modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
tttx/sft_r1_7b
tttx
2025-02-04T06:31:34Z
22
0
peft
[ "peft", "safetensors", "qwen2", "alignment-handbook", "trl", "sft", "generated_from_trainer", "dataset:tttx/r1-trajectories-collection-round-2", "dataset:tttx/r1-trajectories-arcagi-barc", "license:mit", "region:us" ]
null
2025-02-02T22:44:06Z
--- base_model: deepseek-ai/Deepseek-R1-Distill-Qwen-7B datasets: - tttx/r1-trajectories-collection-round-2 - tttx/r1-trajectories-arcagi-barc library_name: peft license: mit tags: - alignment-handbook - trl - sft - generated_from_trainer model-index: - name: sft_r1_7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sft_r1_7b This model is a fine-tuned version of [deepseek-ai/Deepseek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/Deepseek-R1-Distill-Qwen-7B) on the tttx/r1-trajectories-collection-round-2 and the tttx/r1-trajectories-arcagi-barc datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.47.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
jpark677/internvl2-8b-mmmu-3
jpark677
2025-02-04T06:29:10Z
59
0
transformers
[ "transformers", "safetensors", "internvl_chat", "feature-extraction", "custom_code", "arxiv:1910.09700", "region:us" ]
feature-extraction
2025-01-31T04:02:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
t2ance/FNO-s20
t2ance
2025-02-04T06:28:50Z
68
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-01-05T14:36:09Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
lesso/1a2af3a5-f601-4c88-8f0b-c05b8a843409
lesso
2025-02-04T06:28:41Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna-open-llama-3b-v2", "base_model:adapter:heegyu/WizardVicuna-open-llama-3b-v2", "license:apache-2.0", "region:us" ]
null
2025-02-04T06:22:37Z
--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: 1a2af3a5-f601-4c88-8f0b-c05b8a843409 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 9988054a1155975c_train_data.json ds_type: json format: custom path: /workspace/input_data/9988054a1155975c_train_data.json type: field_input: history field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/1a2af3a5-f601-4c88-8f0b-c05b8a843409 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god08/9988054a1155975c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29d53164-9e6f-42ae-a37f-4cb166ed6f4f wandb_project: ab-god08 wandb_run: your_name wandb_runid: 29d53164-9e6f-42ae-a37f-4cb166ed6f4f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1a2af3a5-f601-4c88-8f0b-c05b8a843409 This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 78 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2659 | 0.0385 | 1 | 2.2118 | | 1.7136 | 1.9231 | 50 | 1.7353 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jq/whisper-large-v3-salt-plus-xog-myx-kin-swa
jq
2025-02-04T06:28:10Z
41
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-01-30T16:12:22Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
datlaaaaaaa/fae9c0e7-11e1-4603-b2d9-9d8ec9d0b9a6
datlaaaaaaa
2025-02-04T06:26:53Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:heegyu/WizardVicuna-open-llama-3b-v2", "base_model:adapter:heegyu/WizardVicuna-open-llama-3b-v2", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T06:14:01Z
--- library_name: peft license: apache-2.0 base_model: heegyu/WizardVicuna-open-llama-3b-v2 tags: - axolotl - generated_from_trainer model-index: - name: fae9c0e7-11e1-4603-b2d9-9d8ec9d0b9a6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: heegyu/WizardVicuna-open-llama-3b-v2 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9988054a1155975c_train_data.json ds_type: json format: custom path: /workspace/input_data/9988054a1155975c_train_data.json type: field_input: history field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/fae9c0e7-11e1-4603-b2d9-9d8ec9d0b9a6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9988054a1155975c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 29d53164-9e6f-42ae-a37f-4cb166ed6f4f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 29d53164-9e6f-42ae-a37f-4cb166ed6f4f warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # fae9c0e7-11e1-4603-b2d9-9d8ec9d0b9a6 This model is a fine-tuned version of [heegyu/WizardVicuna-open-llama-3b-v2](https://huggingface.co/heegyu/WizardVicuna-open-llama-3b-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0546 | 0.2421 | 200 | 1.9183 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/aytac
LHRuig
2025-02-04T06:26:45Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:26:40Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aytac --- # aytac <Gallery /> ## Model description aytac lora ## Trigger words You should use `aytac` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aytac/tree/main) them in the Files & versions tab.
LHRuig/aykutelms
LHRuig
2025-02-04T06:25:58Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:25:37Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aykutelms --- # aykutelms <Gallery /> ## Model description aykutelms lora ## Trigger words You should use `aykutelms` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aykutelms/tree/main) them in the Files & versions tab.
havinash-ai/050c82c0-329a-4dc0-8acb-04a2af64431e
havinash-ai
2025-02-04T06:24:55Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-02-04T06:20:36Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 050c82c0-329a-4dc0-8acb-04a2af64431e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3c7f8d22a3b05f19_train_data.json ds_type: json format: custom path: /workspace/input_data/3c7f8d22a3b05f19_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/050c82c0-329a-4dc0-8acb-04a2af64431e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/3c7f8d22a3b05f19_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f956346c-1ba2-40a0-96e7-e24d7e19d3c3 wandb_project: Mine-SN56-2-Gradients-On-Demand wandb_run: your_name wandb_runid: f956346c-1ba2-40a0-96e7-e24d7e19d3c3 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 050c82c0-329a-4dc0-8acb-04a2af64431e This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.6095 | | 1.5417 | 0.0252 | 63 | 1.4651 | | 1.411 | 0.0504 | 126 | 1.4427 | | 1.5382 | 0.0755 | 189 | 1.4294 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/0bc7e690-9b6b-4c5b-bcf8-193dd20b6c3c
trenden
2025-02-04T06:24:08Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/CodeLlama-13b-hf-flash", "base_model:adapter:NousResearch/CodeLlama-13b-hf-flash", "region:us" ]
null
2025-02-04T05:59:13Z
--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 0bc7e690-9b6b-4c5b-bcf8-193dd20b6c3c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 64472e7e5ca00041_train_data.json ds_type: json format: custom path: /workspace/input_data/64472e7e5ca00041_train_data.json type: field_input: meshid field_instruction: meshMajor field_output: abstractText format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/0bc7e690-9b6b-4c5b-bcf8-193dd20b6c3c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/64472e7e5ca00041_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cb6da118-4bd4-4632-9cf4-6bf7d4fdb9b3 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: cb6da118-4bd4-4632-9cf4-6bf7d4fdb9b3 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0bc7e690-9b6b-4c5b-bcf8-193dd20b6c3c This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7800 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 1.9034 | | 6.7744 | 0.0085 | 50 | 1.7877 | | 7.228 | 0.0169 | 100 | 1.7834 | | 6.8892 | 0.0254 | 150 | 1.7804 | | 7.1472 | 0.0338 | 200 | 1.7800 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Nexspear/a8d825c2-7690-4065-b59b-0d6a979b356f
Nexspear
2025-02-04T06:23:01Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-02-04T06:06:28Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: a8d825c2-7690-4065-b59b-0d6a979b356f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Meta-Llama-3-8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3c7f8d22a3b05f19_train_data.json ds_type: json format: custom path: /workspace/input_data/3c7f8d22a3b05f19_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/a8d825c2-7690-4065-b59b-0d6a979b356f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/3c7f8d22a3b05f19_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|end_of_text|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: f956346c-1ba2-40a0-96e7-e24d7e19d3c3 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: f956346c-1ba2-40a0-96e7-e24d7e19d3c3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a8d825c2-7690-4065-b59b-0d6a979b356f This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1783 | 0.0032 | 1 | 1.6533 | | 1.877 | 0.1599 | 50 | 1.4841 | | 1.7372 | 0.3197 | 100 | 1.4337 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/austintheor
LHRuig
2025-02-04T06:21:18Z
11
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:21:11Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: austintheor --- # austintheor <Gallery /> ## Model description austintheor lora ## Trigger words You should use `austintheor` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/austintheor/tree/main) them in the Files & versions tab.
LHRuig/austinshw
LHRuig
2025-02-04T06:19:57Z
10
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:19:50Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: austinshw --- # austinshw <Gallery /> ## Model description austinshw lora ## Trigger words You should use `austinshw` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/austinshw/tree/main) them in the Files & versions tab.
LHRuig/asfarion
LHRuig
2025-02-04T06:19:25Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:19:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: asfarion --- # asfarion <Gallery /> ## Model description asfarion lora ## Trigger words You should use `asfarion` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/asfarion/tree/main) them in the Files & versions tab.
auxyus/fd5cf91f-d0b5-4d5c-bd47-f0f237efab5a
auxyus
2025-02-04T06:18:54Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T05:51:45Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: fd5cf91f-d0b5-4d5c-bd47-f0f237efab5a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6e4f6e948bc6471_train_data.json ds_type: json format: custom path: /workspace/input_data/e6e4f6e948bc6471_train_data.json type: field_input: topic field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: auxyus/fd5cf91f-d0b5-4d5c-bd47-f0f237efab5a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/e6e4f6e948bc6471_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 69002658-908b-4f14-a9fb-64d08340747d wandb_project: Gradients-On-Two wandb_run: your_name wandb_runid: 69002658-908b-4f14-a9fb-64d08340747d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # fd5cf91f-d0b5-4d5c-bd47-f0f237efab5a This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6284 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0143 | 1 | 3.6620 | | 3.2763 | 0.1286 | 9 | 2.6868 | | 1.7025 | 0.2571 | 18 | 1.3585 | | 1.1514 | 0.3857 | 27 | 0.9190 | | 0.8298 | 0.5143 | 36 | 0.7803 | | 0.8113 | 0.6429 | 45 | 0.6975 | | 0.8633 | 0.7714 | 54 | 0.6908 | | 0.7252 | 0.9 | 63 | 0.6500 | | 0.6536 | 1.0286 | 72 | 0.6391 | | 0.5663 | 1.1571 | 81 | 0.6290 | | 0.5139 | 1.2857 | 90 | 0.6306 | | 0.5922 | 1.4143 | 99 | 0.6284 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/asmondgoldsx
LHRuig
2025-02-04T06:17:34Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:17:27Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: asmondgoldsx --- # asmondgoldsx <Gallery /> ## Model description asmondgoldsx lora ## Trigger words You should use `asmondgoldsx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/asmondgoldsx/tree/main) them in the Files & versions tab.
LHRuig/asmondgold
LHRuig
2025-02-04T06:17:00Z
9
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:16:44Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: asmondgold --- # asmondgold <Gallery /> ## Model description asmondgold lora ## Trigger words You should use `asmondgold` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/asmondgold/tree/main) them in the Files & versions tab.
Best000/2b707c33-8da2-4a21-b508-4b42124561ed
Best000
2025-02-04T06:16:12Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:NousResearch/Meta-Llama-3-8B", "base_model:adapter:NousResearch/Meta-Llama-3-8B", "license:other", "region:us" ]
null
2025-02-04T06:09:23Z
--- library_name: peft license: other base_model: NousResearch/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: 2b707c33-8da2-4a21-b508-4b42124561ed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 2b707c33-8da2-4a21-b508-4b42124561ed This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/asiapns
LHRuig
2025-02-04T06:15:48Z
10
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:15:36Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: man --- # asiapns <Gallery /> ## Model description asiapns lora ## Trigger words You should use `man` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/asiapns/tree/main) them in the Files & versions tab.
mradermacher/SCE-3-24B-GGUF
mradermacher
2025-02-04T06:12:09Z
300
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Cran-May/SCE-3-24B", "base_model:quantized:Cran-May/SCE-3-24B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T17:46:57Z
--- base_model: Cran-May/SCE-3-24B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Cran-May/SCE-3-24B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/SCE-3-24B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q2_K.gguf) | Q2_K | 9.0 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q3_K_S.gguf) | Q3_K_S | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q3_K_M.gguf) | Q3_K_M | 11.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q3_K_L.gguf) | Q3_K_L | 12.5 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.IQ4_XS.gguf) | IQ4_XS | 13.0 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q4_K_S.gguf) | Q4_K_S | 13.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q4_K_M.gguf) | Q4_K_M | 14.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q5_K_S.gguf) | Q5_K_S | 16.4 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q5_K_M.gguf) | Q5_K_M | 16.9 | | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q6_K.gguf) | Q6_K | 19.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/SCE-3-24B-GGUF/resolve/main/SCE-3-24B.Q8_0.gguf) | Q8_0 | 25.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
oldiday/433f14e5-6b6b-40a8-b45c-86579fd22fd7
oldiday
2025-02-04T06:11:37Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/llama-3-sqlcoder-8b", "base_model:adapter:defog/llama-3-sqlcoder-8b", "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-04T05:39:42Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: 433f14e5-6b6b-40a8-b45c-86579fd22fd7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b9b4289b748f826_train_data.json ds_type: json format: custom path: /workspace/input_data/3b9b4289b748f826_train_data.json type: field_instruction: item_title field_output: comment format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/433f14e5-6b6b-40a8-b45c-86579fd22fd7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/3b9b4289b748f826_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: fb91bb99-180c-4ff4-aa46-6d9918134443 wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: fb91bb99-180c-4ff4-aa46-6d9918134443 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 433f14e5-6b6b-40a8-b45c-86579fd22fd7 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0014 | 1 | 3.6452 | | 3.6055 | 0.0122 | 9 | 3.3931 | | 3.2192 | 0.0244 | 18 | 3.1764 | | 3.1097 | 0.0367 | 27 | 3.0733 | | 3.1131 | 0.0489 | 36 | 3.0239 | | 2.9565 | 0.0611 | 45 | 2.9911 | | 2.9408 | 0.0733 | 54 | 2.9681 | | 2.8996 | 0.0856 | 63 | 2.9517 | | 3.0113 | 0.0978 | 72 | 2.9399 | | 2.8834 | 0.1100 | 81 | 2.9339 | | 2.9892 | 0.1222 | 90 | 2.9308 | | 2.843 | 0.1345 | 99 | 2.9299 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/artursila
LHRuig
2025-02-04T06:11:33Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:11:28Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: artursila --- # artursila <Gallery /> ## Model description artursila lora ## Trigger words You should use `artursila` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/artursila/tree/main) them in the Files & versions tab.
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF
Triangle104
2025-02-04T06:11:21Z
20
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T06:09:32Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_m.gguf -c 2048 ```
mrferr3t/1cdc8fd5-66ad-4aea-b3a0-81fa806d0e2d
mrferr3t
2025-02-04T06:11:17Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "base_model:adapter:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "license:llama3", "region:us" ]
null
2025-02-04T05:56:22Z
--- library_name: peft license: llama3 base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct tags: - axolotl - generated_from_trainer model-index: - name: 1cdc8fd5-66ad-4aea-b3a0-81fa806d0e2d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - a1495fc5a097a229_train_data.json ds_type: json format: custom path: /workspace/input_data/a1495fc5a097a229_train_data.json type: field_instruction: disease field_output: symptoms format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/1cdc8fd5-66ad-4aea-b3a0-81fa806d0e2d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/a1495fc5a097a229_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1da0ae8b-2e96-422b-80d9-64dbe42908dd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1da0ae8b-2e96-422b-80d9-64dbe42908dd warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 1cdc8fd5-66ad-4aea-b3a0-81fa806d0e2d This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0530 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 175 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 3.0597 | | No log | 0.1426 | 40 | 0.9813 | | No log | 0.2852 | 80 | 0.1053 | | 1.0919 | 0.4278 | 120 | 0.0878 | | 1.0919 | 0.5704 | 160 | 0.0793 | | 0.0938 | 0.7130 | 200 | 0.0747 | | 0.0938 | 0.8556 | 240 | 0.0762 | | 0.0938 | 0.9982 | 280 | 0.0750 | | 0.0793 | 1.1408 | 320 | 0.0635 | | 0.0793 | 1.2834 | 360 | 0.0575 | | 0.065 | 1.4260 | 400 | 0.0558 | | 0.065 | 1.5686 | 440 | 0.0609 | | 0.065 | 1.7112 | 480 | 0.0559 | | 0.0599 | 1.8538 | 520 | 0.0527 | | 0.0599 | 1.9964 | 560 | 0.0525 | | 0.0619 | 2.1390 | 600 | 0.0595 | | 0.0619 | 2.2816 | 640 | 0.0640 | | 0.0619 | 2.4242 | 680 | 0.0530 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/35015b36-4c7f-40d3-9363-d217ced67c05
kk-aivio
2025-02-04T06:10:11Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/llama-3-sqlcoder-8b", "base_model:adapter:defog/llama-3-sqlcoder-8b", "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-04T06:03:58Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: 35015b36-4c7f-40d3-9363-d217ced67c05 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b9b4289b748f826_train_data.json ds_type: json format: custom path: /workspace/input_data/3b9b4289b748f826_train_data.json type: field_instruction: item_title field_output: comment format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/35015b36-4c7f-40d3-9363-d217ced67c05 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b9b4289b748f826_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fb91bb99-180c-4ff4-aa46-6d9918134443 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: fb91bb99-180c-4ff4-aa46-6d9918134443 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 35015b36-4c7f-40d3-9363-d217ced67c05 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 3.9196 | | 3.0679 | 0.0170 | 50 | 3.1643 | | 2.9438 | 0.0340 | 100 | 3.0732 | | 2.9586 | 0.0509 | 150 | 3.0325 | | 3.0316 | 0.0679 | 200 | 3.0224 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
reaper24/model_8bit
reaper24
2025-02-04T06:08:54Z
33
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T06:07:58Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** reaper24 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
LHRuig/stephenamll
LHRuig
2025-02-04T06:08:43Z
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:08:39Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: stephenamll --- # stephenamll <Gallery /> ## Model description stephenamll lora ## Trigger words You should use `stephenamll` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/stephenamll/tree/main) them in the Files & versions tab.
tensoralchemistdev01/bb22
tensoralchemistdev01
2025-02-04T06:08:36Z
83
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T06:03:26Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LHRuig/arnoldschwarz
LHRuig
2025-02-04T06:07:36Z
10
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:07:10Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: arnoldschwar --- # arnoldschwar <Gallery /> ## Model description arnoldschwar lora ## Trigger words You should use `arnoldschwar` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/arnoldschwarz/tree/main) them in the Files & versions tab.
John6666/redp8nt-noobai11-v11-sdxl
John6666
2025-02-04T06:07:25Z
13
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "2D", "hentai", "painterly style", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:finetune:Laxhar/noobai-XL-1.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-02-04T06:00:36Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - 2D - hentai - painterly style - illustrious base_model: Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/1157156/redp8nt-noobai11?modelVersionId=1361319). This model created by [bloodsplash](https://civitai.com/user/bloodsplash).
earnxus/d1c020ab-808c-4bb7-9a64-ed5f67960b17
earnxus
2025-02-04T06:07:19Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-3B", "base_model:adapter:Qwen/Qwen2.5-3B", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T05:17:29Z
--- library_name: peft license: other base_model: Qwen/Qwen2.5-3B tags: - axolotl - generated_from_trainer model-index: - name: d1c020ab-808c-4bb7-9a64-ed5f67960b17 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-3B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c34072e21f82fd36_train_data.json ds_type: json format: custom path: /workspace/input_data/c34072e21f82fd36_train_data.json type: field_instruction: qwq field_output: problem format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/d1c020ab-808c-4bb7-9a64-ed5f67960b17 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/c34072e21f82fd36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a8c27290-a0ee-4a3d-85a4-688f5c1c52b6 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: a8c27290-a0ee-4a3d-85a4-688f5c1c52b6 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # d1c020ab-808c-4bb7-9a64-ed5f67960b17 This model is a fine-tuned version of [Qwen/Qwen2.5-3B](https://huggingface.co/Qwen/Qwen2.5-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2872 | 0.0127 | 200 | 0.3554 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
reaper24/model_q4_k_m
reaper24
2025-02-04T06:05:20Z
22
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T06:04:46Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** reaper24 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
LHRuig/arnoldschwar
LHRuig
2025-02-04T06:04:01Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:03:56Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: arnoldschwar --- # arnoldschwar <Gallery /> ## Model description arnoldschwar lora ## Trigger words You should use `arnoldschwar` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/arnoldschwar/tree/main) them in the Files & versions tab.
LHRuig/armanram
LHRuig
2025-02-04T06:03:35Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:03:14Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: armanram --- # armanram <Gallery /> ## Model description armanram lora ## Trigger words You should use `armanram` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/armanram/tree/main) them in the Files & versions tab.
LHRuig/aricsx
LHRuig
2025-02-04T06:02:47Z
8
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:02:36Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aricsx --- # aricsx <Gallery /> ## Model description aricsx lora ## Trigger words You should use `aricsx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aricsx/tree/main) them in the Files & versions tab.
robiulawaldev/a3b9ff45-428f-4bd8-98b7-a5248b0d9081
robiulawaldev
2025-02-04T06:02:01Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "base_model:adapter:aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct", "license:llama3", "region:us" ]
null
2025-02-04T05:56:49Z
--- library_name: peft license: llama3 base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct tags: - axolotl - generated_from_trainer model-index: - name: a3b9ff45-428f-4bd8-98b7-a5248b0d9081 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # a3b9ff45-428f-4bd8-98b7-a5248b0d9081 This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fabian6567/model-overfitted
fabian6567
2025-02-04T06:01:50Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T05:57:29Z
--- base_model: unsloth/meta-llama-3.1-8b-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** fabian6567 - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
LHRuig/areuben
LHRuig
2025-02-04T06:01:50Z
8
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T06:01:46Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: areuben --- # areuben <Gallery /> ## Model description areuben lora ## Trigger words You should use `areuben` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/areuben/tree/main) them in the Files & versions tab.
LHRuig/archersx
LHRuig
2025-02-04T05:59:42Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:59:37Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: archersx --- # archersx <Gallery /> ## Model description archersx lora ## Trigger words You should use `archersx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/archersx/tree/main) them in the Files & versions tab.
LHRuig/aragornviggo
LHRuig
2025-02-04T05:57:31Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:57:27Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aragornviggo --- # aragornviggo <Gallery /> ## Model description aragornviggo lora ## Trigger words You should use `aragornviggo` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aragornviggo/tree/main) them in the Files & versions tab.
kk-aivio/200f4114-0fca-4b74-b365-f81ac9f59a76
kk-aivio
2025-02-04T05:56:36Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:31:29Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 200f4114-0fca-4b74-b365-f81ac9f59a76 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/200f4114-0fca-4b74-b365-f81ac9f59a76 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 200f4114-0fca-4b74-b365-f81ac9f59a76 This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF
Triangle104
2025-02-04T05:56:05Z
20
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T05:54:18Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q5_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q5_k_s.gguf -c 2048 ```
John6666/ikastrious-noobai-xl-v92-sdxl
John6666
2025-02-04T05:55:41Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "girls", "cute", "illustrious", "en", "base_model:Laxhar/noobai-XL-1.1", "base_model:finetune:Laxhar/noobai-XL-1.1", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2025-02-04T05:48:33Z
--- license: other license_name: faipl-1.0-sd license_link: https://freedevproject.org/faipl-1.0-sd/ language: - en library_name: diffusers pipeline_tag: text-to-image tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - girls - cute - illustrious base_model: Laxhar/noobai-XL-1.1 --- Original model is [here](https://civitai.com/models/874216/ikastrious-noobai-xl?modelVersionId=1367989). This model created by [giko](https://civitai.com/user/giko).
reaper24/model_16bit_gguf
reaper24
2025-02-04T05:55:38Z
45
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T05:53:58Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** reaper24 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nathanialhunt/4d996d37-081c-4183-9112-28695b9f58b5
nathanialhunt
2025-02-04T05:55:29Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:30:35Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 4d996d37-081c-4183-9112-28695b9f58b5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nathanialhunt/4d996d37-081c-4183-9112-28695b9f58b5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-24-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4d996d37-081c-4183-9112-28695b9f58b5 This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/antoinedupont
LHRuig
2025-02-04T05:55:29Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:55:08Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: antoinedupont --- # antoinedupont <Gallery /> ## Model description antoinedupont lora ## Trigger words You should use `antoinedupont` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/antoinedupont/tree/main) them in the Files & versions tab.
aseratus1/09c4d30d-efde-4112-aa25-bd99b624b201
aseratus1
2025-02-04T05:55:19Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/tinyllama", "base_model:adapter:unsloth/tinyllama", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T05:42:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama tags: - axolotl - generated_from_trainer model-index: - name: 09c4d30d-efde-4112-aa25-bd99b624b201 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74fd83b58bc4ad47_train_data.json ds_type: json format: custom path: /workspace/input_data/74fd83b58bc4ad47_train_data.json type: field_input: conversation field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: aseratus1/09c4d30d-efde-4112-aa25-bd99b624b201 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/74fd83b58bc4ad47_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 21068da4-737c-49df-9240-0bd8ff25df8b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 21068da4-737c-49df-9240-0bd8ff25df8b warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 09c4d30d-efde-4112-aa25-bd99b624b201 This model is a fine-tuned version of [unsloth/tinyllama](https://huggingface.co/unsloth/tinyllama) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1192 | 0.0565 | 200 | 0.9429 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
laquythang/3550677e-e305-49f2-80f2-a4ab175087d7
laquythang
2025-02-04T05:54:33Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/tinyllama", "base_model:adapter:unsloth/tinyllama", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T05:42:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama tags: - axolotl - generated_from_trainer model-index: - name: 3550677e-e305-49f2-80f2-a4ab175087d7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74fd83b58bc4ad47_train_data.json ds_type: json format: custom path: /workspace/input_data/74fd83b58bc4ad47_train_data.json type: field_input: conversation field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: laquythang/3550677e-e305-49f2-80f2-a4ab175087d7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/74fd83b58bc4ad47_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 21068da4-737c-49df-9240-0bd8ff25df8b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 21068da4-737c-49df-9240-0bd8ff25df8b warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 3550677e-e305-49f2-80f2-a4ab175087d7 This model is a fine-tuned version of [unsloth/tinyllama](https://huggingface.co/unsloth/tinyllama) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9308 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9055 | 0.0565 | 200 | 0.9308 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/anthonyhopkn
LHRuig
2025-02-04T05:54:25Z
9
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:54:21Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: anthonyhopkn --- # anthonyhopkn <Gallery /> ## Model description anthonyhopkn lora ## Trigger words You should use `anthonyhopkn` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/anthonyhopkn/tree/main) them in the Files & versions tab.
LHRuig/anthonyburdan
LHRuig
2025-02-04T05:53:11Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:53:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: anthonyburdan --- # anthonyburdan <Gallery /> ## Model description anthonyburdan lora ## Trigger words You should use `anthonyburdan` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/anthonyburdan/tree/main) them in the Files & versions tab.
LHRuig/anthonymorl
LHRuig
2025-02-04T05:52:28Z
10
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:52:23Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: anthonymorl --- # anthonymorl <Gallery /> ## Model description anthonymorl lora ## Trigger words You should use `anthonymorl` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/anthonymorl/tree/main) them in the Files & versions tab.
bane5631/2750b9d9-ded4-494a-b1ca-811ef86cc80d
bane5631
2025-02-04T05:51:23Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T05:26:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2750b9d9-ded4-494a-b1ca-811ef86cc80d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6e4f6e948bc6471_train_data.json ds_type: json format: custom path: /workspace/input_data/e6e4f6e948bc6471_train_data.json type: field_input: topic field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: bane5631/2750b9d9-ded4-494a-b1ca-811ef86cc80d hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/e6e4f6e948bc6471_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 69002658-908b-4f14-a9fb-64d08340747d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 69002658-908b-4f14-a9fb-64d08340747d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2750b9d9-ded4-494a-b1ca-811ef86cc80d This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 140 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4008 | 1.0 | 140 | 0.6787 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/cf97c69c-9b44-4a7d-8de5-5062564fd8f0
nttx
2025-02-04T05:50:44Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/tinyllama", "base_model:adapter:unsloth/tinyllama", "license:apache-2.0", "region:us" ]
null
2025-02-04T05:41:20Z
--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama tags: - axolotl - generated_from_trainer model-index: - name: cf97c69c-9b44-4a7d-8de5-5062564fd8f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 74fd83b58bc4ad47_train_data.json ds_type: json format: custom path: /workspace/input_data/74fd83b58bc4ad47_train_data.json type: field_input: conversation field_instruction: note field_output: summary format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/cf97c69c-9b44-4a7d-8de5-5062564fd8f0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/74fd83b58bc4ad47_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 21068da4-737c-49df-9240-0bd8ff25df8b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 21068da4-737c-49df-9240-0bd8ff25df8b warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cf97c69c-9b44-4a7d-8de5-5062564fd8f0 This model is a fine-tuned version of [unsloth/tinyllama](https://huggingface.co/unsloth/tinyllama) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2235 | 0.1130 | 200 | 0.2128 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
biustnaspust/puszek50
biustnaspust
2025-02-04T05:50:32Z
41
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T05:45:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso/71d9fb6c-4d85-4aec-8d15-86465f62e01a
lesso
2025-02-04T05:49:45Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:03:06Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 71d9fb6c-4d85-4aec-8d15-86465f62e01a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/71d9fb6c-4d85-4aec-8d15-86465f62e01a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god13/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: ab-god13 wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 71d9fb6c-4d85-4aec-8d15-86465f62e01a This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6474 | 0.0054 | 1 | 2.8695 | | 2.7467 | 0.2703 | 50 | 2.5603 | | 2.707 | 0.5405 | 100 | 2.5017 | | 2.736 | 0.8108 | 150 | 2.4729 | | 2.4112 | 1.0811 | 200 | 2.4630 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/andycut
LHRuig
2025-02-04T05:48:02Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:47:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: andycut --- # andycut <Gallery /> ## Model description andycut lora ## Trigger words You should use `andycut` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/andycut/tree/main) them in the Files & versions tab.
mrferr3t/ec115bc8-c139-42af-aa1d-ba408f218dda
mrferr3t
2025-02-04T05:46:11Z
8
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-1.3b", "base_model:adapter:facebook/opt-1.3b", "license:other", "region:us" ]
null
2025-02-04T04:38:36Z
--- library_name: peft license: other base_model: facebook/opt-1.3b tags: - axolotl - generated_from_trainer model-index: - name: ec115bc8-c139-42af-aa1d-ba408f218dda results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: facebook/opt-1.3b bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 865018e1e26a6750_train_data.json ds_type: json format: custom path: /workspace/input_data/865018e1e26a6750_train_data.json type: field_input: category field_instruction: prompt field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/ec115bc8-c139-42af-aa1d-ba408f218dda hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/865018e1e26a6750_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ac737825-d1b0-4693-98b1-0e9d338f04f7 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ac737825-d1b0-4693-98b1-0e9d338f04f7 warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ec115bc8-c139-42af-aa1d-ba408f218dda This model is a fine-tuned version of [facebook/opt-1.3b](https://huggingface.co/facebook/opt-1.3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 363 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | No log | 0.0034 | 1 | 1.4209 | | No log | 0.1375 | 40 | 1.2780 | | No log | 0.2749 | 80 | 1.0079 | | 2.4977 | 0.4124 | 120 | 0.8917 | | 2.4977 | 0.5498 | 160 | 0.8292 | | 1.7889 | 0.6873 | 200 | 0.7923 | | 1.7889 | 0.8247 | 240 | 0.7640 | | 1.7889 | 0.9622 | 280 | 0.7362 | | 1.6126 | 1.0997 | 320 | 0.7179 | | 1.6126 | 1.2371 | 360 | 0.7066 | | 1.493 | 1.3746 | 400 | 0.6835 | | 1.493 | 1.5120 | 440 | 0.6650 | | 1.493 | 1.6495 | 480 | 0.6581 | | 1.4002 | 1.7869 | 520 | 0.6351 | | 1.4002 | 1.9244 | 560 | 0.6221 | | 1.3197 | 2.0619 | 600 | 0.6082 | | 1.3197 | 2.1993 | 640 | 0.5975 | | 1.3197 | 2.3368 | 680 | 0.5838 | | 1.2424 | 2.4742 | 720 | 0.5732 | | 1.2424 | 2.6117 | 760 | 0.5607 | | 1.1842 | 2.7491 | 800 | 0.5476 | | 1.1842 | 2.8866 | 840 | 0.5407 | | 1.1842 | 3.0241 | 880 | 0.5306 | | 1.1193 | 3.1615 | 920 | 0.5175 | | 1.1193 | 3.2990 | 960 | 0.5120 | | 1.0643 | 3.4364 | 1000 | 0.5031 | | 1.0643 | 3.5739 | 1040 | 0.4926 | | 1.0643 | 3.7113 | 1080 | 0.4833 | | 1.0313 | 3.8488 | 1120 | 0.4757 | | 1.0313 | 3.9863 | 1160 | 0.4716 | | 0.9792 | 4.1237 | 1200 | 0.4642 | | 0.9792 | 4.2612 | 1240 | 0.4573 | | 0.9792 | 4.3986 | 1280 | 0.4507 | | 0.9349 | 4.5361 | 1320 | 0.4439 | | 0.9349 | 4.6735 | 1360 | 0.4401 | | 0.9144 | 4.8110 | 1400 | 0.4325 | | 0.9144 | 4.9485 | 1440 | 0.4269 | | 0.9144 | 5.0859 | 1480 | 0.4215 | | 0.8651 | 5.2234 | 1520 | 0.4160 | | 0.8651 | 5.3608 | 1560 | 0.4099 | | 0.8401 | 5.4983 | 1600 | 0.4063 | | 0.8401 | 5.6357 | 1640 | 0.4021 | | 0.8401 | 5.7732 | 1680 | 0.4004 | | 0.8193 | 5.9107 | 1720 | 0.3935 | | 0.8193 | 6.0481 | 1760 | 0.3907 | | 0.7797 | 6.1856 | 1800 | 0.3889 | | 0.7797 | 6.3230 | 1840 | 0.3832 | | 0.7797 | 6.4605 | 1880 | 0.3841 | | 0.7569 | 6.5979 | 1920 | 0.3794 | | 0.7569 | 6.7354 | 1960 | 0.3763 | | 0.7553 | 6.8729 | 2000 | 0.3719 | | 0.7553 | 7.0103 | 2040 | 0.3709 | | 0.7553 | 7.1478 | 2080 | 0.3677 | | 0.706 | 7.2852 | 2120 | 0.3678 | | 0.706 | 7.4227 | 2160 | 0.3643 | | 0.7028 | 7.5601 | 2200 | 0.3603 | | 0.7028 | 7.6976 | 2240 | 0.3593 | | 0.7028 | 7.8351 | 2280 | 0.3554 | | 0.6982 | 7.9725 | 2320 | 0.3540 | | 0.6982 | 8.1100 | 2360 | 0.3552 | | 0.6574 | 8.2474 | 2400 | 0.3537 | | 0.6574 | 8.3849 | 2440 | 0.3525 | | 0.6574 | 8.5223 | 2480 | 0.3515 | | 0.6605 | 8.6598 | 2520 | 0.3481 | | 0.6605 | 8.7973 | 2560 | 0.3463 | | 0.6595 | 8.9347 | 2600 | 0.3455 | | 0.6595 | 9.0722 | 2640 | 0.3460 | | 0.6595 | 9.2096 | 2680 | 0.3437 | | 0.6202 | 9.3471 | 2720 | 0.3405 | | 0.6202 | 9.4845 | 2760 | 0.3395 | | 0.6263 | 9.6220 | 2800 | 0.3386 | | 0.6263 | 9.7595 | 2840 | 0.3357 | | 0.6263 | 9.8969 | 2880 | 0.3334 | | 0.6157 | 10.0344 | 2920 | 0.3372 | | 0.6157 | 10.1718 | 2960 | 0.3380 | | 0.585 | 10.3093 | 3000 | 0.3369 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/19350214-bb71-41ac-8c18-13064e1f4f30
leixa
2025-02-04T05:44:43Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2025-02-04T04:51:36Z
--- library_name: peft license: cc-by-nc-4.0 base_model: upstage/SOLAR-10.7B-Instruct-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 19350214-bb71-41ac-8c18-13064e1f4f30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: upstage/SOLAR-10.7B-Instruct-v1.0 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2b92ab41fd78d964_train_data.json ds_type: json format: custom path: /workspace/input_data/2b92ab41fd78d964_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/19350214-bb71-41ac-8c18-13064e1f4f30 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2b92ab41fd78d964_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: d52e1c3e-d02f-4f16-8a19-04af65ce7992 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d52e1c3e-d02f-4f16-8a19-04af65ce7992 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 19350214-bb71-41ac-8c18-13064e1f4f30 This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 0.8825 | | 0.7539 | 0.0328 | 9 | 0.6861 | | 0.6087 | 0.0656 | 18 | 0.6304 | | 0.5978 | 0.0985 | 27 | 0.6114 | | 0.6131 | 0.1313 | 36 | 0.6000 | | 0.6093 | 0.1641 | 45 | 0.5919 | | 0.5994 | 0.1969 | 54 | 0.5852 | | 0.5922 | 0.2297 | 63 | 0.5802 | | 0.5946 | 0.2625 | 72 | 0.5760 | | 0.5759 | 0.2954 | 81 | 0.5733 | | 0.5821 | 0.3282 | 90 | 0.5720 | | 0.5755 | 0.3610 | 99 | 0.5718 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/ea561f4e-8d7a-4672-a68f-a2ffce4792e2
prxy5604
2025-02-04T05:44:35Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/llama-3-sqlcoder-8b", "base_model:adapter:defog/llama-3-sqlcoder-8b", "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-04T05:09:42Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: ea561f4e-8d7a-4672-a68f-a2ffce4792e2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b9b4289b748f826_train_data.json ds_type: json format: custom path: /workspace/input_data/3b9b4289b748f826_train_data.json type: field_instruction: item_title field_output: comment format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/ea561f4e-8d7a-4672-a68f-a2ffce4792e2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3b9b4289b748f826_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fb91bb99-180c-4ff4-aa46-6d9918134443 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fb91bb99-180c-4ff4-aa46-6d9918134443 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ea561f4e-8d7a-4672-a68f-a2ffce4792e2 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1054 | 0.0014 | 1 | 4.3530 | | 4.0698 | 0.0679 | 50 | 4.0311 | | 4.1273 | 0.1358 | 100 | 3.5088 | | 4.0845 | 0.2037 | 150 | 3.0917 | | 4.9535 | 0.2716 | 200 | 3.0228 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ciloku/5a4fcb7a-f816-42ea-9149-6c968f2d88d2
ciloku
2025-02-04T05:44:35Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/llama-3-sqlcoder-8b", "base_model:adapter:defog/llama-3-sqlcoder-8b", "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-04T05:09:50Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: 5a4fcb7a-f816-42ea-9149-6c968f2d88d2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - 3b9b4289b748f826_train_data.json ds_type: json format: custom path: /workspace/input_data/3b9b4289b748f826_train_data.json type: field_instruction: item_title field_output: comment format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ciloku/5a4fcb7a-f816-42ea-9149-6c968f2d88d2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 6.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3b9b4289b748f826_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 special_tokens: pad_token: <|eot_id|> strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fb91bb99-180c-4ff4-aa46-6d9918134443 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fb91bb99-180c-4ff4-aa46-6d9918134443 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5a4fcb7a-f816-42ea-9149-6c968f2d88d2 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0434 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.1182 | 0.0014 | 1 | 4.3540 | | 4.4217 | 0.0679 | 50 | 3.6466 | | 4.5185 | 0.1358 | 100 | 3.3408 | | 4.8501 | 0.2037 | 150 | 3.0678 | | 4.8512 | 0.2716 | 200 | 3.0434 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/andrewrea
LHRuig
2025-02-04T05:44:09Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:44:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: andrewrea --- # andrewrea <Gallery /> ## Model description andrewrea lora ## Trigger words You should use `andrewrea` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/andrewrea/tree/main) them in the Files & versions tab.
Kyungjin-Kim/mmc_roberta_500000_es-ipa
Kyungjin-Kim
2025-02-04T05:43:27Z
5
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-02-03T23:36:39Z
--- library_name: transformers tags: - generated_from_trainer model-index: - name: mmc_roberta_500000_es-ipa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mmc_roberta_500000_es-ipa This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF
Triangle104
2025-02-04T05:42:27Z
21
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T05:40:54Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_m.gguf -c 2048 ```
brew35/072cce4b-98f6-4c95-bed0-15811a60d568
brew35
2025-02-04T05:38:59Z
10
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b", "base_model:adapter:unsloth/gemma-2-9b", "license:gemma", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T04:33:15Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b tags: - axolotl - generated_from_trainer model-index: - name: 072cce4b-98f6-4c95-bed0-15811a60d568 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aca1347c2eff58c3_train_data.json ds_type: json format: custom path: /workspace/input_data/aca1347c2eff58c3_train_data.json type: field_instruction: question_text field_output: document_plaintext format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brew35/072cce4b-98f6-4c95-bed0-15811a60d568 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/aca1347c2eff58c3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 36088511-e20e-40ed-8fa3-5090e5d7f560 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 36088511-e20e-40ed-8fa3-5090e5d7f560 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 072cce4b-98f6-4c95-bed0-15811a60d568 This model is a fine-tuned version of [unsloth/gemma-2-9b](https://huggingface.co/unsloth/gemma-2-9b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9911 | 0.0261 | 200 | 1.7741 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
anvorja/roberta-base-biomedical-clinical-es-ner-breast-cancer
anvorja
2025-02-04T05:37:25Z
29
0
transformers
[ "transformers", "safetensors", "roberta", "token-classification", "generated_from_trainer", "base_model:PlanTL-GOB-ES/roberta-base-biomedical-clinical-es", "base_model:finetune:PlanTL-GOB-ES/roberta-base-biomedical-clinical-es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-02-04T04:06:52Z
--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-base-biomedical-clinical-es tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-biomedical-clinical-es-ner-breast-cancer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-biomedical-clinical-es-ner-breast-cancer This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-biomedical-clinical-es](https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2843 - Precision: 0.8858 - Recall: 0.8799 - F1: 0.8829 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 2.0684 | 1.0 | 213 | 2.5125 | 0.0 | 0.0 | 0.0 | 0.4888 | | 1.1248 | 2.0 | 426 | 1.2611 | 0.5215 | 0.4616 | 0.4897 | 0.7386 | | 0.5784 | 3.0 | 639 | 0.6768 | 0.7367 | 0.7785 | 0.7571 | 0.8910 | | 0.3367 | 4.0 | 852 | 0.4469 | 0.7996 | 0.8359 | 0.8174 | 0.9227 | | 0.2784 | 5.0 | 1065 | 0.3739 | 0.8410 | 0.8646 | 0.8526 | 0.9328 | | 0.1799 | 6.0 | 1278 | 0.3285 | 0.8709 | 0.8686 | 0.8697 | 0.9393 | | 0.1392 | 7.0 | 1491 | 0.3132 | 0.8758 | 0.8659 | 0.8708 | 0.9397 | | 0.1399 | 8.0 | 1704 | 0.3047 | 0.8798 | 0.8739 | 0.8768 | 0.9427 | | 0.1207 | 9.0 | 1917 | 0.3080 | 0.8755 | 0.8773 | 0.8764 | 0.9400 | | 0.0968 | 10.0 | 2130 | 0.3021 | 0.8757 | 0.8739 | 0.8748 | 0.9395 | | 0.1218 | 11.0 | 2343 | 0.2862 | 0.8835 | 0.8753 | 0.8794 | 0.9431 | | 0.088 | 12.0 | 2556 | 0.2894 | 0.8807 | 0.8819 | 0.8813 | 0.9429 | | 0.0808 | 13.0 | 2769 | 0.2891 | 0.8818 | 0.8759 | 0.8788 | 0.9451 | | 0.1002 | 14.0 | 2982 | 0.2829 | 0.8837 | 0.8766 | 0.8801 | 0.9453 | | 0.0617 | 15.0 | 3195 | 0.2840 | 0.8820 | 0.8773 | 0.8796 | 0.9460 | | 0.0757 | 16.0 | 3408 | 0.2843 | 0.8858 | 0.8799 | 0.8829 | 0.9477 | | 0.0758 | 17.0 | 3621 | 0.2869 | 0.8845 | 0.8786 | 0.8815 | 0.9462 | | 0.0617 | 18.0 | 3834 | 0.2844 | 0.8835 | 0.8799 | 0.8817 | 0.9463 | | 0.0719 | 19.0 | 4047 | 0.2842 | 0.8852 | 0.8793 | 0.8822 | 0.9467 | | 0.0717 | 19.9088 | 4240 | 0.2842 | 0.8852 | 0.8793 | 0.8822 | 0.9467 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
LHRuig/alexandrejubl
LHRuig
2025-02-04T05:35:01Z
5
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:34:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: alexandrejubl --- # alexandrejubl <Gallery /> ## Model description alexandrejubl lora ## Trigger words You should use `alexandrejubl` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/alexandrejubl/tree/main) them in the Files & versions tab.
mrHungddddh/845ca854-d8a6-415e-aa62-71bfef4ac9c9
mrHungddddh
2025-02-04T05:33:45Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:28:22Z
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 845ca854-d8a6-415e-aa62-71bfef4ac9c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8f23d0c27dcb0f9f_train_data.json ds_type: json format: custom path: /workspace/input_data/8f23d0c27dcb0f9f_train_data.json type: field_input: evidence field_instruction: user_input field_output: claim format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: mrHungddddh/845ca854-d8a6-415e-aa62-71bfef4ac9c9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8f23d0c27dcb0f9f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: afeef3dd-1e46-4c12-b26d-35001f70da6e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: afeef3dd-1e46-4c12-b26d-35001f70da6e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 845ca854-d8a6-415e-aa62-71bfef4ac9c9 This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9613 | 0.0035 | 200 | 0.9622 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Pravallika6/detr-resnet-50-finetuned-credentials
Pravallika6
2025-02-04T05:33:07Z
12
0
transformers
[ "transformers", "safetensors", "detr", "object-detection", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
2025-02-03T20:51:34Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
oldiday/7576c91c-10b4-49e2-8393-8055fec170f0
oldiday
2025-02-04T05:32:06Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-64k", "base_model:adapter:NousResearch/Yarn-Solar-10b-64k", "license:apache-2.0", "region:us" ]
null
2025-02-04T05:10:36Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: 7576c91c-10b4-49e2-8393-8055fec170f0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9bd7b6044d104eec_train_data.json ds_type: json format: custom path: /workspace/input_data/9bd7b6044d104eec_train_data.json type: field_input: '' field_instruction: input_text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: oldiday/7576c91c-10b4-49e2-8393-8055fec170f0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/9bd7b6044d104eec_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c wandb_project: Gradients-On-Six wandb_run: your_name wandb_runid: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7576c91c-10b4-49e2-8393-8055fec170f0 This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0125 | 1 | 2.0694 | | 3.0347 | 0.1121 | 9 | 0.3758 | | 0.5592 | 0.2243 | 18 | 0.1338 | | 0.4166 | 0.3364 | 27 | 0.0836 | | 0.3085 | 0.4486 | 36 | 0.0722 | | 0.1686 | 0.5607 | 45 | 0.0535 | | 0.1935 | 0.6729 | 54 | 0.0369 | | 0.1384 | 0.7850 | 63 | 0.0295 | | 0.0998 | 0.8972 | 72 | 0.0225 | | 0.1406 | 1.0093 | 81 | 0.0230 | | 0.0726 | 1.1215 | 90 | 0.0219 | | 0.0303 | 1.2336 | 99 | 0.0215 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/alexcut
LHRuig
2025-02-04T05:31:57Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:31:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: alexcut --- # alexcut <Gallery /> ## Model description alexcut lora ## Trigger words You should use `alexcut` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/alexcut/tree/main) them in the Files & versions tab.
abaddon182/7fec50ae-d171-4d77-9ee5-5ae4e3971de0
abaddon182
2025-02-04T05:30:33Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:54:43Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7fec50ae-d171-4d77-9ee5-5ae4e3971de0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6e4f6e948bc6471_train_data.json ds_type: json format: custom path: /workspace/input_data/e6e4f6e948bc6471_train_data.json type: field_input: topic field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/7fec50ae-d171-4d77-9ee5-5ae4e3971de0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/e6e4f6e948bc6471_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 69002658-908b-4f14-a9fb-64d08340747d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 69002658-908b-4f14-a9fb-64d08340747d warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7fec50ae-d171-4d77-9ee5-5ae4e3971de0 This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.985 | 0.0143 | 1 | 3.7549 | | 0.6906 | 0.7143 | 50 | 0.7170 | | 0.2946 | 1.4286 | 100 | 0.5829 | | 0.1743 | 2.1429 | 150 | 0.5703 | | 0.0712 | 2.8571 | 200 | 0.6212 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/alesko
LHRuig
2025-02-04T05:29:38Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:29:10Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: alesko --- # alesko <Gallery /> ## Model description alesko lora ## Trigger words You should use `alesko` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/alesko/tree/main) them in the Files & versions tab.
oiehhun/love_chatbot
oiehhun
2025-02-04T05:29:20Z
26
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T05:27:03Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** oiehhun - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
JoeKinng14/test_trainer
JoeKinng14
2025-02-04T05:29:05Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T05:28:26Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_trainer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5120 - Accuracy: 0.884 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 0.3425 | 0.849 | | No log | 2.0 | 250 | 0.4071 | 0.874 | | No log | 3.0 | 375 | 0.5120 | 0.884 | ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
LHRuig/albundy
LHRuig
2025-02-04T05:27:55Z
9
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:27:51Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: albundy --- # albundy <Gallery /> ## Model description albundy lora ## Trigger words You should use `albundy` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/albundy/tree/main) them in the Files & versions tab.
LHRuig/albertdupontl
LHRuig
2025-02-04T05:27:27Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:26:53Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: albertdupontl --- # albertdupontl <Gallery /> ## Model description albertdupontl lora ## Trigger words You should use `albertdupontl` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/albertdupontl/tree/main) them in the Files & versions tab.
Best000/ca86e901-45fe-4b2b-ad97-9ef3848616ad
Best000
2025-02-04T05:27:19Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:02:08Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: ca86e901-45fe-4b2b-ad97-9ef3848616ad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: Best000/ca86e901-45fe-4b2b-ad97-9ef3848616ad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-15-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ca86e901-45fe-4b2b-ad97-9ef3848616ad This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
havinash-ai/72018811-3923-4491-9a6d-c9fb992d2204
havinash-ai
2025-02-04T05:27:05Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:02:06Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 72018811-3923-4491-9a6d-c9fb992d2204 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/72018811-3923-4491-9a6d-c9fb992d2204 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 72018811-3923-4491-9a6d-c9fb992d2204 This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/99bd7935-0a86-4700-8869-582d321fefbd
trenden
2025-02-04T05:27:05Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:02:05Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 99bd7935-0a86-4700-8869-582d321fefbd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: trenden/99bd7935-0a86-4700-8869-582d321fefbd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-26-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 99bd7935-0a86-4700-8869-582d321fefbd This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daniel40/421a3a89-b693-46a7-9536-4371f1420f98
daniel40
2025-02-04T05:26:59Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "base_model:adapter:OpenBuddy/openbuddy-llama2-13b-v8.1-fp16", "region:us" ]
null
2025-02-04T05:02:06Z
--- library_name: peft base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 tags: - axolotl - generated_from_trainer model-index: - name: 421a3a89-b693-46a7-9536-4371f1420f98 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ad9a336907b8ae34_train_data.json ds_type: json format: custom path: /workspace/input_data/ad9a336907b8ae34_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/421a3a89-b693-46a7-9536-4371f1420f98 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ad9a336907b8ae34_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2ae55a37-53c0-49da-ae27-90302c180793 wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 2ae55a37-53c0-49da-ae27-90302c180793 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 421a3a89-b693-46a7-9536-4371f1420f98 This model is a fine-tuned version of [OpenBuddy/openbuddy-llama2-13b-v8.1-fp16](https://huggingface.co/OpenBuddy/openbuddy-llama2-13b-v8.1-fp16) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | nan | | 9.0062 | 0.0085 | 50 | nan | | 46.0364 | 0.0169 | 100 | nan | | 148.0058 | 0.0254 | 150 | nan | | 72.2216 | 0.0338 | 200 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/alainchabt
LHRuig
2025-02-04T05:25:39Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:25:12Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: alainchabt --- # alainchabt <Gallery /> ## Model description alainchabt lora ## Trigger words You should use `alainchabt` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/alainchabt/tree/main) them in the Files & versions tab.
LHRuig/alaindeln
LHRuig
2025-02-04T05:24:47Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:24:15Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: alaindeln --- # alaindeln <Gallery /> ## Model description alaindeln lora ## Trigger words You should use `alaindeln` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/alaindeln/tree/main) them in the Files & versions tab.
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF
Triangle104
2025-02-04T05:24:01Z
20
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T05:22:32Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q4_K_S-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q4_k_s.gguf -c 2048 ```
LHRuig/akboss
LHRuig
2025-02-04T05:23:28Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:23:23Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: akboss --- # akboss <Gallery /> ## Model description akboss lora ## Trigger words You should use `akboss` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/akboss/tree/main) them in the Files & versions tab.
rsh345/llama3-8b-finance-elyza-linear-a_w06-b_w04
rsh345
2025-02-04T05:22:01Z
11
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:merge:elyza/Llama-3-ELYZA-JP-8B", "base_model:instruction-pretrain/finance-Llama3-8B", "base_model:merge:instruction-pretrain/finance-Llama3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T05:17:21Z
--- base_model: - elyza/Llama-3-ELYZA-JP-8B - instruction-pretrain/finance-Llama3-8B library_name: transformers tags: - mergekit - merge --- # llama3-8b-finance-elyza-linear-a_w06-b_w04 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) * [instruction-pretrain/finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: elyza/Llama-3-ELYZA-JP-8B parameters: weight: 0.6 - model: instruction-pretrain/finance-Llama3-8B parameters: weight: 0.4 merge_method: linear dtype: float16 ```
LHRuig/ajcute
LHRuig
2025-02-04T05:20:20Z
6
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:20:16Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: ajcute --- # ajcute <Gallery /> ## Model description ajcute lora ## Trigger words You should use `ajcute` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/ajcute/tree/main) them in the Files & versions tab.
mradermacher/Zurich-1.5B-GCv2-50k-GGUF
mradermacher
2025-02-04T05:20:13Z
278
1
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "gammacorpus", "zurich", "chat", "conversational", "en", "dataset:rubenroy/GammaCorpus-v2-50k", "base_model:rubenroy/Zurich-1.5B-GCv2-50k", "base_model:quantized:rubenroy/Zurich-1.5B-GCv2-50k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-03T19:22:05Z
--- base_model: rubenroy/Zurich-1.5B-GCv2-50k datasets: - rubenroy/GammaCorpus-v2-50k language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - gammacorpus - zurich - chat - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-50k <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-50k-GGUF/resolve/main/Zurich-1.5B-GCv2-50k.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
Dang-gu/pokemon2
Dang-gu
2025-02-04T05:19:53Z
26
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T05:17:03Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Dang-gu - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
beast33/7e9a33e4-dfed-46c0-8f45-6919b81fa56d
beast33
2025-02-04T05:19:39Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-7B-Instruct", "base_model:adapter:unsloth/Qwen2-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T04:54:49Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 7e9a33e4-dfed-46c0-8f45-6919b81fa56d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - e6e4f6e948bc6471_train_data.json ds_type: json format: custom path: /workspace/input_data/e6e4f6e948bc6471_train_data.json type: field_input: topic field_instruction: text field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: beast33/7e9a33e4-dfed-46c0-8f45-6919b81fa56d hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/e6e4f6e948bc6471_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 69002658-908b-4f14-a9fb-64d08340747d wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 69002658-908b-4f14-a9fb-64d08340747d warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7e9a33e4-dfed-46c0-8f45-6919b81fa56d This model is a fine-tuned version of [unsloth/Qwen2-7B-Instruct](https://huggingface.co/unsloth/Qwen2-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 140 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4011 | 1.0 | 140 | 0.6725 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jeongyuni/starbucks
jeongyuni
2025-02-04T05:19:28Z
22
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T05:16:36Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** jeongyuni - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
LHRuig/ajmitchll
LHRuig
2025-02-04T05:18:22Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:18:03Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: ajmitchll --- # ajmitchll <Gallery /> ## Model description ajmitchll lora ## Trigger words You should use `ajmitchll` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/ajmitchll/tree/main) them in the Files & versions tab.
great0001/b9103c98-2954-4a61-95ef-18c8b9cf9652
great0001
2025-02-04T05:17:09Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:defog/llama-3-sqlcoder-8b", "base_model:adapter:defog/llama-3-sqlcoder-8b", "license:cc-by-sa-4.0", "region:us" ]
null
2025-02-04T05:10:47Z
--- library_name: peft license: cc-by-sa-4.0 base_model: defog/llama-3-sqlcoder-8b tags: - axolotl - generated_from_trainer model-index: - name: b9103c98-2954-4a61-95ef-18c8b9cf9652 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: defog/llama-3-sqlcoder-8b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3b9b4289b748f826_train_data.json ds_type: json format: custom path: /workspace/input_data/3b9b4289b748f826_train_data.json type: field_instruction: item_title field_output: comment format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/b9103c98-2954-4a61-95ef-18c8b9cf9652 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3b9b4289b748f826_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|eot_id|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fb91bb99-180c-4ff4-aa46-6d9918134443 wandb_project: Birthday-SN56-33-Gradients-On-Demand wandb_run: your_name wandb_runid: fb91bb99-180c-4ff4-aa46-6d9918134443 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b9103c98-2954-4a61-95ef-18c8b9cf9652 This model is a fine-tuned version of [defog/llama-3-sqlcoder-8b](https://huggingface.co/defog/llama-3-sqlcoder-8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 3.8817 | | 3.0603 | 0.0170 | 50 | 3.1547 | | 2.9416 | 0.0340 | 100 | 3.0674 | | 2.9691 | 0.0509 | 150 | 3.0348 | | 3.0199 | 0.0679 | 200 | 3.0113 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/aidensx
LHRuig
2025-02-04T05:14:32Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:14:28Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aidensx --- # aidensx <Gallery /> ## Model description aidensx lora ## Trigger words You should use `aidensx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aidensx/tree/main) them in the Files & versions tab.
DevQuasar/oumi-ai.distill-r1-670b-math-GGUF
DevQuasar
2025-02-04T05:14:24Z
604
0
null
[ "gguf", "text-generation", "base_model:oumi-ai/distill-r1-670b-math", "base_model:quantized:oumi-ai/distill-r1-670b-math", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-04T03:41:59Z
--- base_model: - oumi-ai/distill-r1-670b-math pipeline_tag: text-generation --- [<img src="https://raw.githubusercontent.com/csabakecskemeti/devquasar/main/dq_logo_black-transparent.png" width="200"/>](https://devquasar.com) 'Make knowledge free for everyone' Quantized version of: [oumi-ai/distill-r1-670b-math](https://huggingface.co/oumi-ai/distill-r1-670b-math) <a href='https://ko-fi.com/L4L416YX7C' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi6.png?v=6' border='0' alt='Buy Me a Coffee at ko-fi.com' /></a>
USNIM/interview_dataset
USNIM
2025-02-04T05:12:57Z
26
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T05:10:51Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** USNIM - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
LHRuig/ahiezer
LHRuig
2025-02-04T05:12:53Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:12:48Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: ahiezer --- # ahiezer <Gallery /> ## Model description ahiezer lora ## Trigger words You should use `ahiezer` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/ahiezer/tree/main) them in the Files & versions tab.
ZoniaChatbot/female
ZoniaChatbot
2025-02-04T05:12:32Z
7
0
null
[ "safetensors", "vits", "license:cc-by-nd-4.0", "region:us" ]
null
2025-02-04T05:00:02Z
--- license: cc-by-nd-4.0 ---
LHRuig/agentsmith
LHRuig
2025-02-04T05:11:45Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:11:40Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: agentsmith --- # agentsmith <Gallery /> ## Model description agentsmith lora ## Trigger words You should use `agentsmith` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/agentsmith/tree/main) them in the Files & versions tab.
Mursaleen121/SciSeek3
Mursaleen121
2025-02-04T05:11:01Z
9
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2025-02-04T05:08:49Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.14.0
datlaaaaaaa/1b6818e0-989e-432e-8013-054a2fec4ab5
datlaaaaaaa
2025-02-04T05:10:32Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:29:40Z
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 1b6818e0-989e-432e-8013-054a2fec4ab5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8f23d0c27dcb0f9f_train_data.json ds_type: json format: custom path: /workspace/input_data/8f23d0c27dcb0f9f_train_data.json type: field_input: evidence field_instruction: user_input field_output: claim format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: datlaaaaaaa/1b6818e0-989e-432e-8013-054a2fec4ab5 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8f23d0c27dcb0f9f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: afeef3dd-1e46-4c12-b26d-35001f70da6e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: afeef3dd-1e46-4c12-b26d-35001f70da6e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 1b6818e0-989e-432e-8013-054a2fec4ab5 This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9106 | 0.0035 | 200 | 0.9620 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1