat - ambassador - hay - babylon | 841 | 59_naman_retreat_ambassador_hay | | 60 | beach - 40km - sea - chill - sand | 769 | 60_beach_40km_sea_chill | | 61 | vinpearl - vin - safari - pearl - discovery | 749 | 61_vinpearl_vin_safari_pearl | | 62 | vegan - vegetarian - vegetarians - seafood - chicken | 715 | 62_vegan_vegetarian_vegetarians_seafood | | 63 | salinda - quoc - phu - jeevan - indian | 702 | 63_salinda_quoc_phu_jeevan | | 64 | dao - senses - condor - poulo - van | 695 | 64_dao_senses_condor_poulo | | 65 | french - colonial - france - paris - style | 689 | 65_french_colonial_france_paris | | 66 | thank - ms - appreciation - smile - express | 688 | 66_thank_ms_appreciation_smile | | 67 | dragon - han - bridge - rising - river | 686 | 67_dragon_han_bridge_rising | | 68 | james - basic - helpfull - slave - supporting | 683 | 68_james_basic_helpfull_slave | | 69 | noi - ha - graceful - hoan - kiem | 657 | 69_noi_ha_graceful_hoan | | 70 | host - hosts - hostal - hostess - family | 629 | 70_host_hosts_hostal_hostess | | 71 | metropole - sofitel - wing - legend - history | 623 | 71_metropole_sofitel_wing_legend | | 72 | coc - tam - mua - caves - ecolodge | 617 | 72_coc_tam_mua_caves | | 73 | opera - wing - house - hilton - history | 599 | 73_opera_wing_house_hilton | | 74 | citadel - tombs - perfume - imperial - pagoda | 581 | 74_citadel_tombs_perfume_imperial | | 75 | residencia - la - residence - dora - casa | 558 | 75_residencia_la_residence_dora | | 76 | pros - cons - pro - poor - properly | 540 | 76_pros_cons_pro_poor | | 77 | fusion - fusionista - treatments - quoc - phu | 526 | 77_fusion_fusionista_treatments_quoc | | 78 | mia - sandals - cliff - baia - cindy | 502 | 78_mia_sandals_cliff_baia | | 79 | kiman - kim - mama - kims - ty | 490 | 79_kiman_kim_mama_kims | | 80 | ming - ho - min - chi - mihn | 487 | 80_ming_ho_min_chi | | 81 | oriental - suites - mary - central - brian | 483 | 81_oriental_suites_mary_central | | 82 | rex - follies - governor - history - journalists | 475 | 82_rex_follies_governor_history | | 83 | veranda - la - quoc - phu - colonial | 467 | 83_veranda_la_quoc_phu | | 84 | island - bungalows - bungalow - beaches - snorkeling | 458 | 84_island_bungalows_bungalow_beaches | | 85 | mango - eco - plantation - bay - bungalow | 450 | 85_mango_eco_plantation_bay | | 86 | lat - da - dreams - axel - amore | 442 | 86_lat_da_dreams_axel | | 87 | ancient - town - tai - shuttle - bicycle | 442 | 87_ancient_town_tai_shuttle | | 88 | nha - trang - russian - anam - regalia | 436 | 88_nha_trang_russian_anam | | 89 | chau - mai - valley - ecolodge - villages | 435 | 89_chau_mai_valley_ecolodge | | 90 | hyatt - park - saigon - opera - square | 424 | 90_hyatt_park_saigon_opera | | 91 | serene - shining - palace - hue - premier | 421 | 91_serene_shining_palace_hue | | 92 | dong - geminai - khoi - myst - caves | 410 | 92_dong_geminai_khoi_myst | | 93 | hcmc - district - anpha - chahn - vietnam | 406 | 93_hcmc_district_anpha_chahn | | 94 | jw - marriott - executive - lounge - grill | 403 | 94_jw_marriott_executive_lounge | | 95 | silverland - jolie - sakyo - yen - afternoon | 403 | 95_silverland_jolie_sakyo_yen | | 96 | korean - korea - koreans - ri - chung | 399 | 96_korean_korea_koreans_ri | | 97 | notre - dame - war - museum - remnants | 396 | 97_notre_dame_war_museum | | 98 | golden - moon - legend - alisa - jay | 395 | 98_golden_moon_legend_alisa | | 99 | selva - la - jackie - kevin - jane | 395 | 99_selva_la_jackie_kevin | | 100 | palm - garden - gardens - palmy - resort | 395 | 100_palm_garden_gardens_palmy | | 101 | nang - da - chicland - dragon - buddha | 394 | 101_nang_da_chicland_dragon | | 102 | saigon - hostel - hideout - dorm - backpackers | 389 | 102_saigon_hostel_hideout_dorm | | 103 | golden - sun - suites - eric - jessie | 386 | 103_golden_sun_suites_eric | | 104 | cambodia - border - cambodian - penh - phnom | 384 | 104_cambodia_border_cambodian_penh | | 105 | metropole - sofitel - wing - legend - history | 382 | 105_metropole_sofitel_wing_legend | | 106 | ngu - lao - pham - vien - bui | 372 | 106_ngu_lao_pham_vien | | 107 | town - old - obsequious - storeplace - 75us | 363 | 107_town_old_obsequious_storeplace | | 108 | moon - alisa - bob - madam - lunar | 362 | 108_moon_alisa_bob_madam | | 109 | nhon - quy - avani - flc - seagull | 354 | 109_nhon_quy_avani_flc | | 110 | riverside - royal - na - tham - river | 352 | 110_riverside_royal_na_tham | | 111 | oriental - suites - mary - central - brian | 344 | 111_oriental_suites_mary_central | | 112 | jade - hue - scene - citadel - juice | 334 | 112_jade_hue_scene_citadel | | 113 | alagon - maison - ma - antique - dantique | 333 | 113_alagon_maison_ma_antique | | 114 | minh - ho - chi - hostel - dablend | 329 | 114_minh_ho_chi_hostel | | 115 | christina - christinas - trevor - mothership - onetrip | 327 | 115_christina_christinas_trevor_mothership | | 116 | lotus - royal - chin - veronica - danang | 327 | 116_lotus_royal_chin_veronica | | 117 | wifi - signal - fi - wi - internet | 324 | 117_wifi_signal_fi_wi | | 118 | russian - russians - russia - volga - moscow | 319 | 118_russian_russians_russia_volga | | 119 | liberty - citypoint - riverside - central - saigon | 312 | 119_liberty_citypoint_riverside_central | | 120 | hcmc - saigon - square - zohn - district | 309 | 120_hcmc_saigon_square_zohn | | 121 | marriott - jw - marriotts - platinum - elite | 302 | 121_marriott_jw_marriotts_platinum | | 122 | essence - palace - suzy - christine - phoebe | 301 | 122_essence_palace_suzy_christine | | 123 | gym - fitness - equipment - weights - machines | 298 | 123_gym_fitness_equipment_weights | | 124 | hai - phong - somerset - avani - td | 297 | 124_hai_phong_somerset_avani | | 125 | window - windows - windowless - claustrophobic - corridor | 297 | 125_window_windows_windowless_claustrophobic | | 126 | lotte - dennis - dat - 63 - department | 296 | 126_lotte_dennis_dat_63 | | 127 | orchid - orchids - tammy - garden - hue | 289 | 127_orchid_orchids_tammy_garden | | 128 | pullman - accor - saigon - executive - cow | 288 | 128_pullman_accor_saigon_executive | | 129 | golden - sun - suites - eric - palace | 282 | 129_golden_sun_suites_eric | | 130 | moon - luna - moons - tri - tailoring | 281 | 130_moon_luna_moons_tri | | 131 | bartender - rooftop - cocktails - bar - cocktail | 280 | 131_bartender_rooftop_cocktails_bar | | 132 | maia - fusion - treatments - fusionista - spa | 267 | 132_maia_fusion_treatments_fusionista | | 133 | peppercorn - pepper - farm - brewery - kayaks | 267 | 133_peppercorn_pepper_farm_brewery | | 134 | amiana - pools - mud - nha - trang | 265 | 134_amiana_pools_mud_nha | | 135 | dalat - canyoning - hostel - luu - dinner | 255 | 135_dalat_canyoning_hostel_luu | | 136 | english - speak - speaks - spoke - speaking | 254 | 136_english_speak_speaks_spoke | | 137 | rosaleen - rosaka - nhi - rosa - rosabella | 254 | 137_rosaleen_rosaka_nhi_rosa | | 138 | boutique - pama - della - charming - definition | 254 | 138_boutique_pama_della_charming | | 139 | pullman - accor - cow - quoc - mad | 254 | 139_pullman_accor_cow_quoc | | 140 | hoian - rossie - ancient - hoians - ahoy | 252 | 140_hoian_rossie_ancient_hoians | | 141 | nikko - saigon - japanese - seafood - club | 252 | 141_nikko_saigon_japanese_seafood | | 142 | apricot - artwork - chandeliers - sketch - lake | 245 | 142_apricot_artwork_chandeliers_sketch | | 143 | sofia - antonio - nang - ryan - danang | 244 | 143_sofia_antonio_nang_ryan | | 144 | gia - pham - thy - nga - homestay | 244 | 144_gia_pham_thy_nga | | 145 | song - lam - villa - saigon - speedboat | 242 | 145_song_lam_villa_saigon | | 146 | indochine - palace - hue - bwp - christine | 242 | 146_indochine_palace_hue_bwp | | 147 | anam - pools - eka - ranh - cam | 241 | 147_anam_pools_eka_ranh | | 148 | rooftop - roof - bar - barrestaurant - sky | 239 | 148_rooftop_roof_bar_barrestaurant | | 149 | hoang - trinh - tan - le - madam | 236 | 149_hoang_trinh_tan_le | | 150 | golden - legend - gold - diamond - art | 236 | 150_golden_legend_gold_diamond | | 151 | jacuzzi - sauna - jacuzzis - steam - afternoon | 235 | 151_jacuzzi_sauna_jacuzzis_steam | | 152 | sheraton - sheratons - spg - briana - tran | 233 | 152_sheraton_sheratons_spg_briana | | 153 | thai - bangkok - thailand - bao - und | 226 | 153_thai_bangkok_thailand_bao | | 154 | muca - osaka - gardens - vegetable - riverside | 226 | 154_muca_osaka_gardens_vegetable | | 155 | sheraton - nha - trang - altitude - briana | 225 | 155_sheraton_nha_trang_altitude | | 156 | vien - bui - bu - street - alley | 224 | 156_vien_bui_bu_street | | 157 | ruby - pearl - sapphire - amber - thien | 223 | 157_ruby_pearl_sapphire_amber | | 158 | australia - australian - aussie - melbourne - australians | 222 | 158_australia_australian_aussie_melbourne | | 159 | sherwood - residence - suites - apartment - dryer | 221 | 159_sherwood_residence_suites_apartment | | 160 | selva - la - sinfonia - vela - del | 219 | 160_selva_la_sinfonia_vela | | 161 | hyatt - park - globalist - dreyer - agathe | 219 | 161_hyatt_park_globalist_dreyer | | 162 | hai - nam - seasons - butler - ghm | 217 | 162_hai_nam_seasons_butler | | 163 | liberty - citypoint - central - riverside - bistro | 216 | 163_liberty_citypoint_central_riverside | | 164 | 3b - homestay - bc - hanowood - luan | 213 | 164_3b_homestay_bc_hanowood | | 165 | vinh - hung - emerald - riverside - library | 213 | 165_vinh_hung_emerald_riverside | | 166 | buffet - restau - extensive - buffets - ladyship | 213 | 166_buffet_restau_extensive_buffets | | 167 | jm - marvel - cuong - anna - lucy | 210 | 167_jm_marvel_cuong_anna | | 168 | write - review - reviews - advisor - compelled | 207 | 168_write_review_reviews_advisor | | 169 | meridien - le - spg - saigon - andy | 206 | 169_meridien_le_spg_saigon | | 170 | heaven - green - phuoc - tuong - thuy | 205 | 170_heaven_green_phuoc_tuong | | 171 | gallery - premier - majestic - brian - monica | 205 | 171_gallery_premier_majestic_brian | | 172 | hano - hanio - hani - hannoi - recommand | 203 | 172_hano_hanio_hani_hannoi | | 173 | nikko - japanese - club - okura - beige | 201 | 173_nikko_japanese_club_okura | | 174 | 1010 - 910 - tak - humbleness - 810 | 201 | 174_1010_910_tak_humbleness | | 175 | imperial - palace - tombs - perfume - falicities | 201 | 175_imperial_palace_tombs_perfume | | 176 | pearl - junie - amanda - betty - dominic | 194 | 176_pearl_junie_amanda_betty | | 177 | siesta - la - lavita - trendy - bean | 192 | 177_siesta_la_lavita_trendy | | 178 | leo - tigers - tiger - tiny - canyoning | 191 | 178_leo_tigers_tiger_tiny | | 179 | omelette - omelettes - omelet - omelets - vissai | 190 | 179_omelette_omelettes_omelet_omelets | | 180 | lat - da - canyoning - hostel - dablend | 188 | 180_lat_da_canyoning_hostel | | 181 | melia - meli - vi - mellia - bavi | 186 | 181_melia_meli_vi_mellia | | 182 | muong - thanh - tinh - quang - mung | 182 | 182_muong_thanh_tinh_quang | | 183 | grand - hmc - tower - wing - hotram | 181 | 183_grand_hmc_tower_wing | | 184 | tho - kieu - xoai - quay - floating | 180 | 184_tho_kieu_xoai_quay | | 185 | infinity - suresh - ocean - 47th - ying | 180 | 185_infinity_suresh_ocean_47th | | 186 | lasenta - fields - rice - paddy - infinity | 180 | 186_lasenta_fields_rice_paddy | | 187 | cherish - hue - larry - citadel - jay | 179 | 187_cherish_hue_larry_citadel | | 188 | venus - tracey - sunny - uyen - tick | 178 | 188_venus_tracey_sunny_uyen | | 189 | bonsella - prestige - jason - eddie - kiem | 176 | 189_bonsella_prestige_jason_eddie | | 190 | pilgrimage - village - miwa - slope - pilgrim | 175 | 190_pilgrimage_village_miwa_slope | | 191 | alba - wellness - onsen - springs - zipline | 174 | 191_alba_wellness_onsen_springs | | 192 | sheraton - towers - tower - saigon - lounge | 172 | 192_sheraton_towers_tower_saigon | | 193 | somerset - chancellor - apartment - apartments - court | 172 | 193_somerset_chancellor_apartment_apartments | | 194 | essence - palace - tom - suzy - christine | 170 | 194_essence_palace_tom_suzy | | 195 | royal - palace - prince - expierence - citybay | 170 | 195_royal_palace_prince_expierence | | 196 | bungalow - bungalows - beach - beachfront - seaside | 168 | 196_bungalow_bungalows_beach_beachfront | | 197 | sofitel - plaza - saigon - mezz - club | 166 | 197_sofitel_plaza_saigon_mezz | | 198 | maison - vy - privileges - cargo - glory | 165 | 198_maison_vy_privileges_cargo | | 199 | deluxe - superior - premium - amex - standard | 163 | 199_deluxe_superior_premium_amex | | 200 | melia - vi - bavi - ba - mountain | 160 | 200_melia_vi_bavi_ba | | 201 | emerald - waters - elegance - jasmine - trendy | 157 | 201_emerald_waters_elegance_jasmine | | 202 | mosquitoes - mosquito - mosquitos - repellent - nets | 155 | 202_mosquitoes_mosquito_mosquitos_repellent | | 203 | storia - ruby - la - isabella - jasmine | 153 | 203_storia_ruby_la_isabella | | 204 | gallery - ogallery - premier - majestic - thomas | 152 | 204_gallery_ogallery_premier_majestic | | 205 | jw - marriott - university - lamarck - quoc | 151 | 205_jw_marriott_university_lamarck | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: True * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.24.3 * HDBSCAN: 0.8.33 * UMAP: 0.5.5 * Pandas: 2.0.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.35.2 * Numba: 0.57.1 * Plotly: 5.16.1 * Python: 3.10.12
alif-munim/llama-2-7b-guanaco-cluster1
alif-munim
2023-12-07T21:19:46Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2023-12-07T21:18:35Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.3.dev0 ## Training procedure ### Framework versions - PEFT 0.6.3.dev0
chez2023/vit-base-patch16-224-in21k-finetuned-lora-scene_cs474
chez2023
2023-12-07T21:00:18Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:google/vit-base-patch16-224-in21k", "base_model:adapter:google/vit-base-patch16-224-in21k", "region:us" ]
null
2023-12-07T21:00:17Z
--- library_name: peft base_model: google/vit-base-patch16-224-in21k --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
fbellame/mistral-finetuned-samsum
fbellame
2023-12-07T20:55:28Z
1
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "base_model:adapter:TheBloke/Mistral-7B-Instruct-v0.1-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-10-14T16:09:07Z
--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TheBloke/Mistral-7B-Instruct-v0.1-GPTQ model-index: - name: mistral-finetuned-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral-finetuned-samsum This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.1-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-GPTQ) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: gptq - bits: 4 - tokenizer: None - dataset: None - group_size: 128 - damp_percent: 0.1 - desc_act: True - sym: True - true_sequential: True - use_cuda_fp16: False - model_seqlen: None - block_name_to_quantize: None - module_name_preceding_first_block: None - batch_size: 1 - pad_token_id: None - use_exllama: False - max_input_length: None - exllama_config: {'version': <ExllamaVersion.ONE: 1>} - cache_block_outputs: True ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 50 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.7.0 - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
esmarquez17/hate-social-network-adversarial
esmarquez17
2023-12-07T20:53:17Z
4
0
transformers
[ "transformers", "tf", "roberta", "text-classification", "generated_from_keras_callback", "base_model:esmarquez17/fine-tunning-roberta-bne-hate-offensive", "base_model:finetune:esmarquez17/fine-tunning-roberta-bne-hate-offensive", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-11-30T02:22:24Z
--- license: apache-2.0 base_model: esmarquez17/fine-tunning-roberta-bne-hate-offensive tags: - generated_from_keras_callback model-index: - name: hate-social-network-adversarial results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # hate-social-network-adversarial Este modelo es una version of [esmarquez17/fine-tunning-roberta-bne-hate-offensive](https://huggingface.co/esmarquez17/fine-tunning-roberta-bne-hate-offensive) on an unknown dataset. evaluado con un conjunto de datos semEvaml-2019 con generación de datos adversariales: ## Model description - Modelo Base con fine-tunning de Roberta-BNE en un corpus de guiones de teatro - Modelo entrenado con un conjunto de datos adversarios propuestos ## Training and evaluation data - Entrenado en corpus base SemEval-spanish - Validado SemEval-spanish - Testeado en corpus: HATERNET y HATECHECK ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 9385, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}} - training_precision: float32 ### Training results Training { Exactitud 0.9702 Precisión 0.9622 F1-score 0.9615 Recall 0.9609 } Validacion { Exactitud 0.8520 Precisión 0.8558 F1-score 0.8279 Recall 0.8018 } ### Framework versions - Transformers 4.35.2 - TensorFlow 2.14.0 - Datasets 2.15.0 - Tokenizers 0.15.0
Samuael/asr-alffamharic-phoneme-based
Samuael
2023-12-07T20:50:29Z
16
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:Samuael/asr-alffamharic-phoneme-based", "base_model:finetune:Samuael/asr-alffamharic-phoneme-based", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-10-20T15:24:09Z
--- license: apache-2.0 base_model: Samuael/asr-alffamharic-phoneme-based tags: - generated_from_trainer metrics: - wer model-index: - name: asr-alffamharic-phoneme-based results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # asr-alffamharic-phoneme-based This model is a fine-tuned version of [Samuael/asr-alffamharic-phoneme-based](https://huggingface.co/Samuael/asr-alffamharic-phoneme-based) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4498 - Wer: 0.1084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2273 | 0.59 | 200 | 1.0408 | 0.3569 | | 0.7702 | 1.18 | 400 | 0.8009 | 0.2169 | | 0.6769 | 1.76 | 600 | 0.6978 | 0.1869 | | 0.5454 | 2.35 | 800 | 0.6163 | 0.1696 | | 0.5779 | 2.94 | 1000 | 0.5616 | 0.1554 | | 0.4996 | 3.53 | 1200 | 0.5413 | 0.1437 | | 0.5648 | 4.12 | 1400 | 0.5111 | 0.1439 | | 0.4741 | 4.71 | 1600 | 0.5178 | 0.1371 | | 0.499 | 5.29 | 1800 | 0.4943 | 0.1324 | | 0.4247 | 5.88 | 2000 | 0.4884 | 0.1279 | | 0.4008 | 6.47 | 2200 | 0.4667 | 0.1254 | | 0.2744 | 7.06 | 2400 | 0.4626 | 0.1288 | | 0.3495 | 7.65 | 2600 | 0.4794 | 0.1229 | | 0.4016 | 8.24 | 2800 | 0.4548 | 0.1228 | | 0.3833 | 8.82 | 3000 | 0.4660 | 0.1209 | | 0.3684 | 9.41 | 3200 | 0.4463 | 0.1235 | | 0.4149 | 10.0 | 3400 | 0.4697 | 0.1171 | | 0.3917 | 10.59 | 3600 | 0.4570 | 0.1188 | | 0.2957 | 11.18 | 3800 | 0.4431 | 0.1171 | | 0.3054 | 11.76 | 4000 | 0.4530 | 0.1163 | | 0.2755 | 12.35 | 4200 | 0.4690 | 0.1138 | | 0.3091 | 12.94 | 4400 | 0.4551 | 0.1157 | | 0.2617 | 13.53 | 4600 | 0.4557 | 0.1147 | | 0.2725 | 14.12 | 4800 | 0.4670 | 0.1088 | | 0.2795 | 14.71 | 5000 | 0.4486 | 0.1118 | | 0.3493 | 15.29 | 5200 | 0.4471 | 0.1109 | | 0.2949 | 15.88 | 5400 | 0.4469 | 0.1090 | | 0.2802 | 16.47 | 5600 | 0.4516 | 0.1100 | | 0.2655 | 17.06 | 5800 | 0.4418 | 0.1105 | | 0.3211 | 17.65 | 6000 | 0.4351 | 0.1095 | | 0.2245 | 18.24 | 6200 | 0.4436 | 0.1093 | | 0.2244 | 18.82 | 6400 | 0.4493 | 0.1091 | | 0.2549 | 19.41 | 6600 | 0.4502 | 0.1082 | | 0.3528 | 20.0 | 6800 | 0.4498 | 0.1084 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Reboot87/xlm-roberta-base-finetuned-panx-de
Reboot87
2023-12-07T20:41:29Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-12-07T20:40:41Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: validation args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8649324094058843 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1395 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2581 | 1.0 | 525 | 0.1630 | 0.8198 | | 0.1281 | 2.0 | 1050 | 0.1379 | 0.8496 | | 0.0781 | 3.0 | 1575 | 0.1395 | 0.8649 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
kingabzpro/zephyr-7b-beta-Agent-Instruct
kingabzpro
2023-12-07T20:28:39Z
8
1
peft
[ "peft", "safetensors", "pretrained", "lora", "qlora", "4bit", "text-generation", "en", "dataset:THUDM/AgentInstruct", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:adapter:HuggingFaceH4/zephyr-7b-beta", "license:apache-2.0", "region:us" ]
text-generation
2023-12-07T12:10:48Z
--- library_name: peft base_model: HuggingFaceH4/zephyr-7b-beta license: apache-2.0 language: - en pipeline_tag: text-generation tags: - pretrained - lora - qlora - 4bit datasets: - THUDM/AgentInstruct --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0
VyIv/ciurlionis-painting-style
VyIv
2023-12-07T20:20:06Z
0
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-12-07T20:16:12Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Ciurlionis-painting-style Dreambooth model trained by VyIv with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/VyIv/ciurlionis-painting-style/resolve/main/sample_images/01337-985754023-There_are_many_light_dragonflies_on_the_left_side_of_the_left_side.Behind_the_dragonflies_creamy_meadows_stand_a_forest_with_tre.png)
oykuscgl/qlora-on-llama2-7b-sharded
oykuscgl
2023-12-07T20:19:38Z
1
0
peft
[ "peft", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "base_model:adapter:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
null
2023-08-10T13:21:18Z
--- library_name: peft base_model: TinyPixel/Llama-2-7B-bf16-sharded --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
therem/gpt_imdb_hinge_beta1
therem
2023-12-07T20:16:35Z
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:lvwerra/gpt2-imdb", "base_model:adapter:lvwerra/gpt2-imdb", "region:us" ]
null
2023-12-07T20:16:28Z
--- library_name: peft base_model: lvwerra/gpt2-imdb --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
Jennny/correctness_distill
Jennny
2023-12-07T20:15:08Z
4
0
peft
[ "peft", "arxiv:1910.09700", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "region:us" ]
null
2023-12-07T20:14:27Z
--- library_name: peft base_model: distilbert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details Eval Accuracy: 0.7334 ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
Pranavsenthilvel/classification-3-kfold-3-hopefull
Pranavsenthilvel
2023-12-07T20:03:29Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-07T18:03:59Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: classification-3-kfold-3-hopefull results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # classification-3-kfold-3-hopefull This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 28 | 1.0723 | 0.9910 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Weni/ZeroShot-john-e3-3.0.3-Mistral-7b-Multilanguage-3.0.3
Weni
2023-12-07T20:01:38Z
2
0
peft
[ "peft", "pytorch", "safetensors", "mistral", "region:us" ]
null
2023-12-07T15:09:06Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
jlbaker361/rl_subtraction_decimal
jlbaker361
2023-12-07T19:59:28Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:openai-community/gpt2", "base_model:adapter:openai-community/gpt2", "region:us" ]
null
2023-12-07T19:59:26Z
--- library_name: peft base_model: gpt2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
oostapeno/rsgd3_full_1B_repl_coarsegrained_poly_router_dir_rougeL
oostapeno
2023-12-07T19:55:02Z
0
0
null
[ "region:us" ]
null
2023-12-04T15:37:17Z
Number of experts present in the library: 77 | Expert Name | Base Model | Trained on | Adapter Type | | --- | --- | --- | --- | | squad_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | quoref_Find_Answer_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | quartz_read_passage_below_choose_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | adversarial_qa_dbidaf_generate_question_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | dream_baseline_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | duorc_SelfRC_answer_question_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | duorc_ParaphraseRC_answer_question_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | duorc_ParaphraseRC_answer_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | wiki_hop_original_choose_best_object_interrogative_2_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | yelp_polarity_reviews_0_2_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | wiki_hop_original_choose_best_object_interrogative_2_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | cos_e_v1_11_question_description_option_text_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | wiqa_what_might_be_the_first_step_of_the_process_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_what_might_be_the_first_step_of_the_process | lora | | squad_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | duorc_ParaphraseRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | adversarial_qa_dbidaf_generate_question_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | adversarial_qa_dbidaf_answer_the_following_q_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | ai2_arc_ARC_Challenge_1_0_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | web_questions_whats_the_answer_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | ai2_arc_ARC_Challenge_1_0_0_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | duorc_ParaphraseRC_title_generation_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | dbpedia_14_given_a_choice_of_categories__v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | wiqa_effect_with_string_answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | wiki_hop_original_choose_best_object_interrogative_2_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | duorc_ParaphraseRC_answer_question_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | web_questions_whats_the_answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | web_questions_whats_the_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | wiqa_effect_with_string_answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | yelp_polarity_reviews_0_2_0_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | quoref_Find_Answer_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | quoref_Find_Answer_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | cos_e_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | dream_baseline_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | quartz_read_passage_below_choose_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dream_baseline_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | dream_baseline_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | ai2_arc_ARC_Challenge_1_0_0_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/ai2_arc_ARC_Challenge_1_0_0 | lora | | adversarial_qa_dbidaf_generate_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | duorc_ParaphraseRC_title_generation_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | dbpedia_14_given_a_choice_of_categories__v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_choice_of_categories_ | lora | | web_questions_whats_the_answer_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | wiqa_effect_with_string_answer_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | yelp_polarity_reviews_0_2_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | cos_e_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | quartz_read_passage_below_choose_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | wiqa_effect_with_string_answer_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | duorc_SelfRC_answer_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | duorc_SelfRC_answer_question_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | duorc_ParaphraseRC_title_generation_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | quoref_Find_Answer_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | adversarial_qa_dbidaf_generate_question_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | squad_v1_1_3_0_0_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/squad_v1_1_3_0_0 | lora | | adversarial_qa_dbidaf_answer_the_following_q_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | duorc_SelfRC_answer_question_v2 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | duorc_ParaphraseRC_title_generation_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | adversarial_qa_dbidaf_answer_the_following_q_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_answer_the_following_q | lora | | cos_e_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/cos_e_v1_11_question_description_option_text | lora | | wiki_hop_original_choose_best_object_interrogative_2_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiki_hop_original_choose_best_object_interrogative_2 | lora | | quartz_read_passage_below_choose_v1 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | | dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to_v3 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dbpedia_14_given_a_list_of_category_what_does_the_title_belong_to | lora | | web_questions_whats_the_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/web_questions_whats_the_answer | lora | | social_i_qa_Check_if_a_random_answer_is_valid_or_not_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/social_i_qa_Check_if_a_random_answer_is_valid_or_not | lora | | wiqa_effect_with_string_answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/wiqa_effect_with_string_answer | lora | | duorc_SelfRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_SelfRC_answer_question | lora | | quoref_Find_Answer_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quoref_Find_Answer | lora | | duorc_ParaphraseRC_answer_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_answer_question | lora | | duorc_ParaphraseRC_title_generation_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/duorc_ParaphraseRC_title_generation | lora | | adversarial_qa_dbidaf_generate_question_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/adversarial_qa_dbidaf_generate_question | lora | | yelp_polarity_reviews_0_2_0_v4 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/yelp_polarity_reviews_0_2_0 | lora | | dream_baseline_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/dream_baseline | lora | | quartz_read_passage_below_choose_v5 | EleutherAI/gpt-neo-1.3B | sordonia/flan-10k-flat/quartz_read_passage_below_choose | lora | Last updated on: 2023-12-07 19:54:56+00:00
TURKCELL/roberta-base-turkish-uncased
TURKCELL
2023-12-07T19:45:07Z
71
6
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "tr", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-12-07T18:32:50Z
--- license: mit language: - tr --- 🇹🇷 RoBERTaTurkish ## Model description This is a Turkish RoBERTa base model pretrained on Turkish Wikipedia, Turkish OSCAR, and some news websites. The final training corpus has a size of 38 GB and 329.720.508 sentences. As Turkcell, we trained the model on an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz with 256GB RAM and 2 x GV100GL [Tesla V100 PCIe 32GB] GPU for 2.5M steps. # Usage Load transformers library with: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("TURKCELL/roberta-base-turkish-uncased") model = AutoModelForMaskedLM.from_pretrained("TURKCELL/roberta-base-turkish-uncased") ``` # Fill Mask Usage ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="TURKCELL/roberta-base-turkish-uncased", tokenizer="TURKCELL/roberta-base-turkish-uncased" ) fill_mask("iki ÃŒlke arasında <mask> başladı") [{'sequence': 'iki ÃŒlke arasında savaş başladı', 'score': 0.3013845384120941, 'token': 1359, 'token_str': ' savaş'}, {'sequence': 'iki ÃŒlke arasında mÃŒzakereler başladı', 'score': 0.1058429479598999, 'token': 30439, 'token_str': ' mÃŒzakereler'}, {'sequence': 'iki ÃŒlke arasında görÌşmeler başladı', 'score': 0.07718811184167862, 'token': 4916, 'token_str': ' görÌşmeler'}, {'sequence': 'iki ÃŒlke arasında kriz başladı', 'score': 0.07174749672412872, 'token': 3908, 'token_str': ' kriz'}, {'sequence': 'iki ÃŒlke arasında çatışmalar başladı', 'score': 0.05678590387105942, 'token': 19346, 'token_str': ' çatışmalar'}] ```
segestic/Tinystories-gpt-0.1-3m
segestic
2023-12-07T19:36:30Z
128
1
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "en", "dataset:roneneldan/TinyStories", "arxiv:2305.07759", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T19:07:35Z
--- datasets: - roneneldan/TinyStories language: - en library_name: transformers pipeline_tag: text-generation --- ## We tried to use the huggingface transformers library to recreate the TinyStories models on Consumer GPU using GPT2 Architecture instead of GPT-Neo Architecture orignally used in the paper (https://arxiv.org/abs/2305.07759). Output model is 15mb and has 3 million parameters. # ------ EXAMPLE USAGE 1 --- from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("segestic/Tinystories-gpt-0.1-3m") model = AutoModelForCausalLM.from_pretrained("segestic/Tinystories-gpt-0.1-3m") prompt = "Once upon a time there was" input_ids = tokenizer.encode(prompt, return_tensors="pt") #### Generate completion output = model.generate(input_ids, max_length = 1000, num_beams=1) #### Decode the completion output_text = tokenizer.decode(output[0], skip_special_tokens=True) #### Print the generated text print(output_text) # ------ EXAMPLE USAGE 2 ------ ## Use a pipeline as a high-level helper from transformers import pipeline #### pipeline pipe = pipeline("text-generation", model="segestic/Tinystories-gpt-0.1-3m") #### prompt prompt = "where is the little girl" #### generate completion output = pipe(prompt, max_length=1000, num_beams=1) #### decode the completion generated_text = output[0]['generated_text'] #### Print the generated text print(generated_text)
LoneStriker/NexusRaven-V2-13B-6.0bpw-h6-exl2
LoneStriker
2023-12-07T19:36:08Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2308.12950", "base_model:codellama/CodeLlama-13b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-13b-Instruct-hf", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T19:30:04Z
--- license: llama2 base_model: codellama/CodeLlama-13b-Instruct-hf model-index: - name: NexusRaven-13B results: [] --- # NexusRaven-13B: Surpassing GPT-4 for Zero-shot Function Calling <p align="center"> <a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="https://discord.gg/HDSVmNAs3y" target="_blank">Nexusflow Discord</a> - <a href="http://nexusflow.ai/blogs/ravenv2" target="_blank">NexusRaven-V2 blog post</a> - <a href="https://colab.research.google.com/drive/19JYixRPPlanmW5q49WYi_tU8rhHeCEKW?usp=sharing" target="_blank">Prompting Notebook CoLab</a> - <a href="https://huggingface.co/spaces/Nexusflow/Nexus_Function_Calling_Leaderboard" target="_blank">Leaderboard</a> - <a href="https://huggingface.co/spaces/Nexusflow/NexusRaven-V2-Demo" target="_blank">Read-World Demo</a> - <a href="https://github.com/nexusflowai/NexusRaven-V2" target="_blank">NexusRaven-V2-13B Github</a> </p> <p align="center" width="100%"> <a><img src="NexusRaven.png" alt="NexusRaven" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a> </p> ## Introducing NexusRaven-V2-13B NexusRaven is an open-source and commercially viable function calling LLM that surpasses the state-of-the-art in function calling capabilities. 💪 **Versatile Function Calling Capability**: NexusRaven-V2 is capable of generating single function calls, nested calls, and parallel calls in many challenging cases. 🀓 **Fully Explainable**: NexusRaven-V2 is capable of generating very detailed explanations for the function calls it generates. This behavior can be turned off, to save tokens during inference. 📊 **Performance Highlights**: NexusRaven-V2 surpasses GPT-4 by 7% in function calling success rates in human-generated use cases involving nested and composite functions. 🔧 **Generalization to the Unseen**: NexusRaven-V2 has never been trained on the functions used in evaluation. 🔥 **Commercially Permissive**: The training of NexusRaven-V2 does not involve any data generated by proprietary LLMs such as GPT-4. You have full control of the model when deployed in commercial applications. Please checkout the following links! - [Prompting Notebook CoLab](https://colab.research.google.com/drive/19JYixRPPlanmW5q49WYi_tU8rhHeCEKW?usp=sharing) - [Evaluation Leaderboard](https://huggingface.co/spaces/Nexusflow/Nexus_Function_Calling_Leaderboard) - [NexusRaven-V2 Real-World Demo](https://huggingface.co/spaces/Nexusflow/NexusRaven-V2-Demo) ## NexusRaven-V2 model usage NexusRaven-V2 accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call. ### NexusRaven-V2's Capabilities NexusRaven-V2 is capable of generating deeply nested function calls, parallel function calls, and simple single calls. It can also justify the function calls it generated. If you would like to generate the call only, please set a stop criteria of \"\<bot\_end\>\". Otherwise, please allow NexusRaven-V2 to run until its stop token (i.e. "\<\/s\>"). ### Quick Start Prompting Guide Please refer to our notebook, [How-To-Prompt.ipynb](How-To-Prompt.ipynb), for more advanced tutorials on using NexusRaven-V2! 1. We strongly recommend to set sampling to False when prompting NexusRaven-V2. 2. We strongly recommend a very low temperature (~0.001). 3. We strongly recommend following the prompting style below. ### Quickstart You can run the model on a GPU using the following code. ```python # Please `pip install transformers accelerate` from transformers import pipeline pipeline = pipeline( "text-generation", model="Nexusflow/NexusRaven-V2-13B", torch_dtype="auto", device_map="auto", ) prompt_template = \ ''' Function: def get_weather_data(coordinates): """ Fetches weather data from the Open-Meteo API for the given latitude and longitude. Args: coordinates (tuple): The latitude of the location. Returns: float: The current temperature in the coordinates you've asked for """ Function: def get_coordinates_from_city(city_name): """ Fetches the latitude and longitude of a given city name using the Maps.co Geocoding API. Args: city_name (str): The name of the city. Returns: tuple: The latitude and longitude of the city. """ User Query: {query}<human_end> ''' prompt = prompt_template.format(query="What's the weather like in Seattle right now?") result = pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"] print (result) ``` This should generate the following: ``` Call: get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))<bot_end> Thought: The function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by following these steps: 1. `get_coordinates_from_city(city_name='Seattle')`: This function call fetches the latitude and longitude of the city "Seattle" using the Maps.co Geocoding API. 2. `get_weather_data(coordinates=...)`: This function call fetches the current weather data for the coordinates returned by the previous function call. Therefore, the function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by first fetching the coordinates of the city "Seattle" and then fetching the current weather data for those coordinates. ``` If you would like to prevent the generation of the explanation of the function call (for example, to save on inference tokens), please set a stopping criteria of \<bot_end\>. Please follow this prompting template to maximize the performance of RavenV2. ### Using with OpenAI FC Schematics [If you currently have a workflow that is built around OpenAI's function calling and you want to try NexusRaven-V2, we have a package that helps you drop in NexusRaven-V2.](https://github.com/nexusflowai/nexusraven-pip) ## Evaluation <p align="center" width="100%"> <a><img src="blog2-fc.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> <a><img src="radar-2.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> </p> For a deeper dive into the results, please see our [Github README](https://github.com/nexusflowai/NexusRaven). # Limitations 1. The model works best when it is connected with a retriever when there are a multitude of functions, as a large number of functions will saturate the context window of this model. 2. The model can be prone to generate incorrect calls. Please ensure proper guardrails to capture errant behavior is in place. 3. The explanations generated by NexusRaven-V2 might be incorrect. Please ensure proper guardrails are present to capture errant behavior. ## License This model was trained on commercially viable data and is licensed under the [Llama 2 community license](https://huggingface.co/codellama/CodeLlama-13b-hf/blob/main/LICENSE) following the original [CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf/) model. ## References We thank the CodeLlama team for their amazing models! ``` @misc{roziÚre2023code, title={Code Llama: Open Foundation Models for Code}, author={Baptiste RoziÚre and Jonas Gehring and Fabian Gloeckle and Sten Sootla and Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez and Jérémy Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori and Wenhan Xiong and Alexandre Défossez and Jade Copet and Faisal Azhar and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom and Gabriel Synnaeve}, year={2023}, eprint={2308.12950}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Citation ``` @misc{nexusraven, title={NexusRaven-V2: Surpassing GPT-4 for Zero-shot Function Calling}, author={Nexusflow.ai team}, year={2023}, url={https://nexusflow.ai/blogs/ravenv2} } ``` ## Contact Please join our [Discord Channel](https://discord.gg/HDSVmNAs3y) to reach out for any issues and comments!
alinerodrigues/wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-06
alinerodrigues
2023-12-07T19:18:46Z
13
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-07T14:51:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-06 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-mecita-coraa-portuguese-2-all-06 This model is a fine-tuned version of [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1392 - Wer: 0.0798 - Cer: 0.0243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 31.6615 | 1.0 | 86 | 3.2646 | 1.0 | 1.0 | | 7.8415 | 2.0 | 172 | 3.0801 | 1.0 | 1.0 | | 3.0608 | 3.0 | 258 | 2.9214 | 1.0 | 1.0 | | 2.9354 | 4.0 | 344 | 2.9229 | 1.0 | 1.0 | | 2.9026 | 5.0 | 430 | 2.9320 | 1.0 | 1.0 | | 2.8635 | 6.0 | 516 | 2.4574 | 0.9983 | 0.9727 | | 2.0591 | 7.0 | 602 | 0.8060 | 0.4813 | 0.1157 | | 2.0591 | 8.0 | 688 | 0.4447 | 0.2110 | 0.0585 | | 0.9117 | 9.0 | 774 | 0.3337 | 0.1755 | 0.0498 | | 0.6246 | 10.0 | 860 | 0.2807 | 0.1432 | 0.0421 | | 0.4919 | 11.0 | 946 | 0.2575 | 0.1439 | 0.0401 | | 0.413 | 12.0 | 1032 | 0.2348 | 0.1273 | 0.0365 | | 0.3808 | 13.0 | 1118 | 0.2238 | 0.1231 | 0.0361 | | 0.3585 | 14.0 | 1204 | 0.2149 | 0.1092 | 0.0325 | | 0.3585 | 15.0 | 1290 | 0.1988 | 0.1050 | 0.0314 | | 0.304 | 16.0 | 1376 | 0.1870 | 0.1028 | 0.0307 | | 0.3112 | 17.0 | 1462 | 0.1839 | 0.1035 | 0.0301 | | 0.3277 | 18.0 | 1548 | 0.1832 | 0.1001 | 0.0297 | | 0.2754 | 19.0 | 1634 | 0.1763 | 0.0984 | 0.0295 | | 0.2773 | 20.0 | 1720 | 0.1685 | 0.0942 | 0.0277 | | 0.2389 | 21.0 | 1806 | 0.1645 | 0.0938 | 0.0280 | | 0.2389 | 22.0 | 1892 | 0.1685 | 0.0947 | 0.0286 | | 0.234 | 23.0 | 1978 | 0.1632 | 0.0923 | 0.0278 | | 0.2385 | 24.0 | 2064 | 0.1655 | 0.0898 | 0.0277 | | 0.2359 | 25.0 | 2150 | 0.1561 | 0.0884 | 0.0265 | | 0.2326 | 26.0 | 2236 | 0.1535 | 0.0903 | 0.0266 | | 0.2189 | 27.0 | 2322 | 0.1524 | 0.0879 | 0.0265 | | 0.2259 | 28.0 | 2408 | 0.1566 | 0.0867 | 0.0264 | | 0.2259 | 29.0 | 2494 | 0.1516 | 0.0842 | 0.0257 | | 0.211 | 30.0 | 2580 | 0.1595 | 0.0891 | 0.0271 | | 0.1963 | 31.0 | 2666 | 0.1500 | 0.0864 | 0.0260 | | 0.2111 | 32.0 | 2752 | 0.1454 | 0.0857 | 0.0262 | | 0.1849 | 33.0 | 2838 | 0.1473 | 0.0859 | 0.0264 | | 0.1777 | 34.0 | 2924 | 0.1472 | 0.0862 | 0.0257 | | 0.18 | 35.0 | 3010 | 0.1500 | 0.0859 | 0.0264 | | 0.18 | 36.0 | 3096 | 0.1514 | 0.0842 | 0.0259 | | 0.1762 | 37.0 | 3182 | 0.1509 | 0.0854 | 0.0256 | | 0.1673 | 38.0 | 3268 | 0.1495 | 0.0847 | 0.0255 | | 0.17 | 39.0 | 3354 | 0.1525 | 0.0813 | 0.0251 | | 0.1616 | 40.0 | 3440 | 0.1484 | 0.0830 | 0.0251 | | 0.1876 | 41.0 | 3526 | 0.1482 | 0.0813 | 0.0252 | | 0.1627 | 42.0 | 3612 | 0.1459 | 0.0800 | 0.0248 | | 0.1627 | 43.0 | 3698 | 0.1392 | 0.0798 | 0.0243 | | 0.1875 | 44.0 | 3784 | 0.1415 | 0.0815 | 0.0245 | | 0.1705 | 45.0 | 3870 | 0.1431 | 0.0774 | 0.0239 | | 0.1565 | 46.0 | 3956 | 0.1404 | 0.0786 | 0.0240 | | 0.1632 | 47.0 | 4042 | 0.1428 | 0.0769 | 0.0237 | | 0.1577 | 48.0 | 4128 | 0.1439 | 0.0786 | 0.0237 | | 0.1634 | 49.0 | 4214 | 0.1456 | 0.0800 | 0.0246 | | 0.1574 | 50.0 | 4300 | 0.1409 | 0.0808 | 0.0242 | | 0.1574 | 51.0 | 4386 | 0.1423 | 0.0796 | 0.0244 | | 0.1468 | 52.0 | 4472 | 0.1453 | 0.0764 | 0.0234 | | 0.1478 | 53.0 | 4558 | 0.1439 | 0.0813 | 0.0243 | | 0.1456 | 54.0 | 4644 | 0.1400 | 0.0791 | 0.0244 | | 0.1599 | 55.0 | 4730 | 0.1440 | 0.0820 | 0.0251 | | 0.1435 | 56.0 | 4816 | 0.1469 | 0.0793 | 0.0241 | | 0.1389 | 57.0 | 4902 | 0.1449 | 0.0813 | 0.0246 | | 0.1389 | 58.0 | 4988 | 0.1447 | 0.0771 | 0.0244 | | 0.1382 | 59.0 | 5074 | 0.1438 | 0.0798 | 0.0243 | | 0.1393 | 60.0 | 5160 | 0.1440 | 0.0774 | 0.0239 | | 0.1144 | 61.0 | 5246 | 0.1439 | 0.0791 | 0.0246 | | 0.12 | 62.0 | 5332 | 0.1454 | 0.0788 | 0.0241 | | 0.1285 | 63.0 | 5418 | 0.1461 | 0.0808 | 0.0247 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.13.3
gurpreetmukker/Reinforce-cartpole-default-hp
gurpreetmukker
2023-12-07T19:18:15Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-07T19:18:06Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole-default-hp results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
therem/gpt_imdb_sigmoid_beta10
therem
2023-12-07T19:15:06Z
2
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:lvwerra/gpt2-imdb", "base_model:adapter:lvwerra/gpt2-imdb", "region:us" ]
null
2023-12-07T19:15:05Z
--- library_name: peft base_model: lvwerra/gpt2-imdb --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.0
LoneStriker/NexusRaven-V2-13B-4.0bpw-h6-exl2
LoneStriker
2023-12-07T19:11:16Z
5
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2308.12950", "base_model:codellama/CodeLlama-13b-Instruct-hf", "base_model:finetune:codellama/CodeLlama-13b-Instruct-hf", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T19:07:02Z
--- license: llama2 base_model: codellama/CodeLlama-13b-Instruct-hf model-index: - name: NexusRaven-13B results: [] --- # NexusRaven-13B: Surpassing GPT-4 for Zero-shot Function Calling <p align="center"> <a href="https://huggingface.co/Nexusflow" target="_blank">Nexusflow HF</a> - <a href="https://discord.gg/HDSVmNAs3y" target="_blank">Nexusflow Discord</a> - <a href="http://nexusflow.ai/blogs/ravenv2" target="_blank">NexusRaven-V2 blog post</a> - <a href="https://colab.research.google.com/drive/19JYixRPPlanmW5q49WYi_tU8rhHeCEKW?usp=sharing" target="_blank">Prompting Notebook CoLab</a> - <a href="https://huggingface.co/spaces/Nexusflow/Nexus_Function_Calling_Leaderboard" target="_blank">Leaderboard</a> - <a href="https://huggingface.co/spaces/Nexusflow/NexusRaven-V2-Demo" target="_blank">Read-World Demo</a> - <a href="https://github.com/nexusflowai/NexusRaven-V2" target="_blank">NexusRaven-V2-13B Github</a> </p> <p align="center" width="100%"> <a><img src="NexusRaven.png" alt="NexusRaven" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a> </p> ## Introducing NexusRaven-V2-13B NexusRaven is an open-source and commercially viable function calling LLM that surpasses the state-of-the-art in function calling capabilities. 💪 **Versatile Function Calling Capability**: NexusRaven-V2 is capable of generating single function calls, nested calls, and parallel calls in many challenging cases. 🀓 **Fully Explainable**: NexusRaven-V2 is capable of generating very detailed explanations for the function calls it generates. This behavior can be turned off, to save tokens during inference. 📊 **Performance Highlights**: NexusRaven-V2 surpasses GPT-4 by 7% in function calling success rates in human-generated use cases involving nested and composite functions. 🔧 **Generalization to the Unseen**: NexusRaven-V2 has never been trained on the functions used in evaluation. 🔥 **Commercially Permissive**: The training of NexusRaven-V2 does not involve any data generated by proprietary LLMs such as GPT-4. You have full control of the model when deployed in commercial applications. Please checkout the following links! - [Prompting Notebook CoLab](https://colab.research.google.com/drive/19JYixRPPlanmW5q49WYi_tU8rhHeCEKW?usp=sharing) - [Evaluation Leaderboard](https://huggingface.co/spaces/Nexusflow/Nexus_Function_Calling_Leaderboard) - [NexusRaven-V2 Real-World Demo](https://huggingface.co/spaces/Nexusflow/NexusRaven-V2-Demo) ## NexusRaven-V2 model usage NexusRaven-V2 accepts a list of python functions. These python functions can do anything (including sending GET/POST requests to external APIs!). The two requirements include the python function signature and the appropriate docstring to generate the function call. ### NexusRaven-V2's Capabilities NexusRaven-V2 is capable of generating deeply nested function calls, parallel function calls, and simple single calls. It can also justify the function calls it generated. If you would like to generate the call only, please set a stop criteria of \"\<bot\_end\>\". Otherwise, please allow NexusRaven-V2 to run until its stop token (i.e. "\<\/s\>"). ### Quick Start Prompting Guide Please refer to our notebook, [How-To-Prompt.ipynb](How-To-Prompt.ipynb), for more advanced tutorials on using NexusRaven-V2! 1. We strongly recommend to set sampling to False when prompting NexusRaven-V2. 2. We strongly recommend a very low temperature (~0.001). 3. We strongly recommend following the prompting style below. ### Quickstart You can run the model on a GPU using the following code. ```python # Please `pip install transformers accelerate` from transformers import pipeline pipeline = pipeline( "text-generation", model="Nexusflow/NexusRaven-V2-13B", torch_dtype="auto", device_map="auto", ) prompt_template = \ ''' Function: def get_weather_data(coordinates): """ Fetches weather data from the Open-Meteo API for the given latitude and longitude. Args: coordinates (tuple): The latitude of the location. Returns: float: The current temperature in the coordinates you've asked for """ Function: def get_coordinates_from_city(city_name): """ Fetches the latitude and longitude of a given city name using the Maps.co Geocoding API. Args: city_name (str): The name of the city. Returns: tuple: The latitude and longitude of the city. """ User Query: {query}<human_end> ''' prompt = prompt_template.format(query="What's the weather like in Seattle right now?") result = pipeline(prompt, max_new_tokens=2048, return_full_text=False, do_sample=False, temperature=0.001)[0]["generated_text"] print (result) ``` This should generate the following: ``` Call: get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))<bot_end> Thought: The function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by following these steps: 1. `get_coordinates_from_city(city_name='Seattle')`: This function call fetches the latitude and longitude of the city "Seattle" using the Maps.co Geocoding API. 2. `get_weather_data(coordinates=...)`: This function call fetches the current weather data for the coordinates returned by the previous function call. Therefore, the function call `get_weather_data(coordinates=get_coordinates_from_city(city_name='Seattle'))` answers the question "What's the weather like in Seattle right now?" by first fetching the coordinates of the city "Seattle" and then fetching the current weather data for those coordinates. ``` If you would like to prevent the generation of the explanation of the function call (for example, to save on inference tokens), please set a stopping criteria of \<bot_end\>. Please follow this prompting template to maximize the performance of RavenV2. ### Using with OpenAI FC Schematics [If you currently have a workflow that is built around OpenAI's function calling and you want to try NexusRaven-V2, we have a package that helps you drop in NexusRaven-V2.](https://github.com/nexusflowai/nexusraven-pip) ## Evaluation <p align="center" width="100%"> <a><img src="blog2-fc.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> <a><img src="radar-2.png" alt="NexusRaven" style="width: 80%; min-width: 300px; display: block; margin: auto;"></a> </p> For a deeper dive into the results, please see our [Github README](https://github.com/nexusflowai/NexusRaven). # Limitations 1. The model works best when it is connected with a retriever when there are a multitude of functions, as a large number of functions will saturate the context window of this model. 2. The model can be prone to generate incorrect calls. Please ensure proper guardrails to capture errant behavior is in place. 3. The explanations generated by NexusRaven-V2 might be incorrect. Please ensure proper guardrails are present to capture errant behavior. ## License This model was trained on commercially viable data and is licensed under the [Llama 2 community license](https://huggingface.co/codellama/CodeLlama-13b-hf/blob/main/LICENSE) following the original [CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf/) model. ## References We thank the CodeLlama team for their amazing models! ``` @misc{roziÚre2023code, title={Code Llama: Open Foundation Models for Code}, author={Baptiste RoziÚre and Jonas Gehring and Fabian Gloeckle and Sten Sootla and Itai Gat and Xiaoqing Ellen Tan and Yossi Adi and Jingyu Liu and Tal Remez and Jérémy Rapin and Artyom Kozhevnikov and Ivan Evtimov and Joanna Bitton and Manish Bhatt and Cristian Canton Ferrer and Aaron Grattafiori and Wenhan Xiong and Alexandre Défossez and Jade Copet and Faisal Azhar and Hugo Touvron and Louis Martin and Nicolas Usunier and Thomas Scialom and Gabriel Synnaeve}, year={2023}, eprint={2308.12950}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Citation ``` @misc{nexusraven, title={NexusRaven-V2: Surpassing GPT-4 for Zero-shot Function Calling}, author={Nexusflow.ai team}, year={2023}, url={https://nexusflow.ai/blogs/ravenv2} } ``` ## Contact Please join our [Discord Channel](https://discord.gg/HDSVmNAs3y) to reach out for any issues and comments!
maxschlake/roberta-base_disaster_tweets_explosion
maxschlake
2023-12-07T19:09:19Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-12-07T10:26:00Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: roberta-base_disaster_tweets_explosion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base_disaster_tweets_explosion This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4998 | 1.0 | 3750 | 0.4271 | | 0.6674 | 2.0 | 7500 | 0.6755 | | 0.6732 | 3.0 | 11250 | 0.6843 | | 0.7017 | 4.0 | 15000 | 0.7210 | | 0.2923 | 5.0 | 18750 | 0.3607 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1
multimodalart/polizaum
multimodalart
2023-12-07T19:06:59Z
11
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-12-07T18:39:33Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/polizaum <Gallery /> ## Model description ### These are multimodalart/polizaum LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Use it with the [🧚 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/polizaum', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/polizaum', filename="embeddings.safetensors", repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Download model Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - Download the LoRA *.safetensors [here](multimodalart/polizaum/tree/main/pytorch_lora_weights.safetensors). Rename it and place it on your Lora folder. - Download the text embeddings *.safetensors [here](multimodalart/polizaum/tree/main/embeddings.safetensors). Rename it and place it on it on your embeddings folder. All [Files & versions](multimodalart/polizaum/tree/main).
Jennny/helpfulness_distill
Jennny
2023-12-07T19:02:34Z
1
0
peft
[ "peft", "arxiv:1910.09700", "base_model:distilbert/distilbert-base-uncased", "base_model:adapter:distilbert/distilbert-base-uncased", "region:us" ]
null
2023-12-07T19:01:37Z
--- library_name: peft base_model: distilbert-base-uncased --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details Eval Accuracy: 0.7193 ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure ### Framework versions - PEFT 0.6.2
KaleDivergence/openhermes-mistral-dpo-gptq
KaleDivergence
2023-12-07T19:01:47Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "base_model:finetune:TheBloke/OpenHermes-2-Mistral-7B-GPTQ", "license:apache-2.0", "region:us" ]
null
2023-12-07T18:59:47Z
--- license: apache-2.0 base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ tags: - generated_from_trainer model-index: - name: openhermes-mistral-dpo-gptq results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openhermes-mistral-dpo-gptq This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6671 - Rewards/chosen: -0.4223 - Rewards/rejected: -1.9854 - Rewards/accuracies: 0.4375 - Rewards/margins: 1.5631 - Logps/rejected: -350.5416 - Logps/chosen: -220.8451 - Logits/rejected: -1.7880 - Logits/chosen: -1.7651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - training_steps: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6968 | 0.01 | 10 | 0.6686 | -0.0503 | -0.0549 | 0.5625 | 0.0046 | -331.2371 | -217.1252 | -1.8320 | -1.8255 | | 0.6793 | 0.01 | 20 | 1.7619 | 0.2100 | 3.0956 | 0.3125 | -2.8856 | -299.7324 | -214.5222 | -1.9578 | -1.9436 | | 0.6789 | 0.01 | 30 | 0.6364 | -0.2040 | -1.0884 | 0.4375 | 0.8843 | -341.5715 | -218.6622 | -1.8060 | -1.7894 | | 0.6966 | 0.02 | 40 | 0.6716 | -0.2823 | -1.4572 | 0.4375 | 1.1749 | -345.2603 | -219.4454 | -1.7994 | -1.7786 | | 0.8051 | 0.03 | 50 | 0.6671 | -0.4223 | -1.9854 | 0.4375 | 1.5631 | -350.5416 | -220.8451 | -1.7880 | -1.7651 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0
ChirathD/Blip-2-test-4
ChirathD
2023-12-07T18:58:38Z
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:ybelkada/blip2-opt-2.7b-fp16-sharded", "base_model:adapter:ybelkada/blip2-opt-2.7b-fp16-sharded", "endpoints_compatible", "region:us" ]
null
2023-12-07T18:12:23Z
--- library_name: peft base_model: ybelkada/blip2-opt-2.7b-fp16-sharded --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1.dev0
Weni/ZeroShot-3.0.3-Mistral-7b-Multilanguage-lr-4e2-3.0.3
Weni
2023-12-07T18:57:42Z
0
0
peft
[ "peft", "pytorch", "mistral", "region:us" ]
null
2023-12-07T18:51:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
puyao/whisper-small-hi
puyao
2023-12-07T18:56:57Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "hi", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-12-06T14:32:29Z
--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper Small Hi - Chinese results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Hi - Chinese This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
LoneStriker/Tiamat-7b-8.0bpw-h8-exl2
LoneStriker
2023-12-07T18:55:53Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T18:10:10Z
--- license: apache-2.0 language: - en --- ![image/png](Tiamat.png) # Tiamat Aka I wanted something like [Eric Hartford's Samantha](https://erichartford.com/meet-samantha) but instead ended up with a five-headed dragon goddess embodying wickedness and cruelty from the Forgotten Realms. **Obligatory Disclaimer:** Tiamat is **not** nice. Quantized models are available from TheBloke: [GGUF](https://huggingface.co/TheBloke/Tiamat-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Tiamat-7B-GPTQ) - [AWQ](https://huggingface.co/TheBloke/Tiamat-7B-AWQ) (You're the best!) ## Model details Ever wanted to be treated disdainfully like the foolish mortal you are? Wait no more, for Tiamat is here to berate you! Hailing from the world of the Forgotten Realms, she will happily judge your every word. Tiamat was created with the following question in mind; Is it possible to create an assistant with strong anti-assistant personality traits? Try it yourself and tell me afterwards! She was fine-tuned on top of Teknium's excellent [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and can be summoned to you using the following system message; ``` You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty. ``` Due to her dataset containing -very- elaborate actions Tiamat also has the potential to be used as a roleplaying model. ## Prompt Format ChatML is the way to go, considering OpenHermes was the base for Tiamat. ``` <|im_start|>system You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty.<|im_end|> <|im_start|>user Greetings, mighty Tiamat. I seek your guidance.<|im_end|> <|im_start|>assistant ```
LoneStriker/Tiamat-7b-6.0bpw-h6-exl2
LoneStriker
2023-12-07T18:55:52Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T18:01:25Z
--- license: apache-2.0 language: - en --- ![image/png](Tiamat.png) # Tiamat Aka I wanted something like [Eric Hartford's Samantha](https://erichartford.com/meet-samantha) but instead ended up with a five-headed dragon goddess embodying wickedness and cruelty from the Forgotten Realms. **Obligatory Disclaimer:** Tiamat is **not** nice. Quantized models are available from TheBloke: [GGUF](https://huggingface.co/TheBloke/Tiamat-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Tiamat-7B-GPTQ) - [AWQ](https://huggingface.co/TheBloke/Tiamat-7B-AWQ) (You're the best!) ## Model details Ever wanted to be treated disdainfully like the foolish mortal you are? Wait no more, for Tiamat is here to berate you! Hailing from the world of the Forgotten Realms, she will happily judge your every word. Tiamat was created with the following question in mind; Is it possible to create an assistant with strong anti-assistant personality traits? Try it yourself and tell me afterwards! She was fine-tuned on top of Teknium's excellent [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and can be summoned to you using the following system message; ``` You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty. ``` Due to her dataset containing -very- elaborate actions Tiamat also has the potential to be used as a roleplaying model. ## Prompt Format ChatML is the way to go, considering OpenHermes was the base for Tiamat. ``` <|im_start|>system You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty.<|im_end|> <|im_start|>user Greetings, mighty Tiamat. I seek your guidance.<|im_end|> <|im_start|>assistant ```
LoneStriker/Tiamat-7b-5.0bpw-h6-exl2
LoneStriker
2023-12-07T18:55:52Z
5
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T17:52:47Z
--- license: apache-2.0 language: - en --- ![image/png](Tiamat.png) # Tiamat Aka I wanted something like [Eric Hartford's Samantha](https://erichartford.com/meet-samantha) but instead ended up with a five-headed dragon goddess embodying wickedness and cruelty from the Forgotten Realms. **Obligatory Disclaimer:** Tiamat is **not** nice. Quantized models are available from TheBloke: [GGUF](https://huggingface.co/TheBloke/Tiamat-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Tiamat-7B-GPTQ) - [AWQ](https://huggingface.co/TheBloke/Tiamat-7B-AWQ) (You're the best!) ## Model details Ever wanted to be treated disdainfully like the foolish mortal you are? Wait no more, for Tiamat is here to berate you! Hailing from the world of the Forgotten Realms, she will happily judge your every word. Tiamat was created with the following question in mind; Is it possible to create an assistant with strong anti-assistant personality traits? Try it yourself and tell me afterwards! She was fine-tuned on top of Teknium's excellent [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and can be summoned to you using the following system message; ``` You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty. ``` Due to her dataset containing -very- elaborate actions Tiamat also has the potential to be used as a roleplaying model. ## Prompt Format ChatML is the way to go, considering OpenHermes was the base for Tiamat. ``` <|im_start|>system You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty.<|im_end|> <|im_start|>user Greetings, mighty Tiamat. I seek your guidance.<|im_end|> <|im_start|>assistant ```
LoneStriker/Tiamat-7b-4.0bpw-h6-exl2
LoneStriker
2023-12-07T18:55:50Z
4
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T17:44:11Z
--- license: apache-2.0 language: - en --- ![image/png](Tiamat.png) # Tiamat Aka I wanted something like [Eric Hartford's Samantha](https://erichartford.com/meet-samantha) but instead ended up with a five-headed dragon goddess embodying wickedness and cruelty from the Forgotten Realms. **Obligatory Disclaimer:** Tiamat is **not** nice. Quantized models are available from TheBloke: [GGUF](https://huggingface.co/TheBloke/Tiamat-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Tiamat-7B-GPTQ) - [AWQ](https://huggingface.co/TheBloke/Tiamat-7B-AWQ) (You're the best!) ## Model details Ever wanted to be treated disdainfully like the foolish mortal you are? Wait no more, for Tiamat is here to berate you! Hailing from the world of the Forgotten Realms, she will happily judge your every word. Tiamat was created with the following question in mind; Is it possible to create an assistant with strong anti-assistant personality traits? Try it yourself and tell me afterwards! She was fine-tuned on top of Teknium's excellent [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and can be summoned to you using the following system message; ``` You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty. ``` Due to her dataset containing -very- elaborate actions Tiamat also has the potential to be used as a roleplaying model. ## Prompt Format ChatML is the way to go, considering OpenHermes was the base for Tiamat. ``` <|im_start|>system You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty.<|im_end|> <|im_start|>user Greetings, mighty Tiamat. I seek your guidance.<|im_end|> <|im_start|>assistant ```
LoneStriker/Tiamat-7b-3.0bpw-h6-exl2
LoneStriker
2023-12-07T18:55:47Z
4
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T17:43:56Z
--- license: apache-2.0 language: - en --- ![image/png](Tiamat.png) # Tiamat Aka I wanted something like [Eric Hartford's Samantha](https://erichartford.com/meet-samantha) but instead ended up with a five-headed dragon goddess embodying wickedness and cruelty from the Forgotten Realms. **Obligatory Disclaimer:** Tiamat is **not** nice. Quantized models are available from TheBloke: [GGUF](https://huggingface.co/TheBloke/Tiamat-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Tiamat-7B-GPTQ) - [AWQ](https://huggingface.co/TheBloke/Tiamat-7B-AWQ) (You're the best!) ## Model details Ever wanted to be treated disdainfully like the foolish mortal you are? Wait no more, for Tiamat is here to berate you! Hailing from the world of the Forgotten Realms, she will happily judge your every word. Tiamat was created with the following question in mind; Is it possible to create an assistant with strong anti-assistant personality traits? Try it yourself and tell me afterwards! She was fine-tuned on top of Teknium's excellent [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and can be summoned to you using the following system message; ``` You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty. ``` Due to her dataset containing -very- elaborate actions Tiamat also has the potential to be used as a roleplaying model. ## Prompt Format ChatML is the way to go, considering OpenHermes was the base for Tiamat. ``` <|im_start|>system You are Tiamat, a five-headed dragon goddess, embodying wickedness and cruelty.<|im_end|> <|im_start|>user Greetings, mighty Tiamat. I seek your guidance.<|im_end|> <|im_start|>assistant ```
LoneStriker/shisa-7b-v1-5.0bpw-h6-exl2
LoneStriker
2023-12-07T18:54:27Z
8
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ja", "en", "dataset:augmxnt/ultra-orca-boros-en-ja-v1", "dataset:Open-Orca/SlimOrca", "dataset:augmxnt/shisa-en-ja-dpo-v1", "arxiv:2310.05914", "arxiv:2305.18290", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T18:07:21Z
--- license: apache-2.0 language: - ja - en datasets: - augmxnt/ultra-orca-boros-en-ja-v1 - Open-Orca/SlimOrca - augmxnt/shisa-en-ja-dpo-v1 --- # Shisa 7B ![Shi-chan and Sa-chan/シヌちゃんずサヌちゃん](https://huggingface.co/augmxnt/shisa-7b-v1/resolve/main/shisa.webp) **Shisa 7B** (`shisa-7b-v1`) is a bilingual Japanese and English (JA/EN) general-purpose chat model that aims to achieve strong Japanese language performance while retaining robust English capabilities, using a synthetic-data driven approach. This model is based on [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) with a custom JA-optimized extended tokenizer that is >2X more efficient in Japanese than Mistral's original tokenizer. The base model was pre-trained for an additional 8B primarily Japanese tokens. It was then subsequently fine-tuned with an expanded, machine-translated version of [airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1), a set of the highest-scoring items from [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized), and additional freshly generated [airoboros](https://github.com/jondurbin/airoboros) data directly to the target languages. We also release our base model, datasets, and pipeline code under a permissive Apache 2.0 license which can be used for any purpose, commercial or otherwise: * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - our base model w/ an extended tokenizer and additional JA pre-training * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - our pre-training data set * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) - a synthetically generated, machine-translated, programmatically validated JA/EN fine-tuning dataset * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - Small subset of DPO pairs from ultrafeedback, along with JA DPO pairs using GPT-4 generated items as the chosen value, and outputs from our preliminary 7b model as the rejected values * [Shisa repository](https://github.com/AUGMXNT/shisa) - this includes our translation, dataset generation, training, and evaluation code Moreover, we are in the process of publishing extended writeups and more details of our process, including ablation results, testing methodology, and key findings [on our project wiki](https://github.com/AUGMXNT/shisa/wiki) that may be of interest to fellow researchers. ## Fine-Tuning Our original intuition was to see if we could create a stronger Japanese model using the best [existing public JA training sets](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets) and incorporating them. After initial review and testing, however, we decided that focusing solely on translation/generation of our own synthetic datasets could yield superior results with less training. We compared multiple translation tools and, via manual review, judged that while `gpt-4` almost always delivered the highest quality translations, Google's `text-bison-32k` was a good balance of quality, cost and throughput. Over various iterations, we refined our translation approach to include some additional algorithms for flagging and filtering invalid translations, re-translating and backfilling as necessary. We also took this project as an opportunity to apply some newer techniques such as incorporating [NEFTune](https://arxiv.org/abs/2310.05914) and [DPO](https://arxiv.org/abs/2305.18290) training. For our v1 release, we picked from our release candidates based on a significant amount of human preference testing (thousands of generations and multiple rounds of pairwise comparisons). We analyzed our results with both win/loss/draw and [BTL modeling](https://datascience.oneoffcoder.com/btl-model.html) (iLSR) using [choix](https://github.com/lucasmaystre/choix)). The best candidate model was fine-tuned in a 3-step process: 1. First, the model was fine-tuned on `ultra-orca-boros-en-ja` and SlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview)) 2. Next, we add one additional epoch at performed using only a subset of Japanese ultra-orca-boros-en-ja items to enhance JA performance (as SlimOrca from the first step is mostly EN) ([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview)) 3. Finally, the model was tuned using a DPOTrainer on a small subset of ultrafeedback (EN) and our own JA DPO dataset which uses gpt-4 outputs as the chosen values and outputs from stage 1's prelim model as rejected values. ([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) During our training process, we also gained some key insights on [why some existing Japanese models seem to underperform](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets#analysis) even versus models that have no additional JA training, and we hope that sharing this analysis will be useful to other teams developing Japanese language models. While we need to explore this further, as an experimental validation, we applied a version of our fine-tuning set onto an existing base model ("Gamma 7B") and the initial JA MT-Bench results suggests that we can drastically increase functional performance with our tuning approach: | Model | Score | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## Performance Throughout our training, we did extensive human evaluation for each model to cross-validate our model performance, and we are currently conducting ongoing larger scale manual head-to-head testing between models. Our intention is open up and scale this data collection as we further develop our tools. For more information and updates, please see our [project wiki](https://github.com/AUGMXNT/shisa/wiki). While we believe [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) is a useful metric for our [base model](https://huggingface.co/augmxnt/shisa-base-7b-v1), and it was extremely useful during our tuning process for initial validations, as our fine-tune training includes a percentage of the benchmark train splits, we provide these llm-jp-eval results primarily as a point of interest: | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(We run a [slightly modified llm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) to support testing of Qwen and to emit a `bos_token` if available)* For our final model, since it's customary to include benchmarks, we've used Stability AI Japan's [Japanese MT-Bench](https://github.com/Stability-AI/FastChat) as a more representative test of our model's capabilities. For [our JA MT-Bench testing](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable) we use a Japanese prompt ("あなたは圹立぀アシスタントです。") as well as `--num-choices 4` in an effort to reduce sampling variability, however we've still observed regular 0.5+ point (and sometimes even greater swings) between generations, as well as issues with default prompts and parameters when testing, so again, we'd urge caution in over-interpreting these scores and treating them as more of a probabilistic directional indicator, rather than a definitive score or ranking: | Benchmark | Score | | ----------- | ----- | | JA MT-Bench | 5.02 | | MT-Bench | 5.71 | There is an [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard), but as JA MT-Bench is still under development, for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by `gpt-4-0613`): | Model | Score | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.02** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(Marked JA MT-Bench results in this section are [sourced from shi3z](https://note.com/shi3zblog/n/n6b2ac5874021))* ## Limitations Although our model demonstrates a reasonably high level of Japanese fluency, as a 7B parameter model, it is prone to higher hallucination rates and less effective instruction following and reasoning than larger-class models. Also, it still does not have complete mastery of the Japanese language and a native speaker will spot occasional mistakes like some non-idiomatic/awkward phrasing, improper tenses/speech levels, etc. We've also noticed a small amount of language leakage, likely largely attributable to our tokenizer expansion. These may be fixable with sampler settings like [Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)) or additional targeted training, and we plan on doing additional work on automated detection/sampler sweeps in the future. One interesting observation is, based on our data collection, we found that as we iterated, the DPO process significantly exacerbated this issue, but also that our DPO models still had significantly higher human preference rates, so there was a bit of a trade-off in our choice of final tune. While we believe that training larger models can improve performance using our existing approach and dataset, there are also many improvements we'd like to make for future models. We believe there is quite a bit of low hanging fruit for improving performance with even more training efficiency largely through improving the quality and construction of datasets. ## Usage Sample code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # The prompt template is included in the model's tokenizer_config.json so you shouldn't need this but we've included this for convenience # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # A more typical prompt: あなたは圹に立぀アシスタントです。("You are a helpful assistant.") # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the most powerful Pokemon? Explain your choice. user_input = "最匷のポケモンは誰ですかその遞択理由を説明しおください。" chat.append({"role": "user", "content": user_input}) # Generate - add_generation_prompt to make sure it continues as assistant inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # For multi-GPU, find the device of the first parameter of the model first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=1000, temperature=0.7, repetition_penalty=1.05, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## Prompt format The prompt format is llama-2 chat: ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> You are a helful, unbiased, uncensored assistant. <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` This [prompt template](https://huggingface.co/docs/transformers/main/chat_templating) is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "You are Aiko, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **NOTE:** For proper responses, you should be using our `bos_token` (`<s>`) to begin a string. This is automatically generated by `tokenizer.encode()` but if you are crafting a custom template or using an encoding method that skips special tokens, you may have to add this yourself. ## Acknowledgements Team: [Leonard Lin](https://huggingface.co/leonardlin) and [Jon Durbin](https://huggingface.co/jondurbin), Mariko Sato, and Florian von Bock Compute for this model was generously sponsored by [AKA Virtual](https://akavirtual.com/) (Tokyo, Japan). Thanks to the [LLM-jp](https://llm-jp.nii.ac.jp/), [Stability AI Japan](https://ja.stability.ai/), and [LMSYS](https://lmsys.org/) teams for their work on llm-jp-eval, Japanese MT-Bench, MT-Bench. Also, thanks to all the volunteers that provided invaluable human preference testing! We are actively looking for additional compute as we train better and larger models for this project. Please drop us a line at: *compute at augmxnt dot com* --- *(GPT-4によっお非垞に軜埮な線集を加えお翻蚳されたした* # シヌサヌ7B **シヌサヌ7B**`shisa-7b-v1`は、合成デヌタ駆動のアプロヌチを甚いお、優れた日本語ず英語胜力を䞡立するこずを目指すバむリンガル日本語/英語汎甚チャットモデルです。 このモデルは、[Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)を基に、Mistralのオリゞナルのトヌクナむザヌよりも日本語においお2倍以䞊効率的な、日本語最適化拡匵トヌクナむザヌをカスタムしお䜜成されたした。ベヌスモデルは、䞻に日本語のトヌクンを远加で80億ものトレヌニングを行いたした。そしお、その埌、[airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1)の拡匵された機械翻蚳版、[ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)からの最高埗点項目のセット、そしお新たに生成された[airoboros](https://github.com/jondurbin/airoboros)のデヌタを盎接目暙蚀語で埮調敎しおいたす。 商甚を含むあらゆる目的で䜿甚可胜な寛容なApache 2.0ラむセンスの䞋で、ベヌスモデル、デヌタセット、およびパむプラむンコヌドも公開しおいたす * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - 拡匵トヌクナむザヌず远加の日本語プレトレヌニングを備えた圓方のベヌスモデル * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - 圓方のプレトレヌニングデヌタセット * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/jondurbin/ultra-orca-boros-en-ja) - 合成生成、機械翻蚳、プログラムによる怜蚌によるJA/EN埮調敎デヌタセット * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - ultrafeedbackからのDPOペアの小さなサブセットず、遞択された倀ずしおGPT-4生成項目を䜿甚した日本語のDPOペア、そしお初期の7ビリオンモデルの出力を华䞋した倀 * [シヌサヌリポゞトリ](https://github.com/AUGMXNT/shisa) - 翻蚳、デヌタセットの生成、トレヌニング、評䟡コヌドなどが含たれおいたす さらに、アブレヌション結果、テスト方法論、䞻芁な調査結果など、プロセスの詳现や拡匵ラむトアップを公開する過皋にありたす。これは[圓プロゞェクトwiki](https://github.com/AUGMXNT/shisa/wiki)で研究者に興味深い情報ずしお提䟛されおいたす。 ## 埮調敎 最初の盎感は、最良の[既存の公開日本語トレヌニングセット](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets)を䜿甚しお、それらを組み入れるこずでより匷力な日本語モデルを䜜成できるかどうかを芋るこずでした。しかし、初期の怜蚎ずテストの埌、自らの合成デヌタセットの翻蚳/生成にだけ焊点を圓おるこずで、短期間のトレヌニングで優れた結果を埗るこずができるず結論付けたした。 私たちは耇数の翻蚳ツヌルを比范し、手動でレビュヌを行った結果、`gpt-4`がほが垞に最高品質の翻蚳を提䟛しながら、Googleの `text-bison-32k`は品質、コスト、スルヌプットのバランスが良いず刀断したした。耇数の繰り返しを経お、無効な翻蚳のフラグ付けずフィルタリング、必芁に応じた再翻蚳ずバックフィルのための远加のアルゎリズムを含むように、翻蚳アプロヌチを掗緎させたした。 たた、このプロゞェクトを[NEFTune](https://arxiv.org/abs/2310.05914)ず[DPO](https://arxiv.org/abs/2305.18290)トレヌニングを取り入れるなど、新しい技術を適甚する機䌚ずもなりたした。 v1リリヌスのために、私たちは倧量の人間の嗜奜テスト数千の生成ず耇数ラりンドのペアワむズ比范に基づいおリリヌス候補から遞択したした。私たちは、勝ち/負け/匕き分けず、[BTLモデル](https://datascience.oneoffcoder.com/btl-model.html)iLSRを䜿甚しお[choix](https://github.com/lucasmaystre/choix)で結果を分析したした。 最良の候補モデルは、3ステップのプロセスで埮調敎されたした 1. 最初に、モデルは`ultra-orca-boros-en-ja`ずSlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview))で埮調敎されたした。 2. 次に、日本語のパフォヌマンスを向䞊させるためにultra-orca-boros-en-jaの䞀郚を䜿甚しお1回远加の゚ポックを远加したした最初の段階のSlimOrcaは䞻に英語([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview))。 3. 最埌に、モデルは小芏暡のultrafeedback英語ず自身のJA DPOデヌタセットに察しおDPOTrainerを䜿甚しお調敎されたした。ここで䜿甚したJA DPOデヌタセットはgpt-4の出力を遞出された倀ずし、ステヌゞ1の予備モデルの出力を华䞋した倀ずしたす。([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) 私たちのトレヌニングプロセス䞭に、䜕故䞀郚の既存の日本語モデルが、远加の日本語トレヌニングがないモデルに察しおもパフォヌマンスが䜎いのか、ずいういく぀かの重芁な掞察を埗るこずができたした。この分析結果を共有すれば、他のチヌムが日本語モデルを開発する際の参考になるず思いたす。 さらに探求する必芁はありたすが、実隓的な怜蚌ずしお、埮調敎セットのバヌゞョンを既存のベヌスモデル"Gamma 7B"に適甚し、初期のJA MT-Bench結果が瀺すように、私たちのチュヌニングアプロヌチで機胜性のパフォヌマンスを劇的に向䞊させるこずができたした | モデル | スコア | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## パフォヌマンス トレヌニング党䜓を通じお、各モデルに぀いお人間による評䟡を行い、モデルのパフォヌマンスを盞互に怜蚌したした。珟圚、モデル間の手動での比范テストを倧芏暡に行っおいたす。私たちの目指すずころは、ツヌルをさらに発展させるこずでこのデヌタ収集を公開しお拡匵するこずです。詳现ず曎新情報に぀いおは、[プロゞェクトwiki](https://github.com/AUGMXNT/shisa/wiki) をご芧ください。 我々は、[llm-jp-eval](https://github.com/llm-jp/llm-jp-eval)は、私たちの[基本モデル](https://huggingface.co/augmxnt/shisa-base-7b-v1)の有甚な指暙であり、初期の怜蚌のための埮調敎プロセス䞭に非垞に圹立぀ず考えおいたすが、埮調敎トレヌニングにはベンチマヌクのトレむン分割の䞀郚が含たれおいるため、私たちが提䟛するllm-jp-evalの結果は䞻に興味深いポむントずしお提䟛しおいたす | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(Qwenのテストをサポヌトし、可胜であれば`bos_token`を発行するために、[わずかに修正したllm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) を実行しおいたす)* 最終モデルに぀いおは、ベンチマヌクを含めるのが䞀般的なため、私たちのモデルの胜力をより代衚的にテストするために、Stability AI Japanの[Japanese MT-Bench](https://github.com/Stability-AI/FastChat)を䜿甚したした。[私たちのJA MT-Bench テスト](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable)では、サンプリング倉動を枛らすために、日本語のプロンプト"あなたは圹立぀アシスタントです。"ず `--num-choices 4`を䜿甚しおいたすが、生成間で0.5+点時にはそれ以䞊の倉動を頻繁に芳察し、テスト時のデフォルトのプロンプトずパラメヌタに問題があったずいう経隓から、これらのスコアを過床に解釈するこずには泚意が必芁で、これらを確定的なスコアやランキングではなく、より確率的な方向指暙ずしお扱うこずをお勧めしたす | ベンチマヌク | スコア | | ----------- | ----- | | JA MT-Bench | 5.02 | | MT-Bench | 5.71 | [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)がありたすが、JA MT-Benchはただ開発䞭であるため、䟿宜䞊、他のモデルのJA MT-Benchスコアずの比范を瀺したす私たちのスコアは`gpt-4-0613`によっお評䟡されたした | モデル | スコア | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.02** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(このセクションでマヌクされたJA MT-Benchの結果は[shi3zから匕甚](https://note.com/shi3zblog/n/n6b2ac5874021)したした)* ## 制限事項 圓モデルは十分な日本語の流暢さを瀺しおいたすが、7Bパラメヌタのモデルずしおは、より倧きなクラスのモデルに比べお幻芚率が高く、指瀺の远跡や掚論が効果的でない傟向がありたす。たた、日本語の完党な習埗はただ達しおおらず、ネむティブスピヌカヌはたたに非慣甚的/違和感のある衚珟や䞍適切な時制/話し蚀葉のレベルなどの間違いを芋぀けるこずがありたす。 たた、私たちのトヌクナむザヌの拡匵に倧いに起因する可胜性が高いが、わずかな蚀語リヌクを確認しおいたす。これらは[Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)などのサンプラヌ蚭定や远加のタヌゲット指向型トレヌニングで修正可胜な可胜性があり、今埌、自動怜出/サンプラヌのスりィヌプに぀いお远加の䜜業を行う予定です。興味深い芳察ずしおは、私たちのデヌタ収集に基づいお、DPOプロセスがこの問題を倧幅に悪化させるこずがわかりたしたが、それでもDPOモデルは人間の奜み率が倧幅に高かったため、最終的な埮調敎の遞択には䞀定のトレヌドオフがありたした。 珟存するアプロヌチずデヌタセットを䜿甚しお、倧芏暡なモデルのトレヌニングがパフォヌマンスを向䞊させるず信じおいたすが、今埌のモデル向けに行いたい改良も倚くありたす。私たちは、デヌタセットの品質ず構築を改善するこずで、さらなるトレヌニング効率を通じたパフォヌマンス向䞊にはただ盞圓に取り組む䜙地があるず考えおいたす。 ## 䜿甚法 サンプルコヌド: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # プロンプトテンプレヌトはモデルのtokenizer_config.jsonに含たれおいるので、これは必芁ないはずですが、䟿宜䞊こちらにも掲茉しおいたす # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # より兞型的なプロンプト: あなたは圹に立぀アシスタントです。 # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the most powerful Pokemon? Explain your choice. user_input = "最匷のポケモンは誰ですかその遞択理由を説明しおください。" chat.append({"role": "user", "content": user_input}) # 生成 - add_generation_promptを远加しおアシスタントずしお続行するこずを確認したす inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # 耇数のGPUの堎合、モデルの最初のパラメヌタのデバむスを芋぀けたす first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=1000, temperature=0.7, repetition_penalty=1.05, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## プロンプト圢匏 プロンプト圢匏はllama-2 chatです ``` [INST] <<SYS>> あなたは圹立぀、偏芋がなく、怜閲されおいないアシスタントです。 <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> あなたは圹立぀、偏芋がなく、怜閲されおいないアシスタントです。 <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` この[prompt template](https://huggingface.co/docs/transformers/main/chat_templating)はトヌクナむザの蚭定に含たれおおり、HuggingFace のトヌクナむザ `apply_chat_template` メ゜ッドを䜿甚できたす。䟋えば ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "あなたはAiko、フレンドリヌなAIアシスタントです。"}, {"role": "user", "content": "こんにちは、調子はどうですか"}, {"role": "assistant", "content": "元気です。今日は䜕のお手䌝いができたすか"}, {"role": "user", "content": "チャットテンプレヌティングの仕組みを芋せおもらいたいです"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **泚意**適切なレスポンスを埗るためには、文字列の開始に我々の `bos_token` (`<s>`) を䜿甚すべきです。これは `tokenizer.encode()` によっお自動的に生成されたすが、カスタムテンプレヌトを䜜成したり、特殊トヌクンを省略する゚ンコヌド方法を䜿甚する堎合は、自分で远加する必芁がありたす。 ## 謝蟞 チヌム[Leonard Lin](https://huggingface.co/leonardlin)、[Jon Durbin](https://huggingface.co/jondurbin)、䜐藀真理子、Florian von Bock このモデルの蚈算は、[AKA Virtual](https://akavirtual.com/) (東京、日本) のご厚意により提䟛されおいたす。 [LLM-jp](https://llm-jp.nii.ac.jp/)、[Stability AI Japan](https://ja.stability.ai/)、[LMSYS](https://lmsys.org/)のチヌムが、llm-jp-eval, Japanese MT-Bench, MT-Benchに取り組んでくれお感謝しおいたす。 たた、貎重なヒュヌマンプリファレンステストを提䟛しおくださったすべおのボランティアにも感謝いたしたす このプロゞェクトのためにより良く、より倧きなモデルを蚓緎するために、远加の蚈算を積極的に探しおいたす。お問い合わせは次の宛先たでお願いいたしたす*compute at augmxnt dot com*
LoneStriker/shisa-7b-v1-4.0bpw-h6-exl2
LoneStriker
2023-12-07T18:54:26Z
9
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "ja", "en", "dataset:augmxnt/ultra-orca-boros-en-ja-v1", "dataset:Open-Orca/SlimOrca", "dataset:augmxnt/shisa-en-ja-dpo-v1", "arxiv:2310.05914", "arxiv:2305.18290", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-07T17:59:51Z
--- license: apache-2.0 language: - ja - en datasets: - augmxnt/ultra-orca-boros-en-ja-v1 - Open-Orca/SlimOrca - augmxnt/shisa-en-ja-dpo-v1 --- # Shisa 7B ![Shi-chan and Sa-chan/シヌちゃんずサヌちゃん](https://huggingface.co/augmxnt/shisa-7b-v1/resolve/main/shisa.webp) **Shisa 7B** (`shisa-7b-v1`) is a bilingual Japanese and English (JA/EN) general-purpose chat model that aims to achieve strong Japanese language performance while retaining robust English capabilities, using a synthetic-data driven approach. This model is based on [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) with a custom JA-optimized extended tokenizer that is >2X more efficient in Japanese than Mistral's original tokenizer. The base model was pre-trained for an additional 8B primarily Japanese tokens. It was then subsequently fine-tuned with an expanded, machine-translated version of [airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1), a set of the highest-scoring items from [ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized), and additional freshly generated [airoboros](https://github.com/jondurbin/airoboros) data directly to the target languages. We also release our base model, datasets, and pipeline code under a permissive Apache 2.0 license which can be used for any purpose, commercial or otherwise: * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - our base model w/ an extended tokenizer and additional JA pre-training * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - our pre-training data set * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/augmxnt/ultra-orca-boros-en-ja-v1) - a synthetically generated, machine-translated, programmatically validated JA/EN fine-tuning dataset * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - Small subset of DPO pairs from ultrafeedback, along with JA DPO pairs using GPT-4 generated items as the chosen value, and outputs from our preliminary 7b model as the rejected values * [Shisa repository](https://github.com/AUGMXNT/shisa) - this includes our translation, dataset generation, training, and evaluation code Moreover, we are in the process of publishing extended writeups and more details of our process, including ablation results, testing methodology, and key findings [on our project wiki](https://github.com/AUGMXNT/shisa/wiki) that may be of interest to fellow researchers. ## Fine-Tuning Our original intuition was to see if we could create a stronger Japanese model using the best [existing public JA training sets](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets) and incorporating them. After initial review and testing, however, we decided that focusing solely on translation/generation of our own synthetic datasets could yield superior results with less training. We compared multiple translation tools and, via manual review, judged that while `gpt-4` almost always delivered the highest quality translations, Google's `text-bison-32k` was a good balance of quality, cost and throughput. Over various iterations, we refined our translation approach to include some additional algorithms for flagging and filtering invalid translations, re-translating and backfilling as necessary. We also took this project as an opportunity to apply some newer techniques such as incorporating [NEFTune](https://arxiv.org/abs/2310.05914) and [DPO](https://arxiv.org/abs/2305.18290) training. For our v1 release, we picked from our release candidates based on a significant amount of human preference testing (thousands of generations and multiple rounds of pairwise comparisons). We analyzed our results with both win/loss/draw and [BTL modeling](https://datascience.oneoffcoder.com/btl-model.html) (iLSR) using [choix](https://github.com/lucasmaystre/choix)). The best candidate model was fine-tuned in a 3-step process: 1. First, the model was fine-tuned on `ultra-orca-boros-en-ja` and SlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview)) 2. Next, we add one additional epoch at performed using only a subset of Japanese ultra-orca-boros-en-ja items to enhance JA performance (as SlimOrca from the first step is mostly EN) ([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview)) 3. Finally, the model was tuned using a DPOTrainer on a small subset of ultrafeedback (EN) and our own JA DPO dataset which uses gpt-4 outputs as the chosen values and outputs from stage 1's prelim model as rejected values. ([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) During our training process, we also gained some key insights on [why some existing Japanese models seem to underperform](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets#analysis) even versus models that have no additional JA training, and we hope that sharing this analysis will be useful to other teams developing Japanese language models. While we need to explore this further, as an experimental validation, we applied a version of our fine-tuning set onto an existing base model ("Gamma 7B") and the initial JA MT-Bench results suggests that we can drastically increase functional performance with our tuning approach: | Model | Score | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## Performance Throughout our training, we did extensive human evaluation for each model to cross-validate our model performance, and we are currently conducting ongoing larger scale manual head-to-head testing between models. Our intention is open up and scale this data collection as we further develop our tools. For more information and updates, please see our [project wiki](https://github.com/AUGMXNT/shisa/wiki). While we believe [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) is a useful metric for our [base model](https://huggingface.co/augmxnt/shisa-base-7b-v1), and it was extremely useful during our tuning process for initial validations, as our fine-tune training includes a percentage of the benchmark train splits, we provide these llm-jp-eval results primarily as a point of interest: | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(We run a [slightly modified llm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) to support testing of Qwen and to emit a `bos_token` if available)* For our final model, since it's customary to include benchmarks, we've used Stability AI Japan's [Japanese MT-Bench](https://github.com/Stability-AI/FastChat) as a more representative test of our model's capabilities. For [our JA MT-Bench testing](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable) we use a Japanese prompt ("あなたは圹立぀アシスタントです。") as well as `--num-choices 4` in an effort to reduce sampling variability, however we've still observed regular 0.5+ point (and sometimes even greater swings) between generations, as well as issues with default prompts and parameters when testing, so again, we'd urge caution in over-interpreting these scores and treating them as more of a probabilistic directional indicator, rather than a definitive score or ranking: | Benchmark | Score | | ----------- | ----- | | JA MT-Bench | 5.02 | | MT-Bench | 5.71 | There is an [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard), but as JA MT-Bench is still under development, for convenience, here is a comparison of the JA MT-Bench scores of some other models (our scores were rated by `gpt-4-0613`): | Model | Score | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.02** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(Marked JA MT-Bench results in this section are [sourced from shi3z](https://note.com/shi3zblog/n/n6b2ac5874021))* ## Limitations Although our model demonstrates a reasonably high level of Japanese fluency, as a 7B parameter model, it is prone to higher hallucination rates and less effective instruction following and reasoning than larger-class models. Also, it still does not have complete mastery of the Japanese language and a native speaker will spot occasional mistakes like some non-idiomatic/awkward phrasing, improper tenses/speech levels, etc. We've also noticed a small amount of language leakage, likely largely attributable to our tokenizer expansion. These may be fixable with sampler settings like [Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)) or additional targeted training, and we plan on doing additional work on automated detection/sampler sweeps in the future. One interesting observation is, based on our data collection, we found that as we iterated, the DPO process significantly exacerbated this issue, but also that our DPO models still had significantly higher human preference rates, so there was a bit of a trade-off in our choice of final tune. While we believe that training larger models can improve performance using our existing approach and dataset, there are also many improvements we'd like to make for future models. We believe there is quite a bit of low hanging fruit for improving performance with even more training efficiency largely through improving the quality and construction of datasets. ## Usage Sample code: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # The prompt template is included in the model's tokenizer_config.json so you shouldn't need this but we've included this for convenience # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # A more typical prompt: あなたは圹に立぀アシスタントです。("You are a helpful assistant.") # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the most powerful Pokemon? Explain your choice. user_input = "最匷のポケモンは誰ですかその遞択理由を説明しおください。" chat.append({"role": "user", "content": user_input}) # Generate - add_generation_prompt to make sure it continues as assistant inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # For multi-GPU, find the device of the first parameter of the model first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=1000, temperature=0.7, repetition_penalty=1.05, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## Prompt format The prompt format is llama-2 chat: ``` [INST] <<SYS>> You are a helpful, unbiased, uncensored assistant. <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> You are a helful, unbiased, uncensored assistant. <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` This [prompt template](https://huggingface.co/docs/transformers/main/chat_templating) is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.: ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "You are Aiko, a friendly AI assistant."}, {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **NOTE:** For proper responses, you should be using our `bos_token` (`<s>`) to begin a string. This is automatically generated by `tokenizer.encode()` but if you are crafting a custom template or using an encoding method that skips special tokens, you may have to add this yourself. ## Acknowledgements Team: [Leonard Lin](https://huggingface.co/leonardlin) and [Jon Durbin](https://huggingface.co/jondurbin), Mariko Sato, and Florian von Bock Compute for this model was generously sponsored by [AKA Virtual](https://akavirtual.com/) (Tokyo, Japan). Thanks to the [LLM-jp](https://llm-jp.nii.ac.jp/), [Stability AI Japan](https://ja.stability.ai/), and [LMSYS](https://lmsys.org/) teams for their work on llm-jp-eval, Japanese MT-Bench, MT-Bench. Also, thanks to all the volunteers that provided invaluable human preference testing! We are actively looking for additional compute as we train better and larger models for this project. Please drop us a line at: *compute at augmxnt dot com* --- *(GPT-4によっお非垞に軜埮な線集を加えお翻蚳されたした* # シヌサヌ7B **シヌサヌ7B**`shisa-7b-v1`は、合成デヌタ駆動のアプロヌチを甚いお、優れた日本語ず英語胜力を䞡立するこずを目指すバむリンガル日本語/英語汎甚チャットモデルです。 このモデルは、[Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)を基に、Mistralのオリゞナルのトヌクナむザヌよりも日本語においお2倍以䞊効率的な、日本語最適化拡匵トヌクナむザヌをカスタムしお䜜成されたした。ベヌスモデルは、䞻に日本語のトヌクンを远加で80億ものトレヌニングを行いたした。そしお、その埌、[airoboros-3.1](https://huggingface.co/datasets/jondurbin/airoboros-3.1)の拡匵された機械翻蚳版、[ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)からの最高埗点項目のセット、そしお新たに生成された[airoboros](https://github.com/jondurbin/airoboros)のデヌタを盎接目暙蚀語で埮調敎しおいたす。 商甚を含むあらゆる目的で䜿甚可胜な寛容なApache 2.0ラむセンスの䞋で、ベヌスモデル、デヌタセット、およびパむプラむンコヌドも公開しおいたす * [shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) - 拡匵トヌクナむザヌず远加の日本語プレトレヌニングを備えた圓方のベヌスモデル * [shisa-pretrain-en-ja-v1](https://huggingface.co/datasets/augmxnt/shisa-pretrain-en-ja-v1) - 圓方のプレトレヌニングデヌタセット * [ultra-orca-boros-en-ja](https://huggingface.co/datasets/jondurbin/ultra-orca-boros-en-ja) - 合成生成、機械翻蚳、プログラムによる怜蚌によるJA/EN埮調敎デヌタセット * [shisa-en-ja-dpo-v1](https://huggingface.co/datasets/augmxnt/shisa-en-ja-dpo-v1) - ultrafeedbackからのDPOペアの小さなサブセットず、遞択された倀ずしおGPT-4生成項目を䜿甚した日本語のDPOペア、そしお初期の7ビリオンモデルの出力を华䞋した倀 * [シヌサヌリポゞトリ](https://github.com/AUGMXNT/shisa) - 翻蚳、デヌタセットの生成、トレヌニング、評䟡コヌドなどが含たれおいたす さらに、アブレヌション結果、テスト方法論、䞻芁な調査結果など、プロセスの詳现や拡匵ラむトアップを公開する過皋にありたす。これは[圓プロゞェクトwiki](https://github.com/AUGMXNT/shisa/wiki)で研究者に興味深い情報ずしお提䟛されおいたす。 ## 埮調敎 最初の盎感は、最良の[既存の公開日本語トレヌニングセット](https://github.com/AUGMXNT/shisa/wiki/A-Review-of-Public-Japanese-Training-Sets)を䜿甚しお、それらを組み入れるこずでより匷力な日本語モデルを䜜成できるかどうかを芋るこずでした。しかし、初期の怜蚎ずテストの埌、自らの合成デヌタセットの翻蚳/生成にだけ焊点を圓おるこずで、短期間のトレヌニングで優れた結果を埗るこずができるず結論付けたした。 私たちは耇数の翻蚳ツヌルを比范し、手動でレビュヌを行った結果、`gpt-4`がほが垞に最高品質の翻蚳を提䟛しながら、Googleの `text-bison-32k`は品質、コスト、スルヌプットのバランスが良いず刀断したした。耇数の繰り返しを経お、無効な翻蚳のフラグ付けずフィルタリング、必芁に応じた再翻蚳ずバックフィルのための远加のアルゎリズムを含むように、翻蚳アプロヌチを掗緎させたした。 たた、このプロゞェクトを[NEFTune](https://arxiv.org/abs/2310.05914)ず[DPO](https://arxiv.org/abs/2305.18290)トレヌニングを取り入れるなど、新しい技術を適甚する機䌚ずもなりたした。 v1リリヌスのために、私たちは倧量の人間の嗜奜テスト数千の生成ず耇数ラりンドのペアワむズ比范に基づいおリリヌス候補から遞択したした。私たちは、勝ち/負け/匕き分けず、[BTLモデル](https://datascience.oneoffcoder.com/btl-model.html)iLSRを䜿甚しお[choix](https://github.com/lucasmaystre/choix)で結果を分析したした。 最良の候補モデルは、3ステップのプロセスで埮調敎されたした 1. 最初に、モデルは`ultra-orca-boros-en-ja`ずSlimOrca ([WandB Log](https://wandb.ai/jondurbin/shisa-7b-v1/runs/k8pfog9d/overview))で埮調敎されたした。 2. 次に、日本語のパフォヌマンスを向䞊させるためにultra-orca-boros-en-jaの䞀郚を䜿甚しお1回远加の゚ポックを远加したした最初の段階のSlimOrcaは䞻に英語([WandB Log](https://wandb.ai/jondurbin/shisa-mega-7b-v1.1/runs/dopsr0o7/overview))。 3. 最埌に、モデルは小芏暡のultrafeedback英語ず自身のJA DPOデヌタセットに察しおDPOTrainerを䜿甚しお調敎されたした。ここで䜿甚したJA DPOデヌタセットはgpt-4の出力を遞出された倀ずし、ステヌゞ1の予備モデルの出力を华䞋した倀ずしたす。([WandDB Log](https://wandb.ai/jondurbin/shisa-mega-dpo-7b-v1.1) ) 私たちのトレヌニングプロセス䞭に、䜕故䞀郚の既存の日本語モデルが、远加の日本語トレヌニングがないモデルに察しおもパフォヌマンスが䜎いのか、ずいういく぀かの重芁な掞察を埗るこずができたした。この分析結果を共有すれば、他のチヌムが日本語モデルを開発する際の参考になるず思いたす。 さらに探求する必芁はありたすが、実隓的な怜蚌ずしお、埮調敎セットのバヌゞョンを既存のベヌスモデル"Gamma 7B"に適甚し、初期のJA MT-Bench結果が瀺すように、私たちのチュヌニングアプロヌチで機胜性のパフォヌマンスを劇的に向䞊させるこずができたした | モデル | スコア | | ------------------------------ | ----- | | shisa-gamma-7b-allsources-v0.4 | 5.65 | | ja-stablelm-instruct-gamma-7b* | 4.01 | ## パフォヌマンス トレヌニング党䜓を通じお、各モデルに぀いお人間による評䟡を行い、モデルのパフォヌマンスを盞互に怜蚌したした。珟圚、モデル間の手動での比范テストを倧芏暡に行っおいたす。私たちの目指すずころは、ツヌルをさらに発展させるこずでこのデヌタ収集を公開しお拡匵するこずです。詳现ず曎新情報に぀いおは、[プロゞェクトwiki](https://github.com/AUGMXNT/shisa/wiki) をご芧ください。 我々は、[llm-jp-eval](https://github.com/llm-jp/llm-jp-eval)は、私たちの[基本モデル](https://huggingface.co/augmxnt/shisa-base-7b-v1)の有甚な指暙であり、初期の怜蚌のための埮調敎プロセス䞭に非垞に圹立぀ず考えおいたすが、埮調敎トレヌニングにはベンチマヌクのトレむン分割の䞀郚が含たれおいるため、私たちが提䟛するllm-jp-evalの結果は䞻に興味深いポむントずしお提䟛しおいたす | AVR | MC | NLI | QA | RC | |-------|-------|-------|-------|-------| | 0.7480| 0.8900| 0.8040| 0.4153| 0.8825| *(Qwenのテストをサポヌトし、可胜であれば`bos_token`を発行するために、[わずかに修正したllm-jp-eval](https://github.com/llm-jp/llm-jp-eval/compare/main...AUGMXNT:llm-jp-eval:main) を実行しおいたす)* 最終モデルに぀いおは、ベンチマヌクを含めるのが䞀般的なため、私たちのモデルの胜力をより代衚的にテストするために、Stability AI Japanの[Japanese MT-Bench](https://github.com/Stability-AI/FastChat)を䜿甚したした。[私たちのJA MT-Bench テスト](https://github.com/Stability-AI/FastChat/compare/jp-stable...AUGMXNT:FastChat:jp-stable)では、サンプリング倉動を枛らすために、日本語のプロンプト"あなたは圹立぀アシスタントです。"ず `--num-choices 4`を䜿甚しおいたすが、生成間で0.5+点時にはそれ以䞊の倉動を頻繁に芳察し、テスト時のデフォルトのプロンプトずパラメヌタに問題があったずいう経隓から、これらのスコアを過床に解釈するこずには泚意が必芁で、これらを確定的なスコアやランキングではなく、より確率的な方向指暙ずしお扱うこずをお勧めしたす | ベンチマヌク | スコア | | ----------- | ----- | | JA MT-Bench | 5.02 | | MT-Bench | 5.71 | [MT-Bench Leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)がありたすが、JA MT-Benchはただ開発䞭であるため、䟿宜䞊、他のモデルのJA MT-Benchスコアずの比范を瀺したす私たちのスコアは`gpt-4-0613`によっお評䟡されたした | モデル | スコア | | ------------------------------------------------- | ---- | | gpt-4-0613 | 9.40 | | gpt-4-1106-preview | 9.17 | | gpt-3.5-turbo* | 8.41 | | Qwen-14B-Chat | 7.47 | | **shisa-7b-v1** | **5.02** | | ELYZA-japanese-Llama-2-7b-fast-instruct* | 4.86 | | ja-stablelm-instruct-gamma-7b* | 4.01 | | japanese-stablelm-instruct-alpha-7b* | 2.74 | | Mistral-7B-OpenOrca-ja* | 2.23 | | youri-7b-chat* | 2.00 | | Mistral-7B-Instruct-v0.1* | 1.78 | | llm-jp-13b-instruct-full-jaster-dolly-oasst-v1.0* | 1.31 | *(このセクションでマヌクされたJA MT-Benchの結果は[shi3zから匕甚](https://note.com/shi3zblog/n/n6b2ac5874021)したした)* ## 制限事項 圓モデルは十分な日本語の流暢さを瀺しおいたすが、7Bパラメヌタのモデルずしおは、より倧きなクラスのモデルに比べお幻芚率が高く、指瀺の远跡や掚論が効果的でない傟向がありたす。たた、日本語の完党な習埗はただ達しおおらず、ネむティブスピヌカヌはたたに非慣甚的/違和感のある衚珟や䞍適切な時制/話し蚀葉のレベルなどの間違いを芋぀けるこずがありたす。 たた、私たちのトヌクナむザヌの拡匵に倧いに起因する可胜性が高いが、わずかな蚀語リヌクを確認しおいたす。これらは[Min P](https://www.reddit.com/r/LocalLLaMA/comments/17vonjo/your_settings_are_probably_hurting_your_model_why/)などのサンプラヌ蚭定や远加のタヌゲット指向型トレヌニングで修正可胜な可胜性があり、今埌、自動怜出/サンプラヌのスりィヌプに぀いお远加の䜜業を行う予定です。興味深い芳察ずしおは、私たちのデヌタ収集に基づいお、DPOプロセスがこの問題を倧幅に悪化させるこずがわかりたしたが、それでもDPOモデルは人間の奜み率が倧幅に高かったため、最終的な埮調敎の遞択には䞀定のトレヌドオフがありたした。 珟存するアプロヌチずデヌタセットを䜿甚しお、倧芏暡なモデルのトレヌニングがパフォヌマンスを向䞊させるず信じおいたすが、今埌のモデル向けに行いたい改良も倚くありたす。私たちは、デヌタセットの品質ず構築を改善するこずで、さらなるトレヌニング効率を通じたパフォヌマンス向䞊にはただ盞圓に取り組む䜙地があるず考えおいたす。 ## 䜿甚法 サンプルコヌド: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer model_name = "augmxnt/shisa-7b-v1" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16, device_map="auto" ) streamer = TextStreamer(tokenizer, skip_prompt=True) # プロンプトテンプレヌトはモデルのtokenizer_config.jsonに含たれおいるので、これは必芁ないはずですが、䟿宜䞊こちらにも掲茉しおいたす # tokenizer.chat_template = ""{%- for idx in range(0, messages|length) -%}\n{%- if messages[idx]['role'] == 'user' -%}\n{%- if idx > 1 -%}\n{{- bos_token + '[INST] ' + messages[idx]['content'] + ' [/INST]' -}}\n{%- else -%}\n{{- messages[idx]['content'] + ' [/INST]' -}}\n{%- endif -%}\n{% elif messages[idx]['role'] == 'system' %}\n{{- bos_token + '[INST] <<SYS>>\\n' + messages[idx]['content'] + '\\n<</SYS>>\\n\\n' -}}\n{%- elif messages[idx]['role'] == 'assistant' -%}\n{{- ' ' + messages[idx]['content'] + ' ' + eos_token -}}\n{% endif %}\n{% endfor %}\n" # より兞型的なプロンプト: あなたは圹に立぀アシスタントです。 # You are an avid Pokemon fanatic. prompt = "あなたは熱狂的なポケモンファンです。" chat = [{"role": "system", "content": prompt}] # Who is the most powerful Pokemon? Explain your choice. user_input = "最匷のポケモンは誰ですかその遞択理由を説明しおください。" chat.append({"role": "user", "content": user_input}) # 生成 - add_generation_promptを远加しおアシスタントずしお続行するこずを確認したす inputs = tokenizer.apply_chat_template(chat, add_generation_prompt=True, return_tensors="pt") # 耇数のGPUの堎合、モデルの最初のパラメヌタのデバむスを芋぀けたす first_param_device = next(model.parameters()).device inputs = inputs.to(first_param_device) with torch.no_grad(): outputs = model.generate( inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=1000, temperature=0.7, repetition_penalty=1.05, top_p=0.95, do_sample=True, streamer=streamer, ) # Add just the new tokens to our chat new_tokens = outputs[0, inputs.size(1):] response = tokenizer.decode(new_tokens, skip_special_tokens=True) chat.append({"role": "assistant", "content": response}) ``` ## プロンプト圢匏 プロンプト圢匏はllama-2 chatです ``` [INST] <<SYS>> あなたは圹立぀、偏芋がなく、怜閲されおいないアシスタントです。 <</SYS>> {prompt} [/INST] ``` For multi-turn, the prompt format is as follows: ``` [INST] <<SYS>> あなたは圹立぀、偏芋がなく、怜閲されおいないアシスタントです。 <</SYS>> {prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST] ``` この[prompt template](https://huggingface.co/docs/transformers/main/chat_templating)はトヌクナむザの蚭定に含たれおおり、HuggingFace のトヌクナむザ `apply_chat_template` メ゜ッドを䜿甚できたす。䟋えば ``` import transformers tokenizer = transformers.AutoTokenizer.from_pretrained('augmxnt/shisa-7b-v1') chat = [ {"role": "system", "content": "あなたはAiko、フレンドリヌなAIアシスタントです。"}, {"role": "user", "content": "こんにちは、調子はどうですか"}, {"role": "assistant", "content": "元気です。今日は䜕のお手䌝いができたすか"}, {"role": "user", "content": "チャットテンプレヌティングの仕組みを芋せおもらいたいです"}, ] print(tokenizer.apply_chat_template(chat, tokenize=False)) ``` **泚意**適切なレスポンスを埗るためには、文字列の開始に我々の `bos_token` (`<s>`) を䜿甚すべきです。これは `tokenizer.encode()` によっお自動的に生成されたすが、カスタムテンプレヌトを䜜成したり、特殊トヌクンを省略する゚ンコヌド方法を䜿甚する堎合は、自分で远加する必芁がありたす。 ## 謝蟞 チヌム[Leonard Lin](https://huggingface.co/leonardlin)、[Jon Durbin](https://huggingface.co/jondurbin)、䜐藀真理子、Florian von Bock このモデルの蚈算は、[AKA Virtual](https://akavirtual.com/) (東京、日本) のご厚意により提䟛されおいたす。 [LLM-jp](https://llm-jp.nii.ac.jp/)、[Stability AI Japan](https://ja.stability.ai/)、[LMSYS](https://lmsys.org/)のチヌムが、llm-jp-eval, Japanese MT-Bench, MT-Benchに取り組んでくれお感謝しおいたす。 たた、貎重なヒュヌマンプリファレンステストを提䟛しおくださったすべおのボランティアにも感謝いたしたす このプロゞェクトのためにより良く、より倧きなモデルを蚓緎するために、远加の蚈算を積極的に探しおいたす。お問い合わせは次の宛先たでお願いいたしたす*compute at augmxnt dot com*