modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
lesso/aea67b18-5ac1-4d8c-b41b-6914dd35cd0e
lesso
2025-02-04T03:23:33Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Solar-10b-64k", "base_model:adapter:NousResearch/Yarn-Solar-10b-64k", "license:apache-2.0", "region:us" ]
null
2025-02-04T03:18:24Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Yarn-Solar-10b-64k tags: - axolotl - generated_from_trainer model-index: - name: aea67b18-5ac1-4d8c-b41b-6914dd35cd0e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Solar-10b-64k bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 9bd7b6044d104eec_train_data.json ds_type: json format: custom path: /workspace/input_data/9bd7b6044d104eec_train_data.json type: field_input: '' field_instruction: input_text field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/aea67b18-5ac1-4d8c-b41b-6914dd35cd0e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.000101 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/god06/9bd7b6044d104eec_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c wandb_project: ab-god06 wandb_run: your_name wandb_runid: e5a6e46b-b77f-4d50-a625-e1eb21e1df7c warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aea67b18-5ac1-4d8c-b41b-6914dd35cd0e This model is a fine-tuned version of [NousResearch/Yarn-Solar-10b-64k](https://huggingface.co/NousResearch/Yarn-Solar-10b-64k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000101 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 31 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.1135 | 0.0976 | 1 | 2.1915 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nblinh/5c964eb4-436b-4018-b81a-1cce46ed0d6a
nblinh
2025-02-04T03:21:11Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:47:01Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 5c964eb4-436b-4018-b81a-1cce46ed0d6a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 015a4bbf3a6316ca_train_data.json ds_type: json format: custom path: /workspace/input_data/015a4bbf3a6316ca_train_data.json type: field_instruction: user field_output: chip2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nblinh/5c964eb4-436b-4018-b81a-1cce46ed0d6a hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/015a4bbf3a6316ca_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f749570f-dd98-4c70-b97b-c49b1248c0d4 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f749570f-dd98-4c70-b97b-c49b1248c0d4 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 5c964eb4-436b-4018-b81a-1cce46ed0d6a This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5019 | 0.0080 | 200 | 1.5983 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
arcwarden46/e0a572e9-7ab6-49d0-969b-9d8320a49c38
arcwarden46
2025-02-04T03:20:32Z
6
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/OpenHermes-2.5-Mistral-7B", "base_model:adapter:unsloth/OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:53:59Z
--- library_name: peft license: apache-2.0 base_model: unsloth/OpenHermes-2.5-Mistral-7B tags: - axolotl - generated_from_trainer model-index: - name: e0a572e9-7ab6-49d0-969b-9d8320a49c38 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/OpenHermes-2.5-Mistral-7B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9c4378b501f71de8_train_data.json ds_type: json format: custom path: /workspace/input_data/9c4378b501f71de8_train_data.json type: field_input: prompt field_instruction: reason1 field_output: reason2 format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: arcwarden46/e0a572e9-7ab6-49d0-969b-9d8320a49c38 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/9c4378b501f71de8_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 432ed5ae-dbea-46a8-8795-45618fe0369a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 432ed5ae-dbea-46a8-8795-45618fe0369a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e0a572e9-7ab6-49d0-969b-9d8320a49c38 This model is a fine-tuned version of [unsloth/OpenHermes-2.5-Mistral-7B](https://huggingface.co/unsloth/OpenHermes-2.5-Mistral-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6418 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.7904 | 0.0002 | 1 | 1.5057 | | 2.8028 | 0.0088 | 50 | 0.8330 | | 2.416 | 0.0177 | 100 | 0.7194 | | 2.454 | 0.0265 | 150 | 0.6717 | | 2.6065 | 0.0354 | 200 | 0.6418 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/777027f2-b2cd-47ad-ae63-9199147afdc9
lesso
2025-02-04T03:15:32Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-02-04T02:47:07Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 777027f2-b2cd-47ad-ae63-9199147afdc9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B-Instruct bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 015a4bbf3a6316ca_train_data.json ds_type: json format: custom path: /workspace/input_data/015a4bbf3a6316ca_train_data.json type: field_instruction: user field_output: chip2 format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/777027f2-b2cd-47ad-ae63-9199147afdc9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/015a4bbf3a6316ca_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f749570f-dd98-4c70-b97b-c49b1248c0d4 wandb_project: ab-god01 wandb_run: your_name wandb_runid: f749570f-dd98-4c70-b97b-c49b1248c0d4 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 777027f2-b2cd-47ad-ae63-9199147afdc9 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.1778 | 0.0000 | 1 | 2.0653 | | 1.1488 | 0.0020 | 50 | 1.7117 | | 1.0782 | 0.0040 | 100 | 1.6105 | | 1.2952 | 0.0060 | 150 | 1.5184 | | 1.3547 | 0.0080 | 200 | 1.4753 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
gchen019/textual_inversion_dog_weights
gchen019
2025-02-04T03:08:38Z
34
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "diffusers-training", "base_model:stable-diffusion-v1-5/stable-diffusion-v1-5", "base_model:adapter:stable-diffusion-v1-5/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-02-04T02:25:35Z
--- base_model: sd-legacy/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion - diffusers-training --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # Textual inversion text2image fine-tuning - gchen019/textual_inversion_dog_weights These are textual inversion adaption weights for sd-legacy/stable-diffusion-v1-5. You can find some example images in the following. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
nhung03/d44a8c95-524a-4a44-b4d7-7642b7e36835
nhung03
2025-02-04T03:05:41Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-Math-1.5B", "base_model:adapter:unsloth/Qwen2.5-Math-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:39:51Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-Math-1.5B tags: - axolotl - generated_from_trainer model-index: - name: d44a8c95-524a-4a44-b4d7-7642b7e36835 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-Math-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cf971d07e3ff665f_train_data.json ds_type: json format: custom path: /workspace/input_data/cf971d07e3ff665f_train_data.json type: field_input: labels field_instruction: name field_output: text format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhung03/d44a8c95-524a-4a44-b4d7-7642b7e36835 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/cf971d07e3ff665f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: fef0eb04-6ba6-4379-a2e7-a7fdc70a6b88 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: fef0eb04-6ba6-4379-a2e7-a7fdc70a6b88 warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # d44a8c95-524a-4a44-b4d7-7642b7e36835 This model is a fine-tuned version of [unsloth/Qwen2.5-Math-1.5B](https://huggingface.co/unsloth/Qwen2.5-Math-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.8419 | 0.0113 | 200 | 3.8241 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
romainnn/91992658-b53a-4ec5-93c4-6d37fd5f0dc3
romainnn
2025-02-04T03:04:18Z
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-04T01:51:24Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 91992658-b53a-4ec5-93c4-6d37fd5f0dc3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b177e99f9afc8918_train_data.json ds_type: json format: custom path: /workspace/input_data/b177e99f9afc8918_train_data.json type: field_input: '' field_instruction: title field_output: cleaned_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: romainnn/91992658-b53a-4ec5-93c4-6d37fd5f0dc3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 1083 micro_batch_size: 4 mlflow_experiment_name: /tmp/b177e99f9afc8918_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6224a0bd-20f5-44b3-8193-1192471d4f6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6224a0bd-20f5-44b3-8193-1192471d4f6a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 91992658-b53a-4ec5-93c4-6d37fd5f0dc3 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 202 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 74.2102 | 0.0099 | 1 | 2.0957 | | 38.0148 | 0.4960 | 50 | 2.0554 | | 35.4166 | 0.9919 | 100 | 2.0161 | | 35.328 | 1.4941 | 150 | 2.0022 | | 33.5952 | 1.9901 | 200 | 1.9988 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF
Triangle104
2025-02-04T03:03:08Z
24
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:SubtleOne/Qwen2.5-32b-Erudite-Writer", "base_model:quantized:SubtleOne/Qwen2.5-32b-Erudite-Writer", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T02:54:56Z
--- base_model: SubtleOne/Qwen2.5-32b-Erudite-Writer library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF This model was converted to GGUF format from [`SubtleOne/Qwen2.5-32b-Erudite-Writer`](https://huggingface.co/SubtleOne/Qwen2.5-32b-Erudite-Writer) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SubtleOne/Qwen2.5-32b-Erudite-Writer) for more details on the model. --- This model is a merge using Rombos's top-ranked 32b model, based on Qwen 2.5, and merging three creative writing finetunes. The creative content is a serious upgrade over the base it started with and has a much more literary style than the previous Writer model. I won't call it better or worse, merely a very distinct flavor and style. I quite like it, and enjoin you to try it as well. Enjoy! Merge Method - This model was merged using the DELLA merge method using rombodawg/Rombos-LLM-V2.5-Qwen-32b as a base. Models Merged The following models were included in the merge: nbeerbower/Qwen2.5-Gutenberg-Doppel-32B ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 Configuration - The following YAML configuration was used to produce this model: base_model: rombodawg/Rombos-LLM-V2.5-Qwen-32b parameters: int8_mask: true rescale: false normalize: true lambda: 1.04 epsilon: 0.05 dtype: bfloat16 tokenizer_source: union merge_method: della models: - model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 parameters: weight: [0.40] density: [0.53] - model: nbeerbower/Qwen2.5-Gutenberg-Doppel-32B parameters: weight: [0.30] density: [0.53] - model: ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 parameters: weight: [0.40] density: [0.53] --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q5_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q5_k_m.gguf -c 2048 ```
lesso/c07d0aa3-8113-4ae9-ae58-f4b336b5da81
lesso
2025-02-04T03:00:43Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-02-04T00:31:05Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: c07d0aa3-8113-4ae9-ae58-f4b336b5da81 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 711eb262493f89e0_train_data.json ds_type: json format: custom path: /workspace/input_data/711eb262493f89e0_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/c07d0aa3-8113-4ae9-ae58-f4b336b5da81 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001017 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god17/711eb262493f89e0_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 wandb_project: ab-god17 wandb_run: your_name wandb_runid: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c07d0aa3-8113-4ae9-ae58-f4b336b5da81 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2644 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001017 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.4695 | 0.0000 | 1 | 0.5331 | | 0.351 | 0.0011 | 50 | 0.2976 | | 0.309 | 0.0021 | 100 | 0.2833 | | 0.1739 | 0.0032 | 150 | 0.2705 | | 0.2364 | 0.0043 | 200 | 0.2644 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CultriX/Enhanced-TIES-Base-v1
CultriX
2025-02-04T03:00:05Z
68
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "base_model:CultriX/Qwen2.5-14B-Hyperionv4", "base_model:merge:CultriX/Qwen2.5-14B-Hyperionv4", "base_model:arcee-ai/Virtuoso-Small-v2", "base_model:merge:arcee-ai/Virtuoso-Small-v2", "base_model:sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3", "base_model:merge:sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3", "base_model:sometimesanotion/Qwenvergence-14B-v12-Prose-DS", "base_model:merge:sometimesanotion/Qwenvergence-14B-v12-Prose-DS", "base_model:sthenno-com/miscii-14b-1225", "base_model:merge:sthenno-com/miscii-14b-1225", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T02:51:51Z
--- base_model: - arcee-ai/Virtuoso-Small-v2 - sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3 - CultriX/Qwen2.5-14B-Hyperionv4 - sometimesanotion/Qwenvergence-14B-v12-Prose-DS - sthenno-com/miscii-14b-1225 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE TIES](https://arxiv.org/abs/2311.03099) merge method using [sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3](https://huggingface.co/sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3) as a base. ### Models Merged The following models were included in the merge: * [arcee-ai/Virtuoso-Small-v2](https://huggingface.co/arcee-ai/Virtuoso-Small-v2) * [CultriX/Qwen2.5-14B-Hyperionv4](https://huggingface.co/CultriX/Qwen2.5-14B-Hyperionv4) * [sometimesanotion/Qwenvergence-14B-v12-Prose-DS](https://huggingface.co/sometimesanotion/Qwenvergence-14B-v12-Prose-DS) * [sthenno-com/miscii-14b-1225](https://huggingface.co/sthenno-com/miscii-14b-1225) ### Configuration The following YAML configuration was used to produce this model: ```yaml name: Enhanced-TIES-Base-v1 # Defining the TIES-merged base model used in the SLERP merge above. merge_method: dare_ties base_model: sometimesanotion/Base-Chocolatine-2-14B-Instruct-v2.0b3 # Solid base model tokenizer_source: base # Base tokenizer dtype: bfloat16 # Efficient dtype out_dtype: bfloat16 # Output in bfloat16 parameters: normalize: true # Normalize weights for TIES int8_mask: true # Int8 mask for TIES rescale: false # No rescaling for TIES density: 0.75 # Density for TIES merge models: # Models for the TIES base merge (same models and densities as Enhanced-LayeredSlerp-v1) - model: arcee-ai/Virtuoso-Small-v2 # IFEval specialist - high density parameters: weight: 1.0 density: 0.9 - model: sthenno-com/miscii-14b-1225 # BBH and Reasoning - medium density parameters: weight: 1.0 density: 0.8 - model: sometimesanotion/Qwenvergence-14B-v12-Prose-DS # MATH and general Qwen - medium density parameters: weight: 1.0 density: 0.8 - model: CultriX/Qwen2.5-14B-Hyperionv4 # General improvement - lower density parameters: weight: 1.0 density: 0.6 # Commentary: # ============================================================================= # SuperMerge-LayeredTIES-v1 Commentary: # # This configuration combines the strengths of both Enhanced-LayeredSlerp-v1 and SuperMerge-Enhanced-v1. # It leverages the robust foundation of a TIES-merged base model (Enhanced-TIES-Base-v1) and applies # the layer-wise module approach and fine-grained weight control from SuperMerge-Enhanced-v1 in a SLERP merge. # # Key Features: # - TIES-Merged Base Foundation: Uses 'Enhanced-TIES-Base-v1' as the base model for the SLERP merge. # This TIES base provides a selectively merged and potentially more efficient starting point, incorporating # strengths from multiple models (Virtuoso, Phi-4, Qwenvergence, DeepSeek) with density control. # # - Layer-wise Module Integration in SLERP: Maintains the module-based slice structure from SuperMerge-Enhanced-v1. # The SLERP merge now combines the TIES-merged base with specialized modules for Reasoning, IFEval, and MATH/Knowledge # at different layer ranges, using explicit weights for fine-grained control. # # - Benchmark-Driven Iterative Weight Tuning: The configuration is designed to be optimized through a # benchmark-driven iterative weight tuning process (as described in the refined SuperMerge-Enhanced-v1 approach). # The initial weights provided are starting points and need to be systematically tuned based on benchmark results. # # Tuning Process (Same as Refined SuperMerge-Enhanced-v1): # 1. Initial Benchmarking: Run a full benchmark suite. # 2. Performance Analysis: Examine per-benchmark scores and compare to source models. # 3. Targeted Weight Adjustments: Adjust layer weights based on performance analysis (e.g., increase IFEval module weight # in early layers if IFEval is weak). # 4. Iterate: Repeat steps 1-3. Make small, incremental adjustments in each iteration. # # Rationale: # - By using a TIES-merged base, we aim to create a more robust and potentially efficient foundation for the SLERP merge. # - The layer-wise module approach and fine-grained weights in SLERP still allow for precise control over the blending # of specialized capabilities at different network depths, building upon the solid TIES base. # - The emphasis on a benchmark-driven iterative weight tuning process remains crucial for achieving optimal performance. # # Next Steps: # - Implement this configuration using MergeKit. # - Run initial benchmarks to establish a baseline. # - Begin the iterative benchmark-driven weight tuning process to optimize performance. # ============================================================================= ```
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task7_organization
MayBashendy
2025-02-04T02:57:41Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T02:51:48Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6785 - Qwk: 0.2883 - Mse: 0.6785 - Rmse: 0.8237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0185 | 2 | 2.6272 | -0.0729 | 2.6272 | 1.6209 | | No log | 0.0370 | 4 | 1.2463 | 0.0983 | 1.2463 | 1.1164 | | No log | 0.0556 | 6 | 0.7915 | 0.0441 | 0.7915 | 0.8897 | | No log | 0.0741 | 8 | 0.7705 | 0.1368 | 0.7705 | 0.8778 | | No log | 0.0926 | 10 | 0.6891 | 0.2955 | 0.6891 | 0.8301 | | No log | 0.1111 | 12 | 0.6805 | 0.3141 | 0.6805 | 0.8249 | | No log | 0.1296 | 14 | 0.7554 | 0.2223 | 0.7554 | 0.8691 | | No log | 0.1481 | 16 | 0.8799 | 0.2259 | 0.8799 | 0.9380 | | No log | 0.1667 | 18 | 0.7391 | 0.3590 | 0.7391 | 0.8597 | | No log | 0.1852 | 20 | 0.6912 | 0.3348 | 0.6912 | 0.8314 | | No log | 0.2037 | 22 | 0.8114 | 0.2772 | 0.8114 | 0.9008 | | No log | 0.2222 | 24 | 0.7259 | 0.2813 | 0.7259 | 0.8520 | | No log | 0.2407 | 26 | 0.6871 | 0.3050 | 0.6871 | 0.8289 | | No log | 0.2593 | 28 | 1.3581 | 0.2590 | 1.3581 | 1.1654 | | No log | 0.2778 | 30 | 1.7250 | 0.1895 | 1.7250 | 1.3134 | | No log | 0.2963 | 32 | 1.2685 | 0.1895 | 1.2685 | 1.1263 | | No log | 0.3148 | 34 | 0.7739 | 0.3606 | 0.7739 | 0.8797 | | No log | 0.3333 | 36 | 0.6666 | 0.1983 | 0.6666 | 0.8165 | | No log | 0.3519 | 38 | 0.6695 | 0.2046 | 0.6695 | 0.8182 | | No log | 0.3704 | 40 | 0.7431 | 0.3564 | 0.7431 | 0.8620 | | No log | 0.3889 | 42 | 0.9422 | 0.3579 | 0.9422 | 0.9707 | | No log | 0.4074 | 44 | 1.0279 | 0.3516 | 1.0279 | 1.0138 | | No log | 0.4259 | 46 | 0.9828 | 0.3516 | 0.9828 | 0.9914 | | No log | 0.4444 | 48 | 0.8631 | 0.3777 | 0.8631 | 0.9290 | | No log | 0.4630 | 50 | 0.7154 | 0.3746 | 0.7154 | 0.8458 | | No log | 0.4815 | 52 | 0.6521 | 0.4219 | 0.6521 | 0.8075 | | No log | 0.5 | 54 | 0.6224 | 0.3092 | 0.6224 | 0.7889 | | No log | 0.5185 | 56 | 0.6890 | 0.3819 | 0.6890 | 0.8301 | | No log | 0.5370 | 58 | 1.0277 | 0.3166 | 1.0277 | 1.0138 | | No log | 0.5556 | 60 | 1.2795 | 0.2772 | 1.2795 | 1.1312 | | No log | 0.5741 | 62 | 1.2126 | 0.2909 | 1.2126 | 1.1012 | | No log | 0.5926 | 64 | 0.8438 | 0.4255 | 0.8438 | 0.9186 | | No log | 0.6111 | 66 | 0.5983 | 0.4463 | 0.5983 | 0.7735 | | No log | 0.6296 | 68 | 0.6445 | 0.4674 | 0.6445 | 0.8028 | | No log | 0.6481 | 70 | 0.6404 | 0.4737 | 0.6404 | 0.8003 | | No log | 0.6667 | 72 | 0.6235 | 0.4419 | 0.6235 | 0.7897 | | No log | 0.6852 | 74 | 0.9033 | 0.4096 | 0.9033 | 0.9504 | | No log | 0.7037 | 76 | 1.0313 | 0.2910 | 1.0313 | 1.0155 | | No log | 0.7222 | 78 | 0.8396 | 0.4568 | 0.8396 | 0.9163 | | No log | 0.7407 | 80 | 0.6278 | 0.3945 | 0.6278 | 0.7923 | | No log | 0.7593 | 82 | 0.6544 | 0.4345 | 0.6544 | 0.8090 | | No log | 0.7778 | 84 | 0.6348 | 0.4322 | 0.6348 | 0.7968 | | No log | 0.7963 | 86 | 0.6784 | 0.2995 | 0.6784 | 0.8236 | | No log | 0.8148 | 88 | 0.9486 | 0.4092 | 0.9486 | 0.9740 | | No log | 0.8333 | 90 | 1.1878 | 0.2206 | 1.1878 | 1.0899 | | No log | 0.8519 | 92 | 1.1619 | 0.2191 | 1.1619 | 1.0779 | | No log | 0.8704 | 94 | 0.9051 | 0.4347 | 0.9051 | 0.9514 | | No log | 0.8889 | 96 | 0.7585 | 0.3494 | 0.7585 | 0.8709 | | No log | 0.9074 | 98 | 0.6845 | 0.3196 | 0.6845 | 0.8273 | | No log | 0.9259 | 100 | 0.7034 | 0.2467 | 0.7034 | 0.8387 | | No log | 0.9444 | 102 | 0.7146 | 0.3302 | 0.7146 | 0.8453 | | No log | 0.9630 | 104 | 0.8031 | 0.3918 | 0.8031 | 0.8962 | | No log | 0.9815 | 106 | 0.9954 | 0.3849 | 0.9954 | 0.9977 | | No log | 1.0 | 108 | 1.0793 | 0.3269 | 1.0793 | 1.0389 | | No log | 1.0185 | 110 | 1.0460 | 0.3697 | 1.0460 | 1.0227 | | No log | 1.0370 | 112 | 0.8320 | 0.3560 | 0.8320 | 0.9121 | | No log | 1.0556 | 114 | 0.7203 | 0.3069 | 0.7203 | 0.8487 | | No log | 1.0741 | 116 | 0.6927 | 0.3060 | 0.6927 | 0.8323 | | No log | 1.0926 | 118 | 0.7416 | 0.2518 | 0.7416 | 0.8612 | | No log | 1.1111 | 120 | 0.8737 | 0.3892 | 0.8737 | 0.9347 | | No log | 1.1296 | 122 | 1.1036 | 0.3088 | 1.1036 | 1.0505 | | No log | 1.1481 | 124 | 1.0979 | 0.3404 | 1.0979 | 1.0478 | | No log | 1.1667 | 126 | 0.9128 | 0.3709 | 0.9128 | 0.9554 | | No log | 1.1852 | 128 | 0.8296 | 0.2843 | 0.8296 | 0.9108 | | No log | 1.2037 | 130 | 0.7985 | 0.2904 | 0.7985 | 0.8936 | | No log | 1.2222 | 132 | 0.8440 | 0.4080 | 0.8440 | 0.9187 | | No log | 1.2407 | 134 | 0.9444 | 0.3676 | 0.9444 | 0.9718 | | No log | 1.2593 | 136 | 1.0034 | 0.3337 | 1.0034 | 1.0017 | | No log | 1.2778 | 138 | 0.8877 | 0.4092 | 0.8877 | 0.9422 | | No log | 1.2963 | 140 | 0.7385 | 0.3637 | 0.7385 | 0.8593 | | No log | 1.3148 | 142 | 0.6943 | 0.2498 | 0.6943 | 0.8333 | | No log | 1.3333 | 144 | 0.6994 | 0.2471 | 0.6994 | 0.8363 | | No log | 1.3519 | 146 | 0.7091 | 0.2784 | 0.7091 | 0.8421 | | No log | 1.3704 | 148 | 0.7587 | 0.3234 | 0.7587 | 0.8710 | | No log | 1.3889 | 150 | 0.8943 | 0.3538 | 0.8943 | 0.9457 | | No log | 1.4074 | 152 | 0.9652 | 0.3029 | 0.9652 | 0.9824 | | No log | 1.4259 | 154 | 0.8352 | 0.4404 | 0.8352 | 0.9139 | | No log | 1.4444 | 156 | 0.6769 | 0.2558 | 0.6769 | 0.8228 | | No log | 1.4630 | 158 | 0.6655 | 0.3141 | 0.6655 | 0.8158 | | No log | 1.4815 | 160 | 0.6565 | 0.3426 | 0.6565 | 0.8102 | | No log | 1.5 | 162 | 0.7265 | 0.3817 | 0.7265 | 0.8523 | | No log | 1.5185 | 164 | 0.8765 | 0.3499 | 0.8765 | 0.9362 | | No log | 1.5370 | 166 | 1.0127 | 0.2898 | 1.0127 | 1.0064 | | No log | 1.5556 | 168 | 0.9417 | 0.3052 | 0.9417 | 0.9704 | | No log | 1.5741 | 170 | 0.7469 | 0.3562 | 0.7469 | 0.8642 | | No log | 1.5926 | 172 | 0.6349 | 0.3763 | 0.6349 | 0.7968 | | No log | 1.6111 | 174 | 0.6206 | 0.2877 | 0.6206 | 0.7878 | | No log | 1.6296 | 176 | 0.6285 | 0.3399 | 0.6285 | 0.7928 | | No log | 1.6481 | 178 | 0.6664 | 0.3099 | 0.6664 | 0.8163 | | No log | 1.6667 | 180 | 0.7391 | 0.3746 | 0.7391 | 0.8597 | | No log | 1.6852 | 182 | 0.7609 | 0.3746 | 0.7609 | 0.8723 | | No log | 1.7037 | 184 | 0.7273 | 0.3372 | 0.7273 | 0.8528 | | No log | 1.7222 | 186 | 0.6796 | 0.2227 | 0.6796 | 0.8244 | | No log | 1.7407 | 188 | 0.7217 | 0.2383 | 0.7217 | 0.8495 | | No log | 1.7593 | 190 | 0.8368 | 0.3456 | 0.8368 | 0.9148 | | No log | 1.7778 | 192 | 0.8586 | 0.3688 | 0.8586 | 0.9266 | | No log | 1.7963 | 194 | 0.7750 | 0.2871 | 0.7750 | 0.8803 | | No log | 1.8148 | 196 | 0.7648 | 0.2871 | 0.7648 | 0.8746 | | No log | 1.8333 | 198 | 0.7913 | 0.3095 | 0.7913 | 0.8896 | | No log | 1.8519 | 200 | 0.7951 | 0.2926 | 0.7951 | 0.8917 | | No log | 1.8704 | 202 | 0.8246 | 0.2471 | 0.8246 | 0.9081 | | No log | 1.8889 | 204 | 0.8560 | 0.2364 | 0.8560 | 0.9252 | | No log | 1.9074 | 206 | 0.9938 | 0.3052 | 0.9938 | 0.9969 | | No log | 1.9259 | 208 | 1.1704 | 0.2643 | 1.1704 | 1.0818 | | No log | 1.9444 | 210 | 1.1412 | 0.2501 | 1.1412 | 1.0683 | | No log | 1.9630 | 212 | 0.9513 | 0.3601 | 0.9513 | 0.9754 | | No log | 1.9815 | 214 | 0.8096 | 0.2904 | 0.8096 | 0.8998 | | No log | 2.0 | 216 | 0.8180 | 0.2904 | 0.8180 | 0.9044 | | No log | 2.0185 | 218 | 0.9502 | 0.3439 | 0.9502 | 0.9748 | | No log | 2.0370 | 220 | 0.9671 | 0.3381 | 0.9671 | 0.9834 | | No log | 2.0556 | 222 | 0.9231 | 0.3439 | 0.9231 | 0.9608 | | No log | 2.0741 | 224 | 0.8631 | 0.3499 | 0.8631 | 0.9290 | | No log | 2.0926 | 226 | 0.7739 | 0.4239 | 0.7739 | 0.8797 | | No log | 2.1111 | 228 | 0.7480 | 0.2749 | 0.7480 | 0.8648 | | No log | 2.1296 | 230 | 0.7852 | 0.4114 | 0.7852 | 0.8861 | | No log | 2.1481 | 232 | 0.8783 | 0.3560 | 0.8783 | 0.9372 | | No log | 2.1667 | 234 | 0.8716 | 0.3678 | 0.8716 | 0.9336 | | No log | 2.1852 | 236 | 0.8379 | 0.4366 | 0.8379 | 0.9154 | | No log | 2.2037 | 238 | 0.7586 | 0.3700 | 0.7586 | 0.8710 | | No log | 2.2222 | 240 | 0.7216 | 0.3340 | 0.7216 | 0.8495 | | No log | 2.2407 | 242 | 0.7426 | 0.3569 | 0.7426 | 0.8617 | | No log | 2.2593 | 244 | 0.8270 | 0.4153 | 0.8270 | 0.9094 | | No log | 2.2778 | 246 | 0.9176 | 0.3381 | 0.9176 | 0.9579 | | No log | 2.2963 | 248 | 0.8500 | 0.3799 | 0.8500 | 0.9219 | | No log | 2.3148 | 250 | 0.6978 | 0.3544 | 0.6978 | 0.8354 | | No log | 2.3333 | 252 | 0.6435 | 0.3144 | 0.6435 | 0.8022 | | No log | 2.3519 | 254 | 0.6297 | 0.3625 | 0.6297 | 0.7935 | | No log | 2.3704 | 256 | 0.6371 | 0.3840 | 0.6371 | 0.7982 | | No log | 2.3889 | 258 | 0.6757 | 0.3942 | 0.6757 | 0.8220 | | No log | 2.4074 | 260 | 0.6659 | 0.3942 | 0.6659 | 0.8160 | | No log | 2.4259 | 262 | 0.6379 | 0.3976 | 0.6379 | 0.7987 | | No log | 2.4444 | 264 | 0.6425 | 0.3197 | 0.6425 | 0.8016 | | No log | 2.4630 | 266 | 0.6550 | 0.2537 | 0.6550 | 0.8093 | | No log | 2.4815 | 268 | 0.6578 | 0.2787 | 0.6578 | 0.8110 | | No log | 2.5 | 270 | 0.7050 | 0.3195 | 0.7050 | 0.8396 | | No log | 2.5185 | 272 | 0.7764 | 0.4272 | 0.7764 | 0.8811 | | No log | 2.5370 | 274 | 0.7354 | 0.4745 | 0.7354 | 0.8576 | | No log | 2.5556 | 276 | 0.6619 | 0.3656 | 0.6619 | 0.8136 | | No log | 2.5741 | 278 | 0.6357 | 0.4207 | 0.6357 | 0.7973 | | No log | 2.5926 | 280 | 0.6774 | 0.4404 | 0.6774 | 0.8231 | | No log | 2.6111 | 282 | 0.7805 | 0.4721 | 0.7805 | 0.8835 | | No log | 2.6296 | 284 | 0.8090 | 0.4705 | 0.8090 | 0.8995 | | No log | 2.6481 | 286 | 0.6898 | 0.4144 | 0.6898 | 0.8305 | | No log | 2.6667 | 288 | 0.5588 | 0.4243 | 0.5588 | 0.7475 | | No log | 2.6852 | 290 | 0.5194 | 0.4147 | 0.5194 | 0.7207 | | No log | 2.7037 | 292 | 0.5186 | 0.4722 | 0.5186 | 0.7201 | | No log | 2.7222 | 294 | 0.5234 | 0.4722 | 0.5234 | 0.7235 | | No log | 2.7407 | 296 | 0.5440 | 0.4819 | 0.5440 | 0.7376 | | No log | 2.7593 | 298 | 0.5435 | 0.4642 | 0.5435 | 0.7373 | | No log | 2.7778 | 300 | 0.5318 | 0.3702 | 0.5318 | 0.7293 | | No log | 2.7963 | 302 | 0.5482 | 0.4384 | 0.5482 | 0.7404 | | No log | 2.8148 | 304 | 0.5548 | 0.3947 | 0.5548 | 0.7448 | | No log | 2.8333 | 306 | 0.5691 | 0.3494 | 0.5691 | 0.7544 | | No log | 2.8519 | 308 | 0.6289 | 0.4035 | 0.6289 | 0.7931 | | No log | 2.8704 | 310 | 0.6465 | 0.4035 | 0.6465 | 0.8041 | | No log | 2.8889 | 312 | 0.6420 | 0.3755 | 0.6420 | 0.8013 | | No log | 2.9074 | 314 | 0.6189 | 0.3092 | 0.6189 | 0.7867 | | No log | 2.9259 | 316 | 0.6213 | 0.3092 | 0.6213 | 0.7883 | | No log | 2.9444 | 318 | 0.6413 | 0.3092 | 0.6413 | 0.8008 | | No log | 2.9630 | 320 | 0.6483 | 0.3092 | 0.6483 | 0.8052 | | No log | 2.9815 | 322 | 0.6706 | 0.3387 | 0.6706 | 0.8189 | | No log | 3.0 | 324 | 0.7129 | 0.2883 | 0.7129 | 0.8444 | | No log | 3.0185 | 326 | 0.7934 | 0.4224 | 0.7934 | 0.8907 | | No log | 3.0370 | 328 | 0.8775 | 0.3473 | 0.8775 | 0.9368 | | No log | 3.0556 | 330 | 0.8439 | 0.4624 | 0.8439 | 0.9187 | | No log | 3.0741 | 332 | 0.7766 | 0.3099 | 0.7766 | 0.8813 | | No log | 3.0926 | 334 | 0.6686 | 0.2981 | 0.6686 | 0.8177 | | No log | 3.1111 | 336 | 0.6458 | 0.3123 | 0.6458 | 0.8036 | | No log | 3.1296 | 338 | 0.6396 | 0.3166 | 0.6396 | 0.7998 | | No log | 3.1481 | 340 | 0.6458 | 0.3092 | 0.6458 | 0.8036 | | No log | 3.1667 | 342 | 0.6672 | 0.3312 | 0.6672 | 0.8168 | | No log | 3.1852 | 344 | 0.7297 | 0.3099 | 0.7297 | 0.8542 | | No log | 3.2037 | 346 | 0.7574 | 0.4197 | 0.7574 | 0.8703 | | No log | 3.2222 | 348 | 0.6859 | 0.3261 | 0.6859 | 0.8282 | | No log | 3.2407 | 350 | 0.6214 | 0.3312 | 0.6214 | 0.7883 | | No log | 3.2593 | 352 | 0.5847 | 0.3166 | 0.5847 | 0.7646 | | No log | 3.2778 | 354 | 0.5664 | 0.3354 | 0.5664 | 0.7526 | | No log | 3.2963 | 356 | 0.5628 | 0.3354 | 0.5628 | 0.7502 | | No log | 3.3148 | 358 | 0.5628 | 0.3354 | 0.5628 | 0.7502 | | No log | 3.3333 | 360 | 0.5712 | 0.3006 | 0.5712 | 0.7558 | | No log | 3.3519 | 362 | 0.5911 | 0.3323 | 0.5911 | 0.7689 | | No log | 3.3704 | 364 | 0.5943 | 0.3243 | 0.5943 | 0.7709 | | No log | 3.3889 | 366 | 0.5777 | 0.3039 | 0.5777 | 0.7600 | | No log | 3.4074 | 368 | 0.5638 | 0.3354 | 0.5638 | 0.7509 | | No log | 3.4259 | 370 | 0.5524 | 0.3889 | 0.5524 | 0.7432 | | No log | 3.4444 | 372 | 0.5468 | 0.3369 | 0.5468 | 0.7395 | | No log | 3.4630 | 374 | 0.5588 | 0.4845 | 0.5588 | 0.7476 | | No log | 3.4815 | 376 | 0.5484 | 0.4060 | 0.5484 | 0.7406 | | No log | 3.5 | 378 | 0.5375 | 0.3274 | 0.5375 | 0.7332 | | No log | 3.5185 | 380 | 0.5438 | 0.2987 | 0.5438 | 0.7375 | | No log | 3.5370 | 382 | 0.5484 | 0.3273 | 0.5484 | 0.7405 | | No log | 3.5556 | 384 | 0.5405 | 0.2987 | 0.5405 | 0.7352 | | No log | 3.5741 | 386 | 0.5429 | 0.2996 | 0.5429 | 0.7368 | | No log | 3.5926 | 388 | 0.5399 | 0.2641 | 0.5399 | 0.7348 | | No log | 3.6111 | 390 | 0.5373 | 0.2641 | 0.5373 | 0.7330 | | No log | 3.6296 | 392 | 0.5325 | 0.2996 | 0.5325 | 0.7297 | | No log | 3.6481 | 394 | 0.5277 | 0.3953 | 0.5277 | 0.7264 | | No log | 3.6667 | 396 | 0.5433 | 0.3416 | 0.5433 | 0.7371 | | No log | 3.6852 | 398 | 0.5704 | 0.3341 | 0.5704 | 0.7553 | | No log | 3.7037 | 400 | 0.5767 | 0.3341 | 0.5767 | 0.7594 | | No log | 3.7222 | 402 | 0.5726 | 0.3341 | 0.5726 | 0.7567 | | No log | 3.7407 | 404 | 0.5866 | 0.3341 | 0.5866 | 0.7659 | | No log | 3.7593 | 406 | 0.5951 | 0.3312 | 0.5951 | 0.7714 | | No log | 3.7778 | 408 | 0.6172 | 0.3312 | 0.6172 | 0.7856 | | No log | 3.7963 | 410 | 0.6595 | 0.3843 | 0.6595 | 0.8121 | | No log | 3.8148 | 412 | 0.6781 | 0.3843 | 0.6781 | 0.8235 | | No log | 3.8333 | 414 | 0.6525 | 0.4190 | 0.6525 | 0.8078 | | No log | 3.8519 | 416 | 0.6357 | 0.4020 | 0.6357 | 0.7973 | | No log | 3.8704 | 418 | 0.6030 | 0.3622 | 0.6030 | 0.7765 | | No log | 3.8889 | 420 | 0.5870 | 0.3341 | 0.5870 | 0.7662 | | No log | 3.9074 | 422 | 0.5679 | 0.3675 | 0.5679 | 0.7536 | | No log | 3.9259 | 424 | 0.5573 | 0.3995 | 0.5573 | 0.7465 | | No log | 3.9444 | 426 | 0.5627 | 0.4194 | 0.5627 | 0.7501 | | No log | 3.9630 | 428 | 0.5972 | 0.4292 | 0.5972 | 0.7728 | | No log | 3.9815 | 430 | 0.6792 | 0.4815 | 0.6792 | 0.8241 | | No log | 4.0 | 432 | 0.7062 | 0.4644 | 0.7062 | 0.8404 | | No log | 4.0185 | 434 | 0.6888 | 0.4644 | 0.6888 | 0.8299 | | No log | 4.0370 | 436 | 0.6759 | 0.4409 | 0.6759 | 0.8221 | | No log | 4.0556 | 438 | 0.6074 | 0.4044 | 0.6074 | 0.7793 | | No log | 4.0741 | 440 | 0.5911 | 0.4027 | 0.5911 | 0.7689 | | No log | 4.0926 | 442 | 0.5959 | 0.3782 | 0.5959 | 0.7719 | | No log | 4.1111 | 444 | 0.5990 | 0.3494 | 0.5990 | 0.7740 | | No log | 4.1296 | 446 | 0.6249 | 0.3465 | 0.6249 | 0.7905 | | No log | 4.1481 | 448 | 0.6833 | 0.3789 | 0.6833 | 0.8266 | | No log | 4.1667 | 450 | 0.6998 | 0.3789 | 0.6998 | 0.8365 | | No log | 4.1852 | 452 | 0.6573 | 0.3465 | 0.6573 | 0.8108 | | No log | 4.2037 | 454 | 0.6596 | 0.3465 | 0.6596 | 0.8122 | | No log | 4.2222 | 456 | 0.6712 | 0.3387 | 0.6712 | 0.8193 | | No log | 4.2407 | 458 | 0.6840 | 0.4052 | 0.6840 | 0.8270 | | No log | 4.2593 | 460 | 0.6763 | 0.3444 | 0.6763 | 0.8224 | | No log | 4.2778 | 462 | 0.6450 | 0.3387 | 0.6450 | 0.8031 | | No log | 4.2963 | 464 | 0.6399 | 0.3387 | 0.6399 | 0.8000 | | No log | 4.3148 | 466 | 0.6431 | 0.3387 | 0.6431 | 0.8019 | | No log | 4.3333 | 468 | 0.6471 | 0.3167 | 0.6471 | 0.8044 | | No log | 4.3519 | 470 | 0.6554 | 0.3789 | 0.6554 | 0.8096 | | No log | 4.3704 | 472 | 0.6469 | 0.3471 | 0.6469 | 0.8043 | | No log | 4.3889 | 474 | 0.6061 | 0.3976 | 0.6061 | 0.7785 | | No log | 4.4074 | 476 | 0.5654 | 0.3754 | 0.5654 | 0.7519 | | No log | 4.4259 | 478 | 0.5624 | 0.3258 | 0.5624 | 0.7499 | | No log | 4.4444 | 480 | 0.5691 | 0.2923 | 0.5691 | 0.7544 | | No log | 4.4630 | 482 | 0.5774 | 0.2963 | 0.5774 | 0.7599 | | No log | 4.4815 | 484 | 0.5919 | 0.3575 | 0.5919 | 0.7693 | | No log | 4.5 | 486 | 0.6617 | 0.3673 | 0.6617 | 0.8134 | | No log | 4.5185 | 488 | 0.7257 | 0.3444 | 0.7257 | 0.8519 | | No log | 4.5370 | 490 | 0.7068 | 0.3444 | 0.7068 | 0.8407 | | No log | 4.5556 | 492 | 0.6779 | 0.3167 | 0.6779 | 0.8233 | | No log | 4.5741 | 494 | 0.6681 | 0.3594 | 0.6681 | 0.8174 | | No log | 4.5926 | 496 | 0.6884 | 0.3444 | 0.6884 | 0.8297 | | No log | 4.6111 | 498 | 0.7111 | 0.3444 | 0.7111 | 0.8432 | | 0.2421 | 4.6296 | 500 | 0.7278 | 0.3444 | 0.7278 | 0.8531 | | 0.2421 | 4.6481 | 502 | 0.6692 | 0.3312 | 0.6692 | 0.8181 | | 0.2421 | 4.6667 | 504 | 0.6313 | 0.3166 | 0.6313 | 0.7946 | | 0.2421 | 4.6852 | 506 | 0.6121 | 0.3445 | 0.6121 | 0.7824 | | 0.2421 | 4.7037 | 508 | 0.6076 | 0.3445 | 0.6076 | 0.7795 | | 0.2421 | 4.7222 | 510 | 0.6405 | 0.3572 | 0.6405 | 0.8003 | | 0.2421 | 4.7407 | 512 | 0.7083 | 0.4052 | 0.7083 | 0.8416 | | 0.2421 | 4.7593 | 514 | 0.7393 | 0.4554 | 0.7393 | 0.8598 | | 0.2421 | 4.7778 | 516 | 0.7042 | 0.4642 | 0.7042 | 0.8392 | | 0.2421 | 4.7963 | 518 | 0.6464 | 0.3594 | 0.6464 | 0.8040 | | 0.2421 | 4.8148 | 520 | 0.6130 | 0.3649 | 0.6130 | 0.7830 | | 0.2421 | 4.8333 | 522 | 0.6089 | 0.3599 | 0.6089 | 0.7803 | | 0.2421 | 4.8519 | 524 | 0.6280 | 0.3183 | 0.6280 | 0.7924 | | 0.2421 | 4.8704 | 526 | 0.6584 | 0.3425 | 0.6584 | 0.8114 | | 0.2421 | 4.8889 | 528 | 0.6523 | 0.3155 | 0.6523 | 0.8077 | | 0.2421 | 4.9074 | 530 | 0.6549 | 0.2950 | 0.6549 | 0.8092 | | 0.2421 | 4.9259 | 532 | 0.6785 | 0.2883 | 0.6785 | 0.8237 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF
featherless-ai-quants
2025-02-04T02:56:33Z
297
0
null
[ "gguf", "text-generation", "base_model:FogTeams/experiment-45-intelligent-layer-2-plus-exp-39-data", "base_model:quantized:FogTeams/experiment-45-intelligent-layer-2-plus-exp-39-data", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-04T02:47:44Z
--- base_model: FogTeams/experiment-45-intelligent-layer-2-plus-exp-39-data pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # FogTeams/experiment-45-intelligent-layer-2-plus-exp-39-data GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-IQ4_XS.gguf) | 4276.62 MB | | Q2_K | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q2_K.gguf) | 3031.86 MB | | Q3_K_L | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_L.gguf) | 4121.74 MB | | Q3_K_M | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_M.gguf) | 3832.74 MB | | Q3_K_S | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q3_K_S.gguf) | 3494.74 MB | | Q4_K_M | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q4_K_M.gguf) | 4692.78 MB | | Q4_K_S | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q4_K_S.gguf) | 4475.28 MB | | Q5_K_M | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q5_K_M.gguf) | 5467.40 MB | | Q5_K_S | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q5_K_S.gguf) | 5339.90 MB | | Q6_K | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q6_K.gguf) | 6290.44 MB | | Q8_0 | [FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-GGUF/blob/main/FogTeams-experiment-45-intelligent-layer-2-plus-exp-39-data-Q8_0.gguf) | 8145.11 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
kumo24/bert-sentiment
kumo24
2025-02-04T02:55:28Z
45
0
null
[ "safetensors", "bert", "license:apache-2.0", "region:us" ]
null
2025-02-03T20:20:37Z
--- license: apache-2.0 --- This BERT was fined-tuned on +672k tweets from twitter/X. The classification accuracy obtained is 98%. \ The number of labels is 3: {0: Negative, 1: Neutral, 2: Positive} This is an example to use it ```bash from transformers import AutoTokenizer from transformers import pipeline from transformers import AutoModelForSequenceClassification import torch checkpoint = 'kumo24/bert-sentiment' tokenizer=AutoTokenizer.from_pretrained(checkpoint) id2label = {0: "negative", 1: "neutral", 2: "positive"} label2id = {"negative": 0, "neutral": 1, "positive": 2} if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=3, id2label=id2label, label2id=label2id) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) sentiment_task = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer, device =device) print(sentiment_task("Michigan Wolverines are Champions, Go Blue!")) ```
havinash-ai/f0a2e4f3-1036-40de-9274-3ca0adb47323
havinash-ai
2025-02-04T02:54:53Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:princeton-nlp/gemma-2-9b-it-SimPO", "base_model:adapter:princeton-nlp/gemma-2-9b-it-SimPO", "license:mit", "region:us" ]
null
2025-02-04T02:23:45Z
--- library_name: peft license: mit base_model: princeton-nlp/gemma-2-9b-it-SimPO tags: - axolotl - generated_from_trainer model-index: - name: f0a2e4f3-1036-40de-9274-3ca0adb47323 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: princeton-nlp/gemma-2-9b-it-SimPO bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 27445fcde1646c52_train_data.json ds_type: json format: custom path: /workspace/input_data/27445fcde1646c52_train_data.json type: field_instruction: article field_output: summary format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/f0a2e4f3-1036-40de-9274-3ca0adb47323 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/27445fcde1646c52_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1fdacdcc-5748-4bbf-b058-02b8f37bd7ab wandb_project: Mine-SN56-2-Gradients-On-Demand wandb_run: your_name wandb_runid: 1fdacdcc-5748-4bbf-b058-02b8f37bd7ab warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f0a2e4f3-1036-40de-9274-3ca0adb47323 This model is a fine-tuned version of [princeton-nlp/gemma-2-9b-it-SimPO](https://huggingface.co/princeton-nlp/gemma-2-9b-it-SimPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 2.0342 | | 0.8211 | 0.0030 | 63 | 0.7868 | | 0.4865 | 0.0060 | 126 | 0.7196 | | 0.5538 | 0.0090 | 189 | 0.6824 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF
featherless-ai-quants
2025-02-04T02:54:21Z
138
0
null
[ "gguf", "text-generation", "base_model:ChaoticNeutrals/Eris_PrimeV4.20-Vision-32k-7B", "base_model:quantized:ChaoticNeutrals/Eris_PrimeV4.20-Vision-32k-7B", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-02-04T02:45:44Z
--- base_model: ChaoticNeutrals/Eris_PrimeV4.20-Vision-32k-7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ChaoticNeutrals/Eris_PrimeV4.20-Vision-32k-7B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-GGUF/blob/main/ChaoticNeutrals-Eris_PrimeV4.20-Vision-32k-7B-Q8_0.gguf) | 7339.34 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
abenius/559863ef-fa70-4bc3-8021-4b1eb30929f9
abenius
2025-02-04T02:51:21Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:34:49Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 559863ef-fa70-4bc3-8021-4b1eb30929f9 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cff7ac798e6d5dcd_train_data.json ds_type: json format: custom path: /workspace/input_data/cff7ac798e6d5dcd_train_data.json type: field_input: input field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: abenius/559863ef-fa70-4bc3-8021-4b1eb30929f9 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/cff7ac798e6d5dcd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: cf8d9384-56f2-40e9-8877-64c5c8e6e996 wandb_project: Gradients-On-12 wandb_run: your_name wandb_runid: cf8d9384-56f2-40e9-8877-64c5c8e6e996 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 559863ef-fa70-4bc3-8021-4b1eb30929f9 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.82 | 0.2947 | 200 | 1.8207 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
earnxus/12630b07-2524-46a5-b87b-17746a4405b6
earnxus
2025-02-04T02:51:20Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:34:48Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 12630b07-2524-46a5-b87b-17746a4405b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cff7ac798e6d5dcd_train_data.json ds_type: json format: custom path: /workspace/input_data/cff7ac798e6d5dcd_train_data.json type: field_input: input field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/12630b07-2524-46a5-b87b-17746a4405b6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/cff7ac798e6d5dcd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: cf8d9384-56f2-40e9-8877-64c5c8e6e996 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: cf8d9384-56f2-40e9-8877-64c5c8e6e996 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # 12630b07-2524-46a5-b87b-17746a4405b6 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 12.8089 | 0.2947 | 200 | 1.8095 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
InsultedByMathematics/alpha_1e-4_beta_3e-3
InsultedByMathematics
2025-02-04T02:51:11Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-02T18:20:44Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
newnexum/Carlos
newnexum
2025-02-04T02:49:57Z
18
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-02-04T02:26:47Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: Carlos --- # Carlos <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `Carlos` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('newnexum/Carlos', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
alchemist69/11d38ba5-ecbd-400b-a4ae-49926680a2ab
alchemist69
2025-02-04T02:47:09Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-02-04T02:45:48Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 11d38ba5-ecbd-400b-a4ae-49926680a2ab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 8277d95e38f8c211_train_data.json ds_type: json format: custom path: /workspace/input_data/8277d95e38f8c211_train_data.json type: field_input: spans field_instruction: document field_output: query format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: alchemist69/11d38ba5-ecbd-400b-a4ae-49926680a2ab hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/8277d95e38f8c211_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: bbd31077-243a-452b-a84a-48bd4f630777 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: bbd31077-243a-452b-a84a-48bd4f630777 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 11d38ba5-ecbd-400b-a4ae-49926680a2ab This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3703 | 0.0007 | 1 | 10.3644 | | 10.3313 | 0.0366 | 50 | 10.3349 | | 10.3337 | 0.0731 | 100 | 10.3220 | | 10.3167 | 0.1097 | 150 | 10.3208 | | 10.3138 | 0.1463 | 200 | 10.3208 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF
featherless-ai-quants
2025-02-04T02:44:56Z
151
0
null
[ "gguf", "text-generation", "base_model:ChaoticNeutrals/Stanta-Lelemon-Maid-7B", "base_model:quantized:ChaoticNeutrals/Stanta-Lelemon-Maid-7B", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T02:36:07Z
--- base_model: ChaoticNeutrals/Stanta-Lelemon-Maid-7B pipeline_tag: text-generation quantized_by: featherless-ai-quants --- # ChaoticNeutrals/Stanta-Lelemon-Maid-7B GGUF Quantizations 🚀 ![Featherless AI Quants](./featherless-quants.png) *Optimized GGUF quantization files for enhanced model performance* > Powered by [Featherless AI](https://featherless.ai) - run any model you'd like for a simple small fee. --- ## Available Quantizations 📊 | Quantization Type | File | Size | |-------------------|------|------| | IQ4_XS | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-IQ4_XS.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-IQ4_XS.gguf) | 3761.66 MB | | Q2_K | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q2_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q2_K.gguf) | 2593.27 MB | | Q3_K_L | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_L.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_L.gguf) | 3644.97 MB | | Q3_K_M | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_M.gguf) | 3355.97 MB | | Q3_K_S | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q3_K_S.gguf) | 3017.97 MB | | Q4_K_M | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q4_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q4_K_M.gguf) | 4166.07 MB | | Q4_K_S | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q4_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q4_K_S.gguf) | 3948.57 MB | | Q5_K_M | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q5_K_M.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q5_K_M.gguf) | 4893.69 MB | | Q5_K_S | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q5_K_S.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q5_K_S.gguf) | 4766.19 MB | | Q6_K | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q6_K.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q6_K.gguf) | 5666.80 MB | | Q8_0 | [ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q8_0.gguf](https://huggingface.co/featherless-ai-quants/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-GGUF/blob/main/ChaoticNeutrals-Stanta-Lelemon-Maid-7B-Q8_0.gguf) | 7339.34 MB | --- ## ⚡ Powered by [Featherless AI](https://featherless.ai) ### Key Features - 🔥 **Instant Hosting** - Deploy any Llama model on HuggingFace instantly - 🛠️ **Zero Infrastructure** - No server setup or maintenance required - 📚 **Vast Compatibility** - Support for 2400+ models and counting - 💎 **Affordable Pricing** - Starting at just $10/month --- **Links:** [Get Started](https://featherless.ai) | [Documentation](https://featherless.ai/docs) | [Models](https://featherless.ai/models)
antimage88/b0565cf5-342a-4520-9361-476dac07d7d0
antimage88
2025-02-04T02:42:19Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:19:15Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: b0565cf5-342a-4520-9361-476dac07d7d0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d9f1df0279b4eb5_train_data.json ds_type: json format: custom path: /workspace/input_data/3d9f1df0279b4eb5_train_data.json type: field_input: context field_instruction: background field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: antimage88/b0565cf5-342a-4520-9361-476dac07d7d0 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/3d9f1df0279b4eb5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ef12fd27-895e-4a23-bdde-4567c829c2e3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ef12fd27-895e-4a23-bdde-4567c829c2e3 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b0565cf5-342a-4520-9361-476dac07d7d0 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2016 | 0.0371 | 200 | 1.6806 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
blood34/36655a94-8b2a-4c53-b692-9a64f4cf2ee3
blood34
2025-02-04T02:41:04Z
10
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B", "base_model:adapter:unsloth/Qwen2.5-0.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:33:28Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 36655a94-8b2a-4c53-b692-9a64f4cf2ee3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9ee4c7d4f914610d_train_data.json ds_type: json format: custom path: /workspace/input_data/9ee4c7d4f914610d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: blood34/36655a94-8b2a-4c53-b692-9a64f4cf2ee3 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/9ee4c7d4f914610d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8c04dad1-b647-409f-8c82-04b3516dd360 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8c04dad1-b647-409f-8c82-04b3516dd360 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 36655a94-8b2a-4c53-b692-9a64f4cf2ee3 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 139 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5491 | 0.9982 | 138 | 0.5401 | | 0.71 | 1.0054 | 139 | 0.5384 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
kk-aivio/98de4832-57f4-4ded-b26d-cbc90fad2011
kk-aivio
2025-02-04T02:38:26Z
12
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "custom_code", "base_model:NousResearch/Yarn-Llama-2-7b-128k", "base_model:adapter:NousResearch/Yarn-Llama-2-7b-128k", "region:us" ]
null
2025-02-04T02:34:42Z
--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: 98de4832-57f4-4ded-b26d-cbc90fad2011 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - cff7ac798e6d5dcd_train_data.json ds_type: json format: custom path: /workspace/input_data/cff7ac798e6d5dcd_train_data.json type: field_input: input field_instruction: instruction field_output: response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: kk-aivio/98de4832-57f4-4ded-b26d-cbc90fad2011 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/cff7ac798e6d5dcd_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: cf8d9384-56f2-40e9-8877-64c5c8e6e996 wandb_project: Birthday-SN56-17-Gradients-On-Demand wandb_run: your_name wandb_runid: cf8d9384-56f2-40e9-8877-64c5c8e6e996 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 98de4832-57f4-4ded-b26d-cbc90fad2011 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0015 | 1 | 3.0766 | | 7.4635 | 0.0737 | 50 | 2.0064 | | 7.4142 | 0.1473 | 100 | 1.7402 | | 6.0921 | 0.2210 | 150 | 1.6190 | | 6.1163 | 0.2947 | 200 | 1.5955 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
pipidepulus/hojas
pipidepulus
2025-02-04T02:35:44Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-02-04T02:25:02Z
--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: hojas results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hojas This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0200 - Accuracy: 0.9925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.1305 | 3.8462 | 500 | 0.0200 | 0.9925 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Tokenizers 0.21.0
batrider32/3fd1cba6-e769-49f1-bd50-1d4545cb45b6
batrider32
2025-02-04T02:34:49Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-1.5B", "base_model:adapter:unsloth/Qwen2.5-1.5B", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T02:11:50Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-1.5B tags: - axolotl - generated_from_trainer model-index: - name: 3fd1cba6-e769-49f1-bd50-1d4545cb45b6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-1.5B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3d9f1df0279b4eb5_train_data.json ds_type: json format: custom path: /workspace/input_data/3d9f1df0279b4eb5_train_data.json type: field_input: context field_instruction: background field_output: question format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: batrider32/3fd1cba6-e769-49f1-bd50-1d4545cb45b6 hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/3d9f1df0279b4eb5_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ef12fd27-895e-4a23-bdde-4567c829c2e3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: ef12fd27-895e-4a23-bdde-4567c829c2e3 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 3fd1cba6-e769-49f1-bd50-1d4545cb45b6 This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B](https://huggingface.co/unsloth/Qwen2.5-1.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2217 | 0.0371 | 200 | 1.6823 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
archit11/smollm350m-grpo
archit11
2025-02-04T02:34:40Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-02T12:41:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID SMOLLM 350M trained for 500 steps on gsm8k with grpo , gets 2% accuracy boost over base ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lesso/7a7e5161-5875-42cc-b67d-ede2e161c29e
lesso
2025-02-04T02:34:40Z
8
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-02-04T02:22:33Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: 7a7e5161-5875-42cc-b67d-ede2e161c29e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 7f4ffc4da3710d39_train_data.json ds_type: json format: custom path: /workspace/input_data/7f4ffc4da3710d39_train_data.json type: field_input: text field_instruction: task_name field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/7a7e5161-5875-42cc-b67d-ede2e161c29e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/7f4ffc4da3710d39_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 wandb_project: ab-god01 wandb_run: your_name wandb_runid: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 7a7e5161-5875-42cc-b67d-ede2e161c29e This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.7729 | 0.0004 | 1 | 3.0150 | | 0.5912 | 0.0199 | 50 | 0.5331 | | 0.2983 | 0.0398 | 100 | 0.2335 | | 0.1296 | 0.0598 | 150 | 0.1907 | | 0.0004 | 0.0797 | 200 | 0.1695 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task7_organization
MayBashendy
2025-02-04T02:33:41Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T02:27:51Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task7_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task7_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4163 - Qwk: 0.5267 - Mse: 0.4163 - Rmse: 0.6452 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.2857 | 2 | 2.5847 | -0.0545 | 2.5847 | 1.6077 | | No log | 0.5714 | 4 | 1.1679 | 0.0993 | 1.1679 | 1.0807 | | No log | 0.8571 | 6 | 0.7084 | 0.0893 | 0.7084 | 0.8417 | | No log | 1.1429 | 8 | 0.8818 | 0.2651 | 0.8818 | 0.9391 | | No log | 1.4286 | 10 | 0.8770 | 0.2552 | 0.8770 | 0.9365 | | No log | 1.7143 | 12 | 0.7326 | 0.2871 | 0.7326 | 0.8559 | | No log | 2.0 | 14 | 0.6137 | 0.3197 | 0.6137 | 0.7834 | | No log | 2.2857 | 16 | 0.5657 | 0.4161 | 0.5657 | 0.7521 | | No log | 2.5714 | 18 | 0.5944 | 0.3416 | 0.5944 | 0.7710 | | No log | 2.8571 | 20 | 0.5174 | 0.4561 | 0.5174 | 0.7193 | | No log | 3.1429 | 22 | 0.5026 | 0.4354 | 0.5026 | 0.7090 | | No log | 3.4286 | 24 | 0.4933 | 0.4444 | 0.4933 | 0.7023 | | No log | 3.7143 | 26 | 0.5254 | 0.4370 | 0.5254 | 0.7249 | | No log | 4.0 | 28 | 0.5601 | 0.4330 | 0.5601 | 0.7484 | | No log | 4.2857 | 30 | 0.4951 | 0.5466 | 0.4951 | 0.7037 | | No log | 4.5714 | 32 | 0.4624 | 0.5373 | 0.4624 | 0.6800 | | No log | 4.8571 | 34 | 0.4230 | 0.6295 | 0.4230 | 0.6504 | | No log | 5.1429 | 36 | 0.4533 | 0.5868 | 0.4533 | 0.6733 | | No log | 5.4286 | 38 | 0.3891 | 0.6458 | 0.3891 | 0.6238 | | No log | 5.7143 | 40 | 0.4106 | 0.6184 | 0.4106 | 0.6408 | | No log | 6.0 | 42 | 0.5541 | 0.6587 | 0.5541 | 0.7444 | | No log | 6.2857 | 44 | 0.5450 | 0.6263 | 0.5450 | 0.7383 | | No log | 6.5714 | 46 | 0.4511 | 0.5798 | 0.4511 | 0.6717 | | No log | 6.8571 | 48 | 0.5396 | 0.6765 | 0.5396 | 0.7346 | | No log | 7.1429 | 50 | 0.3981 | 0.7123 | 0.3981 | 0.6309 | | No log | 7.4286 | 52 | 0.5540 | 0.5657 | 0.5540 | 0.7443 | | No log | 7.7143 | 54 | 1.0452 | 0.2990 | 1.0452 | 1.0223 | | No log | 8.0 | 56 | 1.0185 | 0.3290 | 1.0185 | 1.0092 | | No log | 8.2857 | 58 | 0.5688 | 0.5017 | 0.5688 | 0.7542 | | No log | 8.5714 | 60 | 0.4385 | 0.6313 | 0.4385 | 0.6622 | | No log | 8.8571 | 62 | 0.5364 | 0.5722 | 0.5364 | 0.7324 | | No log | 9.1429 | 64 | 0.4873 | 0.6670 | 0.4873 | 0.6981 | | No log | 9.4286 | 66 | 0.4862 | 0.5339 | 0.4862 | 0.6972 | | No log | 9.7143 | 68 | 0.6790 | 0.4921 | 0.6790 | 0.8240 | | No log | 10.0 | 70 | 0.6722 | 0.5160 | 0.6722 | 0.8199 | | No log | 10.2857 | 72 | 0.5552 | 0.5498 | 0.5552 | 0.7451 | | No log | 10.5714 | 74 | 0.4779 | 0.6010 | 0.4779 | 0.6913 | | No log | 10.8571 | 76 | 0.4970 | 0.5817 | 0.4970 | 0.7050 | | No log | 11.1429 | 78 | 0.4601 | 0.6076 | 0.4601 | 0.6783 | | No log | 11.4286 | 80 | 0.5461 | 0.5672 | 0.5461 | 0.7390 | | No log | 11.7143 | 82 | 0.6890 | 0.4667 | 0.6890 | 0.8301 | | No log | 12.0 | 84 | 0.5512 | 0.5315 | 0.5512 | 0.7424 | | No log | 12.2857 | 86 | 0.4524 | 0.5633 | 0.4524 | 0.6726 | | No log | 12.5714 | 88 | 0.5360 | 0.5481 | 0.5360 | 0.7321 | | No log | 12.8571 | 90 | 0.6668 | 0.5243 | 0.6668 | 0.8166 | | No log | 13.1429 | 92 | 0.4830 | 0.5570 | 0.4830 | 0.6950 | | No log | 13.4286 | 94 | 0.4624 | 0.5339 | 0.4624 | 0.6800 | | No log | 13.7143 | 96 | 0.5056 | 0.5470 | 0.5056 | 0.7110 | | No log | 14.0 | 98 | 0.4221 | 0.5475 | 0.4221 | 0.6497 | | No log | 14.2857 | 100 | 0.4074 | 0.6596 | 0.4074 | 0.6383 | | No log | 14.5714 | 102 | 0.4089 | 0.6596 | 0.4089 | 0.6395 | | No log | 14.8571 | 104 | 0.4013 | 0.6060 | 0.4013 | 0.6335 | | No log | 15.1429 | 106 | 0.4072 | 0.5722 | 0.4072 | 0.6381 | | No log | 15.4286 | 108 | 0.4069 | 0.5479 | 0.4069 | 0.6379 | | No log | 15.7143 | 110 | 0.3896 | 0.6201 | 0.3896 | 0.6242 | | No log | 16.0 | 112 | 0.4330 | 0.6388 | 0.4330 | 0.6580 | | No log | 16.2857 | 114 | 0.4085 | 0.6490 | 0.4085 | 0.6392 | | No log | 16.5714 | 116 | 0.4058 | 0.6278 | 0.4058 | 0.6370 | | No log | 16.8571 | 118 | 0.4000 | 0.6490 | 0.4000 | 0.6325 | | No log | 17.1429 | 120 | 0.3925 | 0.5539 | 0.3925 | 0.6265 | | No log | 17.4286 | 122 | 0.3918 | 0.5782 | 0.3918 | 0.6259 | | No log | 17.7143 | 124 | 0.3939 | 0.6503 | 0.3939 | 0.6276 | | No log | 18.0 | 126 | 0.4008 | 0.5853 | 0.4008 | 0.6331 | | No log | 18.2857 | 128 | 0.4045 | 0.6701 | 0.4045 | 0.6360 | | No log | 18.5714 | 130 | 0.4060 | 0.6142 | 0.4060 | 0.6371 | | No log | 18.8571 | 132 | 0.4484 | 0.6169 | 0.4484 | 0.6696 | | No log | 19.1429 | 134 | 0.4426 | 0.6169 | 0.4426 | 0.6653 | | No log | 19.4286 | 136 | 0.4139 | 0.6678 | 0.4139 | 0.6433 | | No log | 19.7143 | 138 | 0.3923 | 0.6643 | 0.3923 | 0.6263 | | No log | 20.0 | 140 | 0.3947 | 0.6747 | 0.3947 | 0.6283 | | No log | 20.2857 | 142 | 0.4032 | 0.6854 | 0.4032 | 0.6349 | | No log | 20.5714 | 144 | 0.3916 | 0.6542 | 0.3916 | 0.6258 | | No log | 20.8571 | 146 | 0.3908 | 0.6627 | 0.3908 | 0.6252 | | No log | 21.1429 | 148 | 0.4166 | 0.7052 | 0.4166 | 0.6455 | | No log | 21.4286 | 150 | 0.4734 | 0.5567 | 0.4734 | 0.6880 | | No log | 21.7143 | 152 | 0.5077 | 0.6088 | 0.5077 | 0.7126 | | No log | 22.0 | 154 | 0.4498 | 0.6287 | 0.4498 | 0.6707 | | No log | 22.2857 | 156 | 0.4239 | 0.6968 | 0.4239 | 0.6511 | | No log | 22.5714 | 158 | 0.4240 | 0.6975 | 0.4240 | 0.6511 | | No log | 22.8571 | 160 | 0.4161 | 0.6643 | 0.4161 | 0.6451 | | No log | 23.1429 | 162 | 0.4205 | 0.5698 | 0.4205 | 0.6485 | | No log | 23.4286 | 164 | 0.4184 | 0.6229 | 0.4184 | 0.6468 | | No log | 23.7143 | 166 | 0.4235 | 0.5698 | 0.4235 | 0.6508 | | No log | 24.0 | 168 | 0.4586 | 0.5124 | 0.4586 | 0.6772 | | No log | 24.2857 | 170 | 0.4622 | 0.4881 | 0.4622 | 0.6799 | | No log | 24.5714 | 172 | 0.4639 | 0.5527 | 0.4639 | 0.6811 | | No log | 24.8571 | 174 | 0.4502 | 0.5649 | 0.4502 | 0.6709 | | No log | 25.1429 | 176 | 0.4411 | 0.5974 | 0.4411 | 0.6641 | | No log | 25.4286 | 178 | 0.4654 | 0.6305 | 0.4654 | 0.6822 | | No log | 25.7143 | 180 | 0.4581 | 0.6296 | 0.4581 | 0.6769 | | No log | 26.0 | 182 | 0.4324 | 0.5926 | 0.4324 | 0.6576 | | No log | 26.2857 | 184 | 0.4312 | 0.5656 | 0.4312 | 0.6567 | | No log | 26.5714 | 186 | 0.4436 | 0.5831 | 0.4436 | 0.6660 | | No log | 26.8571 | 188 | 0.4371 | 0.5731 | 0.4371 | 0.6611 | | No log | 27.1429 | 190 | 0.4254 | 0.5860 | 0.4254 | 0.6522 | | No log | 27.4286 | 192 | 0.4413 | 0.6201 | 0.4413 | 0.6643 | | No log | 27.7143 | 194 | 0.4523 | 0.6495 | 0.4523 | 0.6725 | | No log | 28.0 | 196 | 0.4151 | 0.6983 | 0.4151 | 0.6443 | | No log | 28.2857 | 198 | 0.3907 | 0.6828 | 0.3907 | 0.6251 | | No log | 28.5714 | 200 | 0.4017 | 0.6183 | 0.4017 | 0.6338 | | No log | 28.8571 | 202 | 0.3992 | 0.6183 | 0.3992 | 0.6319 | | No log | 29.1429 | 204 | 0.3900 | 0.7095 | 0.3900 | 0.6245 | | No log | 29.4286 | 206 | 0.3955 | 0.7073 | 0.3955 | 0.6289 | | No log | 29.7143 | 208 | 0.3990 | 0.6479 | 0.3990 | 0.6317 | | No log | 30.0 | 210 | 0.4296 | 0.6127 | 0.4296 | 0.6555 | | No log | 30.2857 | 212 | 0.4053 | 0.6292 | 0.4053 | 0.6366 | | No log | 30.5714 | 214 | 0.3996 | 0.7073 | 0.3996 | 0.6322 | | No log | 30.8571 | 216 | 0.4009 | 0.7073 | 0.4009 | 0.6331 | | No log | 31.1429 | 218 | 0.3906 | 0.7003 | 0.3906 | 0.6250 | | No log | 31.4286 | 220 | 0.4075 | 0.6402 | 0.4075 | 0.6384 | | No log | 31.7143 | 222 | 0.4055 | 0.6407 | 0.4055 | 0.6368 | | No log | 32.0 | 224 | 0.3925 | 0.6750 | 0.3925 | 0.6265 | | No log | 32.2857 | 226 | 0.4021 | 0.6720 | 0.4021 | 0.6341 | | No log | 32.5714 | 228 | 0.4088 | 0.6890 | 0.4088 | 0.6394 | | No log | 32.8571 | 230 | 0.4200 | 0.6371 | 0.4200 | 0.6481 | | No log | 33.1429 | 232 | 0.4313 | 0.6046 | 0.4313 | 0.6568 | | No log | 33.4286 | 234 | 0.4369 | 0.6145 | 0.4369 | 0.6610 | | No log | 33.7143 | 236 | 0.4467 | 0.6687 | 0.4467 | 0.6684 | | No log | 34.0 | 238 | 0.4332 | 0.6973 | 0.4332 | 0.6582 | | No log | 34.2857 | 240 | 0.4293 | 0.5649 | 0.4293 | 0.6552 | | No log | 34.5714 | 242 | 0.4686 | 0.5528 | 0.4686 | 0.6845 | | No log | 34.8571 | 244 | 0.4966 | 0.5808 | 0.4966 | 0.7047 | | No log | 35.1429 | 246 | 0.4907 | 0.5883 | 0.4907 | 0.7005 | | No log | 35.4286 | 248 | 0.4640 | 0.5672 | 0.4640 | 0.6812 | | No log | 35.7143 | 250 | 0.4102 | 0.6395 | 0.4102 | 0.6405 | | No log | 36.0 | 252 | 0.3968 | 0.6645 | 0.3968 | 0.6299 | | No log | 36.2857 | 254 | 0.3963 | 0.6464 | 0.3963 | 0.6296 | | No log | 36.5714 | 256 | 0.4017 | 0.6282 | 0.4017 | 0.6338 | | No log | 36.8571 | 258 | 0.3942 | 0.6154 | 0.3942 | 0.6279 | | No log | 37.1429 | 260 | 0.3802 | 0.7227 | 0.3802 | 0.6166 | | No log | 37.4286 | 262 | 0.3829 | 0.7085 | 0.3829 | 0.6188 | | No log | 37.7143 | 264 | 0.3833 | 0.7238 | 0.3833 | 0.6191 | | No log | 38.0 | 266 | 0.3820 | 0.7588 | 0.3820 | 0.6180 | | No log | 38.2857 | 268 | 0.4355 | 0.5908 | 0.4355 | 0.6600 | | No log | 38.5714 | 270 | 0.4503 | 0.5908 | 0.4503 | 0.6710 | | No log | 38.8571 | 272 | 0.4037 | 0.6771 | 0.4037 | 0.6354 | | No log | 39.1429 | 274 | 0.3847 | 0.6542 | 0.3847 | 0.6202 | | No log | 39.4286 | 276 | 0.4026 | 0.6264 | 0.4026 | 0.6345 | | No log | 39.7143 | 278 | 0.4247 | 0.6156 | 0.4247 | 0.6517 | | No log | 40.0 | 280 | 0.4182 | 0.6264 | 0.4182 | 0.6467 | | No log | 40.2857 | 282 | 0.4135 | 0.6374 | 0.4135 | 0.6430 | | No log | 40.5714 | 284 | 0.4195 | 0.5305 | 0.4195 | 0.6477 | | No log | 40.8571 | 286 | 0.4320 | 0.5065 | 0.4320 | 0.6573 | | No log | 41.1429 | 288 | 0.4285 | 0.5065 | 0.4285 | 0.6546 | | No log | 41.4286 | 290 | 0.4202 | 0.5539 | 0.4202 | 0.6482 | | No log | 41.7143 | 292 | 0.4184 | 0.5846 | 0.4184 | 0.6469 | | No log | 42.0 | 294 | 0.4239 | 0.5580 | 0.4239 | 0.6511 | | No log | 42.2857 | 296 | 0.4373 | 0.5266 | 0.4373 | 0.6613 | | No log | 42.5714 | 298 | 0.4366 | 0.5195 | 0.4366 | 0.6608 | | No log | 42.8571 | 300 | 0.4208 | 0.6184 | 0.4208 | 0.6487 | | No log | 43.1429 | 302 | 0.4088 | 0.6634 | 0.4088 | 0.6394 | | No log | 43.4286 | 304 | 0.4047 | 0.6344 | 0.4047 | 0.6362 | | No log | 43.7143 | 306 | 0.4030 | 0.6555 | 0.4030 | 0.6348 | | No log | 44.0 | 308 | 0.4029 | 0.7266 | 0.4029 | 0.6348 | | No log | 44.2857 | 310 | 0.4053 | 0.7154 | 0.4053 | 0.6366 | | No log | 44.5714 | 312 | 0.3944 | 0.6724 | 0.3944 | 0.6280 | | No log | 44.8571 | 314 | 0.3886 | 0.6555 | 0.3886 | 0.6234 | | No log | 45.1429 | 316 | 0.4266 | 0.5569 | 0.4266 | 0.6531 | | No log | 45.4286 | 318 | 0.4584 | 0.5983 | 0.4584 | 0.6771 | | No log | 45.7143 | 320 | 0.4464 | 0.5779 | 0.4464 | 0.6681 | | No log | 46.0 | 322 | 0.4085 | 0.6282 | 0.4085 | 0.6392 | | No log | 46.2857 | 324 | 0.3959 | 0.6648 | 0.3959 | 0.6292 | | No log | 46.5714 | 326 | 0.3991 | 0.6648 | 0.3991 | 0.6317 | | No log | 46.8571 | 328 | 0.4040 | 0.5930 | 0.4040 | 0.6356 | | No log | 47.1429 | 330 | 0.4067 | 0.5915 | 0.4067 | 0.6377 | | No log | 47.4286 | 332 | 0.4121 | 0.6046 | 0.4121 | 0.6420 | | No log | 47.7143 | 334 | 0.4187 | 0.6530 | 0.4187 | 0.6471 | | No log | 48.0 | 336 | 0.4140 | 0.6530 | 0.4140 | 0.6434 | | No log | 48.2857 | 338 | 0.4044 | 0.6460 | 0.4044 | 0.6359 | | No log | 48.5714 | 340 | 0.4065 | 0.5904 | 0.4065 | 0.6376 | | No log | 48.8571 | 342 | 0.4200 | 0.5495 | 0.4200 | 0.6481 | | No log | 49.1429 | 344 | 0.4343 | 0.5811 | 0.4343 | 0.6590 | | No log | 49.4286 | 346 | 0.4375 | 0.5811 | 0.4375 | 0.6614 | | No log | 49.7143 | 348 | 0.4254 | 0.5495 | 0.4254 | 0.6522 | | No log | 50.0 | 350 | 0.4047 | 0.5714 | 0.4047 | 0.6361 | | No log | 50.2857 | 352 | 0.4078 | 0.6820 | 0.4078 | 0.6386 | | No log | 50.5714 | 354 | 0.4147 | 0.6506 | 0.4147 | 0.6440 | | No log | 50.8571 | 356 | 0.4058 | 0.6712 | 0.4058 | 0.6370 | | No log | 51.1429 | 358 | 0.3941 | 0.6942 | 0.3941 | 0.6278 | | No log | 51.4286 | 360 | 0.3999 | 0.5985 | 0.3999 | 0.6324 | | No log | 51.7143 | 362 | 0.4155 | 0.5841 | 0.4155 | 0.6446 | | No log | 52.0 | 364 | 0.4258 | 0.5970 | 0.4258 | 0.6526 | | No log | 52.2857 | 366 | 0.4243 | 0.6434 | 0.4243 | 0.6514 | | No log | 52.5714 | 368 | 0.4150 | 0.6333 | 0.4150 | 0.6442 | | No log | 52.8571 | 370 | 0.4219 | 0.6257 | 0.4219 | 0.6495 | | No log | 53.1429 | 372 | 0.4235 | 0.6257 | 0.4235 | 0.6508 | | No log | 53.4286 | 374 | 0.4163 | 0.6405 | 0.4163 | 0.6452 | | No log | 53.7143 | 376 | 0.4130 | 0.6298 | 0.4130 | 0.6426 | | No log | 54.0 | 378 | 0.4086 | 0.6452 | 0.4086 | 0.6392 | | No log | 54.2857 | 380 | 0.4088 | 0.5714 | 0.4088 | 0.6394 | | No log | 54.5714 | 382 | 0.4092 | 0.5227 | 0.4092 | 0.6397 | | No log | 54.8571 | 384 | 0.4098 | 0.5440 | 0.4098 | 0.6401 | | No log | 55.1429 | 386 | 0.4150 | 0.6096 | 0.4150 | 0.6442 | | No log | 55.4286 | 388 | 0.4142 | 0.6096 | 0.4142 | 0.6436 | | No log | 55.7143 | 390 | 0.4094 | 0.6326 | 0.4094 | 0.6398 | | No log | 56.0 | 392 | 0.4043 | 0.6919 | 0.4043 | 0.6359 | | No log | 56.2857 | 394 | 0.4043 | 0.6395 | 0.4043 | 0.6358 | | No log | 56.5714 | 396 | 0.4169 | 0.6143 | 0.4169 | 0.6457 | | No log | 56.8571 | 398 | 0.4338 | 0.5498 | 0.4338 | 0.6586 | | No log | 57.1429 | 400 | 0.4236 | 0.5692 | 0.4236 | 0.6508 | | No log | 57.4286 | 402 | 0.4065 | 0.6034 | 0.4065 | 0.6375 | | No log | 57.7143 | 404 | 0.4081 | 0.5956 | 0.4081 | 0.6388 | | No log | 58.0 | 406 | 0.4104 | 0.5956 | 0.4104 | 0.6406 | | No log | 58.2857 | 408 | 0.3976 | 0.6860 | 0.3976 | 0.6305 | | No log | 58.5714 | 410 | 0.3950 | 0.6672 | 0.3950 | 0.6285 | | No log | 58.8571 | 412 | 0.3986 | 0.6389 | 0.3986 | 0.6314 | | No log | 59.1429 | 414 | 0.4163 | 0.5841 | 0.4163 | 0.6452 | | No log | 59.4286 | 416 | 0.4267 | 0.5569 | 0.4267 | 0.6532 | | No log | 59.7143 | 418 | 0.4411 | 0.5569 | 0.4411 | 0.6641 | | No log | 60.0 | 420 | 0.4347 | 0.5718 | 0.4347 | 0.6593 | | No log | 60.2857 | 422 | 0.4149 | 0.5702 | 0.4149 | 0.6442 | | No log | 60.5714 | 424 | 0.4089 | 0.5152 | 0.4089 | 0.6395 | | No log | 60.8571 | 426 | 0.4099 | 0.5584 | 0.4099 | 0.6403 | | No log | 61.1429 | 428 | 0.4133 | 0.5800 | 0.4133 | 0.6429 | | No log | 61.4286 | 430 | 0.4166 | 0.5361 | 0.4166 | 0.6454 | | No log | 61.7143 | 432 | 0.4188 | 0.5600 | 0.4188 | 0.6472 | | No log | 62.0 | 434 | 0.4237 | 0.5152 | 0.4237 | 0.6509 | | No log | 62.2857 | 436 | 0.4338 | 0.5098 | 0.4338 | 0.6586 | | No log | 62.5714 | 438 | 0.4377 | 0.5495 | 0.4377 | 0.6616 | | No log | 62.8571 | 440 | 0.4284 | 0.5028 | 0.4284 | 0.6545 | | No log | 63.1429 | 442 | 0.4143 | 0.5152 | 0.4143 | 0.6437 | | No log | 63.4286 | 444 | 0.4088 | 0.5600 | 0.4088 | 0.6393 | | No log | 63.7143 | 446 | 0.4074 | 0.6076 | 0.4074 | 0.6383 | | No log | 64.0 | 448 | 0.4074 | 0.6076 | 0.4074 | 0.6383 | | No log | 64.2857 | 450 | 0.4071 | 0.6389 | 0.4071 | 0.6381 | | No log | 64.5714 | 452 | 0.4040 | 0.6076 | 0.4040 | 0.6356 | | No log | 64.8571 | 454 | 0.4029 | 0.5379 | 0.4029 | 0.6347 | | No log | 65.1429 | 456 | 0.4061 | 0.5397 | 0.4061 | 0.6372 | | No log | 65.4286 | 458 | 0.4078 | 0.6156 | 0.4078 | 0.6386 | | No log | 65.7143 | 460 | 0.4095 | 0.6156 | 0.4095 | 0.6399 | | No log | 66.0 | 462 | 0.4103 | 0.6156 | 0.4103 | 0.6405 | | No log | 66.2857 | 464 | 0.4119 | 0.5941 | 0.4119 | 0.6418 | | No log | 66.5714 | 466 | 0.4150 | 0.5522 | 0.4150 | 0.6442 | | No log | 66.8571 | 468 | 0.4204 | 0.4703 | 0.4204 | 0.6484 | | No log | 67.1429 | 470 | 0.4262 | 0.4703 | 0.4262 | 0.6529 | | No log | 67.4286 | 472 | 0.4298 | 0.4774 | 0.4298 | 0.6556 | | No log | 67.7143 | 474 | 0.4327 | 0.4774 | 0.4327 | 0.6578 | | No log | 68.0 | 476 | 0.4353 | 0.5267 | 0.4353 | 0.6598 | | No log | 68.2857 | 478 | 0.4361 | 0.5267 | 0.4361 | 0.6603 | | No log | 68.5714 | 480 | 0.4356 | 0.5267 | 0.4356 | 0.6600 | | No log | 68.8571 | 482 | 0.4320 | 0.5267 | 0.4320 | 0.6573 | | No log | 69.1429 | 484 | 0.4276 | 0.5267 | 0.4276 | 0.6539 | | No log | 69.4286 | 486 | 0.4218 | 0.5267 | 0.4218 | 0.6495 | | No log | 69.7143 | 488 | 0.4213 | 0.5044 | 0.4213 | 0.6491 | | No log | 70.0 | 490 | 0.4227 | 0.4970 | 0.4227 | 0.6502 | | No log | 70.2857 | 492 | 0.4278 | 0.5227 | 0.4278 | 0.6541 | | No log | 70.5714 | 494 | 0.4262 | 0.5475 | 0.4262 | 0.6528 | | No log | 70.8571 | 496 | 0.4192 | 0.5227 | 0.4192 | 0.6475 | | No log | 71.1429 | 498 | 0.4127 | 0.4970 | 0.4127 | 0.6424 | | 0.1864 | 71.4286 | 500 | 0.4169 | 0.5397 | 0.4169 | 0.6457 | | 0.1864 | 71.7143 | 502 | 0.4216 | 0.5397 | 0.4216 | 0.6493 | | 0.1864 | 72.0 | 504 | 0.4212 | 0.5397 | 0.4212 | 0.6490 | | 0.1864 | 72.2857 | 506 | 0.4146 | 0.5208 | 0.4146 | 0.6439 | | 0.1864 | 72.5714 | 508 | 0.4128 | 0.5024 | 0.4128 | 0.6425 | | 0.1864 | 72.8571 | 510 | 0.4163 | 0.5267 | 0.4163 | 0.6452 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Kwakrhkr/flyai_dataset
Kwakrhkr
2025-02-04T02:29:43Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T02:26:35Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Kwakrhkr - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Nexspear/a1c387b0-d0a7-4dca-86c3-d562ff5448df
Nexspear
2025-02-04T02:27:35Z
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:59:20Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: a1c387b0-d0a7-4dca-86c3-d562ff5448df results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bd2a081ce1ece142_train_data.json ds_type: json format: custom path: /workspace/input_data/bd2a081ce1ece142_train_data.json type: field_instruction: instructions field_output: outputs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: Nexspear/a1c387b0-d0a7-4dca-86c3-d562ff5448df hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/bd2a081ce1ece142_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 84541128-e99e-4412-b56a-7eb22c1c1e64 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 84541128-e99e-4412-b56a-7eb22c1c1e64 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a1c387b0-d0a7-4dca-86c3-d562ff5448df This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 9.5192 | 0.0003 | 1 | 2.4969 | | 11.1203 | 0.0171 | 50 | 2.2104 | | 10.5202 | 0.0342 | 100 | 2.0548 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
na0-0/flyai_DATA
na0-0
2025-02-04T02:27:24Z
21
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T02:25:21Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** na0-0 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Cold-brew/sktqa
Cold-brew
2025-02-04T02:27:23Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T02:25:20Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Cold-brew - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
YongMinPark/chatbot_prac
YongMinPark
2025-02-04T02:22:35Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T02:20:33Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** YongMinPark - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mlfoundations-dev/s1K_32b
mlfoundations-dev
2025-02-04T02:21:23Z
3,403
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T00:35:15Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-32B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: s1K_32b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # s1K_32b This model is a fine-tuned version of [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) on the mlfoundations-dev/s1K_reformat dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 16 - total_eval_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3
oiehhun/sktqa
oiehhun
2025-02-04T02:21:12Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T02:19:09Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** oiehhun - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task5_organization
MayBashendy
2025-02-04T02:21:01Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T02:15:01Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k10_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9416 - Qwk: 0.4333 - Mse: 0.9416 - Rmse: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0377 | 2 | 4.3431 | -0.0008 | 4.3431 | 2.0840 | | No log | 0.0755 | 4 | 2.5060 | 0.1117 | 2.5060 | 1.5830 | | No log | 0.1132 | 6 | 1.3539 | 0.0627 | 1.3539 | 1.1636 | | No log | 0.1509 | 8 | 1.1834 | 0.1680 | 1.1834 | 1.0878 | | No log | 0.1887 | 10 | 1.0077 | 0.2897 | 1.0077 | 1.0038 | | No log | 0.2264 | 12 | 0.9656 | 0.2865 | 0.9656 | 0.9826 | | No log | 0.2642 | 14 | 0.9498 | 0.2492 | 0.9498 | 0.9746 | | No log | 0.3019 | 16 | 0.9449 | 0.2746 | 0.9449 | 0.9721 | | No log | 0.3396 | 18 | 0.9280 | 0.3293 | 0.9280 | 0.9633 | | No log | 0.3774 | 20 | 0.9419 | 0.3713 | 0.9419 | 0.9705 | | No log | 0.4151 | 22 | 0.9147 | 0.4065 | 0.9147 | 0.9564 | | No log | 0.4528 | 24 | 0.8826 | 0.3721 | 0.8826 | 0.9395 | | No log | 0.4906 | 26 | 0.8752 | 0.4223 | 0.8752 | 0.9355 | | No log | 0.5283 | 28 | 0.8666 | 0.4867 | 0.8666 | 0.9309 | | No log | 0.5660 | 30 | 0.9803 | 0.3333 | 0.9803 | 0.9901 | | No log | 0.6038 | 32 | 1.0629 | 0.3396 | 1.0629 | 1.0310 | | No log | 0.6415 | 34 | 0.9256 | 0.5135 | 0.9256 | 0.9621 | | No log | 0.6792 | 36 | 0.8616 | 0.4065 | 0.8616 | 0.9282 | | No log | 0.7170 | 38 | 0.8219 | 0.4568 | 0.8219 | 0.9066 | | No log | 0.7547 | 40 | 0.8354 | 0.5668 | 0.8354 | 0.9140 | | No log | 0.7925 | 42 | 0.9386 | 0.4707 | 0.9386 | 0.9688 | | No log | 0.8302 | 44 | 0.8572 | 0.5658 | 0.8572 | 0.9258 | | No log | 0.8679 | 46 | 0.7516 | 0.4439 | 0.7516 | 0.8669 | | No log | 0.9057 | 48 | 0.8695 | 0.4034 | 0.8695 | 0.9325 | | No log | 0.9434 | 50 | 0.8482 | 0.4613 | 0.8482 | 0.9210 | | No log | 0.9811 | 52 | 0.7741 | 0.4411 | 0.7741 | 0.8798 | | No log | 1.0189 | 54 | 0.8846 | 0.4878 | 0.8846 | 0.9405 | | No log | 1.0566 | 56 | 0.9381 | 0.4815 | 0.9381 | 0.9686 | | No log | 1.0943 | 58 | 0.8910 | 0.5254 | 0.8910 | 0.9439 | | No log | 1.1321 | 60 | 0.8403 | 0.4603 | 0.8403 | 0.9167 | | No log | 1.1698 | 62 | 0.8066 | 0.3996 | 0.8066 | 0.8981 | | No log | 1.2075 | 64 | 0.8110 | 0.4385 | 0.8110 | 0.9005 | | No log | 1.2453 | 66 | 0.9008 | 0.4575 | 0.9008 | 0.9491 | | No log | 1.2830 | 68 | 0.8895 | 0.4575 | 0.8895 | 0.9431 | | No log | 1.3208 | 70 | 0.7635 | 0.5113 | 0.7635 | 0.8738 | | No log | 1.3585 | 72 | 0.7317 | 0.5405 | 0.7317 | 0.8554 | | No log | 1.3962 | 74 | 0.7203 | 0.4889 | 0.7203 | 0.8487 | | No log | 1.4340 | 76 | 0.7085 | 0.5098 | 0.7085 | 0.8417 | | No log | 1.4717 | 78 | 0.7240 | 0.5303 | 0.7240 | 0.8509 | | No log | 1.5094 | 80 | 0.7187 | 0.5510 | 0.7187 | 0.8477 | | No log | 1.5472 | 82 | 0.6939 | 0.5510 | 0.6939 | 0.8330 | | No log | 1.5849 | 84 | 0.6631 | 0.5405 | 0.6631 | 0.8143 | | No log | 1.6226 | 86 | 0.7455 | 0.4467 | 0.7455 | 0.8634 | | No log | 1.6604 | 88 | 0.7487 | 0.4330 | 0.7487 | 0.8653 | | No log | 1.6981 | 90 | 0.7574 | 0.4724 | 0.7574 | 0.8703 | | No log | 1.7358 | 92 | 0.8651 | 0.4931 | 0.8651 | 0.9301 | | No log | 1.7736 | 94 | 0.8031 | 0.5366 | 0.8031 | 0.8962 | | No log | 1.8113 | 96 | 0.7102 | 0.5316 | 0.7102 | 0.8427 | | No log | 1.8491 | 98 | 0.6671 | 0.5771 | 0.6671 | 0.8167 | | No log | 1.8868 | 100 | 0.6880 | 0.5811 | 0.6880 | 0.8295 | | No log | 1.9245 | 102 | 0.6635 | 0.5874 | 0.6635 | 0.8145 | | No log | 1.9623 | 104 | 0.6632 | 0.5084 | 0.6632 | 0.8144 | | No log | 2.0 | 106 | 0.7978 | 0.5563 | 0.7978 | 0.8932 | | No log | 2.0377 | 108 | 0.7813 | 0.5563 | 0.7813 | 0.8839 | | No log | 2.0755 | 110 | 0.6346 | 0.5326 | 0.6346 | 0.7966 | | No log | 2.1132 | 112 | 0.5927 | 0.6229 | 0.5927 | 0.7698 | | No log | 2.1509 | 114 | 0.6034 | 0.6319 | 0.6034 | 0.7768 | | No log | 2.1887 | 116 | 0.6091 | 0.6067 | 0.6091 | 0.7804 | | No log | 2.2264 | 118 | 0.7940 | 0.5270 | 0.7940 | 0.8911 | | No log | 2.2642 | 120 | 0.9979 | 0.375 | 0.9979 | 0.9989 | | No log | 2.3019 | 122 | 0.8626 | 0.4728 | 0.8626 | 0.9288 | | No log | 2.3396 | 124 | 0.6249 | 0.5747 | 0.6249 | 0.7905 | | No log | 2.3774 | 126 | 0.6406 | 0.6189 | 0.6406 | 0.8004 | | No log | 2.4151 | 128 | 0.6850 | 0.6151 | 0.6850 | 0.8276 | | No log | 2.4528 | 130 | 0.6373 | 0.6160 | 0.6373 | 0.7983 | | No log | 2.4906 | 132 | 0.6188 | 0.6041 | 0.6188 | 0.7866 | | No log | 2.5283 | 134 | 0.6275 | 0.6185 | 0.6275 | 0.7921 | | No log | 2.5660 | 136 | 0.6313 | 0.5988 | 0.6313 | 0.7945 | | No log | 2.6038 | 138 | 0.6185 | 0.6128 | 0.6185 | 0.7865 | | No log | 2.6415 | 140 | 0.6225 | 0.6165 | 0.6225 | 0.7890 | | No log | 2.6792 | 142 | 0.6313 | 0.5746 | 0.6313 | 0.7946 | | No log | 2.7170 | 144 | 0.6625 | 0.5692 | 0.6625 | 0.8140 | | No log | 2.7547 | 146 | 0.7226 | 0.5229 | 0.7226 | 0.8500 | | No log | 2.7925 | 148 | 0.7231 | 0.5230 | 0.7231 | 0.8504 | | No log | 2.8302 | 150 | 0.6117 | 0.6364 | 0.6117 | 0.7821 | | No log | 2.8679 | 152 | 0.5949 | 0.6320 | 0.5949 | 0.7713 | | No log | 2.9057 | 154 | 0.6084 | 0.6164 | 0.6084 | 0.7800 | | No log | 2.9434 | 156 | 0.6165 | 0.5735 | 0.6165 | 0.7852 | | No log | 2.9811 | 158 | 0.6685 | 0.5103 | 0.6685 | 0.8176 | | No log | 3.0189 | 160 | 0.6240 | 0.5523 | 0.6240 | 0.7899 | | No log | 3.0566 | 162 | 0.5889 | 0.6256 | 0.5889 | 0.7674 | | No log | 3.0943 | 164 | 0.5841 | 0.6356 | 0.5841 | 0.7643 | | No log | 3.1321 | 166 | 0.5787 | 0.6659 | 0.5787 | 0.7607 | | No log | 3.1698 | 168 | 0.6180 | 0.6479 | 0.6180 | 0.7861 | | No log | 3.2075 | 170 | 0.6266 | 0.5561 | 0.6266 | 0.7916 | | No log | 3.2453 | 172 | 0.6266 | 0.5672 | 0.6266 | 0.7916 | | No log | 3.2830 | 174 | 0.6028 | 0.5549 | 0.6028 | 0.7764 | | No log | 3.3208 | 176 | 0.5924 | 0.6117 | 0.5924 | 0.7697 | | No log | 3.3585 | 178 | 0.5936 | 0.6400 | 0.5936 | 0.7705 | | No log | 3.3962 | 180 | 0.6284 | 0.5837 | 0.6284 | 0.7927 | | No log | 3.4340 | 182 | 0.6824 | 0.5870 | 0.6824 | 0.8261 | | No log | 3.4717 | 184 | 0.6308 | 0.5993 | 0.6308 | 0.7942 | | No log | 3.5094 | 186 | 0.5972 | 0.5666 | 0.5972 | 0.7728 | | No log | 3.5472 | 188 | 0.6394 | 0.5123 | 0.6394 | 0.7996 | | No log | 3.5849 | 190 | 0.6671 | 0.5123 | 0.6671 | 0.8168 | | No log | 3.6226 | 192 | 0.6548 | 0.5011 | 0.6548 | 0.8092 | | No log | 3.6604 | 194 | 0.6623 | 0.5051 | 0.6623 | 0.8138 | | No log | 3.6981 | 196 | 0.7259 | 0.5255 | 0.7259 | 0.8520 | | No log | 3.7358 | 198 | 0.7050 | 0.5708 | 0.7050 | 0.8396 | | No log | 3.7736 | 200 | 0.5990 | 0.6175 | 0.5990 | 0.7740 | | No log | 3.8113 | 202 | 0.5654 | 0.6438 | 0.5654 | 0.7520 | | No log | 3.8491 | 204 | 0.5619 | 0.6589 | 0.5619 | 0.7496 | | No log | 3.8868 | 206 | 0.5497 | 0.6087 | 0.5497 | 0.7414 | | No log | 3.9245 | 208 | 0.5993 | 0.6828 | 0.5993 | 0.7742 | | No log | 3.9623 | 210 | 0.6485 | 0.6699 | 0.6485 | 0.8053 | | No log | 4.0 | 212 | 0.6479 | 0.5782 | 0.6479 | 0.8049 | | No log | 4.0377 | 214 | 0.5935 | 0.6087 | 0.5935 | 0.7704 | | No log | 4.0755 | 216 | 0.5878 | 0.6084 | 0.5878 | 0.7667 | | No log | 4.1132 | 218 | 0.5822 | 0.5563 | 0.5822 | 0.7630 | | No log | 4.1509 | 220 | 0.6073 | 0.5656 | 0.6073 | 0.7793 | | No log | 4.1887 | 222 | 0.7414 | 0.5488 | 0.7414 | 0.8610 | | No log | 4.2264 | 224 | 0.9306 | 0.4987 | 0.9306 | 0.9647 | | No log | 4.2642 | 226 | 0.8794 | 0.5295 | 0.8794 | 0.9378 | | No log | 4.3019 | 228 | 0.8252 | 0.5683 | 0.8252 | 0.9084 | | No log | 4.3396 | 230 | 0.6202 | 0.6173 | 0.6202 | 0.7875 | | No log | 4.3774 | 232 | 0.5888 | 0.6302 | 0.5888 | 0.7673 | | No log | 4.4151 | 234 | 0.7016 | 0.5257 | 0.7016 | 0.8376 | | No log | 4.4528 | 236 | 0.8066 | 0.5283 | 0.8066 | 0.8981 | | No log | 4.4906 | 238 | 0.7012 | 0.5019 | 0.7012 | 0.8373 | | No log | 4.5283 | 240 | 0.6219 | 0.5561 | 0.6219 | 0.7886 | | No log | 4.5660 | 242 | 0.6108 | 0.6325 | 0.6108 | 0.7815 | | No log | 4.6038 | 244 | 0.6470 | 0.6244 | 0.6470 | 0.8043 | | No log | 4.6415 | 246 | 0.6703 | 0.5884 | 0.6703 | 0.8187 | | No log | 4.6792 | 248 | 0.6666 | 0.5759 | 0.6666 | 0.8165 | | No log | 4.7170 | 250 | 0.6847 | 0.5565 | 0.6847 | 0.8275 | | No log | 4.7547 | 252 | 0.7120 | 0.5804 | 0.7120 | 0.8438 | | No log | 4.7925 | 254 | 0.6530 | 0.5117 | 0.6530 | 0.8081 | | No log | 4.8302 | 256 | 0.6253 | 0.4951 | 0.6253 | 0.7907 | | No log | 4.8679 | 258 | 0.6055 | 0.5876 | 0.6055 | 0.7782 | | No log | 4.9057 | 260 | 0.5579 | 0.6407 | 0.5579 | 0.7469 | | No log | 4.9434 | 262 | 0.5554 | 0.6407 | 0.5554 | 0.7452 | | No log | 4.9811 | 264 | 0.5862 | 0.5331 | 0.5862 | 0.7657 | | No log | 5.0189 | 266 | 0.6901 | 0.5504 | 0.6901 | 0.8307 | | No log | 5.0566 | 268 | 0.7822 | 0.4654 | 0.7822 | 0.8844 | | No log | 5.0943 | 270 | 0.7385 | 0.4497 | 0.7385 | 0.8594 | | No log | 5.1321 | 272 | 0.6656 | 0.4941 | 0.6656 | 0.8159 | | No log | 5.1698 | 274 | 0.6282 | 0.5618 | 0.6282 | 0.7926 | | No log | 5.2075 | 276 | 0.6254 | 0.5798 | 0.6254 | 0.7908 | | No log | 5.2453 | 278 | 0.5878 | 0.5631 | 0.5878 | 0.7667 | | No log | 5.2830 | 280 | 0.7482 | 0.5881 | 0.7482 | 0.8650 | | No log | 5.3208 | 282 | 1.0094 | 0.4469 | 1.0094 | 1.0047 | | No log | 5.3585 | 284 | 1.0070 | 0.4740 | 1.0070 | 1.0035 | | No log | 5.3962 | 286 | 0.8044 | 0.5681 | 0.8044 | 0.8969 | | No log | 5.4340 | 288 | 0.6256 | 0.5783 | 0.6256 | 0.7909 | | No log | 5.4717 | 290 | 0.6371 | 0.5231 | 0.6371 | 0.7982 | | No log | 5.5094 | 292 | 0.6817 | 0.5349 | 0.6817 | 0.8257 | | No log | 5.5472 | 294 | 0.6774 | 0.4606 | 0.6774 | 0.8230 | | No log | 5.5849 | 296 | 0.6622 | 0.4892 | 0.6622 | 0.8138 | | No log | 5.6226 | 298 | 0.6474 | 0.5210 | 0.6474 | 0.8046 | | No log | 5.6604 | 300 | 0.6703 | 0.6120 | 0.6703 | 0.8187 | | No log | 5.6981 | 302 | 0.7262 | 0.5547 | 0.7262 | 0.8522 | | No log | 5.7358 | 304 | 0.7493 | 0.5729 | 0.7493 | 0.8656 | | No log | 5.7736 | 306 | 0.6762 | 0.5918 | 0.6762 | 0.8223 | | No log | 5.8113 | 308 | 0.6068 | 0.6125 | 0.6068 | 0.7790 | | No log | 5.8491 | 310 | 0.6025 | 0.6584 | 0.6025 | 0.7762 | | No log | 5.8868 | 312 | 0.6113 | 0.5549 | 0.6113 | 0.7819 | | No log | 5.9245 | 314 | 0.6352 | 0.5165 | 0.6352 | 0.7970 | | No log | 5.9623 | 316 | 0.6500 | 0.5165 | 0.6500 | 0.8062 | | No log | 6.0 | 318 | 0.6490 | 0.5408 | 0.6490 | 0.8056 | | No log | 6.0377 | 320 | 0.6319 | 0.5889 | 0.6319 | 0.7949 | | No log | 6.0755 | 322 | 0.6134 | 0.5405 | 0.6134 | 0.7832 | | No log | 6.1132 | 324 | 0.5987 | 0.6241 | 0.5987 | 0.7738 | | No log | 6.1509 | 326 | 0.5828 | 0.5797 | 0.5828 | 0.7634 | | No log | 6.1887 | 328 | 0.5799 | 0.5386 | 0.5799 | 0.7615 | | No log | 6.2264 | 330 | 0.5754 | 0.5822 | 0.5754 | 0.7586 | | No log | 6.2642 | 332 | 0.5834 | 0.5405 | 0.5834 | 0.7638 | | No log | 6.3019 | 334 | 0.6353 | 0.5928 | 0.6353 | 0.7970 | | No log | 6.3396 | 336 | 0.7385 | 0.6072 | 0.7385 | 0.8593 | | No log | 6.3774 | 338 | 0.7217 | 0.5951 | 0.7217 | 0.8495 | | No log | 6.4151 | 340 | 0.6307 | 0.5329 | 0.6307 | 0.7942 | | No log | 6.4528 | 342 | 0.5989 | 0.6001 | 0.5989 | 0.7739 | | No log | 6.4906 | 344 | 0.6077 | 0.5874 | 0.6077 | 0.7796 | | No log | 6.5283 | 346 | 0.6065 | 0.6327 | 0.6065 | 0.7788 | | No log | 6.5660 | 348 | 0.6610 | 0.5873 | 0.6610 | 0.8130 | | No log | 6.6038 | 350 | 0.6781 | 0.5560 | 0.6781 | 0.8235 | | No log | 6.6415 | 352 | 0.6973 | 0.5793 | 0.6973 | 0.8350 | | No log | 6.6792 | 354 | 0.6195 | 0.6456 | 0.6195 | 0.7871 | | No log | 6.7170 | 356 | 0.5756 | 0.6087 | 0.5756 | 0.7587 | | No log | 6.7547 | 358 | 0.5692 | 0.6327 | 0.5692 | 0.7544 | | No log | 6.7925 | 360 | 0.5743 | 0.5759 | 0.5743 | 0.7578 | | No log | 6.8302 | 362 | 0.5942 | 0.5666 | 0.5942 | 0.7708 | | No log | 6.8679 | 364 | 0.6069 | 0.4951 | 0.6069 | 0.7791 | | No log | 6.9057 | 366 | 0.6043 | 0.5902 | 0.6043 | 0.7774 | | No log | 6.9434 | 368 | 0.5905 | 0.5989 | 0.5905 | 0.7684 | | No log | 6.9811 | 370 | 0.5857 | 0.5989 | 0.5857 | 0.7653 | | No log | 7.0189 | 372 | 0.5815 | 0.5989 | 0.5815 | 0.7625 | | No log | 7.0566 | 374 | 0.5808 | 0.5989 | 0.5808 | 0.7621 | | No log | 7.0943 | 376 | 0.5801 | 0.5989 | 0.5801 | 0.7616 | | No log | 7.1321 | 378 | 0.5731 | 0.5989 | 0.5731 | 0.7570 | | No log | 7.1698 | 380 | 0.5799 | 0.5562 | 0.5799 | 0.7615 | | No log | 7.2075 | 382 | 0.6543 | 0.6081 | 0.6543 | 0.8089 | | No log | 7.2453 | 384 | 0.6970 | 0.6269 | 0.6970 | 0.8348 | | No log | 7.2830 | 386 | 0.6492 | 0.6269 | 0.6492 | 0.8057 | | No log | 7.3208 | 388 | 0.5663 | 0.6217 | 0.5663 | 0.7525 | | No log | 7.3585 | 390 | 0.6007 | 0.6177 | 0.6007 | 0.7750 | | No log | 7.3962 | 392 | 0.6617 | 0.6240 | 0.6617 | 0.8135 | | No log | 7.4340 | 394 | 0.6379 | 0.5666 | 0.6379 | 0.7987 | | No log | 7.4717 | 396 | 0.5891 | 0.5522 | 0.5891 | 0.7675 | | No log | 7.5094 | 398 | 0.6081 | 0.5359 | 0.6081 | 0.7798 | | No log | 7.5472 | 400 | 0.6128 | 0.5486 | 0.6128 | 0.7828 | | No log | 7.5849 | 402 | 0.5782 | 0.6067 | 0.5782 | 0.7604 | | No log | 7.6226 | 404 | 0.5742 | 0.5886 | 0.5742 | 0.7578 | | No log | 7.6604 | 406 | 0.6045 | 0.5472 | 0.6045 | 0.7775 | | No log | 7.6981 | 408 | 0.5824 | 0.5522 | 0.5824 | 0.7631 | | No log | 7.7358 | 410 | 0.5554 | 0.5835 | 0.5554 | 0.7452 | | No log | 7.7736 | 412 | 0.5513 | 0.5831 | 0.5513 | 0.7425 | | No log | 7.8113 | 414 | 0.5462 | 0.6507 | 0.5462 | 0.7390 | | No log | 7.8491 | 416 | 0.5385 | 0.6788 | 0.5385 | 0.7338 | | No log | 7.8868 | 418 | 0.5515 | 0.6673 | 0.5515 | 0.7426 | | No log | 7.9245 | 420 | 0.5565 | 0.6456 | 0.5565 | 0.7460 | | No log | 7.9623 | 422 | 0.5794 | 0.5210 | 0.5794 | 0.7612 | | No log | 8.0 | 424 | 0.5959 | 0.5578 | 0.5959 | 0.7719 | | No log | 8.0377 | 426 | 0.5982 | 0.5440 | 0.5982 | 0.7734 | | No log | 8.0755 | 428 | 0.5963 | 0.5440 | 0.5963 | 0.7722 | | No log | 8.1132 | 430 | 0.5886 | 0.5703 | 0.5886 | 0.7672 | | No log | 8.1509 | 432 | 0.6235 | 0.5359 | 0.6235 | 0.7896 | | No log | 8.1887 | 434 | 0.6700 | 0.6081 | 0.6700 | 0.8185 | | No log | 8.2264 | 436 | 0.7178 | 0.6293 | 0.7178 | 0.8472 | | No log | 8.2642 | 438 | 0.6443 | 0.5706 | 0.6443 | 0.8027 | | No log | 8.3019 | 440 | 0.5743 | 0.6456 | 0.5743 | 0.7578 | | No log | 8.3396 | 442 | 0.5928 | 0.5472 | 0.5928 | 0.7699 | | No log | 8.3774 | 444 | 0.5922 | 0.5700 | 0.5922 | 0.7695 | | No log | 8.4151 | 446 | 0.6016 | 0.5809 | 0.6016 | 0.7756 | | No log | 8.4528 | 448 | 0.6520 | 0.5472 | 0.6520 | 0.8074 | | No log | 8.4906 | 450 | 0.6638 | 0.5242 | 0.6638 | 0.8147 | | No log | 8.5283 | 452 | 0.6163 | 0.5343 | 0.6163 | 0.7850 | | No log | 8.5660 | 454 | 0.6094 | 0.5357 | 0.6094 | 0.7806 | | No log | 8.6038 | 456 | 0.5751 | 0.5568 | 0.5751 | 0.7584 | | No log | 8.6415 | 458 | 0.5668 | 0.5568 | 0.5668 | 0.7528 | | No log | 8.6792 | 460 | 0.5656 | 0.5568 | 0.5656 | 0.7521 | | No log | 8.7170 | 462 | 0.6112 | 0.5581 | 0.6112 | 0.7818 | | No log | 8.7547 | 464 | 0.5987 | 0.5078 | 0.5987 | 0.7738 | | No log | 8.7925 | 466 | 0.5927 | 0.5568 | 0.5927 | 0.7699 | | No log | 8.8302 | 468 | 0.5829 | 0.5782 | 0.5829 | 0.7635 | | No log | 8.8679 | 470 | 0.5753 | 0.6636 | 0.5753 | 0.7585 | | No log | 8.9057 | 472 | 0.5633 | 0.6598 | 0.5633 | 0.7505 | | No log | 8.9434 | 474 | 0.5818 | 0.6516 | 0.5818 | 0.7628 | | No log | 8.9811 | 476 | 0.6217 | 0.6317 | 0.6217 | 0.7885 | | No log | 9.0189 | 478 | 0.6764 | 0.6130 | 0.6764 | 0.8225 | | No log | 9.0566 | 480 | 0.6117 | 0.6120 | 0.6117 | 0.7821 | | No log | 9.0943 | 482 | 0.5940 | 0.5684 | 0.5940 | 0.7707 | | No log | 9.1321 | 484 | 0.6215 | 0.5573 | 0.6215 | 0.7883 | | No log | 9.1698 | 486 | 0.6838 | 0.5816 | 0.6838 | 0.8269 | | No log | 9.2075 | 488 | 0.7662 | 0.5780 | 0.7662 | 0.8753 | | No log | 9.2453 | 490 | 0.7799 | 0.5780 | 0.7799 | 0.8831 | | No log | 9.2830 | 492 | 0.7212 | 0.5815 | 0.7212 | 0.8492 | | No log | 9.3208 | 494 | 0.6152 | 0.5945 | 0.6152 | 0.7844 | | No log | 9.3585 | 496 | 0.5838 | 0.5197 | 0.5838 | 0.7641 | | No log | 9.3962 | 498 | 0.6060 | 0.5197 | 0.6060 | 0.7785 | | 0.2158 | 9.4340 | 500 | 0.5976 | 0.5679 | 0.5976 | 0.7730 | | 0.2158 | 9.4717 | 502 | 0.5928 | 0.6128 | 0.5928 | 0.7699 | | 0.2158 | 9.5094 | 504 | 0.5963 | 0.5197 | 0.5963 | 0.7722 | | 0.2158 | 9.5472 | 506 | 0.6588 | 0.5118 | 0.6588 | 0.8117 | | 0.2158 | 9.5849 | 508 | 0.8613 | 0.4077 | 0.8613 | 0.9281 | | 0.2158 | 9.6226 | 510 | 0.9599 | 0.4534 | 0.9599 | 0.9797 | | 0.2158 | 9.6604 | 512 | 0.9416 | 0.4333 | 0.9416 | 0.9703 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
lesso/a00ad184-b206-4fc2-bdff-39878b790d1d
lesso
2025-02-04T02:19:35Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:33:07Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: a00ad184-b206-4fc2-bdff-39878b790d1d results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/a00ad184-b206-4fc2-bdff-39878b790d1d hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: ab-god01 wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a00ad184-b206-4fc2-bdff-39878b790d1d This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5118 | 0.0009 | 1 | 0.3299 | | 0.6458 | 0.0462 | 50 | 0.2378 | | 0.4444 | 0.0925 | 100 | 0.2297 | | 0.4177 | 0.1387 | 150 | 0.2221 | | 0.5608 | 0.1849 | 200 | 0.2190 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/395fb899-af8e-4d01-ae1e-33bea7c0c4c7
lesso
2025-02-04T02:18:37Z
8
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "region:us" ]
null
2025-02-04T02:05:06Z
--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: 395fb899-af8e-4d01-ae1e-33bea7c0c4c7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - fe297105e697bbbb_train_data.json ds_type: json format: custom path: /workspace/input_data/fe297105e697bbbb_train_data.json type: field_instruction: task field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/395fb899-af8e-4d01-ae1e-33bea7c0c4c7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001018 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god18/fe297105e697bbbb_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3fa43a59-7bfe-43c9-93ae-74585476d2fa wandb_project: ab-god18 wandb_run: your_name wandb_runid: 3fa43a59-7bfe-43c9-93ae-74585476d2fa warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 395fb899-af8e-4d01-ae1e-33bea7c0c4c7 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001018 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.205 | 0.0021 | 1 | 0.7869 | | 1.573 | 0.1036 | 50 | 0.6236 | | 1.6846 | 0.2073 | 100 | 0.6049 | | 1.8407 | 0.3109 | 150 | 0.6158 | | 1.7818 | 0.4145 | 200 | 0.5961 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
clarxus/68a6245c-7479-4d3f-96c1-d3d8ddae92a0
clarxus
2025-02-04T02:18:30Z
13
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T01:58:24Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 68a6245c-7479-4d3f-96c1-d3d8ddae92a0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b6e5ed8190ccb774_train_data.json ds_type: json format: custom path: /workspace/input_data/b6e5ed8190ccb774_train_data.json type: field_instruction: soru field_output: cevap format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: clarxus/68a6245c-7479-4d3f-96c1-d3d8ddae92a0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/b6e5ed8190ccb774_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 72e7b874-15da-42e2-ab22-791b74a29685 wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: 72e7b874-15da-42e2-ab22-791b74a29685 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 68a6245c-7479-4d3f-96c1-d3d8ddae92a0 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 3.9722 | | 15.6041 | 0.0047 | 9 | 3.7843 | | 14.0132 | 0.0094 | 18 | 3.4767 | | 13.6117 | 0.0141 | 27 | 3.3608 | | 12.7378 | 0.0188 | 36 | 3.2427 | | 12.8445 | 0.0235 | 45 | 3.1598 | | 12.1381 | 0.0283 | 54 | 3.1043 | | 12.2995 | 0.0330 | 63 | 3.0745 | | 11.7993 | 0.0377 | 72 | 3.0427 | | 12.1708 | 0.0424 | 81 | 3.0253 | | 11.961 | 0.0471 | 90 | 3.0197 | | 12.3234 | 0.0518 | 99 | 3.0179 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mrferr3t/aa7df70b-10d7-4194-946f-f6b02d72bea0
mrferr3t
2025-02-04T02:17:38Z
8
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-04T01:56:15Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: aa7df70b-10d7-4194-946f-f6b02d72bea0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - b177e99f9afc8918_train_data.json ds_type: json format: custom path: /workspace/input_data/b177e99f9afc8918_train_data.json type: field_input: '' field_instruction: title field_output: cleaned_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/aa7df70b-10d7-4194-946f-f6b02d72bea0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/b177e99f9afc8918_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6224a0bd-20f5-44b3-8193-1192471d4f6a wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6224a0bd-20f5-44b3-8193-1192471d4f6a warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # aa7df70b-10d7-4194-946f-f6b02d72bea0 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 252 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0025 | 1 | 2.1047 | | No log | 0.0991 | 40 | 2.1406 | | No log | 0.1983 | 80 | 2.0908 | | 7.0275 | 0.2974 | 120 | 2.0375 | | 7.0275 | 0.3965 | 160 | 2.0149 | | 4.9378 | 0.4957 | 200 | 1.9939 | | 4.9378 | 0.5948 | 240 | 1.9753 | | 4.9378 | 0.6939 | 280 | 1.9579 | | 4.5144 | 0.7931 | 320 | 1.9552 | | 4.5144 | 0.8922 | 360 | 1.9438 | | 4.3418 | 0.9913 | 400 | 1.9471 | | 4.3418 | 1.0905 | 440 | 1.9424 | | 4.3418 | 1.1896 | 480 | 1.9289 | | 4.1955 | 1.2887 | 520 | 1.9255 | | 4.1955 | 1.3879 | 560 | 1.9198 | | 4.159 | 1.4870 | 600 | 1.9194 | | 4.159 | 1.5861 | 640 | 1.9114 | | 4.159 | 1.6853 | 680 | 1.9083 | | 4.1195 | 1.7844 | 720 | 1.9021 | | 4.1195 | 1.8835 | 760 | 1.9041 | | 4.1376 | 1.9827 | 800 | 1.9057 | | 4.1376 | 2.0818 | 840 | 1.9058 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF
ThatEvan
2025-02-04T02:17:33Z
14
0
transformers
[ "transformers", "gguf", "multimodal", "llama-cpp", "gguf-my-repo", "image-text-to-text", "en", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:quantized:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-02-04T02:16:57Z
--- license: apache-2.0 language: - en pipeline_tag: image-text-to-text tags: - multimodal - llama-cpp - gguf-my-repo library_name: transformers base_model: Qwen/Qwen2-VL-7B-Instruct --- # ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen2-VL-7B-Instruct`](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF --hf-file qwen2-vl-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF --hf-file qwen2-vl-7b-instruct-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF --hf-file qwen2-vl-7b-instruct-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ThatEvan/Qwen2-VL-7B-Instruct-Q8_0-GGUF --hf-file qwen2-vl-7b-instruct-q8_0.gguf -c 2048 ```
adammandic87/53524ff7-36ed-4cce-89cb-2c69d9d55d03
adammandic87
2025-02-04T02:17:22Z
8
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-02-04T02:02:59Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 53524ff7-36ed-4cce-89cb-2c69d9d55d03 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bd2a081ce1ece142_train_data.json ds_type: json format: custom path: /workspace/input_data/bd2a081ce1ece142_train_data.json type: field_instruction: instructions field_output: outputs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: adammandic87/53524ff7-36ed-4cce-89cb-2c69d9d55d03 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/bd2a081ce1ece142_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 84541128-e99e-4412-b56a-7eb22c1c1e64 wandb_project: Birthday-SN56-34-Gradients-On-Demand wandb_run: your_name wandb_runid: 84541128-e99e-4412-b56a-7eb22c1c1e64 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 53524ff7-36ed-4cce-89cb-2c69d9d55d03 This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.3803 | | 8.7849 | 0.0043 | 50 | 2.1149 | | 8.2085 | 0.0086 | 100 | 2.0359 | | 7.558 | 0.0128 | 150 | 1.9935 | | 8.0881 | 0.0171 | 200 | 1.9553 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/803d9cc7-96ff-42c0-9d03-d1a52304d1cf
shibajustfor
2025-02-04T02:17:08Z
7
0
peft
[ "peft", "safetensors", "falcon", "axolotl", "generated_from_trainer", "custom_code", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2025-02-04T02:02:58Z
--- library_name: peft license: apache-2.0 base_model: tiiuae/falcon-7b tags: - axolotl - generated_from_trainer model-index: - name: 803d9cc7-96ff-42c0-9d03-d1a52304d1cf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: tiiuae/falcon-7b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - bd2a081ce1ece142_train_data.json ds_type: json format: custom path: /workspace/input_data/bd2a081ce1ece142_train_data.json type: field_instruction: instructions field_output: outputs format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/803d9cc7-96ff-42c0-9d03-d1a52304d1cf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/bd2a081ce1ece142_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 84541128-e99e-4412-b56a-7eb22c1c1e64 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 84541128-e99e-4412-b56a-7eb22c1c1e64 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 803d9cc7-96ff-42c0-9d03-d1a52304d1cf This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9950 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 2.3811 | | 8.7842 | 0.0043 | 50 | 2.1147 | | 8.2246 | 0.0086 | 100 | 2.0408 | | 7.6217 | 0.0128 | 150 | 2.0032 | | 8.2222 | 0.0171 | 200 | 1.9950 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
brixeus/c082654f-d952-4d0a-b187-0ff59eeaca53
brixeus
2025-02-04T02:13:31Z
10
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-02-04T01:54:58Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: c082654f-d952-4d0a-b187-0ff59eeaca53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7f4ffc4da3710d39_train_data.json ds_type: json format: custom path: /workspace/input_data/7f4ffc4da3710d39_train_data.json type: field_input: text field_instruction: task_name field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: brixeus/c082654f-d952-4d0a-b187-0ff59eeaca53 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/7f4ffc4da3710d39_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 wandb_project: Gradients-On-Three wandb_run: your_name wandb_runid: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c082654f-d952-4d0a-b187-0ff59eeaca53 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0016 | 1 | 2.9893 | | 1.707 | 0.0143 | 9 | 1.1742 | | 0.3968 | 0.0287 | 18 | 0.4188 | | 0.2675 | 0.0430 | 27 | 0.2731 | | 0.331 | 0.0574 | 36 | 0.2375 | | 0.2956 | 0.0717 | 45 | 0.2089 | | 0.2404 | 0.0861 | 54 | 0.1974 | | 0.2711 | 0.1004 | 63 | 0.1865 | | 0.1731 | 0.1147 | 72 | 0.1725 | | 0.1535 | 0.1291 | 81 | 0.1671 | | 0.199 | 0.1434 | 90 | 0.1653 | | 0.1485 | 0.1578 | 99 | 0.1649 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
CultriX/Qwen2.5-14B-Ultima
CultriX
2025-02-04T02:12:11Z
17
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:sometimesanotion/Lamarck-14B-v0.7", "base_model:merge:sometimesanotion/Lamarck-14B-v0.7", "base_model:sthenno/tempesthenno-ppo-ckpt40", "base_model:merge:sthenno/tempesthenno-ppo-ckpt40", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T02:01:40Z
--- base_model: - sometimesanotion/Lamarck-14B-v0.7-rc4 - sthenno/tempesthenno-ppo-ckpt40 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [SLERP](https://en.wikipedia.org/wiki/Slerp) merge method. ### Models Merged The following models were included in the merge: * [sometimesanotion/Lamarck-14B-v0.7-rc4](https://huggingface.co/sometimesanotion/Lamarck-14B-v0.7-rc4) * [sthenno/tempesthenno-ppo-ckpt40](https://huggingface.co/sthenno/tempesthenno-ppo-ckpt40) ### Configuration The following YAML configuration was used to produce this model: ```yaml # ============================================================================= # SuperMerge-14B-Simple # # This configuration merges only two components: # - Base Model: Provides stable foundational features. # Model: sometimesanotion/Lamarck-14B-v0.7-rc4 # # - Reasoning Module: Drives enhanced mid-layer reasoning. # Model: sthenno/tempesthenno-ppo-ckpt40 # # The merge is performed using slerp with a V-shaped interpolation curve. # Weighting across each 8-layer slice is tuned to balance core feature # preservation with advanced reasoning. # ============================================================================= name: SuperMerge-14B-Simple merge_method: slerp base_model: sometimesanotion/Lamarck-14B-v0.7-rc4 tokenizer_source: base dtype: float32 out_dtype: bfloat16 parameters: int8_mask: true # Optimize memory usage. normalize: true # Ensure weights are on a comparable scale. rescale: false # No additional rescaling necessary. # Interpolation curve for 6 slices (48 layers total): # Maintains a V-shaped emphasis for mid-layer processing. t: [0.1, 0.35, 0.85, 0.85, 0.35, 0.1] slices: # --------------------------------------------------------------------------- # Slice 1 (Layers 0-8): # - Early layers: nearly pure base model with minimal PPO influence. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [0, 8] parameters: weight: 0.95 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [0, 8] parameters: weight: 0.05 # --------------------------------------------------------------------------- # Slice 2 (Layers 8-16): # - Blend base with stronger PPO contributions to boost reasoning. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [8, 16] parameters: weight: 0.4 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [8, 16] parameters: weight: 0.6 # --------------------------------------------------------------------------- # Slice 3 (Layers 16-24): # - Mid-layer: Prioritize advanced reasoning by increasing the PPO share. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [16, 24] parameters: weight: 0.3 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [16, 24] parameters: weight: 0.7 # --------------------------------------------------------------------------- # Slice 4 (Layers 24-32): # - Continue the focus on reasoning with PPO while still retaining base traits. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [24, 32] parameters: weight: 0.35 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [24, 32] parameters: weight: 0.65 # --------------------------------------------------------------------------- # Slice 5 (Layers 32-40): # - Re-stabilize the network with a stronger base model contribution. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [32, 40] parameters: weight: 0.6 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [32, 40] parameters: weight: 0.4 # --------------------------------------------------------------------------- # Slice 6 (Layers 40-48): # - Final output layers: Maintain fluency with the base model augmented by PPO. # --------------------------------------------------------------------------- - sources: - model: sometimesanotion/Lamarck-14B-v0.7-rc4 layer_range: [40, 48] parameters: weight: 0.6 - model: sthenno/tempesthenno-ppo-ckpt40 layer_range: [40, 48] parameters: weight: 0.4 ```
mradermacher/Qwen-sce-14B-GGUF
mradermacher
2025-02-04T02:10:50Z
234
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:hotmailuser/Qwen-sce-14B", "base_model:quantized:hotmailuser/Qwen-sce-14B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T01:03:36Z
--- base_model: hotmailuser/Qwen-sce-14B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/hotmailuser/Qwen-sce-14B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q2_K.gguf) | Q2_K | 5.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q3_K_S.gguf) | Q3_K_S | 6.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q3_K_M.gguf) | Q3_K_M | 7.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q3_K_L.gguf) | Q3_K_L | 8.0 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.IQ4_XS.gguf) | IQ4_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q4_K_S.gguf) | Q4_K_S | 8.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q4_K_M.gguf) | Q4_K_M | 9.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q5_K_S.gguf) | Q5_K_S | 10.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q5_K_M.gguf) | Q5_K_M | 10.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q6_K.gguf) | Q6_K | 12.2 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen-sce-14B-GGUF/resolve/main/Qwen-sce-14B.Q8_0.gguf) | Q8_0 | 15.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
demohong/4042886f-6813-4a43-91e4-f688de321ef7
demohong
2025-02-04T02:10:24Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T00:57:11Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 4042886f-6813-4a43-91e4-f688de321ef7 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: demohong/4042886f-6813-4a43-91e4-f688de321ef7 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4042886f-6813-4a43-91e4-f688de321ef7 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6901 | 0.1850 | 200 | 0.2257 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF
mradermacher
2025-02-04T02:08:58Z
269
0
transformers
[ "transformers", "gguf", "exaone", "ko", "en", "base_model:werty1248/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO", "base_model:quantized:werty1248/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T01:39:57Z
--- base_model: werty1248/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO language: - ko - en library_name: transformers quantized_by: mradermacher tags: - exaone --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/werty1248/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q2_K.gguf) | Q2_K | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q3_K_M.gguf) | Q3_K_M | 4.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q3_K_L.gguf) | Q3_K_L | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q4_K_M.gguf) | Q4_K_M | 4.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q5_K_S.gguf) | Q5_K_S | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q5_K_M.gguf) | Q5_K_M | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q6_K.gguf) | Q6_K | 6.5 | very good quality | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.Q8_0.gguf) | Q8_0 | 8.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO-GGUF/resolve/main/EXAONE-3.5-7.8B-SFT-Translation-Style-Tag-DPO.f16.gguf) | f16 | 15.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task5_organization
MayBashendy
2025-02-04T02:08:23Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T02:01:33Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task5_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task5_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6173 - Qwk: 0.5940 - Mse: 0.6173 - Rmse: 0.7857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.2857 | 2 | 4.0411 | -0.0177 | 4.0411 | 2.0102 | | No log | 0.5714 | 4 | 2.5074 | 0.1240 | 2.5074 | 1.5835 | | No log | 0.8571 | 6 | 1.3389 | 0.0380 | 1.3389 | 1.1571 | | No log | 1.1429 | 8 | 1.0995 | 0.2023 | 1.0995 | 1.0486 | | No log | 1.4286 | 10 | 1.0774 | 0.0855 | 1.0774 | 1.0380 | | No log | 1.7143 | 12 | 1.0648 | 0.2035 | 1.0648 | 1.0319 | | No log | 2.0 | 14 | 1.0250 | 0.2591 | 1.0250 | 1.0124 | | No log | 2.2857 | 16 | 1.0037 | 0.2935 | 1.0037 | 1.0018 | | No log | 2.5714 | 18 | 0.8978 | 0.3876 | 0.8978 | 0.9475 | | No log | 2.8571 | 20 | 0.7712 | 0.5220 | 0.7712 | 0.8782 | | No log | 3.1429 | 22 | 0.7311 | 0.5663 | 0.7311 | 0.8551 | | No log | 3.4286 | 24 | 0.7272 | 0.5704 | 0.7272 | 0.8528 | | No log | 3.7143 | 26 | 1.0824 | 0.4618 | 1.0824 | 1.0404 | | No log | 4.0 | 28 | 1.1801 | 0.3748 | 1.1801 | 1.0863 | | No log | 4.2857 | 30 | 1.1940 | 0.4026 | 1.1940 | 1.0927 | | No log | 4.5714 | 32 | 0.7990 | 0.5299 | 0.7990 | 0.8939 | | No log | 4.8571 | 34 | 0.6993 | 0.5646 | 0.6993 | 0.8362 | | No log | 5.1429 | 36 | 0.7540 | 0.4872 | 0.7540 | 0.8683 | | No log | 5.4286 | 38 | 0.8317 | 0.5324 | 0.8317 | 0.9120 | | No log | 5.7143 | 40 | 1.0255 | 0.4906 | 1.0255 | 1.0127 | | No log | 6.0 | 42 | 0.7867 | 0.5912 | 0.7867 | 0.8869 | | No log | 6.2857 | 44 | 0.7651 | 0.6089 | 0.7651 | 0.8747 | | No log | 6.5714 | 46 | 0.7851 | 0.6354 | 0.7851 | 0.8860 | | No log | 6.8571 | 48 | 0.7000 | 0.6369 | 0.7000 | 0.8367 | | No log | 7.1429 | 50 | 0.6834 | 0.6398 | 0.6834 | 0.8267 | | No log | 7.4286 | 52 | 0.6507 | 0.6269 | 0.6507 | 0.8067 | | No log | 7.7143 | 54 | 0.6895 | 0.5946 | 0.6895 | 0.8304 | | No log | 8.0 | 56 | 0.8274 | 0.6263 | 0.8274 | 0.9096 | | No log | 8.2857 | 58 | 0.7030 | 0.5873 | 0.7030 | 0.8384 | | No log | 8.5714 | 60 | 0.7523 | 0.6004 | 0.7523 | 0.8674 | | No log | 8.8571 | 62 | 0.9421 | 0.5283 | 0.9421 | 0.9706 | | No log | 9.1429 | 64 | 0.7768 | 0.5805 | 0.7768 | 0.8814 | | No log | 9.4286 | 66 | 0.6776 | 0.5548 | 0.6776 | 0.8231 | | No log | 9.7143 | 68 | 0.6717 | 0.5653 | 0.6717 | 0.8196 | | No log | 10.0 | 70 | 0.7936 | 0.5997 | 0.7936 | 0.8908 | | No log | 10.2857 | 72 | 0.7547 | 0.5459 | 0.7547 | 0.8688 | | No log | 10.5714 | 74 | 0.7270 | 0.5459 | 0.7270 | 0.8527 | | No log | 10.8571 | 76 | 0.6373 | 0.5591 | 0.6373 | 0.7983 | | No log | 11.1429 | 78 | 0.6423 | 0.5506 | 0.6423 | 0.8015 | | No log | 11.4286 | 80 | 0.6805 | 0.5325 | 0.6805 | 0.8249 | | No log | 11.7143 | 82 | 0.8641 | 0.5066 | 0.8641 | 0.9295 | | No log | 12.0 | 84 | 0.7504 | 0.5770 | 0.7504 | 0.8662 | | No log | 12.2857 | 86 | 0.6421 | 0.6070 | 0.6421 | 0.8013 | | No log | 12.5714 | 88 | 0.6293 | 0.6187 | 0.6293 | 0.7933 | | No log | 12.8571 | 90 | 0.6317 | 0.6215 | 0.6317 | 0.7948 | | No log | 13.1429 | 92 | 0.6525 | 0.5817 | 0.6525 | 0.8078 | | No log | 13.4286 | 94 | 0.8344 | 0.5583 | 0.8344 | 0.9134 | | No log | 13.7143 | 96 | 0.7955 | 0.6014 | 0.7955 | 0.8919 | | No log | 14.0 | 98 | 0.6467 | 0.5964 | 0.6467 | 0.8042 | | No log | 14.2857 | 100 | 0.6482 | 0.6094 | 0.6482 | 0.8051 | | No log | 14.5714 | 102 | 0.6633 | 0.5869 | 0.6633 | 0.8144 | | No log | 14.8571 | 104 | 0.8384 | 0.6014 | 0.8384 | 0.9156 | | No log | 15.1429 | 106 | 1.0215 | 0.5094 | 1.0215 | 1.0107 | | No log | 15.4286 | 108 | 0.8825 | 0.5781 | 0.8825 | 0.9394 | | No log | 15.7143 | 110 | 0.6695 | 0.5905 | 0.6695 | 0.8182 | | No log | 16.0 | 112 | 0.6705 | 0.5239 | 0.6705 | 0.8188 | | No log | 16.2857 | 114 | 0.6724 | 0.5166 | 0.6724 | 0.8200 | | No log | 16.5714 | 116 | 0.7416 | 0.5357 | 0.7416 | 0.8612 | | No log | 16.8571 | 118 | 0.8245 | 0.6043 | 0.8245 | 0.9080 | | No log | 17.1429 | 120 | 0.7397 | 0.5676 | 0.7397 | 0.8601 | | No log | 17.4286 | 122 | 0.6358 | 0.5349 | 0.6358 | 0.7974 | | No log | 17.7143 | 124 | 0.6519 | 0.6560 | 0.6519 | 0.8074 | | No log | 18.0 | 126 | 0.6405 | 0.6777 | 0.6405 | 0.8003 | | No log | 18.2857 | 128 | 0.6314 | 0.6104 | 0.6314 | 0.7946 | | No log | 18.5714 | 130 | 0.7573 | 0.6325 | 0.7573 | 0.8702 | | No log | 18.8571 | 132 | 0.7665 | 0.6173 | 0.7665 | 0.8755 | | No log | 19.1429 | 134 | 0.7407 | 0.5553 | 0.7407 | 0.8607 | | No log | 19.4286 | 136 | 0.6578 | 0.5770 | 0.6578 | 0.8110 | | No log | 19.7143 | 138 | 0.6158 | 0.5713 | 0.6158 | 0.7848 | | No log | 20.0 | 140 | 0.6543 | 0.6209 | 0.6543 | 0.8089 | | No log | 20.2857 | 142 | 0.6614 | 0.6209 | 0.6614 | 0.8132 | | No log | 20.5714 | 144 | 0.6205 | 0.6028 | 0.6205 | 0.7877 | | No log | 20.8571 | 146 | 0.6641 | 0.5665 | 0.6641 | 0.8149 | | No log | 21.1429 | 148 | 0.7248 | 0.5676 | 0.7248 | 0.8513 | | No log | 21.4286 | 150 | 0.6624 | 0.5862 | 0.6624 | 0.8139 | | No log | 21.7143 | 152 | 0.6215 | 0.6186 | 0.6215 | 0.7884 | | No log | 22.0 | 154 | 0.6231 | 0.6196 | 0.6231 | 0.7893 | | No log | 22.2857 | 156 | 0.6269 | 0.5911 | 0.6269 | 0.7918 | | No log | 22.5714 | 158 | 0.6159 | 0.6154 | 0.6159 | 0.7848 | | No log | 22.8571 | 160 | 0.6527 | 0.5446 | 0.6527 | 0.8079 | | No log | 23.1429 | 162 | 0.6590 | 0.5566 | 0.6590 | 0.8118 | | No log | 23.4286 | 164 | 0.6148 | 0.6246 | 0.6148 | 0.7841 | | No log | 23.7143 | 166 | 0.6160 | 0.6606 | 0.6160 | 0.7849 | | No log | 24.0 | 168 | 0.6191 | 0.6606 | 0.6191 | 0.7868 | | No log | 24.2857 | 170 | 0.6525 | 0.6334 | 0.6525 | 0.8078 | | No log | 24.5714 | 172 | 0.7196 | 0.5860 | 0.7196 | 0.8483 | | No log | 24.8571 | 174 | 0.6793 | 0.6490 | 0.6793 | 0.8242 | | No log | 25.1429 | 176 | 0.6187 | 0.6606 | 0.6187 | 0.7866 | | No log | 25.4286 | 178 | 0.6025 | 0.6426 | 0.6025 | 0.7762 | | No log | 25.7143 | 180 | 0.6130 | 0.6426 | 0.6130 | 0.7830 | | No log | 26.0 | 182 | 0.6714 | 0.5459 | 0.6714 | 0.8194 | | No log | 26.2857 | 184 | 0.7240 | 0.6043 | 0.7240 | 0.8509 | | No log | 26.5714 | 186 | 0.7571 | 0.5709 | 0.7571 | 0.8701 | | No log | 26.8571 | 188 | 0.6859 | 0.5645 | 0.6859 | 0.8282 | | No log | 27.1429 | 190 | 0.6325 | 0.5955 | 0.6325 | 0.7953 | | No log | 27.4286 | 192 | 0.6464 | 0.6398 | 0.6464 | 0.8040 | | No log | 27.7143 | 194 | 0.6351 | 0.6429 | 0.6351 | 0.7969 | | No log | 28.0 | 196 | 0.6261 | 0.6035 | 0.6261 | 0.7912 | | No log | 28.2857 | 198 | 0.6621 | 0.5759 | 0.6621 | 0.8137 | | No log | 28.5714 | 200 | 0.6848 | 0.5459 | 0.6848 | 0.8275 | | No log | 28.8571 | 202 | 0.6610 | 0.5446 | 0.6610 | 0.8130 | | No log | 29.1429 | 204 | 0.6232 | 0.5971 | 0.6232 | 0.7895 | | No log | 29.4286 | 206 | 0.6101 | 0.6167 | 0.6101 | 0.7811 | | No log | 29.7143 | 208 | 0.6101 | 0.6215 | 0.6101 | 0.7811 | | No log | 30.0 | 210 | 0.6112 | 0.6164 | 0.6112 | 0.7818 | | No log | 30.2857 | 212 | 0.6341 | 0.5653 | 0.6341 | 0.7963 | | No log | 30.5714 | 214 | 0.6348 | 0.5536 | 0.6348 | 0.7968 | | No log | 30.8571 | 216 | 0.6114 | 0.6144 | 0.6114 | 0.7819 | | No log | 31.1429 | 218 | 0.6003 | 0.6452 | 0.6003 | 0.7748 | | No log | 31.4286 | 220 | 0.6014 | 0.6555 | 0.6014 | 0.7755 | | No log | 31.7143 | 222 | 0.6052 | 0.6452 | 0.6052 | 0.7779 | | No log | 32.0 | 224 | 0.6108 | 0.5737 | 0.6108 | 0.7815 | | No log | 32.2857 | 226 | 0.6891 | 0.5686 | 0.6891 | 0.8302 | | No log | 32.5714 | 228 | 0.7466 | 0.6025 | 0.7466 | 0.8640 | | No log | 32.8571 | 230 | 0.6946 | 0.5553 | 0.6946 | 0.8334 | | No log | 33.1429 | 232 | 0.6156 | 0.6144 | 0.6156 | 0.7846 | | No log | 33.4286 | 234 | 0.6046 | 0.6275 | 0.6046 | 0.7776 | | No log | 33.7143 | 236 | 0.6030 | 0.6275 | 0.6030 | 0.7765 | | No log | 34.0 | 238 | 0.6072 | 0.6452 | 0.6072 | 0.7792 | | No log | 34.2857 | 240 | 0.6364 | 0.6052 | 0.6364 | 0.7977 | | No log | 34.5714 | 242 | 0.6869 | 0.6014 | 0.6869 | 0.8288 | | No log | 34.8571 | 244 | 0.6785 | 0.6377 | 0.6785 | 0.8237 | | No log | 35.1429 | 246 | 0.6224 | 0.5737 | 0.6224 | 0.7889 | | No log | 35.4286 | 248 | 0.6174 | 0.5945 | 0.6174 | 0.7857 | | No log | 35.7143 | 250 | 0.6454 | 0.5869 | 0.6454 | 0.8034 | | No log | 36.0 | 252 | 0.6353 | 0.5614 | 0.6353 | 0.7970 | | No log | 36.2857 | 254 | 0.6112 | 0.6364 | 0.6112 | 0.7818 | | No log | 36.5714 | 256 | 0.6165 | 0.5748 | 0.6165 | 0.7852 | | No log | 36.8571 | 258 | 0.6368 | 0.5865 | 0.6368 | 0.7980 | | No log | 37.1429 | 260 | 0.6268 | 0.5865 | 0.6268 | 0.7917 | | No log | 37.4286 | 262 | 0.6091 | 0.6144 | 0.6091 | 0.7804 | | No log | 37.7143 | 264 | 0.6062 | 0.6426 | 0.6062 | 0.7786 | | No log | 38.0 | 266 | 0.6107 | 0.6068 | 0.6107 | 0.7815 | | No log | 38.2857 | 268 | 0.6050 | 0.6452 | 0.6050 | 0.7778 | | No log | 38.5714 | 270 | 0.6054 | 0.6325 | 0.6054 | 0.7781 | | No log | 38.8571 | 272 | 0.6179 | 0.5852 | 0.6179 | 0.7861 | | No log | 39.1429 | 274 | 0.6324 | 0.6184 | 0.6324 | 0.7952 | | No log | 39.4286 | 276 | 0.6154 | 0.5650 | 0.6154 | 0.7845 | | No log | 39.7143 | 278 | 0.6099 | 0.6078 | 0.6099 | 0.7809 | | No log | 40.0 | 280 | 0.6126 | 0.6057 | 0.6126 | 0.7827 | | No log | 40.2857 | 282 | 0.6225 | 0.5943 | 0.6225 | 0.7890 | | No log | 40.5714 | 284 | 0.6265 | 0.5610 | 0.6265 | 0.7915 | | No log | 40.8571 | 286 | 0.6268 | 0.5402 | 0.6268 | 0.7917 | | No log | 41.1429 | 288 | 0.6307 | 0.5301 | 0.6307 | 0.7942 | | No log | 41.4286 | 290 | 0.6306 | 0.5650 | 0.6306 | 0.7941 | | No log | 41.7143 | 292 | 0.6274 | 0.5650 | 0.6274 | 0.7921 | | No log | 42.0 | 294 | 0.6513 | 0.5999 | 0.6513 | 0.8070 | | No log | 42.2857 | 296 | 0.6633 | 0.5917 | 0.6633 | 0.8144 | | No log | 42.5714 | 298 | 0.6596 | 0.5917 | 0.6596 | 0.8122 | | No log | 42.8571 | 300 | 0.6227 | 0.5961 | 0.6227 | 0.7891 | | No log | 43.1429 | 302 | 0.6064 | 0.6259 | 0.6064 | 0.7787 | | No log | 43.4286 | 304 | 0.6075 | 0.6426 | 0.6075 | 0.7794 | | No log | 43.7143 | 306 | 0.6260 | 0.5737 | 0.6260 | 0.7912 | | No log | 44.0 | 308 | 0.6470 | 0.5862 | 0.6470 | 0.8043 | | No log | 44.2857 | 310 | 0.6992 | 0.6004 | 0.6992 | 0.8362 | | No log | 44.5714 | 312 | 0.7056 | 0.5946 | 0.7056 | 0.8400 | | No log | 44.8571 | 314 | 0.6508 | 0.5748 | 0.6508 | 0.8067 | | No log | 45.1429 | 316 | 0.6180 | 0.6606 | 0.6180 | 0.7861 | | No log | 45.4286 | 318 | 0.6216 | 0.6606 | 0.6216 | 0.7884 | | No log | 45.7143 | 320 | 0.6345 | 0.6482 | 0.6345 | 0.7966 | | No log | 46.0 | 322 | 0.6901 | 0.6003 | 0.6901 | 0.8307 | | No log | 46.2857 | 324 | 0.7971 | 0.6382 | 0.7971 | 0.8928 | | No log | 46.5714 | 326 | 0.8008 | 0.6382 | 0.8008 | 0.8949 | | No log | 46.8571 | 328 | 0.7238 | 0.6100 | 0.7238 | 0.8507 | | No log | 47.1429 | 330 | 0.6473 | 0.6444 | 0.6473 | 0.8046 | | No log | 47.4286 | 332 | 0.6077 | 0.6526 | 0.6077 | 0.7795 | | No log | 47.7143 | 334 | 0.6130 | 0.6001 | 0.6130 | 0.7829 | | No log | 48.0 | 336 | 0.6109 | 0.6018 | 0.6109 | 0.7816 | | No log | 48.2857 | 338 | 0.6014 | 0.6364 | 0.6014 | 0.7755 | | No log | 48.5714 | 340 | 0.6152 | 0.5843 | 0.6152 | 0.7843 | | No log | 48.8571 | 342 | 0.6673 | 0.5686 | 0.6673 | 0.8169 | | No log | 49.1429 | 344 | 0.7147 | 0.6032 | 0.7147 | 0.8454 | | No log | 49.4286 | 346 | 0.7329 | 0.5881 | 0.7329 | 0.8561 | | No log | 49.7143 | 348 | 0.6940 | 0.5770 | 0.6940 | 0.8331 | | No log | 50.0 | 350 | 0.6400 | 0.5966 | 0.6400 | 0.8000 | | No log | 50.2857 | 352 | 0.6171 | 0.6426 | 0.6171 | 0.7856 | | No log | 50.5714 | 354 | 0.6120 | 0.6526 | 0.6120 | 0.7823 | | No log | 50.8571 | 356 | 0.6075 | 0.6526 | 0.6075 | 0.7794 | | No log | 51.1429 | 358 | 0.6039 | 0.6526 | 0.6039 | 0.7771 | | No log | 51.4286 | 360 | 0.6010 | 0.6526 | 0.6010 | 0.7753 | | No log | 51.7143 | 362 | 0.6096 | 0.6032 | 0.6096 | 0.7807 | | No log | 52.0 | 364 | 0.6431 | 0.5887 | 0.6431 | 0.8019 | | No log | 52.2857 | 366 | 0.6792 | 0.6341 | 0.6792 | 0.8241 | | No log | 52.5714 | 368 | 0.6657 | 0.6488 | 0.6657 | 0.8159 | | No log | 52.8571 | 370 | 0.6297 | 0.6052 | 0.6297 | 0.7936 | | No log | 53.1429 | 372 | 0.6042 | 0.6615 | 0.6042 | 0.7773 | | No log | 53.4286 | 374 | 0.5968 | 0.6325 | 0.5968 | 0.7725 | | No log | 53.7143 | 376 | 0.5944 | 0.6325 | 0.5944 | 0.7710 | | No log | 54.0 | 378 | 0.5931 | 0.6426 | 0.5931 | 0.7701 | | No log | 54.2857 | 380 | 0.5922 | 0.6237 | 0.5922 | 0.7696 | | No log | 54.5714 | 382 | 0.5946 | 0.6364 | 0.5946 | 0.7711 | | No log | 54.8571 | 384 | 0.6008 | 0.6354 | 0.6008 | 0.7751 | | No log | 55.1429 | 386 | 0.6037 | 0.6470 | 0.6037 | 0.7770 | | No log | 55.4286 | 388 | 0.6032 | 0.5747 | 0.6032 | 0.7766 | | No log | 55.7143 | 390 | 0.5994 | 0.6364 | 0.5994 | 0.7742 | | No log | 56.0 | 392 | 0.5937 | 0.6364 | 0.5937 | 0.7705 | | No log | 56.2857 | 394 | 0.5907 | 0.6526 | 0.5907 | 0.7686 | | No log | 56.5714 | 396 | 0.5937 | 0.6508 | 0.5937 | 0.7705 | | No log | 56.8571 | 398 | 0.6097 | 0.6508 | 0.6097 | 0.7808 | | No log | 57.1429 | 400 | 0.6238 | 0.5940 | 0.6238 | 0.7898 | | No log | 57.4286 | 402 | 0.6393 | 0.5940 | 0.6393 | 0.7996 | | No log | 57.7143 | 404 | 0.6436 | 0.6377 | 0.6436 | 0.8022 | | No log | 58.0 | 406 | 0.6572 | 0.6377 | 0.6572 | 0.8107 | | No log | 58.2857 | 408 | 0.6916 | 0.6436 | 0.6916 | 0.8316 | | No log | 58.5714 | 410 | 0.6700 | 0.6353 | 0.6700 | 0.8185 | | No log | 58.8571 | 412 | 0.6326 | 0.6265 | 0.6326 | 0.7954 | | No log | 59.1429 | 414 | 0.6042 | 0.6508 | 0.6042 | 0.7773 | | No log | 59.4286 | 416 | 0.5994 | 0.6426 | 0.5994 | 0.7742 | | No log | 59.7143 | 418 | 0.5984 | 0.6325 | 0.5984 | 0.7736 | | No log | 60.0 | 420 | 0.5994 | 0.6325 | 0.5994 | 0.7742 | | No log | 60.2857 | 422 | 0.6045 | 0.6334 | 0.6045 | 0.7775 | | No log | 60.5714 | 424 | 0.6159 | 0.6265 | 0.6159 | 0.7848 | | No log | 60.8571 | 426 | 0.6224 | 0.6265 | 0.6224 | 0.7889 | | No log | 61.1429 | 428 | 0.6214 | 0.6070 | 0.6214 | 0.7883 | | No log | 61.4286 | 430 | 0.6114 | 0.6144 | 0.6114 | 0.7819 | | No log | 61.7143 | 432 | 0.6046 | 0.6144 | 0.6046 | 0.7776 | | No log | 62.0 | 434 | 0.6050 | 0.6144 | 0.6050 | 0.7778 | | No log | 62.2857 | 436 | 0.6153 | 0.6144 | 0.6153 | 0.7844 | | No log | 62.5714 | 438 | 0.6107 | 0.6144 | 0.6107 | 0.7815 | | No log | 62.8571 | 440 | 0.6071 | 0.6144 | 0.6071 | 0.7792 | | No log | 63.1429 | 442 | 0.6025 | 0.6144 | 0.6025 | 0.7762 | | No log | 63.4286 | 444 | 0.6019 | 0.6144 | 0.6019 | 0.7758 | | No log | 63.7143 | 446 | 0.6092 | 0.6334 | 0.6092 | 0.7805 | | No log | 64.0 | 448 | 0.6424 | 0.6184 | 0.6424 | 0.8015 | | No log | 64.2857 | 450 | 0.6696 | 0.6275 | 0.6696 | 0.8183 | | No log | 64.5714 | 452 | 0.6633 | 0.6275 | 0.6633 | 0.8144 | | No log | 64.8571 | 454 | 0.6482 | 0.6164 | 0.6482 | 0.8051 | | No log | 65.1429 | 456 | 0.6270 | 0.6311 | 0.6270 | 0.7918 | | No log | 65.4286 | 458 | 0.6185 | 0.6334 | 0.6185 | 0.7865 | | No log | 65.7143 | 460 | 0.6108 | 0.6334 | 0.6108 | 0.7816 | | No log | 66.0 | 462 | 0.6094 | 0.6368 | 0.6094 | 0.7807 | | No log | 66.2857 | 464 | 0.6159 | 0.6184 | 0.6159 | 0.7848 | | No log | 66.5714 | 466 | 0.6185 | 0.5770 | 0.6185 | 0.7865 | | No log | 66.8571 | 468 | 0.6113 | 0.6368 | 0.6113 | 0.7818 | | No log | 67.1429 | 470 | 0.6045 | 0.6334 | 0.6045 | 0.7775 | | No log | 67.4286 | 472 | 0.6005 | 0.6334 | 0.6005 | 0.7749 | | No log | 67.7143 | 474 | 0.5951 | 0.6144 | 0.5951 | 0.7714 | | No log | 68.0 | 476 | 0.5959 | 0.6144 | 0.5959 | 0.7720 | | No log | 68.2857 | 478 | 0.5924 | 0.6144 | 0.5924 | 0.7697 | | No log | 68.5714 | 480 | 0.5903 | 0.6246 | 0.5903 | 0.7683 | | No log | 68.8571 | 482 | 0.5896 | 0.6246 | 0.5896 | 0.7678 | | No log | 69.1429 | 484 | 0.5890 | 0.6246 | 0.5890 | 0.7675 | | No log | 69.4286 | 486 | 0.5888 | 0.6246 | 0.5888 | 0.7673 | | No log | 69.7143 | 488 | 0.5888 | 0.6215 | 0.5888 | 0.7673 | | No log | 70.0 | 490 | 0.5895 | 0.6215 | 0.5895 | 0.7678 | | No log | 70.2857 | 492 | 0.5910 | 0.6237 | 0.5910 | 0.7688 | | No log | 70.5714 | 494 | 0.5911 | 0.5995 | 0.5911 | 0.7688 | | No log | 70.8571 | 496 | 0.5863 | 0.6237 | 0.5863 | 0.7657 | | No log | 71.1429 | 498 | 0.5870 | 0.6144 | 0.5870 | 0.7662 | | 0.1606 | 71.4286 | 500 | 0.5935 | 0.6144 | 0.5935 | 0.7704 | | 0.1606 | 71.7143 | 502 | 0.6017 | 0.6144 | 0.6017 | 0.7757 | | 0.1606 | 72.0 | 504 | 0.6197 | 0.6761 | 0.6197 | 0.7872 | | 0.1606 | 72.2857 | 506 | 0.6340 | 0.6377 | 0.6340 | 0.7962 | | 0.1606 | 72.5714 | 508 | 0.6478 | 0.6377 | 0.6478 | 0.8049 | | 0.1606 | 72.8571 | 510 | 0.6764 | 0.6204 | 0.6764 | 0.8224 | | 0.1606 | 73.1429 | 512 | 0.6861 | 0.6173 | 0.6861 | 0.8283 | | 0.1606 | 73.4286 | 514 | 0.6691 | 0.6353 | 0.6691 | 0.8180 | | 0.1606 | 73.7143 | 516 | 0.6439 | 0.6653 | 0.6439 | 0.8024 | | 0.1606 | 74.0 | 518 | 0.6308 | 0.6653 | 0.6308 | 0.7942 | | 0.1606 | 74.2857 | 520 | 0.6349 | 0.6653 | 0.6349 | 0.7968 | | 0.1606 | 74.5714 | 522 | 0.6511 | 0.6729 | 0.6511 | 0.8069 | | 0.1606 | 74.8571 | 524 | 0.6635 | 0.6353 | 0.6635 | 0.8145 | | 0.1606 | 75.1429 | 526 | 0.6741 | 0.6353 | 0.6741 | 0.8210 | | 0.1606 | 75.4286 | 528 | 0.6751 | 0.6461 | 0.6751 | 0.8216 | | 0.1606 | 75.7143 | 530 | 0.6515 | 0.6377 | 0.6515 | 0.8071 | | 0.1606 | 76.0 | 532 | 0.6210 | 0.6653 | 0.6210 | 0.7881 | | 0.1606 | 76.2857 | 534 | 0.6026 | 0.6144 | 0.6026 | 0.7763 | | 0.1606 | 76.5714 | 536 | 0.5961 | 0.6164 | 0.5961 | 0.7720 | | 0.1606 | 76.8571 | 538 | 0.5950 | 0.6164 | 0.5950 | 0.7713 | | 0.1606 | 77.1429 | 540 | 0.5968 | 0.6164 | 0.5968 | 0.7726 | | 0.1606 | 77.4286 | 542 | 0.6002 | 0.6164 | 0.6002 | 0.7747 | | 0.1606 | 77.7143 | 544 | 0.6053 | 0.5748 | 0.6053 | 0.7780 | | 0.1606 | 78.0 | 546 | 0.6043 | 0.5737 | 0.6043 | 0.7774 | | 0.1606 | 78.2857 | 548 | 0.6059 | 0.5940 | 0.6059 | 0.7784 | | 0.1606 | 78.5714 | 550 | 0.6045 | 0.6334 | 0.6045 | 0.7775 | | 0.1606 | 78.8571 | 552 | 0.6047 | 0.6334 | 0.6047 | 0.7776 | | 0.1606 | 79.1429 | 554 | 0.6077 | 0.6334 | 0.6077 | 0.7795 | | 0.1606 | 79.4286 | 556 | 0.6104 | 0.6334 | 0.6104 | 0.7813 | | 0.1606 | 79.7143 | 558 | 0.6158 | 0.6334 | 0.6158 | 0.7848 | | 0.1606 | 80.0 | 560 | 0.6184 | 0.6334 | 0.6184 | 0.7864 | | 0.1606 | 80.2857 | 562 | 0.6272 | 0.6334 | 0.6272 | 0.7920 | | 0.1606 | 80.5714 | 564 | 0.6261 | 0.6334 | 0.6261 | 0.7912 | | 0.1606 | 80.8571 | 566 | 0.6155 | 0.6334 | 0.6155 | 0.7845 | | 0.1606 | 81.1429 | 568 | 0.6090 | 0.6334 | 0.6090 | 0.7804 | | 0.1606 | 81.4286 | 570 | 0.6056 | 0.5940 | 0.6056 | 0.7782 | | 0.1606 | 81.7143 | 572 | 0.6059 | 0.5737 | 0.6059 | 0.7784 | | 0.1606 | 82.0 | 574 | 0.6031 | 0.5748 | 0.6031 | 0.7766 | | 0.1606 | 82.2857 | 576 | 0.6006 | 0.5854 | 0.6006 | 0.7750 | | 0.1606 | 82.5714 | 578 | 0.5996 | 0.6269 | 0.5996 | 0.7744 | | 0.1606 | 82.8571 | 580 | 0.5991 | 0.6269 | 0.5991 | 0.7740 | | 0.1606 | 83.1429 | 582 | 0.5989 | 0.6269 | 0.5989 | 0.7739 | | 0.1606 | 83.4286 | 584 | 0.5983 | 0.6269 | 0.5983 | 0.7735 | | 0.1606 | 83.7143 | 586 | 0.5975 | 0.6269 | 0.5975 | 0.7730 | | 0.1606 | 84.0 | 588 | 0.5967 | 0.6269 | 0.5967 | 0.7724 | | 0.1606 | 84.2857 | 590 | 0.5968 | 0.6269 | 0.5968 | 0.7725 | | 0.1606 | 84.5714 | 592 | 0.5984 | 0.6246 | 0.5984 | 0.7736 | | 0.1606 | 84.8571 | 594 | 0.6002 | 0.6435 | 0.6002 | 0.7747 | | 0.1606 | 85.1429 | 596 | 0.6041 | 0.6334 | 0.6041 | 0.7772 | | 0.1606 | 85.4286 | 598 | 0.6116 | 0.6334 | 0.6116 | 0.7820 | | 0.1606 | 85.7143 | 600 | 0.6178 | 0.6334 | 0.6178 | 0.7860 | | 0.1606 | 86.0 | 602 | 0.6189 | 0.6334 | 0.6189 | 0.7867 | | 0.1606 | 86.2857 | 604 | 0.6163 | 0.6334 | 0.6163 | 0.7850 | | 0.1606 | 86.5714 | 606 | 0.6123 | 0.6334 | 0.6123 | 0.7825 | | 0.1606 | 86.8571 | 608 | 0.6119 | 0.6334 | 0.6119 | 0.7822 | | 0.1606 | 87.1429 | 610 | 0.6092 | 0.6334 | 0.6092 | 0.7805 | | 0.1606 | 87.4286 | 612 | 0.6074 | 0.6334 | 0.6074 | 0.7793 | | 0.1606 | 87.7143 | 614 | 0.6059 | 0.6334 | 0.6059 | 0.7784 | | 0.1606 | 88.0 | 616 | 0.6037 | 0.6334 | 0.6037 | 0.7770 | | 0.1606 | 88.2857 | 618 | 0.6008 | 0.6334 | 0.6008 | 0.7751 | | 0.1606 | 88.5714 | 620 | 0.5978 | 0.6334 | 0.5978 | 0.7732 | | 0.1606 | 88.8571 | 622 | 0.5963 | 0.6246 | 0.5963 | 0.7722 | | 0.1606 | 89.1429 | 624 | 0.5965 | 0.6246 | 0.5965 | 0.7723 | | 0.1606 | 89.4286 | 626 | 0.5975 | 0.6144 | 0.5975 | 0.7730 | | 0.1606 | 89.7143 | 628 | 0.6004 | 0.6144 | 0.6004 | 0.7748 | | 0.1606 | 90.0 | 630 | 0.6030 | 0.6334 | 0.6030 | 0.7765 | | 0.1606 | 90.2857 | 632 | 0.6047 | 0.6334 | 0.6047 | 0.7777 | | 0.1606 | 90.5714 | 634 | 0.6045 | 0.6334 | 0.6045 | 0.7775 | | 0.1606 | 90.8571 | 636 | 0.6037 | 0.6334 | 0.6037 | 0.7770 | | 0.1606 | 91.1429 | 638 | 0.6039 | 0.6334 | 0.6039 | 0.7771 | | 0.1606 | 91.4286 | 640 | 0.6062 | 0.6334 | 0.6062 | 0.7786 | | 0.1606 | 91.7143 | 642 | 0.6113 | 0.5940 | 0.6113 | 0.7818 | | 0.1606 | 92.0 | 644 | 0.6155 | 0.5940 | 0.6155 | 0.7845 | | 0.1606 | 92.2857 | 646 | 0.6165 | 0.5940 | 0.6165 | 0.7851 | | 0.1606 | 92.5714 | 648 | 0.6176 | 0.5940 | 0.6176 | 0.7859 | | 0.1606 | 92.8571 | 650 | 0.6173 | 0.5940 | 0.6173 | 0.7857 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mlfoundations-dev/llama3-1_8b_r1_annotated_aops
mlfoundations-dev
2025-02-04T02:08:08Z
357
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T20:45:31Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_r1_annotated_aops results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_r1_annotated_aops This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/r1_annotated_aops dataset. It achieves the following results on the evaluation set: - Loss: 0.6034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - total_train_batch_size: 512 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.6827 | 1.0 | 33 | 0.6528 | | 0.5976 | 2.0 | 66 | 0.6136 | | 0.5482 | 3.0 | 99 | 0.6034 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
kostiantynk-out/51571237-142e-4c33-bece-51111e57a344
kostiantynk-out
2025-02-04T02:05:14Z
10
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-04T02:02:43Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: 51571237-142e-4c33-bece-51111e57a344 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b177e99f9afc8918_train_data.json ds_type: json format: custom path: /workspace/input_data/b177e99f9afc8918_train_data.json type: field_input: '' field_instruction: title field_output: cleaned_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: kostiantynk-out/51571237-142e-4c33-bece-51111e57a344 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/b177e99f9afc8918_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6224a0bd-20f5-44b3-8193-1192471d4f6a wandb_project: Mine-SN56-1-Gradients-On-Demand wandb_run: your_name wandb_runid: 6224a0bd-20f5-44b3-8193-1192471d4f6a warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 51571237-142e-4c33-bece-51111e57a344 This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.1054 | | 5.5429 | 0.0391 | 63 | 2.0672 | | 5.2538 | 0.0781 | 126 | 2.0365 | | 4.9491 | 0.1172 | 189 | 2.0195 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Chaitanya14/Financial_Agent
Chaitanya14
2025-02-04T02:01:44Z
10
0
peft
[ "peft", "safetensors", "base_model:bigscience/bloom-7b1", "base_model:adapter:bigscience/bloom-7b1", "region:us" ]
null
2025-01-09T17:53:45Z
--- base_model: bigscience/bloom-7b1 library_name: peft --- ## How to Get Started with the Model Use the code below to get started with the model. ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "Chaitanya14/Financial_Agent" config = PeftConfig.from_pretrained(peft_model_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model, peft_model_id) ``` - PEFT 0.10.1.dev0
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task2_organization
MayBashendy
2025-02-04T02:01:09Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T01:55:17Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8610 - Qwk: 0.3970 - Mse: 0.8610 - Rmse: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0185 | 2 | 4.8061 | 0.0010 | 4.8061 | 2.1923 | | No log | 0.0370 | 4 | 2.6276 | 0.0051 | 2.6276 | 1.6210 | | No log | 0.0556 | 6 | 1.6356 | 0.0682 | 1.6356 | 1.2789 | | No log | 0.0741 | 8 | 1.3581 | 0.0958 | 1.3581 | 1.1654 | | No log | 0.0926 | 10 | 1.4611 | -0.0494 | 1.4611 | 1.2088 | | No log | 0.1111 | 12 | 1.4770 | -0.1091 | 1.4770 | 1.2153 | | No log | 0.1296 | 14 | 1.3101 | 0.0847 | 1.3101 | 1.1446 | | No log | 0.1481 | 16 | 1.3902 | 0.0253 | 1.3902 | 1.1791 | | No log | 0.1667 | 18 | 1.4876 | 0.1288 | 1.4876 | 1.2197 | | No log | 0.1852 | 20 | 1.3910 | 0.1507 | 1.3910 | 1.1794 | | No log | 0.2037 | 22 | 1.2287 | 0.0788 | 1.2287 | 1.1085 | | No log | 0.2222 | 24 | 1.1899 | 0.1043 | 1.1899 | 1.0908 | | No log | 0.2407 | 26 | 1.1645 | 0.1443 | 1.1645 | 1.0791 | | No log | 0.2593 | 28 | 1.1629 | 0.1344 | 1.1629 | 1.0784 | | No log | 0.2778 | 30 | 1.1827 | 0.1344 | 1.1827 | 1.0875 | | No log | 0.2963 | 32 | 1.2156 | 0.0977 | 1.2156 | 1.1025 | | No log | 0.3148 | 34 | 1.2314 | 0.1232 | 1.2314 | 1.1097 | | No log | 0.3333 | 36 | 1.4842 | 0.0537 | 1.4842 | 1.2183 | | No log | 0.3519 | 38 | 1.6229 | 0.1032 | 1.6229 | 1.2739 | | No log | 0.3704 | 40 | 1.3818 | 0.1530 | 1.3818 | 1.1755 | | No log | 0.3889 | 42 | 1.2727 | 0.2446 | 1.2727 | 1.1281 | | No log | 0.4074 | 44 | 1.1019 | 0.2168 | 1.1019 | 1.0497 | | No log | 0.4259 | 46 | 1.0527 | 0.3066 | 1.0527 | 1.0260 | | No log | 0.4444 | 48 | 0.9995 | 0.3695 | 0.9995 | 0.9997 | | No log | 0.4630 | 50 | 0.9803 | 0.3596 | 0.9803 | 0.9901 | | No log | 0.4815 | 52 | 0.9745 | 0.3346 | 0.9745 | 0.9872 | | No log | 0.5 | 54 | 0.9892 | 0.3154 | 0.9892 | 0.9946 | | No log | 0.5185 | 56 | 0.9996 | 0.4318 | 0.9996 | 0.9998 | | No log | 0.5370 | 58 | 1.0600 | 0.2883 | 1.0600 | 1.0296 | | No log | 0.5556 | 60 | 1.0838 | 0.2877 | 1.0838 | 1.0411 | | No log | 0.5741 | 62 | 1.0717 | 0.3430 | 1.0717 | 1.0352 | | No log | 0.5926 | 64 | 1.0834 | 0.2431 | 1.0834 | 1.0409 | | No log | 0.6111 | 66 | 1.0516 | 0.2709 | 1.0516 | 1.0255 | | No log | 0.6296 | 68 | 1.0386 | 0.2871 | 1.0386 | 1.0191 | | No log | 0.6481 | 70 | 1.0151 | 0.3294 | 1.0151 | 1.0075 | | No log | 0.6667 | 72 | 1.0660 | 0.2938 | 1.0660 | 1.0325 | | No log | 0.6852 | 74 | 1.2035 | 0.4045 | 1.2035 | 1.0970 | | No log | 0.7037 | 76 | 1.2189 | 0.4033 | 1.2189 | 1.1040 | | No log | 0.7222 | 78 | 1.0613 | 0.4005 | 1.0613 | 1.0302 | | No log | 0.7407 | 80 | 0.9840 | 0.3457 | 0.9840 | 0.9920 | | No log | 0.7593 | 82 | 0.9527 | 0.4260 | 0.9527 | 0.9761 | | No log | 0.7778 | 84 | 0.9423 | 0.4260 | 0.9423 | 0.9707 | | No log | 0.7963 | 86 | 0.9502 | 0.3814 | 0.9502 | 0.9748 | | No log | 0.8148 | 88 | 0.9627 | 0.3798 | 0.9627 | 0.9812 | | No log | 0.8333 | 90 | 0.9732 | 0.3798 | 0.9732 | 0.9865 | | No log | 0.8519 | 92 | 0.9781 | 0.3699 | 0.9781 | 0.9890 | | No log | 0.8704 | 94 | 0.9746 | 0.3559 | 0.9746 | 0.9872 | | No log | 0.8889 | 96 | 0.9998 | 0.3338 | 0.9998 | 0.9999 | | No log | 0.9074 | 98 | 1.0160 | 0.2891 | 1.0160 | 1.0080 | | No log | 0.9259 | 100 | 1.0355 | 0.2672 | 1.0355 | 1.0176 | | No log | 0.9444 | 102 | 1.0981 | 0.2482 | 1.0981 | 1.0479 | | No log | 0.9630 | 104 | 1.0951 | 0.2750 | 1.0951 | 1.0465 | | No log | 0.9815 | 106 | 1.0438 | 0.3173 | 1.0438 | 1.0217 | | No log | 1.0 | 108 | 1.0207 | 0.2796 | 1.0207 | 1.0103 | | No log | 1.0185 | 110 | 0.9698 | 0.3554 | 0.9698 | 0.9848 | | No log | 1.0370 | 112 | 0.9688 | 0.3351 | 0.9688 | 0.9843 | | No log | 1.0556 | 114 | 0.9859 | 0.3725 | 0.9859 | 0.9929 | | No log | 1.0741 | 116 | 0.9732 | 0.3303 | 0.9732 | 0.9865 | | No log | 1.0926 | 118 | 1.0109 | 0.3427 | 1.0109 | 1.0054 | | No log | 1.1111 | 120 | 1.0989 | 0.2203 | 1.0989 | 1.0483 | | No log | 1.1296 | 122 | 1.0715 | 0.2721 | 1.0715 | 1.0351 | | No log | 1.1481 | 124 | 0.9905 | 0.3276 | 0.9905 | 0.9952 | | No log | 1.1667 | 126 | 0.9455 | 0.3650 | 0.9455 | 0.9724 | | No log | 1.1852 | 128 | 0.9577 | 0.4736 | 0.9577 | 0.9786 | | No log | 1.2037 | 130 | 1.0176 | 0.3518 | 1.0176 | 1.0088 | | No log | 1.2222 | 132 | 0.9782 | 0.3725 | 0.9782 | 0.9890 | | No log | 1.2407 | 134 | 0.9128 | 0.4527 | 0.9128 | 0.9554 | | No log | 1.2593 | 136 | 0.8783 | 0.4197 | 0.8783 | 0.9372 | | No log | 1.2778 | 138 | 0.8656 | 0.4197 | 0.8656 | 0.9304 | | No log | 1.2963 | 140 | 0.9447 | 0.4631 | 0.9447 | 0.9720 | | No log | 1.3148 | 142 | 1.0511 | 0.3807 | 1.0511 | 1.0252 | | No log | 1.3333 | 144 | 0.9450 | 0.4565 | 0.9450 | 0.9721 | | No log | 1.3519 | 146 | 0.8753 | 0.4916 | 0.8753 | 0.9356 | | No log | 1.3704 | 148 | 0.8913 | 0.3965 | 0.8913 | 0.9441 | | No log | 1.3889 | 150 | 0.9184 | 0.4789 | 0.9184 | 0.9583 | | No log | 1.4074 | 152 | 0.9299 | 0.4454 | 0.9299 | 0.9643 | | No log | 1.4259 | 154 | 0.9219 | 0.4628 | 0.9219 | 0.9601 | | No log | 1.4444 | 156 | 0.9130 | 0.3814 | 0.9130 | 0.9555 | | No log | 1.4630 | 158 | 0.9167 | 0.4578 | 0.9167 | 0.9574 | | No log | 1.4815 | 160 | 0.9134 | 0.3382 | 0.9134 | 0.9557 | | No log | 1.5 | 162 | 0.9653 | 0.4074 | 0.9653 | 0.9825 | | No log | 1.5185 | 164 | 0.9814 | 0.3908 | 0.9814 | 0.9907 | | No log | 1.5370 | 166 | 0.9420 | 0.4074 | 0.9420 | 0.9706 | | No log | 1.5556 | 168 | 0.8930 | 0.4294 | 0.8930 | 0.9450 | | No log | 1.5741 | 170 | 0.8894 | 0.4661 | 0.8894 | 0.9431 | | No log | 1.5926 | 172 | 0.8838 | 0.4661 | 0.8838 | 0.9401 | | No log | 1.6111 | 174 | 0.8736 | 0.4004 | 0.8736 | 0.9347 | | No log | 1.6296 | 176 | 0.8568 | 0.4429 | 0.8568 | 0.9256 | | No log | 1.6481 | 178 | 0.8741 | 0.3991 | 0.8741 | 0.9349 | | No log | 1.6667 | 180 | 0.8583 | 0.3920 | 0.8583 | 0.9264 | | No log | 1.6852 | 182 | 0.8547 | 0.3920 | 0.8547 | 0.9245 | | No log | 1.7037 | 184 | 0.8589 | 0.3780 | 0.8589 | 0.9268 | | No log | 1.7222 | 186 | 0.8637 | 0.4197 | 0.8637 | 0.9293 | | No log | 1.7407 | 188 | 0.8782 | 0.4334 | 0.8782 | 0.9371 | | No log | 1.7593 | 190 | 0.8765 | 0.3627 | 0.8765 | 0.9362 | | No log | 1.7778 | 192 | 0.8782 | 0.3648 | 0.8782 | 0.9371 | | No log | 1.7963 | 194 | 0.8901 | 0.3648 | 0.8901 | 0.9434 | | No log | 1.8148 | 196 | 0.9284 | 0.3988 | 0.9284 | 0.9635 | | No log | 1.8333 | 198 | 0.8939 | 0.4093 | 0.8939 | 0.9455 | | No log | 1.8519 | 200 | 0.9117 | 0.3951 | 0.9117 | 0.9548 | | No log | 1.8704 | 202 | 0.9536 | 0.3988 | 0.9536 | 0.9765 | | No log | 1.8889 | 204 | 0.9097 | 0.4337 | 0.9097 | 0.9538 | | No log | 1.9074 | 206 | 0.9028 | 0.4337 | 0.9028 | 0.9502 | | No log | 1.9259 | 208 | 0.9348 | 0.4550 | 0.9348 | 0.9668 | | No log | 1.9444 | 210 | 0.9483 | 0.5163 | 0.9483 | 0.9738 | | No log | 1.9630 | 212 | 0.8748 | 0.4730 | 0.8748 | 0.9353 | | No log | 1.9815 | 214 | 0.8462 | 0.5024 | 0.8462 | 0.9199 | | No log | 2.0 | 216 | 0.8723 | 0.4563 | 0.8723 | 0.9340 | | No log | 2.0185 | 218 | 1.0110 | 0.4153 | 1.0110 | 1.0055 | | No log | 2.0370 | 220 | 1.0326 | 0.4214 | 1.0326 | 1.0161 | | No log | 2.0556 | 222 | 0.8998 | 0.4476 | 0.8998 | 0.9486 | | No log | 2.0741 | 224 | 0.8997 | 0.4144 | 0.8997 | 0.9485 | | No log | 2.0926 | 226 | 0.8919 | 0.3819 | 0.8919 | 0.9444 | | No log | 2.1111 | 228 | 0.8765 | 0.4563 | 0.8765 | 0.9362 | | No log | 2.1296 | 230 | 0.8990 | 0.4507 | 0.8990 | 0.9481 | | No log | 2.1481 | 232 | 0.8755 | 0.4841 | 0.8755 | 0.9357 | | No log | 2.1667 | 234 | 0.8642 | 0.4334 | 0.8642 | 0.9296 | | No log | 2.1852 | 236 | 0.8493 | 0.5216 | 0.8493 | 0.9216 | | No log | 2.2037 | 238 | 0.8464 | 0.4962 | 0.8464 | 0.9200 | | No log | 2.2222 | 240 | 0.8951 | 0.4848 | 0.8951 | 0.9461 | | No log | 2.2407 | 242 | 0.9781 | 0.4059 | 0.9781 | 0.9890 | | No log | 2.2593 | 244 | 1.0199 | 0.4056 | 1.0199 | 1.0099 | | No log | 2.2778 | 246 | 0.9495 | 0.3348 | 0.9495 | 0.9744 | | No log | 2.2963 | 248 | 0.9076 | 0.3992 | 0.9076 | 0.9527 | | No log | 2.3148 | 250 | 0.9068 | 0.4094 | 0.9068 | 0.9523 | | No log | 2.3333 | 252 | 0.9247 | 0.3992 | 0.9247 | 0.9616 | | No log | 2.3519 | 254 | 0.9014 | 0.3956 | 0.9014 | 0.9494 | | No log | 2.3704 | 256 | 0.9229 | 0.4136 | 0.9229 | 0.9607 | | No log | 2.3889 | 258 | 1.0185 | 0.4516 | 1.0185 | 1.0092 | | No log | 2.4074 | 260 | 0.9443 | 0.4991 | 0.9443 | 0.9717 | | No log | 2.4259 | 262 | 0.8616 | 0.3983 | 0.8616 | 0.9282 | | No log | 2.4444 | 264 | 0.8613 | 0.4757 | 0.8613 | 0.9280 | | No log | 2.4630 | 266 | 0.8595 | 0.4158 | 0.8595 | 0.9271 | | No log | 2.4815 | 268 | 0.9163 | 0.4763 | 0.9163 | 0.9572 | | No log | 2.5 | 270 | 0.9032 | 0.4861 | 0.9032 | 0.9504 | | No log | 2.5185 | 272 | 0.8801 | 0.4337 | 0.8801 | 0.9381 | | No log | 2.5370 | 274 | 0.8654 | 0.3596 | 0.8654 | 0.9302 | | No log | 2.5556 | 276 | 0.8752 | 0.4548 | 0.8752 | 0.9355 | | No log | 2.5741 | 278 | 0.8582 | 0.3483 | 0.8582 | 0.9264 | | No log | 2.5926 | 280 | 0.8549 | 0.4548 | 0.8549 | 0.9246 | | No log | 2.6111 | 282 | 0.8602 | 0.4646 | 0.8602 | 0.9275 | | No log | 2.6296 | 284 | 0.8500 | 0.3914 | 0.8500 | 0.9219 | | No log | 2.6481 | 286 | 0.8549 | 0.4056 | 0.8549 | 0.9246 | | No log | 2.6667 | 288 | 0.8686 | 0.4337 | 0.8686 | 0.9320 | | No log | 2.6852 | 290 | 0.8592 | 0.4297 | 0.8592 | 0.9269 | | No log | 2.7037 | 292 | 0.8533 | 0.4450 | 0.8533 | 0.9238 | | No log | 2.7222 | 294 | 0.8750 | 0.3943 | 0.8750 | 0.9354 | | No log | 2.7407 | 296 | 0.8459 | 0.4219 | 0.8459 | 0.9197 | | No log | 2.7593 | 298 | 0.8281 | 0.5042 | 0.8281 | 0.9100 | | No log | 2.7778 | 300 | 0.8731 | 0.3590 | 0.8731 | 0.9344 | | No log | 2.7963 | 302 | 0.8381 | 0.3946 | 0.8381 | 0.9155 | | No log | 2.8148 | 304 | 0.8299 | 0.4157 | 0.8299 | 0.9110 | | No log | 2.8333 | 306 | 0.8495 | 0.4470 | 0.8495 | 0.9217 | | No log | 2.8519 | 308 | 0.8499 | 0.4898 | 0.8499 | 0.9219 | | No log | 2.8704 | 310 | 0.8255 | 0.4012 | 0.8255 | 0.9086 | | No log | 2.8889 | 312 | 0.8458 | 0.3946 | 0.8458 | 0.9197 | | No log | 2.9074 | 314 | 0.8425 | 0.3951 | 0.8425 | 0.9179 | | No log | 2.9259 | 316 | 0.8074 | 0.3728 | 0.8074 | 0.8985 | | No log | 2.9444 | 318 | 0.8000 | 0.3583 | 0.8000 | 0.8944 | | No log | 2.9630 | 320 | 0.8083 | 0.4916 | 0.8083 | 0.8990 | | No log | 2.9815 | 322 | 0.8199 | 0.4998 | 0.8199 | 0.9055 | | No log | 3.0 | 324 | 0.7871 | 0.3787 | 0.7871 | 0.8872 | | No log | 3.0185 | 326 | 0.7799 | 0.4075 | 0.7799 | 0.8831 | | No log | 3.0370 | 328 | 0.7763 | 0.4075 | 0.7763 | 0.8811 | | No log | 3.0556 | 330 | 0.7751 | 0.4280 | 0.7751 | 0.8804 | | No log | 3.0741 | 332 | 0.7860 | 0.4611 | 0.7860 | 0.8866 | | No log | 3.0926 | 334 | 0.7832 | 0.4656 | 0.7832 | 0.8850 | | No log | 3.1111 | 336 | 0.8004 | 0.4075 | 0.8004 | 0.8946 | | No log | 3.1296 | 338 | 0.8624 | 0.3660 | 0.8624 | 0.9287 | | No log | 3.1481 | 340 | 0.8872 | 0.3866 | 0.8872 | 0.9419 | | No log | 3.1667 | 342 | 0.8758 | 0.3168 | 0.8758 | 0.9358 | | No log | 3.1852 | 344 | 0.8449 | 0.3437 | 0.8449 | 0.9192 | | No log | 3.2037 | 346 | 0.8313 | 0.3719 | 0.8313 | 0.9118 | | No log | 3.2222 | 348 | 0.8613 | 0.3946 | 0.8613 | 0.9281 | | No log | 3.2407 | 350 | 0.8908 | 0.3946 | 0.8908 | 0.9438 | | No log | 3.2593 | 352 | 0.8884 | 0.3356 | 0.8884 | 0.9426 | | No log | 3.2778 | 354 | 0.8856 | 0.3020 | 0.8856 | 0.9411 | | No log | 3.2963 | 356 | 0.8813 | 0.3229 | 0.8813 | 0.9388 | | No log | 3.3148 | 358 | 0.8314 | 0.3596 | 0.8314 | 0.9118 | | No log | 3.3333 | 360 | 0.7783 | 0.4466 | 0.7783 | 0.8822 | | No log | 3.3519 | 362 | 0.7897 | 0.4198 | 0.7897 | 0.8886 | | No log | 3.3704 | 364 | 0.7770 | 0.4587 | 0.7770 | 0.8815 | | No log | 3.3889 | 366 | 0.7246 | 0.4942 | 0.7246 | 0.8512 | | No log | 3.4074 | 368 | 0.7843 | 0.5567 | 0.7843 | 0.8856 | | No log | 3.4259 | 370 | 0.7833 | 0.5368 | 0.7833 | 0.8850 | | No log | 3.4444 | 372 | 0.7477 | 0.3933 | 0.7477 | 0.8647 | | No log | 3.4630 | 374 | 0.7421 | 0.4853 | 0.7421 | 0.8614 | | No log | 3.4815 | 376 | 0.7470 | 0.4853 | 0.7470 | 0.8643 | | No log | 3.5 | 378 | 0.7697 | 0.3933 | 0.7697 | 0.8773 | | No log | 3.5185 | 380 | 0.8245 | 0.3045 | 0.8245 | 0.9080 | | No log | 3.5370 | 382 | 0.8643 | 0.3519 | 0.8643 | 0.9297 | | No log | 3.5556 | 384 | 0.8671 | 0.4503 | 0.8671 | 0.9312 | | No log | 3.5741 | 386 | 0.8494 | 0.3147 | 0.8494 | 0.9216 | | No log | 3.5926 | 388 | 0.8145 | 0.4075 | 0.8145 | 0.9025 | | No log | 3.6111 | 390 | 0.8096 | 0.4054 | 0.8096 | 0.8998 | | No log | 3.6296 | 392 | 0.7907 | 0.3627 | 0.7907 | 0.8892 | | No log | 3.6481 | 394 | 0.8544 | 0.4949 | 0.8544 | 0.9243 | | No log | 3.6667 | 396 | 0.9670 | 0.4186 | 0.9670 | 0.9834 | | No log | 3.6852 | 398 | 0.9581 | 0.4186 | 0.9581 | 0.9788 | | No log | 3.7037 | 400 | 0.8559 | 0.3298 | 0.8559 | 0.9252 | | No log | 3.7222 | 402 | 0.8586 | 0.4483 | 0.8586 | 0.9266 | | No log | 3.7407 | 404 | 0.8696 | 0.4489 | 0.8696 | 0.9325 | | No log | 3.7593 | 406 | 0.8190 | 0.3951 | 0.8190 | 0.9050 | | No log | 3.7778 | 408 | 0.7880 | 0.3938 | 0.7880 | 0.8877 | | No log | 3.7963 | 410 | 0.8012 | 0.5467 | 0.8012 | 0.8951 | | No log | 3.8148 | 412 | 0.7806 | 0.5476 | 0.7806 | 0.8835 | | No log | 3.8333 | 414 | 0.7562 | 0.4019 | 0.7562 | 0.8696 | | No log | 3.8519 | 416 | 0.7573 | 0.4471 | 0.7573 | 0.8703 | | No log | 3.8704 | 418 | 0.7520 | 0.5057 | 0.7520 | 0.8672 | | No log | 3.8889 | 420 | 0.7460 | 0.5770 | 0.7460 | 0.8637 | | No log | 3.9074 | 422 | 0.7538 | 0.5450 | 0.7538 | 0.8682 | | No log | 3.9259 | 424 | 0.7739 | 0.3909 | 0.7739 | 0.8797 | | No log | 3.9444 | 426 | 0.8882 | 0.4594 | 0.8882 | 0.9424 | | No log | 3.9630 | 428 | 0.9200 | 0.4594 | 0.9200 | 0.9592 | | No log | 3.9815 | 430 | 0.8186 | 0.4315 | 0.8186 | 0.9048 | | No log | 4.0 | 432 | 0.6914 | 0.6059 | 0.6914 | 0.8315 | | No log | 4.0185 | 434 | 0.7329 | 0.6079 | 0.7329 | 0.8561 | | No log | 4.0370 | 436 | 0.7654 | 0.6079 | 0.7654 | 0.8749 | | No log | 4.0556 | 438 | 0.7051 | 0.5951 | 0.7051 | 0.8397 | | No log | 4.0741 | 440 | 0.7309 | 0.5503 | 0.7309 | 0.8549 | | No log | 4.0926 | 442 | 0.8199 | 0.5578 | 0.8199 | 0.9055 | | No log | 4.1111 | 444 | 0.8140 | 0.5578 | 0.8140 | 0.9022 | | No log | 4.1296 | 446 | 0.7557 | 0.5089 | 0.7557 | 0.8693 | | No log | 4.1481 | 448 | 0.7437 | 0.5125 | 0.7437 | 0.8624 | | No log | 4.1667 | 450 | 0.7631 | 0.5044 | 0.7631 | 0.8735 | | No log | 4.1852 | 452 | 0.7899 | 0.4792 | 0.7899 | 0.8888 | | No log | 4.2037 | 454 | 0.8066 | 0.4874 | 0.8066 | 0.8981 | | No log | 4.2222 | 456 | 0.8319 | 0.4197 | 0.8319 | 0.9121 | | No log | 4.2407 | 458 | 0.9779 | 0.3815 | 0.9779 | 0.9889 | | No log | 4.2593 | 460 | 1.0743 | 0.4040 | 1.0743 | 1.0365 | | No log | 4.2778 | 462 | 0.9684 | 0.4356 | 0.9684 | 0.9841 | | No log | 4.2963 | 464 | 0.8000 | 0.4197 | 0.8000 | 0.8944 | | No log | 4.3148 | 466 | 0.7748 | 0.4977 | 0.7748 | 0.8802 | | No log | 4.3333 | 468 | 0.7874 | 0.4715 | 0.7874 | 0.8874 | | No log | 4.3519 | 470 | 0.8109 | 0.3627 | 0.8109 | 0.9005 | | No log | 4.3704 | 472 | 0.8439 | 0.3771 | 0.8439 | 0.9187 | | No log | 4.3889 | 474 | 0.8567 | 0.3660 | 0.8567 | 0.9256 | | No log | 4.4074 | 476 | 0.8428 | 0.3483 | 0.8428 | 0.9180 | | No log | 4.4259 | 478 | 0.8335 | 0.3483 | 0.8335 | 0.9130 | | No log | 4.4444 | 480 | 0.8268 | 0.3483 | 0.8268 | 0.9093 | | No log | 4.4630 | 482 | 0.8385 | 0.3771 | 0.8385 | 0.9157 | | No log | 4.4815 | 484 | 0.8638 | 0.3806 | 0.8638 | 0.9294 | | No log | 4.5 | 486 | 0.8727 | 0.3513 | 0.8727 | 0.9342 | | No log | 4.5185 | 488 | 0.8904 | 0.3196 | 0.8904 | 0.9436 | | No log | 4.5370 | 490 | 0.9123 | 0.2470 | 0.9123 | 0.9551 | | No log | 4.5556 | 492 | 0.9144 | 0.2821 | 0.9144 | 0.9562 | | No log | 4.5741 | 494 | 0.8611 | 0.3744 | 0.8611 | 0.9279 | | No log | 4.5926 | 496 | 0.8303 | 0.4197 | 0.8303 | 0.9112 | | No log | 4.6111 | 498 | 0.8320 | 0.4337 | 0.8320 | 0.9122 | | 0.2735 | 4.6296 | 500 | 0.8089 | 0.4197 | 0.8089 | 0.8994 | | 0.2735 | 4.6481 | 502 | 0.8035 | 0.3879 | 0.8035 | 0.8964 | | 0.2735 | 4.6667 | 504 | 0.8206 | 0.4912 | 0.8206 | 0.9059 | | 0.2735 | 4.6852 | 506 | 0.8262 | 0.3583 | 0.8262 | 0.9090 | | 0.2735 | 4.7037 | 508 | 0.8333 | 0.3974 | 0.8333 | 0.9129 | | 0.2735 | 4.7222 | 510 | 0.8620 | 0.4012 | 0.8620 | 0.9284 | | 0.2735 | 4.7407 | 512 | 0.8742 | 0.4012 | 0.8742 | 0.9350 | | 0.2735 | 4.7593 | 514 | 0.8610 | 0.3970 | 0.8610 | 0.9279 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF
Triangle104
2025-02-04T02:01:05Z
25
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:SubtleOne/Qwen2.5-32b-Erudite-Writer", "base_model:quantized:SubtleOne/Qwen2.5-32b-Erudite-Writer", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-04T01:41:55Z
--- base_model: SubtleOne/Qwen2.5-32b-Erudite-Writer library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 --- # Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF This model was converted to GGUF format from [`SubtleOne/Qwen2.5-32b-Erudite-Writer`](https://huggingface.co/SubtleOne/Qwen2.5-32b-Erudite-Writer) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SubtleOne/Qwen2.5-32b-Erudite-Writer) for more details on the model. --- This model is a merge using Rombos's top-ranked 32b model, based on Qwen 2.5, and merging three creative writing finetunes. The creative content is a serious upgrade over the base it started with and has a much more literary style than the previous Writer model. I won't call it better or worse, merely a very distinct flavor and style. I quite like it, and enjoin you to try it as well. Enjoy! Merge Method - This model was merged using the DELLA merge method using rombodawg/Rombos-LLM-V2.5-Qwen-32b as a base. Models Merged The following models were included in the merge: nbeerbower/Qwen2.5-Gutenberg-Doppel-32B ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 Configuration - The following YAML configuration was used to produce this model: base_model: rombodawg/Rombos-LLM-V2.5-Qwen-32b parameters: int8_mask: true rescale: false normalize: true lambda: 1.04 epsilon: 0.05 dtype: bfloat16 tokenizer_source: union merge_method: della models: - model: EVA-UNIT-01/EVA-Qwen2.5-32B-v0.2 parameters: weight: [0.40] density: [0.53] - model: nbeerbower/Qwen2.5-Gutenberg-Doppel-32B parameters: weight: [0.30] density: [0.53] - model: ArliAI/Qwen2.5-32B-ArliAI-RPMax-v1.3 parameters: weight: [0.40] density: [0.53] --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Qwen2.5-32b-Erudite-Writer-Q4_K_M-GGUF --hf-file qwen2.5-32b-erudite-writer-q4_k_m.gguf -c 2048 ```
shibajustfor/c0df181a-0877-42be-9869-35d2b3797150
shibajustfor
2025-02-04T02:00:28Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:unsloth/gemma-2-2b", "base_model:adapter:unsloth/gemma-2-2b", "license:gemma", "region:us" ]
null
2025-02-04T01:55:58Z
--- library_name: peft license: gemma base_model: unsloth/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: c0df181a-0877-42be-9869-35d2b3797150 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/gemma-2-2b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7f4ffc4da3710d39_train_data.json ds_type: json format: custom path: /workspace/input_data/7f4ffc4da3710d39_train_data.json type: field_input: text field_instruction: task_name field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/c0df181a-0877-42be-9869-35d2b3797150 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/7f4ffc4da3710d39_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: a4f7ae30-2ca5-42fa-a4c8-6320e54b4228 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c0df181a-0877-42be-9869-35d2b3797150 This model is a fine-tuned version of [unsloth/gemma-2-2b](https://huggingface.co/unsloth/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1778 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.5925 | | 0.1522 | 0.0199 | 50 | 0.2752 | | 0.2398 | 0.0398 | 100 | 0.1994 | | 0.3881 | 0.0598 | 150 | 0.2192 | | 0.1998 | 0.0797 | 200 | 0.1778 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Luongdzung/hoa-1b4-sft-mat-rslora
Luongdzung
2025-02-04T01:58:48Z
8
0
peft
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:vlsp-2023-vllm/hoa-1b4", "base_model:adapter:vlsp-2023-vllm/hoa-1b4", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T01:58:45Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: vlsp-2023-vllm/hoa-1b4 tags: - generated_from_trainer model-index: - name: hoa-1b4-sft-mat-rslora results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hoa-1b4-sft-mat-rslora This model is a fine-tuned version of [vlsp-2023-vllm/hoa-1b4](https://huggingface.co/vlsp-2023-vllm/hoa-1b4) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1
daniel40/b2efff34-4244-4b14-9a61-23bfaca91b9a
daniel40
2025-02-04T01:58:02Z
6
0
peft
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "region:us" ]
null
2025-02-04T01:49:06Z
--- library_name: peft license: mit base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B tags: - axolotl - generated_from_trainer model-index: - name: b2efff34-4244-4b14-9a61-23bfaca91b9a results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - fe297105e697bbbb_train_data.json ds_type: json format: custom path: /workspace/input_data/fe297105e697bbbb_train_data.json type: field_instruction: task field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: daniel40/b2efff34-4244-4b14-9a61-23bfaca91b9a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/fe297105e697bbbb_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 3fa43a59-7bfe-43c9-93ae-74585476d2fa wandb_project: Birthday-SN56-27-Gradients-On-Demand wandb_run: your_name wandb_runid: 3fa43a59-7bfe-43c9-93ae-74585476d2fa warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # b2efff34-4244-4b14-9a61-23bfaca91b9a This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0021 | 1 | 0.7745 | | 2.4426 | 0.1036 | 50 | 0.6402 | | 2.3979 | 0.2073 | 100 | 0.6269 | | 2.3278 | 0.3109 | 150 | 0.6197 | | 2.3291 | 0.4145 | 200 | 0.6114 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Dongwei/Qwen-2.5-7B_Math
Dongwei
2025-02-04T01:57:50Z
20
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-7B", "base_model:finetune:Qwen/Qwen2.5-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T17:49:42Z
--- base_model: Qwen/Qwen2.5-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B_Math tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B_Math This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Dongwei/Qwen-2.5-7B_Math", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dongwei_jiang/huggingface/runs/ceahffo4) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.0.dev0 - Transformers: 4.49.0.dev0 - Pytorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF
J-AI
2025-02-04T01:57:32Z
21
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "trl", "sft", "llama-cpp", "gguf-my-repo", "en", "base_model:J-AI/Qwen_R1-PTBR", "base_model:quantized:J-AI/Qwen_R1-PTBR", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T01:56:01Z
--- base_model: J-AI/Qwen_R1-PTBR tags: - text-generation-inference - transformers - unsloth - qwen2 - trl - sft - llama-cpp - gguf-my-repo license: apache-2.0 language: - en --- # J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF This model was converted to GGUF format from [`J-AI/Qwen_R1-PTBR`](https://huggingface.co/J-AI/Qwen_R1-PTBR) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/J-AI/Qwen_R1-PTBR) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF --hf-file qwen_r1-ptbr-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF --hf-file qwen_r1-ptbr-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF --hf-file qwen_r1-ptbr-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo J-AI/Qwen_R1-PTBR-Q4_K_M-GGUF --hf-file qwen_r1-ptbr-q4_k_m.gguf -c 2048 ```
clarxus/27267c94-1388-421b-a1c5-003efd21926e
clarxus
2025-02-04T01:57:21Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "region:us" ]
null
2025-02-04T00:57:07Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 27267c94-1388-421b-a1c5-003efd21926e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: clarxus/27267c94-1388-421b-a1c5-003efd21926e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 27267c94-1388-421b-a1c5-003efd21926e This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0037 | 1 | 0.3281 | | 1.0191 | 0.0333 | 9 | 0.2866 | | 0.9663 | 0.0665 | 18 | 0.2518 | | 0.8827 | 0.0998 | 27 | 0.2377 | | 1.0331 | 0.1331 | 36 | 0.2311 | | 0.8651 | 0.1664 | 45 | 0.2261 | | 0.8807 | 0.1996 | 54 | 0.2241 | | 0.8233 | 0.2329 | 63 | 0.2238 | | 0.8239 | 0.2662 | 72 | 0.2222 | | 0.8276 | 0.2994 | 81 | 0.2215 | | 0.7441 | 0.3327 | 90 | 0.2213 | | 0.7715 | 0.3660 | 99 | 0.2212 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jssky/f5f49405-0c67-4637-bed3-e72e471e7acd
jssky
2025-02-04T01:56:32Z
7
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-04T01:55:51Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: f5f49405-0c67-4637-bed3-e72e471e7acd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b77b35ef124b1260_train_data.json ds_type: json format: custom path: /workspace/input_data/b77b35ef124b1260_train_data.json type: field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: jssky/f5f49405-0c67-4637-bed3-e72e471e7acd hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - model.layers.5.mlp.gate_proj - model.layers.23.mlp.up_proj - model.layers.17.self_attn.k_proj - model.layers.21.mlp.down_proj - model.layers.23.self_attn.o_proj - model.layers.4.self_attn.q_proj - model.layers.9.self_attn.v_proj - model.layers.23.self_attn.k_proj - model.layers.14.mlp.down_proj - model.layers.23.self_attn.v_proj - model.layers.15.self_attn.v_proj - model.layers.7.self_attn.q_proj - model.layers.18.mlp.up_proj - model.layers.10.self_attn.v_proj - model.layers.11.mlp.gate_proj - model.layers.22.self_attn.k_proj - model.layers.6.self_attn.v_proj - model.layers.3.mlp.down_proj - model.layers.0.mlp.up_proj - model.layers.13.self_attn.v_proj - model.layers.18.mlp.down_proj - model.layers.2.mlp.down_proj - model.layers.11.self_attn.v_proj - model.layers.8.self_attn.v_proj - model.layers.20.mlp.gate_proj - model.layers.22.mlp.down_proj - model.layers.13.mlp.down_proj - model.layers.1.self_attn.k_proj - model.layers.12.mlp.up_proj - model.layers.0.mlp.down_proj - model.layers.8.self_attn.k_proj - model.layers.21.self_attn.v_proj - model.layers.7.self_attn.k_proj - model.layers.15.mlp.up_proj - model.layers.9.mlp.gate_proj - model.layers.12.mlp.gate_proj - model.layers.0.self_attn.q_proj - model.layers.5.self_attn.k_proj - model.layers.2.mlp.up_proj - model.layers.6.mlp.gate_proj - model.layers.22.self_attn.o_proj - model.layers.6.self_attn.k_proj - model.layers.22.self_attn.v_proj - model.layers.23.mlp.gate_proj - model.layers.18.self_attn.k_proj - model.layers.2.self_attn.q_proj - model.layers.3.self_attn.o_proj - model.layers.8.mlp.down_proj - model.layers.5.self_attn.o_proj - model.layers.20.mlp.down_proj - model.layers.10.mlp.gate_proj - model.layers.18.self_attn.v_proj - model.layers.22.self_attn.q_proj - model.layers.15.self_attn.q_proj - model.layers.16.self_attn.o_proj - model.layers.10.self_attn.q_proj - model.layers.17.self_attn.o_proj - model.layers.5.mlp.down_proj - model.layers.12.self_attn.o_proj - model.layers.9.mlp.down_proj - model.layers.19.mlp.up_proj - model.layers.1.mlp.down_proj - model.layers.4.self_attn.k_proj - model.layers.21.self_attn.o_proj - model.layers.16.self_attn.q_proj - model.layers.9.self_attn.q_proj - model.layers.17.self_attn.v_proj - model.layers.8.mlp.gate_proj - model.layers.17.mlp.down_proj - model.layers.7.mlp.down_proj - model.layers.16.self_attn.k_proj - model.layers.14.mlp.gate_proj - model.layers.20.mlp.up_proj - model.layers.19.self_attn.q_proj - model.layers.15.self_attn.k_proj - model.layers.1.self_attn.q_proj - model.layers.1.mlp.up_proj - model.layers.23.mlp.down_proj - model.layers.11.self_attn.q_proj - model.layers.3.self_attn.q_proj - model.layers.0.self_attn.v_proj - model.layers.14.self_attn.k_proj - model.layers.7.self_attn.o_proj - model.layers.23.self_attn.q_proj - model.layers.13.mlp.up_proj - model.layers.21.self_attn.k_proj - model.layers.22.mlp.gate_proj - model.layers.2.mlp.gate_proj - model.layers.20.self_attn.k_proj - model.layers.11.self_attn.o_proj - model.layers.16.mlp.down_proj - model.layers.19.self_attn.k_proj - model.layers.4.mlp.up_proj - model.embed_tokens - model.layers.4.mlp.down_proj - model.layers.14.self_attn.q_proj - model.layers.13.mlp.gate_proj - model.layers.3.mlp.gate_proj - model.layers.22.mlp.up_proj - model.layers.6.self_attn.o_proj - model.layers.12.self_attn.q_proj - model.layers.19.mlp.down_proj - model.layers.10.self_attn.o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b77b35ef124b1260_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 99997652-8a0b-462d-8035-54df350aea9e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 99997652-8a0b-462d-8035-54df350aea9e warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f5f49405-0c67-4637-bed3-e72e471e7acd This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.2921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2952 | 0.3571 | 50 | 10.2971 | | 10.2559 | 0.7143 | 100 | 10.2941 | | 10.2919 | 1.0714 | 150 | 10.2917 | | 10.2771 | 1.4286 | 200 | 10.2921 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
philip-hightech/deb4cfcf-07d3-4ab6-af53-c2bbb701c14b
philip-hightech
2025-02-04T01:56:23Z
9
0
peft
[ "peft", "safetensors", "starcoder2", "axolotl", "generated_from_trainer", "base_model:bigcode/starcoder2-3b", "base_model:adapter:bigcode/starcoder2-3b", "license:bigcode-openrail-m", "region:us" ]
null
2025-02-04T01:53:15Z
--- library_name: peft license: bigcode-openrail-m base_model: bigcode/starcoder2-3b tags: - axolotl - generated_from_trainer model-index: - name: deb4cfcf-07d3-4ab6-af53-c2bbb701c14b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigcode/starcoder2-3b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b177e99f9afc8918_train_data.json ds_type: json format: custom path: /workspace/input_data/b177e99f9afc8918_train_data.json type: field_input: '' field_instruction: title field_output: cleaned_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/deb4cfcf-07d3-4ab6-af53-c2bbb701c14b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/b177e99f9afc8918_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 6224a0bd-20f5-44b3-8193-1192471d4f6a wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: 6224a0bd-20f5-44b3-8193-1192471d4f6a warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # deb4cfcf-07d3-4ab6-af53-c2bbb701c14b This model is a fine-tuned version of [bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9812 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0006 | 1 | 2.1054 | | 5.1726 | 0.0391 | 63 | 2.0449 | | 4.8189 | 0.0781 | 126 | 2.0042 | | 4.5805 | 0.1172 | 189 | 1.9812 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MorningDusk/yugioh_recipe
MorningDusk
2025-02-04T01:53:30Z
23
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-02-04T01:51:29Z
--- base_model: unsloth/llama-3.2-3b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** MorningDusk - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
duyntnet/Mistral-Small-24B-Instruct-2501-imatrix-GGUF
duyntnet
2025-02-04T01:50:22Z
708
0
transformers
[ "transformers", "gguf", "imatrix", "Mistral-Small-24B-Instruct-2501", "text-generation", "en", "license:other", "region:us", "conversational" ]
text-generation
2025-02-03T17:43:07Z
--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - Mistral-Small-24B-Instruct-2501 --- Quantizations of https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501 ### Inference Clients/UIs * [llama.cpp](https://github.com/ggerganov/llama.cpp) * [KoboldCPP](https://github.com/LostRuins/koboldcpp) * [ollama](https://github.com/ollama/ollama) * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [jan](https://github.com/janhq/jan) * [GPT4All](https://github.com/nomic-ai/gpt4all) --- # From original readme Mistral Small 3 ( 2501 ) sets a new benchmark in the "small" Large Language Models category below 70B, boasting 24B parameters and achieving state-of-the-art capabilities comparable to larger models! This model is an instruction-fine-tuned version of the base model: [Mistral-Small-24B-Base-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501). Mistral Small can be deployed locally and is exceptionally "knowledge-dense", fitting in a single RTX 4090 or a 32GB RAM MacBook once quantized. Perfect for: - Fast response conversational agents. - Low latency function calling. - Subject matter experts via fine-tuning. - Local inference for hobbyists and organizations handling sensitive data. For enterprises that need specialized capabilities (increased context, particular modalities, domain specific knowledge, etc.), we will be releasing commercial models beyond what Mistral AI contributes to the community. This release demonstrates our commitment to open source, serving as a strong base model. Learn more about Mistral Small in our [blog post](https://mistral.ai/news/mistral-small-3/). Model developper: Mistral AI Team ## Key Features - **Multilingual:** Supports dozens of languages, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch, and Polish. - **Agent-Centric:** Offers best-in-class agentic capabilities with native function calling and JSON outputting. - **Advanced Reasoning:** State-of-the-art conversational and reasoning capabilities. - **Apache 2.0 License:** Open license allowing usage and modification for both commercial and non-commercial purposes. - **Context Window:** A 32k context window. - **System Prompt:** Maintains strong adherence and support for system prompts. - **Tokenizer:** Utilizes a Tekken tokenizer with a 131k vocabulary size. ### Basic Instruct Template (V7-Tekken) ``` <s>[SYSTEM_PROMPT]<system prompt>[/SYSTEM_PROMPT][INST]<user message>[/INST]<assistant response></s>[INST]<user message>[/INST] ``` *`<system_prompt>`, `<user message>` and `<assistant response>` are placeholders.* ***Please make sure to use [mistral-common](https://github.com/mistralai/mistral-common) as the source of truth*** ## Usage The model can be used with the following frameworks; - [`vllm`](https://github.com/vllm-project/vllm): See [here](#vllm) - [`transformers`](https://github.com/huggingface/transformers): See [here](#transformers) ### vLLM We recommend using this model with the [vLLM library](https://github.com/vllm-project/vllm) to implement production-ready inference pipelines. **Note 1**: We recommond using a relatively low temperature, such as `temperature=0.15`. **Note 2**: Make sure to add a system prompt to the model to best tailer it for your needs. If you want to use the model as a general assistant, we recommend the following system prompt: ``` system_prompt = """You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris. Your knowledge base was last updated on 2023-10-01. The current date is 2025-01-30. When you're not sure about some information, you say that you don't have the information and don't make up anything. If the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \"What are some good restaurants around me?\" => \"Where are you?\" or \"When is the next flight to Tokyo\" => \"Where do you travel from?\")""" ```
shibajustfor/34a94459-b2eb-4368-9de2-541c30a57a29
shibajustfor
2025-02-04T01:49:19Z
13
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T01:45:13Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 34a94459-b2eb-4368-9de2-541c30a57a29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b6e5ed8190ccb774_train_data.json ds_type: json format: custom path: /workspace/input_data/b6e5ed8190ccb774_train_data.json type: field_instruction: soru field_output: cevap format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/34a94459-b2eb-4368-9de2-541c30a57a29 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b6e5ed8190ccb774_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 72e7b874-15da-42e2-ab22-791b74a29685 wandb_project: Birthday-SN56-38-Gradients-On-Demand wandb_run: your_name wandb_runid: 72e7b874-15da-42e2-ab22-791b74a29685 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 34a94459-b2eb-4368-9de2-541c30a57a29 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9480 | | 12.593 | 0.0065 | 50 | 3.2149 | | 12.2702 | 0.0131 | 100 | 3.0013 | | 11.3896 | 0.0196 | 150 | 2.8476 | | 11.5377 | 0.0262 | 200 | 2.7612 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k5_task2_organization
MayBashendy
2025-02-04T01:48:34Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T01:41:29Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k5_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k5_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7827 - Qwk: 0.5331 - Mse: 0.7827 - Rmse: 0.8847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0690 | 2 | 4.5860 | 0.0042 | 4.5860 | 2.1415 | | No log | 0.1379 | 4 | 2.6996 | -0.0420 | 2.6996 | 1.6430 | | No log | 0.2069 | 6 | 1.6579 | 0.0372 | 1.6579 | 1.2876 | | No log | 0.2759 | 8 | 1.2154 | 0.1590 | 1.2154 | 1.1025 | | No log | 0.3448 | 10 | 1.1961 | 0.1370 | 1.1961 | 1.0937 | | No log | 0.4138 | 12 | 1.3367 | 0.0366 | 1.3367 | 1.1561 | | No log | 0.4828 | 14 | 1.2065 | 0.1944 | 1.2065 | 1.0984 | | No log | 0.5517 | 16 | 1.2127 | 0.1246 | 1.2127 | 1.1012 | | No log | 0.6207 | 18 | 1.2186 | 0.0806 | 1.2186 | 1.1039 | | No log | 0.6897 | 20 | 1.2428 | 0.1422 | 1.2428 | 1.1148 | | No log | 0.7586 | 22 | 1.3930 | 0.0610 | 1.3930 | 1.1803 | | No log | 0.8276 | 24 | 1.4143 | 0.0524 | 1.4143 | 1.1892 | | No log | 0.8966 | 26 | 1.3968 | 0.1512 | 1.3968 | 1.1819 | | No log | 0.9655 | 28 | 1.6419 | 0.2037 | 1.6419 | 1.2813 | | No log | 1.0345 | 30 | 1.5294 | 0.3149 | 1.5294 | 1.2367 | | No log | 1.1034 | 32 | 1.2055 | 0.2444 | 1.2055 | 1.0979 | | No log | 1.1724 | 34 | 1.4178 | 0.3275 | 1.4178 | 1.1907 | | No log | 1.2414 | 36 | 1.3008 | 0.3548 | 1.3008 | 1.1405 | | No log | 1.3103 | 38 | 1.0903 | 0.3311 | 1.0903 | 1.0442 | | No log | 1.3793 | 40 | 1.3131 | 0.3139 | 1.3131 | 1.1459 | | No log | 1.4483 | 42 | 1.6069 | 0.3000 | 1.6069 | 1.2676 | | No log | 1.5172 | 44 | 1.4816 | 0.2962 | 1.4816 | 1.2172 | | No log | 1.5862 | 46 | 1.1020 | 0.3723 | 1.1020 | 1.0498 | | No log | 1.6552 | 48 | 0.9298 | 0.4181 | 0.9298 | 0.9643 | | No log | 1.7241 | 50 | 0.9439 | 0.3160 | 0.9439 | 0.9716 | | No log | 1.7931 | 52 | 0.9629 | 0.4321 | 0.9629 | 0.9813 | | No log | 1.8621 | 54 | 0.9580 | 0.4148 | 0.9580 | 0.9788 | | No log | 1.9310 | 56 | 1.0020 | 0.4894 | 1.0020 | 1.0010 | | No log | 2.0 | 58 | 1.0422 | 0.5054 | 1.0422 | 1.0209 | | No log | 2.0690 | 60 | 1.1156 | 0.5014 | 1.1156 | 1.0562 | | No log | 2.1379 | 62 | 1.0398 | 0.5346 | 1.0398 | 1.0197 | | No log | 2.2069 | 64 | 0.9351 | 0.5211 | 0.9351 | 0.9670 | | No log | 2.2759 | 66 | 0.8907 | 0.5034 | 0.8907 | 0.9437 | | No log | 2.3448 | 68 | 0.8700 | 0.5037 | 0.8700 | 0.9328 | | No log | 2.4138 | 70 | 0.8873 | 0.4216 | 0.8873 | 0.9420 | | No log | 2.4828 | 72 | 0.9484 | 0.3729 | 0.9484 | 0.9739 | | No log | 2.5517 | 74 | 0.9031 | 0.3548 | 0.9031 | 0.9503 | | No log | 2.6207 | 76 | 0.8846 | 0.3738 | 0.8846 | 0.9405 | | No log | 2.6897 | 78 | 0.8391 | 0.4084 | 0.8391 | 0.9160 | | No log | 2.7586 | 80 | 0.8028 | 0.5102 | 0.8028 | 0.8960 | | No log | 2.8276 | 82 | 0.8226 | 0.5380 | 0.8226 | 0.9070 | | No log | 2.8966 | 84 | 0.8731 | 0.5328 | 0.8731 | 0.9344 | | No log | 2.9655 | 86 | 0.8231 | 0.5792 | 0.8231 | 0.9072 | | No log | 3.0345 | 88 | 0.7597 | 0.5532 | 0.7597 | 0.8716 | | No log | 3.1034 | 90 | 0.7814 | 0.5902 | 0.7814 | 0.8840 | | No log | 3.1724 | 92 | 0.7441 | 0.5787 | 0.7441 | 0.8626 | | No log | 3.2414 | 94 | 0.7280 | 0.5244 | 0.7280 | 0.8533 | | No log | 3.3103 | 96 | 0.7301 | 0.5244 | 0.7301 | 0.8545 | | No log | 3.3793 | 98 | 0.7402 | 0.5633 | 0.7402 | 0.8604 | | No log | 3.4483 | 100 | 0.8598 | 0.5724 | 0.8598 | 0.9272 | | No log | 3.5172 | 102 | 0.9052 | 0.5222 | 0.9052 | 0.9514 | | No log | 3.5862 | 104 | 1.0297 | 0.4695 | 1.0297 | 1.0147 | | No log | 3.6552 | 106 | 1.0569 | 0.5111 | 1.0569 | 1.0281 | | No log | 3.7241 | 108 | 0.9216 | 0.5293 | 0.9216 | 0.9600 | | No log | 3.7931 | 110 | 0.7665 | 0.5646 | 0.7665 | 0.8755 | | No log | 3.8621 | 112 | 0.7128 | 0.5534 | 0.7128 | 0.8443 | | No log | 3.9310 | 114 | 0.7355 | 0.5534 | 0.7355 | 0.8576 | | No log | 4.0 | 116 | 0.8731 | 0.5007 | 0.8731 | 0.9344 | | No log | 4.0690 | 118 | 0.9498 | 0.4596 | 0.9498 | 0.9746 | | No log | 4.1379 | 120 | 0.8700 | 0.5497 | 0.8700 | 0.9327 | | No log | 4.2069 | 122 | 0.8202 | 0.5964 | 0.8202 | 0.9057 | | No log | 4.2759 | 124 | 0.7906 | 0.5661 | 0.7906 | 0.8891 | | No log | 4.3448 | 126 | 0.8384 | 0.5649 | 0.8384 | 0.9156 | | No log | 4.4138 | 128 | 0.8160 | 0.5473 | 0.8160 | 0.9033 | | No log | 4.4828 | 130 | 0.7711 | 0.5155 | 0.7711 | 0.8781 | | No log | 4.5517 | 132 | 0.7697 | 0.5155 | 0.7697 | 0.8773 | | No log | 4.6207 | 134 | 0.7754 | 0.5380 | 0.7754 | 0.8806 | | No log | 4.6897 | 136 | 0.8199 | 0.5625 | 0.8199 | 0.9055 | | No log | 4.7586 | 138 | 0.8332 | 0.4811 | 0.8332 | 0.9128 | | No log | 4.8276 | 140 | 0.7855 | 0.4700 | 0.7855 | 0.8863 | | No log | 4.8966 | 142 | 0.7696 | 0.5517 | 0.7696 | 0.8773 | | No log | 4.9655 | 144 | 0.7304 | 0.5930 | 0.7304 | 0.8546 | | No log | 5.0345 | 146 | 0.7390 | 0.5467 | 0.7390 | 0.8596 | | No log | 5.1034 | 148 | 0.7498 | 0.4944 | 0.7498 | 0.8659 | | No log | 5.1724 | 150 | 0.7101 | 0.5647 | 0.7101 | 0.8427 | | No log | 5.2414 | 152 | 0.7168 | 0.6281 | 0.7168 | 0.8466 | | No log | 5.3103 | 154 | 0.7075 | 0.5648 | 0.7075 | 0.8411 | | No log | 5.3793 | 156 | 0.7171 | 0.5505 | 0.7171 | 0.8468 | | No log | 5.4483 | 158 | 0.7306 | 0.6074 | 0.7306 | 0.8547 | | No log | 5.5172 | 160 | 0.7318 | 0.6054 | 0.7318 | 0.8555 | | No log | 5.5862 | 162 | 0.7400 | 0.5838 | 0.7400 | 0.8602 | | No log | 5.6552 | 164 | 0.7766 | 0.5631 | 0.7766 | 0.8812 | | No log | 5.7241 | 166 | 0.7540 | 0.5495 | 0.7540 | 0.8683 | | No log | 5.7931 | 168 | 0.7575 | 0.5997 | 0.7575 | 0.8703 | | No log | 5.8621 | 170 | 0.7787 | 0.5621 | 0.7787 | 0.8824 | | No log | 5.9310 | 172 | 0.8353 | 0.5825 | 0.8353 | 0.9139 | | No log | 6.0 | 174 | 0.8169 | 0.6203 | 0.8169 | 0.9038 | | No log | 6.0690 | 176 | 0.7620 | 0.5699 | 0.7620 | 0.8729 | | No log | 6.1379 | 178 | 0.7530 | 0.5584 | 0.7530 | 0.8678 | | No log | 6.2069 | 180 | 0.7610 | 0.5132 | 0.7610 | 0.8724 | | No log | 6.2759 | 182 | 0.8526 | 0.4893 | 0.8526 | 0.9234 | | No log | 6.3448 | 184 | 0.9633 | 0.4989 | 0.9633 | 0.9815 | | No log | 6.4138 | 186 | 0.8603 | 0.4785 | 0.8603 | 0.9275 | | No log | 6.4828 | 188 | 0.7646 | 0.5376 | 0.7646 | 0.8744 | | No log | 6.5517 | 190 | 0.7210 | 0.6035 | 0.7210 | 0.8491 | | No log | 6.6207 | 192 | 0.6899 | 0.6435 | 0.6899 | 0.8306 | | No log | 6.6897 | 194 | 0.6940 | 0.6713 | 0.6940 | 0.8331 | | No log | 6.7586 | 196 | 0.7134 | 0.6234 | 0.7134 | 0.8446 | | No log | 6.8276 | 198 | 0.7676 | 0.5255 | 0.7676 | 0.8761 | | No log | 6.8966 | 200 | 0.7394 | 0.4945 | 0.7394 | 0.8599 | | No log | 6.9655 | 202 | 0.7510 | 0.5163 | 0.7510 | 0.8666 | | No log | 7.0345 | 204 | 0.7595 | 0.5079 | 0.7595 | 0.8715 | | No log | 7.1034 | 206 | 0.7511 | 0.6060 | 0.7511 | 0.8667 | | No log | 7.1724 | 208 | 0.7605 | 0.6121 | 0.7605 | 0.8721 | | No log | 7.2414 | 210 | 0.7441 | 0.5774 | 0.7441 | 0.8626 | | No log | 7.3103 | 212 | 0.7427 | 0.5253 | 0.7427 | 0.8618 | | No log | 7.3793 | 214 | 0.7376 | 0.5774 | 0.7376 | 0.8589 | | No log | 7.4483 | 216 | 0.7578 | 0.6132 | 0.7578 | 0.8705 | | No log | 7.5172 | 218 | 0.7791 | 0.6305 | 0.7791 | 0.8826 | | No log | 7.5862 | 220 | 0.8327 | 0.6159 | 0.8327 | 0.9125 | | No log | 7.6552 | 222 | 0.7940 | 0.5961 | 0.7940 | 0.8911 | | No log | 7.7241 | 224 | 0.7380 | 0.6051 | 0.7380 | 0.8591 | | No log | 7.7931 | 226 | 0.7456 | 0.5697 | 0.7456 | 0.8635 | | No log | 7.8621 | 228 | 0.7428 | 0.5697 | 0.7428 | 0.8619 | | No log | 7.9310 | 230 | 0.7183 | 0.6239 | 0.7183 | 0.8475 | | No log | 8.0 | 232 | 0.7763 | 0.6384 | 0.7763 | 0.8811 | | No log | 8.0690 | 234 | 0.8529 | 0.6092 | 0.8529 | 0.9235 | | No log | 8.1379 | 236 | 0.7757 | 0.6400 | 0.7757 | 0.8807 | | No log | 8.2069 | 238 | 0.7151 | 0.6239 | 0.7151 | 0.8456 | | No log | 8.2759 | 240 | 0.7395 | 0.5301 | 0.7395 | 0.8599 | | No log | 8.3448 | 242 | 0.7522 | 0.5333 | 0.7522 | 0.8673 | | No log | 8.4138 | 244 | 0.7239 | 0.5866 | 0.7239 | 0.8508 | | No log | 8.4828 | 246 | 0.7094 | 0.6625 | 0.7094 | 0.8422 | | No log | 8.5517 | 248 | 0.7757 | 0.6499 | 0.7757 | 0.8807 | | No log | 8.6207 | 250 | 0.8802 | 0.5899 | 0.8802 | 0.9382 | | No log | 8.6897 | 252 | 0.8558 | 0.6200 | 0.8558 | 0.9251 | | No log | 8.7586 | 254 | 0.7504 | 0.6066 | 0.7504 | 0.8662 | | No log | 8.8276 | 256 | 0.7080 | 0.5483 | 0.7080 | 0.8414 | | No log | 8.8966 | 258 | 0.8428 | 0.5549 | 0.8428 | 0.9181 | | No log | 8.9655 | 260 | 0.8959 | 0.4563 | 0.8959 | 0.9465 | | No log | 9.0345 | 262 | 0.8483 | 0.5145 | 0.8483 | 0.9210 | | No log | 9.1034 | 264 | 0.7494 | 0.5561 | 0.7494 | 0.8657 | | No log | 9.1724 | 266 | 0.7344 | 0.5505 | 0.7344 | 0.8570 | | No log | 9.2414 | 268 | 0.7188 | 0.5705 | 0.7188 | 0.8478 | | No log | 9.3103 | 270 | 0.7212 | 0.6107 | 0.7212 | 0.8492 | | No log | 9.3793 | 272 | 0.7458 | 0.5992 | 0.7458 | 0.8636 | | No log | 9.4483 | 274 | 0.7366 | 0.6278 | 0.7366 | 0.8583 | | No log | 9.5172 | 276 | 0.7339 | 0.5633 | 0.7339 | 0.8567 | | No log | 9.5862 | 278 | 0.7509 | 0.5245 | 0.7509 | 0.8665 | | No log | 9.6552 | 280 | 0.7455 | 0.5420 | 0.7455 | 0.8634 | | No log | 9.7241 | 282 | 0.7419 | 0.5420 | 0.7419 | 0.8613 | | No log | 9.7931 | 284 | 0.7337 | 0.6415 | 0.7337 | 0.8566 | | No log | 9.8621 | 286 | 0.7402 | 0.6395 | 0.7402 | 0.8604 | | No log | 9.9310 | 288 | 0.7704 | 0.6175 | 0.7704 | 0.8777 | | No log | 10.0 | 290 | 0.8105 | 0.6315 | 0.8105 | 0.9003 | | No log | 10.0690 | 292 | 0.8148 | 0.6154 | 0.8148 | 0.9027 | | No log | 10.1379 | 294 | 0.7538 | 0.6244 | 0.7538 | 0.8682 | | No log | 10.2069 | 296 | 0.7352 | 0.5930 | 0.7352 | 0.8574 | | No log | 10.2759 | 298 | 0.7286 | 0.5744 | 0.7286 | 0.8536 | | No log | 10.3448 | 300 | 0.7381 | 0.5622 | 0.7381 | 0.8591 | | No log | 10.4138 | 302 | 0.7885 | 0.5847 | 0.7885 | 0.8880 | | No log | 10.4828 | 304 | 0.8325 | 0.5685 | 0.8325 | 0.9124 | | No log | 10.5517 | 306 | 0.8751 | 0.5748 | 0.8751 | 0.9355 | | No log | 10.6207 | 308 | 0.8765 | 0.5748 | 0.8765 | 0.9362 | | No log | 10.6897 | 310 | 0.7974 | 0.6435 | 0.7974 | 0.8930 | | No log | 10.7586 | 312 | 0.7459 | 0.5993 | 0.7459 | 0.8636 | | No log | 10.8276 | 314 | 0.7526 | 0.5631 | 0.7526 | 0.8676 | | No log | 10.8966 | 316 | 0.7533 | 0.5434 | 0.7533 | 0.8679 | | No log | 10.9655 | 318 | 0.7508 | 0.5774 | 0.7508 | 0.8665 | | No log | 11.0345 | 320 | 0.7991 | 0.4998 | 0.7991 | 0.8939 | | No log | 11.1034 | 322 | 0.8500 | 0.5515 | 0.8500 | 0.9220 | | No log | 11.1724 | 324 | 0.8932 | 0.5592 | 0.8932 | 0.9451 | | No log | 11.2414 | 326 | 0.8462 | 0.5571 | 0.8462 | 0.9199 | | No log | 11.3103 | 328 | 0.7751 | 0.6657 | 0.7751 | 0.8804 | | No log | 11.3793 | 330 | 0.7703 | 0.6369 | 0.7703 | 0.8777 | | No log | 11.4483 | 332 | 0.7693 | 0.6369 | 0.7693 | 0.8771 | | No log | 11.5172 | 334 | 0.7576 | 0.5521 | 0.7576 | 0.8704 | | No log | 11.5862 | 336 | 0.7904 | 0.5359 | 0.7904 | 0.8890 | | No log | 11.6552 | 338 | 0.8023 | 0.4969 | 0.8023 | 0.8957 | | No log | 11.7241 | 340 | 0.7846 | 0.4969 | 0.7846 | 0.8858 | | No log | 11.7931 | 342 | 0.7395 | 0.5744 | 0.7395 | 0.8599 | | No log | 11.8621 | 344 | 0.7217 | 0.6021 | 0.7217 | 0.8495 | | No log | 11.9310 | 346 | 0.7100 | 0.6131 | 0.7100 | 0.8426 | | No log | 12.0 | 348 | 0.6919 | 0.6011 | 0.6919 | 0.8318 | | No log | 12.0690 | 350 | 0.6909 | 0.5676 | 0.6909 | 0.8312 | | No log | 12.1379 | 352 | 0.6980 | 0.5649 | 0.6980 | 0.8355 | | No log | 12.2069 | 354 | 0.7037 | 0.5648 | 0.7037 | 0.8389 | | No log | 12.2759 | 356 | 0.7214 | 0.4948 | 0.7214 | 0.8494 | | No log | 12.3448 | 358 | 0.7644 | 0.5013 | 0.7644 | 0.8743 | | No log | 12.4138 | 360 | 0.8011 | 0.5175 | 0.8011 | 0.8950 | | No log | 12.4828 | 362 | 0.8528 | 0.5405 | 0.8528 | 0.9235 | | No log | 12.5517 | 364 | 0.8571 | 0.4663 | 0.8571 | 0.9258 | | No log | 12.6207 | 366 | 0.8092 | 0.4820 | 0.8092 | 0.8996 | | No log | 12.6897 | 368 | 0.7878 | 0.4963 | 0.7878 | 0.8876 | | No log | 12.7586 | 370 | 0.7771 | 0.5136 | 0.7771 | 0.8815 | | No log | 12.8276 | 372 | 0.7749 | 0.5473 | 0.7749 | 0.8803 | | No log | 12.8966 | 374 | 0.7848 | 0.5876 | 0.7848 | 0.8859 | | No log | 12.9655 | 376 | 0.8350 | 0.5797 | 0.8350 | 0.9138 | | No log | 13.0345 | 378 | 0.8568 | 0.5797 | 0.8568 | 0.9256 | | No log | 13.1034 | 380 | 0.7892 | 0.6038 | 0.7892 | 0.8884 | | No log | 13.1724 | 382 | 0.7562 | 0.6013 | 0.7562 | 0.8696 | | No log | 13.2414 | 384 | 0.7396 | 0.5815 | 0.7396 | 0.8600 | | No log | 13.3103 | 386 | 0.7324 | 0.5815 | 0.7324 | 0.8558 | | No log | 13.3793 | 388 | 0.7193 | 0.5450 | 0.7193 | 0.8481 | | No log | 13.4483 | 390 | 0.7178 | 0.5570 | 0.7178 | 0.8472 | | No log | 13.5172 | 392 | 0.7260 | 0.6154 | 0.7260 | 0.8521 | | No log | 13.5862 | 394 | 0.7104 | 0.6263 | 0.7104 | 0.8428 | | No log | 13.6552 | 396 | 0.7038 | 0.6263 | 0.7038 | 0.8390 | | No log | 13.7241 | 398 | 0.6762 | 0.6567 | 0.6762 | 0.8223 | | No log | 13.7931 | 400 | 0.6709 | 0.6212 | 0.6709 | 0.8191 | | No log | 13.8621 | 402 | 0.6730 | 0.6220 | 0.6730 | 0.8203 | | No log | 13.9310 | 404 | 0.6571 | 0.6682 | 0.6571 | 0.8106 | | No log | 14.0 | 406 | 0.6548 | 0.7004 | 0.6548 | 0.8092 | | No log | 14.0690 | 408 | 0.6445 | 0.6963 | 0.6445 | 0.8028 | | No log | 14.1379 | 410 | 0.6535 | 0.6016 | 0.6535 | 0.8084 | | No log | 14.2069 | 412 | 0.6702 | 0.6129 | 0.6702 | 0.8187 | | No log | 14.2759 | 414 | 0.6819 | 0.6316 | 0.6819 | 0.8258 | | No log | 14.3448 | 416 | 0.6742 | 0.6850 | 0.6742 | 0.8211 | | No log | 14.4138 | 418 | 0.7031 | 0.6652 | 0.7031 | 0.8385 | | No log | 14.4828 | 420 | 0.8189 | 0.6259 | 0.8189 | 0.9049 | | No log | 14.5517 | 422 | 0.8710 | 0.6303 | 0.8710 | 0.9333 | | No log | 14.6207 | 424 | 0.8088 | 0.6167 | 0.8088 | 0.8993 | | No log | 14.6897 | 426 | 0.7069 | 0.6793 | 0.7069 | 0.8408 | | No log | 14.7586 | 428 | 0.6750 | 0.6894 | 0.6750 | 0.8216 | | No log | 14.8276 | 430 | 0.6986 | 0.6266 | 0.6986 | 0.8358 | | No log | 14.8966 | 432 | 0.7090 | 0.5743 | 0.7090 | 0.8420 | | No log | 14.9655 | 434 | 0.6881 | 0.6654 | 0.6881 | 0.8295 | | No log | 15.0345 | 436 | 0.6834 | 0.6468 | 0.6834 | 0.8267 | | No log | 15.1034 | 438 | 0.6910 | 0.6712 | 0.6910 | 0.8312 | | No log | 15.1724 | 440 | 0.7237 | 0.6679 | 0.7237 | 0.8507 | | No log | 15.2414 | 442 | 0.7332 | 0.6580 | 0.7332 | 0.8563 | | No log | 15.3103 | 444 | 0.7368 | 0.6601 | 0.7368 | 0.8584 | | No log | 15.3793 | 446 | 0.7136 | 0.6171 | 0.7136 | 0.8447 | | No log | 15.4483 | 448 | 0.6934 | 0.6631 | 0.6934 | 0.8327 | | No log | 15.5172 | 450 | 0.6874 | 0.6824 | 0.6874 | 0.8291 | | No log | 15.5862 | 452 | 0.6965 | 0.6317 | 0.6965 | 0.8346 | | No log | 15.6552 | 454 | 0.7033 | 0.7089 | 0.7033 | 0.8387 | | No log | 15.7241 | 456 | 0.7267 | 0.6481 | 0.7267 | 0.8525 | | No log | 15.7931 | 458 | 0.7437 | 0.6580 | 0.7437 | 0.8624 | | No log | 15.8621 | 460 | 0.7309 | 0.5869 | 0.7309 | 0.8549 | | No log | 15.9310 | 462 | 0.7151 | 0.6041 | 0.7151 | 0.8457 | | No log | 16.0 | 464 | 0.6873 | 0.6237 | 0.6873 | 0.8291 | | No log | 16.0690 | 466 | 0.6789 | 0.6272 | 0.6789 | 0.8240 | | No log | 16.1379 | 468 | 0.6819 | 0.6934 | 0.6819 | 0.8257 | | No log | 16.2069 | 470 | 0.6845 | 0.6809 | 0.6845 | 0.8274 | | No log | 16.2759 | 472 | 0.6902 | 0.6809 | 0.6902 | 0.8308 | | No log | 16.3448 | 474 | 0.6913 | 0.6578 | 0.6913 | 0.8314 | | No log | 16.4138 | 476 | 0.6879 | 0.6578 | 0.6879 | 0.8294 | | No log | 16.4828 | 478 | 0.6870 | 0.6578 | 0.6870 | 0.8288 | | No log | 16.5517 | 480 | 0.6874 | 0.6436 | 0.6874 | 0.8291 | | No log | 16.6207 | 482 | 0.6929 | 0.5781 | 0.6929 | 0.8324 | | No log | 16.6897 | 484 | 0.6981 | 0.5403 | 0.6981 | 0.8355 | | No log | 16.7586 | 486 | 0.6951 | 0.5403 | 0.6951 | 0.8337 | | No log | 16.8276 | 488 | 0.6860 | 0.5921 | 0.6860 | 0.8282 | | No log | 16.8966 | 490 | 0.6896 | 0.6404 | 0.6896 | 0.8304 | | No log | 16.9655 | 492 | 0.7358 | 0.6315 | 0.7358 | 0.8578 | | No log | 17.0345 | 494 | 0.7414 | 0.6464 | 0.7414 | 0.8610 | | No log | 17.1034 | 496 | 0.6874 | 0.6441 | 0.6874 | 0.8291 | | No log | 17.1724 | 498 | 0.6582 | 0.6528 | 0.6582 | 0.8113 | | 0.2525 | 17.2414 | 500 | 0.6940 | 0.5684 | 0.6940 | 0.8330 | | 0.2525 | 17.3103 | 502 | 0.7289 | 0.5737 | 0.7289 | 0.8537 | | 0.2525 | 17.3793 | 504 | 0.6983 | 0.6105 | 0.6983 | 0.8356 | | 0.2525 | 17.4483 | 506 | 0.6568 | 0.6212 | 0.6568 | 0.8104 | | 0.2525 | 17.5172 | 508 | 0.6930 | 0.6266 | 0.6930 | 0.8325 | | 0.2525 | 17.5862 | 510 | 0.7971 | 0.6194 | 0.7971 | 0.8928 | | 0.2525 | 17.6552 | 512 | 0.8424 | 0.5883 | 0.8424 | 0.9178 | | 0.2525 | 17.7241 | 514 | 0.8040 | 0.5962 | 0.8040 | 0.8967 | | 0.2525 | 17.7931 | 516 | 0.7253 | 0.5352 | 0.7253 | 0.8517 | | 0.2525 | 17.8621 | 518 | 0.6738 | 0.5835 | 0.6738 | 0.8208 | | 0.2525 | 17.9310 | 520 | 0.6546 | 0.6362 | 0.6546 | 0.8091 | | 0.2525 | 18.0 | 522 | 0.6491 | 0.6487 | 0.6491 | 0.8057 | | 0.2525 | 18.0690 | 524 | 0.6587 | 0.6849 | 0.6587 | 0.8116 | | 0.2525 | 18.1379 | 526 | 0.6859 | 0.6771 | 0.6859 | 0.8282 | | 0.2525 | 18.2069 | 528 | 0.7243 | 0.6607 | 0.7243 | 0.8510 | | 0.2525 | 18.2759 | 530 | 0.7094 | 0.6464 | 0.7094 | 0.8422 | | 0.2525 | 18.3448 | 532 | 0.6948 | 0.6350 | 0.6948 | 0.8335 | | 0.2525 | 18.4138 | 534 | 0.6912 | 0.5898 | 0.6912 | 0.8314 | | 0.2525 | 18.4828 | 536 | 0.6953 | 0.5835 | 0.6953 | 0.8339 | | 0.2525 | 18.5517 | 538 | 0.7008 | 0.5431 | 0.7008 | 0.8372 | | 0.2525 | 18.6207 | 540 | 0.6999 | 0.5805 | 0.6999 | 0.8366 | | 0.2525 | 18.6897 | 542 | 0.7019 | 0.6110 | 0.7019 | 0.8378 | | 0.2525 | 18.7586 | 544 | 0.6946 | 0.6215 | 0.6946 | 0.8335 | | 0.2525 | 18.8276 | 546 | 0.6709 | 0.6283 | 0.6709 | 0.8191 | | 0.2525 | 18.8966 | 548 | 0.6557 | 0.6528 | 0.6557 | 0.8097 | | 0.2525 | 18.9655 | 550 | 0.6592 | 0.6528 | 0.6592 | 0.8119 | | 0.2525 | 19.0345 | 552 | 0.6643 | 0.6189 | 0.6643 | 0.8150 | | 0.2525 | 19.1034 | 554 | 0.6693 | 0.6176 | 0.6693 | 0.8181 | | 0.2525 | 19.1724 | 556 | 0.6684 | 0.6324 | 0.6684 | 0.8175 | | 0.2525 | 19.2414 | 558 | 0.6892 | 0.6391 | 0.6892 | 0.8302 | | 0.2525 | 19.3103 | 560 | 0.7126 | 0.6299 | 0.7126 | 0.8441 | | 0.2525 | 19.3793 | 562 | 0.6958 | 0.6132 | 0.6958 | 0.8342 | | 0.2525 | 19.4483 | 564 | 0.6891 | 0.6244 | 0.6891 | 0.8301 | | 0.2525 | 19.5172 | 566 | 0.6755 | 0.6074 | 0.6755 | 0.8219 | | 0.2525 | 19.5862 | 568 | 0.6952 | 0.6335 | 0.6952 | 0.8338 | | 0.2525 | 19.6552 | 570 | 0.7054 | 0.5898 | 0.7054 | 0.8399 | | 0.2525 | 19.7241 | 572 | 0.7122 | 0.5756 | 0.7122 | 0.8439 | | 0.2525 | 19.7931 | 574 | 0.7098 | 0.5012 | 0.7098 | 0.8425 | | 0.2525 | 19.8621 | 576 | 0.7195 | 0.4563 | 0.7195 | 0.8482 | | 0.2525 | 19.9310 | 578 | 0.7092 | 0.4826 | 0.7092 | 0.8422 | | 0.2525 | 20.0 | 580 | 0.6928 | 0.5676 | 0.6928 | 0.8323 | | 0.2525 | 20.0690 | 582 | 0.6940 | 0.6108 | 0.6940 | 0.8331 | | 0.2525 | 20.1379 | 584 | 0.6875 | 0.6641 | 0.6875 | 0.8292 | | 0.2525 | 20.2069 | 586 | 0.6934 | 0.6641 | 0.6934 | 0.8327 | | 0.2525 | 20.2759 | 588 | 0.7054 | 0.6163 | 0.7054 | 0.8399 | | 0.2525 | 20.3448 | 590 | 0.7008 | 0.5797 | 0.7008 | 0.8371 | | 0.2525 | 20.4138 | 592 | 0.6981 | 0.6641 | 0.6981 | 0.8355 | | 0.2525 | 20.4828 | 594 | 0.6979 | 0.6611 | 0.6979 | 0.8354 | | 0.2525 | 20.5517 | 596 | 0.6980 | 0.6557 | 0.6980 | 0.8355 | | 0.2525 | 20.6207 | 598 | 0.7096 | 0.6795 | 0.7096 | 0.8423 | | 0.2525 | 20.6897 | 600 | 0.7798 | 0.6483 | 0.7798 | 0.8831 | | 0.2525 | 20.7586 | 602 | 0.8087 | 0.6425 | 0.8087 | 0.8993 | | 0.2525 | 20.8276 | 604 | 0.7694 | 0.6457 | 0.7694 | 0.8771 | | 0.2525 | 20.8966 | 606 | 0.7093 | 0.6353 | 0.7093 | 0.8422 | | 0.2525 | 20.9655 | 608 | 0.6742 | 0.5801 | 0.6742 | 0.8211 | | 0.2525 | 21.0345 | 610 | 0.6844 | 0.6190 | 0.6844 | 0.8273 | | 0.2525 | 21.1034 | 612 | 0.6840 | 0.6154 | 0.6840 | 0.8270 | | 0.2525 | 21.1724 | 614 | 0.6685 | 0.5746 | 0.6685 | 0.8176 | | 0.2525 | 21.2414 | 616 | 0.6808 | 0.6338 | 0.6808 | 0.8251 | | 0.2525 | 21.3103 | 618 | 0.6905 | 0.6338 | 0.6905 | 0.8309 | | 0.2525 | 21.3793 | 620 | 0.6882 | 0.6809 | 0.6882 | 0.8296 | | 0.2525 | 21.4483 | 622 | 0.6938 | 0.6809 | 0.6938 | 0.8330 | | 0.2525 | 21.5172 | 624 | 0.7107 | 0.6239 | 0.7107 | 0.8431 | | 0.2525 | 21.5862 | 626 | 0.7139 | 0.6252 | 0.7139 | 0.8449 | | 0.2525 | 21.6552 | 628 | 0.7173 | 0.6239 | 0.7173 | 0.8469 | | 0.2525 | 21.7241 | 630 | 0.7035 | 0.6534 | 0.7035 | 0.8388 | | 0.2525 | 21.7931 | 632 | 0.7092 | 0.6611 | 0.7092 | 0.8422 | | 0.2525 | 21.8621 | 634 | 0.7206 | 0.6573 | 0.7206 | 0.8489 | | 0.2525 | 21.9310 | 636 | 0.7262 | 0.6573 | 0.7262 | 0.8522 | | 0.2525 | 22.0 | 638 | 0.7256 | 0.6341 | 0.7256 | 0.8518 | | 0.2525 | 22.0690 | 640 | 0.7145 | 0.5886 | 0.7145 | 0.8453 | | 0.2525 | 22.1379 | 642 | 0.7298 | 0.5648 | 0.7298 | 0.8543 | | 0.2525 | 22.2069 | 644 | 0.7534 | 0.5473 | 0.7534 | 0.8680 | | 0.2525 | 22.2759 | 646 | 0.7642 | 0.5451 | 0.7642 | 0.8742 | | 0.2525 | 22.3448 | 648 | 0.7507 | 0.5819 | 0.7507 | 0.8664 | | 0.2525 | 22.4138 | 650 | 0.7374 | 0.5819 | 0.7374 | 0.8587 | | 0.2525 | 22.4828 | 652 | 0.7355 | 0.6142 | 0.7355 | 0.8576 | | 0.2525 | 22.5517 | 654 | 0.7177 | 0.5451 | 0.7177 | 0.8471 | | 0.2525 | 22.6207 | 656 | 0.7046 | 0.5921 | 0.7046 | 0.8394 | | 0.2525 | 22.6897 | 658 | 0.7132 | 0.5562 | 0.7132 | 0.8445 | | 0.2525 | 22.7586 | 660 | 0.7659 | 0.5983 | 0.7659 | 0.8751 | | 0.2525 | 22.8276 | 662 | 0.8272 | 0.6142 | 0.8272 | 0.9095 | | 0.2525 | 22.8966 | 664 | 0.8678 | 0.6061 | 0.8678 | 0.9316 | | 0.2525 | 22.9655 | 666 | 0.8336 | 0.6061 | 0.8336 | 0.9130 | | 0.2525 | 23.0345 | 668 | 0.7549 | 0.5876 | 0.7549 | 0.8688 | | 0.2525 | 23.1034 | 670 | 0.6739 | 0.6089 | 0.6739 | 0.8209 | | 0.2525 | 23.1724 | 672 | 0.6379 | 0.6550 | 0.6379 | 0.7987 | | 0.2525 | 23.2414 | 674 | 0.6604 | 0.6272 | 0.6604 | 0.8126 | | 0.2525 | 23.3103 | 676 | 0.6891 | 0.5997 | 0.6891 | 0.8301 | | 0.2525 | 23.3793 | 678 | 0.6736 | 0.6272 | 0.6736 | 0.8207 | | 0.2525 | 23.4483 | 680 | 0.6531 | 0.6154 | 0.6531 | 0.8082 | | 0.2525 | 23.5172 | 682 | 0.6576 | 0.6906 | 0.6576 | 0.8109 | | 0.2525 | 23.5862 | 684 | 0.6791 | 0.5716 | 0.6791 | 0.8241 | | 0.2525 | 23.6552 | 686 | 0.6949 | 0.5552 | 0.6949 | 0.8336 | | 0.2525 | 23.7241 | 688 | 0.7094 | 0.5125 | 0.7094 | 0.8422 | | 0.2525 | 23.7931 | 690 | 0.7309 | 0.5526 | 0.7309 | 0.8549 | | 0.2525 | 23.8621 | 692 | 0.7574 | 0.5498 | 0.7574 | 0.8703 | | 0.2525 | 23.9310 | 694 | 0.7827 | 0.5331 | 0.7827 | 0.8847 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF
mradermacher
2025-02-04T01:48:28Z
1,840
0
transformers
[ "transformers", "gguf", "nvidia", "code", "math", "en", "dataset:nvidia/OpenMathInstruct-1", "base_model:nvidia/OpenMath-CodeLlama-13b-Python-hf", "base_model:quantized:nvidia/OpenMath-CodeLlama-13b-Python-hf", "license:llama2", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-02-03T17:00:14Z
--- base_model: nvidia/OpenMath-CodeLlama-13b-Python-hf datasets: - nvidia/OpenMathInstruct-1 language: - en library_name: transformers license: llama2 quantized_by: mradermacher tags: - nvidia - code - math --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ1_S.gguf) | i1-IQ1_S | 3.0 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ1_M.gguf) | i1-IQ1_M | 3.2 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ2_S.gguf) | i1-IQ2_S | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.5 | very low quality | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ2_M.gguf) | i1-IQ2_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q2_K.gguf) | i1-Q2_K | 5.0 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ3_S.gguf) | i1-IQ3_S | 5.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ3_M.gguf) | i1-IQ3_M | 6.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q3_K_L.gguf) | i1-Q3_K_L | 7.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ4_XS.gguf) | i1-IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.5 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q4_0.gguf) | i1-Q4_0 | 7.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q4_K_M.gguf) | i1-Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q4_1.gguf) | i1-Q4_1 | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q5_K_S.gguf) | i1-Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q5_K_M.gguf) | i1-Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/OpenMath-CodeLlama-13b-Python-hf-i1-GGUF/resolve/main/OpenMath-CodeLlama-13b-Python-hf.i1-Q6_K.gguf) | i1-Q6_K | 10.8 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
JalilH/fine_tuned_gemma
JalilH
2025-02-04T01:47:14Z
12
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-04T01:31:38Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
nhungphammmmm/4513ac72-6f2e-4072-b263-869876585fc1
nhungphammmmm
2025-02-04T01:45:36Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T00:57:02Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 4513ac72-6f2e-4072-b263-869876585fc1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nhungphammmmm/4513ac72-6f2e-4072-b263-869876585fc1 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 4513ac72-6f2e-4072-b263-869876585fc1 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6921 | 0.1850 | 200 | 0.2258 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
shibajustfor/8095550f-8841-4095-9c70-b0a1c6843cd5
shibajustfor
2025-02-04T01:44:33Z
13
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T01:40:21Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 8095550f-8841-4095-9c70-b0a1c6843cd5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b6e5ed8190ccb774_train_data.json ds_type: json format: custom path: /workspace/input_data/b6e5ed8190ccb774_train_data.json type: field_instruction: soru field_output: cevap format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: shibajustfor/8095550f-8841-4095-9c70-b0a1c6843cd5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b6e5ed8190ccb774_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 72e7b874-15da-42e2-ab22-791b74a29685 wandb_project: Birthday-SN56-11-Gradients-On-Demand wandb_run: your_name wandb_runid: 72e7b874-15da-42e2-ab22-791b74a29685 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 8095550f-8841-4095-9c70-b0a1c6843cd5 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9911 | | 12.5629 | 0.0065 | 50 | 3.2159 | | 12.3334 | 0.0131 | 100 | 3.0247 | | 11.6427 | 0.0196 | 150 | 2.9407 | | 12.0462 | 0.0262 | 200 | 2.9188 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
genki10/ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold4
genki10
2025-02-04T01:42:01Z
14
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-03T21:31:11Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold4 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6089 - Qwk: 0.5812 - Mse: 0.6089 - Rmse: 0.7803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 0.25 | 2 | 10.3423 | 0.0092 | 10.3423 | 3.2159 | | No log | 0.5 | 4 | 9.0145 | 0.0037 | 9.0145 | 3.0024 | | No log | 0.75 | 6 | 7.7197 | 0.0018 | 7.7197 | 2.7784 | | No log | 1.0 | 8 | 6.8532 | 0.0018 | 6.8532 | 2.6179 | | 6.4018 | 1.25 | 10 | 6.0474 | 0.0018 | 6.0474 | 2.4591 | | 6.4018 | 1.5 | 12 | 5.1275 | 0.0128 | 5.1275 | 2.2644 | | 6.4018 | 1.75 | 14 | 4.1454 | 0.0040 | 4.1454 | 2.0360 | | 6.4018 | 2.0 | 16 | 2.5905 | 0.0052 | 2.5905 | 1.6095 | | 6.4018 | 2.25 | 18 | 2.1296 | 0.1216 | 2.1296 | 1.4593 | | 2.7798 | 2.5 | 20 | 1.6199 | 0.0544 | 1.6199 | 1.2728 | | 2.7798 | 2.75 | 22 | 1.5879 | 0.0238 | 1.5879 | 1.2601 | | 2.7798 | 3.0 | 24 | 1.2737 | 0.0238 | 1.2737 | 1.1286 | | 2.7798 | 3.25 | 26 | 1.1221 | 0.0212 | 1.1221 | 1.0593 | | 2.7798 | 3.5 | 28 | 1.2226 | 0.0316 | 1.2226 | 1.1057 | | 1.7553 | 3.75 | 30 | 1.5063 | 0.0420 | 1.5063 | 1.2273 | | 1.7553 | 4.0 | 32 | 2.0288 | 0.1601 | 2.0288 | 1.4244 | | 1.7553 | 4.25 | 34 | 1.8433 | 0.1109 | 1.8433 | 1.3577 | | 1.7553 | 4.5 | 36 | 1.5115 | 0.0757 | 1.5115 | 1.2294 | | 1.7553 | 4.75 | 38 | 1.3201 | 0.0445 | 1.3201 | 1.1490 | | 1.7333 | 5.0 | 40 | 1.2861 | 0.0558 | 1.2861 | 1.1341 | | 1.7333 | 5.25 | 42 | 1.1777 | 0.0509 | 1.1777 | 1.0852 | | 1.7333 | 5.5 | 44 | 1.1542 | 0.0445 | 1.1542 | 1.0743 | | 1.7333 | 5.75 | 46 | 1.0644 | 0.0509 | 1.0644 | 1.0317 | | 1.7333 | 6.0 | 48 | 1.8744 | 0.1643 | 1.8744 | 1.3691 | | 1.7201 | 6.25 | 50 | 2.1763 | 0.1570 | 2.1763 | 1.4752 | | 1.7201 | 6.5 | 52 | 1.7457 | 0.1783 | 1.7457 | 1.3213 | | 1.7201 | 6.75 | 54 | 1.1182 | 0.0610 | 1.1182 | 1.0574 | | 1.7201 | 7.0 | 56 | 1.2662 | 0.0445 | 1.2662 | 1.1253 | | 1.7201 | 7.25 | 58 | 0.9480 | 0.0666 | 0.9480 | 0.9737 | | 1.5405 | 7.5 | 60 | 1.0434 | 0.1008 | 1.0434 | 1.0215 | | 1.5405 | 7.75 | 62 | 1.1104 | 0.0958 | 1.1104 | 1.0537 | | 1.5405 | 8.0 | 64 | 0.9350 | 0.1352 | 0.9350 | 0.9669 | | 1.5405 | 8.25 | 66 | 0.8286 | 0.3014 | 0.8286 | 0.9103 | | 1.5405 | 8.5 | 68 | 0.8852 | 0.2636 | 0.8852 | 0.9409 | | 1.4268 | 8.75 | 70 | 0.9632 | 0.2423 | 0.9632 | 0.9814 | | 1.4268 | 9.0 | 72 | 0.8796 | 0.3042 | 0.8796 | 0.9379 | | 1.4268 | 9.25 | 74 | 0.7551 | 0.4221 | 0.7551 | 0.8690 | | 1.4268 | 9.5 | 76 | 0.8424 | 0.3961 | 0.8424 | 0.9178 | | 1.4268 | 9.75 | 78 | 1.2577 | 0.2541 | 1.2577 | 1.1215 | | 1.0054 | 10.0 | 80 | 0.8085 | 0.3728 | 0.8085 | 0.8992 | | 1.0054 | 10.25 | 82 | 0.5684 | 0.4533 | 0.5684 | 0.7540 | | 1.0054 | 10.5 | 84 | 0.5676 | 0.5215 | 0.5676 | 0.7534 | | 1.0054 | 10.75 | 86 | 0.6962 | 0.4452 | 0.6962 | 0.8344 | | 1.0054 | 11.0 | 88 | 0.5826 | 0.4438 | 0.5826 | 0.7633 | | 0.6941 | 11.25 | 90 | 0.6648 | 0.3708 | 0.6648 | 0.8154 | | 0.6941 | 11.5 | 92 | 0.5580 | 0.4754 | 0.5580 | 0.7470 | | 0.6941 | 11.75 | 94 | 0.6176 | 0.5360 | 0.6176 | 0.7859 | | 0.6941 | 12.0 | 96 | 0.5918 | 0.5448 | 0.5918 | 0.7693 | | 0.6941 | 12.25 | 98 | 0.5433 | 0.5664 | 0.5433 | 0.7371 | | 0.4638 | 12.5 | 100 | 0.5908 | 0.5526 | 0.5908 | 0.7686 | | 0.4638 | 12.75 | 102 | 0.5956 | 0.5379 | 0.5956 | 0.7718 | | 0.4638 | 13.0 | 104 | 0.6086 | 0.5680 | 0.6086 | 0.7801 | | 0.4638 | 13.25 | 106 | 0.5973 | 0.5890 | 0.5973 | 0.7728 | | 0.4638 | 13.5 | 108 | 0.5626 | 0.5852 | 0.5626 | 0.7501 | | 0.2885 | 13.75 | 110 | 0.6225 | 0.5863 | 0.6225 | 0.7890 | | 0.2885 | 14.0 | 112 | 0.6296 | 0.5823 | 0.6296 | 0.7934 | | 0.2885 | 14.25 | 114 | 0.5746 | 0.6220 | 0.5746 | 0.7580 | | 0.2885 | 14.5 | 116 | 0.5443 | 0.6016 | 0.5443 | 0.7378 | | 0.2885 | 14.75 | 118 | 0.5433 | 0.6266 | 0.5433 | 0.7371 | | 0.2075 | 15.0 | 120 | 0.5344 | 0.6296 | 0.5344 | 0.7310 | | 0.2075 | 15.25 | 122 | 0.5613 | 0.6253 | 0.5613 | 0.7492 | | 0.2075 | 15.5 | 124 | 0.5944 | 0.6347 | 0.5944 | 0.7710 | | 0.2075 | 15.75 | 126 | 0.6619 | 0.5735 | 0.6619 | 0.8136 | | 0.2075 | 16.0 | 128 | 0.6595 | 0.5727 | 0.6595 | 0.8121 | | 0.176 | 16.25 | 130 | 0.6753 | 0.5760 | 0.6753 | 0.8218 | | 0.176 | 16.5 | 132 | 0.6061 | 0.5965 | 0.6061 | 0.7785 | | 0.176 | 16.75 | 134 | 0.6268 | 0.5990 | 0.6268 | 0.7917 | | 0.176 | 17.0 | 136 | 0.5943 | 0.5971 | 0.5943 | 0.7709 | | 0.176 | 17.25 | 138 | 0.5691 | 0.6009 | 0.5691 | 0.7544 | | 0.17 | 17.5 | 140 | 0.6318 | 0.6054 | 0.6318 | 0.7949 | | 0.17 | 17.75 | 142 | 0.7145 | 0.5573 | 0.7145 | 0.8453 | | 0.17 | 18.0 | 144 | 0.6089 | 0.5812 | 0.6089 | 0.7803 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task2_organization
MayBashendy
2025-02-04T01:41:04Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T01:35:25Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task2_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task2_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7527 - Qwk: 0.6277 - Mse: 0.7527 - Rmse: 0.8676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.25 | 2 | 4.5672 | -0.0103 | 4.5672 | 2.1371 | | No log | 0.5 | 4 | 3.8256 | 0.0165 | 3.8256 | 1.9559 | | No log | 0.75 | 6 | 1.9924 | 0.0879 | 1.9924 | 1.4115 | | No log | 1.0 | 8 | 1.3135 | 0.0992 | 1.3135 | 1.1461 | | No log | 1.25 | 10 | 1.1989 | 0.2532 | 1.1989 | 1.0950 | | No log | 1.5 | 12 | 1.1159 | 0.3663 | 1.1159 | 1.0564 | | No log | 1.75 | 14 | 1.2979 | 0.1395 | 1.2979 | 1.1392 | | No log | 2.0 | 16 | 1.7774 | 0.2007 | 1.7774 | 1.3332 | | No log | 2.25 | 18 | 1.8266 | 0.2007 | 1.8266 | 1.3515 | | No log | 2.5 | 20 | 1.2240 | 0.2094 | 1.2240 | 1.1064 | | No log | 2.75 | 22 | 1.1697 | 0.2991 | 1.1697 | 1.0815 | | No log | 3.0 | 24 | 1.3357 | 0.3487 | 1.3357 | 1.1557 | | No log | 3.25 | 26 | 1.4775 | 0.3467 | 1.4775 | 1.2155 | | No log | 3.5 | 28 | 1.3308 | 0.3337 | 1.3308 | 1.1536 | | No log | 3.75 | 30 | 1.1887 | 0.3662 | 1.1887 | 1.0903 | | No log | 4.0 | 32 | 1.1607 | 0.4181 | 1.1607 | 1.0774 | | No log | 4.25 | 34 | 1.1590 | 0.4145 | 1.1590 | 1.0766 | | No log | 4.5 | 36 | 1.3189 | 0.3624 | 1.3189 | 1.1484 | | No log | 4.75 | 38 | 1.1902 | 0.3496 | 1.1902 | 1.0910 | | No log | 5.0 | 40 | 0.9968 | 0.5283 | 0.9968 | 0.9984 | | No log | 5.25 | 42 | 0.9532 | 0.4628 | 0.9532 | 0.9763 | | No log | 5.5 | 44 | 0.8992 | 0.5336 | 0.8992 | 0.9482 | | No log | 5.75 | 46 | 0.9013 | 0.5661 | 0.9013 | 0.9494 | | No log | 6.0 | 48 | 1.0160 | 0.3812 | 1.0160 | 1.0080 | | No log | 6.25 | 50 | 1.0665 | 0.2857 | 1.0665 | 1.0327 | | No log | 6.5 | 52 | 0.9579 | 0.5161 | 0.9579 | 0.9787 | | No log | 6.75 | 54 | 0.9063 | 0.5540 | 0.9063 | 0.9520 | | No log | 7.0 | 56 | 0.8729 | 0.5469 | 0.8729 | 0.9343 | | No log | 7.25 | 58 | 0.9195 | 0.5925 | 0.9195 | 0.9589 | | No log | 7.5 | 60 | 0.9483 | 0.5981 | 0.9483 | 0.9738 | | No log | 7.75 | 62 | 0.8631 | 0.5727 | 0.8631 | 0.9290 | | No log | 8.0 | 64 | 0.8401 | 0.5316 | 0.8401 | 0.9166 | | No log | 8.25 | 66 | 0.8532 | 0.5621 | 0.8532 | 0.9237 | | No log | 8.5 | 68 | 0.9241 | 0.5763 | 0.9241 | 0.9613 | | No log | 8.75 | 70 | 0.8741 | 0.6476 | 0.8741 | 0.9349 | | No log | 9.0 | 72 | 0.9365 | 0.5653 | 0.9365 | 0.9677 | | No log | 9.25 | 74 | 1.1255 | 0.3949 | 1.1255 | 1.0609 | | No log | 9.5 | 76 | 1.1053 | 0.4032 | 1.1053 | 1.0514 | | No log | 9.75 | 78 | 0.9055 | 0.5872 | 0.9055 | 0.9516 | | No log | 10.0 | 80 | 0.8272 | 0.6038 | 0.8272 | 0.9095 | | No log | 10.25 | 82 | 0.7976 | 0.5886 | 0.7976 | 0.8931 | | No log | 10.5 | 84 | 0.8105 | 0.6010 | 0.8105 | 0.9003 | | No log | 10.75 | 86 | 0.9892 | 0.5072 | 0.9892 | 0.9946 | | No log | 11.0 | 88 | 1.1295 | 0.3995 | 1.1295 | 1.0628 | | No log | 11.25 | 90 | 1.1286 | 0.3995 | 1.1286 | 1.0623 | | No log | 11.5 | 92 | 0.9918 | 0.5387 | 0.9918 | 0.9959 | | No log | 11.75 | 94 | 0.9009 | 0.5643 | 0.9009 | 0.9492 | | No log | 12.0 | 96 | 0.8678 | 0.5634 | 0.8678 | 0.9316 | | No log | 12.25 | 98 | 0.8491 | 0.5527 | 0.8491 | 0.9215 | | No log | 12.5 | 100 | 0.9288 | 0.5848 | 0.9288 | 0.9638 | | No log | 12.75 | 102 | 1.0346 | 0.3845 | 1.0346 | 1.0172 | | No log | 13.0 | 104 | 1.0993 | 0.3757 | 1.0993 | 1.0485 | | No log | 13.25 | 106 | 1.0666 | 0.3757 | 1.0666 | 1.0328 | | No log | 13.5 | 108 | 0.9152 | 0.5458 | 0.9152 | 0.9567 | | No log | 13.75 | 110 | 0.8455 | 0.5159 | 0.8455 | 0.9195 | | No log | 14.0 | 112 | 0.8476 | 0.5012 | 0.8476 | 0.9206 | | No log | 14.25 | 114 | 0.8169 | 0.5769 | 0.8169 | 0.9038 | | No log | 14.5 | 116 | 0.8390 | 0.5889 | 0.8390 | 0.9160 | | No log | 14.75 | 118 | 0.8586 | 0.5889 | 0.8586 | 0.9266 | | No log | 15.0 | 120 | 0.9263 | 0.5855 | 0.9263 | 0.9624 | | No log | 15.25 | 122 | 0.9487 | 0.5090 | 0.9487 | 0.9740 | | No log | 15.5 | 124 | 0.9345 | 0.5202 | 0.9345 | 0.9667 | | No log | 15.75 | 126 | 0.9169 | 0.6106 | 0.9169 | 0.9576 | | No log | 16.0 | 128 | 0.8941 | 0.5750 | 0.8941 | 0.9456 | | No log | 16.25 | 130 | 0.8700 | 0.5706 | 0.8700 | 0.9327 | | No log | 16.5 | 132 | 0.9050 | 0.5911 | 0.9050 | 0.9513 | | No log | 16.75 | 134 | 0.9342 | 0.5479 | 0.9342 | 0.9665 | | No log | 17.0 | 136 | 0.9597 | 0.4526 | 0.9597 | 0.9796 | | No log | 17.25 | 138 | 0.9473 | 0.4449 | 0.9473 | 0.9733 | | No log | 17.5 | 140 | 0.9224 | 0.5398 | 0.9224 | 0.9604 | | No log | 17.75 | 142 | 0.8434 | 0.5835 | 0.8434 | 0.9184 | | No log | 18.0 | 144 | 0.7839 | 0.6044 | 0.7839 | 0.8854 | | No log | 18.25 | 146 | 0.8347 | 0.5835 | 0.8347 | 0.9136 | | No log | 18.5 | 148 | 0.8247 | 0.6060 | 0.8247 | 0.9081 | | No log | 18.75 | 150 | 0.7776 | 0.6328 | 0.7776 | 0.8818 | | No log | 19.0 | 152 | 0.8599 | 0.5963 | 0.8599 | 0.9273 | | No log | 19.25 | 154 | 0.9787 | 0.4765 | 0.9787 | 0.9893 | | No log | 19.5 | 156 | 0.9388 | 0.5530 | 0.9388 | 0.9689 | | No log | 19.75 | 158 | 0.8001 | 0.5683 | 0.8001 | 0.8945 | | No log | 20.0 | 160 | 0.7520 | 0.5611 | 0.7520 | 0.8672 | | No log | 20.25 | 162 | 0.7939 | 0.5519 | 0.7939 | 0.8910 | | No log | 20.5 | 164 | 0.7527 | 0.5988 | 0.7527 | 0.8676 | | No log | 20.75 | 166 | 0.7427 | 0.5993 | 0.7427 | 0.8618 | | No log | 21.0 | 168 | 0.8660 | 0.5778 | 0.8660 | 0.9306 | | No log | 21.25 | 170 | 0.9971 | 0.4767 | 0.9971 | 0.9986 | | No log | 21.5 | 172 | 0.9048 | 0.5892 | 0.9048 | 0.9512 | | No log | 21.75 | 174 | 0.7944 | 0.5968 | 0.7944 | 0.8913 | | No log | 22.0 | 176 | 0.7774 | 0.5573 | 0.7774 | 0.8817 | | No log | 22.25 | 178 | 0.7796 | 0.5621 | 0.7796 | 0.8829 | | No log | 22.5 | 180 | 0.8166 | 0.5752 | 0.8166 | 0.9037 | | No log | 22.75 | 182 | 0.8159 | 0.5167 | 0.8159 | 0.9033 | | No log | 23.0 | 184 | 0.8132 | 0.5413 | 0.8132 | 0.9018 | | No log | 23.25 | 186 | 0.8279 | 0.5548 | 0.8279 | 0.9099 | | No log | 23.5 | 188 | 0.8567 | 0.6014 | 0.8567 | 0.9256 | | No log | 23.75 | 190 | 0.8828 | 0.6067 | 0.8828 | 0.9396 | | No log | 24.0 | 192 | 0.9324 | 0.5687 | 0.9324 | 0.9656 | | No log | 24.25 | 194 | 0.9485 | 0.5392 | 0.9485 | 0.9739 | | No log | 24.5 | 196 | 0.8357 | 0.5911 | 0.8357 | 0.9142 | | No log | 24.75 | 198 | 0.7682 | 0.5413 | 0.7682 | 0.8765 | | No log | 25.0 | 200 | 0.7771 | 0.4889 | 0.7771 | 0.8815 | | No log | 25.25 | 202 | 0.7889 | 0.4889 | 0.7889 | 0.8882 | | No log | 25.5 | 204 | 0.7767 | 0.4889 | 0.7767 | 0.8813 | | No log | 25.75 | 206 | 0.7653 | 0.5481 | 0.7653 | 0.8748 | | No log | 26.0 | 208 | 0.7854 | 0.5969 | 0.7854 | 0.8862 | | No log | 26.25 | 210 | 0.9035 | 0.5737 | 0.9035 | 0.9505 | | No log | 26.5 | 212 | 0.9183 | 0.5920 | 0.9183 | 0.9583 | | No log | 26.75 | 214 | 0.8388 | 0.6212 | 0.8388 | 0.9158 | | No log | 27.0 | 216 | 0.7822 | 0.6139 | 0.7822 | 0.8844 | | No log | 27.25 | 218 | 0.7722 | 0.6086 | 0.7722 | 0.8787 | | No log | 27.5 | 220 | 0.8329 | 0.6095 | 0.8329 | 0.9127 | | No log | 27.75 | 222 | 0.9132 | 0.5228 | 0.9132 | 0.9556 | | No log | 28.0 | 224 | 0.9593 | 0.5228 | 0.9593 | 0.9795 | | No log | 28.25 | 226 | 0.9844 | 0.5148 | 0.9844 | 0.9922 | | No log | 28.5 | 228 | 0.9307 | 0.5383 | 0.9307 | 0.9647 | | No log | 28.75 | 230 | 0.8670 | 0.6201 | 0.8670 | 0.9311 | | No log | 29.0 | 232 | 0.7697 | 0.5854 | 0.7697 | 0.8773 | | No log | 29.25 | 234 | 0.7627 | 0.5012 | 0.7627 | 0.8733 | | No log | 29.5 | 236 | 0.7568 | 0.5239 | 0.7568 | 0.8699 | | No log | 29.75 | 238 | 0.7426 | 0.5315 | 0.7426 | 0.8618 | | No log | 30.0 | 240 | 0.7565 | 0.5581 | 0.7565 | 0.8698 | | No log | 30.25 | 242 | 0.7949 | 0.5226 | 0.7949 | 0.8916 | | No log | 30.5 | 244 | 0.7903 | 0.5279 | 0.7903 | 0.8890 | | No log | 30.75 | 246 | 0.7935 | 0.5581 | 0.7935 | 0.8908 | | No log | 31.0 | 248 | 0.7920 | 0.5581 | 0.7920 | 0.8899 | | No log | 31.25 | 250 | 0.7911 | 0.5581 | 0.7911 | 0.8895 | | No log | 31.5 | 252 | 0.8080 | 0.5226 | 0.8080 | 0.8989 | | No log | 31.75 | 254 | 0.7824 | 0.5279 | 0.7824 | 0.8845 | | No log | 32.0 | 256 | 0.7594 | 0.5830 | 0.7594 | 0.8714 | | No log | 32.25 | 258 | 0.7512 | 0.5773 | 0.7512 | 0.8667 | | No log | 32.5 | 260 | 0.7516 | 0.5458 | 0.7516 | 0.8670 | | No log | 32.75 | 262 | 0.7596 | 0.5944 | 0.7596 | 0.8715 | | No log | 33.0 | 264 | 0.7556 | 0.5773 | 0.7556 | 0.8693 | | No log | 33.25 | 266 | 0.7606 | 0.5462 | 0.7606 | 0.8721 | | No log | 33.5 | 268 | 0.7813 | 0.5443 | 0.7813 | 0.8839 | | No log | 33.75 | 270 | 0.7974 | 0.5633 | 0.7974 | 0.8930 | | No log | 34.0 | 272 | 0.8128 | 0.5787 | 0.8128 | 0.9016 | | No log | 34.25 | 274 | 0.7962 | 0.5691 | 0.7962 | 0.8923 | | No log | 34.5 | 276 | 0.8200 | 0.6026 | 0.8200 | 0.9055 | | No log | 34.75 | 278 | 0.8420 | 0.6167 | 0.8420 | 0.9176 | | No log | 35.0 | 280 | 0.8093 | 0.6167 | 0.8093 | 0.8996 | | No log | 35.25 | 282 | 0.7566 | 0.6032 | 0.7566 | 0.8698 | | No log | 35.5 | 284 | 0.7621 | 0.5681 | 0.7621 | 0.8730 | | No log | 35.75 | 286 | 0.7825 | 0.5956 | 0.7825 | 0.8846 | | No log | 36.0 | 288 | 0.7786 | 0.5816 | 0.7786 | 0.8824 | | No log | 36.25 | 290 | 0.7601 | 0.5530 | 0.7601 | 0.8718 | | No log | 36.5 | 292 | 0.7678 | 0.5194 | 0.7678 | 0.8762 | | No log | 36.75 | 294 | 0.8233 | 0.5926 | 0.8233 | 0.9073 | | No log | 37.0 | 296 | 0.8563 | 0.5571 | 0.8563 | 0.9254 | | No log | 37.25 | 298 | 0.8415 | 0.5513 | 0.8415 | 0.9173 | | No log | 37.5 | 300 | 0.7797 | 0.5563 | 0.7797 | 0.8830 | | No log | 37.75 | 302 | 0.7475 | 0.5596 | 0.7475 | 0.8646 | | No log | 38.0 | 304 | 0.7587 | 0.5915 | 0.7587 | 0.8710 | | No log | 38.25 | 306 | 0.7819 | 0.6277 | 0.7819 | 0.8843 | | No log | 38.5 | 308 | 0.8275 | 0.6097 | 0.8275 | 0.9097 | | No log | 38.75 | 310 | 0.8783 | 0.6321 | 0.8783 | 0.9372 | | No log | 39.0 | 312 | 0.8847 | 0.6340 | 0.8847 | 0.9406 | | No log | 39.25 | 314 | 0.8524 | 0.6136 | 0.8524 | 0.9232 | | No log | 39.5 | 316 | 0.8067 | 0.5971 | 0.8067 | 0.8981 | | No log | 39.75 | 318 | 0.7862 | 0.5658 | 0.7862 | 0.8867 | | No log | 40.0 | 320 | 0.7645 | 0.5397 | 0.7645 | 0.8744 | | No log | 40.25 | 322 | 0.7652 | 0.5582 | 0.7652 | 0.8747 | | No log | 40.5 | 324 | 0.7895 | 0.5693 | 0.7895 | 0.8886 | | No log | 40.75 | 326 | 0.8312 | 0.6011 | 0.8312 | 0.9117 | | No log | 41.0 | 328 | 0.8201 | 0.6074 | 0.8201 | 0.9056 | | No log | 41.25 | 330 | 0.8093 | 0.6074 | 0.8093 | 0.8996 | | No log | 41.5 | 332 | 0.7577 | 0.5759 | 0.7577 | 0.8705 | | No log | 41.75 | 334 | 0.7257 | 0.6108 | 0.7257 | 0.8519 | | No log | 42.0 | 336 | 0.7305 | 0.5148 | 0.7305 | 0.8547 | | No log | 42.25 | 338 | 0.7625 | 0.5359 | 0.7625 | 0.8732 | | No log | 42.5 | 340 | 0.7724 | 0.5515 | 0.7724 | 0.8789 | | No log | 42.75 | 342 | 0.7583 | 0.5481 | 0.7583 | 0.8708 | | No log | 43.0 | 344 | 0.7621 | 0.6218 | 0.7621 | 0.8730 | | No log | 43.25 | 346 | 0.8241 | 0.5783 | 0.8241 | 0.9078 | | No log | 43.5 | 348 | 0.8800 | 0.6305 | 0.8800 | 0.9381 | | No log | 43.75 | 350 | 0.9163 | 0.6274 | 0.9163 | 0.9572 | | No log | 44.0 | 352 | 0.9326 | 0.6241 | 0.9326 | 0.9657 | | No log | 44.25 | 354 | 0.8969 | 0.6434 | 0.8969 | 0.9470 | | No log | 44.5 | 356 | 0.8530 | 0.6098 | 0.8530 | 0.9236 | | No log | 44.75 | 358 | 0.8156 | 0.6108 | 0.8156 | 0.9031 | | No log | 45.0 | 360 | 0.7856 | 0.5573 | 0.7856 | 0.8864 | | No log | 45.25 | 362 | 0.7766 | 0.5391 | 0.7766 | 0.8813 | | No log | 45.5 | 364 | 0.7773 | 0.5396 | 0.7773 | 0.8816 | | No log | 45.75 | 366 | 0.7936 | 0.6078 | 0.7936 | 0.8908 | | No log | 46.0 | 368 | 0.8269 | 0.6151 | 0.8269 | 0.9094 | | No log | 46.25 | 370 | 0.8661 | 0.6026 | 0.8661 | 0.9306 | | No log | 46.5 | 372 | 0.8898 | 0.5739 | 0.8898 | 0.9433 | | No log | 46.75 | 374 | 0.9149 | 0.5763 | 0.9149 | 0.9565 | | No log | 47.0 | 376 | 0.8884 | 0.5763 | 0.8884 | 0.9426 | | No log | 47.25 | 378 | 0.8597 | 0.5816 | 0.8597 | 0.9272 | | No log | 47.5 | 380 | 0.8038 | 0.6048 | 0.8038 | 0.8966 | | No log | 47.75 | 382 | 0.7453 | 0.5930 | 0.7453 | 0.8633 | | No log | 48.0 | 384 | 0.7387 | 0.5958 | 0.7387 | 0.8595 | | No log | 48.25 | 386 | 0.7387 | 0.5793 | 0.7387 | 0.8595 | | No log | 48.5 | 388 | 0.7377 | 0.6075 | 0.7377 | 0.8589 | | No log | 48.75 | 390 | 0.7344 | 0.5828 | 0.7344 | 0.8570 | | No log | 49.0 | 392 | 0.7425 | 0.5793 | 0.7425 | 0.8617 | | No log | 49.25 | 394 | 0.7764 | 0.5976 | 0.7764 | 0.8811 | | No log | 49.5 | 396 | 0.8145 | 0.6157 | 0.8145 | 0.9025 | | No log | 49.75 | 398 | 0.8599 | 0.5856 | 0.8599 | 0.9273 | | No log | 50.0 | 400 | 0.9296 | 0.5533 | 0.9296 | 0.9642 | | No log | 50.25 | 402 | 0.9645 | 0.5681 | 0.9645 | 0.9821 | | No log | 50.5 | 404 | 0.9089 | 0.5681 | 0.9089 | 0.9534 | | No log | 50.75 | 406 | 0.8218 | 0.6202 | 0.8218 | 0.9065 | | No log | 51.0 | 408 | 0.7478 | 0.6172 | 0.7478 | 0.8648 | | No log | 51.25 | 410 | 0.7114 | 0.6151 | 0.7114 | 0.8435 | | No log | 51.5 | 412 | 0.6909 | 0.6487 | 0.6909 | 0.8312 | | No log | 51.75 | 414 | 0.6946 | 0.6244 | 0.6946 | 0.8334 | | No log | 52.0 | 416 | 0.7115 | 0.6044 | 0.7115 | 0.8435 | | No log | 52.25 | 418 | 0.7130 | 0.6228 | 0.7130 | 0.8444 | | No log | 52.5 | 420 | 0.7106 | 0.6404 | 0.7106 | 0.8430 | | No log | 52.75 | 422 | 0.7094 | 0.6089 | 0.7094 | 0.8423 | | No log | 53.0 | 424 | 0.7039 | 0.6629 | 0.7039 | 0.8390 | | No log | 53.25 | 426 | 0.6985 | 0.6237 | 0.6985 | 0.8358 | | No log | 53.5 | 428 | 0.7047 | 0.5988 | 0.7047 | 0.8395 | | No log | 53.75 | 430 | 0.7138 | 0.6328 | 0.7138 | 0.8449 | | No log | 54.0 | 432 | 0.7195 | 0.5815 | 0.7195 | 0.8482 | | No log | 54.25 | 434 | 0.7271 | 0.6097 | 0.7271 | 0.8527 | | No log | 54.5 | 436 | 0.7365 | 0.6647 | 0.7365 | 0.8582 | | No log | 54.75 | 438 | 0.7400 | 0.6669 | 0.7400 | 0.8602 | | No log | 55.0 | 440 | 0.7317 | 0.6343 | 0.7317 | 0.8554 | | No log | 55.25 | 442 | 0.7222 | 0.6343 | 0.7222 | 0.8498 | | No log | 55.5 | 444 | 0.7139 | 0.6218 | 0.7139 | 0.8450 | | No log | 55.75 | 446 | 0.7090 | 0.6468 | 0.7090 | 0.8420 | | No log | 56.0 | 448 | 0.7157 | 0.6393 | 0.7157 | 0.8460 | | No log | 56.25 | 450 | 0.7200 | 0.6468 | 0.7200 | 0.8486 | | No log | 56.5 | 452 | 0.7242 | 0.6119 | 0.7242 | 0.8510 | | No log | 56.75 | 454 | 0.7298 | 0.6119 | 0.7298 | 0.8543 | | No log | 57.0 | 456 | 0.7402 | 0.5974 | 0.7402 | 0.8604 | | No log | 57.25 | 458 | 0.7547 | 0.6044 | 0.7547 | 0.8687 | | No log | 57.5 | 460 | 0.7690 | 0.5931 | 0.7690 | 0.8769 | | No log | 57.75 | 462 | 0.7846 | 0.6151 | 0.7846 | 0.8858 | | No log | 58.0 | 464 | 0.8249 | 0.6160 | 0.8249 | 0.9082 | | No log | 58.25 | 466 | 0.8499 | 0.6146 | 0.8499 | 0.9219 | | No log | 58.5 | 468 | 0.8405 | 0.6404 | 0.8405 | 0.9168 | | No log | 58.75 | 470 | 0.8178 | 0.6246 | 0.8178 | 0.9043 | | No log | 59.0 | 472 | 0.7906 | 0.6225 | 0.7906 | 0.8892 | | No log | 59.25 | 474 | 0.7889 | 0.6228 | 0.7889 | 0.8882 | | No log | 59.5 | 476 | 0.7943 | 0.6024 | 0.7943 | 0.8912 | | No log | 59.75 | 478 | 0.7907 | 0.6024 | 0.7907 | 0.8892 | | No log | 60.0 | 480 | 0.7812 | 0.6024 | 0.7812 | 0.8838 | | No log | 60.25 | 482 | 0.7588 | 0.5827 | 0.7588 | 0.8711 | | No log | 60.5 | 484 | 0.7538 | 0.6343 | 0.7538 | 0.8682 | | No log | 60.75 | 486 | 0.7566 | 0.6065 | 0.7566 | 0.8699 | | No log | 61.0 | 488 | 0.7507 | 0.6065 | 0.7507 | 0.8664 | | No log | 61.25 | 490 | 0.7477 | 0.6205 | 0.7477 | 0.8647 | | No log | 61.5 | 492 | 0.7367 | 0.6205 | 0.7367 | 0.8583 | | No log | 61.75 | 494 | 0.7180 | 0.6097 | 0.7180 | 0.8474 | | No log | 62.0 | 496 | 0.7051 | 0.6257 | 0.7051 | 0.8397 | | No log | 62.25 | 498 | 0.7055 | 0.6479 | 0.7055 | 0.8399 | | 0.2158 | 62.5 | 500 | 0.7168 | 0.7044 | 0.7168 | 0.8466 | | 0.2158 | 62.75 | 502 | 0.7305 | 0.6725 | 0.7305 | 0.8547 | | 0.2158 | 63.0 | 504 | 0.7416 | 0.6414 | 0.7416 | 0.8611 | | 0.2158 | 63.25 | 506 | 0.7493 | 0.6414 | 0.7493 | 0.8656 | | 0.2158 | 63.5 | 508 | 0.7530 | 0.6366 | 0.7530 | 0.8678 | | 0.2158 | 63.75 | 510 | 0.7527 | 0.6277 | 0.7527 | 0.8676 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
nghiatrannnnnn/64ec99b1-05f7-4ad5-b325-1c61c81b3a35
nghiatrannnnnn
2025-02-04T01:40:16Z
10
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:unsloth/Mistral-Nemo-Instruct-2407", "base_model:adapter:unsloth/Mistral-Nemo-Instruct-2407", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T00:57:06Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Mistral-Nemo-Instruct-2407 tags: - axolotl - generated_from_trainer model-index: - name: 64ec99b1-05f7-4ad5-b325-1c61c81b3a35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Mistral-Nemo-Instruct-2407 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 3e5eab4715297236_train_data.json ds_type: json format: custom path: /workspace/input_data/3e5eab4715297236_train_data.json type: field_input: '' field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: nghiatrannnnnn/64ec99b1-05f7-4ad5-b325-1c61c81b3a35 hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/3e5eab4715297236_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 06993ad5-9e1b-472b-9fb0-ffdcec07b62e warmup_steps: 5 weight_decay: 0.01 xformers_attention: true ``` </details><br> # 64ec99b1-05f7-4ad5-b325-1c61c81b3a35 This model is a fine-tuned version of [unsloth/Mistral-Nemo-Instruct-2407](https://huggingface.co/unsloth/Mistral-Nemo-Instruct-2407) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.695 | 0.1850 | 200 | 0.2259 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
earnxus/feeedd92-4513-4eec-8dfc-51f5f9029d6b
earnxus
2025-02-04T01:39:43Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "8-bit", "bitsandbytes", "region:us" ]
null
2025-02-04T01:36:22Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: feeedd92-4513-4eec-8dfc-51f5f9029d6b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 63a8db7d9fe5f771_train_data.json ds_type: json format: custom path: /workspace/input_data/63a8db7d9fe5f771_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: true hub_model_id: earnxus/feeedd92-4513-4eec-8dfc-51f5f9029d6b hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/63a8db7d9fe5f771_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 952c906e-f742-4409-8070-fb5697cfd498 wandb_project: Gradients-On-Nine wandb_run: your_name wandb_runid: 952c906e-f742-4409-8070-fb5697cfd498 warmup_steps: 5 weight_decay: 0.01 xformers_attention: null ``` </details><br> # feeedd92-4513-4eec-8dfc-51f5f9029d6b This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.2214 | 0.1719 | 200 | 1.9170 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
abaddon182/99b70ade-88da-45b0-ad84-853556d185cf
abaddon182
2025-02-04T01:38:53Z
9
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:36:32Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 99b70ade-88da-45b0-ad84-853556d185cf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 63a8db7d9fe5f771_train_data.json ds_type: json format: custom path: /workspace/input_data/63a8db7d9fe5f771_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/99b70ade-88da-45b0-ad84-853556d185cf hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/63a8db7d9fe5f771_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 952c906e-f742-4409-8070-fb5697cfd498 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 952c906e-f742-4409-8070-fb5697cfd498 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 99b70ade-88da-45b0-ad84-853556d185cf This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.2819 | 0.0034 | 1 | 2.0815 | | 14.3357 | 0.1718 | 50 | 2.7596 | | 22.6478 | 0.3436 | 100 | 3.1222 | | 14.0829 | 0.5155 | 150 | 2.7104 | | 16.3383 | 0.6873 | 200 | 2.6779 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/2cef0780-8485-419f-a866-e836dfdfd61c
philip-hightech
2025-02-04T01:37:36Z
9
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:36:42Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: 2cef0780-8485-419f-a866-e836dfdfd61c results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 63a8db7d9fe5f771_train_data.json ds_type: json format: custom path: /workspace/input_data/63a8db7d9fe5f771_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/2cef0780-8485-419f-a866-e836dfdfd61c hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/63a8db7d9fe5f771_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 952c906e-f742-4409-8070-fb5697cfd498 wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: 952c906e-f742-4409-8070-fb5697cfd498 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 2cef0780-8485-419f-a866-e836dfdfd61c This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 1.9756 | | 5.7022 | 0.0271 | 63 | 3.2679 | | 16.4928 | 0.0541 | 126 | 5.1578 | | 6.8067 | 0.0812 | 189 | 3.6602 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
nttx/d32b52f5-925c-48e5-86c4-6550b657119f
nttx
2025-02-04T01:37:25Z
7
0
peft
[ "peft", "safetensors", "gpt_neox", "axolotl", "generated_from_trainer", "base_model:EleutherAI/pythia-160m", "base_model:adapter:EleutherAI/pythia-160m", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:36:05Z
--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: d32b52f5-925c-48e5-86c4-6550b657119f results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 63a8db7d9fe5f771_train_data.json ds_type: json format: custom path: /workspace/input_data/63a8db7d9fe5f771_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: null eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/d32b52f5-925c-48e5-86c4-6550b657119f hub_repo: null hub_strategy: end hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/63a8db7d9fe5f771_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 952c906e-f742-4409-8070-fb5697cfd498 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 952c906e-f742-4409-8070-fb5697cfd498 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # d32b52f5-925c-48e5-86c4-6550b657119f This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 17.2544 | 0.3436 | 200 | 1.9402 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task1_organization
MayBashendy
2025-02-04T01:35:00Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T01:29:05Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k20_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7784 - Qwk: 0.7 - Mse: 0.7784 - Rmse: 0.8822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.0196 | 2 | 6.7818 | 0.0176 | 6.7818 | 2.6042 | | No log | 0.0392 | 4 | 4.6522 | 0.0543 | 4.6522 | 2.1569 | | No log | 0.0588 | 6 | 3.0219 | 0.0848 | 3.0219 | 1.7384 | | No log | 0.0784 | 8 | 2.3178 | 0.1096 | 2.3178 | 1.5224 | | No log | 0.0980 | 10 | 1.9280 | 0.2857 | 1.9280 | 1.3885 | | No log | 0.1176 | 12 | 1.7788 | 0.1495 | 1.7788 | 1.3337 | | No log | 0.1373 | 14 | 1.9031 | 0.1356 | 1.9031 | 1.3795 | | No log | 0.1569 | 16 | 2.0256 | 0.1626 | 2.0256 | 1.4233 | | No log | 0.1765 | 18 | 1.7571 | 0.1391 | 1.7571 | 1.3256 | | No log | 0.1961 | 20 | 1.6395 | 0.2124 | 1.6395 | 1.2804 | | No log | 0.2157 | 22 | 1.6378 | 0.2479 | 1.6378 | 1.2797 | | No log | 0.2353 | 24 | 1.6649 | 0.3125 | 1.6649 | 1.2903 | | No log | 0.2549 | 26 | 1.4446 | 0.3902 | 1.4446 | 1.2019 | | No log | 0.2745 | 28 | 1.3152 | 0.3967 | 1.3152 | 1.1468 | | No log | 0.2941 | 30 | 1.3054 | 0.4202 | 1.3054 | 1.1425 | | No log | 0.3137 | 32 | 1.3463 | 0.4677 | 1.3463 | 1.1603 | | No log | 0.3333 | 34 | 1.5629 | 0.3040 | 1.5629 | 1.2501 | | No log | 0.3529 | 36 | 1.6729 | 0.3881 | 1.6729 | 1.2934 | | No log | 0.3725 | 38 | 1.4413 | 0.4030 | 1.4413 | 1.2006 | | No log | 0.3922 | 40 | 1.3489 | 0.4429 | 1.3489 | 1.1614 | | No log | 0.4118 | 42 | 1.1669 | 0.5344 | 1.1669 | 1.0802 | | No log | 0.4314 | 44 | 1.1770 | 0.4961 | 1.1770 | 1.0849 | | No log | 0.4510 | 46 | 1.3361 | 0.4219 | 1.3361 | 1.1559 | | No log | 0.4706 | 48 | 1.1585 | 0.5191 | 1.1585 | 1.0764 | | No log | 0.4902 | 50 | 1.0191 | 0.5556 | 1.0191 | 1.0095 | | No log | 0.5098 | 52 | 1.0268 | 0.512 | 1.0268 | 1.0133 | | No log | 0.5294 | 54 | 1.0604 | 0.5238 | 1.0604 | 1.0298 | | No log | 0.5490 | 56 | 1.0327 | 0.5469 | 1.0327 | 1.0162 | | No log | 0.5686 | 58 | 1.0514 | 0.5397 | 1.0514 | 1.0254 | | No log | 0.5882 | 60 | 1.1474 | 0.5692 | 1.1474 | 1.0712 | | No log | 0.6078 | 62 | 1.2184 | 0.5692 | 1.2184 | 1.1038 | | No log | 0.6275 | 64 | 1.2375 | 0.5581 | 1.2375 | 1.1124 | | No log | 0.6471 | 66 | 1.2029 | 0.5156 | 1.2029 | 1.0968 | | No log | 0.6667 | 68 | 1.2033 | 0.5625 | 1.2033 | 1.0969 | | No log | 0.6863 | 70 | 1.1511 | 0.5649 | 1.1511 | 1.0729 | | No log | 0.7059 | 72 | 1.1070 | 0.5556 | 1.1070 | 1.0521 | | No log | 0.7255 | 74 | 1.1231 | 0.5397 | 1.1231 | 1.0598 | | No log | 0.7451 | 76 | 1.1984 | 0.5649 | 1.1984 | 1.0947 | | No log | 0.7647 | 78 | 1.3196 | 0.5294 | 1.3196 | 1.1488 | | No log | 0.7843 | 80 | 1.3995 | 0.4604 | 1.3995 | 1.1830 | | No log | 0.8039 | 82 | 1.3966 | 0.4604 | 1.3966 | 1.1818 | | No log | 0.8235 | 84 | 1.2886 | 0.5116 | 1.2886 | 1.1352 | | No log | 0.8431 | 86 | 1.2660 | 0.4688 | 1.2660 | 1.1252 | | No log | 0.8627 | 88 | 1.3945 | 0.3810 | 1.3945 | 1.1809 | | No log | 0.8824 | 90 | 1.3077 | 0.4252 | 1.3077 | 1.1435 | | No log | 0.9020 | 92 | 1.1490 | 0.4706 | 1.1490 | 1.0719 | | No log | 0.9216 | 94 | 1.2295 | 0.5692 | 1.2295 | 1.1088 | | No log | 0.9412 | 96 | 1.2993 | 0.5606 | 1.2993 | 1.1399 | | No log | 0.9608 | 98 | 1.1591 | 0.5909 | 1.1591 | 1.0766 | | No log | 0.9804 | 100 | 1.0642 | 0.4839 | 1.0642 | 1.0316 | | No log | 1.0 | 102 | 1.1627 | 0.4516 | 1.1627 | 1.0783 | | No log | 1.0196 | 104 | 1.1855 | 0.4762 | 1.1855 | 1.0888 | | No log | 1.0392 | 106 | 1.0879 | 0.4677 | 1.0879 | 1.0430 | | No log | 1.0588 | 108 | 1.0408 | 0.5538 | 1.0408 | 1.0202 | | No log | 1.0784 | 110 | 1.1507 | 0.6197 | 1.1507 | 1.0727 | | No log | 1.0980 | 112 | 1.1172 | 0.6286 | 1.1172 | 1.0570 | | No log | 1.1176 | 114 | 1.0629 | 0.5985 | 1.0629 | 1.0310 | | No log | 1.1373 | 116 | 1.1036 | 0.6029 | 1.1036 | 1.0505 | | No log | 1.1569 | 118 | 1.1590 | 0.5414 | 1.1590 | 1.0766 | | No log | 1.1765 | 120 | 1.1617 | 0.5156 | 1.1617 | 1.0778 | | No log | 1.1961 | 122 | 1.1835 | 0.5484 | 1.1835 | 1.0879 | | No log | 1.2157 | 124 | 1.3976 | 0.4265 | 1.3976 | 1.1822 | | No log | 1.2353 | 126 | 1.4555 | 0.3942 | 1.4555 | 1.2064 | | No log | 1.2549 | 128 | 1.2962 | 0.4962 | 1.2962 | 1.1385 | | No log | 1.2745 | 130 | 1.1217 | 0.5366 | 1.1217 | 1.0591 | | No log | 1.2941 | 132 | 1.0895 | 0.4715 | 1.0895 | 1.0438 | | No log | 1.3137 | 134 | 1.0374 | 0.5238 | 1.0374 | 1.0185 | | No log | 1.3333 | 136 | 1.0111 | 0.5781 | 1.0111 | 1.0055 | | No log | 1.3529 | 138 | 1.0378 | 0.5714 | 1.0378 | 1.0187 | | No log | 1.3725 | 140 | 1.0869 | 0.5760 | 1.0869 | 1.0425 | | No log | 1.3922 | 142 | 1.1235 | 0.6 | 1.1235 | 1.0600 | | No log | 1.4118 | 144 | 1.1780 | 0.5802 | 1.1780 | 1.0854 | | No log | 1.4314 | 146 | 1.1252 | 0.6047 | 1.1252 | 1.0608 | | No log | 1.4510 | 148 | 1.0457 | 0.5760 | 1.0457 | 1.0226 | | No log | 1.4706 | 150 | 0.9769 | 0.5873 | 0.9769 | 0.9884 | | No log | 1.4902 | 152 | 0.9491 | 0.6107 | 0.9491 | 0.9742 | | No log | 1.5098 | 154 | 0.9790 | 0.5954 | 0.9790 | 0.9894 | | No log | 1.5294 | 156 | 1.0869 | 0.5846 | 1.0869 | 1.0426 | | No log | 1.5490 | 158 | 1.0766 | 0.5802 | 1.0766 | 1.0376 | | No log | 1.5686 | 160 | 1.0261 | 0.6277 | 1.0261 | 1.0130 | | No log | 1.5882 | 162 | 1.0265 | 0.6331 | 1.0265 | 1.0132 | | No log | 1.6078 | 164 | 1.1473 | 0.5867 | 1.1473 | 1.0711 | | No log | 1.6275 | 166 | 1.1671 | 0.6093 | 1.1671 | 1.0803 | | No log | 1.6471 | 168 | 0.9925 | 0.6803 | 0.9925 | 0.9962 | | No log | 1.6667 | 170 | 0.8294 | 0.6475 | 0.8294 | 0.9107 | | No log | 1.6863 | 172 | 0.8660 | 0.6308 | 0.8660 | 0.9306 | | No log | 1.7059 | 174 | 0.8770 | 0.6406 | 0.8770 | 0.9365 | | No log | 1.7255 | 176 | 0.8696 | 0.6047 | 0.8696 | 0.9325 | | No log | 1.7451 | 178 | 0.9208 | 0.5781 | 0.9208 | 0.9596 | | No log | 1.7647 | 180 | 0.9094 | 0.5827 | 0.9094 | 0.9536 | | No log | 1.7843 | 182 | 0.8658 | 0.6154 | 0.8658 | 0.9305 | | No log | 1.8039 | 184 | 0.8416 | 0.6202 | 0.8416 | 0.9174 | | No log | 1.8235 | 186 | 0.8190 | 0.6565 | 0.8190 | 0.9050 | | No log | 1.8431 | 188 | 0.8062 | 0.7068 | 0.8062 | 0.8979 | | No log | 1.8627 | 190 | 0.8040 | 0.6466 | 0.8040 | 0.8967 | | No log | 1.8824 | 192 | 0.8161 | 0.6466 | 0.8161 | 0.9034 | | No log | 1.9020 | 194 | 0.8314 | 0.6462 | 0.8314 | 0.9118 | | No log | 1.9216 | 196 | 0.8418 | 0.6094 | 0.8418 | 0.9175 | | No log | 1.9412 | 198 | 0.8488 | 0.6565 | 0.8488 | 0.9213 | | No log | 1.9608 | 200 | 0.8410 | 0.6716 | 0.8410 | 0.9170 | | No log | 1.9804 | 202 | 0.8487 | 0.6308 | 0.8487 | 0.9213 | | No log | 2.0 | 204 | 0.8848 | 0.6047 | 0.8848 | 0.9407 | | No log | 2.0196 | 206 | 0.9316 | 0.5760 | 0.9316 | 0.9652 | | No log | 2.0392 | 208 | 0.9567 | 0.6190 | 0.9567 | 0.9781 | | No log | 2.0588 | 210 | 0.9743 | 0.6190 | 0.9743 | 0.9870 | | No log | 2.0784 | 212 | 0.9355 | 0.6406 | 0.9355 | 0.9672 | | No log | 2.0980 | 214 | 0.9231 | 0.5426 | 0.9231 | 0.9608 | | No log | 2.1176 | 216 | 0.9246 | 0.5649 | 0.9246 | 0.9615 | | No log | 2.1373 | 218 | 0.8056 | 0.6418 | 0.8056 | 0.8975 | | No log | 2.1569 | 220 | 0.7596 | 0.6567 | 0.7596 | 0.8715 | | No log | 2.1765 | 222 | 0.7760 | 0.6763 | 0.7760 | 0.8809 | | No log | 2.1961 | 224 | 0.7778 | 0.6316 | 0.7778 | 0.8819 | | No log | 2.2157 | 226 | 0.8593 | 0.6620 | 0.8593 | 0.9270 | | No log | 2.2353 | 228 | 0.9575 | 0.6187 | 0.9575 | 0.9785 | | No log | 2.2549 | 230 | 0.9236 | 0.5839 | 0.9236 | 0.9610 | | No log | 2.2745 | 232 | 0.9092 | 0.6423 | 0.9092 | 0.9535 | | No log | 2.2941 | 234 | 0.9472 | 0.6176 | 0.9472 | 0.9733 | | No log | 2.3137 | 236 | 1.0041 | 0.5926 | 1.0041 | 1.0020 | | No log | 2.3333 | 238 | 1.1589 | 0.5714 | 1.1589 | 1.0765 | | No log | 2.3529 | 240 | 1.1044 | 0.5344 | 1.1044 | 1.0509 | | No log | 2.3725 | 242 | 1.0228 | 0.5354 | 1.0228 | 1.0113 | | No log | 2.3922 | 244 | 0.9589 | 0.5781 | 0.9589 | 0.9793 | | No log | 2.4118 | 246 | 0.9432 | 0.5714 | 0.9432 | 0.9712 | | No log | 2.4314 | 248 | 0.9273 | 0.5827 | 0.9273 | 0.9629 | | No log | 2.4510 | 250 | 0.8770 | 0.6107 | 0.8770 | 0.9365 | | No log | 2.4706 | 252 | 0.8746 | 0.6107 | 0.8746 | 0.9352 | | No log | 2.4902 | 254 | 0.9031 | 0.6212 | 0.9031 | 0.9503 | | No log | 2.5098 | 256 | 1.0400 | 0.56 | 1.0400 | 1.0198 | | No log | 2.5294 | 258 | 1.1501 | 0.4407 | 1.1501 | 1.0724 | | No log | 2.5490 | 260 | 1.1596 | 0.3826 | 1.1596 | 1.0768 | | No log | 2.5686 | 262 | 1.1035 | 0.5366 | 1.1035 | 1.0505 | | No log | 2.5882 | 264 | 1.0509 | 0.5645 | 1.0509 | 1.0251 | | No log | 2.6078 | 266 | 1.0043 | 0.5873 | 1.0043 | 1.0022 | | No log | 2.6275 | 268 | 0.9603 | 0.56 | 0.9603 | 0.9800 | | No log | 2.6471 | 270 | 0.9206 | 0.6047 | 0.9206 | 0.9595 | | No log | 2.6667 | 272 | 0.9667 | 0.5758 | 0.9667 | 0.9832 | | No log | 2.6863 | 274 | 0.9398 | 0.5926 | 0.9398 | 0.9694 | | No log | 2.7059 | 276 | 0.9272 | 0.6232 | 0.9272 | 0.9629 | | No log | 2.7255 | 278 | 0.9537 | 0.6131 | 0.9537 | 0.9766 | | No log | 2.7451 | 280 | 0.9515 | 0.6357 | 0.9515 | 0.9754 | | No log | 2.7647 | 282 | 0.9669 | 0.5736 | 0.9669 | 0.9833 | | No log | 2.7843 | 284 | 1.0894 | 0.5581 | 1.0894 | 1.0437 | | No log | 2.8039 | 286 | 1.1140 | 0.5312 | 1.1140 | 1.0555 | | No log | 2.8235 | 288 | 1.0541 | 0.528 | 1.0541 | 1.0267 | | No log | 2.8431 | 290 | 1.0112 | 0.5984 | 1.0112 | 1.0056 | | No log | 2.8627 | 292 | 0.9725 | 0.5891 | 0.9725 | 0.9862 | | No log | 2.8824 | 294 | 0.9451 | 0.5649 | 0.9451 | 0.9722 | | No log | 2.9020 | 296 | 0.9430 | 0.5649 | 0.9430 | 0.9711 | | No log | 2.9216 | 298 | 0.9765 | 0.5238 | 0.9765 | 0.9882 | | No log | 2.9412 | 300 | 1.0507 | 0.5203 | 1.0507 | 1.0250 | | No log | 2.9608 | 302 | 1.0440 | 0.5246 | 1.0440 | 1.0217 | | No log | 2.9804 | 304 | 1.0122 | 0.5410 | 1.0122 | 1.0061 | | No log | 3.0 | 306 | 0.9528 | 0.5873 | 0.9528 | 0.9761 | | No log | 3.0196 | 308 | 0.8923 | 0.5806 | 0.8923 | 0.9446 | | No log | 3.0392 | 310 | 0.8179 | 0.5984 | 0.8179 | 0.9044 | | No log | 3.0588 | 312 | 0.7404 | 0.6618 | 0.7404 | 0.8604 | | No log | 3.0784 | 314 | 0.7016 | 0.7101 | 0.7016 | 0.8376 | | No log | 3.0980 | 316 | 0.6815 | 0.7007 | 0.6815 | 0.8255 | | No log | 3.1176 | 318 | 0.6921 | 0.6957 | 0.6921 | 0.8319 | | No log | 3.1373 | 320 | 0.6881 | 0.7007 | 0.6881 | 0.8295 | | No log | 3.1569 | 322 | 0.7288 | 0.6866 | 0.7288 | 0.8537 | | No log | 3.1765 | 324 | 0.7873 | 0.6269 | 0.7873 | 0.8873 | | No log | 3.1961 | 326 | 0.7895 | 0.6370 | 0.7895 | 0.8885 | | No log | 3.2157 | 328 | 0.7754 | 0.6866 | 0.7754 | 0.8806 | | No log | 3.2353 | 330 | 0.8123 | 0.6617 | 0.8123 | 0.9013 | | No log | 3.2549 | 332 | 0.8661 | 0.5984 | 0.8661 | 0.9306 | | No log | 3.2745 | 334 | 0.8900 | 0.6202 | 0.8900 | 0.9434 | | No log | 3.2941 | 336 | 0.8836 | 0.6308 | 0.8836 | 0.9400 | | No log | 3.3137 | 338 | 0.8621 | 0.6406 | 0.8621 | 0.9285 | | No log | 3.3333 | 340 | 0.8041 | 0.6512 | 0.8041 | 0.8967 | | No log | 3.3529 | 342 | 0.7597 | 0.6212 | 0.7597 | 0.8716 | | No log | 3.3725 | 344 | 0.7960 | 0.6765 | 0.7960 | 0.8922 | | No log | 3.3922 | 346 | 0.7790 | 0.5802 | 0.7790 | 0.8826 | | No log | 3.4118 | 348 | 0.8225 | 0.576 | 0.8225 | 0.9069 | | No log | 3.4314 | 350 | 0.8779 | 0.5484 | 0.8779 | 0.9369 | | No log | 3.4510 | 352 | 1.0074 | 0.4959 | 1.0074 | 1.0037 | | No log | 3.4706 | 354 | 1.1250 | 0.4553 | 1.1250 | 1.0607 | | No log | 3.4902 | 356 | 1.1112 | 0.4762 | 1.1112 | 1.0541 | | No log | 3.5098 | 358 | 0.9957 | 0.5538 | 0.9957 | 0.9979 | | No log | 3.5294 | 360 | 0.8745 | 0.5827 | 0.8745 | 0.9352 | | No log | 3.5490 | 362 | 0.8605 | 0.6667 | 0.8605 | 0.9276 | | No log | 3.5686 | 364 | 0.8609 | 0.6462 | 0.8609 | 0.9279 | | No log | 3.5882 | 366 | 0.8289 | 0.6667 | 0.8289 | 0.9105 | | No log | 3.6078 | 368 | 0.8040 | 0.625 | 0.8040 | 0.8967 | | No log | 3.6275 | 370 | 0.7942 | 0.6202 | 0.7942 | 0.8912 | | No log | 3.6471 | 372 | 0.7906 | 0.6462 | 0.7906 | 0.8892 | | No log | 3.6667 | 374 | 0.8043 | 0.6462 | 0.8043 | 0.8968 | | No log | 3.6863 | 376 | 0.8543 | 0.6466 | 0.8543 | 0.9243 | | No log | 3.7059 | 378 | 0.8877 | 0.6418 | 0.8877 | 0.9422 | | No log | 3.7255 | 380 | 0.9122 | 0.6515 | 0.9122 | 0.9551 | | No log | 3.7451 | 382 | 0.8954 | 0.6466 | 0.8954 | 0.9463 | | No log | 3.7647 | 384 | 0.8760 | 0.6466 | 0.8760 | 0.9359 | | No log | 3.7843 | 386 | 0.8540 | 0.6154 | 0.8540 | 0.9241 | | No log | 3.8039 | 388 | 0.8909 | 0.6032 | 0.8909 | 0.9439 | | No log | 3.8235 | 390 | 0.9215 | 0.6032 | 0.9215 | 0.9599 | | No log | 3.8431 | 392 | 0.9296 | 0.5806 | 0.9296 | 0.9641 | | No log | 3.8627 | 394 | 0.9548 | 0.5645 | 0.9548 | 0.9772 | | No log | 3.8824 | 396 | 0.9898 | 0.5691 | 0.9898 | 0.9949 | | No log | 3.9020 | 398 | 0.9848 | 0.5645 | 0.9848 | 0.9924 | | No log | 3.9216 | 400 | 0.9266 | 0.6299 | 0.9266 | 0.9626 | | No log | 3.9412 | 402 | 0.8332 | 0.6667 | 0.8332 | 0.9128 | | No log | 3.9608 | 404 | 0.7684 | 0.6667 | 0.7684 | 0.8766 | | No log | 3.9804 | 406 | 0.7530 | 0.6667 | 0.7530 | 0.8677 | | No log | 4.0 | 408 | 0.7637 | 0.6769 | 0.7637 | 0.8739 | | No log | 4.0196 | 410 | 0.8047 | 0.6667 | 0.8047 | 0.8970 | | No log | 4.0392 | 412 | 0.8344 | 0.6457 | 0.8344 | 0.9135 | | No log | 4.0588 | 414 | 0.8651 | 0.6562 | 0.8651 | 0.9301 | | No log | 4.0784 | 416 | 0.9159 | 0.5806 | 0.9159 | 0.9570 | | No log | 4.0980 | 418 | 0.9491 | 0.5366 | 0.9491 | 0.9742 | | No log | 4.1176 | 420 | 0.9376 | 0.5691 | 0.9376 | 0.9683 | | No log | 4.1373 | 422 | 0.8972 | 0.6190 | 0.8972 | 0.9472 | | No log | 4.1569 | 424 | 0.9206 | 0.6667 | 0.9206 | 0.9595 | | No log | 4.1765 | 426 | 0.9081 | 0.6615 | 0.9081 | 0.9529 | | No log | 4.1961 | 428 | 0.8408 | 0.6667 | 0.8408 | 0.9170 | | No log | 4.2157 | 430 | 0.8603 | 0.6015 | 0.8603 | 0.9275 | | No log | 4.2353 | 432 | 0.9558 | 0.5758 | 0.9558 | 0.9776 | | No log | 4.2549 | 434 | 0.9901 | 0.5496 | 0.9901 | 0.9950 | | No log | 4.2745 | 436 | 0.9626 | 0.5528 | 0.9626 | 0.9811 | | No log | 4.2941 | 438 | 0.9366 | 0.6357 | 0.9366 | 0.9678 | | No log | 4.3137 | 440 | 0.9171 | 0.6615 | 0.9171 | 0.9576 | | No log | 4.3333 | 442 | 0.8374 | 0.6912 | 0.8374 | 0.9151 | | No log | 4.3529 | 444 | 0.7750 | 0.6571 | 0.7750 | 0.8803 | | No log | 4.3725 | 446 | 0.7853 | 0.6809 | 0.7853 | 0.8862 | | No log | 4.3922 | 448 | 0.7972 | 0.6853 | 0.7972 | 0.8929 | | No log | 4.4118 | 450 | 0.7953 | 0.6522 | 0.7953 | 0.8918 | | No log | 4.4314 | 452 | 0.8065 | 0.6423 | 0.8065 | 0.8980 | | No log | 4.4510 | 454 | 0.8453 | 0.6222 | 0.8453 | 0.9194 | | No log | 4.4706 | 456 | 0.8459 | 0.6222 | 0.8459 | 0.9197 | | No log | 4.4902 | 458 | 0.8731 | 0.5954 | 0.8731 | 0.9344 | | No log | 4.5098 | 460 | 0.8983 | 0.5891 | 0.8983 | 0.9478 | | No log | 4.5294 | 462 | 0.9076 | 0.5938 | 0.9076 | 0.9527 | | No log | 4.5490 | 464 | 0.9134 | 0.6142 | 0.9134 | 0.9557 | | No log | 4.5686 | 466 | 0.9136 | 0.6142 | 0.9136 | 0.9558 | | No log | 4.5882 | 468 | 0.8786 | 0.6406 | 0.8786 | 0.9373 | | No log | 4.6078 | 470 | 0.8642 | 0.6462 | 0.8642 | 0.9296 | | No log | 4.6275 | 472 | 0.8582 | 0.6462 | 0.8582 | 0.9264 | | No log | 4.6471 | 474 | 0.8347 | 0.6718 | 0.8347 | 0.9136 | | No log | 4.6667 | 476 | 0.9075 | 0.625 | 0.9075 | 0.9526 | | No log | 4.6863 | 478 | 0.9897 | 0.5366 | 0.9897 | 0.9948 | | No log | 4.7059 | 480 | 1.0402 | 0.5289 | 1.0402 | 1.0199 | | No log | 4.7255 | 482 | 1.0209 | 0.5806 | 1.0209 | 1.0104 | | No log | 4.7451 | 484 | 0.9984 | 0.6349 | 0.9984 | 0.9992 | | No log | 4.7647 | 486 | 0.9289 | 0.625 | 0.9289 | 0.9638 | | No log | 4.7843 | 488 | 0.8248 | 0.6565 | 0.8248 | 0.9082 | | No log | 4.8039 | 490 | 0.7036 | 0.7121 | 0.7036 | 0.8388 | | No log | 4.8235 | 492 | 0.6861 | 0.7273 | 0.6861 | 0.8283 | | No log | 4.8431 | 494 | 0.8577 | 0.6575 | 0.8577 | 0.9261 | | No log | 4.8627 | 496 | 0.8961 | 0.6575 | 0.8961 | 0.9466 | | No log | 4.8824 | 498 | 0.7991 | 0.6944 | 0.7991 | 0.8939 | | 0.28 | 4.9020 | 500 | 0.7181 | 0.7448 | 0.7181 | 0.8474 | | 0.28 | 4.9216 | 502 | 0.6866 | 0.7429 | 0.6866 | 0.8286 | | 0.28 | 4.9412 | 504 | 0.7055 | 0.6963 | 0.7055 | 0.8399 | | 0.28 | 4.9608 | 506 | 0.7292 | 0.6866 | 0.7292 | 0.8539 | | 0.28 | 4.9804 | 508 | 0.7557 | 0.6957 | 0.7557 | 0.8693 | | 0.28 | 5.0 | 510 | 0.7784 | 0.7 | 0.7784 | 0.8822 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
mlfoundations-dev/llama3-1_8b_r1_annotated_aime
mlfoundations-dev
2025-02-04T01:31:46Z
3,866
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-01T20:45:01Z
--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: llama3-1_8b_r1_annotated_aime results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama3-1_8b_r1_annotated_aime This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the mlfoundations-dev/r1_annotated_aime dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 32 - gradient_accumulation_steps: 3 - total_train_batch_size: 96 - total_eval_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.0.2 - Tokenizers 0.20.3
great0001/cc10c3c4-531e-4202-9c9a-40d8f05a7183
great0001
2025-02-04T01:31:12Z
15
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T01:27:17Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: cc10c3c4-531e-4202-9c9a-40d8f05a7183 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b6e5ed8190ccb774_train_data.json ds_type: json format: custom path: /workspace/input_data/b6e5ed8190ccb774_train_data.json type: field_instruction: soru field_output: cevap format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: great0001/cc10c3c4-531e-4202-9c9a-40d8f05a7183 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b6e5ed8190ccb774_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 72e7b874-15da-42e2-ab22-791b74a29685 wandb_project: Mine-SN56-20-Gradients-On-Demand wandb_run: your_name wandb_runid: 72e7b874-15da-42e2-ab22-791b74a29685 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # cc10c3c4-531e-4202-9c9a-40d8f05a7183 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.9911 | | 6.1996 | 0.0033 | 50 | 3.1534 | | 5.7947 | 0.0065 | 100 | 2.9425 | | 5.7563 | 0.0098 | 150 | 2.8391 | | 5.7844 | 0.0131 | 200 | 2.8097 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
romainnn/5124e4a7-7800-44ab-9e16-18241b79982b
romainnn
2025-02-04T01:30:41Z
9
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-02-04T00:48:44Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 5124e4a7-7800-44ab-9e16-18241b79982b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1029f694c22a0116_train_data.json ds_type: json format: custom path: /workspace/input_data/1029f694c22a0116_train_data.json type: field_instruction: instructions field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: romainnn/5124e4a7-7800-44ab-9e16-18241b79982b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 38 micro_batch_size: 4 mlflow_experiment_name: /tmp/1029f694c22a0116_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7aeff1cf-86b0-475f-8cec-ec31521214cb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7aeff1cf-86b0-475f-8cec-ec31521214cb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 5124e4a7-7800-44ab-9e16-18241b79982b This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 38 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 15.0039 | 0.0098 | 1 | 0.9270 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
elmame/speecht5
elmame
2025-02-04T01:29:23Z
16
0
transformers
[ "transformers", "tensorboard", "safetensors", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:lj_speech", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2025-02-03T16:05:09Z
--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - lj_speech model-index: - name: speecht5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5 This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the lj_speech dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
havinash-ai/65196f61-1c8d-4bf4-a086-9ea61bc7ad5b
havinash-ai
2025-02-04T01:27:05Z
9
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-04T01:26:39Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 65196f61-1c8d-4bf4-a086-9ea61bc7ad5b results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b77b35ef124b1260_train_data.json ds_type: json format: custom path: /workspace/input_data/b77b35ef124b1260_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: havinash-ai/65196f61-1c8d-4bf4-a086-9ea61bc7ad5b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b77b35ef124b1260_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f87570f7-b1f0-48ca-b737-ebd938967009 wandb_project: Birthday-SN56-9-Gradients-On-Demand wandb_run: your_name wandb_runid: f87570f7-b1f0-48ca-b737-ebd938967009 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 65196f61-1c8d-4bf4-a086-9ea61bc7ad5b This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 10.3793 | | 10.3735 | 0.0894 | 50 | 10.3745 | | 10.3606 | 0.1788 | 100 | 10.3588 | | 10.3552 | 0.2682 | 150 | 10.3541 | | 10.355 | 0.3576 | 200 | 10.3537 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
philip-hightech/a4ae87be-8cce-422b-96fd-939aaf1076f5
philip-hightech
2025-02-04T01:26:15Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-02-04T00:33:16Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: a4ae87be-8cce-422b-96fd-939aaf1076f5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 711eb262493f89e0_train_data.json ds_type: json format: custom path: /workspace/input_data/711eb262493f89e0_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: philip-hightech/a4ae87be-8cce-422b-96fd-939aaf1076f5 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/711eb262493f89e0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 wandb_project: Mine-SN56-21-Gradients-On-Demand wandb_run: your_name wandb_runid: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # a4ae87be-8cce-422b-96fd-939aaf1076f5 This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.9216 | | 0.5381 | 0.0007 | 63 | 0.5674 | | 0.5471 | 0.0013 | 126 | 0.5365 | | 0.5064 | 0.0020 | 189 | 0.4999 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
JacksonBrune/30ca64ea-f0ce-47af-9032-4b8115f4230e
JacksonBrune
2025-02-04T01:26:07Z
9
0
peft
[ "peft", "safetensors", "gemma2", "axolotl", "generated_from_trainer", "base_model:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "base_model:adapter:zake7749/gemma-2-2b-it-chinese-kyara-dpo", "license:gemma", "region:us" ]
null
2025-02-04T00:32:31Z
--- library_name: peft license: gemma base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo tags: - axolotl - generated_from_trainer model-index: - name: 30ca64ea-f0ce-47af-9032-4b8115f4230e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: zake7749/gemma-2-2b-it-chinese-kyara-dpo bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 711eb262493f89e0_train_data.json ds_type: json format: custom path: /workspace/input_data/711eb262493f89e0_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: JacksonBrune/30ca64ea-f0ce-47af-9032-4b8115f4230e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 250 micro_batch_size: 2 mlflow_experiment_name: /tmp/711eb262493f89e0_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 wandb_project: birthdya-sn56-18-Gradients-On-Demand wandb_run: your_name wandb_runid: 24cc9eb4-7f5e-4d72-a2ff-2c216f2efd51 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 30ca64ea-f0ce-47af-9032-4b8115f4230e This model is a fine-tuned version of [zake7749/gemma-2-2b-it-chinese-kyara-dpo](https://huggingface.co/zake7749/gemma-2-2b-it-chinese-kyara-dpo) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 250 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 0.9216 | | 0.5361 | 0.0013 | 63 | 0.5189 | | 0.5116 | 0.0027 | 126 | 0.5003 | | 0.4793 | 0.0040 | 189 | 0.4874 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
genki10/ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold3
genki10
2025-02-04T01:25:54Z
14
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-03T21:27:43Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold3 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9359 - Qwk: 0.1548 - Mse: 1.9372 - Rmse: 1.3918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:| | No log | 0.25 | 2 | 11.3660 | 0.0117 | 11.3650 | 3.3712 | | No log | 0.5 | 4 | 10.2282 | 0.0 | 10.2275 | 3.1980 | | No log | 0.75 | 6 | 8.2858 | 0.0 | 8.2852 | 2.8784 | | No log | 1.0 | 8 | 6.6621 | 0.0 | 6.6617 | 2.5810 | | 6.5469 | 1.25 | 10 | 5.1710 | 0.0329 | 5.1706 | 2.2739 | | 6.5469 | 1.5 | 12 | 4.0013 | 0.0076 | 4.0010 | 2.0003 | | 6.5469 | 1.75 | 14 | 2.8683 | 0.0 | 2.8685 | 1.6937 | | 6.5469 | 2.0 | 16 | 2.1810 | 0.0853 | 2.1812 | 1.4769 | | 6.5469 | 2.25 | 18 | 1.5909 | 0.0329 | 1.5914 | 1.2615 | | 2.3647 | 2.5 | 20 | 1.5947 | 0.0129 | 1.5955 | 1.2631 | | 2.3647 | 2.75 | 22 | 1.4075 | 0.0157 | 1.4083 | 1.1867 | | 2.3647 | 3.0 | 24 | 1.1561 | 0.0102 | 1.1570 | 1.0756 | | 2.3647 | 3.25 | 26 | 1.3992 | 0.0329 | 1.3999 | 1.1832 | | 2.3647 | 3.5 | 28 | 1.7034 | 0.0926 | 1.7040 | 1.3054 | | 1.7022 | 3.75 | 30 | 1.7301 | 0.1104 | 1.7308 | 1.3156 | | 1.7022 | 4.0 | 32 | 1.1643 | 0.0452 | 1.1651 | 1.0794 | | 1.7022 | 4.25 | 34 | 1.8599 | 0.1272 | 1.8606 | 1.3641 | | 1.7022 | 4.5 | 36 | 1.5065 | 0.1093 | 1.5073 | 1.2277 | | 1.7022 | 4.75 | 38 | 0.7897 | 0.3557 | 0.7905 | 0.8891 | | 1.5456 | 5.0 | 40 | 1.2770 | 0.1380 | 1.2779 | 1.1304 | | 1.5456 | 5.25 | 42 | 2.0538 | 0.1825 | 2.0547 | 1.4334 | | 1.5456 | 5.5 | 44 | 0.8848 | 0.3190 | 0.8856 | 0.9411 | | 1.5456 | 5.75 | 46 | 0.8883 | 0.3191 | 0.8891 | 0.9429 | | 1.5456 | 6.0 | 48 | 1.6953 | 0.1913 | 1.6963 | 1.3024 | | 1.2794 | 6.25 | 50 | 0.8889 | 0.3603 | 0.8896 | 0.9432 | | 1.2794 | 6.5 | 52 | 1.1502 | 0.2700 | 1.1512 | 1.0729 | | 1.2794 | 6.75 | 54 | 2.3053 | 0.0932 | 2.3064 | 1.5187 | | 1.2794 | 7.0 | 56 | 1.0398 | 0.3160 | 1.0407 | 1.0201 | | 1.2794 | 7.25 | 58 | 0.7600 | 0.4084 | 0.7605 | 0.8720 | | 1.0687 | 7.5 | 60 | 1.9526 | 0.1243 | 1.9537 | 1.3977 | | 1.0687 | 7.75 | 62 | 1.9734 | 0.1187 | 1.9744 | 1.4051 | | 1.0687 | 8.0 | 64 | 0.7830 | 0.3927 | 0.7835 | 0.8851 | | 1.0687 | 8.25 | 66 | 0.9158 | 0.3456 | 0.9164 | 0.9573 | | 1.0687 | 8.5 | 68 | 1.8712 | 0.1380 | 1.8724 | 1.3684 | | 0.7516 | 8.75 | 70 | 0.9993 | 0.3261 | 0.9999 | 1.0000 | | 0.7516 | 9.0 | 72 | 0.6742 | 0.4639 | 0.6743 | 0.8212 | | 0.7516 | 9.25 | 74 | 0.8835 | 0.4050 | 0.8840 | 0.9402 | | 0.7516 | 9.5 | 76 | 2.2347 | 0.1095 | 2.2360 | 1.4953 | | 0.7516 | 9.75 | 78 | 1.5217 | 0.2001 | 1.5229 | 1.2341 | | 0.7336 | 10.0 | 80 | 0.7839 | 0.4550 | 0.7844 | 0.8856 | | 0.7336 | 10.25 | 82 | 1.1400 | 0.2530 | 1.1411 | 1.0682 | | 0.7336 | 10.5 | 84 | 2.7707 | 0.0328 | 2.7723 | 1.6650 | | 0.7336 | 10.75 | 86 | 1.8539 | 0.0965 | 1.8553 | 1.3621 | | 0.7336 | 11.0 | 88 | 0.8147 | 0.4035 | 0.8151 | 0.9028 | | 0.5475 | 11.25 | 90 | 0.8105 | 0.4264 | 0.8108 | 0.9005 | | 0.5475 | 11.5 | 92 | 1.9359 | 0.1548 | 1.9372 | 1.3918 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
abaddon182/c26d6791-8563-4cb6-8c81-aa49701b2eb8
abaddon182
2025-02-04T01:25:34Z
9
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B", "base_model:adapter:unsloth/Qwen2.5-0.5B", "license:apache-2.0", "region:us" ]
null
2025-02-04T01:18:48Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: c26d6791-8563-4cb6-8c81-aa49701b2eb8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/Qwen2.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 9ee4c7d4f914610d_train_data.json ds_type: json format: custom path: /workspace/input_data/9ee4c7d4f914610d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: abaddon182/c26d6791-8563-4cb6-8c81-aa49701b2eb8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/9ee4c7d4f914610d_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8c04dad1-b647-409f-8c82-04b3516dd360 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8c04dad1-b647-409f-8c82-04b3516dd360 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c26d6791-8563-4cb6-8c81-aa49701b2eb8 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.351 | 0.0144 | 1 | 0.7267 | | 0.6173 | 0.7220 | 50 | 0.5162 | | 0.4829 | 1.4440 | 100 | 0.5058 | | 0.4136 | 2.1661 | 150 | 0.4906 | | 0.3405 | 2.8881 | 200 | 0.4880 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
dabrown/9d3cf128-6371-409d-9a94-42ad5d25b4e4
dabrown
2025-02-04T01:23:09Z
7
0
peft
[ "peft", "safetensors", "bloom", "axolotl", "generated_from_trainer", "base_model:bigscience/bloom-560m", "base_model:adapter:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-02-04T00:59:01Z
--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloom-560m tags: - axolotl - generated_from_trainer model-index: - name: 9d3cf128-6371-409d-9a94-42ad5d25b4e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: bigscience/bloom-560m bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b6e5ed8190ccb774_train_data.json ds_type: json format: custom path: /workspace/input_data/b6e5ed8190ccb774_train_data.json type: field_instruction: soru field_output: cevap format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: dabrown/9d3cf128-6371-409d-9a94-42ad5d25b4e4 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/b6e5ed8190ccb774_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 72e7b874-15da-42e2-ab22-791b74a29685 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 72e7b874-15da-42e2-ab22-791b74a29685 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 9d3cf128-6371-409d-9a94-42ad5d25b4e4 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 3.354 | 0.0131 | 50 | 3.2901 | | 2.9141 | 0.0262 | 100 | 3.0311 | | 2.7874 | 0.0392 | 150 | 2.9442 | | 2.8469 | 0.0523 | 200 | 2.9138 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
PLM-Team/plm-instruct-dpo-gguf
PLM-Team
2025-02-04T01:22:57Z
76
0
null
[ "gguf", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-02-03T16:45:08Z
--- license: apache-2.0 ---
lesso/802d179a-214a-465d-a232-d219245c37fb
lesso
2025-02-04T01:22:26Z
14
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:fxmarty/tiny-llama-fast-tokenizer", "base_model:adapter:fxmarty/tiny-llama-fast-tokenizer", "region:us" ]
null
2025-02-04T01:20:36Z
--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 802d179a-214a-465d-a232-d219245c37fb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 8b74be9ab0373a6f_train_data.json ds_type: json format: custom path: /workspace/input_data/8b74be9ab0373a6f_train_data.json type: field_input: references field_instruction: question field_output: answer format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/802d179a-214a-465d-a232-d219245c37fb hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/8b74be9ab0373a6f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: </s> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: ab2cd1d3-a8f2-4277-a76f-00c40e9d7b71 wandb_project: ab-god01 wandb_run: your_name wandb_runid: ab2cd1d3-a8f2-4277-a76f-00c40e9d7b71 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 802d179a-214a-465d-a232-d219245c37fb This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3833 | 0.0002 | 1 | 10.3801 | | 10.3572 | 0.0094 | 50 | 10.3558 | | 10.3457 | 0.0188 | 100 | 10.3469 | | 10.3403 | 0.0281 | 150 | 10.3455 | | 10.3457 | 0.0375 | 200 | 10.3449 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/0a04dd1a-7337-44bc-85f9-d780e7c92e21
lesso
2025-02-04T01:16:02Z
8
0
peft
[ "peft", "safetensors", "mistral", "axolotl", "generated_from_trainer", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:adapter:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "license:apache-2.0", "region:us" ]
null
2025-02-04T00:48:39Z
--- library_name: peft license: apache-2.0 base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO tags: - axolotl - generated_from_trainer model-index: - name: 0a04dd1a-7337-44bc-85f9-d780e7c92e21 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO bf16: true chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 1029f694c22a0116_train_data.json ds_type: json format: custom path: /workspace/input_data/1029f694c22a0116_train_data.json type: field_instruction: instructions field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/0a04dd1a-7337-44bc-85f9-d780e7c92e21 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 4 mlflow_experiment_name: /tmp/god01/1029f694c22a0116_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 7aeff1cf-86b0-475f-8cec-ec31521214cb wandb_project: ab-god01 wandb_run: your_name wandb_runid: 7aeff1cf-86b0-475f-8cec-ec31521214cb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 0a04dd1a-7337-44bc-85f9-d780e7c92e21 This model is a fine-tuned version of [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.3012 | 0.0012 | 1 | 1.1002 | | 1.0936 | 0.0613 | 50 | 0.4213 | | 0.9928 | 0.1226 | 100 | 0.3831 | | 0.945 | 0.1839 | 150 | 0.3597 | | 0.8969 | 0.2452 | 200 | 0.3480 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
MayBashendy/ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task1_organization
MayBashendy
2025-02-04T01:10:44Z
5
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-04T00:52:42Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task1_organization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ArabicNewSplits7_B_usingWellWrittenEssays_FineTuningAraBERT_run999_AugV5_k1_task1_organization This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8221 - Qwk: 0.6479 - Mse: 0.8221 - Rmse: 0.9067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.25 | 2 | 8.4015 | -0.0227 | 8.4015 | 2.8985 | | No log | 0.5 | 4 | 6.0779 | 0.0 | 6.0779 | 2.4653 | | No log | 0.75 | 6 | 4.2145 | 0.0185 | 4.2145 | 2.0529 | | No log | 1.0 | 8 | 3.2580 | 0.0585 | 3.2580 | 1.8050 | | No log | 1.25 | 10 | 2.6967 | 0.0261 | 2.6967 | 1.6422 | | No log | 1.5 | 12 | 2.2909 | 0.1135 | 2.2909 | 1.5136 | | No log | 1.75 | 14 | 2.1738 | 0.2406 | 2.1738 | 1.4744 | | No log | 2.0 | 16 | 1.8376 | 0.1930 | 1.8376 | 1.3556 | | No log | 2.25 | 18 | 1.6283 | 0.1165 | 1.6283 | 1.2761 | | No log | 2.5 | 20 | 1.5942 | 0.1538 | 1.5942 | 1.2626 | | No log | 2.75 | 22 | 1.5268 | 0.1538 | 1.5268 | 1.2356 | | No log | 3.0 | 24 | 1.6219 | 0.3761 | 1.6219 | 1.2735 | | No log | 3.25 | 26 | 1.7328 | 0.375 | 1.7328 | 1.3163 | | No log | 3.5 | 28 | 1.5396 | 0.4390 | 1.5396 | 1.2408 | | No log | 3.75 | 30 | 1.3455 | 0.3063 | 1.3455 | 1.1600 | | No log | 4.0 | 32 | 1.4300 | 0.3214 | 1.4300 | 1.1958 | | No log | 4.25 | 34 | 1.5067 | 0.3333 | 1.5067 | 1.2275 | | No log | 4.5 | 36 | 1.4349 | 0.3276 | 1.4349 | 1.1979 | | No log | 4.75 | 38 | 1.4388 | 0.3770 | 1.4388 | 1.1995 | | No log | 5.0 | 40 | 1.3805 | 0.3902 | 1.3805 | 1.1750 | | No log | 5.25 | 42 | 1.2901 | 0.4444 | 1.2901 | 1.1358 | | No log | 5.5 | 44 | 1.1932 | 0.3833 | 1.1932 | 1.0923 | | No log | 5.75 | 46 | 1.1241 | 0.5312 | 1.1241 | 1.0602 | | No log | 6.0 | 48 | 1.1396 | 0.5581 | 1.1396 | 1.0675 | | No log | 6.25 | 50 | 1.1444 | 0.5736 | 1.1444 | 1.0698 | | No log | 6.5 | 52 | 1.0692 | 0.5455 | 1.0692 | 1.0340 | | No log | 6.75 | 54 | 1.0340 | 0.5714 | 1.0340 | 1.0168 | | No log | 7.0 | 56 | 1.0228 | 0.5775 | 1.0228 | 1.0113 | | No log | 7.25 | 58 | 1.1170 | 0.5857 | 1.1170 | 1.0569 | | No log | 7.5 | 60 | 1.0616 | 0.6277 | 1.0616 | 1.0303 | | No log | 7.75 | 62 | 1.0069 | 0.5414 | 1.0069 | 1.0034 | | No log | 8.0 | 64 | 0.9424 | 0.6131 | 0.9424 | 0.9708 | | No log | 8.25 | 66 | 0.8892 | 0.6286 | 0.8892 | 0.9430 | | No log | 8.5 | 68 | 0.9638 | 0.6429 | 0.9638 | 0.9818 | | No log | 8.75 | 70 | 0.9483 | 0.6 | 0.9483 | 0.9738 | | No log | 9.0 | 72 | 0.9040 | 0.6412 | 0.9040 | 0.9508 | | No log | 9.25 | 74 | 0.8926 | 0.6667 | 0.8926 | 0.9448 | | No log | 9.5 | 76 | 0.8033 | 0.6619 | 0.8033 | 0.8963 | | No log | 9.75 | 78 | 0.9307 | 0.5942 | 0.9307 | 0.9647 | | No log | 10.0 | 80 | 0.9813 | 0.6015 | 0.9813 | 0.9906 | | No log | 10.25 | 82 | 0.9614 | 0.6047 | 0.9614 | 0.9805 | | No log | 10.5 | 84 | 0.8625 | 0.6667 | 0.8625 | 0.9287 | | No log | 10.75 | 86 | 0.7352 | 0.6957 | 0.7352 | 0.8574 | | No log | 11.0 | 88 | 0.7344 | 0.6957 | 0.7344 | 0.8569 | | No log | 11.25 | 90 | 0.7717 | 0.7133 | 0.7717 | 0.8784 | | No log | 11.5 | 92 | 0.7450 | 0.6815 | 0.7450 | 0.8631 | | No log | 11.75 | 94 | 0.8799 | 0.7050 | 0.8799 | 0.9380 | | No log | 12.0 | 96 | 0.9895 | 0.6207 | 0.9895 | 0.9948 | | No log | 12.25 | 98 | 0.8847 | 0.6667 | 0.8847 | 0.9406 | | No log | 12.5 | 100 | 0.8559 | 0.6619 | 0.8559 | 0.9251 | | No log | 12.75 | 102 | 0.9125 | 0.6423 | 0.9125 | 0.9553 | | No log | 13.0 | 104 | 0.8910 | 0.6277 | 0.8910 | 0.9439 | | No log | 13.25 | 106 | 0.9034 | 0.6571 | 0.9034 | 0.9505 | | No log | 13.5 | 108 | 1.0215 | 0.6131 | 1.0215 | 1.0107 | | No log | 13.75 | 110 | 0.9906 | 0.6316 | 0.9906 | 0.9953 | | No log | 14.0 | 112 | 0.9342 | 0.6316 | 0.9342 | 0.9665 | | No log | 14.25 | 114 | 0.8580 | 0.6471 | 0.8580 | 0.9263 | | No log | 14.5 | 116 | 0.8055 | 0.6714 | 0.8055 | 0.8975 | | No log | 14.75 | 118 | 0.8014 | 0.6714 | 0.8014 | 0.8952 | | No log | 15.0 | 120 | 0.8003 | 0.6571 | 0.8003 | 0.8946 | | No log | 15.25 | 122 | 0.8637 | 0.6525 | 0.8637 | 0.9294 | | No log | 15.5 | 124 | 0.8291 | 0.6525 | 0.8291 | 0.9105 | | No log | 15.75 | 126 | 0.7882 | 0.7211 | 0.7882 | 0.8878 | | No log | 16.0 | 128 | 0.8044 | 0.6993 | 0.8044 | 0.8969 | | No log | 16.25 | 130 | 0.8094 | 0.7042 | 0.8094 | 0.8996 | | No log | 16.5 | 132 | 0.8166 | 0.6475 | 0.8166 | 0.9037 | | No log | 16.75 | 134 | 0.8957 | 0.6569 | 0.8957 | 0.9464 | | No log | 17.0 | 136 | 0.9082 | 0.6471 | 0.9082 | 0.9530 | | No log | 17.25 | 138 | 0.9031 | 0.6471 | 0.9031 | 0.9503 | | No log | 17.5 | 140 | 0.8356 | 0.6569 | 0.8356 | 0.9141 | | No log | 17.75 | 142 | 0.8495 | 0.6316 | 0.8495 | 0.9217 | | No log | 18.0 | 144 | 0.8449 | 0.6759 | 0.8449 | 0.9192 | | No log | 18.25 | 146 | 0.8068 | 0.6857 | 0.8068 | 0.8982 | | No log | 18.5 | 148 | 0.8712 | 0.6620 | 0.8712 | 0.9334 | | No log | 18.75 | 150 | 0.9683 | 0.6533 | 0.9683 | 0.9840 | | No log | 19.0 | 152 | 0.9026 | 0.6525 | 0.9026 | 0.9500 | | No log | 19.25 | 154 | 0.8443 | 0.6857 | 0.8443 | 0.9189 | | No log | 19.5 | 156 | 0.9082 | 0.6377 | 0.9082 | 0.9530 | | No log | 19.75 | 158 | 0.9250 | 0.6423 | 0.9250 | 0.9618 | | No log | 20.0 | 160 | 0.9205 | 0.6015 | 0.9205 | 0.9594 | | No log | 20.25 | 162 | 1.0278 | 0.5674 | 1.0278 | 1.0138 | | No log | 20.5 | 164 | 1.1169 | 0.5634 | 1.1169 | 1.0568 | | No log | 20.75 | 166 | 1.0358 | 0.5942 | 1.0358 | 1.0178 | | No log | 21.0 | 168 | 0.9633 | 0.6074 | 0.9633 | 0.9815 | | No log | 21.25 | 170 | 0.9961 | 0.6475 | 0.9961 | 0.9981 | | No log | 21.5 | 172 | 0.9387 | 0.6571 | 0.9387 | 0.9689 | | No log | 21.75 | 174 | 0.8516 | 0.6522 | 0.8516 | 0.9228 | | No log | 22.0 | 176 | 0.9413 | 0.6486 | 0.9413 | 0.9702 | | No log | 22.25 | 178 | 1.0079 | 0.64 | 1.0079 | 1.0039 | | No log | 22.5 | 180 | 0.9115 | 0.6853 | 0.9115 | 0.9547 | | No log | 22.75 | 182 | 0.8071 | 0.6866 | 0.8071 | 0.8984 | | No log | 23.0 | 184 | 0.8037 | 0.6716 | 0.8037 | 0.8965 | | No log | 23.25 | 186 | 0.8030 | 0.6565 | 0.8030 | 0.8961 | | No log | 23.5 | 188 | 0.7986 | 0.6718 | 0.7986 | 0.8937 | | No log | 23.75 | 190 | 0.8289 | 0.6815 | 0.8289 | 0.9104 | | No log | 24.0 | 192 | 0.8615 | 0.6957 | 0.8615 | 0.9282 | | No log | 24.25 | 194 | 0.8470 | 0.6765 | 0.8470 | 0.9203 | | No log | 24.5 | 196 | 0.8552 | 0.6713 | 0.8552 | 0.9248 | | No log | 24.75 | 198 | 0.8551 | 0.6713 | 0.8551 | 0.9247 | | No log | 25.0 | 200 | 0.9062 | 0.6577 | 0.9062 | 0.9519 | | No log | 25.25 | 202 | 0.9288 | 0.6040 | 0.9288 | 0.9637 | | No log | 25.5 | 204 | 0.9146 | 0.6531 | 0.9146 | 0.9563 | | No log | 25.75 | 206 | 0.8998 | 0.6757 | 0.8998 | 0.9486 | | No log | 26.0 | 208 | 0.8990 | 0.6846 | 0.8990 | 0.9482 | | No log | 26.25 | 210 | 0.8652 | 0.6800 | 0.8652 | 0.9302 | | No log | 26.5 | 212 | 0.8451 | 0.6887 | 0.8451 | 0.9193 | | No log | 26.75 | 214 | 0.8546 | 0.6842 | 0.8546 | 0.9244 | | No log | 27.0 | 216 | 0.8321 | 0.6939 | 0.8321 | 0.9122 | | No log | 27.25 | 218 | 0.8130 | 0.7007 | 0.8130 | 0.9017 | | No log | 27.5 | 220 | 0.8149 | 0.6912 | 0.8149 | 0.9027 | | No log | 27.75 | 222 | 0.8107 | 0.6912 | 0.8107 | 0.9004 | | No log | 28.0 | 224 | 0.8081 | 0.6812 | 0.8081 | 0.8989 | | No log | 28.25 | 226 | 0.8082 | 0.6763 | 0.8082 | 0.8990 | | No log | 28.5 | 228 | 0.8091 | 0.6619 | 0.8091 | 0.8995 | | No log | 28.75 | 230 | 0.8305 | 0.6906 | 0.8305 | 0.9113 | | No log | 29.0 | 232 | 0.8839 | 0.6711 | 0.8839 | 0.9401 | | No log | 29.25 | 234 | 0.8924 | 0.6667 | 0.8924 | 0.9447 | | No log | 29.5 | 236 | 0.8792 | 0.72 | 0.8792 | 0.9377 | | No log | 29.75 | 238 | 0.9161 | 0.6573 | 0.9161 | 0.9571 | | No log | 30.0 | 240 | 0.9565 | 0.6338 | 0.9565 | 0.9780 | | No log | 30.25 | 242 | 0.9384 | 0.6620 | 0.9384 | 0.9687 | | No log | 30.5 | 244 | 1.0006 | 0.6309 | 1.0006 | 1.0003 | | No log | 30.75 | 246 | 1.1285 | 0.5882 | 1.1285 | 1.0623 | | No log | 31.0 | 248 | 1.1021 | 0.6483 | 1.1021 | 1.0498 | | No log | 31.25 | 250 | 1.0230 | 0.6316 | 1.0230 | 1.0114 | | No log | 31.5 | 252 | 0.9600 | 0.6515 | 0.9600 | 0.9798 | | No log | 31.75 | 254 | 0.8991 | 0.6815 | 0.8991 | 0.9482 | | No log | 32.0 | 256 | 0.8515 | 0.6618 | 0.8515 | 0.9228 | | No log | 32.25 | 258 | 0.8376 | 0.6423 | 0.8376 | 0.9152 | | No log | 32.5 | 260 | 0.8025 | 0.6906 | 0.8025 | 0.8958 | | No log | 32.75 | 262 | 0.7954 | 0.6906 | 0.7954 | 0.8918 | | No log | 33.0 | 264 | 0.8295 | 0.6667 | 0.8295 | 0.9108 | | No log | 33.25 | 266 | 0.8124 | 0.6906 | 0.8124 | 0.9013 | | No log | 33.5 | 268 | 0.7775 | 0.7101 | 0.7775 | 0.8817 | | No log | 33.75 | 270 | 0.7782 | 0.6861 | 0.7782 | 0.8821 | | No log | 34.0 | 272 | 0.7994 | 0.6763 | 0.7994 | 0.8941 | | No log | 34.25 | 274 | 0.7895 | 0.6763 | 0.7895 | 0.8886 | | No log | 34.5 | 276 | 0.7922 | 0.7 | 0.7922 | 0.8900 | | No log | 34.75 | 278 | 0.8814 | 0.6667 | 0.8814 | 0.9388 | | No log | 35.0 | 280 | 0.9255 | 0.6709 | 0.9255 | 0.9620 | | No log | 35.25 | 282 | 0.8943 | 0.6579 | 0.8943 | 0.9457 | | No log | 35.5 | 284 | 0.8204 | 0.6815 | 0.8204 | 0.9058 | | No log | 35.75 | 286 | 0.7941 | 0.6963 | 0.7941 | 0.8911 | | No log | 36.0 | 288 | 0.7871 | 0.6963 | 0.7871 | 0.8872 | | No log | 36.25 | 290 | 0.8084 | 0.6815 | 0.8084 | 0.8991 | | No log | 36.5 | 292 | 0.8878 | 0.6846 | 0.8878 | 0.9422 | | No log | 36.75 | 294 | 0.8893 | 0.7067 | 0.8893 | 0.9430 | | No log | 37.0 | 296 | 0.8098 | 0.7083 | 0.8098 | 0.8999 | | No log | 37.25 | 298 | 0.7644 | 0.6861 | 0.7644 | 0.8743 | | No log | 37.5 | 300 | 0.7743 | 0.6765 | 0.7743 | 0.8800 | | No log | 37.75 | 302 | 0.7814 | 0.6861 | 0.7814 | 0.8840 | | No log | 38.0 | 304 | 0.8011 | 0.6912 | 0.8011 | 0.8950 | | No log | 38.25 | 306 | 0.8478 | 0.6812 | 0.8478 | 0.9207 | | No log | 38.5 | 308 | 0.9024 | 0.6475 | 0.9024 | 0.9499 | | No log | 38.75 | 310 | 0.9025 | 0.6667 | 0.9025 | 0.9500 | | No log | 39.0 | 312 | 0.8917 | 0.6714 | 0.8917 | 0.9443 | | No log | 39.25 | 314 | 0.9079 | 0.6531 | 0.9079 | 0.9528 | | No log | 39.5 | 316 | 0.8944 | 0.6667 | 0.8944 | 0.9457 | | No log | 39.75 | 318 | 0.8692 | 0.6901 | 0.8692 | 0.9323 | | No log | 40.0 | 320 | 0.8531 | 0.6912 | 0.8531 | 0.9237 | | No log | 40.25 | 322 | 0.8540 | 0.6912 | 0.8540 | 0.9241 | | No log | 40.5 | 324 | 0.8601 | 0.6912 | 0.8601 | 0.9274 | | No log | 40.75 | 326 | 0.8993 | 0.7042 | 0.8993 | 0.9483 | | No log | 41.0 | 328 | 0.9632 | 0.6711 | 0.9632 | 0.9814 | | No log | 41.25 | 330 | 0.9402 | 0.6800 | 0.9402 | 0.9696 | | No log | 41.5 | 332 | 0.8785 | 0.6812 | 0.8785 | 0.9373 | | No log | 41.75 | 334 | 0.8495 | 0.6715 | 0.8495 | 0.9217 | | No log | 42.0 | 336 | 0.8450 | 0.6765 | 0.8450 | 0.9193 | | No log | 42.25 | 338 | 0.8416 | 0.6569 | 0.8416 | 0.9174 | | No log | 42.5 | 340 | 0.8395 | 0.6522 | 0.8395 | 0.9163 | | No log | 42.75 | 342 | 0.8550 | 0.6812 | 0.8550 | 0.9247 | | No log | 43.0 | 344 | 0.8482 | 0.6806 | 0.8482 | 0.9210 | | No log | 43.25 | 346 | 0.8422 | 0.6812 | 0.8422 | 0.9177 | | No log | 43.5 | 348 | 0.8610 | 0.6861 | 0.8610 | 0.9279 | | No log | 43.75 | 350 | 0.9155 | 0.6316 | 0.9155 | 0.9568 | | No log | 44.0 | 352 | 0.9693 | 0.6471 | 0.9693 | 0.9845 | | No log | 44.25 | 354 | 0.9751 | 0.6475 | 0.9751 | 0.9875 | | No log | 44.5 | 356 | 0.9037 | 0.6316 | 0.9037 | 0.9507 | | No log | 44.75 | 358 | 0.8283 | 0.6667 | 0.8283 | 0.9101 | | No log | 45.0 | 360 | 0.7955 | 0.6466 | 0.7955 | 0.8919 | | No log | 45.25 | 362 | 0.8170 | 0.6418 | 0.8170 | 0.9039 | | No log | 45.5 | 364 | 0.8169 | 0.6176 | 0.8169 | 0.9038 | | No log | 45.75 | 366 | 0.7803 | 0.6765 | 0.7803 | 0.8833 | | No log | 46.0 | 368 | 0.7711 | 0.6906 | 0.7711 | 0.8781 | | No log | 46.25 | 370 | 0.8085 | 0.6573 | 0.8085 | 0.8992 | | No log | 46.5 | 372 | 0.8154 | 0.6429 | 0.8154 | 0.9030 | | No log | 46.75 | 374 | 0.7906 | 0.6667 | 0.7906 | 0.8892 | | No log | 47.0 | 376 | 0.7908 | 0.6912 | 0.7908 | 0.8893 | | No log | 47.25 | 378 | 0.7923 | 0.6912 | 0.7923 | 0.8901 | | No log | 47.5 | 380 | 0.7983 | 0.6861 | 0.7983 | 0.8935 | | No log | 47.75 | 382 | 0.8121 | 0.6853 | 0.8121 | 0.9012 | | No log | 48.0 | 384 | 0.8306 | 0.6795 | 0.8306 | 0.9114 | | No log | 48.25 | 386 | 0.8504 | 0.6790 | 0.8504 | 0.9222 | | No log | 48.5 | 388 | 0.8054 | 0.7205 | 0.8054 | 0.8974 | | No log | 48.75 | 390 | 0.7628 | 0.7248 | 0.7628 | 0.8734 | | No log | 49.0 | 392 | 0.7536 | 0.6815 | 0.7536 | 0.8681 | | No log | 49.25 | 394 | 0.7692 | 0.6815 | 0.7692 | 0.8770 | | No log | 49.5 | 396 | 0.7919 | 0.6815 | 0.7919 | 0.8899 | | No log | 49.75 | 398 | 0.8288 | 0.6617 | 0.8288 | 0.9104 | | No log | 50.0 | 400 | 0.8675 | 0.6475 | 0.8675 | 0.9314 | | No log | 50.25 | 402 | 0.8982 | 0.6759 | 0.8982 | 0.9478 | | No log | 50.5 | 404 | 0.8867 | 0.6712 | 0.8867 | 0.9417 | | No log | 50.75 | 406 | 0.8422 | 0.6573 | 0.8422 | 0.9177 | | No log | 51.0 | 408 | 0.8027 | 0.6618 | 0.8027 | 0.8960 | | No log | 51.25 | 410 | 0.7910 | 0.6849 | 0.7910 | 0.8894 | | No log | 51.5 | 412 | 0.7784 | 0.7075 | 0.7784 | 0.8823 | | No log | 51.75 | 414 | 0.7626 | 0.7162 | 0.7626 | 0.8732 | | No log | 52.0 | 416 | 0.7661 | 0.7451 | 0.7661 | 0.8753 | | No log | 52.25 | 418 | 0.7850 | 0.7273 | 0.7850 | 0.8860 | | No log | 52.5 | 420 | 0.8173 | 0.6753 | 0.8173 | 0.9041 | | No log | 52.75 | 422 | 0.8199 | 0.6620 | 0.8199 | 0.9055 | | No log | 53.0 | 424 | 0.8112 | 0.6667 | 0.8112 | 0.9007 | | No log | 53.25 | 426 | 0.8038 | 0.6765 | 0.8038 | 0.8966 | | No log | 53.5 | 428 | 0.7847 | 0.6861 | 0.7847 | 0.8858 | | No log | 53.75 | 430 | 0.7724 | 0.7042 | 0.7724 | 0.8789 | | No log | 54.0 | 432 | 0.7696 | 0.7034 | 0.7696 | 0.8773 | | No log | 54.25 | 434 | 0.7805 | 0.7152 | 0.7805 | 0.8835 | | No log | 54.5 | 436 | 0.7928 | 0.7067 | 0.7928 | 0.8904 | | No log | 54.75 | 438 | 0.8000 | 0.6993 | 0.8000 | 0.8944 | | No log | 55.0 | 440 | 0.7988 | 0.6901 | 0.7988 | 0.8937 | | No log | 55.25 | 442 | 0.8042 | 0.6901 | 0.8042 | 0.8968 | | No log | 55.5 | 444 | 0.7971 | 0.6812 | 0.7971 | 0.8928 | | No log | 55.75 | 446 | 0.7862 | 0.6812 | 0.7862 | 0.8867 | | No log | 56.0 | 448 | 0.7890 | 0.7101 | 0.7890 | 0.8882 | | No log | 56.25 | 450 | 0.7860 | 0.7042 | 0.7860 | 0.8865 | | No log | 56.5 | 452 | 0.7644 | 0.6901 | 0.7644 | 0.8743 | | No log | 56.75 | 454 | 0.7627 | 0.7172 | 0.7627 | 0.8733 | | No log | 57.0 | 456 | 0.7815 | 0.7034 | 0.7815 | 0.8840 | | No log | 57.25 | 458 | 0.8063 | 0.6944 | 0.8063 | 0.8980 | | No log | 57.5 | 460 | 0.8137 | 0.6812 | 0.8137 | 0.9020 | | No log | 57.75 | 462 | 0.8071 | 0.6812 | 0.8071 | 0.8984 | | No log | 58.0 | 464 | 0.8032 | 0.6812 | 0.8032 | 0.8962 | | No log | 58.25 | 466 | 0.7977 | 0.6812 | 0.7977 | 0.8931 | | No log | 58.5 | 468 | 0.8032 | 0.6812 | 0.8032 | 0.8962 | | No log | 58.75 | 470 | 0.8188 | 0.6957 | 0.8188 | 0.9049 | | No log | 59.0 | 472 | 0.8434 | 0.6912 | 0.8434 | 0.9184 | | No log | 59.25 | 474 | 0.8588 | 0.7050 | 0.8588 | 0.9267 | | No log | 59.5 | 476 | 0.8394 | 0.6912 | 0.8394 | 0.9162 | | No log | 59.75 | 478 | 0.8176 | 0.6912 | 0.8176 | 0.9042 | | No log | 60.0 | 480 | 0.7989 | 0.6957 | 0.7989 | 0.8938 | | No log | 60.25 | 482 | 0.7873 | 0.6861 | 0.7873 | 0.8873 | | No log | 60.5 | 484 | 0.7818 | 0.6957 | 0.7818 | 0.8842 | | No log | 60.75 | 486 | 0.7880 | 0.6957 | 0.7880 | 0.8877 | | No log | 61.0 | 488 | 0.8108 | 0.7 | 0.8108 | 0.9005 | | No log | 61.25 | 490 | 0.8220 | 0.6950 | 0.8220 | 0.9066 | | No log | 61.5 | 492 | 0.8198 | 0.6957 | 0.8198 | 0.9055 | | No log | 61.75 | 494 | 0.8154 | 0.6763 | 0.8154 | 0.9030 | | No log | 62.0 | 496 | 0.8163 | 0.6763 | 0.8163 | 0.9035 | | No log | 62.25 | 498 | 0.8176 | 0.6763 | 0.8176 | 0.9042 | | 0.2952 | 62.5 | 500 | 0.8150 | 0.6763 | 0.8150 | 0.9028 | | 0.2952 | 62.75 | 502 | 0.8122 | 0.6906 | 0.8122 | 0.9012 | | 0.2952 | 63.0 | 504 | 0.8279 | 0.6763 | 0.8279 | 0.9099 | | 0.2952 | 63.25 | 506 | 0.8400 | 0.6812 | 0.8400 | 0.9165 | | 0.2952 | 63.5 | 508 | 0.8349 | 0.6765 | 0.8349 | 0.9137 | | 0.2952 | 63.75 | 510 | 0.8267 | 0.6957 | 0.8267 | 0.9092 | | 0.2952 | 64.0 | 512 | 0.8220 | 0.6957 | 0.8220 | 0.9067 | | 0.2952 | 64.25 | 514 | 0.8166 | 0.6763 | 0.8166 | 0.9037 | | 0.2952 | 64.5 | 516 | 0.8071 | 0.6857 | 0.8071 | 0.8984 | | 0.2952 | 64.75 | 518 | 0.8025 | 0.6906 | 0.8025 | 0.8958 | | 0.2952 | 65.0 | 520 | 0.7983 | 0.6906 | 0.7983 | 0.8935 | | 0.2952 | 65.25 | 522 | 0.7980 | 0.6763 | 0.7980 | 0.8933 | | 0.2952 | 65.5 | 524 | 0.8152 | 0.6713 | 0.8152 | 0.9029 | | 0.2952 | 65.75 | 526 | 0.8301 | 0.6479 | 0.8301 | 0.9111 | | 0.2952 | 66.0 | 528 | 0.8295 | 0.6479 | 0.8295 | 0.9108 | | 0.2952 | 66.25 | 530 | 0.8221 | 0.6479 | 0.8221 | 0.9067 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
Nohobby/L3.3-Prikol-70B-v0.4
Nohobby
2025-02-04T01:07:30Z
14
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "base_model:ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4", "base_model:merge:ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4", "base_model:Nohobby/AbominationSnowPig", "base_model:merge:Nohobby/AbominationSnowPig", "base_model:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:merge:SicariusSicariiStuff/Negative_LLAMA_70B", "base_model:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:merge:deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "base_model:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "base_model:merge:nbeerbower/Llama-3.1-Nemotron-lorablated-70B", "base_model:sophosympatheia/New-Dawn-Llama-3.1-70B-v1.1", "base_model:merge:sophosympatheia/New-Dawn-Llama-3.1-70B-v1.1", "base_model:sophosympatheia/Nova-Tempus-70B-v0.2", "base_model:merge:sophosympatheia/Nova-Tempus-70B-v0.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-02-03T17:54:11Z
--- base_model: - sophosympatheia/Nova-Tempus-70B-v0.2 - nbeerbower/Llama-3.1-Nemotron-lorablated-70B - sophosympatheia/New-Dawn-Llama-3.1-70B-v1.1 - deepseek-ai/DeepSeek-R1-Distill-Llama-70B - ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4 - Nohobby/AbominationSnowPig - SicariusSicariiStuff/Negative_LLAMA_70B library_name: transformers tags: - mergekit - merge --- # Prikol > I don't even know anymore ![Меня нужно изолировать от общества](https://files.catbox.moe/x9t3zo.png) ### Overview I have yet to try it UPD: it sucks, bleh Sometimes mistakes {{user}} for {{char}} and can't think. Other than that, the behavior is similar to the predecessors. It sometimes gives some funny replies tho, yay! If you still want to give it a try, here's the cursed text completion preset for cursed models, which makes them somewhat bearable: https://files.catbox.moe/qr3s64.json Or this one: https://files.catbox.moe/97xryh.json Prompt format: Llama3 ### Quants https://huggingface.co/bartowski/Nohobby_L3.3-Prikol-70B-v0.4-GGUF ## Merge Details ### Step1 ```yaml base_model: sophosympatheia/Nova-Tempus-70B-v0.2 merge_method: model_stock dtype: bfloat16 models: - model: nbeerbower/Llama-3.1-Nemotron-lorablated-70B - model: sophosympatheia/New-Dawn-Llama-3.1-70B-v1.1 tokenizer: source: sophosympatheia/Nova-Tempus-70B-v0.2 ``` ### Step2 ```yaml models: - model: unsloth/DeepSeek-R1-Distill-Llama-70B - model: ArliAI/Llama-3.3-70B-ArliAI-RPMax-v1.4 parameters: select_topk: - value: [0.18, 0.3, 0.32, 0.38, 0.32, 0.3] - model: Nohobby/AbominationSnowPig parameters: select_topk: - value: [0.1, 0.06, 0.05, 0.05, 0.08] - model: SicariusSicariiStuff/Negative_LLAMA_70B parameters: select_topk: 0.17 - model: mergekit-community/L3.3-L3.1-NewTempusBlated-70B parameters: select_topk: 0.55 base_model: mergekit-community/L3.3-L3.1-NewTempusBlated-70B merge_method: sce parameters: int8_mask: true rescale: true normalize: true dtype: float32 out_dtype: bfloat16 tokenizer_source: base ```
genki10/ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold0
genki10
2025-02-04T01:06:33Z
14
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-02-03T21:19:36Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ASAP_FineTuningBERT_AugV8_k10_task1_organization_fold0 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5943 - Qwk: 0.5472 - Mse: 0.5943 - Rmse: 0.7709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | No log | 0.25 | 2 | 9.0420 | 0.0 | 9.0420 | 3.0070 | | No log | 0.5 | 4 | 7.6145 | 0.0 | 7.6145 | 2.7594 | | No log | 0.75 | 6 | 6.8108 | 0.0 | 6.8108 | 2.6097 | | No log | 1.0 | 8 | 5.9556 | 0.0209 | 5.9556 | 2.4404 | | 5.2789 | 1.25 | 10 | 5.0773 | 0.0115 | 5.0773 | 2.2533 | | 5.2789 | 1.5 | 12 | 4.2390 | 0.0039 | 4.2390 | 2.0589 | | 5.2789 | 1.75 | 14 | 3.4491 | 0.0 | 3.4491 | 1.8572 | | 5.2789 | 2.0 | 16 | 2.7368 | 0.0 | 2.7368 | 1.6543 | | 5.2789 | 2.25 | 18 | 2.0942 | 0.0689 | 2.0942 | 1.4471 | | 2.4977 | 2.5 | 20 | 1.6274 | 0.0316 | 1.6274 | 1.2757 | | 2.4977 | 2.75 | 22 | 1.3581 | 0.0316 | 1.3581 | 1.1654 | | 2.4977 | 3.0 | 24 | 1.1374 | 0.0316 | 1.1374 | 1.0665 | | 2.4977 | 3.25 | 26 | 1.5673 | 0.0316 | 1.5673 | 1.2519 | | 2.4977 | 3.5 | 28 | 2.0877 | 0.1765 | 2.0877 | 1.4449 | | 1.9099 | 3.75 | 30 | 1.4721 | 0.0575 | 1.4721 | 1.2133 | | 1.9099 | 4.0 | 32 | 0.8284 | 0.2557 | 0.8284 | 0.9101 | | 1.9099 | 4.25 | 34 | 1.0157 | 0.0567 | 1.0157 | 1.0078 | | 1.9099 | 4.5 | 36 | 1.7498 | 0.1415 | 1.7498 | 1.3228 | | 1.9099 | 4.75 | 38 | 1.3940 | 0.0714 | 1.3940 | 1.1807 | | 1.7092 | 5.0 | 40 | 1.1002 | 0.0779 | 1.1002 | 1.0489 | | 1.7092 | 5.25 | 42 | 1.1317 | 0.1516 | 1.1318 | 1.0638 | | 1.7092 | 5.5 | 44 | 1.0288 | 0.2613 | 1.0288 | 1.0143 | | 1.7092 | 5.75 | 46 | 1.0641 | 0.2996 | 1.0641 | 1.0315 | | 1.7092 | 6.0 | 48 | 1.0741 | 0.3357 | 1.0741 | 1.0364 | | 1.319 | 6.25 | 50 | 0.6738 | 0.4565 | 0.6738 | 0.8209 | | 1.319 | 6.5 | 52 | 0.7498 | 0.4629 | 0.7498 | 0.8659 | | 1.319 | 6.75 | 54 | 0.6227 | 0.4495 | 0.6227 | 0.7891 | | 1.319 | 7.0 | 56 | 0.6315 | 0.4608 | 0.6315 | 0.7947 | | 1.319 | 7.25 | 58 | 0.5875 | 0.4590 | 0.5875 | 0.7665 | | 0.7315 | 7.5 | 60 | 0.6049 | 0.4375 | 0.6049 | 0.7777 | | 0.7315 | 7.75 | 62 | 0.6788 | 0.4699 | 0.6788 | 0.8239 | | 0.7315 | 8.0 | 64 | 0.6401 | 0.4462 | 0.6401 | 0.8000 | | 0.7315 | 8.25 | 66 | 0.7471 | 0.4749 | 0.7471 | 0.8643 | | 0.7315 | 8.5 | 68 | 0.6558 | 0.4991 | 0.6558 | 0.8098 | | 0.4584 | 8.75 | 70 | 0.6045 | 0.5298 | 0.6045 | 0.7775 | | 0.4584 | 9.0 | 72 | 1.0280 | 0.4024 | 1.0280 | 1.0139 | | 0.4584 | 9.25 | 74 | 0.5699 | 0.5009 | 0.5699 | 0.7549 | | 0.4584 | 9.5 | 76 | 0.5599 | 0.5188 | 0.5599 | 0.7483 | | 0.4584 | 9.75 | 78 | 0.8521 | 0.4420 | 0.8521 | 0.9231 | | 0.3911 | 10.0 | 80 | 0.5990 | 0.5326 | 0.5990 | 0.7740 | | 0.3911 | 10.25 | 82 | 0.6045 | 0.5448 | 0.6045 | 0.7775 | | 0.3911 | 10.5 | 84 | 0.7424 | 0.5166 | 0.7424 | 0.8616 | | 0.3911 | 10.75 | 86 | 0.6233 | 0.5375 | 0.6233 | 0.7895 | | 0.3911 | 11.0 | 88 | 0.6030 | 0.5613 | 0.6030 | 0.7765 | | 0.2934 | 11.25 | 90 | 0.7415 | 0.5094 | 0.7415 | 0.8611 | | 0.2934 | 11.5 | 92 | 0.6086 | 0.5581 | 0.6086 | 0.7801 | | 0.2934 | 11.75 | 94 | 0.5970 | 0.5577 | 0.5970 | 0.7727 | | 0.2934 | 12.0 | 96 | 0.7225 | 0.5170 | 0.7225 | 0.8500 | | 0.2934 | 12.25 | 98 | 0.6135 | 0.5511 | 0.6135 | 0.7833 | | 0.2689 | 12.5 | 100 | 0.5936 | 0.5480 | 0.5936 | 0.7705 | | 0.2689 | 12.75 | 102 | 0.7169 | 0.5183 | 0.7169 | 0.8467 | | 0.2689 | 13.0 | 104 | 0.5848 | 0.5551 | 0.5848 | 0.7647 | | 0.2689 | 13.25 | 106 | 0.6048 | 0.5350 | 0.6048 | 0.7777 | | 0.2689 | 13.5 | 108 | 0.5943 | 0.5472 | 0.5943 | 0.7709 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
modelteam-ai/lop_jan2025
modelteam-ai
2025-02-04T01:05:10Z
34
0
peft
[ "peft", "safetensors", "code", "base_model:Salesforce/codet5p-770m", "base_model:adapter:Salesforce/codet5p-770m", "license:bigcode-openrail-m", "region:us" ]
null
2025-01-17T21:37:06Z
--- base_model: Salesforce/codet5p-770m library_name: peft license: bigcode-openrail-m tags: - code --- # Overview This model is used to build the ModelTeam profile for engineers, allowing them to validate and showcase their skills. It is a PEFT-finetuned version of the Salesforce/codet5p-770m model, specifically trained to predict sections of the profile. The model is lightweight and efficient, making it suitable for running on a laptop. Website: [modelteam.ai](https://www.modelteam.ai/) Instructions to Build your profile: [modelteam git](https://github.com/modelteam-ai/modelteam.ai) ### Framework versions - PEFT 0.11.0
mrferr3t/74aa452d-d1d0-4df0-a0ac-5f6ce0a1c439
mrferr3t
2025-02-04T01:03:36Z
8
0
peft
[ "peft", "safetensors", "qwen2", "axolotl", "generated_from_trainer", "base_model:unsloth/Qwen2.5-0.5B", "base_model:adapter:unsloth/Qwen2.5-0.5B", "license:apache-2.0", "region:us" ]
null
2025-02-04T00:58:25Z
--- library_name: peft license: apache-2.0 base_model: unsloth/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 74aa452d-d1d0-4df0-a0ac-5f6ce0a1c439 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora auto_find_batch_size: true base_model: unsloth/Qwen2.5-0.5B bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 9ee4c7d4f914610d_train_data.json ds_type: json format: custom path: /workspace/input_data/9ee4c7d4f914610d_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 3 early_stopping_threshold: 0.001 eval_max_new_tokens: 128 eval_steps: 40 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: false group_by_length: false hub_model_id: mrferr3t/74aa452d-d1d0-4df0-a0ac-5f6ce0a1c439 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 100 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 32 mlflow_experiment_name: /tmp/9ee4c7d4f914610d_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true s2_attention: null sample_packing: false save_steps: 40 saves_per_epoch: 0 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 8c04dad1-b647-409f-8c82-04b3516dd360 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8c04dad1-b647-409f-8c82-04b3516dd360 warmup_ratio: 0.05 weight_decay: 0.0 xformers_attention: null ``` </details><br> # 74aa452d-d1d0-4df0-a0ac-5f6ce0a1c439 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B](https://huggingface.co/unsloth/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 86 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0144 | 1 | 0.6688 | | No log | 0.5755 | 40 | 0.5475 | | No log | 1.1511 | 80 | 0.5128 | | 0.4897 | 1.7266 | 120 | 0.4924 | | 0.4897 | 2.3022 | 160 | 0.4927 | | 0.382 | 2.8777 | 200 | 0.4873 | | 0.382 | 3.4532 | 240 | 0.5103 | | 0.382 | 4.0288 | 280 | 0.5063 | | 0.3035 | 4.6043 | 320 | 0.5382 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1
lesso/f476907e-5bb3-461e-ad9c-06f3257a91ea
lesso
2025-02-04T01:03:11Z
8
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-04T01:02:21Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: f476907e-5bb3-461e-ad9c-06f3257a91ea results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b77b35ef124b1260_train_data.json ds_type: json format: custom path: /workspace/input_data/b77b35ef124b1260_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 5 eval_batch_size: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: lesso/f476907e-5bb3-461e-ad9c-06f3257a91ea hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 150 micro_batch_size: 2 mlflow_experiment_name: /tmp/G.O.D/b77b35ef124b1260_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f87570f7-b1f0-48ca-b737-ebd938967009 wandb_project: ab-god15 wandb_run: your_name wandb_runid: f87570f7-b1f0-48ca-b737-ebd938967009 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # f476907e-5bb3-461e-ad9c-06f3257a91ea This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3758 | 0.0009 | 1 | 10.3794 | | 10.4098 | 0.0447 | 50 | 10.3757 | | 10.3686 | 0.0894 | 100 | 10.3681 | | 10.3609 | 0.1341 | 150 | 10.3643 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
jssky/c9161c2a-8930-433a-a6d7-78263d62f53e
jssky
2025-02-04T01:02:48Z
11
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-04T01:02:05Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: c9161c2a-8930-433a-a6d7-78263d62f53e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.6.0` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b77b35ef124b1260_train_data.json ds_type: json format: custom path: /workspace/input_data/b77b35ef124b1260_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 5 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: jssky/c9161c2a-8930-433a-a6d7-78263d62f53e hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/b77b35ef124b1260_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f87570f7-b1f0-48ca-b737-ebd938967009 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f87570f7-b1f0-48ca-b737-ebd938967009 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # c9161c2a-8930-433a-a6d7-78263d62f53e This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3533 | 0.3571 | 50 | 10.3521 | | 10.3272 | 0.7143 | 100 | 10.3465 | | 10.3443 | 1.0714 | 150 | 10.3447 | | 10.3403 | 1.4286 | 200 | 10.3442 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
robiual-awal/caabc5d1-34d8-4728-b31c-b67f48c84ed2
robiual-awal
2025-02-04T01:02:47Z
10
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:trl-internal-testing/tiny-random-LlamaForCausalLM", "base_model:adapter:trl-internal-testing/tiny-random-LlamaForCausalLM", "region:us" ]
null
2025-02-04T01:02:22Z
--- library_name: peft base_model: trl-internal-testing/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: caabc5d1-34d8-4728-b31c-b67f48c84ed2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml adapter: lora base_model: trl-internal-testing/tiny-random-LlamaForCausalLM bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b77b35ef124b1260_train_data.json ds_type: json format: custom path: /workspace/input_data/b77b35ef124b1260_train_data.json type: field_input: '' field_instruction: inputs field_output: targets format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: robiual-awal/caabc5d1-34d8-4728-b31c-b67f48c84ed2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: constant max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/b77b35ef124b1260_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f87570f7-b1f0-48ca-b737-ebd938967009 wandb_project: Birthday-SN56-29-Gradients-On-Demand wandb_run: your_name wandb_runid: f87570f7-b1f0-48ca-b737-ebd938967009 warmup_steps: 5 weight_decay: 0.0 xformers_attention: null ``` </details><br> # caabc5d1-34d8-4728-b31c-b67f48c84ed2 This model is a fine-tuned version of [trl-internal-testing/tiny-random-LlamaForCausalLM](https://huggingface.co/trl-internal-testing/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 5 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0018 | 1 | 10.3793 | | 10.3733 | 0.0894 | 50 | 10.3743 | | 10.358 | 0.1788 | 100 | 10.3557 | | 10.3514 | 0.2682 | 150 | 10.3509 | | 10.3501 | 0.3576 | 200 | 10.3500 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1