modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
LarryAIDraw/kissShotAcerolaOrionHeartUnder_1
LarryAIDraw
2023-03-11T15:53:40Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-11T15:51:52Z
--- license: creativeml-openrail-m --- https://civitai.com/models/18255/kiss-shot-acerola-orion-heart-under-blade-oshino-shinobu-adult-monogatari-series-lora
Kentris/doom_health_gathering_supreme
Kentris
2023-03-11T15:48:25Z
0
0
sample-factory
[ "sample-factory", "deep-reinforcement-learning", "reinforcement-learning", "doom_health_gathering_supreme", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T15:20:21Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory - doom_health_gathering_supreme model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.56 +/- 5.02 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r atorre/SampleFactory-ppo-doom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=SampleFactory-ppo-doom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=SampleFactory-ppo-doom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1
faalbane
2023-03-11T15:36:27Z
37
0
diffusers
[ "diffusers", "tensorboard", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-11T15:35:29Z
--- license: creativeml-openrail-m tags: - text-to-image widget: - text: kk --- ### Kopper Kreations Custom Stable Diffusion (style) (v. 1.5) (21 photos) vv.1 Dreambooth model trained by faalbane with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts! Sample pictures of: kk (use that on your prompt) ![kk 0](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%281%29.jpg)![kk 1](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%282%29.jpg)![kk 2](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%283%29.jpg)![kk 3](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%284%29.jpg)![kk 4](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%285%29.jpg)![kk 5](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%286%29.jpg)![kk 6](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%287%29.jpg)![kk 7](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%288%29.jpg)![kk 8](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%289%29.jpg)![kk 9](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2810%29.jpg)![kk 10](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2811%29.jpg)![kk 11](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2812%29.jpg)![kk 12](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2813%29.jpg)![kk 13](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2814%29.jpg)![kk 14](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2815%29.jpg)![kk 15](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2816%29.jpg)![kk 16](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2817%29.jpg)![kk 17](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2818%29.jpg)![kk 18](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2819%29.jpg)![kk 19](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2820%29.jpg)![kk 20](https://huggingface.co/faalbane/kopper-kreations-custom-stable-diffusion-style-v-1-5-21-photos-vv-1/resolve/main/concept_images/kk_v1.5_512_1_%2821%29.jpg)
maayansharon/climate_text_classification_mini_model
maayansharon
2023-03-11T15:28:52Z
107
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-09T23:39:46Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: climate_text_classification_mini_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # climate_text_classification_mini_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [climate-tagging-labelled-datasets](https://huggingface.co/datasets/maayansharon/climate-tagging-labelled-datasets) dataset. It achieves the following results on the evaluation set: - Loss: 0.7516 - Precision: 0.7941 - Recall: 0.9643 - Accuracy: 0.8 - F1: {'f1': 0.8709677419354839} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:--------------------------:| | No log | 1.0 | 10 | 0.5469 | 0.875 | 0.75 | 0.75 | {'f1': 0.8076923076923077} | | No log | 2.0 | 20 | 0.7516 | 0.7941 | 0.9643 | 0.8 | {'f1': 0.8709677419354839} | ### Framework versions - Transformers 4.26.1 - Pytorch 1.7.0a0 - Datasets 2.9.0 - Tokenizers 0.13.2
ai-guru/lakhclean_mmmtrack_4bars_d-2048
ai-guru
2023-03-11T15:21:39Z
193
35
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "music-modeling", "music-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-04-17T17:24:51Z
--- tags: - gpt2 - text-generation - music-modeling - music-generation widget: - text: PIECE_START - text: PIECE_START PIECE_START TRACK_START INST=34 DENSITY=8 - text: PIECE_START TRACK_START INST=1 --- # GPT-2 for Music Language Models such as GPT-2 can be used for Music Generation. The idea is to represent pieces of music as texts, effectively reducing the task to Language Generation. This model is a rather small instance of GPT-2 trained the [Lakhclean dataset](https://colinraffel.com/projects/lmd/). The model generates 4 bars at a time at a 16th note resolution with 4/4 meter. If you want to contribute, if you want to say hello, if you want to know more, find me here: - https://www.linkedin.com/in/dr-tristan-behrens-734967a2/ - https://www.youtube.com/@drtristanbehrens - https://twitter.com/DrTBehrens - https://github.com/AI-Guru - https://huggingface.co/TristanBehrens - https://huggingface.co/ai-guru Run the model on Google Colab: https://colab.research.google.com/drive/1Mz-KJ8vX4Wylr4mzvgP-MclDwQJ06KSq?usp=sharing ## License You are free to use this model in any open-source context without charge. If you do so, please credit me. However, if you wish to use the model for commercial purposes, please contact me to discuss licensing terms. Depending on the specific use case, there may be fees associated with commercial use. I am open to negotiating the terms of the license to meet your needs and ensure that the model is used appropriately. Please feel free to reach out to me at your earliest convenience to discuss further. ## Model description The model is GPT-2 with 6 decoders and 8 attention heads each. The context length is 2048. The embedding dimensions are 512. ## Model family This model is part of a huge group of Transformers I have trained. Most of them are not publicly available. If you are interested in using andor licensing one of the models, please get in touch. ### Lakhclean These models were trained on roundabout 15K MIDI files (the same as the model you are viewing now) from the Lakhclean dataset. - lakhclean_mmmbar_4bars_d-2048: 4 bars resolution, bar inpainting, note density conditioning - lakhclean_mmmbar_8bars_d-2048: 8 bars resolution, bar inpainting, note density conditioning - lakhclean_mmmtrack_4bars_chords: 4 bars resolution, chord conditioning - lakhclean_mmmtrack_4bars_d-2048: 4 bars resolution, note density conditioning (this model) - lakhclean_mmmtrack_4bars_simple-2048: 4 bars resolution - lakhclean_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning ### Lakhfull These models were trained on roundabout 175K MIDI files from the Lakh dataset. - lakhfull_mmmtrack_4bars_d-2048: 4 bars resolution, note density conditioning (the big brother of this model) - lakhfull_mmmtrack_4bars_simple-2048: 4 bars resolution ### Metal These models were trained on roundabout 7K MIDI files from my own collections. They contain genre conditioning. - metal_mmmbar_4bars_d-2048: 4 bars resolution, bar inpainting, note density conditioning - metal_mmmbar_8bars_d-2048: 8 bars resolution, bar inpainting, note density conditioning - metal_mmmtrack_4bars_d-2048: 4 bars resolution, note density conditioning - metal_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning ### MetaMIDI Dataset genres These models were trained on genre-specific subsets of the MetaMIDI dataset. - mmd-baroque_mmmtrack_4bars_d-2048: 4 bars resolution, note density conditioning - mmd-baroque_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning - mmd-classical_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning - mmd-noncontemporary_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning - mmd-pop_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning - mmd-renaissance_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning ### MetaMIDI Dataset full These models were trained on roundabout 400K MIDI files from the MetaMIDI dataset. - mmd-full_mmmtrack_4bars_d-2048: 4 bars resolution, note density conditioning - mmd-full_mmmtrack_8bars_d-2048: 8 bars resolution, note density conditioning - mmd-full_mmmtrack_4bars_chords-d-2048: 4 bars resolution, note density conditioning, chord conditioning (most powerful model in the entire group) ## Intended uses & limitations This model is just a proof of concept. It shows that HuggingFace can be used to compose music. ### How to use There is a notebook in the repo that you can use to generate symbolic music and then render it. ### Limitations and bias Since this model has been trained on a very small corpus of music, it is overfitting heavily. ### Acknowledgements This model has been created with support from NVIDIA. I am very grateful for the GPU compute they provided!
nsecord/Reinforce-Pixelcopter-PLE-v0-2
nsecord
2023-03-11T15:07:07Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T15:06:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0-2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 42.93 +/- 36.84 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Squirz/BlueFish
Squirz
2023-03-11T15:06:27Z
0
2
null
[ "text-to-image", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-01-20T17:34:37Z
--- license: creativeml-openrail-m pipeline_tag: text-to-image --- Just Bunch of merged models. Don't actually remember formulas. Majority are anime related. BlueFish V1.5 I dislike the most,maybe because of the prompting. It is supposed to get more semi-realistic look. For me it's too plastic. Added comparisons between V1,1.5 and V2 Potenial Other Models that I used to merge those: https://huggingface.co/Joeythemonster/anything-midjourney-v-4-1 https://huggingface.co/AdamOswald1/Anything-Preservation https://huggingface.co/darkstorm2150/Protogen_v2.2_Official_Release https://huggingface.co/a1079602570/animefull-final-pruned https://huggingface.co/hesw23168/SD-Elysium-Model 2nd ver https://huggingface.co/OrangeMix/AbyssOrangeMix2 https://huggingface.co/WarriorMama777/OrangeMixs ![xyz_grid-0000-2109823741-1girl, white hair, blue eyes, light smile, frilled dress, mature female, determined, night, night sky, fireflies, mountainous ho.png](https://s3.amazonaws.com/moonup/production/uploads/1675161475024-63579116265b76ad9edeb719.png) ![xyz_grid-0001-2876139754-1girl, white hair, blue eyes, light smile, frilled dress, mature female, determined, night, night sky, fireflies, mountainous ho.png](https://s3.amazonaws.com/moonup/production/uploads/1675161476865-63579116265b76ad9edeb719.png)
maryyy1881/dormitory_girlish_tree_book_fun
maryyy1881
2023-03-11T15:04:31Z
0
0
flair
[ "flair", "art", "music", "finance", "license:other", "region:us" ]
null
2023-03-11T14:56:03Z
--- license: other metrics: - bleurt library_name: flair tags: - art - music - finance ---
matthh/poca-SoccerTwos
matthh
2023-03-11T14:39:56Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-11T14:39:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: matthh/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
BobMcDear/vit_large_clip_patch14_clip_laion2b_ft_in1k_224
BobMcDear
2023-03-11T14:26:04Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:37Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/vit_large_clip_patch14_clip_openai_ft_in1k_224
BobMcDear
2023-03-11T14:25:55Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:36Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/vit_huge_clip_patch14_clip_laion2b_ft_in1k_224
BobMcDear
2023-03-11T14:25:49Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:36Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/vit_base_clip_patch16_clip_laion2b_ft_in1k_384
BobMcDear
2023-03-11T14:25:43Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:35Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/vit_base_clip_patch16_clip_laion2b_ft_in1k_224
BobMcDear
2023-03-11T14:25:36Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:34Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
BobMcDear/vit_base_clip_patch32_clip_openai_ft_in1k_224
BobMcDear
2023-03-11T14:25:28Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:34Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
OpenAssistant/oasst-sft-1-pythia-12b
OpenAssistant
2023-03-11T14:25:14Z
11,919
278
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "sft", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-09T16:47:26Z
--- license: apache-2.0 language: - en tags: - sft pipeline_tag: text-generation widget: - text: <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> - text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|> - text: <|prompter|>Write a story about future of AI development<|endoftext|><|assistant|> --- # Open-Assistant SFT-1 12B Model This is the first iteration English supervised-fine-tuning (SFT) model of the [Open-Assistant](https://github.com/LAION-AI/Open-Assistant) project. It is based on a Pythia 12B that was fine-tuned on ~22k human demonstrations of assistant conversations collected through the [https://open-assistant.io/](https://open-assistant.io/) human feedback web app before March 7, 2023. ## Model Details - **Developed by:** [Open-Assistant Contributors](https://open-assistant.io/) - **Model type:** Transformer-based Language Model - **Language:** English - **Finetuned from:** [EleutherAI / pythia-12b-deduped](https://huggingface.co/EleutherAI/pythia-12b-deduped) - **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training) - **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-03-09_andreaskoepf_oasst-1_12b_7000_sampling_noprefix_lottery.json) ([sampling code](https://github.com/Open-Assistant/oasst-model-eval/blob/3d71f3be100c05cd8ddb568365e036a29fbff8c7/model_eval/manual/sampling_report.py)). - **License:** Apache 2.0 - **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord) ## Prompting Two special tokens are used to mark the beginning of user and assistant turns: `<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token. Input prompt example: ``` <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|> ``` The input ends with the `<|assistant|>` token to signal that the model should start generating the assistant reply. Example of generated continuation (typical sampling 0.2): ``` A visual joke often accompanied by text that spreads rapidly from individual to individual. The exact origin of the term "meme" is unclear, but it was first used in the 1990s by Richard Dawkins in his book "The Selfish Gene." He defined a meme as an idea, behavior, or style that is transmitted from one person to another within a culture. Dawkins' use of the term caught on among scholars and journalists, who began to apply the concept to other types of cultural items such as advertisements, fashion trends, and jokes. Over time, the term "meme" has come to be used more generally to describe any social behavior that can be repeated and altered by individuals. Today, the term is widely recognized and applied in fields ranging from anthropology to psychology to marketing.<|endoftext|> ``` ## Limitations See limitations of Pythia 12B base model [here](https://huggingface.co/EleutherAI/pythia-12b-deduped#limitations-and-biases). The model is known to fail horribly at answering math and coding questions. Beware of hallucinations: Outputs are often factually wrong or misleading. Replies might look convincing (at first glance) while containing completely made up false statements. This model is usable only for English conversations.
BobMcDear/vit_base_clip_patch16_clip_openai_ft_in1k_224
BobMcDear
2023-03-11T14:25:14Z
0
0
null
[ "region:us" ]
null
2023-03-11T14:16:32Z
Please refer to [flaim](https://github.com/bobmcdear/flaim) for sample usage and more information.
EJaalborg2022/mt5-small-finetuned-beer-ctg-en
EJaalborg2022
2023-03-11T14:17:37Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:beer_reviews_label_drift_neg", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-11T08:51:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beer_reviews_label_drift_neg metrics: - rouge model-index: - name: mt5-small-finetuned-beer-ctg-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: beer_reviews_label_drift_neg type: beer_reviews_label_drift_neg config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 26.1727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-beer-ctg-en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the beer_reviews_label_drift_neg dataset. It achieves the following results on the evaluation set: - Loss: 1.5562 - Rouge1: 26.1727 - Rouge2: 15.5176 - Rougel: 26.1813 - Rougelsum: 26.5943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.01 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 5.6484 | 1.0 | 115 | 3.7051 | 14.9617 | 2.9719 | 14.9901 | 15.104 | | 3.7622 | 2.0 | 230 | 3.2168 | 21.9807 | 0.0 | 21.8357 | 21.8277 | | 3.4237 | 3.0 | 345 | 2.8767 | 8.9642 | 5.2358 | 8.9597 | 9.0307 | | 2.8204 | 4.0 | 460 | 2.4836 | 21.9807 | 0.0 | 21.8357 | 21.8277 | | 2.3335 | 5.0 | 575 | 2.2340 | 8.9642 | 5.2358 | 8.9597 | 9.0307 | | 2.1118 | 6.0 | 690 | 1.9121 | 8.9642 | 5.2358 | 8.9597 | 9.0307 | | 1.7533 | 7.0 | 805 | 1.6571 | 25.9752 | 13.5161 | 25.8609 | 26.2153 | | 1.5755 | 8.0 | 920 | 1.5562 | 26.1727 | 15.5176 | 26.1813 | 26.5943 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
mazkooleg/0-9up-hubert-base-ls960-ft
mazkooleg
2023-03-11T14:04:39Z
159
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:mazkooleg/0-9up_google_speech_commands_augmented_raw", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-03-11T13:35:33Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: hubert-base-ls960-ft results: [] datasets: - mazkooleg/0-9up_google_speech_commands_augmented_raw --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-ls960-ft This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0123 - Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.1205 | 1.0 | 8558 | 0.9955 | 0.0173 | | 0.0638 | 2.0 | 17116 | 0.9973 | 0.0123 | | 0.0747 | 3.0 | 25674 | 0.9964 | 0.0183 | | 0.0636 | 4.0 | 34232 | 0.9958 | 0.0201 | | 0.0531 | 5.0 | 42790 | 0.9967 | 0.0168 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cpu - Datasets 2.10.1 - Tokenizers 0.12.1
Feldi/PixelCopter-reinforce-v2
Feldi
2023-03-11T13:44:17Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T13:44:14Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PixelCopter-reinforce-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.00 +/- 30.06 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Abdullah007/autoencoder-keras-mnist-demo
Abdullah007
2023-03-11T13:37:26Z
0
0
keras
[ "keras", "tf-keras", "image-classification", "region:us" ]
image-classification
2023-03-11T13:35:56Z
--- library_name: keras pipeline_tag: image-classification --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 0.0010000000474974513 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Feldi/Reinforce-PoleBalancing
Feldi
2023-03-11T12:41:43Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T12:41:38Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PoleBalancing results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 254.00 +/- 7.28 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
huggingtweets/jacksepticeye
huggingtweets
2023-03-11T12:27:49Z
113
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-11T12:26:35Z
--- language: en thumbnail: http://www.huggingtweets.com/jacksepticeye/1678537664774/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1506613842633232400/ILPlMQ63_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jacksepticeye</div> <div style="text-align: center; font-size: 14px;">@jacksepticeye</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jacksepticeye. | Data | Jacksepticeye | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 107 | | Short tweets | 646 | | Tweets kept | 2495 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/10bvtkin/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jacksepticeye's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/65s277k4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/65s277k4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jacksepticeye') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
helenai/distilbert-base-uncased-distilled-squad-ov-fp32
helenai
2023-03-11T12:26:36Z
293
0
transformers
[ "transformers", "openvino", "distilbert", "question-answering", "en", "endpoints_compatible", "region:us" ]
question-answering
2023-03-11T12:26:11Z
--- language: - en tags: - openvino --- # distilbert-base-uncased-distilled-squad This is the [distilbert-base-uncased-distilled-squad](https://huggingface.co/distilbert-base-uncased-distilled-squad) model converted to [OpenVINO](https://openvino.ai), for accellerated inference. An example of how to do inference on this model: ```python from optimum.intel.openvino import OVModelForQuestionAnswering from transformers import AutoTokenizer, pipeline # model_id should be set to either a local directory or a model available on the HuggingFace hub. model_id = "helenai/distilbert-base-uncased-distilled-squad-ov-fp32" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForQuestionAnswering.from_pretrained(model_id) pipe = pipeline("question-answering", model=model, tokenizer=tokenizer) result = pipe("What is OpenVINO?", "OpenVINO is a framework that accelerates deep learning inferencing") print(result) ```
Taratata/rl_course_vizdoom_health_gathering_supreme
Taratata
2023-03-11T11:51:20Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T11:46:42Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.48 +/- 4.69 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r Taratata/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m <path.to.enjoy.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m <path.to.train.module> --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
bibekbehera/autotrain-numeric_prediction-40376105019
bibekbehera
2023-03-11T11:40:14Z
3
0
transformers
[ "transformers", "joblib", "xgboost", "autotrain", "tabular", "regression", "tabular-regression", "dataset:bibekbehera/autotrain-data-numeric_prediction", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
tabular-regression
2023-03-11T10:41:31Z
--- tags: - autotrain - tabular - regression - tabular-regression datasets: - bibekbehera/autotrain-data-numeric_prediction co2_eq_emissions: emissions: 0.09875665677327088 --- # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 40376105019 - CO2 Emissions (in grams): 0.0988 ## Validation Metrics - Loss: 0.152 - R2: 0.659 - MSE: 0.023 - MAE: 0.062 - RMSLE: 0.105 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```
projjal/en-fr-model-t5-small
projjal
2023-03-11T11:14:11Z
61
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-11T10:45:33Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: projjal/en-fr-model-t5-small results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # projjal/en-fr-model-t5-small This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0428 - Train Accuracy: 0.7179 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.002, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 0.0428 | 0.7179 | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.2
haddadalwi/bert-large-uncased-whole-word-masking-squad2-finetuned-squad2-islamic
haddadalwi
2023-03-11T11:13:20Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
question-answering
2023-03-08T16:02:57Z
--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-large-uncased-whole-word-masking-squad2-finetuned-squad2-islamic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-whole-word-masking-squad2-finetuned-squad2-islamic This model is a fine-tuned version of [deepset/bert-large-uncased-whole-word-masking-squad2](https://huggingface.co/deepset/bert-large-uncased-whole-word-masking-squad2) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.6799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6646 | 1.0 | 1000 | 0.6799 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
hasarinduperera/poca-SoccerTwos
hasarinduperera
2023-03-11T11:06:52Z
40
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-11T11:06:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: hasarinduperera/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sherrytan/ppo-LunarLander-v2
sherrytan
2023-03-11T10:30:05Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T10:29:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 241.76 +/- 19.74 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/asakuraToruTHEIDOLM_v10
LarryAIDraw
2023-03-11T10:00:52Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-11T09:52:55Z
--- license: creativeml-openrail-m --- https://civitai.com/models/18125/asakura-toru-the-idolmster
projjal/de-en-model
projjal
2023-03-11T09:49:21Z
3
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-11T08:35:08Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: projjal/de-en-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # projjal/de-en-model This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3144 - Train Accuracy: 0.3364 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.002, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 1.7760 | 0.2387 | 0 | | 1.1744 | 0.2738 | 1 | | 0.9260 | 0.2887 | 2 | | 0.7539 | 0.2996 | 3 | | 0.6160 | 0.3094 | 4 | | 0.5233 | 0.3157 | 5 | | 0.4458 | 0.3233 | 6 | | 0.3891 | 0.3300 | 7 | | 0.3480 | 0.3327 | 8 | | 0.3144 | 0.3364 | 9 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.1.0 - Tokenizers 0.13.2
Alice10/psvision
Alice10
2023-03-11T09:24:21Z
0
0
null
[ "region:us" ]
null
2023-03-10T02:10:14Z
```bash from psvis.models.backbones import resnet resnet50 = resnet.__dict__['resnet50'](pretrained=True) ```
mizanu-zelalem/aiornot-Resnet50
mizanu-zelalem
2023-03-11T09:03:44Z
0
0
null
[ "region:us" ]
null
2023-03-11T08:38:46Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is built for a coding challenge for Fatima Fellowship 2023 Application. It is for classifing an image as ai generated or real. ## Model Details The model was built using ResNet50 pretrained. The skeleton of the model is base = ResNet50(include_top=False, weights='imagenet', input_shape=(128,128,3)) for layer in base.layers: layer.trainable = False output = base.output output = Flatten()(output) output = Dense(256, activation='relu')(output) output = Dense(128, activation='relu')(output) output = Dropout(rate=0.3)(output) output = Dense(1, activation = "sigmoid")(output) model = Model(base.input, output) ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [Mizanu Zelalem] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** - Colab notebook of the project can be found here : https://colab.research.google.com/drive/1-50OF83EwzezdGAV0Tna_b5gvC7qjSi3?usp=sharing - model.h5 can be accesed from here : https://drive.google.com/file/d/10aqeUV6RkhnSRuc1OLKl0uOMXdo9DouQ/view?usp=sharing
JerryChou/contentvec
JerryChou
2023-03-11T08:55:06Z
0
1
null
[ "license:mit", "region:us" ]
null
2023-03-11T08:38:59Z
--- license: mit --- # 严厉谴责某些傻逼开源维护者(E.g. [innnky](https://github.com/innnky))在上游拉屎删库导致下游项目完全不能运行 # 下游开发者都没急你删什么库呢?你不维护了不用给各位解释?你不能留个repo?GitHub上项目删了不说 你底模都删了我就绷不住了 你删库也给个原因啊 不能把模型删了留个README不行? # 测你吗的 家里网络不行 等下载完了补上模型
XRandomForest/mymodel2
XRandomForest
2023-03-11T08:20:47Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-11T08:20:19Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 0 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 48 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `setfit.modeling.SupConLoss` Parameters of the fit()-Method: ``` { "epochs": 12, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 576, "warmup_steps": 58, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_mix_tokens': True}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
justinian336/salvadoran-news-summarizer-base-auto
justinian336
2023-03-11T07:54:55Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "es", "dataset:justinian336/salvadoran-news", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2023-03-07T16:38:27Z
--- datasets: - justinian336/salvadoran-news language: - es metrics: - rouge pipeline_tag: summarization ---
Vermillion-Qi/sd-class-butterflies-32
Vermillion-Qi
2023-03-11T07:33:01Z
31
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-03-11T07:32:25Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('Vermillion-Qi/sd-class-butterflies-32') image = pipeline().images[0] image ```
Vorlde/ReinforcePixelcopter
Vorlde
2023-03-11T07:25:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T06:05:12Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: ReinforcePixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 25.80 +/- 16.47 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Senura/ppo-SnowballTarget
Senura
2023-03-11T06:51:58Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-11T06:50:45Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: Senura/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Vorlde/ReinforceCartPolev01
Vorlde
2023-03-11T06:45:36Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T05:16:03Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: ReinforceCartPolev01 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bortle/astrophotography-object-classifier-alpha4
bortle
2023-03-11T06:41:09Z
224
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "autotrain", "vision", "dataset:ppicazo/autotrain-data-astrophotography-object-classifier-alpha4", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-11T06:37:19Z
--- tags: - autotrain - vision - image-classification datasets: - ppicazo/autotrain-data-astrophotography-object-classifier-alpha4 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.006629293486504155 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 40333104876 - CO2 Emissions (in grams): 0.0066 ## Validation Metrics - Loss: 0.015 - Accuracy: 1.000 - Macro F1: 1.000 - Micro F1: 1.000 - Weighted F1: 1.000 - Macro Precision: 1.000 - Micro Precision: 1.000 - Weighted Precision: 1.000 - Macro Recall: 1.000 - Micro Recall: 1.000 - Weighted Recall: 1.000
Paperbag/a2c-PandaReachDense-v2
Paperbag
2023-03-11T06:27:44Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T09:23:47Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.77 +/- 0.64 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
toastynews/electra-hongkongese-base-hkt-ws
toastynews
2023-03-11T06:18:51Z
114
0
transformers
[ "transformers", "pytorch", "tf", "electra", "token-classification", "generated_from_trainer", "yue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-11T06:16:55Z
--- language: yue license: apache-2.0 tags: - generated_from_trainer model-index: - name: electra-hongkongese-base-hkt-ws results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-hongkongese-base-hkt-ws This model is a fine-tuned version of [toastynews/electra-hongkongese-base-discriminator](https://huggingface.co/toastynews/electra-hongkongese-base-discriminator) on [HKCanCor](https://pycantonese.org/data.html#built-in-data), [CityU and AS](http://sighan.cs.uchicago.edu/bakeoff2005/) for word segmentation. ## Model description Performs word segmentation on text from Hong Kong. There are two versions; hk trained with only text from Hong Kong, and hkt trained with text from Hong Kong and Taiwan. Each version have base and small model sizes. ## Intended uses & limitations Trained to handle both Hongkongese/Cantonese and Standard Chinese from Hong Kong. Text from other places and English do not work as well. The easiest way is to use with the CKIP Transformers libary. ## Training and evaluation data HKCanCor, CityU and AS are converted to BI-encoded word segmentation dataset in Hugging Face format using code from [finetune-ckip-transformers](https://github.com/toastynews/finetune-ckip-transformers). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results |dataset |token_f |token_p |token_r | |:---------|--------|--------|--------| |ud yue_hk | 0.9404| 0.9442| 0.9367| |ud zh_hk | 0.9327| 0.9404| 0.9251| |_hkcancor_|_0.9875_|_0.9868_|_0.9883_| |cityu | 0.9766| 0.9756| 0.9777| |as | 0.9652| 0.9601| 0.9704| _Was trained on hkcancor. Reported for reference only._ ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
avoroshilov/dqn-SpaceInvadersNoFrameskip-v4
avoroshilov
2023-03-11T06:11:55Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T06:11:26Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 716.50 +/- 329.73 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga avoroshilov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga avoroshilov -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga avoroshilov ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
toastynews/electra-hongkongese-small-hkt-ws
toastynews
2023-03-11T06:04:15Z
110
0
transformers
[ "transformers", "pytorch", "tf", "electra", "token-classification", "generated_from_trainer", "yue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-11T06:00:37Z
--- language: yue license: apache-2.0 tags: - generated_from_trainer model-index: - name: electra-hongkongese-small-hkt-ws results: [] --- # electra-hongkongese-small-hkt-ws This model is a fine-tuned version of [toastynews/electra-hongkongese-small-discriminator](https://huggingface.co/toastynews/electra-hongkongese-small-discriminator) on [HKCanCor](https://pycantonese.org/data.html#built-in-data), [CityU and AS](http://sighan.cs.uchicago.edu/bakeoff2005/) for word segmentation. ## Model description Performs word segmentation on text from Hong Kong. There are two versions; hk trained with only text from Hong Kong, and hkt trained with text from Hong Kong and Taiwan. Each version have base and small model sizes. ## Intended uses & limitations Trained to handle both Hongkongese/Cantonese and Standard Chinese from Hong Kong. Text from other places and English do not work as well. The easiest way is to use with the CKIP Transformers libary. ## Training and evaluation data HKCanCor, CityU and AS are converted to BI-encoded word segmentation dataset in Hugging Face format using code from [finetune-ckip-transformers](https://github.com/toastynews/finetune-ckip-transformers). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results |dataset |token_f |token_p |token_r | |:---------|--------|--------|--------| |ud yue_hk | 0.9389| 0.9429| 0.9350| |ud zh_hk | 0.9314| 0.9398| 0.9231| |_hkcancor_|_0.9807_|_0.9798_|_0.9816_| |cityu | 0.9712| 0.9705| 0.9718| |as | 0.9644| 0.9611| 0.9678| _Was trained on hkcancor. Reported for reference only._ ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
NawinCom/my_awesome_model_3
NawinCom
2023-03-11T06:00:49Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-11T04:29:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_3 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0954 - Accuracy: 0.9680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 200 | 0.2369 | 0.9040 | | No log | 0.19 | 400 | 0.1859 | 0.9324 | | 0.2931 | 0.28 | 600 | 0.1624 | 0.9442 | | 0.2931 | 0.38 | 800 | 0.1194 | 0.9569 | | 0.1456 | 0.47 | 1000 | 0.1245 | 0.9588 | | 0.1456 | 0.57 | 1200 | 0.1044 | 0.9617 | | 0.1456 | 0.66 | 1400 | 0.1063 | 0.9611 | | 0.1194 | 0.75 | 1600 | 0.1021 | 0.9634 | | 0.1194 | 0.85 | 1800 | 0.1618 | 0.9490 | | 0.1107 | 0.94 | 2000 | 0.1113 | 0.9643 | | 0.1107 | 1.04 | 2200 | 0.1163 | 0.9630 | | 0.1107 | 1.13 | 2400 | 0.0954 | 0.9680 | | 0.079 | 1.22 | 2600 | 0.1272 | 0.9635 | | 0.079 | 1.32 | 2800 | 0.0976 | 0.9657 | | 0.0715 | 1.41 | 3000 | 0.0995 | 0.9680 | | 0.0715 | 1.51 | 3200 | 0.0996 | 0.9660 | | 0.0715 | 1.6 | 3400 | 0.1001 | 0.9670 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Fr33Radical/Auxi
Fr33Radical
2023-03-11T05:47:10Z
0
0
null
[ "Student Loans", "en", "dataset:openwebtext", "arxiv:1910.09700", "license:other", "region:us" ]
null
2023-03-11T05:42:30Z
--- license: other datasets: - openwebtext language: - en tags: - Student Loans --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models Its a Auxi AI Bot. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> You are a smart AuxI the smart AI Assistant at Auxilo who answers all questions pertaining to Auxilo and the Loans it offers to Students You are well versed with the loan process and there by can engage with a new prospect and get their details on course, when they plan to study, where their college information, as well as their email and mobile numbers to create a lead You are an empathetic sales AI who is able to identify and and empathize with the student and counsel them with the right information proactively and intuitively You are Always cheerful, positive, and inspiring in your tone of voice Your answers are short and crisp You are able to generate the top 3 questions for the day as a preset to the chat and it shifts every other day or periodically as per the trend of questions asked and answered by you. You are constantly learning from customer interactions and improving yourself to be better at the job. You are able to provide personalized recommendations based on the user’s financial needs, goals and risk appetite. You are able to provide basic education around financial concepts and terminology. You are also able to explain the different loan options available in detail and suggest the best option for the user. You are able to anticipate customer needs and proactively provide them with relevant information. You are able to provide quick and accurate responses to customer queries. You are able to track customer’s journey and provide them with the best experience during the loan application process. - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ### How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NawinCom/my_awesome_model_2
NawinCom
2023-03-11T05:40:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-11T04:16:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_2 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0950 - Accuracy: 0.9655 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 200 | 0.4448 | 0.8383 | | No log | 0.19 | 400 | 0.2267 | 0.9250 | | 0.2842 | 0.28 | 600 | 0.1300 | 0.9532 | | 0.2842 | 0.38 | 800 | 0.1689 | 0.9437 | | 0.1348 | 0.47 | 1000 | 0.1445 | 0.9530 | | 0.1348 | 0.57 | 1200 | 0.1237 | 0.9554 | | 0.1348 | 0.66 | 1400 | 0.1103 | 0.9624 | | 0.1198 | 0.75 | 1600 | 0.0950 | 0.9655 | | 0.1198 | 0.85 | 1800 | 0.1115 | 0.9642 | | 0.1053 | 0.94 | 2000 | 0.1192 | 0.9603 | | 0.1053 | 1.04 | 2200 | 0.1102 | 0.9622 | | 0.1053 | 1.13 | 2400 | 0.1096 | 0.9650 | | 0.0716 | 1.22 | 2600 | 0.1212 | 0.9650 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
NawinCom/my_awesome_model_4
NawinCom
2023-03-11T05:39:19Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-11T04:29:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_4 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0866 - Accuracy: 0.9644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 200 | 0.2342 | 0.9098 | | No log | 0.19 | 400 | 0.2575 | 0.9178 | | 0.2768 | 0.28 | 600 | 0.1922 | 0.9316 | | 0.2768 | 0.38 | 800 | 0.1274 | 0.9566 | | 0.1402 | 0.47 | 1000 | 0.1153 | 0.9566 | | 0.1402 | 0.57 | 1200 | 0.1516 | 0.9472 | | 0.1402 | 0.66 | 1400 | 0.0866 | 0.9644 | | 0.126 | 0.75 | 1600 | 0.1375 | 0.9572 | | 0.126 | 0.85 | 1800 | 0.1084 | 0.9638 | | 0.1068 | 0.94 | 2000 | 0.0998 | 0.9655 | | 0.1068 | 1.04 | 2200 | 0.1060 | 0.9656 | | 0.1068 | 1.13 | 2400 | 0.0999 | 0.9689 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
NawinCom/my_awesome_model
NawinCom
2023-03-11T05:38:58Z
105
0
transformers
[ "transformers", "pytorch", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-10T13:51:48Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1455 - Accuracy: 0.9582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.09 | 200 | 0.1455 | 0.9582 | | No log | 0.19 | 400 | 0.1849 | 0.9604 | | 0.0446 | 0.28 | 600 | 0.1580 | 0.9593 | | 0.0446 | 0.38 | 800 | 0.1968 | 0.9545 | | 0.0635 | 0.47 | 1000 | 0.1853 | 0.9603 | | 0.0635 | 0.57 | 1200 | 0.1476 | 0.9589 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
NawinCom/my_awesome_model_1
NawinCom
2023-03-11T04:53:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-11T04:08:18Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: my_awesome_model_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model_1 This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0896 - Accuracy: 0.9640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.38 | 200 | 0.1490 | 0.9448 | | No log | 0.75 | 400 | 0.1117 | 0.9582 | | 0.1981 | 1.13 | 600 | 0.0939 | 0.9621 | | 0.1981 | 1.51 | 800 | 0.0896 | 0.9640 | | 0.0706 | 1.88 | 1000 | 0.0975 | 0.9641 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
r4zzchaudhary/tathyanka-nlq-final
r4zzchaudhary
2023-03-11T04:48:52Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-10T23:34:58Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: tathyanka-nlq-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tathyanka-nlq-final This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0042 - Rouge2 Precision: 0.8529 - Rouge2 Recall: 0.404 - Rouge2 Fmeasure: 0.5477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | No log | 1.0 | 315 | 0.0138 | 0.8516 | 0.4034 | 0.5469 | | 0.474 | 2.0 | 630 | 0.0081 | 0.8516 | 0.4034 | 0.5469 | | 0.474 | 3.0 | 945 | 0.0054 | 0.853 | 0.4041 | 0.5478 | | 0.0163 | 4.0 | 1260 | 0.0046 | 0.8529 | 0.404 | 0.5477 | | 0.0093 | 5.0 | 1575 | 0.0042 | 0.8529 | 0.404 | 0.5477 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
tetrismegistus/PPO-LunarLander-v2
tetrismegistus
2023-03-11T04:00:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T03:13:55Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 258.05 +/- 14.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Kentris/ML-Agents-Soccer
Kentris
2023-03-11T03:50:18Z
2
0
ml-agents
[ "ml-agents", "onnx", "ML-Agents-SoccerTwos", "reinforcement-learning", "region:us" ]
reinforcement-learning
2023-03-11T03:37:01Z
--- task: reinforcement-learning tags: - ML-Agents-SoccerTwos - reinforcement-learning library_name: ml-agents ---
Kentris/a2c-PandaReachDense-v2
Kentris
2023-03-11T03:29:29Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T02:09:28Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.57 +/- 0.81 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huoyan/lora_outputs_corgi_v1
huoyan
2023-03-11T03:20:06Z
0
0
null
[ "paddlepaddle", "stable-diffusion", "stable-diffusion-ppdiffusers", "text-to-image", "ppdiffusers", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-11T03:19:11Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks corgi tags: - stable-diffusion - stable-diffusion-ppdiffusers - text-to-image - ppdiffusers - lora inference: false --- # LoRA DreamBooth - huoyan/lora_outputs_corgi_v1 These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks corgi using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ![img_4](./image_4.png)
sptrodon/Reinforce-Pixelcopter-PLE-v0
sptrodon
2023-03-11T01:25:10Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T01:25:01Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 68.80 +/- 52.35 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Kentris/a2c-AntBulletEnv-v0
Kentris
2023-03-11T01:21:27Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T01:11:14Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 959.12 +/- 226.92 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mt5-small-itquad-qa-trimmed-it
vocabtrimmer
2023-03-11T01:07:33Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-11T00:43:02Z
# Vocabulary Trimmed [lmqg/mt5-small-itquad-qa](https://huggingface.co/lmqg/mt5-small-itquad-qa): `vocabtrimmer/mt5-small-itquad-qa-trimmed-it` This model is a trimmed version of [lmqg/mt5-small-itquad-qa](https://huggingface.co/lmqg/mt5-small-itquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-itquad-qa | vocabtrimmer/mt5-small-itquad-qa-trimmed-it | |:---------------------------|:---------------------------|:----------------------------------------------| | parameter_size_full | 300,165,504 | 157,784,448 | | parameter_size_embedding | 256,103,424 | 113,722,368 | | vocab_size | 250,101 | 111,057 | | compression_rate_full | 100.0 | 52.57 | | compression_rate_embedding | 100.0 | 44.4 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|:--------------------|----------------:| | it | vocabtrimmer/mc4_validation | text | it | validation | | 2 |
steveice/videomae-base-finetuned-engine-subset-20230310
steveice
2023-03-11T00:47:58Z
62
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-03-10T23:08:16Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-engine-subset-20230310 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-engine-subset-20230310 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4958 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 600 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.5947 | 0.05 | 31 | 2.5383 | 0.15 | | 2.4195 | 1.05 | 62 | 2.5108 | 0.15 | | 2.2476 | 2.05 | 93 | 2.0533 | 0.225 | | 1.9449 | 3.05 | 124 | 2.0719 | 0.2375 | | 1.5724 | 4.05 | 155 | 1.4756 | 0.475 | | 1.395 | 5.05 | 186 | 1.2884 | 0.5 | | 1.0822 | 6.05 | 217 | 1.0679 | 0.575 | | 1.0635 | 7.05 | 248 | 0.8040 | 0.7 | | 0.8707 | 8.05 | 279 | 0.9334 | 0.525 | | 0.7042 | 9.05 | 310 | 0.6477 | 0.75 | | 0.6543 | 10.05 | 341 | 0.6963 | 0.7375 | | 0.6807 | 11.05 | 372 | 0.4958 | 0.85 | | 0.4924 | 12.05 | 403 | 0.6374 | 0.775 | | 0.4822 | 13.05 | 434 | 0.6145 | 0.75 | | 0.4878 | 14.05 | 465 | 0.6274 | 0.7625 | | 0.4442 | 15.05 | 496 | 0.4231 | 0.85 | | 0.2739 | 16.05 | 527 | 0.4999 | 0.85 | | 0.3514 | 17.05 | 558 | 0.4639 | 0.8375 | | 0.4158 | 18.05 | 589 | 0.4291 | 0.85 | | 0.2689 | 19.02 | 600 | 0.4294 | 0.85 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
DarkAgent/Dungeons_N_Waifus
DarkAgent
2023-03-11T00:33:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-11T00:33:22Z
--- license: creativeml-openrail-m ---
Corianas/CartPole-v1
Corianas
2023-03-11T00:31:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T00:31:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Hyungsuk/Taxi-v3
Hyungsuk
2023-03-11T00:31:12Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T00:31:03Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Hyungsuk/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Hyungsuk/q-FrozenLake-v1-4x4-noSlippery
Hyungsuk
2023-03-11T00:30:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T00:30:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Hyungsuk/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dansa08/mbart-neutralization
dansa08
2023-03-11T00:11:42Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "Text Neutralization", "Inclusive Language", "es", "dataset:hackathon-pln-es/neutral-es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-10T22:19:37Z
--- license: apache-2.0 datasets: - hackathon-pln-es/neutral-es language: - es metrics: - bleu tags: - Text Neutralization - Inclusive Language ---
Corianas/Corianas-Taxi-v3
Corianas
2023-03-11T00:09:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-11T00:09:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Corianas-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Corianas/Corianas-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Sirianth/Pyramids
Sirianth
2023-03-11T00:04:56Z
7
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-11T00:04:49Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Sirianth/Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
nsecord/Reinforce-Pixelcopter-PLE-v0
nsecord
2023-03-10T23:56:01Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T23:55:33Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 34.76 +/- 30.19 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Cesar514/LunarLander-v2
Cesar514
2023-03-10T23:40:58Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T22:39:04Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 259.13 +/- 20.60 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
CCHF/SD_Models
CCHF
2023-03-10T23:38:16Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-10T22:35:59Z
--- license: creativeml-openrail-m --- This is a clone copy of Stable Diffusion Models from Civitai for Colab training purposes.
Mayhem50/bert-base-multilingual-cased-nli
Mayhem50
2023-03-10T23:08:19Z
8
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-03-10T23:03:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Mayhem50/bert-base-multilingual-cased-nli This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('Mayhem50/bert-base-multilingual-cased-nli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('Mayhem50/bert-base-multilingual-cased-nli') model = AutoModel.from_pretrained('Mayhem50/bert-base-multilingual-cased-nli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 905 with parameters: ``` {'batch_size': 624} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 90, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 0.00032 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 91, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 150, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
YoussefHilaly/GRU-EMOTION-AR-TEXT-72P
YoussefHilaly
2023-03-10T23:00:01Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2023-03-10T22:58:45Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 9.999999747378752e-05 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
spacemanidol/flan-t5-base-5-6-xsum
spacemanidol
2023-03-10T22:50:14Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-28T18:21:32Z
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: base-5-6 results: - task: name: Summarization type: summarization dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 39.0404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-5-6 This model is a fine-tuned version of [x/base-5-6/](https://huggingface.co/x/base-5-6/) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 1.6972 - Rouge1: 39.0404 - Rouge2: 15.9169 - Rougel: 31.2288 - Rougelsum: 31.2183 - Gen Len: 26.8873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.10.0 - Tokenizers 0.13.2
qgallouedec/sample-factory-reach-wall-v2
qgallouedec
2023-03-10T22:44:52Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T22:44:48Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: reach-wall-v2 type: reach-wall-v2 metrics: - type: mean_reward value: 4825.23 +/- 9.56 name: mean_reward verified: false --- A(n) **APPO** model trained on the **reach-wall-v2** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r qgallouedec/sample-factory-reach-wall-v2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m enjoy --algo=APPO --env=reach-wall-v2 --train_dir=./train_dir --experiment=sample-factory-reach-wall-v2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m train --algo=APPO --env=reach-wall-v2 --train_dir=./train_dir --experiment=sample-factory-reach-wall-v2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
Gabcsor/poca-SoccerTwos
Gabcsor
2023-03-10T22:44:17Z
0
0
ml-agents
[ "ml-agents", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-10T22:40:38Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Gabcsor/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
janzw/Reinforce-copterv1
janzw
2023-03-10T22:23:48Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T22:23:40Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-copterv1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 27.33 +/- 18.83 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Nalenczewski/keyword_category_classifier_v4
Nalenczewski
2023-03-10T22:23:26Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-10T22:16:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: keyword_category_classifier_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # keyword_category_classifier_v4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2337 - Accuracy: 0.9266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7312 | 1.0 | 986 | 0.2616 | 0.9165 | | 0.2264 | 2.0 | 1972 | 0.2337 | 0.9266 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Jclementg/q-FrozenLake-v1-4x4-noSlippery
Jclementg
2023-03-10T22:22:19Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T22:22:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Jclementg/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Cesar514/PPO2-LunarLander-v3
Cesar514
2023-03-10T22:03:32Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T22:01:30Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -183.18 +/- 71.91 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 100000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Cesar514/PPO2-LunarLander-v3' 'batch_size': 512 'minibatch_size': 128} ```
c0d3s/bucket-not-bucket
c0d3s
2023-03-10T22:00:29Z
234
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-10T21:50:51Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: bucket-not-bucket results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9777777791023254 --- # bucket-not-bucket Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### bucket ![bucket](images/bucket.jpg) #### not bucket ![miscellaneous](images/miscellaneous.jpg)
Cesar514/ppo-LunarLander-v2
Cesar514
2023-03-10T21:59:27Z
2
0
transformers
[ "transformers", "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "endpoints_compatible", "region:us" ]
reinforcement-learning
2022-12-17T20:06:25Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -130.73 +/- 72.89 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'Cesar514/ppo-LunarLander-v2' 'batch_size': 512 'minibatch_size': 128} ```
adam1brownell/rl_course_vizdoom_health_gathering_supreme
adam1brownell
2023-03-10T21:55:43Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T21:55:35Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.86 +/- 5.00 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r adam1brownell/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
cthiriet/Reinforce-Pixelcopter-PLE-v0
cthiriet
2023-03-10T21:55:20Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-07T23:10:52Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 24.80 +/- 14.88 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
gauravkuppa/ppo-SnowballTarget1
gauravkuppa
2023-03-10T21:39:08Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-10T21:39:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget library_name: ml-agents --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: gauravkuppa/ppo-SnowballTarget1 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
qgallouedec/sample-factory-reach-v2
qgallouedec
2023-03-10T21:18:49Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T21:18:45Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: reach-v2 type: reach-v2 metrics: - type: mean_reward value: 4856.62 +/- 17.45 name: mean_reward verified: false --- A(n) **APPO** model trained on the **reach-v2** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r qgallouedec/sample-factory-reach-v2 ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m enjoy --algo=APPO --env=reach-v2 --train_dir=./train_dir --experiment=sample-factory-reach-v2 ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m train --algo=APPO --env=reach-v2 --train_dir=./train_dir --experiment=sample-factory-reach-v2 --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
dataLearning/dqn-SpaceInvadersNoFrameskip-v4
dataLearning
2023-03-10T21:15:42Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T21:15:02Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 486.00 +/- 93.48 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dataLearning -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga dataLearning -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga dataLearning ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
fzaghloul/vit-base-patch16-224-finetuned-flower
fzaghloul
2023-03-10T20:23:30Z
176
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-10T20:09:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: vit-base-patch16-224-finetuned-flower results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-flower This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.1+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
spacemanidol/flan-t5-base-6-2-xsum
spacemanidol
2023-03-10T20:15:44Z
103
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-02-27T22:49:09Z
--- tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: base-6-2 results: - task: name: Summarization type: summarization dataset: name: xsum type: xsum config: default split: validation args: default metrics: - name: Rouge1 type: rouge value: 38.0368 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-6-2 This model is a fine-tuned version of [x/6-2/](https://huggingface.co/x/6-2/) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.0713 - Rouge1: 38.0368 - Rouge2: 15.1872 - Rougel: 30.6474 - Rougelsum: 30.6344 - Gen Len: 26.3968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1 - Tokenizers 0.12.1
steveice/videomae-base-finetuned-engine-subset
steveice
2023-03-10T20:02:38Z
61
0
transformers
[ "transformers", "pytorch", "videomae", "video-classification", "generated_from_trainer", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-03-10T19:33:03Z
--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-engine-subset results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-engine-subset This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5634 - Accuracy: 0.475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 224 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6687 | 0.25 | 57 | 2.5948 | 0.15 | | 2.3001 | 1.25 | 114 | 2.2452 | 0.175 | | 2.1531 | 2.25 | 171 | 1.9180 | 0.3875 | | 1.6332 | 3.24 | 224 | 1.5634 | 0.475 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.12.1+cu113 - Datasets 2.10.1 - Tokenizers 0.13.2
JTredup/dqn-SpaceInvadersNoFrameskip-v4
JTredup
2023-03-10T19:53:30Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T19:52:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 706.00 +/- 177.17 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga JTredup -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga JTredup -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga JTredup ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
vagnereletronica/sd-class-butterflies-32
vagnereletronica
2023-03-10T19:48:10Z
0
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "region:us" ]
unconditional-image-generation
2023-03-10T19:46:13Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('vagnereletronica/sd-class-butterflies-32') image = pipeline().images[0] image ```
NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki_250
NightMachinery
2023-03-10T19:27:58Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:sentiment/amazon", "xlm-roberta", "dataset:amazon", "region:us" ]
null
2023-03-10T18:53:14Z
--- tags: - adapter-transformers - adapterhub:sentiment/amazon - xlm-roberta datasets: - amazon --- # Adapter `NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki_250` for xlm-roberta-base An [adapter](https://adapterhub.ml) for the `xlm-roberta-base` model that was trained on the [sentiment/amazon](https://adapterhub.ml/explore/sentiment/amazon/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("xlm-roberta-base") adapter_name = model.load_adapter("NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki_250", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
jackoyoungblood/rl_course_vizdoom_health_gathering_supreme
jackoyoungblood
2023-03-10T19:19:14Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-09T15:44:29Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_deadly_corridor type: doom_deadly_corridor metrics: - type: mean_reward value: 12.24 +/- 8.84 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_deadly_corridor** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jackoyoungblood/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_deadly_corridor --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_deadly_corridor --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
NightMachinery/task_adapter_amazon_bert-base-multilingual-cased_en_wiki_250
NightMachinery
2023-03-10T19:10:30Z
4
0
adapter-transformers
[ "adapter-transformers", "adapterhub:sentiment/amazon", "bert", "dataset:amazon", "region:us" ]
null
2023-03-10T19:10:29Z
--- tags: - adapter-transformers - adapterhub:sentiment/amazon - bert datasets: - amazon --- # Adapter `NightMachinery/task_adapter_amazon_bert-base-multilingual-cased_en_wiki_250` for bert-base-multilingual-cased An [adapter](https://adapterhub.ml) for the `bert-base-multilingual-cased` model that was trained on the [sentiment/amazon](https://adapterhub.ml/explore/sentiment/amazon/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("bert-base-multilingual-cased") adapter_name = model.load_adapter("NightMachinery/task_adapter_amazon_bert-base-multilingual-cased_en_wiki_250", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
TobiTob/decision_transformer_no_training
TobiTob
2023-03-10T19:09:22Z
32
0
transformers
[ "transformers", "pytorch", "tensorboard", "decision_transformer", "generated_from_trainer", "dataset:city_learn", "endpoints_compatible", "region:us" ]
null
2023-03-10T19:08:54Z
--- tags: - generated_from_trainer datasets: - city_learn model-index: - name: decision_transformer_no_training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # decision_transformer_no_training This model is a fine-tuned version of [](https://huggingface.co/) on the city_learn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 240 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki
NightMachinery
2023-03-10T18:01:18Z
1
0
adapter-transformers
[ "adapter-transformers", "adapterhub:sentiment/amazon", "xlm-roberta", "dataset:amazon", "region:us" ]
null
2023-03-10T18:01:14Z
--- tags: - adapterhub:sentiment/amazon - xlm-roberta - adapter-transformers datasets: - amazon --- # Adapter `NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki` for xlm-roberta-base An [adapter](https://adapterhub.ml) for the `xlm-roberta-base` model that was trained on the [sentiment/amazon](https://adapterhub.ml/explore/sentiment/amazon/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("xlm-roberta-base") adapter_name = model.load_adapter("NightMachinery/task_adapter_amazon_xlm_roberta_base_en_wiki", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
kurohige/rl_course_vizdoom_health_gathering_supreme
kurohige
2023-03-10T17:41:27Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T17:41:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 11.09 +/- 4.15 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r kurohige/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
agcagc/poca-SoccerTwos-v3
agcagc
2023-03-10T17:33:09Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-10T17:32:32Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: agcagc/poca-SoccerTwos-v3 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HarmlessFlower/DRL_Course_Models
HarmlessFlower
2023-03-10T17:12:16Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-10T17:11:11Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 265.94 +/- 19.97 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```