modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
adamquintero/bert-finetuned-squad
adamquintero
2025-02-04T05:09:35Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2025-02-04T03:10:19Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
mlfoundations-dev/llama3-1_8b_r1_annotated_math
mlfoundations-dev
2025-02-04T05:09:02Z
3,538
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T21:10:41Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_r1_annotated_math results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_r1_annotated_math This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/r1_annotated_math dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF
Triangle104
2025-02-04T05:08:51Z
20
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T05:07:29Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_l.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_l.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_l.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_L-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_l.gguf -c 2048 ```
LHRuig/adamdrivr
LHRuig
2025-02-04T05:07:28Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:07:25Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: adamdrivr --- # adamdrivr <Gallery /> ## Model description adamdrivr lora ## Trigger words You should use `adamdrivr` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/adamdrivr/tree/main) them in the Files & versions tab.
LHRuig/adamsandrs
LHRuig
2025-02-04T05:06:50Z
5
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:06:46Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: adamsandrs --- # adamsandrs <Gallery /> ## Model description adamsandrs lora ## Trigger words You should use `adamsandrs` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/adamsandrs/tree/main) them in the Files & versions tab.
Dang-gu/pokemon
Dang-gu
2025-02-04T05:04:53Z
24
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T05:02:08Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Dang-gu - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Best000/6989ad2c-826d-4fce-80af-22562878673b
Best000
2025-02-04T05:04:48Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:adapter:upstage/SOLAR-10.7B-Instruct-v1.0", "license:cc-by-nc-4.0", "region:us" ]
null
2025-02-04T04:52:17Z
--- library_name: peft license: cc-by-nc-4.0 base_model: upstage/SOLAR-10.7B-Instruct-v1.0 tags: - axolotl - generated_from_trainer model-index: - name: 6989ad2c-826d-4fce-80af-22562878673b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 6989ad2c-826d-4fce-80af-22562878673b This model is a fine-tuned version of [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/aaronelordsx
LHRuig
2025-02-04T05:04:17Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:03:48Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aaronelordsx --- # aaronelordsx <Gallery /> ## Model description aaronelordsx lora ## Trigger words You should use `aaronelordsx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aaronelordsx/tree/main) them in the Files & versions tab.
LHRuig/aaronsynth
LHRuig
2025-02-04T05:02:35Z
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:02:21Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aaronsynth --- # aaronsynth <Gallery /> ## Model description aaronsynth lora ## Trigger words You should use `aaronsynth` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aaronsynth/tree/main) them in the Files & versions tab.
Tanvi12sharma/distilbert-finetuned-imdb
Tanvi12sharma
2025-02-04T05:01:36Z
17
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T05:01:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LHRuig/aaronelord
LHRuig
2025-02-04T05:01:29Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T05:01:25Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: aaronelord --- # aaronelord <Gallery /> ## Model description aaronelord lora ## Trigger words You should use `aaronelord` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/aaronelord/tree/main) them in the Files & versions tab.
llm-jp/llm-jp-3-13b-instruct3
llm-jp
2025-02-04T04:59:09Z
697
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T07:45:15Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-13b-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-13b-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-13b-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-13b-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-13b-instruct2
llm-jp
2025-02-04T04:58:56Z
93
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T07:27:28Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-13b-instruct2 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-13b-instruct2** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-13b-instruct2") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-13b-instruct2", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-7.2b-instruct3
llm-jp
2025-02-04T04:58:45Z
95
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-31T01:29:06Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-7.2b-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-7.2b-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-7.2b-instruct2
llm-jp
2025-02-04T04:58:35Z
16
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T06:55:41Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-7.2b-instruct2 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-7.2b-instruct2** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct2") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-7.2b-instruct2", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-3.7b-instruct2
llm-jp
2025-02-04T04:58:12Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T06:36:50Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-3.7bm-instruct2 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-3.7b-instruct2** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-3.7b-instruct2") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-3.7b-instruct2", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
lesso/83884c9b-4844-4eb1-bd9b-00fe928a4eb0
lesso
2025-02-04T04:58:07Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:16:53Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 83884c9b-4844-4eb1-bd9b-00fe928a4eb0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/83884c9b-4844-4eb1-bd9b-00fe928a4eb0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: ab-god01 wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 83884c9b-4844-4eb1-bd9b-00fe928a4eb0 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0539 | 0.0000 | 1 | 2.1099 | | 0.5417 | 0.0005 | 50 | 0.5155 | | 0.4613 | 0.0010 | 100 | 0.4088 | | 0.3902 | 0.0016 | 150 | 0.3863 | | 0.4147 | 0.0021 | 200 | 0.3761 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
llm-jp/llm-jp-3-1.8b-instruct3
llm-jp
2025-02-04T04:57:48Z
801
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-31T01:21:43Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-1.8b-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-1.8b-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-1.8b-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-1.8b-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-980m-instruct3
llm-jp
2025-02-04T04:57:22Z
977
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-31T01:19:58Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-980m-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-980m-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-980m-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-980m-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
LHRuig/henrycavillksx
LHRuig
2025-02-04T04:57:14Z
8
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:57:07Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: henrycavillksx --- # henrycavillksx <Gallery /> ## Model description henrycavillksx lora ## Trigger words You should use `henrycavillksx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/henrycavillksx/tree/main) them in the Files & versions tab.
Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF
Triangle104
2025-02-04T04:57:10Z
20
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "base_model:quantized:nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T04:55:55Z
--- base_model: nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B`](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Rombos-EVAGutenberg-TIES-Qwen2.5-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Rombos-EVAGutenberg-TIES-Qwen2.5-32B-Q3_K_M-GGUF --hf-file rombos-evagutenberg-ties-qwen2.5-32b-q3_k_m.gguf -c 2048 ```
Kwakrhkr/KBO_chatbot_example
Kwakrhkr
2025-02-04T04:57:08Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T04:38:11Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Kwakrhkr - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
llm-jp/llm-jp-3-980m
llm-jp
2025-02-04T04:56:59Z
143
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T04:37:47Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-980m LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-980m** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-980m") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-980m", device_map="auto", torch_dtype=torch.bfloat16) text = "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か" tokenized_input = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
llm-jp/llm-jp-3-440m-instruct3
llm-jp
2025-02-04T04:56:45Z
1,061
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-31T01:18:21Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-440m-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-440m-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-440m-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-440m-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
abenius/9ed5f9ec-39e9-4896-bd6b-5db337d9f573
abenius
2025-02-04T04:56:16Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T04:30:03Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9ed5f9ec-39e9-4896-bd6b-5db337d9f573 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ceac57436127cc6c_train_data.json ds_type: json format: custom path: /workspace/input_data/ceac57436127cc6c_train_data.json type: field_input: '' field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: abenius/9ed5f9ec-39e9-4896-bd6b-5db337d9f573 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ceac57436127cc6c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: cc891c4e-9b2c-4c32-93f8-b418eb54f13f wandb_project: Gradients-On-12 wandb_run: your_name wandb_runid: cc891c4e-9b2c-4c32-93f8-b418eb54f13f warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 9ed5f9ec-39e9-4896-bd6b-5db337d9f573 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6954 | 0.6015 | 200 | 1.8017 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
cgus/HuatuoGPT-o1-7B-exl2
cgus
2025-02-04T04:55:55Z
11
0
null
[ "qwen2", "medical", "text-generation", "conversational", "en", "zh", "dataset:FreedomIntelligence/medical-o1-reasoning-SFT", "dataset:FreedomIntelligence/medical-o1-verifiable-problem", "arxiv:2412.18925", "base_model:FreedomIntelligence/HuatuoGPT-o1-7B", "base_model:quantized:FreedomIntelligence/HuatuoGPT-o1-7B", "license:apache-2.0", "4-bit", "exl2", "region:us" ]
text-generation
2025-02-04T04:04:44Z
--- license: apache-2.0 datasets: - FreedomIntelligence/medical-o1-reasoning-SFT - FreedomIntelligence/medical-o1-verifiable-problem language: - en - zh base_model: - FreedomIntelligence/HuatuoGPT-o1-7B pipeline_tag: text-generation tags: - medical --- # HuatuoGPT-o1-7B-exl2 Original model: [HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) made by [FreedomIntelligence](https://huggingface.co/FreedomIntelligence) Based on: [Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) by [Qwen](https://huggingface.co/Qwen) ## Quants [4bpw h6 (main)](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/main) [4.5bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/4.5bpw-h6) [5bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/5bpw-h6) [6bpw h6](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/6bpw-h6) [8bpw h8](https://huggingface.co/cgus/HuatuoGPT-o1-7B-exl2/tree/8bpw-h8) ## Quantization notes Made with Exllamav2 0.2.7 with default dataset. Exl2 quants require Nvidia RTX on Windows or Nvidia RTX/AMD ROCm on Linux. Model has to fully fit GPU as RAM offloading isn't supported natively. It can be used with apps such as TabbyAPI, Text-Generation-WebUI, LoLLMs and others. # Original model card <div align="center"> <h1> HuatuoGPT-o1-7B </h1> </div> <div align="center"> <a href="https://github.com/FreedomIntelligence/HuatuoGPT-o1" target="_blank">GitHub</a> | <a href="https://arxiv.org/pdf/2412.18925" target="_blank">Paper</a> </div> # <span>Introduction</span> **HuatuoGPT-o1** is a medical LLM designed for advanced medical reasoning. It generates a complex thought process, reflecting and refining its reasoning, before providing a final response. For more information, visit our GitHub repository: [https://github.com/FreedomIntelligence/HuatuoGPT-o1](https://github.com/FreedomIntelligence/HuatuoGPT-o1). # <span>Model Info</span> | | Backbone | Supported Languages | Link | | -------------------- | ------------ | ----- | --------------------------------------------------------------------- | | **HuatuoGPT-o1-8B** | LLaMA-3.1-8B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-8B) | | **HuatuoGPT-o1-70B** | LLaMA-3.1-70B | English | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-70B) | | **HuatuoGPT-o1-7B** | Qwen2.5-7B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) | | **HuatuoGPT-o1-72B** | Qwen2.5-72B | English & Chinese | [HF Link](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-72B) | # <span>Usage</span> You can use HuatuoGPT-o1-7B in the same way as `Qwen2.5-7B-Instruct`. You can deploy it with tools like [vllm](https://github.com/vllm-project/vllm) or [Sglang](https://github.com/sgl-project/sglang), or perform direct inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B",torch_dtype="auto",device_map="auto") tokenizer = AutoTokenizer.from_pretrained("FreedomIntelligence/HuatuoGPT-o1-7B") input_text = "How to stop a cough?" messages = [{"role": "user", "content": input_text}] inputs = tokenizer(tokenizer.apply_chat_template(messages, tokenize=False,add_generation_prompt=True ), return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=2048) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` HuatuoGPT-o1 adopts a *thinks-before-it-answers* approach, with outputs formatted as: ``` ## Thinking [Reasoning process] ## Final Response [Output] ``` # <span>πŸ“– Citation</span> ``` @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1, Towards Medical Complex Reasoning with LLMs}, author={Junying Chen and Zhenyang Cai and Ke Ji and Xidong Wang and Wanlong Liu and Rongsheng Wang and Jianye Hou and Benyou Wang}, year={2024}, eprint={2412.18925}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2412.18925}, } ```
LHRuig/tanukipalm
LHRuig
2025-02-04T04:55:50Z
7
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:55:46Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: tanukipalm --- # tanukipalm <Gallery /> ## Model description tanukipalm lora ## Trigger words You should use `tanukipalm` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/tanukipalm/tree/main) them in the Files & versions tab.
llm-jp/llm-jp-3-150m-instruct3
llm-jp
2025-02-04T04:55:04Z
1,329
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-31T01:15:34Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-150m-instruct3 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-150m-instruct3** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-150m-instruct3") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-150m-instruct3", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning and further aligned it with Direct Preference Optimization. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | #### Direct Preference Optimization The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[aya-ja-evol-inst](https://huggingface.co/datasets/llm-jp/aya-ja-evol-inst) | A synthetic preference dataset focusing on LLMs' helpfulness. | | |[ac-self-inst](https://huggingface.co/datasets/llm-jp/ac-self-inst)| A synthetic preference dataset focusing on LLMs' safety. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
LHRuig/itmansx
LHRuig
2025-02-04T04:55:02Z
6
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:54:51Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: itmansx --- # itmansx <Gallery /> ## Model description itmansx lora ## Trigger words You should use `itmansx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/itmansx/tree/main) them in the Files & versions tab.
llm-jp/llm-jp-3-150m-instruct2
llm-jp
2025-02-04T04:54:50Z
189
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2025-01-27T06:05:44Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation library_name: transformers inference: false --- # llm-jp-3-150m-instruct2 LLM-jp-3 is the series of large language models developed by the [Research and Development Center for Large Language Models](https://llmc.nii.ac.jp/) at the [National Institute of Informatics](https://www.nii.ac.jp/en/). This repository provides **llm-jp-3-150m-instruct2** model. For an overview of the LLM-jp-3 models across different parameter sizes, please refer to: - [LLM-jp-3 Pre-trained Models](https://huggingface.co/collections/llm-jp/llm-jp-3-pre-trained-models-672c6096472b65839d76a1fa) - [LLM-jp-3 Fine-tuned Models](https://huggingface.co/collections/llm-jp/llm-jp-3-fine-tuned-models-672c621db852a01eae939731). Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-3-150m-instruct2") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-3-150m-instruct2", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "δ»₯下は、タスクをθͺ¬ζ˜Žγ™γ‚‹ζŒ‡η€Ίγ§γ™γ€‚θ¦ζ±‚γ‚’ι©εˆ‡γ«ζΊ€γŸγ™εΏœη­”γ‚’ζ›Έγγͺさい。"}, {"role": "user", "content": "θ‡ͺ焢言θͺžε‡¦η†γ¨γ―何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 2.1T tokens |Params|Layers|Hidden size|Heads|Context length|Embedding parameters|Non-embedding parameters| |:---:|:---:|:---:|:---:|:---:|:---:|:---:| |150M|12|512|8|4096|101,874,688|50,344,448| |440M|16|1024|8|4096|203,749,376|243,303,424| |980M|20|1536|8|4096|305,624,064|684,258,816| |1.8b|24|2048|16|4096|407,498,752|1,459,718,144| |3.7b|28|3072|24|4096|611,248,128|3,171,068,928| |7.2b|32|4096|32|4096|814,997,504|6,476,271,616| |13b|40|5120|40|4096|1,018,746,880|12,688,184,320| |172b|96|12288|96|4096|2,444,992,512|169,947,181,056| ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v3.0`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v3.0b2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-jp-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.6B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|762.8B ||[WARP/PDF](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|237.3B ||[WARP/HTML](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|2.7B ||[Kaken](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|1.8B |English|[Wikipedia](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|4.7B ||[Dolma/CC-head](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|608.5B ||[Dolma/C4](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|181.6B ||[Dolma/Reddit](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|83.1B ||[Dolma/PeS2o](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|62.9B ||[Dolma/Gutenberg](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|5.5B ||[Dolma/Wiki](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v3)|3.9B |Code|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|114.1B |Chinese|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.8B |Korean|[Wikipedia](https://huggingface.co/datasets/bigcode/the-stack)|0.3B ### Post-training We have fine-tuned the pre-trained checkpoint with supervised fine-tuning. #### Supervised Fine-tuning The datasets used for supervised fine-tuning are as follows: | Language | Dataset | Description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-002](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed instruction dataset. | | |[AnswerCarefully (ver2.0)](https://huggingface.co/datasets/llm-jp/AnswerCarefully)| A manually constructed instruction dataset focusing on LLMs' safety. | | |ichikara-instruction-format| A small subset of the ichikara-instruction dataset, edited with some constraints on the output format. | | |[AutoMultiTurnByCalm3-22B](https://huggingface.co/datasets/kanhatakeyama/AutoMultiTurnByCalm3-22B)| A synthetic instruction dataset. | | |[ramdom-to-fixed-multiturn-Calm3](https://huggingface.co/datasets/kanhatakeyama/ramdom-to-fixed-multiturn-Calm3)| A synthetic instruction dataset. | | |[wizardlm8x22b-logical-math-coding-sft-ja](https://huggingface.co/datasets/llm-jp/wizardlm8x22b-logical-math-coding-sft-ja)| A synthetic instruction dataset. | | |[magpie-sft-v1.0](https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0)| A synthetic instruction dataset we created. | |English|[Daring-Anteater](https://huggingface.co/datasets/nvidia/Daring-Anteater)| - | | |[FLAN](https://huggingface.co/datasets/llm-jp/FLAN/blob/main/README.md) | - | |Japanese & English|[Synthetic-JP-EN-Coding-Dataset](https://huggingface.co/datasets/llm-jp/Synthetic-JP-EN-Coding-Dataset)| A synthetic instruction dataset. | ## Evaluation Detailed evaluation results are reported in this [blog](https://llm-jp.nii.ac.jp/blog/2025/02/05/instruct3.html). ## Risks and Limitations The models released here are in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Hirokazu Kiyomaru and Takashi Kodama.
LHRuig/auronplay
LHRuig
2025-02-04T04:54:26Z
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:54:05Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: auronplay --- # auronplay <Gallery /> ## Model description auronplay lora ## Trigger words You should use `auronplay` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/auronplay/tree/main) them in the Files & versions tab.
LHRuig/sunkrasuang
LHRuig
2025-02-04T04:52:03Z
6
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:51:58Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: sunkrasuang --- # sunkrasuang <Gallery /> ## Model description sunkrasuang lora ## Trigger words You should use `sunkrasuang` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/sunkrasuang/tree/main) them in the Files & versions tab.
botenius/610336ee-bb46-4371-b13d-d7d6315e3454
botenius
2025-02-04T04:49:16Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:24:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 610336ee-bb46-4371-b13d-d7d6315e3454 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: botenius/610336ee-bb46-4371-b13d-d7d6315e3454 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: Gradients-On-13 wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 610336ee-bb46-4371-b13d-d7d6315e3454 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4471 | 0.0021 | 200 | 0.4489 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
LHRuig/roycintasx
LHRuig
2025-02-04T04:47:28Z
7
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:46:28Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: roycintasx --- # roycintasx <Gallery /> ## Model description roycintasx lora ## Trigger words You should use `roycintasx` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/roycintasx/tree/main) them in the Files & versions tab.
Tanvi12sharma/results
Tanvi12sharma
2025-02-04T04:47:06Z
5
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T04:46:46Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6079 - Accuracy: 0.8111 - F1: 0.8083 - Precision: 0.8226 - Recall: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6858 | 1.0 | 27 | 0.6618 | 0.7667 | 0.7618 | 0.7813 | 0.7667 | | 0.6287 | 2.0 | 54 | 0.6079 | 0.8111 | 0.8083 | 0.8226 | 0.8111 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
LHRuig/justintimbrlke
LHRuig
2025-02-04T04:46:01Z
11
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-02-04T04:45:57Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: suit output: url: images/suit.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: justintimbrlke --- # justintimbrlke <Gallery /> ## Model description justintimbrlke lora ## Trigger words You should use `justintimbrlke` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/LHRuig/justintimbrlke/tree/main) them in the Files & versions tab.
Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF
Triangle104
2025-02-04T04:45:21Z
19
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:nbeerbower/GreatFirewall-DPO", "dataset:nbeerbower/Schule-DPO", "dataset:nbeerbower/Purpura-DPO", "dataset:nbeerbower/Arkhaios-DPO", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:antiven0m/physical-reasoning-dpo", "dataset:flammenai/Date-DPO-NoAsterisks", "dataset:flammenai/Prude-Phi3-DPO", "dataset:Atsunori/HelpSteer2-DPO", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "base_model:quantized:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T04:44:16Z
--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: nbeerbower/Dumpling-Qwen2.5-1.5B-v2 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-1.5B-v2`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) for more details on the model. --- nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on: nbeerbower/GreatFirewall-DPO nbeerbower/Schule-DPO nbeerbower/Purpura-DPO nbeerbower/Arkhaios-DPO jondurbin/truthy-dpo-v0.1 antiven0m/physical-reasoning-dpo flammenai/Date-DPO-NoAsterisks flammenai/Prude-Phi3-DPO Atsunori/HelpSteer2-DPO (1,000 samples) jondurbin/gutenberg-dpo-v0.1 nbeerbower/gutenberg2-dpo nbeerbower/gutenberg-moderne-dpo. Method QLoRA ORPO tune with 2x RTX 3090 for 2 epochs. # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=64, lora_alpha=64, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) # Training config orpo_args = ORPOConfig( run_name=new_model, learning_rate=2e-5, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, ) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q8_0-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q8_0.gguf -c 2048 ```
Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF
Triangle104
2025-02-04T04:44:34Z
18
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:nbeerbower/GreatFirewall-DPO", "dataset:nbeerbower/Schule-DPO", "dataset:nbeerbower/Purpura-DPO", "dataset:nbeerbower/Arkhaios-DPO", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:antiven0m/physical-reasoning-dpo", "dataset:flammenai/Date-DPO-NoAsterisks", "dataset:flammenai/Prude-Phi3-DPO", "dataset:Atsunori/HelpSteer2-DPO", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "base_model:quantized:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T04:43:23Z
--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: nbeerbower/Dumpling-Qwen2.5-1.5B-v2 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-1.5B-v2`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) for more details on the model. --- nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on: nbeerbower/GreatFirewall-DPO nbeerbower/Schule-DPO nbeerbower/Purpura-DPO nbeerbower/Arkhaios-DPO jondurbin/truthy-dpo-v0.1 antiven0m/physical-reasoning-dpo flammenai/Date-DPO-NoAsterisks flammenai/Prude-Phi3-DPO Atsunori/HelpSteer2-DPO (1,000 samples) jondurbin/gutenberg-dpo-v0.1 nbeerbower/gutenberg2-dpo nbeerbower/gutenberg-moderne-dpo. Method QLoRA ORPO tune with 2x RTX 3090 for 2 epochs. # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=64, lora_alpha=64, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) # Training config orpo_args = ORPOConfig( run_name=new_model, learning_rate=2e-5, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, ) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q6_K-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q6_k.gguf -c 2048 ```
daniel40/f3d37493-6712-4baf-854f-7ac9e8904b26
daniel40
2025-02-04T04:42:22Z
6
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:41:39Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: f3d37493-6712-4baf-854f-7ac9e8904b26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 433b1171462ef288_train_data.json ds_type: json format: custom path: /workspace/input_data/433b1171462ef288_train_data.json type: field_input: critic_prompt field_instruction: init_prompt field_output: init_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/f3d37493-6712-4baf-854f-7ac9e8904b26 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/433b1171462ef288_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8608c2ec-a087-435a-9278-1ca3f3049fce wandb_project: Birthday-SN56-28-Gradients-On-Demand wandb_run: your_name wandb_runid: 8608c2ec-a087-435a-9278-1ca3f3049fce warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f3d37493-6712-4baf-854f-7ac9e8904b26 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 6.9361 | | 6.9246 | 0.0094 | 50 | 6.9217 | | 6.8964 | 0.0189 | 100 | 6.8941 | | 6.8915 | 0.0283 | 150 | 6.8914 | | 6.8897 | 0.0377 | 200 | 6.8911 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/3bb3d5d3-94ee-4f35-931b-fb35b74b94e4
kk-aivio
2025-02-04T04:42:06Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b", "base_model:adapter:unsloth/gemma-2-9b", "license:gemma", "region:us" ]
null
2025-02-04T04:09:44Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b tags: - axolotl - generated_from_trainer model-index: - name: 3bb3d5d3-94ee-4f35-931b-fb35b74b94e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aca1347c2eff58c3_train_data.json ds_type: json format: custom path: /workspace/input_data/aca1347c2eff58c3_train_data.json type: field_instruction: question_text field_output: document_plaintext format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/3bb3d5d3-94ee-4f35-931b-fb35b74b94e4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/aca1347c2eff58c3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 36088511-e20e-40ed-8fa3-5090e5d7f560 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: 36088511-e20e-40ed-8fa3-5090e5d7f560 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3bb3d5d3-94ee-4f35-931b-fb35b74b94e4 This model is a fine-tuned version of [unsloth/gemma-2-9b](https://huggingface.co/unsloth/gemma-2-9b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9006 | | 1.5986 | 0.0033 | 50 | 1.7371 | | 1.7834 | 0.0065 | 100 | 1.7245 | | 1.5522 | 0.0098 | 150 | 1.7189 | | 1.7581 | 0.0130 | 200 | 1.7177 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF
Triangle104
2025-02-04T04:41:29Z
18
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "dataset:nbeerbower/GreatFirewall-DPO", "dataset:nbeerbower/Schule-DPO", "dataset:nbeerbower/Purpura-DPO", "dataset:nbeerbower/Arkhaios-DPO", "dataset:jondurbin/truthy-dpo-v0.1", "dataset:antiven0m/physical-reasoning-dpo", "dataset:flammenai/Date-DPO-NoAsterisks", "dataset:flammenai/Prude-Phi3-DPO", "dataset:Atsunori/HelpSteer2-DPO", "dataset:jondurbin/gutenberg-dpo-v0.1", "dataset:nbeerbower/gutenberg2-dpo", "dataset:nbeerbower/gutenberg-moderne-dpo", "base_model:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "base_model:quantized:nbeerbower/Dumpling-Qwen2.5-1.5B-v2", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T04:40:04Z
--- library_name: transformers license: apache-2.0 datasets: - nbeerbower/GreatFirewall-DPO - nbeerbower/Schule-DPO - nbeerbower/Purpura-DPO - nbeerbower/Arkhaios-DPO - jondurbin/truthy-dpo-v0.1 - antiven0m/physical-reasoning-dpo - flammenai/Date-DPO-NoAsterisks - flammenai/Prude-Phi3-DPO - Atsunori/HelpSteer2-DPO - jondurbin/gutenberg-dpo-v0.1 - nbeerbower/gutenberg2-dpo - nbeerbower/gutenberg-moderne-dpo base_model: nbeerbower/Dumpling-Qwen2.5-1.5B-v2 tags: - llama-cpp - gguf-my-repo --- # Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF This model was converted to GGUF format from [`nbeerbower/Dumpling-Qwen2.5-1.5B-v2`](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Dumpling-Qwen2.5-1.5B-v2) for more details on the model. --- nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on: nbeerbower/GreatFirewall-DPO nbeerbower/Schule-DPO nbeerbower/Purpura-DPO nbeerbower/Arkhaios-DPO jondurbin/truthy-dpo-v0.1 antiven0m/physical-reasoning-dpo flammenai/Date-DPO-NoAsterisks flammenai/Prude-Phi3-DPO Atsunori/HelpSteer2-DPO (1,000 samples) jondurbin/gutenberg-dpo-v0.1 nbeerbower/gutenberg2-dpo nbeerbower/gutenberg-moderne-dpo. Method QLoRA ORPO tune with 2x RTX 3090 for 2 epochs. # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch_dtype, bnb_4bit_use_double_quant=True, ) # LoRA config peft_config = LoraConfig( r=64, lora_alpha=64, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj'] ) # Training config orpo_args = ORPOConfig( run_name=new_model, learning_rate=2e-5, lr_scheduler_type="linear", max_length=2048, max_prompt_length=1024, max_completion_length=1024, beta=0.1, per_device_train_batch_size=1, per_device_eval_batch_size=1, gradient_accumulation_steps=8, optim="paged_adamw_8bit", num_train_epochs=2, evaluation_strategy="steps", eval_steps=0.2, logging_steps=1, warmup_steps=10, max_grad_norm=10, report_to="wandb", output_dir="./results/", bf16=True, ) --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-v2-Q4_K_M-GGUF --hf-file dumpling-qwen2.5-1.5b-v2-q4_k_m.gguf -c 2048 ```
nat-hunt/ede49b2d-ad94-4a67-94d1-b18e7338e541
nat-hunt
2025-02-04T04:40:21Z
7
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-9b", "base_model:adapter:unsloth/gemma-2-9b", "license:gemma", "region:us" ]
null
2025-02-04T04:08:45Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-9b tags: - axolotl - generated_from_trainer model-index: - name: ede49b2d-ad94-4a67-94d1-b18e7338e541 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-9b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - aca1347c2eff58c3_train_data.json ds_type: json format: custom path: /workspace/input_data/aca1347c2eff58c3_train_data.json type: field_instruction: question_text field_output: document_plaintext format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: nat-hunt/ede49b2d-ad94-4a67-94d1-b18e7338e541 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/aca1347c2eff58c3_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 36088511-e20e-40ed-8fa3-5090e5d7f560 wandb_project: Birthday-SN56-25-Gradients-On-Demand wandb_run: your_name wandb_runid: 36088511-e20e-40ed-8fa3-5090e5d7f560 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ede49b2d-ad94-4a67-94d1-b18e7338e541 This model is a fine-tuned version of [unsloth/gemma-2-9b](https://huggingface.co/unsloth/gemma-2-9b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 1.9006 | | 1.5985 | 0.0033 | 50 | 1.7378 | | 1.7818 | 0.0065 | 100 | 1.7249 | | 1.5529 | 0.0098 | 150 | 1.7193 | | 1.7582 | 0.0130 | 200 | 1.7181 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/02077c80-9512-4be2-b82a-78f6d7bde85b
kk-aivio
2025-02-04T04:36:36Z
11
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:28:49Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 02077c80-9512-4be2-b82a-78f6d7bde85b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 02077c80-9512-4be2-b82a-78f6d7bde85b This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
fatihfauzan26/PEGASUS_super
fatihfauzan26
2025-02-04T04:35:38Z
21
0
transformers
[ "transformers", "safetensors", "pegasus", "text2text-generation", "summarization", "id", "dataset:fajrikoto/id_liputan6", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2025-02-04T03:41:26Z
--- license: mit datasets: - fajrikoto/id_liputan6 language: - id metrics: - rouge base_model: - google/pegasus-cnn_dailymail pipeline_tag: summarization library_name: transformers --- PEGASUS Mini is a fine-tuned version of the PEGASUS model, originally pre-trained on the CNN/Daily Mail dataset. This fine-tuning is specifically tailored for abstractive text summarization of Indonesian news articles using the Liputan6 dataset. The model has been trained on a subset of 50,000 samples from the Liputan6 dataset for 3 epochs, with 256 min length input and max length target making it lightweight and efficient while maintaining strong summarization performance.
antimage88/66c083b0-dbd5-4bc2-900d-04dd2cba9af2
antimage88
2025-02-04T04:35:14Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:57:07Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 66c083b0-dbd5-4bc2-900d-04dd2cba9af2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ceac57436127cc6c_train_data.json ds_type: json format: custom path: /workspace/input_data/ceac57436127cc6c_train_data.json type: field_input: '' field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: antimage88/66c083b0-dbd5-4bc2-900d-04dd2cba9af2 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/ceac57436127cc6c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cc891c4e-9b2c-4c32-93f8-b418eb54f13f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cc891c4e-9b2c-4c32-93f8-b418eb54f13f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 66c083b0-dbd5-4bc2-900d-04dd2cba9af2 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 167 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7386 | 0.9985 | 166 | 1.7940 | | 3.2628 | 1.0045 | 167 | 1.8003 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
trenden/cae9c09a-b7bd-482b-980b-ec51d27d9936
trenden
2025-02-04T04:32:47Z
7
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:lcw99/zephykor-ko-7b-chang", "base_model:adapter:lcw99/zephykor-ko-7b-chang", "region:us" ]
null
2025-02-04T04:27:30Z
--- library_name: peft base_model: lcw99/zephykor-ko-7b-chang tags: - axolotl - generated_from_trainer model-index: - name: cae9c09a-b7bd-482b-980b-ec51d27d9936 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # cae9c09a-b7bd-482b-980b-ec51d27d9936 This model is a fine-tuned version of [lcw99/zephykor-ko-7b-chang](https://huggingface.co/lcw99/zephykor-ko-7b-chang) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/aad9b8b9-407f-420e-9e0b-0a3f294955cb
mrferr3t
2025-02-04T04:32:44Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-64k", "region:us" ]
null
2025-02-04T03:31:07Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: aad9b8b9-407f-420e-9e0b-0a3f294955cb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 9702554f26460ac5_train_data.json ds_type: json format: custom path: /workspace/input_data/9702554f26460ac5_train_data.json type: field_input: ingredients field_instruction: method field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/aad9b8b9-407f-420e-9e0b-0a3f294955cb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/9702554f26460ac5_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 90e1caee-8148-4b00-a510-c0c50a07f653 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 90e1caee-8148-4b00-a510-c0c50a07f653 warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aad9b8b9-407f-420e-9e0b-0a3f294955cb This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 482 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 2.7332 | | No log | 0.0517 | 40 | 1.7939 | | No log | 0.1035 | 80 | 1.1105 | | 3.4989 | 0.1552 | 120 | 0.9959 | | 3.4989 | 0.2070 | 160 | 0.9604 | | 1.9903 | 0.2587 | 200 | 0.9362 | | 1.9903 | 0.3105 | 240 | 0.9447 | | 1.9903 | 0.3622 | 280 | 0.9262 | | 1.901 | 0.4140 | 320 | 0.9183 | | 1.901 | 0.4657 | 360 | 0.9293 | | 1.8652 | 0.5175 | 400 | 0.9051 | | 1.8652 | 0.5692 | 440 | 0.9050 | | 1.8652 | 0.6210 | 480 | 0.8929 | | 1.8236 | 0.6727 | 520 | 0.9039 | | 1.8236 | 0.7245 | 560 | 0.9017 | | 1.8028 | 0.7762 | 600 | 0.8815 | | 1.8028 | 0.8279 | 640 | 0.8786 | | 1.8028 | 0.8797 | 680 | 0.8734 | | 1.7622 | 0.9314 | 720 | 0.8626 | | 1.7622 | 0.9832 | 760 | 0.8451 | | 1.5765 | 1.0349 | 800 | 0.8362 | | 1.5765 | 1.0867 | 840 | 0.8408 | | 1.5765 | 1.1384 | 880 | 0.8425 | | 1.3617 | 1.1902 | 920 | 0.8341 | | 1.3617 | 1.2419 | 960 | 0.8333 | | 1.4099 | 1.2937 | 1000 | 0.8296 | | 1.4099 | 1.3454 | 1040 | 0.8173 | | 1.4099 | 1.3972 | 1080 | 0.8156 | | 1.426 | 1.4489 | 1120 | 0.8179 | | 1.426 | 1.5006 | 1160 | 0.8093 | | 1.4494 | 1.5524 | 1200 | 0.8030 | | 1.4494 | 1.6041 | 1240 | 0.8015 | | 1.4494 | 1.6559 | 1280 | 0.7961 | | 1.3823 | 1.7076 | 1320 | 0.7912 | | 1.3823 | 1.7594 | 1360 | 0.7750 | | 1.3616 | 1.8111 | 1400 | 0.7535 | | 1.3616 | 1.8629 | 1440 | 0.7615 | | 1.3616 | 1.9146 | 1480 | 0.7604 | | 1.3261 | 1.9664 | 1520 | 0.7544 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
cimol/764c6312-a647-4eb4-b094-2706e70afdbc
cimol
2025-02-04T04:32:21Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-02-04T04:03:19Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 764c6312-a647-4eb4-b094-2706e70afdbc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - c2fee9c78f1574ee_train_data.json ds_type: json format: custom path: /workspace/input_data/c2fee9c78f1574ee_train_data.json type: field_input: Description field_instruction: Patient field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: cimol/764c6312-a647-4eb4-b094-2706e70afdbc hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 7.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/c2fee9c78f1574ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 764c6312-a647-4eb4-b094-2706e70afdbc This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.781 | 0.0043 | 1 | 3.2556 | | 2.41 | 0.2157 | 50 | 2.4527 | | 2.3489 | 0.4315 | 100 | 2.3260 | | 2.0638 | 0.6472 | 150 | 2.2409 | | 1.7407 | 0.8630 | 200 | 2.2356 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Omerhan/checkpoint-78-ucsahin
Omerhan
2025-02-04T04:31:54Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4997", "loss:MultipleNegativesRankingLoss", "tr", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:intfloat/multilingual-e5-large-instruct", "base_model:finetune:intfloat/multilingual-e5-large-instruct", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-02-04T04:30:45Z
--- language: - tr license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4997 - loss:MultipleNegativesRankingLoss base_model: intfloat/multilingual-e5-large-instruct widget: - source_sentence: BYU'nun âğrenci bedeni, Pres dΓΆneminde ne kadar arttΔ±. Ernest L. Wilkinson zamanΔ±n en bΓΌyΓΌk ΓΆzel okulu mu olacak? sentences: - Ernest L. Wilkinson dΓΆneminde BYU'nun âğrenci vΓΌcudu altΔ± kat arttΔ±. DolayΔ±sΔ±yla, o zamanlar dΓΆnemin en bΓΌyΓΌk ΓΆzel okulu haline gelmiştir. - 'Cevap: Falkland AdalarΔ±''nΔ±n para birimi Falkland sterlini (FKP)''dir.' - Franklin S. Harris 1921 yΔ±lΔ±nda ΓΌniversitenin başkanlığına atandΔ±. Doktora derecesine sahip ilk BYU başkanΔ± oldu. Harris okulda birkaΓ§ ΓΆnemli değişiklik yaptΔ± ve onu gerΓ§ek bir ΓΌniversite haline getirdi, oysa daha ΓΆnce organizasyonunun Akademi gΓΌnlerinden kalΔ±ntΔ±larΔ± vardΔ±. GΓΆrev sΓΌresinin başında, okul herhangi bir akreditasyon organizasyonu tarafΔ±ndan resmi olarak tanΔ±nmadΔ±. DΓΆnem sonunda, okul o sΔ±rada tΓΌm bΓΌyΓΌk akreditasyon organizasyonlarΔ± altΔ±nda akredite edilmiştir. Nihayetinde Kaliforniya Üniversitesi'nden doktorasΔ±nΔ± alan Howard S. McDonald tarafΔ±ndan değiştirildi. Bu pozisyonu ilk aldığında, Δ°kinci DΓΌnya Savaşı yeni sona ermişti ve binlerce âğrenci BYU'ya su basΔ±yordu. KalışınΔ±n sonunda, okul 5.440 âğrencinin kaydΔ±na neredeyse beş kat bΓΌyΓΌmüştΓΌ. Üniversitenin bΓΆyle bΓΌyΓΌk bir akΔ±nΔ± idare edebilecek tesisleri yoktu, bu yΓΌzden Ogden, Utah'daki bir Hava Kuvvetleri ÜssΓΌ'nΓΌn bir kΔ±smΔ±nΔ± satΔ±n aldΔ± ve bazΔ± âğrencileri barΔ±ndΔ±rmak iΓ§in yeniden inşa etti. Bir sonraki başkan, Ernest L. Wilkinson, okulun hΔ±zlandΔ±rΔ±lmış bir inşaat programΔ±nΔ± benimsemesiyle yoğun bir bΓΌyΓΌme dΓΆnemini de yΓΆnetti. Wilkinson, kampΓΌsteki seksenden fazla yapΔ±yΔ± inşa etmekten sorumluydu. BirΓ§oğu hala ayakta. GΓΆrev sΓΌresi boyunca âğrenci vΓΌcudu altΔ± kat arttΔ± ve BYU'yu o zamanlar en bΓΌyΓΌk ΓΆzel okul haline getirdi. Γ–ΔŸrencilerin kalitesi de arttΔ± ve okulda yΓΌksek eğitim standartlarΔ±na yol aΓ§tΔ±. Son olarak, Wilkinson kampΓΌsteki LDS Kilisesi birimlerini yeniden dΓΌzenledi ve yΓΆnetimi sΔ±rasΔ±nda on kazΔ±k ve 100'den fazla koğuş eklendi. - source_sentence: PolitikacΔ±lar hakkΔ±nda aşağıdaki paragraf gΓΆz ΓΆnΓΌne alΔ±ndığında, hayatta kalan ve Δ°rlanda Avam KamarasΔ± ΓΌyesi olan son kişi kimdi? sentences: - Metne gΓΆre, The Times gazetesinin kurucusunun torunu olan ve 1847'de babasΔ±nΔ±n yerini alan kişinin adΔ± John Walter'dΔ±r. - Hayatta kalan ve Δ°rlanda Avam KamarasΔ± ΓΌyesi olan son kişi Sir Thomas Staples, 9. Baronet'di. - Sir Thomas Staples, 9. Baronet (31 Temmuz 1775 - 14 MayΔ±s 1865) Δ°ngiliz-Δ°rlandalΔ± bir politikacΔ± ve avukattΔ±. Δ°rlanda Avam KamarasΔ± ΓΌyesi olan hayatta kalan son kişiydi, ancak kΔ±sa bir sΓΌre Meclis'te bulunmuştu. - source_sentence: Hangi Ada 1308 yΔ±lΔ±nda alΔ±nmıştΔ±r. sentences: - Raleigh'deki devlet okullarΔ±nΔ± Wake County Devlet Okulu Sistemi işletmektedir. - 1308 yΔ±lΔ±nda Δ°mralΔ± AdasΔ± alΔ±nmıştΔ±r. - Osman Bey 1258 yΔ±lΔ±nda Sâğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatΔ±nΔ± kaybetmiştir.1281 yΔ±lΔ±nda Osman Bey 23 yaşında iken Ahi teşkilatΔ±ndan olan Şeyh Edebali’nin kΔ±zΔ± Malhun Hatun ile evlendi.Bu evlilikten daha sonra OsmanlΔ± Devleti’nin başına geΓ§ecek olan Orhan Gazi doğdu.1281 yΔ±lΔ±nda Osman Beyin babasΔ± Ertuğrul Bey 90 yaşında vefat etmiştir.1326’da Osman Bey, Bursa’yΔ± kuşattΔ±. Fakat Osman beyin rahatsΔ±zlanmasΔ± ΓΌzerine kuşatmaya Orhan Bey devam etti. Bursa alΔ±ndΔ±ktan sonra başkent yapΔ±lmıştΔ±r.Osman Gazi son yΔ±llarΔ±nda yaşınΔ±n ilerlemesi ve gut hastalığı yΓΌzΓΌnden beylik idaresini oğlu olan Orhan Bey'e bΔ±rakmıştΔ±.OsmanlΔ± Beyliğinin ilk fethettiği ada Δ°mralΔ± AdasΔ±dΔ±r. Δ°mralΔ± AdasΔ± 1308 yΔ±lΔ±nda Osman Bey tarafΔ±ndan alΔ±nmıştΔ±r.Δ°lk OsmanlΔ± parasΔ± Osman Bey tarafΔ±ndan bakΔ±r olarak akΓ§e adΔ± ile 1324 yΔ±lΔ±nda bastΔ±rΔ±lmıştΔ±r.OsmanlΔ± Beyliğinin ilk başkenti SâğüttΓΌr.OsmanlΔ± tarihinde ilk savaş, 1284 yΔ±lΔ±nda Bizans tekfurlarΔ±yla yapΔ±lan Ermeni Beli savaşıdΔ±r.Osman Beyin ele geΓ§irdiği ilk kale 1285 yΔ±lΔ±nda fethedilen Kolca Hisar Kalesi’dir.OsmanlΔ± beyliğinin ilk kadΔ±sΔ± Osman Bey dΓΆneminde atanan Dursun Fakih’tir.Osman Bey 1288 yΔ±lΔ±nda KaracahisarΔ± fethetti. Osman Bey 1299 yΔ±lΔ±nda Bilecik'i fethetti.Osman Gazi, babasΔ± Ertuğrul Gazi'den yaklaşık 4.800 kilometrekare olarak devraldığı OsmanlΔ± toprağınΔ± oğlu Orhan Gazi'ye 16.000 kilometrekare olarak devretmiştir.Osman Bey'in vefatΔ± sonrasΔ± yerine Orhan Bey geΓ§ti. - source_sentence: Tunakabuni'nin Γ§alışmalarΔ± ne konudadΔ±r? sentences: - Tunakabuni Γ§eşitli tΔ±bbi ve dini konularda yazarlΔ±k yaptΔ±. O Arap ve Hint kaynaklarΔ±na gΓΆre , 1679 yΔ±lΔ±nda basit ilaΓ§lar ve tΔ±bbi aletlerle ilgili Γ§alışmalar yapmıştΔ±r. O dΓΆnem, 1666-1694 yΔ±llarΔ±nda Δ°ran hΓΌkΓΌmdarΔ± SΓΌleyman Şah tarafΔ±ndan ona ithaf edilmiştir. - Tunakabuni'nin Γ§alışmalarΔ± tΔ±bbi ve dini konulardadΔ±r. - Metinde verilen bilgiye gΓΆre, 2012-13 yΔ±lΔ±nda kamu harcamalarΔ± 28 milyon Β£ olarak belirlenmiştir. - source_sentence: Tibet mimarisi hangi iki kΓΌltΓΌrΓΌ yansΔ±tΔ±r? sentences: - 'Metinde belirtilenlere gΓΆre diğer partilerin aldığı oy oranlarΔ± aşağıdaki gibidir: - Quebec egemenlik yanlΔ±sΔ± Parti Quebecois (PQ): toplam oylarΔ±n %40.16''sΔ±nΔ± aldΔ±. - Quebec Yeni Demokrat Partisi (NPDQ): toplam oylarΔ±n %1.22''sini aldΔ±.' - Tibet mimarisi, Γ‡in ve Hint kΓΌltΓΌrlerini yansΔ±tmaktadΔ±r. - Tibet ekonomisi geΓ§im tarΔ±m hakimdir, ancak turizm son yΔ±llarda bΓΌyΓΌyen bir sanayi haline gelmiştir. Tibet'te baskΔ±n din Tibet Budizm'dir; Buna ek olarak Tibet Budizm'e benzer BΓΆn vardΔ±r ve Tibet MΓΌslΓΌmanlarΔ± ve HΔ±ristiyan azΔ±nlΔ±klar da vardΔ±r. Tibet Budizmi, bΓΆlgenin sanat, mΓΌzik ve festivalleri ΓΌzerinde birincil bir etkidir. Tibet mimarisi Γ‡in ve Hint etkilerini yansΔ±tΔ±r. Tibet'teki zΔ±mba gΔ±dalarΔ± kavrulmuş arpa, yak eti ve tereyağı Γ§ayΔ±dΔ±r. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # intfloat-fine-tuned This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** tr - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("Omerhan/checkpoint-78-ucsahin") # Run inference sentences = [ 'Tibet mimarisi hangi iki kΓΌltΓΌrΓΌ yansΔ±tΔ±r?', 'Tibet mimarisi, Γ‡in ve Hint kΓΌltΓΌrlerini yansΔ±tmaktadΔ±r.', "Tibet ekonomisi geΓ§im tarΔ±m hakimdir, ancak turizm son yΔ±llarda bΓΌyΓΌyen bir sanayi haline gelmiştir. Tibet'te baskΔ±n din Tibet Budizm'dir; Buna ek olarak Tibet Budizm'e benzer BΓΆn vardΔ±r ve Tibet MΓΌslΓΌmanlarΔ± ve HΔ±ristiyan azΔ±nlΔ±klar da vardΔ±r. Tibet Budizmi, bΓΆlgenin sanat, mΓΌzik ve festivalleri ΓΌzerinde birincil bir etkidir. Tibet mimarisi Γ‡in ve Hint etkilerini yansΔ±tΔ±r. Tibet'teki zΔ±mba gΔ±dalarΔ± kavrulmuş arpa, yak eti ve tereyağı Γ§ayΔ±dΔ±r.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 4,997 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 16.36 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 33.39 tokens</li><li>max: 265 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 197.11 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Şehzade Selim kiminle akrabaydΔ±?</code> | <code>Şehzade Selim, Dulkadir Beyi AlaΓΌddevle Bozkurt Bey ile anne tarafΔ±ndan akrabaydΔ±.</code> | <code>Safevi Şah'Δ± Δ°smail 1507 yΔ±lΔ±nda hem Δ°stanbul'un hem de Kahire'nin gΓΆstereceği tepkiyi gΓΆrmek amacΔ±yla DulkadiroğullarΔ± Beyliği'nin ΓΌzerine yΓΌrΓΌdΓΌ. AsΔ±l sebebi bu olmamakla beraber gΓΆrΓΌnüşteki sebep, Dulkadir Beyi AlaΓΌddevle Bozkurt Bey'in Şii olan Şah'a kΔ±zΔ±nΔ± vermek istememesiydi. Şah Δ°smail OsmanlΔ± topraklarΔ±ndan geΓ§erek Kayseri ΓΌzerinden Dulkadir topraklarΔ±na girdi.Savaşta yenilen AlaΓΌddevle Bozkurt Bey kaΓ§tΔ± ve Şah Δ°smail Bey'in bir oğlu ile iki torununu ele geΓ§irerek ΓΆldΓΌrttΓΌ. Bunun ΓΌzerine Maraş'a ve Elbistan'a giren Şah Δ°smail Dulkadir HanedanΔ±'nΔ±n mezarlarΔ±nΔ± yaktΔ±rdΔ±. Sonradan da OsmanlΔ± Devleti'ne bir mektup yazΔ±p topraklarΔ±nΔ± Γ§iğnediğinden dolayΔ± da ΓΆzΓΌr diledi. YΔ±llardan beri DulkadiroğullarΔ± Beyliği'nin kendilerine bağlΔ± olduğunu iddia eden Memluklular ve OsmanlΔ±lar bu hareketi cevapsΔ±z bΔ±raktΔ±lar.Bu da Şah Δ°smail'in Anadolu'daki prestijini artΔ±rdΔ±. Memluklular tamamΔ±yla sessiz kalsa da OsmanlΔ±larΔ±n sessiz kalmalarΔ± mΓΌmkΓΌn değildi.Zira Trabzon sancak beyi Şehzade Selim, anne tarafΔ±ndan Dulkadir Beyi AlaΓΌddevle Bozkurt Bey ile akrabaydΔ±.Şehzade Selim ve Şehzade Korkut AlaΓΌddevle Bozkurt Bey'in kΔ±zΔ± olan aynΔ± anneden dΓΌnyaya gelmişti. Bir dayΔ±sΔ±na ve iki dayΔ± oğluna yapΔ±lan bu harekete karşı Şehzade Selim Azerbaycan'a kadar Safevi topraklarΔ±na girerek Safevi HanedanΔ±'na mensup bazΔ± kişileri esir alΔ±p Trabzon'a getirerek dayΔ±sΔ±na yapΔ±lanΔ±n intikamΔ±nΔ± aldΔ±. BabasΔ± Bayezid bile hiΓ§bir şey yapmamışken Şehzade Selim' in bu hareketi gΓΆzlerin ona Γ§evrilmesine neden oldu. Bu arada II.Bayezid Şah Δ°smail'in herhangi bir seferine karşı Orta Anadolu'ya asker yığdΔ±.Bu nedenle Şah Δ°smail Anadolu'nun iΓ§lerine girmekten Γ§ekinmiştir. SayΔ±sΔ± 115 bini bulan bu orduyu gΓΆzΓΌne kestiremeyen Şah, II. Bayezid'e ŞanlΔ± bΓΌyΓΌk babam diye hitap ettiği bir mektup yazarak 1508 yΔ±llarΔ±nΔ±n ilk aylarΔ±nda DiyarbakΔ±r'a Γ§ekildi.</code> | | <code>Δ°ngilizler hangi yΔ±lda Dervişeleri yendi?</code> | <code>Δ°ngilizler, Dervişler'i 1920 yΔ±lΔ±nda yendi.</code> | <code>19. yΓΌzyΔ±lΔ±n sonlarΔ±nda, Berlin konferansΔ± sona erdikten sonra AvrupalΔ± imparatorluklar ordularΔ±yla Afrika Boynuzu'na yelken aΓ§tΔ±lar. Somali ΓΌzerinde titreyen imparatorluk bulutlarΔ±, Afrika Boynuzu'ndan Somali askerlerini bir araya getiren ve şimdiye kadarki en uzun sΓΆmΓΌrge karşıtΔ± savaşlardan birini başlatan Derviş lideri Muhammed Abdullah Hassan'Δ± alarma geΓ§irdi. Derviş Devleti Δ°ngiliz imparatorluğunu dΓΆrt kez başarΔ±yla pΓΌskΓΌrttΓΌ ve kΔ±yΔ± bΓΆlgesine geri Γ§ekilmeye zorladΔ±. Derviş Devleti Δ°ngilizlere karşı başarΔ±larΔ±nΔ±n bir sonucu olarak OsmanlΔ± ve Alman imparatorluklarΔ±ndan destek aldΔ±. TΓΌrkler Somali ulusundan Hasan Emir'i de seΓ§tiler ve Almanlar Dervişlerin elde edeceği her bΓΆlgeyi resmen tanΔ±maya sΓΆz verdiler. Γ‡eyrek asΔ±rlΔ±k Δ°ngilizleri kΓΆrfezde tuttuktan sonra, Dervişler sonunda 1920'de yenildi, Δ°ngiltere'nin Afrika'da ilk kez Derviş başkenti Taleex'i bombalamak iΓ§in uΓ§aklarΔ± kullandΔ±. Bu bombardΔ±man sonucunda eski Derviş topraklarΔ± Britanya'nΔ±n himayesine dΓΆnüştΓΌ. Δ°talya benzer şekilde Somali SultanlarΔ± ve ordulardan aynΔ± muhalefetle karşı karşıya kaldΔ± ve 1927'nin sonlarΔ±nda Faşist dΓΆneme kadar modern Somali'nin parΓ§alarΔ±nΔ±n tam kontrolΓΌnΓΌ elde edemedi. Bu işgal 1941 yΔ±lΔ±na kadar sΓΌrdΓΌ ve yerini Δ°ngiliz askeri idaresi aldΔ±.</code> | | <code>β€œpost-punk” terimini ilk kullanan kimdi?</code> | <code>Metinde belirtilen bilgilere gΓΆre, "post-punk" terimini ilk kullananlarΔ±n gazeteciler olduğu belirtilmiştir. Ancak metinde terimin ilk kullanΔ±mΔ±nΔ± yapan gazetecinin kim olduğu belirtilmemiştir.</code> | <code>β€œpost-punk” terimi ilk olarak 1970'lerin sonlarΔ±nda gazeteciler tarafΔ±ndan punk'Δ±n sonik şablonunun ΓΆtesine geΓ§en gruplarΔ± farklΔ± bΓΆlgelere tanΔ±mlamak iΓ§in kullanΔ±ldΔ±. BaşlangΔ±Γ§ta punk'Δ±n DIY etiği ve enerjisinden esinlenen bu sanatΓ§Δ±larΔ±n Γ§oğu, sonuΓ§ta stil ve hareketle hayal kΔ±rΔ±klığına uğradΔ± ve ticari formΓΌle, rock kongresi ve ΓΆz parodisine düştüğünΓΌ hissetti. PopΓΌlist iddialarΔ±nΔ± erişilebilirlik ve ham basitliğe karşı reddettiler, bunun yerine mΓΌzikal geleneği kΔ±rma, sΔ±radan yerleri alt etme ve izleyicilere meydan okuma fΔ±rsatΔ± gΓΆrdΓΌler. SanatΓ§Δ±lar bΓΌyΓΌk ΓΆlΓ§ΓΌde beyaz kaygΔ±larΔ± ΓΌzerinde punk odak ΓΆtesine taşındΔ±, erkek, işçi sΔ±nΔ±fΔ± nΓΌfus ve kurulan rock and roll tropes onun sΓΌrekli gΓΌven terk, BΓΆyle ΓΌΓ§ akor ilerlemeler ve Chuck Berry tabanlΔ± gitar riffs gibi. Bu sanatΓ§Δ±lar bunun yerine β€œradikal iΓ§eriğin radikal bir form gerektirdiğine” inanarak punk'Δ± β€œsΓΌrekli değişimin bir zorunluluğu” olarak tanΔ±mladΔ±lar.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `gradient_accumulation_steps`: 8 - `learning_rate`: 1e-06 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.01 - `tf32`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.01 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
saifrahmed/grizzabella-net
saifrahmed
2025-02-04T04:31:45Z
7
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-04T04:31:43Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: GRIZZABELLA_FUR_BABY --- # Grizzabella Net <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `GRIZZABELLA_FUR_BABY` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('saifrahmed/grizzabella-net', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
zzoming/Gemma-Ko-7B-SFT-MODEL
zzoming
2025-02-04T04:31:17Z
34
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T04:22:23Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mlfoundations-dev/llama3-1_8b_r1_annotated_olympiads
mlfoundations-dev
2025-02-04T04:31:04Z
3,728
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T21:16:01Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_r1_annotated_olympiads results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_r1_annotated_olympiads This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/r1_annotated_olympiads dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
minhnguyennnnnn/5b95903b-6ab0-44c3-acf9-6de2fef25c7b
minhnguyennnnnn
2025-02-04T04:30:26Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:30:03Z
--- library_name: peft license: apache-2.0 base_model: teknium/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: 5b95903b-6ab0-44c3-acf9-6de2fef25c7b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: teknium/OpenHermes-2.5-Mistral-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8f23d0c27dcb0f9f_train_data.json ds_type: json format: custom path: /workspace/input_data/8f23d0c27dcb0f9f_train_data.json type: field_input: evidence field_instruction: user_input field_output: claim format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: minhnguyennnnnn/5b95903b-6ab0-44c3-acf9-6de2fef25c7b hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/8f23d0c27dcb0f9f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|im_end|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: afeef3dd-1e46-4c12-b26d-35001f70da6e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: afeef3dd-1e46-4c12-b26d-35001f70da6e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5b95903b-6ab0-44c3-acf9-6de2fef25c7b This model is a fine-tuned version of [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9616 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8887 | 0.0035 | 200 | 0.9616 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Omerhan/checkpoint-60-ucsahin
Omerhan
2025-02-04T04:29:56Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:4997", "loss:MultipleNegativesRankingLoss", "tr", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:intfloat/multilingual-e5-large-instruct", "base_model:finetune:intfloat/multilingual-e5-large-instruct", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-02-04T04:28:46Z
--- language: - tr license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:4997 - loss:MultipleNegativesRankingLoss base_model: intfloat/multilingual-e5-large-instruct widget: - source_sentence: BYU'nun âğrenci bedeni, Pres dΓΆneminde ne kadar arttΔ±. Ernest L. Wilkinson zamanΔ±n en bΓΌyΓΌk ΓΆzel okulu mu olacak? sentences: - Ernest L. Wilkinson dΓΆneminde BYU'nun âğrenci vΓΌcudu altΔ± kat arttΔ±. DolayΔ±sΔ±yla, o zamanlar dΓΆnemin en bΓΌyΓΌk ΓΆzel okulu haline gelmiştir. - 'Cevap: Falkland AdalarΔ±''nΔ±n para birimi Falkland sterlini (FKP)''dir.' - Franklin S. Harris 1921 yΔ±lΔ±nda ΓΌniversitenin başkanlığına atandΔ±. Doktora derecesine sahip ilk BYU başkanΔ± oldu. Harris okulda birkaΓ§ ΓΆnemli değişiklik yaptΔ± ve onu gerΓ§ek bir ΓΌniversite haline getirdi, oysa daha ΓΆnce organizasyonunun Akademi gΓΌnlerinden kalΔ±ntΔ±larΔ± vardΔ±. GΓΆrev sΓΌresinin başında, okul herhangi bir akreditasyon organizasyonu tarafΔ±ndan resmi olarak tanΔ±nmadΔ±. DΓΆnem sonunda, okul o sΔ±rada tΓΌm bΓΌyΓΌk akreditasyon organizasyonlarΔ± altΔ±nda akredite edilmiştir. Nihayetinde Kaliforniya Üniversitesi'nden doktorasΔ±nΔ± alan Howard S. McDonald tarafΔ±ndan değiştirildi. Bu pozisyonu ilk aldığında, Δ°kinci DΓΌnya Savaşı yeni sona ermişti ve binlerce âğrenci BYU'ya su basΔ±yordu. KalışınΔ±n sonunda, okul 5.440 âğrencinin kaydΔ±na neredeyse beş kat bΓΌyΓΌmüştΓΌ. Üniversitenin bΓΆyle bΓΌyΓΌk bir akΔ±nΔ± idare edebilecek tesisleri yoktu, bu yΓΌzden Ogden, Utah'daki bir Hava Kuvvetleri ÜssΓΌ'nΓΌn bir kΔ±smΔ±nΔ± satΔ±n aldΔ± ve bazΔ± âğrencileri barΔ±ndΔ±rmak iΓ§in yeniden inşa etti. Bir sonraki başkan, Ernest L. Wilkinson, okulun hΔ±zlandΔ±rΔ±lmış bir inşaat programΔ±nΔ± benimsemesiyle yoğun bir bΓΌyΓΌme dΓΆnemini de yΓΆnetti. Wilkinson, kampΓΌsteki seksenden fazla yapΔ±yΔ± inşa etmekten sorumluydu. BirΓ§oğu hala ayakta. GΓΆrev sΓΌresi boyunca âğrenci vΓΌcudu altΔ± kat arttΔ± ve BYU'yu o zamanlar en bΓΌyΓΌk ΓΆzel okul haline getirdi. Γ–ΔŸrencilerin kalitesi de arttΔ± ve okulda yΓΌksek eğitim standartlarΔ±na yol aΓ§tΔ±. Son olarak, Wilkinson kampΓΌsteki LDS Kilisesi birimlerini yeniden dΓΌzenledi ve yΓΆnetimi sΔ±rasΔ±nda on kazΔ±k ve 100'den fazla koğuş eklendi. - source_sentence: PolitikacΔ±lar hakkΔ±nda aşağıdaki paragraf gΓΆz ΓΆnΓΌne alΔ±ndığında, hayatta kalan ve Δ°rlanda Avam KamarasΔ± ΓΌyesi olan son kişi kimdi? sentences: - Metne gΓΆre, The Times gazetesinin kurucusunun torunu olan ve 1847'de babasΔ±nΔ±n yerini alan kişinin adΔ± John Walter'dΔ±r. - Hayatta kalan ve Δ°rlanda Avam KamarasΔ± ΓΌyesi olan son kişi Sir Thomas Staples, 9. Baronet'di. - Sir Thomas Staples, 9. Baronet (31 Temmuz 1775 - 14 MayΔ±s 1865) Δ°ngiliz-Δ°rlandalΔ± bir politikacΔ± ve avukattΔ±. Δ°rlanda Avam KamarasΔ± ΓΌyesi olan hayatta kalan son kişiydi, ancak kΔ±sa bir sΓΌre Meclis'te bulunmuştu. - source_sentence: Hangi Ada 1308 yΔ±lΔ±nda alΔ±nmıştΔ±r. sentences: - Raleigh'deki devlet okullarΔ±nΔ± Wake County Devlet Okulu Sistemi işletmektedir. - 1308 yΔ±lΔ±nda Δ°mralΔ± AdasΔ± alΔ±nmıştΔ±r. - Osman Bey 1258 yΔ±lΔ±nda Sâğüt’te doğdu. Osman Bey 1 Ağustos 1326’da Bursa’da hayatΔ±nΔ± kaybetmiştir.1281 yΔ±lΔ±nda Osman Bey 23 yaşında iken Ahi teşkilatΔ±ndan olan Şeyh Edebali’nin kΔ±zΔ± Malhun Hatun ile evlendi.Bu evlilikten daha sonra OsmanlΔ± Devleti’nin başına geΓ§ecek olan Orhan Gazi doğdu.1281 yΔ±lΔ±nda Osman Beyin babasΔ± Ertuğrul Bey 90 yaşında vefat etmiştir.1326’da Osman Bey, Bursa’yΔ± kuşattΔ±. Fakat Osman beyin rahatsΔ±zlanmasΔ± ΓΌzerine kuşatmaya Orhan Bey devam etti. Bursa alΔ±ndΔ±ktan sonra başkent yapΔ±lmıştΔ±r.Osman Gazi son yΔ±llarΔ±nda yaşınΔ±n ilerlemesi ve gut hastalığı yΓΌzΓΌnden beylik idaresini oğlu olan Orhan Bey'e bΔ±rakmıştΔ±.OsmanlΔ± Beyliğinin ilk fethettiği ada Δ°mralΔ± AdasΔ±dΔ±r. Δ°mralΔ± AdasΔ± 1308 yΔ±lΔ±nda Osman Bey tarafΔ±ndan alΔ±nmıştΔ±r.Δ°lk OsmanlΔ± parasΔ± Osman Bey tarafΔ±ndan bakΔ±r olarak akΓ§e adΔ± ile 1324 yΔ±lΔ±nda bastΔ±rΔ±lmıştΔ±r.OsmanlΔ± Beyliğinin ilk başkenti SâğüttΓΌr.OsmanlΔ± tarihinde ilk savaş, 1284 yΔ±lΔ±nda Bizans tekfurlarΔ±yla yapΔ±lan Ermeni Beli savaşıdΔ±r.Osman Beyin ele geΓ§irdiği ilk kale 1285 yΔ±lΔ±nda fethedilen Kolca Hisar Kalesi’dir.OsmanlΔ± beyliğinin ilk kadΔ±sΔ± Osman Bey dΓΆneminde atanan Dursun Fakih’tir.Osman Bey 1288 yΔ±lΔ±nda KaracahisarΔ± fethetti. Osman Bey 1299 yΔ±lΔ±nda Bilecik'i fethetti.Osman Gazi, babasΔ± Ertuğrul Gazi'den yaklaşık 4.800 kilometrekare olarak devraldığı OsmanlΔ± toprağınΔ± oğlu Orhan Gazi'ye 16.000 kilometrekare olarak devretmiştir.Osman Bey'in vefatΔ± sonrasΔ± yerine Orhan Bey geΓ§ti. - source_sentence: Tunakabuni'nin Γ§alışmalarΔ± ne konudadΔ±r? sentences: - Tunakabuni Γ§eşitli tΔ±bbi ve dini konularda yazarlΔ±k yaptΔ±. O Arap ve Hint kaynaklarΔ±na gΓΆre , 1679 yΔ±lΔ±nda basit ilaΓ§lar ve tΔ±bbi aletlerle ilgili Γ§alışmalar yapmıştΔ±r. O dΓΆnem, 1666-1694 yΔ±llarΔ±nda Δ°ran hΓΌkΓΌmdarΔ± SΓΌleyman Şah tarafΔ±ndan ona ithaf edilmiştir. - Tunakabuni'nin Γ§alışmalarΔ± tΔ±bbi ve dini konulardadΔ±r. - Metinde verilen bilgiye gΓΆre, 2012-13 yΔ±lΔ±nda kamu harcamalarΔ± 28 milyon Β£ olarak belirlenmiştir. - source_sentence: Tibet mimarisi hangi iki kΓΌltΓΌrΓΌ yansΔ±tΔ±r? sentences: - 'Metinde belirtilenlere gΓΆre diğer partilerin aldığı oy oranlarΔ± aşağıdaki gibidir: - Quebec egemenlik yanlΔ±sΔ± Parti Quebecois (PQ): toplam oylarΔ±n %40.16''sΔ±nΔ± aldΔ±. - Quebec Yeni Demokrat Partisi (NPDQ): toplam oylarΔ±n %1.22''sini aldΔ±.' - Tibet mimarisi, Γ‡in ve Hint kΓΌltΓΌrlerini yansΔ±tmaktadΔ±r. - Tibet ekonomisi geΓ§im tarΔ±m hakimdir, ancak turizm son yΔ±llarda bΓΌyΓΌyen bir sanayi haline gelmiştir. Tibet'te baskΔ±n din Tibet Budizm'dir; Buna ek olarak Tibet Budizm'e benzer BΓΆn vardΔ±r ve Tibet MΓΌslΓΌmanlarΔ± ve HΔ±ristiyan azΔ±nlΔ±klar da vardΔ±r. Tibet Budizmi, bΓΆlgenin sanat, mΓΌzik ve festivalleri ΓΌzerinde birincil bir etkidir. Tibet mimarisi Γ‡in ve Hint etkilerini yansΔ±tΔ±r. Tibet'teki zΔ±mba gΔ±dalarΔ± kavrulmuş arpa, yak eti ve tereyağı Γ§ayΔ±dΔ±r. pipeline_tag: sentence-similarity library_name: sentence-transformers --- # intfloat-fine-tuned This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) <!-- at revision c9e87c786ffac96aeaeb42863276930883923ecb --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** tr - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the πŸ€— Hub model = SentenceTransformer("Omerhan/checkpoint-60-ucsahin") # Run inference sentences = [ 'Tibet mimarisi hangi iki kΓΌltΓΌrΓΌ yansΔ±tΔ±r?', 'Tibet mimarisi, Γ‡in ve Hint kΓΌltΓΌrlerini yansΔ±tmaktadΔ±r.', "Tibet ekonomisi geΓ§im tarΔ±m hakimdir, ancak turizm son yΔ±llarda bΓΌyΓΌyen bir sanayi haline gelmiştir. Tibet'te baskΔ±n din Tibet Budizm'dir; Buna ek olarak Tibet Budizm'e benzer BΓΆn vardΔ±r ve Tibet MΓΌslΓΌmanlarΔ± ve HΔ±ristiyan azΔ±nlΔ±klar da vardΔ±r. Tibet Budizmi, bΓΆlgenin sanat, mΓΌzik ve festivalleri ΓΌzerinde birincil bir etkidir. Tibet mimarisi Γ‡in ve Hint etkilerini yansΔ±tΔ±r. Tibet'teki zΔ±mba gΔ±dalarΔ± kavrulmuş arpa, yak eti ve tereyağı Γ§ayΔ±dΔ±r.", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 4,997 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 16.36 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 33.39 tokens</li><li>max: 265 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 197.11 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>Şehzade Selim kiminle akrabaydΔ±?</code> | <code>Şehzade Selim, Dulkadir Beyi AlaΓΌddevle Bozkurt Bey ile anne tarafΔ±ndan akrabaydΔ±.</code> | <code>Safevi Şah'Δ± Δ°smail 1507 yΔ±lΔ±nda hem Δ°stanbul'un hem de Kahire'nin gΓΆstereceği tepkiyi gΓΆrmek amacΔ±yla DulkadiroğullarΔ± Beyliği'nin ΓΌzerine yΓΌrΓΌdΓΌ. AsΔ±l sebebi bu olmamakla beraber gΓΆrΓΌnüşteki sebep, Dulkadir Beyi AlaΓΌddevle Bozkurt Bey'in Şii olan Şah'a kΔ±zΔ±nΔ± vermek istememesiydi. Şah Δ°smail OsmanlΔ± topraklarΔ±ndan geΓ§erek Kayseri ΓΌzerinden Dulkadir topraklarΔ±na girdi.Savaşta yenilen AlaΓΌddevle Bozkurt Bey kaΓ§tΔ± ve Şah Δ°smail Bey'in bir oğlu ile iki torununu ele geΓ§irerek ΓΆldΓΌrttΓΌ. Bunun ΓΌzerine Maraş'a ve Elbistan'a giren Şah Δ°smail Dulkadir HanedanΔ±'nΔ±n mezarlarΔ±nΔ± yaktΔ±rdΔ±. Sonradan da OsmanlΔ± Devleti'ne bir mektup yazΔ±p topraklarΔ±nΔ± Γ§iğnediğinden dolayΔ± da ΓΆzΓΌr diledi. YΔ±llardan beri DulkadiroğullarΔ± Beyliği'nin kendilerine bağlΔ± olduğunu iddia eden Memluklular ve OsmanlΔ±lar bu hareketi cevapsΔ±z bΔ±raktΔ±lar.Bu da Şah Δ°smail'in Anadolu'daki prestijini artΔ±rdΔ±. Memluklular tamamΔ±yla sessiz kalsa da OsmanlΔ±larΔ±n sessiz kalmalarΔ± mΓΌmkΓΌn değildi.Zira Trabzon sancak beyi Şehzade Selim, anne tarafΔ±ndan Dulkadir Beyi AlaΓΌddevle Bozkurt Bey ile akrabaydΔ±.Şehzade Selim ve Şehzade Korkut AlaΓΌddevle Bozkurt Bey'in kΔ±zΔ± olan aynΔ± anneden dΓΌnyaya gelmişti. Bir dayΔ±sΔ±na ve iki dayΔ± oğluna yapΔ±lan bu harekete karşı Şehzade Selim Azerbaycan'a kadar Safevi topraklarΔ±na girerek Safevi HanedanΔ±'na mensup bazΔ± kişileri esir alΔ±p Trabzon'a getirerek dayΔ±sΔ±na yapΔ±lanΔ±n intikamΔ±nΔ± aldΔ±. BabasΔ± Bayezid bile hiΓ§bir şey yapmamışken Şehzade Selim' in bu hareketi gΓΆzlerin ona Γ§evrilmesine neden oldu. Bu arada II.Bayezid Şah Δ°smail'in herhangi bir seferine karşı Orta Anadolu'ya asker yığdΔ±.Bu nedenle Şah Δ°smail Anadolu'nun iΓ§lerine girmekten Γ§ekinmiştir. SayΔ±sΔ± 115 bini bulan bu orduyu gΓΆzΓΌne kestiremeyen Şah, II. Bayezid'e ŞanlΔ± bΓΌyΓΌk babam diye hitap ettiği bir mektup yazarak 1508 yΔ±llarΔ±nΔ±n ilk aylarΔ±nda DiyarbakΔ±r'a Γ§ekildi.</code> | | <code>Δ°ngilizler hangi yΔ±lda Dervişeleri yendi?</code> | <code>Δ°ngilizler, Dervişler'i 1920 yΔ±lΔ±nda yendi.</code> | <code>19. yΓΌzyΔ±lΔ±n sonlarΔ±nda, Berlin konferansΔ± sona erdikten sonra AvrupalΔ± imparatorluklar ordularΔ±yla Afrika Boynuzu'na yelken aΓ§tΔ±lar. Somali ΓΌzerinde titreyen imparatorluk bulutlarΔ±, Afrika Boynuzu'ndan Somali askerlerini bir araya getiren ve şimdiye kadarki en uzun sΓΆmΓΌrge karşıtΔ± savaşlardan birini başlatan Derviş lideri Muhammed Abdullah Hassan'Δ± alarma geΓ§irdi. Derviş Devleti Δ°ngiliz imparatorluğunu dΓΆrt kez başarΔ±yla pΓΌskΓΌrttΓΌ ve kΔ±yΔ± bΓΆlgesine geri Γ§ekilmeye zorladΔ±. Derviş Devleti Δ°ngilizlere karşı başarΔ±larΔ±nΔ±n bir sonucu olarak OsmanlΔ± ve Alman imparatorluklarΔ±ndan destek aldΔ±. TΓΌrkler Somali ulusundan Hasan Emir'i de seΓ§tiler ve Almanlar Dervişlerin elde edeceği her bΓΆlgeyi resmen tanΔ±maya sΓΆz verdiler. Γ‡eyrek asΔ±rlΔ±k Δ°ngilizleri kΓΆrfezde tuttuktan sonra, Dervişler sonunda 1920'de yenildi, Δ°ngiltere'nin Afrika'da ilk kez Derviş başkenti Taleex'i bombalamak iΓ§in uΓ§aklarΔ± kullandΔ±. Bu bombardΔ±man sonucunda eski Derviş topraklarΔ± Britanya'nΔ±n himayesine dΓΆnüştΓΌ. Δ°talya benzer şekilde Somali SultanlarΔ± ve ordulardan aynΔ± muhalefetle karşı karşıya kaldΔ± ve 1927'nin sonlarΔ±nda Faşist dΓΆneme kadar modern Somali'nin parΓ§alarΔ±nΔ±n tam kontrolΓΌnΓΌ elde edemedi. Bu işgal 1941 yΔ±lΔ±na kadar sΓΌrdΓΌ ve yerini Δ°ngiliz askeri idaresi aldΔ±.</code> | | <code>β€œpost-punk” terimini ilk kullanan kimdi?</code> | <code>Metinde belirtilen bilgilere gΓΆre, "post-punk" terimini ilk kullananlarΔ±n gazeteciler olduğu belirtilmiştir. Ancak metinde terimin ilk kullanΔ±mΔ±nΔ± yapan gazetecinin kim olduğu belirtilmemiştir.</code> | <code>β€œpost-punk” terimi ilk olarak 1970'lerin sonlarΔ±nda gazeteciler tarafΔ±ndan punk'Δ±n sonik şablonunun ΓΆtesine geΓ§en gruplarΔ± farklΔ± bΓΆlgelere tanΔ±mlamak iΓ§in kullanΔ±ldΔ±. BaşlangΔ±Γ§ta punk'Δ±n DIY etiği ve enerjisinden esinlenen bu sanatΓ§Δ±larΔ±n Γ§oğu, sonuΓ§ta stil ve hareketle hayal kΔ±rΔ±klığına uğradΔ± ve ticari formΓΌle, rock kongresi ve ΓΆz parodisine düştüğünΓΌ hissetti. PopΓΌlist iddialarΔ±nΔ± erişilebilirlik ve ham basitliğe karşı reddettiler, bunun yerine mΓΌzikal geleneği kΔ±rma, sΔ±radan yerleri alt etme ve izleyicilere meydan okuma fΔ±rsatΔ± gΓΆrdΓΌler. SanatΓ§Δ±lar bΓΌyΓΌk ΓΆlΓ§ΓΌde beyaz kaygΔ±larΔ± ΓΌzerinde punk odak ΓΆtesine taşındΔ±, erkek, işçi sΔ±nΔ±fΔ± nΓΌfus ve kurulan rock and roll tropes onun sΓΌrekli gΓΌven terk, BΓΆyle ΓΌΓ§ akor ilerlemeler ve Chuck Berry tabanlΔ± gitar riffs gibi. Bu sanatΓ§Δ±lar bunun yerine β€œradikal iΓ§eriğin radikal bir form gerektirdiğine” inanarak punk'Δ± β€œsΓΌrekli değişimin bir zorunluluğu” olarak tanΔ±mladΔ±lar.</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `gradient_accumulation_steps`: 8 - `learning_rate`: 1e-06 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.01 - `tf32`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 8 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-06 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.01 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
lesso/4bf06a74-5c35-477c-ba35-149b000de619
lesso
2025-02-04T04:28:32Z
6
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:57:38Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 4bf06a74-5c35-477c-ba35-149b000de619 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 05d23f8c0d4d9d78_train_data.json ds_type: json format: custom path: /workspace/input_data/05d23f8c0d4d9d78_train_data.json type: field_input: '' field_instruction: ctx field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/4bf06a74-5c35-477c-ba35-149b000de619 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 150 micro_batch_size: 2 mlflow_experiment_name: /tmp/G.O.D/05d23f8c0d4d9d78_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 wandb_project: ab-god15 wandb_run: your_name wandb_runid: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 4bf06a74-5c35-477c-ba35-149b000de619 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0000 | 1 | nan | | 0.0 | 0.0022 | 50 | nan | | 0.0 | 0.0044 | 100 | nan | | 0.0 | 0.0067 | 150 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ewhk9887/merged-deepseek-r1-with-python
ewhk9887
2025-02-04T04:28:20Z
139
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "unsloth", "trl", "sft", "conversational", "dataset:iamtarun/python_code_instructions_18k_alpaca", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "base_model:quantized:deepseek-ai/DeepSeek-R1-Distill-Llama-8B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-03T12:08:46Z
--- library_name: transformers tags: - unsloth - trl - sft license: mit datasets: - iamtarun/python_code_instructions_18k_alpaca base_model: - deepseek-ai/DeepSeek-R1-Distill-Llama-8B --- # Model Card for Finetuned DeepSeek-R1 Code Review Model ## Model Details / λͺ¨λΈ μ„ΈλΆ€ 정보 ### Model Description / λͺ¨λΈ μ„€λͺ… **English:** This model is a finetuned version of the DeepSeek-R1 Distill Llama model, adapted for performing code reviews in Korean. It has been fine-tuned using QLoRA and additional dataset transformations from the [iamtarun/python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca) dataset, converting code generation prompts into code review prompts. The LoRA adapters have been merged into the base model to produce a self-contained model that can be deployed directly. **ν•œκ΅­μ–΄:** 이 λͺ¨λΈμ€ DeepSeek-R1 Distill Llama λͺ¨λΈμ„ 기반으둜, ν•œκ΅­μ–΄ μ½”λ“œ 리뷰 μž‘μ—…μ— 맞게 νŒŒμΈνŠœλ‹λœ λͺ¨λΈμž…λ‹ˆλ‹€. [iamtarun/python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca) λ°μ΄ν„°μ…‹μ˜ μ½”λ“œ 생성 ν”„λ‘¬ν”„νŠΈλ₯Ό μ½”λ“œ 리뷰 ν”„λ‘¬ν”„νŠΈλ‘œ λ³€ν™˜ν•˜μ—¬ QLoRA 기법을 μ‚¬μš©ν•΄ νŒŒμΈνŠœλ‹ν•˜μ˜€μœΌλ©°, LoRA μ–΄λŒ‘ν„°λ₯Ό 베이슀 λͺ¨λΈμ— 병합해 self-contained ν˜•νƒœλ‘œ μ œμž‘λ˜μ—ˆμŠ΅λ‹ˆλ‹€. - **Developed by / 개발자:** [More Information Needed / μΆ”κ°€ 정보 ν•„μš”] - **Model type / λͺ¨λΈ μœ ν˜•:** Causal Language Model with Finetuning for Code Review - **Language(s) / μ‚¬μš© μ–Έμ–΄:** Korean, English - **License / λΌμ΄μ„ΌμŠ€:** MIT - **Base Model / 베이슀 λͺ¨λΈ:** [deepseek-ai/DeepSeek-R1-Distill-Llama-8B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) ### Model Sources / λͺ¨λΈ μ†ŒμŠ€ - **Repository / 리포지토리:** [More Information Needed / μΆ”κ°€ 정보 ν•„μš”] - **Paper / λ…Όλ¬Έ (optional):** [More Information Needed / μΆ”κ°€ 정보 ν•„μš”] - **Demo / 데λͺ¨ (optional):** [More Information Needed / μΆ”κ°€ 정보 ν•„μš”] --- ## Uses / μ‚¬μš© μš©λ„ ### Direct Use / 직접 μ‚¬μš© **English:** This model is intended for generating code reviews for Python code. It is designed to provide feedback on code quality, style, and possible improvements. It is designed as prototype for programming education. **ν•œκ΅­μ–΄:** 이 λͺ¨λΈμ€ Python μ½”λ“œλ₯Ό λŒ€μƒμœΌλ‘œ μ½”λ“œ 리뷰(ν”Όλ“œλ°±, μŠ€νƒ€μΌ κ°œμ„  λ“±)λ₯Ό μƒμ„±ν•˜κΈ° μœ„ν•΄ κ°œλ°œλ˜μ—ˆμŠ΅λ‹ˆλ‹€. ν”„λ‘œκ·Έλž˜λ° κ΅μœ‘μ„ μœ„ν•œ λͺ¨λΈμ˜ ν”„λ‘œν† νƒ€μž…μœΌλ‘œ κ°œλ°œλ˜μ—ˆμŠ΅λ‹ˆλ‹€. ### Downstream Use / λ‹€μš΄μŠ€νŠΈλ¦Ό μ‚¬μš© (optional) **English:** It can be integrated into developer tools, code analysis platforms, or educational environments to assist in code review tasks. **ν•œκ΅­μ–΄:** 개발자 도ꡬ, μ½”λ“œ 뢄석 ν”Œλž«νΌ λ˜λŠ” ꡐ윑 ν™˜κ²½μ— ν†΅ν•©λ˜μ–΄ μ½”λ“œ 리뷰 μž‘μ—…μ„ λ³΄μ‘°ν•˜λŠ” μš©λ„λ‘œ ν™œμš©λ  수 μžˆμŠ΅λ‹ˆλ‹€. ### Out-of-Scope Use / μ§€μ›ν•˜μ§€ μ•ŠλŠ” μ‚¬μš© μ˜ˆμ‹œ **English:** This model is not optimized for generating full code, handling languages other than Python, or for use in critical production environments without human oversight. **ν•œκ΅­μ–΄:** 이 λͺ¨λΈμ€ μ½”λ“œ 생성을 μœ„ν•œ λͺ¨λΈμ΄ μ•„λ‹ˆλ©°, ν˜„μž¬ 데이터셋 상 Python μ΄μ™Έμ˜ 언어에 λŒ€ν•΄μ„œλŠ” μ΅œμ ν™”λ˜μ–΄ μžˆμ§€ μ•ŠμŠ΅λ‹ˆλ‹€. 이후 ν•œκ΅­μ–΄ μ½”λ“œ 리뷰 데이터셋과 Go와 Rustλ₯Ό ν¬ν•¨ν•˜λŠ” λͺ¨λΈμ€ 좔후에 μ—…λ‘œλ“œλ  μ˜ˆμ •μž…λ‹ˆλ‹€. --- ## Bias, Risks, and Limitations / 편ν–₯, μœ„ν—˜ 및 ν•œκ³„ **English:** - The model has been trained on data that may have inherent biases, and its reviews are generated automatically. - This model is not perfectly optimized for Korean language code review. **ν•œκ΅­μ–΄:** - λͺ¨λΈμ΄ μƒμ„±ν•œ 리뷰에도 편ν–₯이 μžˆμ„ 수 μžˆμŠ΅λ‹ˆλ‹€. - ν•œκ΅­μ–΄ μ½”λ“œ 리뷰에 μ™„λ²½ν•˜κ²Œ μ΅œμ ν™”λ˜μ–΄μžˆμ§€ μ•Šμ„ 수 μžˆμŠ΅λ‹ˆλ‹€. ## How to get started with model / λͺ¨λΈ μ‹œμž‘ν•˜κΈ° ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "your_hf_username/merged-deepseek-r1-codereview" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) prompt = """μ•„λž˜λŠ” μž‘μ„±λœ Python μ½”λ“œμž…λ‹ˆλ‹€. μ½”λ“œμ˜ μž₯단점, κ°œμ„  사항, μ½”λ“œ μŠ€νƒ€μΌ 등에 λŒ€ν•΄ 3~4쀄 μ •λ„μ˜ κ°„κ²°ν•œ 리뷰λ₯Ό μž‘μ„±ν•˜μ„Έμš”. # μ½”λ“œ: ### Python μ½”λ“œ def sum_sequence(sequence): sum = 0 for num in sequence: sum += num return sum ### μ½”λ“œ 리뷰:""" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training Details / ν•™μŠ΅ 정보 ### Training Data / ν•™μŠ΅ 데이터 English: The model was fine-tuned using the iamtarun/python_code_instructions_18k_alpaca dataset. The original code generation prompts were transformed into code review prompts to suit the task. ν•œκ΅­μ–΄: 이 λͺ¨λΈμ€ iamtarun/python_code_instructions_18k_alpaca 데이터셋을 μ‚¬μš©ν•΄ νŒŒμΈνŠœλ‹λ˜μ—ˆμŠ΅λ‹ˆλ‹€. 기쑴의 μ½”λ“œ 생성 ν”„λ‘¬ν”„νŠΈλ₯Ό μ½”λ“œ 리뷰 ν”„λ‘¬ν”„νŠΈλ‘œ λ³€ν™˜ν•˜μ—¬ ν•™μŠ΅μ— μ‚¬μš©ν•˜μ˜€μŠ΅λ‹ˆλ‹€. Training Procedure / ν•™μŠ΅ 절차 English: Preprocessing: The dataset was preprocessed to convert the code generation prompts into a standardized code review format. Fine-tuning: The base model was fine-tuned using QLoRA with 4-bit quantization for efficiency. LoRA adapters were merged into the base model to produce a self-contained model. ν•œκ΅­μ–΄: μ „μ²˜λ¦¬: μ½”λ“œ 생성 ν”„λ‘¬ν”„νŠΈλ₯Ό μ½”λ“œ 리뷰 ν˜•μ‹μœΌλ‘œ λ³€ν™˜ν•˜κΈ° μœ„ν•΄ 데이터셋을 μ „μ²˜λ¦¬ν•˜μ˜€μŠ΅λ‹ˆλ‹€. νŒŒμΈνŠœλ‹: νš¨μœ¨μ„±μ„ μœ„ν•΄ 4λΉ„νŠΈ μ–‘μžν™”λ₯Ό μ‚¬μš©ν•˜μ—¬ QLoRA κΈ°λ²•μœΌλ‘œ 베이슀 λͺ¨λΈμ„ νŒŒμΈνŠœλ‹ν•˜μ˜€μœΌλ©°, LoRA μ–΄λŒ‘ν„°λ₯Ό λ³‘ν•©ν•˜μ—¬ self-contained λͺ¨λΈλ‘œ μ œμž‘ν•˜μ˜€μŠ΅λ‹ˆλ‹€.
onekq-ai/s1-32B-bnb-4bit
onekq-ai
2025-02-04T04:27:25Z
41
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "base_model:simplescaling/s1-32B", "base_model:quantized:simplescaling/s1-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-02-04T03:46:39Z
--- library_name: transformers license: apache-2.0 base_model: - simplescaling/s1-32B --- Bitsandbytes quantization of https://huggingface.co/simplescaling/s1-32B. See https://huggingface.co/blog/4bit-transformers-bitsandbytes for instructions. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig import torch # Define the 4-bit configuration nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) # Load the pre-trained model with the 4-bit quantization configuration model = AutoModelForCausalLM.from_pretrained("simplescaling/s1-32B", quantization_config=nf4_config) # Load the tokenizer associated with the model tokenizer = AutoTokenizer.from_pretrained("simplescaling/s1-32B") # Push the model and tokenizer to the Hugging Face hub model.push_to_hub("onekq-ai/s1-32B-bnb-4bit", use_auth_token=True) tokenizer.push_to_hub("onekq-ai/s1-32B-bnb-4bit", use_auth_token=True) ```
guilxus/72158a60-a7eb-4991-8e08-5a4b1c5908b0
guilxus
2025-02-04T04:24:34Z
9
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T04:20:11Z
--- library_name: peft license: other base_model: facebook/opt-125m tags: - axolotl - generated_from_trainer model-index: - name: 72158a60-a7eb-4991-8e08-5a4b1c5908b0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-125m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 28cfef58c079ae09_train_data.json ds_type: json format: custom path: /workspace/input_data/28cfef58c079ae09_train_data.json type: field_input: comment field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: guilxus/72158a60-a7eb-4991-8e08-5a4b1c5908b0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/28cfef58c079ae09_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: cae3f697-637d-476e-acf5-7861ed8393e4 wandb_project: Gradients-On-11 wandb_run: your_name wandb_runid: cae3f697-637d-476e-acf5-7861ed8393e4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 72158a60-a7eb-4991-8e08-5a4b1c5908b0 This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2631 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.0148 | 0.1427 | 200 | 1.2631 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF
mradermacher
2025-02-04T04:23:54Z
426
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:Aleteian/Legend-of-the-Four-Winds-MN-12B", "base_model:quantized:Aleteian/Legend-of-the-Four-Winds-MN-12B", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T02:16:20Z
--- base_model: Aleteian/Legend-of-the-Four-Winds-MN-12B language: - en library_name: transformers quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Aleteian/Legend-of-the-Four-Winds-MN-12B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q2_K.gguf) | Q2_K | 4.9 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Legend-of-the-Four-Winds-MN-12B-GGUF/resolve/main/Legend-of-the-Four-Winds-MN-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
liusq19/Qwen2.5-1.5B-Open-R1-Distill
liusq19
2025-02-04T04:21:24Z
5
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "sft", "conversational", "dataset:HuggingFaceH4/Bespoke-Stratos-17k", "base_model:Qwen/Qwen2.5-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-02T08:38:37Z
--- base_model: Qwen/Qwen2.5-1.5B-Instruct datasets: HuggingFaceH4/Bespoke-Stratos-17k library_name: transformers model_name: Qwen/Qwen2.5-1.5B-Instruct tags: - generated_from_trainer - open-r1 - trl - sft licence: license --- # Model Card for Qwen/Qwen2.5-1.5B-Instruct This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [HuggingFaceH4/Bespoke-Stratos-17k](https://huggingface.co/datasets/HuggingFaceH4/Bespoke-Stratos-17k) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="liusq19/Qwen2.5-1.5B-Open-R1-Distill", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/shiqi_1/huggingface/runs/ak49qf9r) This model was trained with SFT. ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.49.0.dev0 - Pytorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin GallouΓ©dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
LJHjonghyeon/new_data
LJHjonghyeon
2025-02-04T04:19:32Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T04:17:18Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** LJHjonghyeon - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
earnxus/86ba5b4b-5c76-4dc9-80b0-6076ede86846
earnxus
2025-02-04T04:17:43Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:51:33Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 86ba5b4b-5c76-4dc9-80b0-6076ede86846 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ceac57436127cc6c_train_data.json ds_type: json format: custom path: /workspace/input_data/ceac57436127cc6c_train_data.json type: field_input: '' field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/86ba5b4b-5c76-4dc9-80b0-6076ede86846 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ceac57436127cc6c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: cc891c4e-9b2c-4c32-93f8-b418eb54f13f wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: cc891c4e-9b2c-4c32-93f8-b418eb54f13f warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 86ba5b4b-5c76-4dc9-80b0-6076ede86846 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7016 | 0.6015 | 200 | 1.8011 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/c4b1277f-6ee4-4273-8b91-1da9c4d5cef8
philip-hightech
2025-02-04T04:17:37Z
7
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:17:01Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: c4b1277f-6ee4-4273-8b91-1da9c4d5cef8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 433b1171462ef288_train_data.json ds_type: json format: custom path: /workspace/input_data/433b1171462ef288_train_data.json type: field_input: critic_prompt field_instruction: init_prompt field_output: init_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/c4b1277f-6ee4-4273-8b91-1da9c4d5cef8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/433b1171462ef288_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8608c2ec-a087-435a-9278-1ca3f3049fce wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: 8608c2ec-a087-435a-9278-1ca3f3049fce warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c4b1277f-6ee4-4273-8b91-1da9c4d5cef8 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 6.9360 | | 6.8752 | 0.0059 | 63 | 6.8734 | | 6.8601 | 0.0119 | 126 | 6.8584 | | 6.8542 | 0.0178 | 189 | 6.8534 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
eddysang/023d75df-5795-42ab-a038-ec4ad11f3c1b
eddysang
2025-02-04T04:17:27Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-64k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-64k", "region:us" ]
null
2025-02-04T03:29:34Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 023d75df-5795-42ab-a038-ec4ad11f3c1b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9702554f26460ac5_train_data.json ds_type: json format: custom path: /workspace/input_data/9702554f26460ac5_train_data.json type: field_input: ingredients field_instruction: method field_output: title format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: eddysang/023d75df-5795-42ab-a038-ec4ad11f3c1b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/9702554f26460ac5_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: yaudayah0 wandb_mode: online wandb_name: 90e1caee-8148-4b00-a510-c0c50a07f653 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 90e1caee-8148-4b00-a510-c0c50a07f653 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # 023d75df-5795-42ab-a038-ec4ad11f3c1b This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-64k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0052 | 1 | 2.1776 | | 40.2369 | 0.0466 | 9 | 1.0181 | | 30.8358 | 0.0932 | 18 | 0.9361 | | 30.6756 | 0.1398 | 27 | 0.8983 | | 27.4575 | 0.1864 | 36 | 0.8813 | | 27.1535 | 0.2330 | 45 | 0.8693 | | 26.7588 | 0.2796 | 54 | 0.8487 | | 28.8767 | 0.3262 | 63 | 0.8452 | | 24.3021 | 0.3728 | 72 | 0.8401 | | 26.5022 | 0.4193 | 81 | 0.8342 | | 25.2517 | 0.4659 | 90 | 0.8279 | | 28.4574 | 0.5125 | 99 | 0.8274 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/80277472-4439-4ae5-8a8e-a6d9ab524841
shibajustfor
2025-02-04T04:16:54Z
8
0
peft
[ "peft", "safetensors", "phi", "axolotl", "generated_from_trainer", "base_model:echarlaix/tiny-random-PhiForCausalLM", "base_model:adapter:echarlaix/tiny-random-PhiForCausalLM", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:16:11Z
--- library_name: peft license: apache-2.0 base_model: echarlaix/tiny-random-PhiForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 80277472-4439-4ae5-8a8e-a6d9ab524841 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: echarlaix/tiny-random-PhiForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 433b1171462ef288_train_data.json ds_type: json format: custom path: /workspace/input_data/433b1171462ef288_train_data.json type: field_input: critic_prompt field_instruction: init_prompt field_output: init_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/80277472-4439-4ae5-8a8e-a6d9ab524841 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/433b1171462ef288_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8608c2ec-a087-435a-9278-1ca3f3049fce wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: 8608c2ec-a087-435a-9278-1ca3f3049fce warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 80277472-4439-4ae5-8a8e-a6d9ab524841 This model is a fine-tuned version of [echarlaix/tiny-random-PhiForCausalLM](https://huggingface.co/echarlaix/tiny-random-PhiForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 6.9360 | | 6.9234 | 0.0094 | 50 | 6.9208 | | 6.8959 | 0.0189 | 100 | 6.8939 | | 6.891 | 0.0283 | 150 | 6.8911 | | 6.8895 | 0.0377 | 200 | 6.8908 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/88e9389b-0ecf-4bb2-87a1-51509d7562ad
lesso
2025-02-04T04:16:08Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:10:24Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 88e9389b-0ecf-4bb2-87a1-51509d7562ad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 05d23f8c0d4d9d78_train_data.json ds_type: json format: custom path: /workspace/input_data/05d23f8c0d4d9d78_train_data.json type: field_input: '' field_instruction: ctx field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/88e9389b-0ecf-4bb2-87a1-51509d7562ad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god13/05d23f8c0d4d9d78_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 wandb_project: ab-god13 wandb_run: your_name wandb_runid: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 88e9389b-0ecf-4bb2-87a1-51509d7562ad This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4486 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5119 | 0.0028 | 1 | 2.5158 | | 1.378 | 0.1423 | 50 | 1.5304 | | 1.2774 | 0.2847 | 100 | 1.4797 | | 1.2644 | 0.4270 | 150 | 1.4555 | | 1.2039 | 0.5694 | 200 | 1.4486 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/Zurich-1.5B-GCv2-5m-GGUF
mradermacher
2025-02-04T04:14:44Z
291
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "gammacorpus", "zurich", "chat", "conversational", "en", "dataset:rubenroy/GammaCorpus-v2-5m", "base_model:rubenroy/Zurich-1.5B-GCv2-5m", "base_model:quantized:rubenroy/Zurich-1.5B-GCv2-5m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-03T21:09:13Z
--- base_model: rubenroy/Zurich-1.5B-GCv2-5m datasets: - rubenroy/GammaCorpus-v2-5m language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - gammacorpus - zurich - chat - conversational --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/rubenroy/Zurich-1.5B-GCv2-5m <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Zurich-1.5B-GCv2-5m-GGUF/resolve/main/Zurich-1.5B-GCv2-5m.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
abaddon182/6a2dfe2e-2f7a-4197-bbe4-e7c8541ccf6d
abaddon182
2025-02-04T04:13:15Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:08:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 6a2dfe2e-2f7a-4197-bbe4-e7c8541ccf6d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/6a2dfe2e-2f7a-4197-bbe4-e7c8541ccf6d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6a2dfe2e-2f7a-4197-bbe4-e7c8541ccf6d This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.061 | 0.0000 | 1 | 2.1100 | | 0.4251 | 0.0021 | 50 | 0.4079 | | 0.385 | 0.0042 | 100 | 0.3764 | | 0.3987 | 0.0063 | 150 | 0.3666 | | 0.3883 | 0.0084 | 200 | 0.3646 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dixedus/a06ac1c1-5c5e-4061-9e43-78b852a195f1
dixedus
2025-02-04T04:12:44Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:57:16Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: a06ac1c1-5c5e-4061-9e43-78b852a195f1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 05d23f8c0d4d9d78_train_data.json ds_type: json format: custom path: /workspace/input_data/05d23f8c0d4d9d78_train_data.json type: field_input: '' field_instruction: ctx field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: dixedus/a06ac1c1-5c5e-4061-9e43-78b852a195f1 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/05d23f8c0d4d9d78_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 wandb_project: Gradients-On-Eight wandb_run: your_name wandb_runid: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a06ac1c1-5c5e-4061-9e43-78b852a195f1 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6137 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.5089 | | 2.5046 | 0.0032 | 9 | 2.4501 | | 2.1437 | 0.0064 | 18 | 2.0470 | | 1.875 | 0.0096 | 27 | 1.8732 | | 1.8341 | 0.0128 | 36 | 1.7991 | | 1.7549 | 0.0160 | 45 | 1.7380 | | 1.7462 | 0.0192 | 54 | 1.6864 | | 1.7131 | 0.0224 | 63 | 1.6484 | | 1.6675 | 0.0256 | 72 | 1.6276 | | 1.5945 | 0.0288 | 81 | 1.6179 | | 1.5882 | 0.0320 | 90 | 1.6142 | | 1.6643 | 0.0352 | 99 | 1.6137 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
leixa/d8c96614-966b-4b85-aa28-59fc6d5ca053
leixa
2025-02-04T04:11:56Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:56:19Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: d8c96614-966b-4b85-aa28-59fc6d5ca053 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 05d23f8c0d4d9d78_train_data.json ds_type: json format: custom path: /workspace/input_data/05d23f8c0d4d9d78_train_data.json type: field_input: '' field_instruction: ctx field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: leixa/d8c96614-966b-4b85-aa28-59fc6d5ca053 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/05d23f8c0d4d9d78_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d8c96614-966b-4b85-aa28-59fc6d5ca053 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.5089 | | 2.5041 | 0.0032 | 9 | 2.4506 | | 2.1417 | 0.0064 | 18 | 2.0448 | | 1.8709 | 0.0096 | 27 | 1.8706 | | 1.832 | 0.0128 | 36 | 1.7949 | | 1.75 | 0.0160 | 45 | 1.7313 | | 1.742 | 0.0192 | 54 | 1.6799 | | 1.7067 | 0.0224 | 63 | 1.6430 | | 1.6618 | 0.0256 | 72 | 1.6240 | | 1.5908 | 0.0288 | 81 | 1.6152 | | 1.5858 | 0.0320 | 90 | 1.6122 | | 1.6621 | 0.0352 | 99 | 1.6114 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
prxy5604/518ebd42-b621-46da-bded-ef9115b9090b
prxy5604
2025-02-04T04:11:22Z
7
0
peft
[ "peft", "safetensors", "dbrx", "axolotl", "generated_from_trainer", "base_model:katuni4ka/tiny-random-dbrx", "base_model:adapter:katuni4ka/tiny-random-dbrx", "region:us" ]
null
2025-02-04T04:10:11Z
--- library_name: peft base_model: katuni4ka/tiny-random-dbrx tags: - axolotl - generated_from_trainer model-index: - name: 518ebd42-b621-46da-bded-ef9115b9090b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-dbrx bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a69c39734819523a_train_data.json ds_type: json format: custom path: /workspace/input_data/a69c39734819523a_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: prxy5604/518ebd42-b621-46da-bded-ef9115b9090b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/a69c39734819523a_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f200e9b6-0cd3-4ed2-a65a-2d405aaa2695 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f200e9b6-0cd3-4ed2-a65a-2d405aaa2695 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 518ebd42-b621-46da-bded-ef9115b9090b This model is a fine-tuned version of [katuni4ka/tiny-random-dbrx](https://huggingface.co/katuni4ka/tiny-random-dbrx) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 46.0 | 0.0038 | 1 | 11.5 | | 46.0 | 0.1892 | 50 | 11.5 | | 46.0 | 0.3784 | 100 | 11.5 | | 46.0 | 0.5676 | 150 | 11.5 | | 46.0 | 0.7569 | 200 | 11.5 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
tryingpro/e95eee45-f2d5-4766-be8a-98987eeb0598
tryingpro
2025-02-04T04:10:04Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-02-04T03:30:26Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: e95eee45-f2d5-4766-be8a-98987eeb0598 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2fee9c78f1574ee_train_data.json ds_type: json format: custom path: /workspace/input_data/c2fee9c78f1574ee_train_data.json type: field_input: Description field_instruction: Patient field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: tryingpro/e95eee45-f2d5-4766-be8a-98987eeb0598 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - gate_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 90 micro_batch_size: 2 mlflow_experiment_name: /tmp/c2fee9c78f1574ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: tryingpro-unicourt wandb_mode: online wandb_name: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ``` </details><br> # e95eee45-f2d5-4766-be8a-98987eeb0598 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 90 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0086 | 1 | nan | | 0.0 | 0.4318 | 50 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/8f5b6967-0d47-4a64-9461-01b2c0b5c656
lesso
2025-02-04T04:08:45Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:03:04Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8f5b6967-0d47-4a64-9461-01b2c0b5c656 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM-360M-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 05d23f8c0d4d9d78_train_data.json ds_type: json format: custom path: /workspace/input_data/05d23f8c0d4d9d78_train_data.json type: field_input: '' field_instruction: ctx field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/8f5b6967-0d47-4a64-9461-01b2c0b5c656 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god07/05d23f8c0d4d9d78_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 wandb_project: ab-god07 wandb_run: your_name wandb_runid: 88a1423e-4ec5-43b2-a3b0-ca7acaab4d17 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8f5b6967-0d47-4a64-9461-01b2c0b5c656 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4484 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.5119 | 0.0028 | 1 | 2.5158 | | 1.378 | 0.1423 | 50 | 1.5301 | | 1.2778 | 0.2847 | 100 | 1.4797 | | 1.2647 | 0.4270 | 150 | 1.4554 | | 1.2033 | 0.5694 | 200 | 1.4484 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Best000/fd508986-b4df-4faa-8c71-4894fd0e5ad0
Best000
2025-02-04T04:07:14Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T04:00:26Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: fd508986-b4df-4faa-8c71-4894fd0e5ad0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # fd508986-b4df-4faa-8c71-4894fd0e5ad0 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/a10a1d6a-4175-41fd-ae01-c352af5a9b8d
lesso
2025-02-04T04:04:36Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:55:50Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: a10a1d6a-4175-41fd-ae01-c352af5a9b8d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-1.5B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 7983b1695b7e7fb0_train_data.json ds_type: json format: custom path: /workspace/input_data/7983b1695b7e7fb0_train_data.json type: field_input: level field_instruction: prompt field_output: responses format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/a10a1d6a-4175-41fd-ae01-c352af5a9b8d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001017 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god17/7983b1695b7e7fb0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2d1a2331-2d93-4014-9474-321c82e2f1be wandb_project: ab-god17 wandb_run: your_name wandb_runid: 2d1a2331-2d93-4014-9474-321c82e2f1be warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a10a1d6a-4175-41fd-ae01-c352af5a9b8d This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001017 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1759 | 0.0024 | 1 | 1.3025 | | 1.1813 | 0.1175 | 50 | 1.1481 | | 1.7043 | 0.2350 | 100 | 1.1251 | | 0.9229 | 0.3525 | 150 | 1.1125 | | 1.0389 | 0.4700 | 200 | 1.1074 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nathanialhunt/781e2999-9c07-42b3-a123-d6edaabd58d5
nathanialhunt
2025-02-04T04:03:36Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/SmolLM-360M-Instruct", "base_model:adapter:unsloth/SmolLM-360M-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:58:04Z
--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 781e2999-9c07-42b3-a123-d6edaabd58d5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) # 781e2999-9c07-42b3-a123-d6edaabd58d5 This model is a fine-tuned version of [unsloth/SmolLM-360M-Instruct](https://huggingface.co/unsloth/SmolLM-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
oliveirabruno01/DeepSeek-R1-Distill-Qwen-1.5B-exec-SFT-seed
oliveirabruno01
2025-02-04T04:02:23Z
165
0
transformers
[ "transformers", "pytorch", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-01-31T19:42:00Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhung03/cd930fdc-a984-445e-a988-7b92e8b3ccba
nhung03
2025-02-04T04:02:05Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:adapter:unsloth/Qwen2.5-3B-Instruct", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:13:22Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: cd930fdc-a984-445e-a988-7b92e8b3ccba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4f18f2f08d7cdc36_train_data.json ds_type: json format: custom path: /workspace/input_data/4f18f2f08d7cdc36_train_data.json type: field_input: selftext field_instruction: title field_output: answers.text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/cd930fdc-a984-445e-a988-7b92e8b3ccba hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4f18f2f08d7cdc36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 865affea-a5f6-4eda-ac40-6a4195f23efd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 865affea-a5f6-4eda-ac40-6a4195f23efd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # cd930fdc-a984-445e-a988-7b92e8b3ccba This model is a fine-tuned version of [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3662 | 0.0128 | 200 | 2.3427 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/31e5fb5f-cdcf-40c4-a0c4-99e739c5d967
shibajustfor
2025-02-04T03:56:44Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:adapter:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:52:13Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 31e5fb5f-cdcf-40c4-a0c4-99e739c5d967 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-7B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - ceac57436127cc6c_train_data.json ds_type: json format: custom path: /workspace/input_data/ceac57436127cc6c_train_data.json type: field_input: '' field_instruction: title field_output: text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/31e5fb5f-cdcf-40c4-a0c4-99e739c5d967 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/ceac57436127cc6c_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cc891c4e-9b2c-4c32-93f8-b418eb54f13f wandb_project: Birthday-SN56-39-Gradients-On-Demand wandb_run: your_name wandb_runid: cc891c4e-9b2c-4c32-93f8-b418eb54f13f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 31e5fb5f-cdcf-40c4-a0c4-99e739c5d967 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0030 | 1 | 1.8250 | | 1.7189 | 0.1504 | 50 | 1.7235 | | 1.7386 | 0.3008 | 100 | 1.7143 | | 1.6114 | 0.4511 | 150 | 1.7107 | | 1.6668 | 0.6015 | 200 | 1.7101 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
brew35/b361d725-11ee-4819-9c49-7c15a39f4499
brew35
2025-02-04T03:55:19Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:59:21Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: b361d725-11ee-4819-9c49-7c15a39f4499 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: brew35/b361d725-11ee-4819-9c49-7c15a39f4499 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b361d725-11ee-4819-9c49-7c15a39f4499 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4118 | 0.0042 | 200 | 0.4037 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
weilun007898/trial-toto1
weilun007898
2025-02-04T03:53:39Z
25
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T03:52:07Z
--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
lesso/0738a4ec-dd98-4e7a-8df0-0ce7dbd1db9f
lesso
2025-02-04T03:53:30Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:11:18Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 0738a4ec-dd98-4e7a-8df0-0ce7dbd1db9f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/0738a4ec-dd98-4e7a-8df0-0ce7dbd1db9f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001017 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god17/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: ab-god17 wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0738a4ec-dd98-4e7a-8df0-0ce7dbd1db9f This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001017 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5118 | 0.0009 | 1 | 0.3299 | | 0.6496 | 0.0462 | 50 | 0.2352 | | 0.4482 | 0.0925 | 100 | 0.2269 | | 0.4205 | 0.1387 | 150 | 0.2219 | | 0.4653 | 0.1849 | 200 | 0.2192 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
phongtintruong/meomeo-mhubert-vietbud-24-100
phongtintruong
2025-02-04T03:53:11Z
5
0
transformers
[ "transformers", "safetensors", "meomeo", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-02-04T03:52:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ciloku/717b26ad-0cef-4fc0-8d24-a68b0ce0933b
ciloku
2025-02-04T03:52:38Z
10
0
peft
[ "peft", "safetensors", "opt", "axolotl", "generated_from_trainer", "base_model:facebook/opt-125m", "base_model:adapter:facebook/opt-125m", "license:other", "region:us" ]
null
2025-02-04T03:50:02Z
--- library_name: peft license: other base_model: facebook/opt-125m tags: - axolotl - generated_from_trainer model-index: - name: 717b26ad-0cef-4fc0-8d24-a68b0ce0933b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: facebook/opt-125m bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - 28cfef58c079ae09_train_data.json ds_type: json format: custom path: /workspace/input_data/28cfef58c079ae09_train_data.json type: field_input: comment field_instruction: prompt field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ciloku/717b26ad-0cef-4fc0-8d24-a68b0ce0933b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 6.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/28cfef58c079ae09_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cae3f697-637d-476e-acf5-7861ed8393e4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cae3f697-637d-476e-acf5-7861ed8393e4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 717b26ad-0cef-4fc0-8d24-a68b0ce0933b This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0813 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.0926 | 0.0029 | 1 | 1.6496 | | 5.2871 | 0.1427 | 50 | 1.2253 | | 4.5865 | 0.2853 | 100 | 1.1286 | | 4.4735 | 0.4280 | 150 | 1.0896 | | 4.836 | 0.5706 | 200 | 1.0813 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
utakumi/Hubert-kakeiken-W-closed_add_ver2
utakumi
2025-02-04T03:50:13Z
6
0
transformers
[ "transformers", "safetensors", "hubert", "automatic-speech-recognition", "original_kakeiken_W_closed_add_ver2", "generated_from_trainer", "base_model:rinna/japanese-hubert-base", "base_model:finetune:rinna/japanese-hubert-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-02-03T19:49:50Z
--- library_name: transformers license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_kakeiken_W_closed_add_ver2 - generated_from_trainer metrics: - wer model-index: - name: Hubert-kakeiken-W-closed_add_ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Hubert-kakeiken-W-closed_add_ver2 This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_CLOSED_ADD_VER2 - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.0617 - Wer: 0.9988 - Cer: 1.0129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 28.4059 | 1.0 | 880 | 10.6721 | 1.0 | 1.1284 | | 9.1792 | 2.0 | 1760 | 6.9924 | 1.0 | 1.1284 | | 4.9143 | 3.0 | 2640 | 3.8166 | 1.0 | 1.1284 | | 3.1394 | 4.0 | 3520 | 2.8829 | 1.0 | 1.1283 | | 2.7266 | 5.0 | 4400 | 1.9608 | 1.0 | 1.1444 | | 1.4314 | 6.0 | 5280 | 0.8434 | 0.9999 | 1.0662 | | 0.6837 | 7.0 | 6160 | 0.4583 | 0.9997 | 1.0330 | | 0.403 | 8.0 | 7040 | 0.2512 | 0.9991 | 1.0479 | | 0.3035 | 9.0 | 7920 | 0.1972 | 0.9993 | 1.0365 | | 0.229 | 10.0 | 8800 | 0.0872 | 0.9991 | 1.0264 | | 0.1995 | 11.0 | 9680 | 0.0959 | 0.9988 | 1.0262 | | 0.1824 | 12.0 | 10560 | 0.1012 | 0.9988 | 1.0317 | | 0.1774 | 13.0 | 11440 | 0.0541 | 0.9991 | 1.0220 | | 0.1739 | 14.0 | 12320 | 0.0703 | 0.9990 | 1.0270 | | 0.1609 | 15.0 | 13200 | 0.0480 | 0.9988 | 1.0203 | | 0.1512 | 16.0 | 14080 | 0.0540 | 0.9988 | 1.0162 | | 0.1412 | 17.0 | 14960 | 0.0396 | 0.9988 | 1.0188 | | 0.1391 | 18.0 | 15840 | 0.0493 | 0.9988 | 1.0195 | | 0.1325 | 19.0 | 16720 | 0.0366 | 0.9988 | 1.0186 | | 0.1242 | 20.0 | 17600 | 0.0392 | 0.9988 | 1.0178 | | 0.122 | 21.0 | 18480 | 0.0545 | 0.9988 | 1.0193 | | 0.1143 | 22.0 | 19360 | 0.0408 | 0.9988 | 1.0185 | | 0.1087 | 23.0 | 20240 | 0.0310 | 0.9988 | 1.0176 | | 0.1013 | 24.0 | 21120 | 0.0262 | 0.9988 | 1.0166 | | 0.0998 | 25.0 | 22000 | 0.0388 | 0.9988 | 1.0199 | | 0.0903 | 26.0 | 22880 | 0.0280 | 0.9988 | 1.0166 | | 0.088 | 27.0 | 23760 | 0.0492 | 0.9988 | 1.0197 | | 0.0838 | 28.0 | 24640 | 0.0230 | 0.9988 | 1.0163 | | 0.079 | 29.0 | 25520 | 0.0282 | 0.9988 | 1.0170 | | 0.0747 | 30.0 | 26400 | 0.0271 | 0.9988 | 1.0162 | | 0.0692 | 31.0 | 27280 | 0.0272 | 0.9988 | 1.0167 | | 0.0699 | 32.0 | 28160 | 0.0427 | 0.9988 | 1.0143 | | 0.0652 | 33.0 | 29040 | 0.0324 | 0.9988 | 1.0162 | | 0.0624 | 34.0 | 29920 | 0.0315 | 0.9988 | 1.0163 | | 0.0588 | 35.0 | 30800 | 0.0549 | 0.9988 | 1.0137 | | 0.0594 | 36.0 | 31680 | 0.0457 | 0.9988 | 1.0142 | | 0.0619 | 37.0 | 32560 | 0.0463 | 0.9988 | 1.0144 | | 0.058 | 38.0 | 33440 | 0.0665 | 0.9988 | 1.0127 | | 0.059 | 39.0 | 34320 | 0.0595 | 0.9988 | 1.0131 | | 0.0563 | 39.9551 | 35160 | 0.0581 | 0.9988 | 1.0133 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0
ardaspear/2ca5d170-a115-46a1-9437-c3cbd08da1c9
ardaspear
2025-02-04T03:50:11Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-02-04T03:30:20Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 2ca5d170-a115-46a1-9437-c3cbd08da1c9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2fee9c78f1574ee_train_data.json ds_type: json format: custom path: /workspace/input_data/c2fee9c78f1574ee_train_data.json type: field_input: Description field_instruction: Patient field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: ardaspear/2ca5d170-a115-46a1-9437-c3cbd08da1c9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c2fee9c78f1574ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 wandb_project: Gradients-On-Five wandb_run: your_name wandb_runid: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2ca5d170-a115-46a1-9437-c3cbd08da1c9 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0043 | 1 | 3.1641 | | 2.9388 | 0.0388 | 9 | 2.8535 | | 2.5552 | 0.0777 | 18 | 2.5772 | | 2.5415 | 0.1165 | 27 | 2.5006 | | 2.373 | 0.1553 | 36 | 2.4519 | | 2.4046 | 0.1942 | 45 | 2.4185 | | 2.4154 | 0.2330 | 54 | 2.3935 | | 2.4028 | 0.2718 | 63 | 2.3735 | | 2.2202 | 0.3107 | 72 | 2.3604 | | 2.2577 | 0.3495 | 81 | 2.3512 | | 2.4227 | 0.3883 | 90 | 2.3467 | | 2.2445 | 0.4272 | 99 | 2.3457 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
beast33/c416c466-4b6f-4ef3-b0f8-c8d6f5fd4160
beast33
2025-02-04T03:49:13Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:55:31Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: c416c466-4b6f-4ef3-b0f8-c8d6f5fd4160 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: beast33/c416c466-4b6f-4ef3-b0f8-c8d6f5fd4160 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c416c466-4b6f-4ef3-b0f8-c8d6f5fd4160 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4047 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4158 | 0.0042 | 200 | 0.4047 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
ciloku/ffa9f622-d7b6-43ee-bf92-e95a5fe2b09b
ciloku
2025-02-04T03:49:00Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-64k", "base_model:adapter:NousResearch/Yarn-Solar-10b-64k", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:09:48Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: ffa9f622-d7b6-43ee-bf92-e95a5fe2b09b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: true chat_template: llama3 data_processes: 24 dataset_prepared_path: null datasets: - data_files: - 9bd7b6044d104eec_train_data.json ds_type: json format: custom path: /workspace/input_data/9bd7b6044d104eec_train_data.json type: field_input: '' field_instruction: input_text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 4 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: ciloku/ffa9f622-d7b6-43ee-bf92-e95a5fe2b09b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 6.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.04 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine lr_scheduler_warmup_steps: 50 max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/9bd7b6044d104eec_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null seed: 17333 sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer total_train_batch_size: 32 train_batch_size: 8 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # ffa9f622-d7b6-43ee-bf92-e95a5fe2b09b This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0141 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 17333 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.3346 | 0.0125 | 1 | 2.2198 | | 0.092 | 0.6231 | 50 | 0.0596 | | 0.0042 | 1.2461 | 100 | 0.0428 | | 0.0069 | 1.8692 | 150 | 0.0153 | | 0.0015 | 2.4922 | 200 | 0.0141 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
daydream-org/DeepSeek-R1-GGUF-11446
daydream-org
2025-02-04T03:45:00Z
264
0
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-02T10:06:59Z
https://github.com/ggerganov/llama.cpp/pull/11446
nhunglaaaaaaa/135a1116-c9fa-4ae4-b3ca-8a7efcbaf304
nhunglaaaaaaa
2025-02-04T03:41:37Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-3B-Instruct", "base_model:adapter:unsloth/Qwen2.5-3B-Instruct", "license:other", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:13:41Z
--- library_name: peft license: other base_model: unsloth/Qwen2.5-3B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 135a1116-c9fa-4ae4-b3ca-8a7efcbaf304 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-3B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4f18f2f08d7cdc36_train_data.json ds_type: json format: custom path: /workspace/input_data/4f18f2f08d7cdc36_train_data.json type: field_input: selftext field_instruction: title field_output: answers.text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhunglaaaaaaa/135a1116-c9fa-4ae4-b3ca-8a7efcbaf304 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/4f18f2f08d7cdc36_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 865affea-a5f6-4eda-ac40-6a4195f23efd wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 865affea-a5f6-4eda-ac40-6a4195f23efd warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 135a1116-c9fa-4ae4-b3ca-8a7efcbaf304 This model is a fine-tuned version of [unsloth/Qwen2.5-3B-Instruct](https://huggingface.co/unsloth/Qwen2.5-3B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3432 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3649 | 0.0128 | 200 | 2.3432 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
XelotX/DeepSeek-R1-unsloth-GGUF
XelotX
2025-02-04T03:41:26Z
229
0
transformers
[ "transformers", "gguf", "deepseek_v3", "text-generation", "deepseek", "unsloth", "custom_code", "en", "arxiv:2501.12948", "base_model:deepseek-ai/DeepSeek-R1", "base_model:quantized:deepseek-ai/DeepSeek-R1", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
2025-02-04T03:41:25Z
--- base_model: deepseek-ai/DeepSeek-R1 language: - en library_name: transformers license: mit tags: - deepseek - unsloth - transformers --- <div> <p style="margin-bottom: 0;"> <strong>See <a href="https://huggingface.co/collections/unsloth/deepseek-r1-all-versions-678e1c48f5d2fce87892ace5">our collection</a> for versions of Deepseek-R1 including GGUF & 4-bit formats.</strong> </p> <p style="margin-bottom: 0;"> <em>Unsloth's DeepSeek-R1 <a href="https://unsloth.ai/blog/deepseekr1-dynamic">1.58-bit + 2-bit Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 1-bit/2-bit.</em> </p> <div style="display: flex; gap: 5px; align-items: center; "> <a href="https://github.com/unslothai/unsloth/"> <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133"> </a> <a href="https://discord.gg/unsloth"> <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173"> </a> <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device"> <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143"> </a> </div> <h1 style="margin-top: 0rem;">Instructions to run this model in llama.cpp:</h2> </div> Or you can view more detailed instructions here: [unsloth.ai/blog/deepseekr1-dynamic](https://unsloth.ai/blog/deepseekr1-dynamic) 1. Do not forget about `<|User|>` and `<|Assistant|>` tokens! - Or use a chat template formatter 2. Obtain the latest `llama.cpp` at https://github.com/ggerganov/llama.cpp. You can follow the build instructions below as well: ```bash apt-get update apt-get install build-essential cmake curl libcurl4-openssl-dev -y git clone https://github.com/ggerganov/llama.cpp cmake llama.cpp -B llama.cpp/build \ -DBUILD_SHARED_LIBS=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON cmake --build llama.cpp/build --config Release -j --clean-first --target llama-quantize llama-cli llama-gguf-split cp llama.cpp/build/bin/llama-* llama.cpp ``` 3. It's best to use `--min-p 0.05` to counteract very rare token predictions - I found this to work well especially for the 1.58bit model. 4. Download the model via: ```python # pip install huggingface_hub hf_transfer # import os # Optional for faster downloading # os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" from huggingface_hub import snapshot_download snapshot_download( repo_id = "unsloth/DeepSeek-R1-GGUF", local_dir = "DeepSeek-R1-GGUF", allow_patterns = ["*UD-IQ1_S*"], # Select quant type UD-IQ1_S for 1.58bit ) ``` 5. Example with Q4_0 K quantized cache **Notice -no-cnv disables auto conversation mode** ```bash ./llama.cpp/llama-cli \ --model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ --cache-type-k q4_0 \ --threads 12 -no-cnv --prio 2 \ --temp 0.6 \ --ctx-size 8192 \ --seed 3407 \ --prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>" ``` Example output: ```txt <think> Okay, so I need to figure out what 1 plus 1 is. Hmm, where do I even start? I remember from school that adding numbers is pretty basic, but I want to make sure I understand it properly. Let me think, 1 plus 1. So, I have one item and I add another one. Maybe like a apple plus another apple. If I have one apple and someone gives me another, I now have two apples. So, 1 plus 1 should be 2. That makes sense. Wait, but sometimes math can be tricky. Could it be something else? Like, in a different number system maybe? But I think the question is straightforward, using regular numbers, not like binary or hexadecimal or anything. I also recall that in arithmetic, addition is combining quantities. So, if you have two quantities of 1, combining them gives you a total of 2. Yeah, that seems right. Is there a scenario where 1 plus 1 wouldn't be 2? I can't think of any... ``` 6. If you have a GPU (RTX 4090 for example) with 24GB, you can offload multiple layers to the GPU for faster processing. If you have multiple GPUs, you can probably offload more layers. ```bash ./llama.cpp/llama-cli \ --model DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ --cache-type-k q4_0 \ --threads 12 -no-cnv --prio 2 \ --n-gpu-layers 7 \ --temp 0.6 \ --ctx-size 8192 \ --seed 3407 \ --prompt "<|User|>Create a Flappy Bird game in Python.<|Assistant|>" ``` 7. If you want to merge the weights together, use this script: ``` ./llama.cpp/llama-gguf-split --merge \ DeepSeek-R1-GGUF/DeepSeek-R1-UD-IQ1_S-00001-of-00003.gguf \ merged_file.gguf ``` | MoE Bits | Type | Disk Size | Accuracy | Link | Details | | -------- | -------- | ------------ | ------------ | ---------------------| ---------- | | 1.58bit | UD-IQ1_S | **131GB** | Fair | [Link](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ1_S) | MoE all 1.56bit. `down_proj` in MoE mixture of 2.06/1.56bit | | 1.73bit | UD-IQ1_M | **158GB** | Good | [Link](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ1_M) | MoE all 1.56bit. `down_proj` in MoE left at 2.06bit | | 2.22bit | UD-IQ2_XXS | **183GB** | Better | [Link](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-IQ2_XXS) | MoE all 2.06bit. `down_proj` in MoE mixture of 2.5/2.06bit | | 2.51bit | UD-Q2_K_XL | **212GB** | Best | [Link](https://huggingface.co/unsloth/DeepSeek-R1-GGUF/tree/main/DeepSeek-R1-UD-Q2_K_XL) | MoE all 2.5bit. `down_proj` in MoE mixture of 3.5/2.5bit | # Finetune LLMs 2-5x faster with 70% less memory via Unsloth! We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth) [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) ## ✨ Finetune for Free All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face. | Unsloth supports | Free Notebooks | Performance | Memory use | |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------| | **Llama-3.2 (3B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less | | **Llama-3.2 (11B vision)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less | | **Qwen2 VL (7B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less | | **Qwen2.5 (7B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less | | **Llama-3.1 (8B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less | | **Phi-3.5 (mini)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less | | **Gemma 2 (9B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less | | **Mistral (7B)** | [▢️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less | [<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai) - This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates. - This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr. - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster. ## Special Thanks A huge thank you to the DeepSeek team for creating and releasing these models. # DeepSeek-R1 <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/πŸ€–%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE-CODE" style="margin: 2px;"> <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE-MODEL" style="margin: 2px;"> <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> <p align="center"> <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>πŸ‘οΈ</a> </p> ## 1. Introduction We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1. DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning. With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors. However, DeepSeek-R1-Zero encounters challenges such as endless repetition, poor readability, and language mixing. To address these issues and further enhance reasoning performance, we introduce DeepSeek-R1, which incorporates cold-start data before RL. DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks. To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models. **NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.** <p align="center"> <img width="80%" src="figures/benchmark.jpg"> </p> ## 2. Model Summary --- **Post-Training: Large-Scale Reinforcement Learning on the Base Model** - We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area. - We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities. We believe the pipeline will benefit the industry by creating better models. --- **Distillation: Smaller Models Can Be Powerful Too** - We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future. - Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community. ## 3. Model Downloads ### DeepSeek-R1 Models <div align="center"> | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | | :------------: | :------------: | :------------: | :------------: | :------------: | | DeepSeek-R1-Zero | 671B | 37B | 128K | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero) | | DeepSeek-R1 | 671B | 37B | 128K | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1) | </div> DeepSeek-R1-Zero & DeepSeek-R1 are trained based on DeepSeek-V3-Base. For more details regarding the model architecture, please refer to [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repository. ### DeepSeek-R1-Distill Models <div align="center"> | **Model** | **Base Model** | **Download** | | :------------: | :------------: | :------------: | | DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) | | DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) | | DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) | | DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) | |DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | | DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [πŸ€— HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) | </div> DeepSeek-R1-Distill models are fine-tuned based on open-source models, using samples generated by DeepSeek-R1. We slightly change their configs and tokenizers. Please use our setting to run these models. ## 4. Evaluation Results ### DeepSeek-R1-Evaluation For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1. <div align="center"> | Category | Benchmark (Metric) | Claude-3.5-Sonnet-1022 | GPT-4o 0513 | DeepSeek V3 | OpenAI o1-mini | OpenAI o1-1217 | DeepSeek R1 | |----------|-------------------|----------------------|------------|--------------|----------------|------------|--------------| | | Architecture | - | - | MoE | - | - | MoE | | | # Activated Params | - | - | 37B | - | - | 37B | | | # Total Params | - | - | 671B | - | - | 671B | | English | MMLU (Pass@1) | 88.3 | 87.2 | 88.5 | 85.2 | **91.8** | 90.8 | | | MMLU-Redux (EM) | 88.9 | 88.0 | 89.1 | 86.7 | - | **92.9** | | | MMLU-Pro (EM) | 78.0 | 72.6 | 75.9 | 80.3 | - | **84.0** | | | DROP (3-shot F1) | 88.3 | 83.7 | 91.6 | 83.9 | 90.2 | **92.2** | | | IF-Eval (Prompt Strict) | **86.5** | 84.3 | 86.1 | 84.8 | - | 83.3 | | | GPQA-Diamond (Pass@1) | 65.0 | 49.9 | 59.1 | 60.0 | **75.7** | 71.5 | | | SimpleQA (Correct) | 28.4 | 38.2 | 24.9 | 7.0 | **47.0** | 30.1 | | | FRAMES (Acc.) | 72.5 | 80.5 | 73.3 | 76.9 | - | **82.5** | | | AlpacaEval2.0 (LC-winrate) | 52.0 | 51.1 | 70.0 | 57.8 | - | **87.6** | | | ArenaHard (GPT-4-1106) | 85.2 | 80.4 | 85.5 | 92.0 | - | **92.3** | | Code | LiveCodeBench (Pass@1-COT) | 33.8 | 34.2 | - | 53.8 | 63.4 | **65.9** | | | Codeforces (Percentile) | 20.3 | 23.6 | 58.7 | 93.4 | **96.6** | 96.3 | | | Codeforces (Rating) | 717 | 759 | 1134 | 1820 | **2061** | 2029 | | | SWE Verified (Resolved) | **50.8** | 38.8 | 42.0 | 41.6 | 48.9 | 49.2 | | | Aider-Polyglot (Acc.) | 45.3 | 16.0 | 49.6 | 32.9 | **61.7** | 53.3 | | Math | AIME 2024 (Pass@1) | 16.0 | 9.3 | 39.2 | 63.6 | 79.2 | **79.8** | | | MATH-500 (Pass@1) | 78.3 | 74.6 | 90.2 | 90.0 | 96.4 | **97.3** | | | CNMO 2024 (Pass@1) | 13.1 | 10.8 | 43.2 | 67.6 | - | **78.8** | | Chinese | CLUEWSC (EM) | 85.4 | 87.9 | 90.9 | 89.9 | - | **92.8** | | | C-Eval (EM) | 76.7 | 76.0 | 86.5 | 68.9 | - | **91.8** | | | C-SimpleQA (Correct) | 55.4 | 58.7 | **68.0** | 40.3 | - | 63.7 | </div> ### Distilled Model Evaluation <div align="center"> | Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating | |------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------| | GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 | | Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 | | o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** | | QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 | | DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 | | DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 | | DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 | | DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 | | DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 | | DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 | </div> ## 5. Chat Website & API Platform You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink" We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/) ## 6. How to Run Locally ### DeepSeek-R1 Models Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running DeepSeek-R1 locally. ### DeepSeek-R1-Distill Models DeepSeek-R1-Distill models can be utilized in the same manner as Qwen or Llama models. For instance, you can easily start a service using [vLLM](https://github.com/vllm-project/vllm): ```shell vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager ``` You can also easily start a service using [SGLang](https://github.com/sgl-project/sglang) ```bash python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2 ``` ### Usage Recommendations **We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:** 1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs. 2. **Avoid adding a system prompt; all instructions should be contained within the user prompt.** 3. For mathematical problems, it is advisable to include a directive in your prompt such as: "Please reason step by step, and put your final answer within \boxed{}." 4. When evaluating model performance, it is recommended to conduct multiple tests and average the results. ## 7. License This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE). DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that: - DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1. - DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE). - DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE). ## 8. Citation ``` @misc{deepseekai2025deepseekr1incentivizingreasoningcapability, title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning}, author={DeepSeek-AI and Daya Guo and Dejian Yang and Haowei Zhang and Junxiao Song and Ruoyu Zhang and Runxin Xu and Qihao Zhu and Shirong Ma and Peiyi Wang and Xiao Bi and Xiaokang Zhang and Xingkai Yu and Yu Wu and Z. F. Wu and Zhibin Gou and Zhihong Shao and Zhuoshu Li and Ziyi Gao and Aixin Liu and Bing Xue and Bingxuan Wang and Bochao Wu and Bei Feng and Chengda Lu and Chenggang Zhao and Chengqi Deng and Chenyu Zhang and Chong Ruan and Damai Dai and Deli Chen and Dongjie Ji and Erhang Li and Fangyun Lin and Fucong Dai and Fuli Luo and Guangbo Hao and Guanting Chen and Guowei Li and H. Zhang and Han Bao and Hanwei Xu and Haocheng Wang and Honghui Ding and Huajian Xin and Huazuo Gao and Hui Qu and Hui Li and Jianzhong Guo and Jiashi Li and Jiawei Wang and Jingchang Chen and Jingyang Yuan and Junjie Qiu and Junlong Li and J. L. Cai and Jiaqi Ni and Jian Liang and Jin Chen and Kai Dong and Kai Hu and Kaige Gao and Kang Guan and Kexin Huang and Kuai Yu and Lean Wang and Lecong Zhang and Liang Zhao and Litong Wang and Liyue Zhang and Lei Xu and Leyi Xia and Mingchuan Zhang and Minghua Zhang and Minghui Tang and Meng Li and Miaojun Wang and Mingming Li and Ning Tian and Panpan Huang and Peng Zhang and Qiancheng Wang and Qinyu Chen and Qiushi Du and Ruiqi Ge and Ruisong Zhang and Ruizhe Pan and Runji Wang and R. J. Chen and R. L. Jin and Ruyi Chen and Shanghao Lu and Shangyan Zhou and Shanhuang Chen and Shengfeng Ye and Shiyu Wang and Shuiping Yu and Shunfeng Zhou and Shuting Pan and S. S. Li and Shuang Zhou and Shaoqing Wu and Shengfeng Ye and Tao Yun and Tian Pei and Tianyu Sun and T. Wang and Wangding Zeng and Wanjia Zhao and Wen Liu and Wenfeng Liang and Wenjun Gao and Wenqin Yu and Wentao Zhang and W. L. Xiao and Wei An and Xiaodong Liu and Xiaohan Wang and Xiaokang Chen and Xiaotao Nie and Xin Cheng and Xin Liu and Xin Xie and Xingchao Liu and Xinyu Yang and Xinyuan Li and Xuecheng Su and Xuheng Lin and X. Q. Li and Xiangyue Jin and Xiaojin Shen and Xiaosha Chen and Xiaowen Sun and Xiaoxiang Wang and Xinnan Song and Xinyi Zhou and Xianzu Wang and Xinxia Shan and Y. K. Li and Y. Q. Wang and Y. X. Wei and Yang Zhang and Yanhong Xu and Yao Li and Yao Zhao and Yaofeng Sun and Yaohui Wang and Yi Yu and Yichao Zhang and Yifan Shi and Yiliang Xiong and Ying He and Yishi Piao and Yisong Wang and Yixuan Tan and Yiyang Ma and Yiyuan Liu and Yongqiang Guo and Yuan Ou and Yuduan Wang and Yue Gong and Yuheng Zou and Yujia He and Yunfan Xiong and Yuxiang Luo and Yuxiang You and Yuxuan Liu and Yuyang Zhou and Y. X. Zhu and Yanhong Xu and Yanping Huang and Yaohui Li and Yi Zheng and Yuchen Zhu and Yunxian Ma and Ying Tang and Yukun Zha and Yuting Yan and Z. Z. Ren and Zehui Ren and Zhangli Sha and Zhe Fu and Zhean Xu and Zhenda Xie and Zhengyan Zhang and Zhewen Hao and Zhicheng Ma and Zhigang Yan and Zhiyu Wu and Zihui Gu and Zijia Zhu and Zijun Liu and Zilin Li and Ziwei Xie and Ziyang Song and Zizheng Pan and Zhen Huang and Zhipeng Xu and Zhongyu Zhang and Zhen Zhang}, year={2025}, eprint={2501.12948}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.12948}, } ``` ## 9. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
abenius/6879b0a0-01d7-49cd-9961-35a291b178dc
abenius
2025-02-04T03:40:44Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-64k", "base_model:adapter:NousResearch/Yarn-Solar-10b-64k", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T03:10:17Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: 6879b0a0-01d7-49cd-9961-35a291b178dc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9bd7b6044d104eec_train_data.json ds_type: json format: custom path: /workspace/input_data/9bd7b6044d104eec_train_data.json type: field_input: '' field_instruction: input_text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: abenius/6879b0a0-01d7-49cd-9961-35a291b178dc hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/9bd7b6044d104eec_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c wandb_project: Gradients-On-12 wandb_run: your_name wandb_runid: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 6879b0a0-01d7-49cd-9961-35a291b178dc This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0491 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.1695 | 0.6240 | 200 | 0.0491 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/73492de5-0e81-4ecd-ad5c-57092d845191
lesso
2025-02-04T03:40:44Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:unsloth/llama-3-8b-Instruct", "base_model:adapter:unsloth/llama-3-8b-Instruct", "license:llama3", "region:us" ]
null
2025-02-04T03:32:43Z
--- library_name: peft license: llama3 base_model: unsloth/llama-3-8b-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 73492de5-0e81-4ecd-ad5c-57092d845191 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/llama-3-8b-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c2fee9c78f1574ee_train_data.json ds_type: json format: custom path: /workspace/input_data/c2fee9c78f1574ee_train_data.json type: field_input: Description field_instruction: Patient field_output: Doctor format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/73492de5-0e81-4ecd-ad5c-57092d845191 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 150 micro_batch_size: 2 mlflow_experiment_name: /tmp/G.O.D/c2fee9c78f1574ee_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 wandb_project: ab-god15 wandb_run: your_name wandb_runid: 059bd8ea-8d4e-42bf-ae21-2eb2b22407b3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 73492de5-0e81-4ecd-ad5c-57092d845191 This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.0 | 0.0005 | 1 | nan | | 0.0 | 0.0270 | 50 | nan | | 0.0 | 0.0540 | 100 | nan | | 0.0 | 0.0810 | 150 | nan | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/9d7d078d-05eb-4176-b8ab-a1ec0faed009
lesso
2025-02-04T03:38:29Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:25:34Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 9d7d078d-05eb-4176-b8ab-a1ec0faed009 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 5210a65ef5106af6_train_data.json ds_type: json format: custom path: /workspace/input_data/5210a65ef5106af6_train_data.json type: field_instruction: caption field_output: matching_score format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/9d7d078d-05eb-4176-b8ab-a1ec0faed009 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god13/5210a65ef5106af6_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f wandb_project: ab-god13 wandb_run: your_name wandb_runid: 0537fe74-0f1b-40d6-98fb-ec6c0598be9f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9d7d078d-05eb-4176-b8ab-a1ec0faed009 This model is a fine-tuned version of [unsloth/Qwen2-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0982 | 0.0003 | 1 | 2.1100 | | 0.3818 | 0.0168 | 50 | 0.3729 | | 0.374 | 0.0335 | 100 | 0.3632 | | 0.3678 | 0.0503 | 150 | 0.3610 | | 0.3696 | 0.0670 | 200 | 0.3593 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
iamwille/speecht5_finetuned_iamwille_yoruba
iamwille
2025-02-04T03:36:58Z
12
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-02-04T03:11:13Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_iamwille_yoruba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_iamwille_yoruba This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 3.853 | 3.3390 | 100 | 0.4322 | | 3.2793 | 6.6780 | 200 | 0.3927 | | 3.1502 | 10.0 | 300 | 0.3776 | | 3.0543 | 13.3390 | 400 | 0.3716 | | 2.9836 | 16.6780 | 500 | 0.3689 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
Anna567/clf-v18
Anna567
2025-02-04T03:29:57Z
36
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T03:29:35Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
alchemist69/6325903e-b262-44f3-b001-7c7f3b12f0e6
alchemist69
2025-02-04T03:29:12Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Mistral-7b-64k", "base_model:adapter:NousResearch/Yarn-Mistral-7b-64k", "license:apache-2.0", "region:us" ]
null
2025-02-04T02:53:22Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Mistral-7b-64k tags: - axolotl - generated_from_trainer model-index: - name: 6325903e-b262-44f3-b001-7c7f3b12f0e6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Mistral-7b-64k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3870caef86e1df79_train_data.json ds_type: json format: custom path: /workspace/input_data/3870caef86e1df79_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/6325903e-b262-44f3-b001-7c7f3b12f0e6 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/3870caef86e1df79_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 378b567c-e5be-4fe8-af18-7c29b71aeeb6 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 378b567c-e5be-4fe8-af18-7c29b71aeeb6 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6325903e-b262-44f3-b001-7c7f3b12f0e6 This model is a fine-tuned version of [NousResearch/Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.8773 | 0.0085 | 1 | 2.1867 | | 2.5449 | 0.4255 | 50 | 0.8672 | | 3.0493 | 0.8511 | 100 | 0.7109 | | 2.3406 | 1.2766 | 150 | 0.6188 | | 1.284 | 1.7021 | 200 | 0.5870 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/6b2574cf-3f45-4323-a7d1-8d1a53a5ec5c
mrferr3t
2025-02-04T03:28:58Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:Qwen/Qwen2.5-1.5B", "base_model:adapter:Qwen/Qwen2.5-1.5B", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:21:41Z
--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 6b2574cf-3f45-4323-a7d1-8d1a53a5ec5c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: Qwen/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 7983b1695b7e7fb0_train_data.json ds_type: json format: custom path: /workspace/input_data/7983b1695b7e7fb0_train_data.json type: field_input: level field_instruction: prompt field_output: responses format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/6b2574cf-3f45-4323-a7d1-8d1a53a5ec5c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/7983b1695b7e7fb0_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 2d1a2331-2d93-4014-9474-321c82e2f1be wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 2d1a2331-2d93-4014-9474-321c82e2f1be warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 6b2574cf-3f45-4323-a7d1-8d1a53a5ec5c This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0577 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 132 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 1.3250 | | No log | 0.0470 | 40 | 1.2158 | | No log | 0.0941 | 80 | 1.1468 | | 1.1565 | 0.1411 | 120 | 1.1319 | | 1.1565 | 0.1881 | 160 | 1.1224 | | 1.0711 | 0.2352 | 200 | 1.1112 | | 1.0711 | 0.2822 | 240 | 1.1066 | | 1.0711 | 0.3292 | 280 | 1.1014 | | 1.0593 | 0.3762 | 320 | 1.0947 | | 1.0593 | 0.4233 | 360 | 1.0879 | | 1.0541 | 0.4703 | 400 | 1.0853 | | 1.0541 | 0.5173 | 440 | 1.0796 | | 1.0541 | 0.5644 | 480 | 1.0763 | | 1.014 | 0.6114 | 520 | 1.0707 | | 1.014 | 0.6584 | 560 | 1.0671 | | 1.0009 | 0.7055 | 600 | 1.0663 | | 1.0009 | 0.7525 | 640 | 1.0638 | | 1.0009 | 0.7995 | 680 | 1.0589 | | 0.9937 | 0.8466 | 720 | 1.0576 | | 0.9937 | 0.8936 | 760 | 1.0554 | | 1.0105 | 0.9406 | 800 | 1.0501 | | 1.0105 | 0.9877 | 840 | 1.0510 | | 1.0105 | 1.0347 | 880 | 1.0538 | | 0.9426 | 1.0817 | 920 | 1.0577 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
rsh345/llama3-8b-finance-elyza-linear-a_w01-b_w09
rsh345
2025-02-04T03:25:04Z
20
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:elyza/Llama-3-ELYZA-JP-8B", "base_model:merge:elyza/Llama-3-ELYZA-JP-8B", "base_model:instruction-pretrain/finance-Llama3-8B", "base_model:merge:instruction-pretrain/finance-Llama3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T03:10:28Z
--- base_model: - elyza/Llama-3-ELYZA-JP-8B - instruction-pretrain/finance-Llama3-8B library_name: transformers tags: - mergekit - merge --- # llama3-8b-finance-elyza-linear-a_w01-b_w09 This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) * [instruction-pretrain/finance-Llama3-8B](https://huggingface.co/instruction-pretrain/finance-Llama3-8B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: elyza/Llama-3-ELYZA-JP-8B parameters: weight: 0.1 - model: instruction-pretrain/finance-Llama3-8B parameters: weight: 0.9 merge_method: linear dtype: float16 ```
Eric-Lessa/t5_chatbot_doctor
Eric-Lessa
2025-02-04T03:24:47Z
55
0
null
[ "safetensors", "t5", "license:apache-2.0", "region:us" ]
null
2025-02-02T23:36:58Z
--- license: apache-2.0 ---