modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-15 00:44:47
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
557 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-15 00:44:36
card
stringlengths
11
1.01M
leap-llm/Meta-Llama-3-8B-Instruct-sft-alfworld-webshop-intercode-iter1
leap-llm
2024-11-20T16:21:42Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T16:10:29Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RichardErkhov/w601sxs_-_b1ade-1b-bf16-awq
RichardErkhov
2024-11-20T16:21:10Z
5
0
null
[ "safetensors", "gpt_neox", "4-bit", "awq", "region:us" ]
null
2024-11-20T16:20:19Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) b1ade-1b-bf16 - AWQ - Model creator: https://huggingface.co/w601sxs/ - Original model: https://huggingface.co/w601sxs/b1ade-1b-bf16/ Original model description: --- library_name: transformers datasets: - kaist-ai/CoT-Collection --- # Model Card for b1ade-1b Instruction fine tuned 1B parameter model; pass in: 1. `context: <...>` 2. `question: <...>` and expect an `answer: <...>` See implemetation example below (also see https://huggingface.co/spaces/w601sxs/b1ade-1b): ``` import torch import transformers import os, time import tempfile from transformers import AutoTokenizer, AutoModelForCausalLM BASE_MODEL = "w601sxs/b1ade-1b-bf16" tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL) model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, torch_dtype=torch.bfloat16, device_map="auto", offload_folder="offload") model.eval() from transformers import StoppingCriteria, AutoModelForCausalLM, AutoTokenizer, StoppingCriteriaList class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords_ids:list): self.keywords = keywords_ids def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if input_ids[0][-1] in self.keywords: return True return False stop_words = ['>', ' >','> '] stop_ids = [tokenizer.encode(w)[0] for w in stop_words] stop_criteria = StoppingCriteriaList([KeywordsStoppingCriteria(keywords_ids = stop_ids)]) def predict(text): inputs = tokenizer(text, return_tensors="pt").to('cuda') with torch.no_grad(): outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=128, stopping_criteria=stop_criteria) out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("answer:")[-1] return print(out_text.split(text)[-1]) predict("context: <The center contact of the bulb typically connects to the medium-power filament, and the ring connects to the low-power filament. Thus, if a 3-way bulb is screwed into a standard light socket that has only a center contact, only the medium-power filament operates. In the case of the 50 W / 100 W / 150 W bulb, putting this bulb in a regular lamp socket will result in it behaving like a normal 100W bulb.>\n question: <Question: Do 3 way light bulbs work in any lamp?>\n") ```
mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF
mradermacher
2024-11-20T16:21:04Z
23
1
transformers
[ "transformers", "gguf", "merge", "en", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-19T01:56:20Z
--- base_model: newsbang/Homer-v0.4-Qwen2.5-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/newsbang/Homer-v0.4-Qwen2.5-7B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q2_K.gguf) | Q2_K | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q3_K_S.gguf) | Q3_K_S | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q3_K_L.gguf) | Q3_K_L | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.IQ4_XS.gguf) | IQ4_XS | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q4_K_M.gguf) | Q4_K_M | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q5_K_S.gguf) | Q5_K_S | 5.4 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q5_K_M.gguf) | Q5_K_M | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q6_K.gguf) | Q6_K | 6.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Homer-v0.4-Qwen2.5-7B-GGUF/resolve/main/Homer-v0.4-Qwen2.5-7B.f16.gguf) | f16 | 15.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/Copus-2x8B-GGUF
mradermacher
2024-11-20T16:19:16Z
18
0
transformers
[ "transformers", "gguf", "en", "base_model:lodrick-the-lafted/Copus-2x8B", "base_model:quantized:lodrick-the-lafted/Copus-2x8B", "license:llama2", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-20T15:44:19Z
--- base_model: lodrick-the-lafted/Copus-2x8B language: - en library_name: transformers license: llama2 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> static quants of https://huggingface.co/lodrick-the-lafted/Copus-2x8B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Copus-2x8B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q2_K.gguf) | Q2_K | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q3_K_S.gguf) | Q3_K_S | 6.2 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q3_K_M.gguf) | Q3_K_M | 6.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q3_K_L.gguf) | Q3_K_L | 7.3 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.IQ4_XS.gguf) | IQ4_XS | 7.6 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q4_0_4_4.gguf) | Q4_0_4_4 | 7.9 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q4_K_S.gguf) | Q4_K_S | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q4_K_M.gguf) | Q4_K_M | 8.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q5_K_S.gguf) | Q5_K_S | 9.6 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q5_K_M.gguf) | Q5_K_M | 9.8 | | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q6_K.gguf) | Q6_K | 11.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Copus-2x8B-GGUF/resolve/main/Copus-2x8B.Q8_0.gguf) | Q8_0 | 14.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mini1013/master_cate_lh14
mini1013
2024-11-20T16:18:23Z
241
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T16:17:58Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์ธ์ฒด๋ชจํ˜• ๊ต์œก์šฉ ํ•ด๋ถ€ ํ•ด๋ถ€ํ•™ ๋งˆ๋„คํ‚น ํ•ด๊ณจ ๋ผˆ ์—…๊ทธ๋ ˆ์ด๋“œ๋œ๋ฒ„์ „62CM์ƒ‰์ƒํฐ์ƒ‰๋‚จ์„ฑ๋ชจ๋ธ์ฐŒ๋ฅผ์ˆ˜์žˆ์Œ ์—์Šค์™€์ด์ปดํผ๋‹ˆ - text: ๊ณ ๊ธ‰ ํŒจ๋ธŒ๋ฆญ์ •๋ฆฌํ•จ ๋ฆฌ๋น™๋ฐ•์Šค ํŠธ์œˆ์ปค๋ฒ„ ์†Œํ˜• ๊ธฐ์•ˆ79 - text: ๊ฑฐ์น˜๋Œ€ ๋Œ€ํšŒ ์ „์‹œ ์ง„์—ด ํƒœ๊ถŒ๋„ ํŠธ๋กœํ”ผ ๋ฉ”๋‹ฌ ์Šคํฌ์ธ  ๋””์Šคํ”Œ๋ ˆ์ด ์„ ๋ฐ˜ ๊ฐ€๋กœ 120 ์„ธ๋กœ 20์„ผํ‹ฐ_๋ผ์ดํŠธ ํ…์Šค์ฒ˜ ๋‚˜๋ฌดํŒ์ž ์ƒ‰์ƒํ‘œ:์˜ค์ƒ‰ ๋ผ์ธ ํ”„๋ ˆ์ฆˆ์ŠคํŠœ๋””์˜ค - text: ํˆฌ๋ช… ์กฐ๋ฆฝ์‹ ์‹ ๋ฐœ์žฅ ์‹ ๋ฐœ ์ •๋ฆฌ๋Œ€ ์ˆ˜๋‚ฉ์žฅ ๋ณด๊ด€ํ•จ ๋ฏผํŠธ ์‚ด๋ฆผ๊ณต๋ฐฑ - text: ๊ณ ์–‘์ด ์ฒ ์ œ ์‹ค๋‚ดํ™” ์ •๋ฆฌ๋Œ€ ์Šฌ๋ฆฌํผ ๊ฝ‚์ด ๊ฑธ์ด ๊ฑฐ์น˜๋Œ€ ํ˜„๊ด€ ํ™”์žฅ์‹ค ํ˜„๊ด€ ํ™€๋” ์Šˆ์ฆˆ๋ ‰ 4๋‹จ ๊ณ ์–‘์ด ์‹ค๋‚ดํ™”๊ฑฐ์น˜๋Œ€_ํ™”์ดํŠธ ํ‹ฐ๋น„์•ค์ง€์ปดํผ๋‹ˆ (TB&G Co.) inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.937399876771411 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 9 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'์•„์ž„ํ™ˆ๋ฆฌ๋น™ ๋ฒ ์ด์ง ํŠผํŠผ ๋…ผ์Šฌ๋ฆฝ ์˜ท๊ฑธ์ด 1P ํผํ”Œ ์ฃผ์‹ํšŒ์‚ฌ์—๋ฒ„์›'</li><li>'[๋ฆฌ๋ฒค์Šค] ์ฝ”ํŒ… ๋…ผ์Šฌ๋ฆฝ ๋ฐ”์ง€๊ฑธ์ด 20P / ์›๋ชฉ ๋ฐ”์ง€๊ฑธ์ด ๋ฐ ํ–‰๊ฑฐ G.ํ™”์ดํŠธ ์‹ฑ๊ธ€ 1๋‹จ ์ด๋™์‹ํ–‰๊ฑฐ ์•„์†Œ๋ฆฌ๋น™'</li><li>'[ ํŒ๋งค] ์•„์ด์ง€๋ฒ ์ŠคํŠธ ๋ฐ”๋‘๊ธฐ ๋‰ด๋งค์ง ํ–‰๊ฑฐ 30p ๋ฐ”๋‘๊ธฐ'</li></ul> | | 3.0 | <ul><li>'์ŠคํŒ ์„ ํ’๊ธฐ์ปค๋ฒ„ ๋‚œ๋ฐฉ๊ธฐ ์˜จํ’๊ธฐ ๋ณด๊ด€ ๋ฎ๊ฐœ ์ปค๋ฒ„ ๋จผ์ง€์ฐจ๋‹จ ํ—ค๋“œํ˜• ์Šคํƒ ๋“œํ˜• ์ŠคํŒ์„ ํ’๊ธฐ์ปค๋ฒ„ ํ—ค๋“œํ˜•_๋ฒ ์ด์ง€ ๊ตฟ์กฐ์ธ'</li><li>'๋ณด๊ด€ ์Šคํƒ ๋“œ ์„ ํ’๊ธฐ ์ปค๋ฒ„ ๋ฐฉ์ˆ˜ ์ผ๋ฐ˜ํ˜• ํ—ค๋“œ ์ผ€์ด์Šค ๋ถ์œ ๋Ÿฝํ’ ์ˆ˜๋‚ฉํ•˜๊ธฐ์ข‹์€ ์นด๋ฐ” ํ—ค๋“œํ˜•_๊ทธ๋ ˆ์ด ๋ฐ”๋ฅธ์ƒํšŒ'</li><li>'๊ณต์—…์šฉ ์„ ํ’๊ธฐ ์•ˆ์ „๋ง ๋Œ€ํ˜• ์‚ฐ์—… ๋ณดํ˜ธ๋ง ์ปค๋ฒ„ ์šฉํ’ˆ ์นด๋ฐ” 30in ๊ณ ํ€„๋ฆฌ'</li></ul> | | 4.0 | <ul><li>'๋ฌดํƒ€๊ณต ๋ฒฝ๋ถ€์ฐฉ ํ™”์žฅ์ง€ ์ˆ˜๋‚ฉ ๋‹ค์šฉ๋„ ๊ฑธ์ด ๋ฐ”๊ตฌ๋‹ˆ ์†Œํ’ˆ ์„ ๋ฐ˜๋ฐ” ์Šค์ผ“ ๊ฑฐ์น˜๋Œ€ ์ผ€์ด์Šค ์ธํ…Œ๋ฆฌ์–ด ๊ทธ๋ ˆ์ด1P ์ด๋…ธํŠธ๋Ÿฌ์ŠคํŠธ'</li><li>'์Šคํ… ์ฃผ๋ฐฉ ์‹ฑํฌ๋Œ€ ๋„์–ดํ–‰๊ฑฐ ํ›„ํฌ ์ˆ˜๊ฑด ํ–‰์ฃผ ๊ฑธ์ด ๋ฌธ๊ฑธ์ดํ–‰๊ฑฐ ํ™”์ดํŠธ๋„์žฅ_๋„์–ดํ–‰๊ฑฐ1P ์ฃผ์‹ํšŒ์‚ฌ ์ œ์ด์ผ€์ด์”จ๊ธ€๋กœ๋ฒŒ'</li><li>'๋กœ์—๋“œ ์ดˆ๊ฐ•๋ ฅ ๋งˆ๊ทธ๋„คํ‹ฑ ์ž์„ ํ›„ํฌ ๋งˆ์Šคํฌ ๊ฑธ์ด 10P ๋ฏธ๋‹ˆ์ž์„ํ›„ํฌ 10๊ฐœ์„ธํŠธ(E10) ๋ฐ์ผ๋ฆฌ๋งˆ์ผ“'</li></ul> | | 7.0 | <ul><li>'์‹ฌํ”Œ ํ—น๊ฑฐ์ปค๋ฒ„ ํ—น๊ฑฐ์ปค๋ฒ„-๋ธŒ๋ผ์šด ๊ฐฑ์ž์ƒํšŒ'</li><li>'๋จผ์ง€๋ฐฉ์ง€ ํ”„๋ฆฌ๋ฏธ์—„ ์˜ท์ปค๋ฒ„ ํ˜ผํ•ฉ(์ž์ผ“์šฉ10P+์ฝ”ํŠธ์šฉ5P) ์ด 15P GSSHOP_'</li><li>'์ธ์•ณํ™ˆ ์˜๋ฅ˜๋จผ์ง€๋ฐฉ์ง€๋ฎ๊ฐœ ํ–‰๊ฑฐ์ปค๋ฒ„ ์˜๋ฅ˜์˜ค์—ผ๋ฐฉ์ง€์ปค๋ฒ„ No 01.๋ฐ˜ํˆฌ๋ช… ๋จผ์ง€ ๋ฐฉ์ง€๋ฎ๊ฐœ 60X110 ๋””์—˜์‹œ์Šค'</li></ul> | | 2.0 | <ul><li>'[๋น„์นด] ํŠธ๋กค๋ฆฌ /์ˆ˜๋‚ฉํ•จ/์ธ„๋ ˆ์ด/๊ธฐ์ €๊ท€ํ•จ/์ด๋™์‹์ˆ˜๋‚ฉํ•จ/์ฃผ๋ฐฉ์šฉํ’ˆ/์‹๋‹น ๋น„์นด_๋‹คํฌํฌ๋ ˆ์ด '</li><li>'ํ• ๋ฉ”์ด๋“œ ์ฃผ๋ฐฉ ํ™”์žฅํ’ˆ ์„œ๋ž ์ด๋™์‹ ํŠธ๋กค๋ฆฌ ํ‹ˆ์ƒˆ ์„ ๋ฐ˜ ๋ฐ”ํ€ด๋‹ฌ๋ฆฐ ์ˆ˜๋‚ฉ์žฅ ํŠธ๋ ˆ์ด 3๋‹จ ๋ฉ”์‰ฌ ํŠธ๋กค๋ฆฌ 4๋‹จ ํ™”์ดํŠธ (์ฃผ)ํ• ๋ฉ”์ด๋“œ'</li><li>'์•„ํ…์Šค ๋‹ค์šฉ๋„ ๋ฒ ๋ž€๋‹ค๋ฒฝ์„ ๋ฐ˜ ํŒฌํŠธ๋ฆฌ ์„ธํƒ์‹ค ๋ฒฝ๊ฑธ์ด ๋ฐ˜๋‹ฌ ํ™”์ดํŠธ/๋ด‰์Šคํ…Œ์ธ๋ ˆ์Šค/์˜ฌ์Šคํ…Œ์ธ๋ ˆ์Šค ๊ตญ๋‚ด์ œ์ž‘_MC ๋ฐ˜๋‹ฌํ™”์ดํŠธ 43cm_1๋‹จ 1.2m ๋ฉธ์น˜์‡ผํ•‘'</li></ul> | | 1.0 | <ul><li>'์‡ผํ•‘ ๋ฐ”๊ตฌ๋‹ˆ ๋งˆํŠธ ์žฅ๋ฐ”๊ตฌ๋‹ˆ ํ”Œ๋ผ์Šคํ‹ฑ ์‹œ์žฅ ํŽธ์˜์  AA ๋ฏธ๋‹ˆ ์ดˆ๋ก ์‡ผํ•‘ ๋ฐ”๊ตฌ๋‹ˆ ์™•๋Œ€ ์ดˆ๋ก ์ฃผ์‹ํšŒ์‚ฌ ์˜ค๋ฉ”๊ฐ€ํ‚ค์นœ'</li><li>'[๋‹ค์ด์†Œ]์นธ์นธ์ด์ˆ˜๋‚ฉ๋ฐ”๊ตฌ๋‹ˆ-1001900 (์ฃผ)ํ•œ์›ฐ์ด์‡ผํ•‘'</li><li>'๋Œ€๋‚˜๋ฌด ์„์ž‘ ํ•œ๊ณผ๋ฐ”๊ตฌ๋‹ˆ ๋Œ€๋‚˜๋ฌดํ•จ ํ•œ๊ณผ์ƒ์ž ํ๋ฐฑ ๋–ก๋ฐ” ํƒ€์ž… ํƒ€์ž…_์‚ฌ๊ฐ ์„์ž‘ - ์†Œ ์ด์žก์Šค2'</li></ul> | | 0.0 | <ul><li>'[์• ๊ตฌ์• ๊ตฌ]๊ฐ•์•„์ง€ ์• ๊ฒฌ ๋งˆ๋„คํ‚น ์ธํ˜• S/M/L 04_L ๋ธ”๋ž™์‹œ๋‹ˆ์–ด ์‹ ์„ธ๊ณ„๋ชฐ'</li><li>'๋งค์žฅ์šฉ ๋ชฉ๊ฑธ์ด ๊ท€๊ฑธ์ด ๊ฑฐ์น˜ ๋งˆ๋„คํ‚น ๋””์Šคํ”Œ๋ ˆ์ด ์ฅฌ์–ผ๋ฆฌ 14 ์†Œ์†Œํ•œ'</li><li>'์ƒ์ฒด๋งˆ๋„คํ‚น ๋‚จ์„ฑ์ •์žฅ ๋””์Šคํ”Œ๋ ˆ์ด ๋งˆ๋„คํ‚น ์–‘๋ณต์  ์ „์‹  ๋“œ๋ ˆ์Šค ์Šคํƒ ๋“œ ์˜๋ฅ˜๋งค์žฅ๋ชจ๋ธํ–‰๊ฑฐ Q ์•„๋ ์‡ผํ•‘'</li></ul> | | 5.0 | <ul><li>'๋งจ์†์ง„๊ณต์ˆœ์‚ญ์••์ถ•ํŒฉ ๋งจ์†์••์ถ•ํŒฉ 45x70 ์„ธ์ธ ํด๋Ÿฌ์Šคํ„ฐ'</li><li>'๋Œ€ํ˜• ์ž…์ฒด ์••์ถ•ํŒฉ ์ด๋ถˆ ์ธํ˜• ๋ณด๊ด€ ์ƒํ’ˆ์„ ํƒ_์ค‘ํ˜ธ์„ธ๋กœํ˜• ํ–‰๋ฐค'</li><li>'๋งจ์†์ง„๊ณต์ˆœ์‚ญ์••์ถ•ํŒฉ ๋งจ์†์••์ถ•ํŒฉ 56x80 ์„ธ์ธ ํด๋Ÿฌ์Šคํ„ฐ'</li></ul> | | 8.0 | <ul><li>'4๊ฐœ ํƒ์ผ ๋Œ€ํ˜• ์ค‘ํ˜• ์ข…์ด์ˆ˜๋‚ฉ๋ฐ•์Šค ๋ฆฌ๋น™ ๋Œ€ํ˜• ์บฃ๋งˆ์Šคํ„ฐ'</li><li>'[ํŽ ๋กœ์šฐ์ฆˆ] ๋ฑ…์ปค์Šค ๋ฒ ์ด์ง / ํ”„๋ ˆ์ŠคํŠธ ํŒŒ์ผ๋ฐ•์Šค(2๊ฐœ์ž…) ๋ฒ ์ด์ง ์˜คํ”ผ์Šค๋””ํฌ ์˜์™•๊ตฐํฌ์ '</li><li>'ํŽ ๋กœ์šฐ์ฆˆ ํŒŒ์ผ๋ฐ•์Šค Presto ๋ธ”๋ฃจ 17243 2๊ฐœ ํ”Œ๋ ‰์Šค์˜จ์ปดํผ๋‹ˆ'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9374 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh14") # Run inference preds = model("๊ณ ๊ธ‰ ํŒจ๋ธŒ๋ฆญ์ •๋ฆฌํ•จ ๋ฆฌ๋น™๋ฐ•์Šค ํŠธ์œˆ์ปค๋ฒ„ ์†Œํ˜• ๊ธฐ์•ˆ79") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.5244 | 22 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0141 | 1 | 0.3887 | - | | 0.7042 | 50 | 0.3275 | - | | 1.4085 | 100 | 0.1223 | - | | 2.1127 | 150 | 0.0307 | - | | 2.8169 | 200 | 0.0273 | - | | 3.5211 | 250 | 0.0253 | - | | 4.2254 | 300 | 0.0097 | - | | 4.9296 | 350 | 0.0156 | - | | 5.6338 | 400 | 0.0156 | - | | 6.3380 | 450 | 0.0175 | - | | 7.0423 | 500 | 0.0136 | - | | 7.7465 | 550 | 0.0117 | - | | 8.4507 | 600 | 0.002 | - | | 9.1549 | 650 | 0.0174 | - | | 9.8592 | 700 | 0.0155 | - | | 10.5634 | 750 | 0.0136 | - | | 11.2676 | 800 | 0.0193 | - | | 11.9718 | 850 | 0.0135 | - | | 12.6761 | 900 | 0.0004 | - | | 13.3803 | 950 | 0.0001 | - | | 14.0845 | 1000 | 0.0001 | - | | 14.7887 | 1050 | 0.0001 | - | | 15.4930 | 1100 | 0.0 | - | | 16.1972 | 1150 | 0.0 | - | | 16.9014 | 1200 | 0.0 | - | | 17.6056 | 1250 | 0.0 | - | | 18.3099 | 1300 | 0.0 | - | | 19.0141 | 1350 | 0.0 | - | | 19.7183 | 1400 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
sarmadsiddiqui29/Llama-3.2-3B-Instruct-Urdu-Stories
sarmadsiddiqui29
2024-11-20T16:14:26Z
166
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T16:11:59Z
--- base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sarmadsiddiqui29 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
RichardErkhov/AdamLucek_-_Orpo-Llama-3.2-1B-15k-awq
RichardErkhov
2024-11-20T16:13:08Z
5
0
null
[ "safetensors", "llama", "arxiv:2403.07691", "4-bit", "awq", "region:us" ]
null
2024-11-20T16:12:02Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Orpo-Llama-3.2-1B-15k - AWQ - Model creator: https://huggingface.co/AdamLucek/ - Original model: https://huggingface.co/AdamLucek/Orpo-Llama-3.2-1B-15k/ Original model description: --- library_name: transformers license: mit datasets: - mlabonne/orpo-dpo-mix-40k base_model: - meta-llama/Llama-3.2-1B pipeline_tag: text-generation --- # Orpo-Llama-3.2-1B-15k AdamLucek/Orpo-Llama-3.2-1B-15k is an [ORPO](https://arxiv.org/abs/2403.07691) fine tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on a subset of 15,000 shuffled entries of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). Trained for 7 hours on an L4 GPU with [this training script](https://colab.research.google.com/drive/1KV9AFAfhQCSjF8Ej4rI2ejDmx5AUnqHq?usp=sharing), modified from [Maxime Labonne's original guide](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) For full model details, refer to the base model page [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) ## Evaluations | Benchmark | Accuracy | Notes | |-----------|----------|--------| | AGIEval | 20.99% | Average across multiple reasoning tasks | | GPT4ALL | 51.12% | Average across all categories | | TruthfulQA | 42.80% | MC2 accuracy | | BigBench | 31.75% | Average across 18 tasks | | MMLU | 31.23% | Average across all categories | | Winogrande | 61.33% | 5-shot evaluation | | ARC Challenge | 35.92% | 25-shot evaluation | | HellaSwag | 48.65% | 10-shot evaluation | [Detailed Eval Metrics Available Here](https://docs.google.com/document/d/174SRz1pb9GIJ4kIOoMOEyN6ebz3PrEX-9rNnlcVOjyM/edit?usp=sharing) ## Using this Model ```python from transformers import AutoTokenizer import transformers import torch # Load Model and Pipeline model = "AdamLucek/Orpo-Llama-3.2-1B-15k" pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) # Load Tokenizer tokenizer = AutoTokenizer.from_pretrained(model) # Generate Message messages = [{"role": "user", "content": "What is a language model?"}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Training Statistics <div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 5px; max-width: 1000px;"> <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/65ba68a15d2ef0a4b2c892b4/p_GHj_vst0xnC7tBznwRk.png" alt="Panel 1" style="width: 100%; height: auto;"> </div> <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/65ba68a15d2ef0a4b2c892b4/AT6XO0WuHOWICT5omJ1L5.png" alt="Panel 2" style="width: 100%; height: auto;"> </div> <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/65ba68a15d2ef0a4b2c892b4/XOXtthQ1RWxzcIP6V8-o_.png" alt="Panel 3" style="width: 100%; height: auto;"> </div> <div> <img src="https://cdn-uploads.huggingface.co/production/uploads/65ba68a15d2ef0a4b2c892b4/WmV9BWOBxElAvZ3aClgUu.png" alt="Panel 4" style="width: 100%; height: auto;"> </div> </div>
RichardErkhov/NucleusOrg_-_Nucleus-1B-alpha-1-awq
RichardErkhov
2024-11-20T16:12:46Z
5
0
null
[ "safetensors", "mistral", "4-bit", "awq", "region:us" ]
null
2024-11-20T16:11:43Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Nucleus-1B-alpha-1 - AWQ - Model creator: https://huggingface.co/NucleusOrg/ - Original model: https://huggingface.co/NucleusOrg/Nucleus-1B-alpha-1/ Original model description: --- license: mit language: - en datasets: - nampdn-ai/tiny-textbooks --- # Nuclues 1B Alpha1 <p align="center"> <img src="https://github.com/prp-e/nucleus/raw/main/nucleus-logo.png" width=256 height=256> </p> ## What is Nucleus? Nucleus is a small language model based on Mistral (actually, the trimmed untrained version you can find [here](https://huggingface.co/lmlab/lmlab-mistral-1b-untrained)) and trained in different steps. First, we've pretrained it on TinyStories dataset, then [TinyTextBooks](https://huggingface.co/datasets/nampdn-ai/tiny-textbooks) to make it a more specific model. This model is just a _proof of concept_ at this point, but showed good promises in early tests. So with proper training, can be a good product over time! ## Inference [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/prp-e/nucleus/blob/main/nucleus_1b_inference.ipynb) First you need to install `transformers` and `accelerate` libraries in order to run this model. Then, you basically have to run the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig import torch model_name_or_id = "NucleusOrg/Nucleus-1B-alpha-1" model = AutoModelForCausalLM.from_pretrained(model_name_or_id, torch_dtype=torch.float16, device_map="cuda") tokenizer = AutoTokenizer.from_pretrained(model_name_or_id) prompt = "### Lesson: Python Programming 101\n### Introduction\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") generation_config = GenerationConfig( do_sample=True, top_k=1, temperature=0.9, max_new_tokens=500, repetition_penalty=1.5, pad_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` __Prompt Format__: This model does not have a specific prompt format, but the best results could be achieved with a _textbook_ type of format like: ``` ### Chapter 1: Elon Musk and Iron Man Elon met Tony at a Cafe in Monaco, then they had a conversation about ``` You also can try something like this: ``` Question: Who are you? Answer: ``` But since the model isn't made for chat/question answering, the result won't be good enough. __Repetition Penalty__: Since most of these models like to repeat themselves, just keep that number there. You can increase or decrease it based on your liking,but keep in mind that a number lower than 1 makes the model _super repetitive_. ## Known Issues * Since we only had 420k rows of data, a lot of information are missing on this model. Since mentioned earlier in this very model card, it's a _proof of concept_ model. * You probably may test it with coding. Let's say that the model is terrible at coding. We may release a coding optimized model as soon as possible. ## Our Team * Muhammadreza Haghiri ([X (formerly Twitter)](https://twitter.com/haghiri_ai) - [Website](https://haghiri75.com/en) - [Github](https://github.com/prp-e) - [LinkedIn](https://www.linkedin.com/in/muhammadreza-haghiri-1761325b)) * Mahi Mohrechi ([Website](https://mohrechi-portfolio.vercel.app/) - [Github](https://github.com/f-mohrechi) - [LinkedIn](https://www.linkedin.com/in/faeze-mohrechi/)) ## Special Thanks * LMLabs for providing 1B untrained model. * Mistral Team for providing the best open source base model ever. * _Sina Rashidi_, who translated Alpaca dataset to Persian. * [Jupyto](https://jupyto.com) team for providing our infrastructure.
RichardErkhov/friendshipkim_-_Llama-3.2-1B-pruned-h0.5-i0.5-a0.0-awq
RichardErkhov
2024-11-20T16:10:12Z
5
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "awq", "region:us" ]
null
2024-11-20T16:09:49Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-1B-pruned-h0.5-i0.5-a0.0 - AWQ - Model creator: https://huggingface.co/friendshipkim/ - Original model: https://huggingface.co/friendshipkim/Llama-3.2-1B-pruned-h0.5-i0.5-a0.0/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
DongfuJiang/prm_version3_subsample_no_ref_hf
DongfuJiang
2024-11-20T16:08:16Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-factory", "full", "generated_from_trainer", "conversational", "base_model:meta-llama/Llama-3.1-8B-Instruct", "base_model:finetune:meta-llama/Llama-3.1-8B-Instruct", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T09:42:32Z
--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: prm_version3_subsample_no_ref_hf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # prm_version3_subsample_no_ref_hf This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the prm_conversations_prm_version3_math+webinstructsub-mcq+webinstructsub-oe+apps+gsm_subsample_hf dataset. It achieves the following results on the evaluation set: - Loss: 0.1702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2103 | 0.2253 | 500 | 0.2052 | | 0.1811 | 0.4506 | 1000 | 0.1891 | | 0.1809 | 0.6759 | 1500 | 0.1767 | | 0.1841 | 0.9012 | 2000 | 0.1706 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3
RichardErkhov/alpindale_-_Llama-3.2-1B-Instruct-awq
RichardErkhov
2024-11-20T16:04:32Z
5
0
null
[ "safetensors", "llama", "arxiv:2204.05149", "4-bit", "awq", "region:us" ]
null
2024-11-20T16:03:22Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-1B-Instruct - AWQ - Model creator: https://huggingface.co/alpindale/ - Original model: https://huggingface.co/alpindale/Llama-3.2-1B-Instruct/ Original model description: --- language: - en - de - fr - it - pt - hi - es - th library_name: transformers pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 license: llama3.2 extra_gated_prompt: >- ### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT Llama 3.2 Version Release Date: September 25, 2024 โ€œAgreementโ€ means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein. โ€œDocumentationโ€ means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview. โ€œLicenseeโ€ or โ€œyouโ€ means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entityโ€™s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf. โ€œLlama 3.2โ€ means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads. โ€œLlama Materialsโ€ means, collectively, Metaโ€™s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement. โ€œMetaโ€ or โ€œweโ€ means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). By clicking โ€œI Acceptโ€ below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement. 1. License Rights and Redistribution. a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Metaโ€™s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. b. Redistribution and Use. i. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display โ€œBuilt with Llamaโ€ on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include โ€œLlamaโ€ at the beginning of any such AI model name. ii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. iii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a โ€œNoticeโ€ text file distributed as a part of such copies: โ€œLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright ยฉ Meta Platforms, Inc. All Rights Reserved.โ€ iv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement. 2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licenseeโ€™s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights. 3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN โ€œAS ISโ€ BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS. 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING. 5. Intellectual Property. a. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use โ€œLlamaโ€ (the โ€œMarkโ€) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Metaโ€™s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta. b. Subject to Metaโ€™s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications. c. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials. 6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. 7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. ### Llama 3.2 Acceptable Use Policy Meta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (โ€œ**Policy**โ€). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy). #### Prohibited Uses We want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to: 1. Violate the law or othersโ€™ rights, including to: 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: 1. Violence or terrorism 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material 3. Human trafficking, exploitation, and sexual violence 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. 5. Sexual solicitation 6. Any other criminal activity 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individualsโ€™ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Metaย  2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following: 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997 9. Guns and illegal weapons (including weapon development) 10. Illegal drugs and regulated/controlled substances 11. Operation of critical infrastructure, transportation technologies, or heavy machinery 12. Self-harm or harm to others, including suicide, cutting, and eating disorders 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual 3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following: 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content 16. Generating, promoting, or further distributing spam 17. Impersonating another individual without consent, authorization, or legal right 18. Representing that the use of Llama 3.2 or outputs are human-generated 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagementย  4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2 With respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models. Please report any violation of this Policy, software โ€œbug,โ€ or other problems that could lead to a violation of this Policy through one of the following means: * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: LlamaUseReport@meta.com extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox extra_gated_description: >- The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Meta Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. **Model Developer:** Meta **Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | **Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** Sept 25, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. **License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). **Feedback:** Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama-models/tree/main/models/llama3_2). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. **Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card. ## How to use This repository contains two versions of Llama-3.2-1B-Instruct, for use with `transformers` and with the original `llama` codebase. ### Use with transformers Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "meta-llama/Llama-3.2-1B-Instruct" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` Note: You can also find detailed recipes on how to use the model locally, with `torch.compile()`, assisted generations, quantised and more at [`huggingface-llama-recipes`](https://github.com/huggingface/huggingface-llama-recipes) ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama) To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Llama-3.2-1B-Instruct --include "original/*" --local-dir Llama-3.2-1B-Instruct ``` ## Hardware and Software **Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, annotation, and evaluation were also performed on production infrastructure. **Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. ## **Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq. | | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) | | :---- | :---: | ----- | :---: | :---: | :---: | | Llama 3.2 1B | 370k | \- | 700 | 107 | 0 | | Llama 3.2 3B | 460k | \- | 700 | 133 | 0 | | Total | 830k | 86k | | 240 | 0 | The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO). **Data Freshness:** The pretraining data has a cutoff of December 2023\. ## Benchmarks \- English Text In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library. ### Base Pretrained Models | Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | ----- | ----- | :---: | :---: | :---: | :---: | :---: | | General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 | | | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 | | | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 | | Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 | | | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 | | | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 | | Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 | ### Instruction Tuned Models | Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | | General | | MMLU | 5 | macro\_avg/acc | 49.3 | 63.4 | 69.4 | | Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 40.1 | 40.9 | | Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 19.0 | 17.2 | | Instruction following | | IFEval | 0 | avg(prompt/instruction acc loose/strict) | 59.5 | 77.4 | 80.4 | | Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 77.7 | 84.5 | | | | MATH (CoT) | 0 | final\_em | 30.6 | 47.3 | 51.9 | | Reasoning | | ARC-C | 0 | acc | 59.4 | 78.6 | 83.4 | | | | GPQA | 0 | acc | 27.2 | 32.8 | 32.8 | | | | Hellaswag | 0 | acc | 41.2 | 69.8 | 78.7 | | Tool Use | | BFCL V2 | 0 | acc | 25.7 | 67.0 | 70.9 | | | | Nexus | 0 | macro\_avg/acc | 13.5 | 34.3 | 38.5 | | Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | 19.8 | 27.3 | | | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | 63.3 | 72.2 | | | | NIH/Multi-needle | 0 | recall | 75.0 | 84.7 | 98.8 | | Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 58.2 | 68.9 | ### Multilingual Benchmarks | Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | :---: | :---: | :---: | :---: | :---: | :---: | | General | MMLU (5-shot, macro\_avg/acc) | Portuguese | 39.82 | 54.48 | 62.12 | | | | Spanish | 41.5 | 55.1 | 62.5 | | | | Italian | 39.8 | 53.8 | 61.6 | | | | German | 39.2 | 53.3 | 60.6 | | | | French | 40.5 | 54.6 | 62.3 | | | | Hindi | 33.5 | 43.3 | 50.9 | | | | Thai | 34.7 | 44.5 | 50.3 | ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: 1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama 2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm 3. Provide protections for the community to help prevent the misuse of our models ### Responsible Deployment **Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Metaโ€™s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driverโ€™s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/). #### Llama 3.2 Instruct **Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/). **Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. Weโ€™ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.2 Systems **Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. ### New Capabilities and Use Cases **Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well. **Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version. ### Evaluations **Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. **Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical Risks In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas: **1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models. **2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the modelโ€™s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2โ€™s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models. ### Community **Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). **Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Metaโ€™s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). **Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations **Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. **Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2โ€™s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
mini1013/master_cate_lh12
mini1013
2024-11-20T16:04:02Z
332
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T16:03:40Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์ด๊ธ€๋ฃจ์บ  S3ํ”Œ๋Ÿฌ์Šค 2K 300๋งŒํ™”์†Œ ๊ฐ€์ •์šฉ CCTV ํ™ˆ ์นด๋ฉ”๋ผ ํ™ˆ์บ  (์ฃผ) ํŠธ๋ฃจ์—” - text: ๋ฉ•์‹œ์ฝ” ์กฐํŠธ๋น„๋ˆ„ 400g ๋งŒ๋Šฅ์„ธ์ œ ์„ธํƒ ์„ธ์ œ ๋นจ๋ž˜ ๊ธฐ๋ฆ„๋•Œ ์–ผ๋ฃฉ์ œ๊ฑฐ ์š•์‹ค์ฒญ์†Œ ๋ผ์ฝ”๋กœ๋‚˜ ์กฐํŠธ๋น„๋ˆ„ 400g (๋ธ”๋ฃจ) ๋ฆฌ์•„์•ค๋ฆฌ๋ธŒ - text: ํ”ผํ”Œ์—ฐ๊ตฌ์†Œ ์–‘๋ฉด๋ฐฉ์ˆ˜ ๋งคํŠธ ๋—์ž๋ฆฌ 145x150cm ๋กœ์ง€๋ธŒ๋ผ์šด ํ”ผํฌ๋‹‰ ๊ฐ์„ฑ ํ™”์ดํŠธ_M ์ŠคํŠธ๋ฆผํ”„๋Ÿฌ๋• - text: ๋‹ค์šฐ๋‹ˆ ์šธํŠธ๋ผ ์—์ดํ”„๋ฆด ํ”„๋ ˆ์‹œ 5.03L [์ƒํ™œ] ์„ฌ์œ ์œ ์—ฐ์ œ_ํ”ผ์ฃค ํ•‘ํฌ๋กœ์ฆˆ 3.1L x 4๊ฐœ ์˜๋กœ์šฐ๋กœ์ผ“ - text: ์ฐฝ๋ฌธ ์ž๋™ ๋กค๋ฐฉ์ถฉ๋ง ์ƒํ•˜์‹ ๋ฏธ์„ธ ๋Œ€ํ˜• ์…€ํ”„๊ต์ฒด ์‚ฌ๋ฉด ๊ฐ€๋กœ300x์„ธ๋กœ250mm ์‚ฌ๋ฉด_๊ฐ€๋กœ1600mm(1501~1600)_์„ธ๋กœ600mm(501~600) NKํ…Œํฌ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.7296620438939007 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9.0 | <ul><li>'์„ ๋ฐ˜ํ˜• ์Šคํ… ์ ๋ณด๋กค ๋””์ŠคํŽœ์„œ ํฐ ๊ฑฐ์น˜ ์ผ€์ด์Šค ์œ ๊ด‘์‹ค๋ฒ„ 04_CNDH-03 ์Šคํ…์ ๋ณด ์œ ๊ด‘ ๊ณจ๋“œ์„ ๋ฐ˜ (์ฃผ)์—˜์—์ŠคํŠธ๋ ˆ์ด๋“œ'</li><li>'ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ์“ฐ๋ฆฌํ‚น ๋ฏธํŠธํŽ˜์ดํผ ํ•ด๋™์ง€ 2๋กค ์„ ํƒ04.ํฌ๋ก์Šค ์œ„์ƒ๋ฉธ๊ท  ํก์ˆ˜์ง€ 2๋กค ์ฐํ…๋งˆ์ผ“'</li><li>'ํฌ๋ฆฌ๋„ฅ์Šค ํด๋ฆฐ์ผ€์–ด ์•„์ฟ ์•„ ๋ฉ”๊ฐ€๋กค 3๊ฒน 50m 30๋กค ํด๋ฆฐ์†Œํ”„ํŠธ 3๊ฒน ๋ฐ์ฝ” 30m 30๋กค ๋ฉ”๋ฆฌ์•ค'</li></ul> | | 2.0 | <ul><li>'์• ๊ฒฝ ๋กœ์–„ ํ”„๋กœํด๋ฆฌ์Šค ์—๋””์…˜ ์„ ๋ฌผ์„ธํŠธ ์ถ”์„ ์„ ๋ฌผ์„ธํŠธ ๋ช…์ ˆ์„ ๋ฌผ์„ธํŠธ ์ƒดํ‘ธ ๋ฆฐ์Šค ๊ฐ•์„ฑ์ˆ˜'</li><li>'๋กœ์–„ ํ”„๋กœํด๋ฆฌ์Šค ์…€๋ ‰์…˜ 29ํ˜ธ X 1๊ฐœ ๊ณ ๊ธฐ๋Šฅ ์—๋””์…˜์œผ๋กœ ํ–‰๋ณต ์„ ๋ฌผ MinSellAmount ํ˜„๋‘˜๋งˆ๋งˆ'</li><li>'๋Œ€๋ฆผ๋ฐ”์Šค ์นด์นด์˜ค ๋ผ์ด์–ธ ์„ ๋ฌผ์„ธํŠธ GIFT BOX (์ƒค์›Œ๊ธฐ+์ƒค์›Œ์ค„+ํ•„ํ„ฐ4P+์—ผ์†Œ์ œ๊ฑฐ๋ณผ1P) ์นด์นด์˜ค ์„ ๋ฌผ์„ธํŠธ GIFT BOX [๋ผ์ด์–ธ] ๋ฐ”์Šคํ…œ'</li></ul> | | 0.0 | <ul><li>'์ดˆ์†Œํ˜• ์นด๋ฉ”๋ผ CCTV ๋ฌด์„  ๋ฏธ๋‹ˆ ๊ฐ์‹œ ์ดˆ์†Œํ˜• ์นด๋ฉ”๋ผ + 128GB SD์นด๋“œ_(๋ฆฌ๋ทฐ์•ฝ์†)SD์นด๋“œ 32GB+๋ฐฉ์ˆ˜์ผ€์ด์Šค+๊ฑฐ์น˜๋Œ€2์ข… ์ผ๋ ˆ๋‹‰'</li><li>'์ง€๋ฅด์ฝ˜ ๋ฉ€ํ‹ฐ ํƒ์ง€๊ธฐ HD70 ๋ฉ€ํ‹ฐํƒ์ƒ‰๊ธฐ ZIRCON ๋ฉ€ํ‹ฐํƒ์ง€ ํ”„๋ž‘์Šค๋‹ฌ'</li><li>'๋ฉ”๋ชจ๋ฆฌ์„ ํƒ ํ‹ฐํ”ผ๋งํฌ Tapo TC70 200๋งŒํ™”์†Œ 360๋„ํšŒ์ „ ์‹ค๋‚ด๋ฌด์„ ์นด๋ฉ”๋ผ ํ™ˆCCTV ์•ผ๊ฐ„ํ‘๋ฐฑ์ „ํ™˜ ์„ ํƒ4 Tapo TC70+๋ฉ”๋ชจ๋ฆฌ์นด๋“œ128G ์‚ผ์„ฑ๋””์•ค์”จ์ฃผ์‹ํšŒ์‚ฌ'</li></ul> | | 4.0 | <ul><li>'๋ฐ”์šด์Šค ๊ฑด์กฐ๊ธฐ ๋“œ๋ผ์ด์‹œํŠธ ์•„์›ƒ๋„์–ดํ›„๋ ˆ์‰ฌ 160๋งค 1๊ฐœ ์—๋„ˆ์ €ํ‹ฑ'</li><li>'ํ”ผ์ฃค ํ•‘ํฌ๋กœ์ฆˆ 3.1L ํ”ผ์ฃค ๋น„์•™์นด 3100ml 1์ž… ์ฃผ์‹ํšŒ์‚ฌ ๋“œ๋ฆผ์‡ผํ•‘'</li><li>'๋‹ค์šฐ๋‹ˆ ์—‘์ŠคํผํŠธ ์‹ค๋‚ด๊ฑด์กฐ ์„ฌ์œ ์œ ์—ฐ์ œ 1L ์ƒํ™”ํ–ฅ๊ธฐ ์ฝ”ํŠผํ“จ์–ด ์šฉ๊ธฐ 1L (์ฃผ)๋ชจ๋˜์ปดํผ๋‹ˆ'</li></ul> | | 8.0 | <ul><li>'์—”์ ค๊ฐ€๋“œ ํŠนํ—ˆ 90๋„ ํšŒ์ „ ์ „๊ธฐ๋ชจ๊ธฐ์ฑ„ ์ถฉ์ „์‹์ „์žํŒŒ๋ฆฌ์ฑ„ ๊ฑด์ „์ง€๋Œ€ 01. ํŠนํ—ˆ๋ฐ›์€ ledํšŒ์ „๋ชจ๊ธฐ์ฑ„(์ถฉ์ „์‹ ๋Œ€) ํ•‘ํฌ WOODํŒŒํฌ'</li><li>'ODF169432ํ•ดํ”ผํ™ˆ ์—์–ด๋„ท ๊ฑธ์ดํ˜• ์ œ์ด์—˜ ์ฝ”๋ฆฌ์•„(JL KOREA)'</li><li>'์ดˆ๊ฐ•๋ ฅํ•ด์ถฉํ‚ฌ๋Ÿฌ์ „๊ธฐ๋ชจ๊ธฐ์ฑ„(ํŠน๋Œ€) ๋น„ํŠธํ…Œํฌ๋…ธ'</li></ul> | | 6.0 | <ul><li>'ํ—จ์ผˆ ํผ์‹ค ํŒŒ์›Œ์ ค ๋ผ๋ฒค๋” ๋“œ๋Ÿผ์šฉ ๋ฆฌํ•„ 1.8L ํผ์‹ค ํŒŒ์›Œ์ ค ๋“œ๋Ÿผ์šฉ 1.8L(์ผ๋ฐ˜/๋“œ๋Ÿผ ๊ฒธ์šฉ) ๋ˆ„๋ฆฌํ”Œ๋Ÿฌ์Šค'</li><li>'๋‹ค์šฐ๋‹ˆ ํ”„๋ฆฌ๋ฏธ์—„ ์—‘์ŠคํผํŠธ ์‹ค๋‚ด๊ฑด์กฐ ์„ธํƒ์„ธ์ œ ์•ก์ฒดํ˜• 1.9L 08_๋‹ค์šฐ๋‹ˆ ์ฝ”ํŠผ ํ“จ์–ด๋Ÿฌ๋ธŒ 1L (์ฃผ)๋„ฅ์ŠคํŠธ์›”๋“œ์ฝ”ํผ๋ ˆ์ด์…˜'</li><li>'์• ๊ฒฝ์‚ฐ์—… ์ŠคํŒŒํฌ ์ฐฌ๋ฌผ์— ์ž˜๋…น๋Š” ์„ธํƒ์„ธ์ œ ๋ฆฌํ•„ 9.5kg 1๊ฐœ ์‡ผํ‚น(SHOW KING)'</li></ul> | | 3.0 | <ul><li>'์‡ผํ•‘์นดํŠธ ๋ฐ”ํ€ด๋‹ฌ๋ฆฐ์žฅ๋ฐ”๊ตฌ๋‹ˆ ์‹œ์žฅ๋ฐ”๊ตฌ๋‹ˆ์บ๋ฆฌ์–ด ์ ‘์ด์‹ ์†์ˆ˜๋ ˆ ํ•ธ๋“œ ์นดํŠธ ๋งˆํŠธ ๋ฒ ์ด์ง€์ฒดํฌํŒจํ„ด (ํƒ€์ž…07) ์†Œํ˜• ํŒจํ„ด 8์ข…_์ฒดํฌ ๊ณค์ƒ‰ ์—์ด์˜ค๋”์Šค(A Orders)'</li><li>'์Šคํ…Œ์ธ๋ ˆ์Šค ๊ฐ€์ •์šฉ ์†Œํ˜• ์›ํ˜• ์Šคํ€˜์–ด ์Šคํƒ ๋“œ ๋ฐฉ์ง€ ์žฌ 01.๋ฝ ๊ตฌํ˜• ๋ธ”๋ž™ ๋ผ์ง€ ์—์ด๋ฏธ์–ด๋ธ”'</li><li>'1์ดˆ์™„์„ฑ ์›ํ„ฐ์น˜๋ชจ๊ธฐ์žฅ ํ…ํŠธ ์นจ๋Œ€ ์‚ฌ๊ฐ ์•„๊ธฐ ๋Œ€ํ˜• ์ฐฝ๋ฌธ 2_๋ฒ ์ด์ง ๋ธ”๋ฃจ 2~3์ธ์šฉ(200X150) ๋‹ค์ƒต๋ชฐ'</li></ul> | | 5.0 | <ul><li>'๊ธˆ๋น„ ๊ฒ‰๊ธฐ์ €๊ท€ ํ”„๋ฆฌ๋ฏธ์—„ ์™€์ด๋“œ๋งค์ง ์‹ค์†ํ˜• ๋Œ€ํ˜• 10p+10p(์ด 2ํŒฉ) ํŒฌํ‹ฐ๊ธฐ์ €๊ท€ ๋Œ€ํ˜• 10p+10p ๋‚˜๋ฃจ(NARU)๋ฆฌํ…Œ์ผ'</li><li>'๋””ํŽœ๋“œ ์Šคํƒ€์ผ ์–ธ๋”์›จ์–ด ์Šฌ๋ฆผ ๋ผ์ดํŠธํ• ์ค‘ํ˜• ์—ฌ์„ฑ์šฉ 10๊ฐœ์ž…x8ํŒฉ/์š”์‹ค๊ธˆํŒฌํ‹ฐ ์„ฑ์ธ๊ธฐ์ €๊ท€ ์†ก๊ด‘๋ฌผ๋ฅ˜'</li><li>'์œ ํ•œํ‚ด๋ฒŒ๋ฆฌ ๋””ํŽœ๋“œ ์•ˆ์‹ฌํ”Œ๋Ÿฌ์Šค ์ค‘ํ˜• 9๋งค -1๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ๋ฏผ์˜'</li></ul> | | 7.0 | <ul><li>'๋งํ‘œ ์‹ ๋ฐœ ํƒˆ์ทจ์ œ 100ml ๋ฐœ๋ƒ„์ƒˆ ์‹ ๋ฐœ๋ƒ„์ƒˆ ์ œ๊ฑฐ MinSellAmount ๋Œ€์ฝ”์•„'</li><li>'์Šˆ์ฆˆ์ฟจ ๋นจ๊ฐ•์ƒ‰ ์‹ ๋ฐœ๊ฑด์กฐํƒˆ์ทจ์ œ ๋ƒ„์ƒˆ ์Šต๊ธฐ์ œ๊ฑฐ MinSellAmount SMH๋งŒ๋ฌผ์ƒํšŒ'</li><li>'ํŽ˜๋ธŒ๋ฆฌ์ฆˆ ํฌ๋งจ ์ฟจ์•„์ฟ ์•„ํ–ฅ ๋ฆฌํ•„ 320ml ํฌ๋งจ ์ฟจ์•„์ฟ ์•„ํ–ฅ ๋ฆฌํ•„ 320ml ์ง€๊ธฐ์ƒต'</li></ul> | | 1.0 | <ul><li>'์ข‹์€๋А๋‚Œ ์ž…๋Š” ์˜ค๋ฒ„๋‚˜์ดํŠธ ์ค‘ํ˜• 8๋งค x 1ํŒฉ ์ฃผ์‹ํšŒ์‚ฌ ๋‹ค์˜ฌ์—ฐ๊ตฌ์†Œ'</li><li>'๋‹‰์Šค์ปต ๋‚ด๋ชธ์„ ์ƒ๊ฐํ•˜๋Š” ์•ˆ์ „ํ•œ ์‹ค๋ฆฌ์ฝ˜ ์ƒ๋ฆฌ์ปต ์†Œํ˜• luckytiger3'</li><li>'ํ™”์ดํŠธ ์ˆ˜ํผํก์ˆ˜ ์ค‘ํ˜• (30+6)๊ฐœ์ž… (์ฃผ) ์‚ผ์„ฑ ์—์ด์น˜์—”์”จ'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.7297 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh12") # Run inference preds = model("์ด๊ธ€๋ฃจ์บ  S3ํ”Œ๋Ÿฌ์Šค 2K 300๋งŒํ™”์†Œ ๊ฐ€์ •์šฉ CCTV ํ™ˆ ์นด๋ฉ”๋ผ ํ™ˆ์บ  (์ฃผ) ํŠธ๋ฃจ์—”") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.964 | 24 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0127 | 1 | 0.3941 | - | | 0.6329 | 50 | 0.3041 | - | | 1.2658 | 100 | 0.1323 | - | | 1.8987 | 150 | 0.0705 | - | | 2.5316 | 200 | 0.0185 | - | | 3.1646 | 250 | 0.021 | - | | 3.7975 | 300 | 0.0292 | - | | 4.4304 | 350 | 0.0158 | - | | 5.0633 | 400 | 0.0176 | - | | 5.6962 | 450 | 0.0001 | - | | 6.3291 | 500 | 0.0079 | - | | 6.9620 | 550 | 0.0004 | - | | 7.5949 | 600 | 0.0001 | - | | 8.2278 | 650 | 0.0001 | - | | 8.8608 | 700 | 0.0001 | - | | 9.4937 | 750 | 0.0001 | - | | 10.1266 | 800 | 0.0001 | - | | 10.7595 | 850 | 0.0001 | - | | 11.3924 | 900 | 0.0001 | - | | 12.0253 | 950 | 0.0001 | - | | 12.6582 | 1000 | 0.0 | - | | 13.2911 | 1050 | 0.0 | - | | 13.9241 | 1100 | 0.0001 | - | | 14.5570 | 1150 | 0.0 | - | | 15.1899 | 1200 | 0.0 | - | | 15.8228 | 1250 | 0.0 | - | | 16.4557 | 1300 | 0.0001 | - | | 17.0886 | 1350 | 0.0 | - | | 17.7215 | 1400 | 0.0 | - | | 18.3544 | 1450 | 0.0 | - | | 18.9873 | 1500 | 0.0 | - | | 19.6203 | 1550 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
WK73/path-to-save-model
WK73
2024-11-20T16:03:11Z
29
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-11-20T15:22:36Z
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks dog tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - WK73/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
RichardErkhov/andrijdavid_-_Llama3-1B-Base-awq
RichardErkhov
2024-11-20T15:59:48Z
5
0
null
[ "safetensors", "llama", "4-bit", "awq", "region:us" ]
null
2024-11-20T15:58:32Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama3-1B-Base - AWQ - Model creator: https://huggingface.co/andrijdavid/ - Original model: https://huggingface.co/andrijdavid/Llama3-1B-Base/ Original model description: --- license: cc-by-4.0 language: - en pipeline_tag: text-generation --- # Llama-3-1B-Base Llama3-1b is a trimmed version of the official [Llama-3 8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) base model from [Meta](https://huggingface.co/meta-llama). It has been reduced in size to ~1 billion parameters, making it more computationally efficient while still retaining a significant portion of the original model's capabilities. This model is intended to serve as a base model and has not been further fine-tuned for any specific task. It is specifically designed to bring the power of LLMs (Large Language Models) to environments with limited computational resources. This model offers a balance between performance and resource usage, serving as an efficient alternative for users who cannot leverage the larger, resource-intensive versions from Meta. **Important**: This project is not affiliated with Meta. ## Uses This model can be fine-tuned for a variety of natural language processing tasks, including: - Text generation - Question answering - Sentiment analysis - Translation - Summarization ## Bias, Risks, and Limitations While Llama3-1b is a powerful model, it is important to be aware of its limitations and potential biases. As with any language model, this model may generate outputs that are factually incorrect or biased. It is also possible that the model may produce offensive or inappropriate content. Users and Developers should be aware of these risks and take appropriate measures to mitigate them. ## How to Use To use Llama3-1b, you can load the model using the Hugging Face Transformers library in Python: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("andrijdavid/Llama-3-1B-Base/") model = AutoModelForCausalLM.from_pretrained("andrijdavid/Llama-3-1B-Base/") ```
RichardErkhov/ank028_-_Llama-3.2-1B-Instruct-medmcqa-awq
RichardErkhov
2024-11-20T15:59:12Z
5
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "awq", "region:us" ]
null
2024-11-20T15:57:54Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-3.2-1B-Instruct-medmcqa - AWQ - Model creator: https://huggingface.co/ank028/ - Original model: https://huggingface.co/ank028/Llama-3.2-1B-Instruct-medmcqa/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mini1013/master_cate_lh11
mini1013
2024-11-20T15:55:19Z
183
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:54:57Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์นธํ† ์Šค ๋‚จ์—ฌ ๊ธฐ๋Šฅ์„ฑ ๋‹ค์ด์–ดํŠธ ์ง€์••์Šฌ๋ฆฌํผ 5. ์‹ ์—ฌ์„ฑ์ž๊ฐˆ_240 ์˜จ๋ˆ„๋ฆฌ์‚ฐ์—… - text: ๊ตญ์‚ฐ ํ—ค๋ผ์นธ ์ผ€๋‚˜ํ”„ ์ผ€๋ƒํ”„ ๋ฐœ ๋ฐœ๋ฐ”๋‹ฅ ์ง€์•• ๊ฑด๊ฐ• ์Šฌ๋ฆฌํผ ์‹ค๋‚ดํ™” ์—ฐํ•‘ํฌ(M) ์˜ˆ์ผ๋งˆ์ผ“ - text: ํ’€๋ฆฌ์˜ค ์ข…์•„๋ฆฌ๋งˆ์‚ฌ์ง€๊ธฐ V3 ๋””์™€์ดshop - text: ํ’‹ ๋ธŒ๋Ÿฌ์‰ฌ ๋ฐœ๊ฐ์งˆ ์ œ๊ฑฐ ๋งˆ์‚ฌ์ง€ ํ์˜ค๋žฉ - text: ๋งˆ์‚ฌ์ง€ ์‹ค๋‚ด ๋ฐœ์ง€์••๋งคํŠธ ๋Œ์ง€์••ํŒ 50x200CM๋ณด๋ณด๋ณด์ƒ๊ฝƒ๋กฑ ๋„์น˜๊ธ€๋กœ๋ฒŒ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9710123383380407 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'์ž๊ฐˆ ๋งคํŠธ ์ง€์••ํŒ ์กฐ์•ฝ๋Œ ๋ฐœํŒ ์ง€์••๊ธธ ์ง€์•• ๋ฐœ๋งคํŠธ 40X60CM ์ปฌ๋Ÿฌํ’€ ์—์ด์•Œ'</li><li>'๋ฝ€์†ก๋ฝ€์†ก ๋ฉ”๋ชจ๋ฆฌํผ ๋ฐœ๋‹ฆ๊ฐœ๋งคํŠธ ์š•์‹ค ์ฃผ๋ฐฉ ๋ฐœ๋งคํŠธ ๋Ÿฌ๊ทธ ๋Œ€ํ˜• ๋ฉด ํ™”์žฅ์‹ค ๋ผ์ง€ 50X80_๋ ˆ๋“œ ์‹œ๊ทธ๋‚˜๋ชฐ'</li><li>'๊ตณ์€ ์‚ด ๊ฑฑ์ •์—†๋Š” ํŠนํ—ˆ๊ธฐ์ˆ  ํ—ฌ์Šคํ•€ ๋ฐœ ์ง€์••๋งคํŠธ ์ง€์••ํŒ ๋ถ€๋ชจ๋‹˜ ์„ ๋ฌผ ํšจ๋„ ํ—ฌ์Šคํ•€ ์šด๋™ ๊ธฐํš์ƒํ’ˆ_ํ•‘ํฌ ๋ถ์ฝ”๋ฆฌ์•„'</li></ul> | | 1.0 | <ul><li>'๊น€์ˆ˜์ž ์—”์ ค ์ข…์•„๋ฆฌ ๋ฐœ๋งˆ์‚ฌ์ง€๊ธฐ ๋‹ค๋ฆฌ์•ˆ๋งˆ๊ธฐ GKM-1004 ๋‹ฅํ„ฐPLUS'</li><li>'๋“€ํ”Œ๋ ‰์Šค ์Ž„๋ผ์›จ์–ด ์˜จ์—ด์ฐœ์งˆ ๋ฐœ๋งˆ์‚ฌ์ง€๊ธฐ DP-FM700 ์‹ ์ธ์„ '</li><li>'7๋งŒ์›๋Œ€ ์ถ”๊ฐ€ํ• ์ธ ์—ฌ๋ฆ„ํœด๊ฐ€ํ•„์ˆ˜ [ ]์—…๊ทธ๋ ˆ์ด๋“œ 3์„ธ๋Œ€ ์Šค๋งˆํŠธ์„ผ์„œ ์ข…์•„๋ฆฌ๋ถ€ํ„ฐ ํ—ˆ๋ฒ…์ง€๊นŒ์ง€ ๋ถ“๊ธฐ ์‹น!! ๋ฌด์„ ๋‹ค๋ฆฌ๋งˆ์‚ฌ์ง€๊ธฐ SR-S1+์Šฌ๋ฆฌ๋ฐ์‚ญ์Šค(์˜๋กœ์šฐ) ์ˆ˜๋ จ๋‹ท์ปด'</li></ul> | | 5.0 | <ul><li>'๋ฐœ๊ฐ์งˆ์–‘๋ง ์‹ค๋ฆฌ์ฝ˜ ํŒจ๋“œ ๋ฐœ๋ณด์Šต ์–‘๋ง ๋ฐœ๊ฐ์งˆ ์ผ€์–ด ํ™”์ดํŠธ ์„์ง„์ผ€์ด ์ฃผ์‹ํšŒ์‚ฌ'</li><li>'[BZJKWP4I_49]irbrush ๋’ค๊ฟˆ์น˜ ํŒจ๋“œ ํ’‹์ผ€์–ด ๋ฐœ๊ฐ์งˆ 3.๋ธ”๋ž™(5mm)FREE ๋กฏ๋ฐ์•„์ด๋ชฐ'</li><li>'์ผ์ƒ๊ณต๊ฐ ๋ณด๋“œ๋ž์กฑ ๋ฐœ๋ณดํ˜ธ๋Œ€ 1+1 ๋’ค๊ฟˆ์น˜ ๋ฐœ๊ฐ์งˆ ๋ณด์Šตํ’‹ํŒจ๋“œ ์–‘๋ง ๋ฐœ๋ณดํ˜ธ๋Œ€ 1+1_์Šคํ‚จ L 1์Œ+ํ™”์ดํŠธ M 1์Œ ์ฃผ์‹ํšŒ์‚ฌ ์ด๊ณต๊ตฌ์˜ค'</li></ul> | | 4.0 | <ul><li>'์พŒ๋ฐœQ 60๋งค ๋ฐœ๋ƒ„์ƒˆ์ œ๊ฑฐ์ œ/์œ ํ•ด์„ธ๊ท ์–ต์ œ/๋ฌด์ข€/๋ฐœ๊ด€๋ฆฌ ํ•ดํ”ผMART'</li><li>'ํŽธ๋ฐฑ๋‚˜๋ฌด ์Šˆ์ฆˆํ”„๋ ˆ์‰ฌ ์‹ ๋ฐœ์žฅ ์˜ท์žฅ ํƒˆ์ทจ ๋ฐœ๋ƒ„์ƒˆ์ œ๊ฑฐ ์ œ์Šต ๋ฐฉํ–ฅํšจ๊ณผ ํฌ๋ ˆ๋น„์Šค'</li><li>'[๊ณต์‹์ˆ˜์ž…] ๋ฐœ๋ƒ„์ƒˆ์ œ๊ฑฐ์ œ ๊ทธ๋žœ์ฆˆ๋ ˆ๋ฏธ๋”” ํŽ˜ํผ๋ฏผํŠธํ–ฅ cscosmetics'</li></ul> | | 0.0 | <ul><li>'ํ‰๋ฐœ ์•„์น˜ ์Šฌ๋ฆฌํผ ๋ฐœ๋ฐ”๋‹ฅ ํ†ต์ฆ ์™„ํ™” ์•„์น˜์Šฌ๋ฆฌํผ ์‚ฌํŒŒ์ด์–ด ๋ธ”๋ฃจ_290 ํƒฑํ'</li><li>'ํ†ต๊ตฝ ์ง€์••์Šฌ๋ฆฌํผ ์‹ค๋‚ดํ™” ์ธต๊ฐ„์†Œ์Œ๋ฐฉ์ง€ ๋ฏธ๋„๋Ÿผ๋ฐฉ์ง€ ์š•์‹คํ™” ๋„ํ†จ ์ง€์•• ์˜๋กœ์šฐ 39-40 9025 ํŒŒ์ธ๋ฉ”ํƒˆ๋ฆญ'</li><li>'[๋‚ซ์†Œ]๋‚ซ์†Œ ์ง€์••2 ์Šฌ๋ฆฌํผ ์•„์ด๋ณด๋ฆฌ/230 ํŒจ์…˜ํ”Œ๋Ÿฌ์Šค'</li></ul> | | 3.0 | <ul><li>'๋ฐ”๋ Œ ๋งค์ง ์Šคํ… ์–‘๋ฉด ํ”„๋กœ ๋ฐœ๊ฐ์งˆ์ œ๊ฑฐ๊ธฐ ํฌ์œ ์–ด๋ทฐํ‹ฐ'</li><li>'๋ฐ”๋ Œ ํŒจ๋””ํผํŽ™ํŠธ ์ „๋™ ๋ฐœ๊ฐ์งˆ ์ œ๊ฑฐ๊ธฐ ํผํ”Œ์—๋””์…˜ ๋ฐœ ๋’ค๊ฟˆ์น˜ ๋ฐœ๋ฐ”๋‹ฅ ๊ตณ์€์‚ด ์ œ๊ฑฐ ํŒจ๋””ํ”Œ๋ž˜๋‹ 1์„ธํŠธ(์‚ฌ์€ํ’ˆ ์ฆ์ •)_๋ฆฌ๋ทฐ์•ฝ์† x (์ฃผ)๋งˆ๋ฅด์Šค๋žฉ์Šค'</li><li>'์˜ค์ œ๋„ ์‹คํฌํ’‹ ๋ฒ„ํผ ๋‹จํ’ˆ ์ธ์•ค์ธ๋งˆ์ผ“'</li></ul> | | 7.0 | <ul><li>'[๋ฆฌํผ๋ธŒ]๊ตฟํ”„๋ Œ๋“œ ๋ฐธ๋Ÿฐ์Šคํœด ๊ฑด์‹์ขŒํ›ˆ์กฑ์š•๊ธฐ GOOD-F5 ๋ฆฌํผ๋ธŒ ๊ฑด์‹์ขŒํ›ˆ์กฑ์š•๊ธฐ GOOD-F5 ์ฃผ์‹ํšŒ์‚ฌ ๊ตฟํ…Œํฌ'</li><li>'GSN-1610 ํŽธ๋ฐฑ๋‚˜๋ฌด ์›์ ์™ธ์„  ๊ฑด์‹ ์ขŒํ›ˆ๊ธฐ+์กฑ์š•๊ธฐ ๊ฒธ์šฉ MinSellAmount ์˜จ์œ ์–ดํ•'</li><li>'B ๊ตฟํ”„๋ Œ๋“œ ์บ๋‚˜๋‹ค์‚ฐ ์†Œ๋‚˜๋ฌด ์›๋ชฉ ์Šค๋งˆํŠธ ๊ฑด์‹์กฑ์š•๊ธฐ GOOD-F4 ํœด๊ฒŒ์‹ค ๊ฐ€์ •์šฉ ๋งˆ์ผ“๋ทฐ'</li></ul> | | 2.0 | <ul><li>'์—ผ์ƒ‰๋„๊ตฌ์„ธํŠธ ์…€ํ”„ ํ‚คํŠธ ๋ณผ ๋ธŒ๋Ÿฌ์‰ฌ ๊ฐ€์ •์šฉ ํ—ค์–ด ๋ธŒ๋Ÿฌ์‹œ ๋น— ๋จธ๋ฆฌ ๋ชจ๋ฐœ ๊ฐ„ํŽธ 07.Aeib ์—ผ์ƒ‰๋น—์„ธํŠธ3P_๋ณธ์ƒํ’ˆ์„ ํƒ ์ฃผ์‹ํšŒ์‚ฌ์œ ๋งˆ์ผ“'</li><li>'OC1242 ์†๊ฐ€๋ฝ ๋ฐœ๊ฐ€๋ฝ ๊ด€์ ˆ๋ณดํ˜ธ ๋ณด์Šต ์‹ค๋ฆฌ์ฝ˜ ๊ณจ๋ฌด18์ข… ํ†ต๊ธฐํ™”์ดํŠธS(12425) ํ…Œ์ต๋””์Šค(TAKE THIS)'</li><li>'OC1242 ์†๊ฐ€๋ฝ ๋ฐœ๊ฐ€๋ฝ ๋ณดํ˜ธ ๋ณด์Šต ์‹ค๋ฆฌ์ฝ˜ ๊ณจ๋ฌด18์ข… ์‹ค๋ฆฌ์ฝ˜๊ณจ๋ฌด ๊ตฌ๋ฉ๋šซ๋ฆฐ๊ณจ๋ฌด ๋ฐœ๊ฐ€๋ฝ ๋ณดํ˜ธ ๊ณจ๋ฌด์Šคํ‚จํ†คL(11033) ์ œ์ดํ•œ ์ฃผ์‹ํšŒ์‚ฌ'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9710 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh11") # Run inference preds = model("ํ’‹ ๋ธŒ๋Ÿฌ์‰ฌ ๋ฐœ๊ฐ์งˆ ์ œ๊ฑฐ ๋งˆ์‚ฌ์ง€ ํ์˜ค๋žฉ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.9325 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0159 | 1 | 0.4383 | - | | 0.7937 | 50 | 0.2003 | - | | 1.5873 | 100 | 0.0636 | - | | 2.3810 | 150 | 0.0158 | - | | 3.1746 | 200 | 0.0239 | - | | 3.9683 | 250 | 0.0153 | - | | 4.7619 | 300 | 0.0004 | - | | 5.5556 | 350 | 0.0023 | - | | 6.3492 | 400 | 0.0005 | - | | 7.1429 | 450 | 0.0002 | - | | 7.9365 | 500 | 0.0001 | - | | 8.7302 | 550 | 0.0001 | - | | 9.5238 | 600 | 0.0001 | - | | 10.3175 | 650 | 0.0001 | - | | 11.1111 | 700 | 0.0001 | - | | 11.9048 | 750 | 0.0001 | - | | 12.6984 | 800 | 0.0 | - | | 13.4921 | 850 | 0.0001 | - | | 14.2857 | 900 | 0.0001 | - | | 15.0794 | 950 | 0.0001 | - | | 15.8730 | 1000 | 0.0 | - | | 16.6667 | 1050 | 0.0001 | - | | 17.4603 | 1100 | 0.0 | - | | 18.2540 | 1150 | 0.0001 | - | | 19.0476 | 1200 | 0.0001 | - | | 19.8413 | 1250 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
RichardErkhov/pavan01729_-_my_Llama-3.2-1B-Instruct-awq
RichardErkhov
2024-11-20T15:50:02Z
5
0
null
[ "safetensors", "llama", "arxiv:1910.09700", "4-bit", "awq", "region:us" ]
null
2024-11-20T15:49:23Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) my_Llama-3.2-1B-Instruct - AWQ - Model creator: https://huggingface.co/pavan01729/ - Original model: https://huggingface.co/pavan01729/my_Llama-3.2-1B-Instruct/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LLM-EDA/VeriSeek
LLM-EDA
2024-11-20T15:47:12Z
20
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-07-19T12:37:26Z
# Veriseek ## Table of Contents - [Update Log](#update-log) - [Project Description](#project-description) - [Installation](#installation) - [Usage](#usage) - [Generation](#Generation) - [Pretrain](#Pretrain) - [PPO](#PPO) - [Citation](#Citation) - [Acknowledgement](#Acknowledgement) ## Update Log - 2024.08.02: Add citation information. - 2024.07.22: Initial version of Veriseek. Add training code and config file. ## Project Description This study introduces a novel approach utilizing reinforcement learning with golden code feedback to enhance the performance of pre-trained models. Leveraging open-source data and base models, we have achieved state- of-the-art (SOTA) results with a substantial margin. Notably, our 6.7B parameter model VeriSeek demonstrates superior performance compared to current best-in- class 13B and 16B models. Furthermore, through a comprehensive analysis of the limitations in direct fine-tuning and the training dynamics of reinforcement learning, we posit that the development of comprehensive supervisory signals, which are align with the inherent parallel semantics of Verilog code, is critical to effective generation. ## Installation To install this project, follow these steps: 1. Clone the repository: `git clone https://github.com/CatIIIIIIII/veriseek.git` 2. Navigate to the project directory: `cd veriseek` 3. Install the dependencies: `conda env create -f environment.yml` ## Usage Before training, you should configure the `src/scripts/single_node.sh` file for training, `src/configs/accelerate/accel.yaml` for accelerate, `src/configs/deepspeed/ds_z3_config.json` for deepspeed. The configuration file contains the following options: ### Generation To generate reponse, run the following demo: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM def stop_at_stop_token(decoded_string, stop_tokens): """ Produces the prefix of decoded_string that ends at the first occurrence of a stop_token. WARNING: the decoded_string *must not* include the prompt, which may have stop tokens itself. """ min_stop_index = len(decoded_string) for stop_token in stop_tokens: stop_index = decoded_string.find(stop_token) if stop_index != -1 and stop_index < min_stop_index: min_stop_index = stop_index return decoded_string[:min_stop_index] prompt = """ Please act as a professional verilog designer. Implement a data width conversion circuit that converts 8-bit data input to 16-bit data output. The module provides two output ports: valid_out, which indicates the validity of the output data, and data_out, which represents the converted 16-bit output data. The first arriving 8-bit data should be placed in the higher 8 bits of the 16-bit data output. The valid_out and data_out signals are generated in the next clock cycle after the two data inputs. When there is only one data input, valid_out and data_out are not generated immediately. Instead, they wait for the arrival of the next data input to complete the concatenation of the two data inputs before generating valid_out and data_out. Module name: width_8to16 Input ports: clk: Clock signal used for synchronous operation. rst_n: Active-low reset signal. Defined as 0 for reset and 1 for reset signal inactive. valid_in: Input signal indicating the validity of the input data. data_in: 8-bit input data to be converted. Output ports: valid_out: Output signal indicating the validity of the output data. data_out: 16-bit output data resulting from the width conversion. Implementation: The data_out register is triggered on the positive edge of the clock signal (posedge clk) or the negative edge of the reset signal (negedge rst_n). On reset, indicated by !rst_n, the data_out register is cleared to 0. If the input data is valid (valid_in) and the flag signal is active, the data_out register is updated by concatenating the contents of the data_lock register (8 bits) and the data_in register (8 bits) to form a 16-bit output. The first valid data is temporarily stored, and when the second valid data is inputted, they are concatenated to produce the output valid_out and data_out. Give me the complete code. """ gpu_id = 0 model_name = "LLM-EDA/VeriSeek" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map=gpu_id) model.eval() # Sample input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(gpu_id) sample = model.generate(input_ids, max_length=1024, temperature=0.2, top_p=0.95, do_sample=True) output = tokenizer.decode(sample[0]) stop_word = "endmodule" output_trunc = stop_at_stop_token(output, [stop_word]) output_trunc += stop_word print(output_trunc) ``` ### Pretrain The pretraining data is available at https://huggingface.co/datasets/LLM-EDA/vgen_cpp. Download and put it in the `data/pretrain` directory. To pretrain the model, run the following command: ```bash bash src/scripts/single_node.sh src/configs/pretrain/deepseek-7B.yaml ``` ### PPO The reinforcement learning algorithm used in this project is Proximal Policy Optimization (PPO). Opencores data is available at https://huggingface.co/datasets/LLM-EDA/opencores. Download and put it in the `data/opencores` directory. To train the model with PPO, run the following command: ```bash bash src/scripts/single_node.sh src/configs/preference/deepseek-7B_ppo_ast.yaml ``` ## Citation ## Acknowledgement This repo benefits from [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory). Thanks for their wonderful works.
Legalaz/21_llambo1_10_37
Legalaz
2024-11-20T15:40:15Z
10
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T15:38:13Z
--- base_model: [] library_name: transformers tags: - mergekit - merge --- # top This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * /root/top2 * /root/top1 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /root/top2 parameters: weight: 0.9368 - model: /root/top1 parameters: weight: 0.0628 merge_method: linear dtype: bfloat16 ```
tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF
tokoin
2024-11-20T15:38:31Z
8
0
vllm
[ "vllm", "gguf", "llama-cpp", "gguf-my-repo", "en", "fr", "de", "es", "it", "pt", "zh", "ja", "ru", "ko", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:quantized:mistralai/Ministral-8B-Instruct-2410", "license:other", "region:us", "conversational" ]
null
2024-11-20T15:38:07Z
--- language: - en - fr - de - es - it - pt - zh - ja - ru - ko license: other license_name: mrl inference: false license_link: https://mistral.ai/licenses/MRL-0.1.md extra_gated_prompt: '# Mistral AI Research License If You want to use a Mistral Model, a Derivative or an Output for any purpose that is not expressly authorized under this Agreement, You must request a license from Mistral AI, which Mistral AI may grant to You in Mistral AI''s sole discretion. To discuss such a license, please contact Mistral AI via the website contact form: https://mistral.ai/contact/ ## 1. Scope and acceptance **1.1. Scope of the Agreement.** This Agreement applies to any use, modification, or Distribution of any Mistral Model by You, regardless of the source You obtained a copy of such Mistral Model. **1.2. Acceptance.** By accessing, using, modifying, Distributing a Mistral Model, or by creating, using or distributing a Derivative of the Mistral Model, You agree to be bound by this Agreement. **1.3. Acceptance on behalf of a third-party.** If You accept this Agreement on behalf of Your employer or another person or entity, You warrant and represent that You have the authority to act and accept this Agreement on their behalf. In such a case, the word "You" in this Agreement will refer to Your employer or such other person or entity. ## 2. License **2.1. Grant of rights**. Subject to Section 3 below, Mistral AI hereby grants You a non-exclusive, royalty-free, worldwide, non-sublicensable, non-transferable, limited license to use, copy, modify, and Distribute under the conditions provided in Section 2.2 below, the Mistral Model and any Derivatives made by or for Mistral AI and to create Derivatives of the Mistral Model. **2.2. Distribution of Mistral Model and Derivatives made by or for Mistral AI.** Subject to Section 3 below, You may Distribute copies of the Mistral Model and/or Derivatives made by or for Mistral AI, under the following conditions: You must make available a copy of this Agreement to third-party recipients of the Mistral Models and/or Derivatives made by or for Mistral AI you Distribute, it being specified that any rights to use the Mistral Models and/or Derivatives made by or for Mistral AI shall be directly granted by Mistral AI to said third-party recipients pursuant to the Mistral AI Research License agreement executed between these parties; You must retain in all copies of the Mistral Models the following attribution notice within a "Notice" text file distributed as part of such copies: "Licensed by Mistral AI under the Mistral AI Research License". **2.3. Distribution of Derivatives made by or for You.** Subject to Section 3 below, You may Distribute any Derivatives made by or for You under additional or different terms and conditions, provided that: In any event, the use and modification of Mistral Model and/or Derivatives made by or for Mistral AI shall remain governed by the terms and conditions of this Agreement; You include in any such Derivatives made by or for You prominent notices stating that You modified the concerned Mistral Model; and Any terms and conditions You impose on any third-party recipients relating to Derivatives made by or for You shall neither limit such third-party recipients'' use of the Mistral Model or any Derivatives made by or for Mistral AI in accordance with the Mistral AI Research License nor conflict with any of its terms and conditions. ## 3. Limitations **3.1. Misrepresentation.** You must not misrepresent or imply, through any means, that the Derivatives made by or for You and/or any modified version of the Mistral Model You Distribute under your name and responsibility is an official product of Mistral AI or has been endorsed, approved or validated by Mistral AI, unless You are authorized by Us to do so in writing. **3.2. Usage Limitation.** You shall only use the Mistral Models, Derivatives (whether or not created by Mistral AI) and Outputs for Research Purposes. ## 4. Intellectual Property **4.1. Trademarks.** No trademark licenses are granted under this Agreement, and in connection with the Mistral Models, You may not use any name or mark owned by or associated with Mistral AI or any of its affiliates, except (i) as required for reasonable and customary use in describing and Distributing the Mistral Models and Derivatives made by or for Mistral AI and (ii) for attribution purposes as required by this Agreement. **4.2. Outputs.** We claim no ownership rights in and to the Outputs. You are solely responsible for the Outputs You generate and their subsequent uses in accordance with this Agreement. Any Outputs shall be subject to the restrictions set out in Section 3 of this Agreement. **4.3. Derivatives.** By entering into this Agreement, You accept that any Derivatives that You may create or that may be created for You shall be subject to the restrictions set out in Section 3 of this Agreement. ## 5. Liability **5.1. Limitation of liability.** In no event, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall Mistral AI be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this Agreement or out of the use or inability to use the Mistral Models and Derivatives (including but not limited to damages for loss of data, loss of goodwill, loss of expected profit or savings, work stoppage, computer failure or malfunction, or any damage caused by malware or security breaches), even if Mistral AI has been advised of the possibility of such damages. **5.2. Indemnification.** You agree to indemnify and hold harmless Mistral AI from and against any claims, damages, or losses arising out of or related to Your use or Distribution of the Mistral Models and Derivatives. ## 6. Warranty **6.1. Disclaimer.** Unless required by applicable law or prior agreed to by Mistral AI in writing, Mistral AI provides the Mistral Models and Derivatives on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. Mistral AI does not represent nor warrant that the Mistral Models and Derivatives will be error-free, meet Your or any third party''s requirements, be secure or will allow You or any third party to achieve any kind of result or generate any kind of content. You are solely responsible for determining the appropriateness of using or Distributing the Mistral Models and Derivatives and assume any risks associated with Your exercise of rights under this Agreement. ## 7. Termination **7.1. Term.** This Agreement is effective as of the date of your acceptance of this Agreement or access to the concerned Mistral Models or Derivatives and will continue until terminated in accordance with the following terms. **7.2. Termination.** Mistral AI may terminate this Agreement at any time if You are in breach of this Agreement. Upon termination of this Agreement, You must cease to use all Mistral Models and Derivatives and shall permanently delete any copy thereof. The following provisions, in their relevant parts, will survive any termination or expiration of this Agreement, each for the duration necessary to achieve its own intended purpose (e.g. the liability provision will survive until the end of the applicable limitation period):Sections 5 (Liability), 6(Warranty), 7 (Termination) and 8 (General Provisions). **7.3. Litigation.** If You initiate any legal action or proceedings against Us or any other entity (including a cross-claim or counterclaim in a lawsuit), alleging that the Model or a Derivative, or any part thereof, infringe upon intellectual property or other rights owned or licensable by You, then any licenses granted to You under this Agreement will immediately terminate as of the date such legal action or claim is filed or initiated. ## 8. General provisions **8.1. Governing laws.** This Agreement will be governed by the laws of France, without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. **8.2. Competent jurisdiction.** The courts of Paris shall have exclusive jurisdiction of any dispute arising out of this Agreement. **8.3. Severability.** If any provision of this Agreement is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein. ## 9. Definitions "Agreement": means this Mistral AI Research License agreement governing the access, use, and Distribution of the Mistral Models, Derivatives and Outputs. "Derivative": means any (i) modified version of the Mistral Model (including but not limited to any customized or fine-tuned version thereof), (ii) work based on the Mistral Model, or (iii) any other derivative work thereof. "Distribution", "Distributing", "Distribute" or "Distributed": means supplying, providing or making available, by any means, a copy of the Mistral Models and/or the Derivatives as the case may be, subject to Section 3 of this Agreement. "Mistral AI", "We" or "Us": means Mistral AI, a French sociรฉtรฉ par actions simplifiรฉe registered in the Paris commercial registry under the number 952 418 325, and having its registered seat at 15, rue des Halles, 75001 Paris. "Mistral Model": means the foundational large language model(s), and its elements which include algorithms, software, instructed checkpoints, parameters, source code (inference code, evaluation code and, if applicable, fine-tuning code) and any other elements associated thereto made available by Mistral AI under this Agreement, including, if any, the technical documentation, manuals and instructions for the use and operation thereof. "Research Purposes": means any use of a Mistral Model, Derivative, or Output that is solely for (a) personal, scientific or academic research, and (b) for non-profit and non-commercial purposes, and not directly or indirectly connected to any commercial activities or business operations. For illustration purposes, Research Purposes does not include (1) any usage of the Mistral Model, Derivative or Output by individuals or contractors employed in or engaged by companies in the context of (a) their daily tasks, or (b) any activity (including but not limited to any testing or proof-of-concept) that is intended to generate revenue, nor (2) any Distribution by a commercial entity of the Mistral Model, Derivative or Output whether in return for payment or free of charge, in any medium or form, including but not limited to through a hosted or managed service (e.g. SaaS, cloud instances, etc.), or behind a software layer. "Outputs": means any content generated by the operation of the Mistral Models or the Derivatives from a prompt (i.e., text instructions) provided by users. For the avoidance of doubt, Outputs do not include any components of a Mistral Models, such as any fine-tuned versions of the Mistral Models, the weights, or parameters. "You": means the individual or entity entering into this Agreement with Mistral AI. *Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>.*' extra_gated_fields: First Name: text Last Name: text Country: country Affiliation: text Job title: text I understand that I can only use the model, any derivative versions and their outputs for non-commercial research purposes: checkbox ? I understand that if I am a commercial entity, I am not permitted to use or distribute the model internally or externally, or expose it in my own offerings without a commercial license : checkbox ? I understand that if I upload the model, or any derivative version, on any platform, I must include the Mistral Research License : checkbox ? I understand that for commercial use of the model, I can contact Mistral or use the Mistral AI API on la Plateforme or any of our cloud provider partners : checkbox ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Mistral Privacy Policy : checkbox geo: ip_location extra_gated_description: Mistral AI processes your personal data below to provide the model and enforce its license. If you are affiliated with a commercial entity, we may also send you communications about our models. For more information on your rights and data handling, please see our <a href="https://mistral.ai/terms/">privacy policy</a>. extra_gated_button_content: Submit library_name: vllm base_model: mistralai/Ministral-8B-Instruct-2410 tags: - llama-cpp - gguf-my-repo --- # tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF This model was converted to GGUF format from [`mistralai/Ministral-8B-Instruct-2410`](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mistralai/Ministral-8B-Instruct-2410) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF --hf-file ministral-8b-instruct-2410-q4_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF --hf-file ministral-8b-instruct-2410-q4_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF --hf-file ministral-8b-instruct-2410-q4_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo tokoin/Ministral-8B-Instruct-2410-Q4_0-GGUF --hf-file ministral-8b-instruct-2410-q4_0.gguf -c 2048 ```
mradermacher/czech-gemma-2-9b-it-i1-GGUF
mradermacher
2024-11-20T15:32:29Z
599
1
transformers
[ "transformers", "gguf", "en", "base_model:lodrick-the-lafted/czech-gemma-2-9b-it", "base_model:quantized:lodrick-the-lafted/czech-gemma-2-9b-it", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-20T11:17:12Z
--- base_model: lodrick-the-lafted/czech-gemma-2-9b-it language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/lodrick-the-lafted/czech-gemma-2-9b-it <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/czech-gemma-2-9b-it-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 5.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 5.5 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 5.5 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/czech-gemma-2-9b-it-i1-GGUF/resolve/main/czech-gemma-2-9b-it.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mini1013/master_cate_lh9
mini1013
2024-11-20T15:29:00Z
132
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:28:38Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์ฝ”์–ด์Šฌ๋ฆฌ๋จธ ์ „์šฉ ๋ฆฌํ•„ํŒจ๋“œ 6P 2๊ฐœ ๋กฏ๋ฐ์•„์ด๋ชฐ - text: ๋ฐœ๋ฝ ์†๋ชฉ ๋งˆ์‚ฌ์ง€๊ธฐ ์•ˆ๋งˆ๊ธฐ ๊ฐ„ํŽธํ•œ EMS ๋ฐ˜์˜๊ตฌ์  ํ†ต์ฆ ํŒ”๋ชฉ ๋งˆ์‚ฌ์ง€ ๋ฐœ๋ฝ ์†๋ชฉ ๋งˆ์‚ฌ์ง€๊ธฐ ์„ธํŠธ (์ฃผ)์—˜๊ฐ€๋‹ˆ - text: '[๋ฐ”์ด์˜คํ”„๋กœํ…Œํฌ]ํ”„๋กœํ…์Šค ํ•€ํƒ€์ž… ๋Œ€ํ˜• ์ €์ฃผํŒŒํŒจ๋“œ 2์กฐ(RG01) ' - text: ์„ฑ๊ฒŒ ํƒฑํƒฑ๋ณผ ๋…ธ์ธ๋ณต์ง€์„ผํ„ฐ ์•ˆ๋งˆ๋ณผ ์ด‰๊ฐ๋ณผ ์„ ๋ฌผ ๋ชธ์‹  ๋ฌผ๋ฆฌ์น˜๋ฃŒ ์–ด๋ฅด์‹  ํƒฑ๋ณผ_11.ํƒฑ๋ณผ(๋†๊ตฌ) ์›Œ์ปค์Šค - text: '[์•ฝ์†๋“œ๋ฆผ] ์ €์ฃผํŒŒ EMS ์–ด๊นจ ๋งˆ์‚ฌ์ง€๊ธฐ ๋ฏธ์„ธ์ „๋ฅ˜ ํœด๋Œ€์šฉ ์•ˆ๋งˆ๊ธฐ ๋ถ€๋ชจ๋‹˜์„ ๋ฌผ ํšจ๋„์„ ๋ฌผ ์–ด๊นจ๋ณดํ˜ธ๋Œ€ M(95~100ํ˜ธ) ๊ธˆ์–‘๋ฆฌํ…Œ์ผ ์ฃผ์‹ํšŒ์‚ฌ' inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.894511760513186 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 7 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'์˜ˆ๋ฆผ์ „์ž ์ ์™ธ์„ ์กฐ์‚ฌ๊ธฐ ์ „์ฒดํ™”์ดํŠธ ํ•„๋ฆฝ์Šค 250W ๋žจํ”„ ์ ์™ธ์„  ์น˜๋ฃŒ๊ธฐ ์•„๋‹Œ ๊ตญ์‚ฐ ์˜๋ฃŒ๊ธฐ๊ธฐ 01 ์ „์ฒดํ™”์ดํŠธ e์ฒญ์ถ˜'</li><li>'๋น„ํƒ€๊ทธ๋žจ ํ•„๋ฆฝ์Šค ์ ์™ธ์„  ๋žจํ”„ ํ”ผ๋ถ€๋ฐฉ์‚ฌ๊ธฐ WGT-8888S VitaGRAM'</li><li>'์›์ ์™ธ์„  ์˜จ์—ด ์น˜๋ฃŒ๊ธฐ ํ•œ์˜์› ์–ด๊นจ ๊ฒฝ์ถ” ๋žจํ”„ ๋งˆ์‚ฌ์ง€ MinSellAmount ์ฐจ๋ฅ˜์†Œ'</li></ul> | | 2.0 | <ul><li>'HWATO ๊ณ ๊ธ‰ํ˜• ๋ถ€ํ•ญ๊ธฐ 14์ปต ๋ผ์ดํ”„์ƒต'</li><li>'์† ์‚ฌํ˜ˆ๋ถ€ํ•ญ์šฉ ๋”ฐ์ฃผ๊ธฐ ์ž ํ†ต์‚ฌํ˜ˆ๊ธฐ ๊ด‘๋ช…์‚ฌ ์นจ ๊ตฌ๋น„ ์ธก์ • ์Šต์‹ ์†๋”ฐ์ฃผ๋Š” ์ฒดํ–ˆ์„๋•Œ ํ˜ˆ๋‹น๊ธฐ ์ž๋™ ๊ฐ„ํŽธ ์•Œ๋ฆฌ๋ชฝ๋“œํˆฌ'</li><li>'ํ•œ์†”๋ถ€ํ•ญ๊ธฐ ์‹ ํ˜• ์†Œ๋…๊ฐ€๋Šฅ ๋ถ€ํ•ญ์ปต 10๊ฐœ 1๋ฐ•์Šค (์‚ฌ์ด์ฆˆ์„ ํƒ1-5ํ˜ธ) ํ•œ์†”๋ถ€ํ•ญ2ํ˜ธ์ปต ์ˆ˜์˜๋ฃŒ๊ธฐ'</li></ul> | | 5.0 | <ul><li>'์˜ค๋ฏ€๋ก  ์ €์ฃผํŒŒ ๋กฑ ๋ผ์ดํ”„ ํŒจ๋“œ 2p HV-LLPAD-G... 1๊ฐœ HV-LLPAD-GY ร— 2๊ฐœ ์Šค์œ„์—'</li><li>'์ฝ”์–ด์Šฌ๋ฆฌ๋จธ ์ „์šฉ ๋ฆฌํ•„ํŒจ๋“œ 6P 3๊ฐœ [0001]๊ธฐ๋ณธ์ƒํ’ˆ CJONSTYLE'</li><li>'ํด๋Ÿญ ๋ฏธ๋‹ˆ ๋งˆ์‚ฌ์ง€๊ธฐ ๋ฆฌํ•„ํŒจ๋“œ ํฐํŒจ๋“œ 2๋ฐ•์Šค ์ด6P /DY_MC ๋ฉธ์น˜์‡ผํ•‘'</li></ul> | | 0.0 | <ul><li>'๋‹ฅํ„ฐ์ฒดํฌ ์Šฌ๋ฆผ Xํ˜• ํ…Œ์ดํ•‘ ๋ฌด๋ฆŽ๋ณดํ˜ธ๋Œ€(์ขŒ์šฐ๊ฒธ์šฉ 1P) M-์ค‘ํ˜•(630475) ํŠธ๋ž˜์ด๋“œ ์”จ์Šคํ…œ(TRADE SYSTEM)'</li><li>'๋‹ฅํ„ฐ์ฒดํฌ ์Šฌ๋ฆผ Xํ˜• ํ…Œ์ดํ•‘ ์ข…์•„๋ฆฌ์••๋ฐ•๋ณดํ˜ธ๋Œ€(์ขŒ์šฐ๊ฒธ์šฉ 1P) M-์ค‘ํ˜•(630499) ํƒœ๋น›ID'</li><li>'๊ตญ์‚ฐ ์˜๋ฃŒ์šฉ ํ—ˆ๋ฆฌ๋ณดํ˜ธ๋Œ€ ํŽธ์•ˆํ•˜๊ณ  ๋ถ€๋“œ๋Ÿฌ์šด ํ—ˆ๋ฆฌ๋ณต๋Œ€ ์„ ํƒ01- 001s ํ—ˆ๋ฆฌ๋ณดํ˜ธ๋Œ€_XXXL(40~43์ธ์น˜) ๋Œ€ํ•œ๊ฑด๊ฐ•'</li></ul> | | 4.0 | <ul><li>'์ŠคํŠธ๋ผํ… ์˜๋ฃŒ์šฉ ์ „์นจ๊ธฐ 4์ฑ„๋„ STN-220 ์ €์ฃผํŒŒ์ž๊ทน๊ธฐ ์นจ์ „๊ธฐ์ž๊ทน๊ธฐ ์ž์„ํ˜• (์ฃผ)์˜คํ”ˆ๋ฉ”๋””์นผ'</li><li>'๋””์›ฐ ์ €์ฃผํŒŒ ๋งˆ์‚ฌ์ง€๊ธฐ ๋ฒ„ํŠผํ˜• LB-1803 ๋ฏธ๋‹ˆ๋งˆ์‚ฌ์ง€๊ธฐ ํœด๋Œ€์šฉ ๋ฌด์„  ์•ˆ๋งˆ๊ธฐ ์ผ๋ฐ˜๊ตฌ๋งค_06.๋ฒ„ํŠผํ˜•2๋ฐ•์Šค+๋Œ€ํ˜•ํŒจ๋“œ 8๋งค+ํก์ฐฉ์ปต8๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์ฒญํ›ˆ'</li><li>'๊ทน๋™์ €์ฃผํŒŒ PRO1000 wave GOLD ํ—ฌ์Šคํ‘ธ๋“œ๋ฉ”๋””์นผ'</li></ul> | | 1.0 | <ul><li>'์กฐ์€ํŒœ ์ดˆ์ŒํŒŒ์ ค ์˜๋ฃŒ์šฉ์ ค ํˆฌ๋ช…5L 1ํ†ต ๋ฌด๋ฃŒ์ „๋‹ฌ ์กฐ์€์ดˆ์ŒํŒŒ์ ค5L๋ธ”๋ฃจ ์„ธ๋ธ๋ฉ”๋””์ปฌ'</li><li>'์ด๋„ํŒœ ์†Œ๋…ธ์ ค๋ฆฌ ํˆฌ๋ช… ๋ธ”๋ฃจ 5L +250ml ๊ณต๋ณ‘ ์†Œ๋…ธ๊ฒ” ์ดˆ์ŒํŒŒ์ ค๋ฆฌ ECG [0001]๋ธ”๋ฃจ 5L CJONSTYLE'</li><li>'์„ธ๋‹ˆํ”ผ์•„ ์—์ฝ”์†Œ๋‹‰ ์ดˆ์ŒํŒŒ์ ค ํˆฌ๋ช… 250mL 12๊ฐœx4ํ†ต 1๋ฐ•์Šค ์†Œ๋…ธ์ ค๋ฆฌ ํ”ผ๋ถ€๊ณผ ์‚ฐ๋ถ€์ธ๊ณผ์šฉ ์„ธ๋ธ๋ฉ”๋””์ปฌ'</li></ul> | | 3.0 | <ul><li>'ํด๋Ÿญ ๋ฏธ๋‹ˆ ๋งˆ์‚ฌ์ง€๊ธฐSE YGGlobal'</li><li>'์˜จ์—ด/๊ณต๊ธฐ์••/์›์ ์™ธ์„ /์ €์ฃผํŒŒ 4์ค‘์ผ€์–ด ๋ฌด๋ฆŽ๋งˆ์‚ฌ์ง€๊ธฐ[๊ณต๊ธฐ์•• ์˜จ์—ด ์›์ ์™ธ์„  ์ง„๋™๊ธฐ๋Šฅ]์•ˆ๋งˆ๊ธฐ 05.ํด๋ ˆ๋ฒ„ ๋งˆ์‚ฌ์ง€๊ฑด SR825 ์ˆ˜๋ จ๋‹ท์ปด'</li><li>'ํœดํ…Œํฌ ํ•˜์ฒด ๊ทผ์œก ๊ฐ•ํ™” EMS ๋งˆ์‚ฌ์ง€๊ธฐ ์‹์ŠคํŒจ๋“œ ํ’‹ํ•2 HT-W03A '</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.8945 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh9") # Run inference preds = model("์ฝ”์–ด์Šฌ๋ฆฌ๋จธ ์ „์šฉ ๋ฆฌํ•„ํŒจ๋“œ 6P 2๊ฐœ ๋กฏ๋ฐ์•„์ด๋ชฐ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.78 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0182 | 1 | 0.4065 | - | | 0.9091 | 50 | 0.2829 | - | | 1.8182 | 100 | 0.0954 | - | | 2.7273 | 150 | 0.0196 | - | | 3.6364 | 200 | 0.0057 | - | | 4.5455 | 250 | 0.0069 | - | | 5.4545 | 300 | 0.0024 | - | | 6.3636 | 350 | 0.0003 | - | | 7.2727 | 400 | 0.0002 | - | | 8.1818 | 450 | 0.0001 | - | | 9.0909 | 500 | 0.0001 | - | | 10.0 | 550 | 0.0001 | - | | 10.9091 | 600 | 0.0001 | - | | 11.8182 | 650 | 0.0001 | - | | 12.7273 | 700 | 0.0001 | - | | 13.6364 | 750 | 0.0001 | - | | 14.5455 | 800 | 0.0001 | - | | 15.4545 | 850 | 0.0001 | - | | 16.3636 | 900 | 0.0001 | - | | 17.2727 | 950 | 0.0001 | - | | 18.1818 | 1000 | 0.0001 | - | | 19.0909 | 1050 | 0.0 | - | | 20.0 | 1100 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mav23/pythia-1b-deduped-GGUF
mav23
2024-11-20T15:26:48Z
74
0
null
[ "gguf", "pytorch", "causal-lm", "pythia", "en", "dataset:EleutherAI/the_pile_deduplicated", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T15:16:59Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/the_pile_deduplicated --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-1B-deduped ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | โ€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | โ€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | โ€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. โ€œEquivalentโ€ models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-1B-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-1B-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-1B-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-1B-deduped will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better โ€œfollowโ€ human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most โ€œaccurateโ€ text. Never rely on Pythia-1B-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-1B-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-1B-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data Pythia-1B-deduped was trained on the Pile **after the dataset has been globally deduplicated**.<br> [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA โ€“ OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeโ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1ร— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
PrunaAI/robert-admin1707-falcon7b-Social-Eng-qa-v3-bnb-8bit-smashed
PrunaAI
2024-11-20T15:26:33Z
5
0
null
[ "safetensors", "falcon", "pruna-ai", "custom_code", "base_model:robert-admin1707/falcon7b-Social-Eng-qa-v3", "base_model:quantized:robert-admin1707/falcon7b-Social-Eng-qa-v3", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-20T15:17:08Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: robert-admin1707/falcon7b-Social-Eng-qa-v3 metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo robert-admin1707/falcon7b-Social-Eng-qa-v3 installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/robert-admin1707-falcon7b-Social-Eng-qa-v3-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("robert-admin1707/falcon7b-Social-Eng-qa-v3") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model robert-admin1707/falcon7b-Social-Eng-qa-v3 before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
mini1013/master_cate_lh8
mini1013
2024-11-20T15:24:36Z
255
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:24:13Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ํƒ€๊ณตํŒ๋‹ท์ปด ์„ธ๊ณ„์ง€๋„ ๋Œ€ํ˜• ์›”๋“œ๋งต ์„ธ๊ณ„์ง€๋„03_600x900 (์ฃผ)์˜ค๋นŒ - text: ์Šคํ”„๋ง ์ œ๋ณธ PDF ํ‘๋ฐฑ ๊ณ ํ’ˆ์งˆ ๋ ˆ์ด์ € ์ถœ๋ ฅ - ํ‘๋ฐฑ ์–‘๋ฉด์ธ์‡„ ๋ชจ์กฐ์ง€80g 50p ์Šคํ”„๋ง ํ‘๋ฐฑ์–‘๋ฉดโ—โ—_๋ชจ์กฐ์ง€100g_167~170 page ๋„์„œ์ถœํŒ ๋ฒ•ํ˜„ - text: '[๋‹ฌํŽ˜์ดํผ] ๋‹ฌํŽ˜์ดํผ ๋ฏธ๋‹ˆ๋ฏธ๋‹ˆ 6์ข… ์—ฝ์„œ postcard ์ธํ…Œ๋ฆฌ์–ด์—ฝ์„œ 6 ๋ฏธ๋‹ˆ๋ฏธ๋‹ˆ ์ผํ•˜๋Š” ์ฃผ์‹ํšŒ์‚ฌ ์ฒœ์œ ๋‹ท์ปด' - text: ํ™˜๊ฐ‘ ํ˜„์ˆ˜๋ง‰ ํšŒ๊ฐ‘ ์ƒ์‹  ์ž”์น˜ ํ”Œ๋žœ์นด๋“œ C00 ๋„ค์ž„ ์†Œํ˜•100x70cm C22 ์–ผ์‘ค(๋‚จ์ž)-์ž์œ ๋ฌธ๊ตฌํฌํ† ํ˜•_์†Œํ˜• 100x70cm (์ฃผ)์—”๋น„์›จ์ผ์ธํ„ฐ๋ ‰ํ‹ฐ๋ธŒ - text: ์Šคํ”„๋ง ์ œ๋ณธ PDF ํ‘๋ฐฑ ๊ณ ํ’ˆ์งˆ ๋ ˆ์ด์ € ์ถœ๋ ฅ - ํ‘๋ฐฑ ์–‘๋ฉด์ธ์‡„ ๋ชจ์กฐ์ง€80g 50p ์Šคํ”„๋ง ํ‘๋ฐฑ๋‹จ๋ฉดโ—_๋ชจ์กฐ์ง€80g_179~182 page ๋„์„œ์ถœํŒ ๋ฒ•ํ˜„ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.964332367808258 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 17 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 6.0 | <ul><li>'๋ช…ํ•จ ๋‹น์ผ์ œ์ž‘ ์†Œ๋Ÿ‰ ์‹ฌํ”Œํ•œ ๊ณ ๊ธ‰ ์ธ์‡„ ์นดํŽ˜์ฟ ํฐ ์˜ˆ์œ ๋ถ€๋™์‚ฐ ํšŒ์‚ฌ ๋‹จ๋ฉด ๋น„์ฝ”ํŒ… 200๋งค ==์งˆ๊ฐ์žˆ๋Š” ์žฌ์งˆ(โ–ผ์•„๋ž˜์—์„œ ์„ ํƒโ–ผ)== ์ฃผ์‹ํšŒ์‚ฌ ์˜คํˆฌ๋””์ž์ธ๊ทธ๋ฃน'</li><li>'์ „๋‹จ์ง€ ์†Œ๋Ÿ‰ ์ธ์‡„ ์ œ์ž‘ A5 ๋‹จ๋ฉด ์ปฌ๋Ÿฌ ์Šค๋…ธ์šฐ์ง€150 ํŒœํ”Œ๋ › ๋ฆฌํ”Œ๋ › ๋‹น์ผ B5์–‘๋ฉด(16์ ˆ)_์•„ํŠธ์ง€200 ํ”„๋ฆฐํŒ…ํŒฉํ† ๋ฆฌ'</li><li>'์ž‰ํฌ์ ฏ - ์ปฌ๋Ÿฌ ์ถœ๋ ฅ ์ œ๋ณธ - A5 ๋ฐฑ์ƒ‰80g ์–‘๋ฉด A3(420ร—297ใŽœ) - ์ œ๋ณธ๋ถˆ๊ฐ€_๋ฐฑ์ƒ‰ 80g ๋ณต์‚ฌ์ง€_์ปฌ๋Ÿฌ์–‘๋ฉดโ–ณโ–ณ (ํŽ˜์ด์ง€X๊ถŒ์ˆ˜=์ „์ฒด ์ชฝ์ˆ˜ ์ž…๋ ฅ) ์ž„ํ”„๋ ˆ์Šค'</li></ul> | | 2.0 | <ul><li>'[3๊ฐœ๋ถ€ํ„ฐ ์ œ์ž‘] ๋ฐฑ์ƒ‰ํŽ˜ํŠธ ์™€๋ธ”๋Ÿฌ ๋Œ•๊ธ€๋Ÿฌ ์‡ผ์นด๋“œ ๊ฐ€๊ฒฉํ‘œ POP ์ž์œ ๋ชจ์–‘ ์žฌ๋‹จ 100x100mm_Aํ˜•(์‚ฌ๊ฐ/์›ํ˜•/๋ผ์šด๋“œ)_260์žฅ (์ฃผ)์—ฌ๋ฆ„๊ธฐํš'</li><li>'ํœด๋Œ€์šฉ ๋‹ค์ด์–ดํŠธ ํ”ผํŒ… ํ—ˆ๋ฆฌ ์˜ท ์˜๋ฅ˜ ์‹ ์ฒด ์ค„์ž 1.5m ์ด์žก์Šค2'</li><li>'ํŽธ์•ˆํ•ด ๋ฐ์Šคํฌ๋งคํŠธ ์ฑ…์ƒ๋งคํŠธ ํŒจ๋“œ ๊ฐ€์ฃฝ ๋ฎ๊ฐœ ๊น”๊ฐœ ๊น”ํŒ S6030 L90X45_๋ธ”๋ž™ ํŽธ์•ˆํ•œ์˜ค๋Š˜'</li></ul> | | 5.0 | <ul><li>'์นด์‹œ์˜ค ๊ณ„์‚ฐ๊ธฐ MS-20UC ๋ฏธ๋‹ˆ ๊ท€์—ฌ์šด ์ปฌ๋Ÿฌ ์ „์ž๊ณ„์‚ฐ๊ธฐ ๊ณต์‹์Šคํ† ์–ด MS-20UC_ํผํ”Œ ์ฃผ์‹ํšŒ์‚ฌ ํ–‰๋‚จํ†ต์ƒ'</li><li>'[ํŒ์ฝ˜๊ฒŒ์ž„์ฆˆ] ํ”„๋ฆฌ๋ฏธ์—„ ํฌํ† ์นด๋“œ ์Šฌ๋ฆฌ๋ธŒ ํ•˜๋“œ 50๋งค 56x87 ํฌ์•ˆ'</li><li>'ํŽ ๋กœ์šฐ์ฆˆ ๋ฌธ์„œ ์„ธ๋‹จ๊ธฐ P-30C 4x34mm ๊ฝƒ๊ฐ€๋ฃจํ˜• ํŒŒ์‡„๊ธฐ ์„ธ์ ˆ๊ธฐ ํ์ง€ํ•จ 15L ๋ธ”๋ž™ ๋ธ”๋ž™ ๋‘๋ ˆ์ƒต'</li></ul> | | 13.0 | <ul><li>'์—์ด๋“  ์„ธ๊ณ„์ง€๋„ ๊ทน์„ธ์‚ฌ ๋Ÿฌ๊ทธ 100ร—150cm ์‚ฌ๊ณ„์ ˆ- ์•„์ด๋ฐฉ ๋†€์ด๋ฐฉ ํ‚ค์ฆˆ ๋งคํŠธ ์นดํŽ˜ํŠธ ์•„์ด๋ณด๋ฆฌ_100ร—150cm ์ฃผ์‹ํšŒ์‚ฌ ํƒ€๋ธ”๋ผ๋ผ์‚ฌ'</li><li>'์œ ๋Ÿฝ์ง€๋„ ํ•œ๊ธ€์˜๋ฌธ ์ฝ”ํŒ… - ์˜๊ตญ ํ”„๋ž‘์Šค ์—ฌํ–‰ ์„ธ๊ณ„์ „๋„ ํฌ์Šคํ„ฐ ๋Œ€ํ˜•(210x150cm) (์ฃผ)๋‚˜์šฐ๋งต์†Œํ”„ํŠธ'</li><li>'ํ•œ๊ตญ 100๋Œ€ ๋ช…์‚ฐ ์—ฌ๊ถŒ ๋Œ€ํ•œ๋ฏผ๊ตญ ์‚ฐ๋ฆผ์ฒญ ๋ฐฑ๋Œ€๋ช…์‚ฐ ์ •์ƒ์„ ์ˆ˜์ฒฉ ๋“ฑ์‚ฐ์—ฌ๊ถŒ ๊ธฐ๋ก ์—ฌ๊ถŒ+์Šคํƒฌํ”„ ์ถ”์–ต๊ฑฐ๋ฆฌ'</li></ul> | | 11.0 | <ul><li>'ํฌ๋ฆฌ์Šค๋งˆ์Šค ์„ ๋ฌผ ์ปคํŠธ๋Ÿฌ๋ฆฌ ์Šคํ‘ผ ํฌํฌ ์„ธํŠธ 4 ๊ฐœ/6 ๊ฐœ, ์—˜ํฌ ํŠธ๋ฆฌ ์žฅ์‹ ๋””์ €ํŠธ ๊ณผ์ผ ์ปคํ”ผ 01 A ์„ฑ์šด๋ฌผ์‚ฐ'</li><li>'์œ ์–ด์บ”๋“ค ํŒŒํ‹ฐ ์ผ€์ต์ด›๋ถˆ ์ƒ์ผ์ดˆ ๋Œ€์šฉ๋Ÿ‰ ๋ฒจ๋ฅ˜ํŒฉ ์‹ฑ๊ธ€ 100์ž… 01.์‹ฑ๊ธ€ ํ•‘ํฌ ์ฃผ์‹ํšŒ์‚ฌ ์กฐ์•ค์ธํ„ฐ๋‚ด์…”๋„'</li><li>'[ํ…๋ฐ”์ดํ…] ์ œ๊ธฐ(์ƒ‰์ƒ๋žœ๋ค๋ฐœ์†ก) ์ œ๋กœ์ฐฌ์Šค'</li></ul> | | 10.0 | <ul><li>'๋ผ๋ฒจ์ง€ A4๋ผ๋ฒจ์ง€ ์Šคํ‹ฐ์ปค๋ผ๋ฒจ ํˆฌ๋ช… ๋ฐฉ์ˆ˜ ๋ผ๋ฒจ ๋ ˆ์ด์ €์šฉ 1์นธ(์ „์ง€) 20์žฅ ํฐ์ƒ‰๋ฐฉ์ˆ˜(Laser)_8์นธ(2X4) 10์žฅ (์ฃผ)์œ ํผ์ŠคํŠธ'</li><li>'์ข…์ด๋‚˜๋ผ ์ฝ”ํŒ…ํ•„๋ฆ„ A3 100mic 100๋งค ๋Œ€์ง„๊ต์œก ์ฃผ์‹ํšŒ์‚ฌ'</li><li>'๋”๋ธ”์—์ด A4 ๋ณต์‚ฌ์šฉ์ง€ 75g 2000๋งค ์ œ์ด์•ค์—์Šค(J&S)'</li></ul> | | 4.0 | <ul><li>'๋งˆ๊ทธ๋„คํ‹ฑ ์ž์„ ๋ณด๋“œ 29cm x 56cm ์ฃผ๋ฌธ์ œ์ž‘ ๊ทธ๋ ˆ์ด_380x760 ์„ธ์šด์ •๋ฐ€'</li><li>'ํ˜ธ์ด์ง€๋ณด๋“œ LCD์ „์ž๋…ธํŠธ ๋ฉ”๋ชจ๋ณด๋“œ ๋“œ๋กœ์ž‰ํŒจ๋“œ ์Šค๋งˆํŠธ ๋ฉ”๋ชจ์žฅ 8.5์ธ์น˜(์ปฌ๋Ÿฌ๊ธ€์”จ)_ํ•‘ํฌ ํ˜ธ์ด์ง€๋ณด๋“œ(Howeasy Board)'</li><li>'๋…ธ๋ฒ ์ ค ํ™”์ดํŠธ์œ ๋ฆฌ์น ํŒ 1200x800mm ๋Ÿญ์‹œ ๋ฒฝ๊ฑธ์ด ๊ธ€๋ผ์Šค๋ณด๋“œ 1200x800mm ์ผ๋ฐ˜ ์ฃผ์‹ํšŒ์‚ฌ ๋Ÿญ์‹œ๊ธ€๋ผ์Šค'</li></ul> | | 0.0 | <ul><li>'์Šค๋ˆ„ํ”ผ ์ธ๋ฑ์Šค๋…ธํŠธ ๊ทธ๋ ˆ์ด(๋„ํŠธ) ๋ญ‰๋ญ‰๋ฐฉ๊ตฌ'</li><li>'3M ํฌ์ŠคํŠธ์ž‡ 653-20A ๋Œ€์šฉ๋Ÿ‰ํŒฉ ์ผ๋ฐ˜ ์ ์ฐฉ ์ ‘์ฐฉ์šฉ ๋…ธํŠธ 51x38mm ์ •๋น„๊ณตํ†ก'</li><li>'์ž„์‚ฐ๋ถ€ ์†๋ชฉ๋ณดํ˜ธ๋Œ€ ์†๋ชฉ์•„๋Œ€ ๋ธ”๋ž™_S ๋ธ”๋ฃจ๋งˆ์ผ“'</li></ul> | | 14.0 | <ul><li>'๋ฐฑ๊ด‘ ๊ฒ€์€์ƒ‰ ๊ฒ€์ •๋ด‰ํˆฌ ํฐ์ƒ‰๋น„๋‹๋ด‰ํˆฌ ๊ฒ€์ •_6ํ˜ธ[20๋ฆฌํ„ฐ](36x60+14/200๋งค) ๋ฐฑ๊ด‘๋น„๋‹์‚ฐ์—…'</li><li>'๋น„๋‹๋‹ท์ปด ๊ฐ๋Œ€๋ด‰ํˆฌ ์ข…์ด๋ด‰ํˆฌ ์นดํŽ˜ ํฌ๋ผํ”„ํŠธ ๋นตํฌ์žฅ 180x110x350 200๋งค ์ข…์ด์‡ผํ•‘๋ฐฑ/ํ”Œ๋žซ(๋‚ฉ์ž‘๋ˆ)_๋ฐฑ์ƒ‰ ๊ฐ๊ด‘์ง€_๋Œ€/310x125x420/50๋งค ๋น„๋‹๋‹ท์ปด'</li><li>'[์ฟ ๋ฒ ๋ฅด] ๊ฐ์„ฑ ์ธํ…Œ๋ฆฌ์–ด ์—ฝ์„œ, ํŒŒ๋ฆฌ A ๋ฏธ๋‹ˆ ํฌ์Šคํ„ฐ ์‚ฌ์ง„ ์ดฌ์˜ ์†Œํ’ˆ 5.๋กœ๋งˆ_๋กœ๋งˆ 4์žฅ ์ฟ ๋ฒ ๋ฅด(COUVERT)'</li></ul> | | 7.0 | <ul><li>'๋ ˆ๋“œ์Šคํƒฌํ”„ ์ธ๊ฐ ๋„์žฅ ๊ฐ€๋ฒฝ์กฐ๋ ˆ์ด์ € ์‹ญ์žฅ์ƒ ๋  ์•„๊ธฐ ์ด๋ฆ„ ์ง์ธ ๋‹จ์ฒด ๋„์žฅ ๋งŒ๋“ค๊ธฐ ํ•œ๊ธ€๊ณ ์ธ์ฒด ์„ ํƒ 01 - ๊ฐ€๋ฒฝ์กฐ๋ ˆ์ด์ €_์›์•™_ํ•œ์ž์ดˆ์„œ์ฒด ๋ ˆ๋“œ์Šคํƒฌํ”„'</li><li>'์ž๋™ ๋ฒˆํ˜ธ ๋„˜๋ฒ„๋ง ์Šคํƒฌํ”„ ๋งˆํ‚น ๋‚ ์งœ ๊ฐ€๊ฒฉํ‘œ ์ฐ๋Š” ๋„์žฅ ์ˆ˜๋™ 3 ์ž๋ฆฌ ์ˆ˜ ์ž๋™_4 LIN SHUZHEN'</li><li>'์—์ดํ”Œ๋ ‰์Šค ์”ฐ๋ง ์Šคํƒฌํ”„ ๊ธ€๋ฃจ๊ฑด ์‹ค๋ง์™์Šค 11mm ๊ธ€๋ฃจ์™์Šค1๋ฒˆ(๊ธ€๋ฃจ) ๊ธ€๋ฃจ ์™์Šค 34๋ฒˆ(๊ธ€๋ฃจ) ์—์ดํ”Œ๋ ‰์Šค(Aflex)'</li></ul> | | 16.0 | <ul><li>'๋ธ”๋ฃจ์นฉ ์ธํ˜•ํ•„ํ†ต ํด๋ฆฌ์—์Šคํ…Œ๋ฅด ๋Œ€์šฉ๋Ÿ‰ 14์„ธ์ด์ƒ์‚ฌ์šฉ ์ธํ˜•ํ•„ํ†ต(์˜ค๋ฆฌ๋””์ž์ธ) ์—์ด์Šค ๋ฌด์—ญ'</li><li>'๋ชจ๋‚˜๋ฏธ ๋งค์ง ์บก ์ ์ƒ‰ ๋ผ์ธ'</li><li>'๋ชจ๋‚˜๋ฏธ ๋ณด๋“œ๋งˆ์นด ๋ฆฌํ€ด๋“œ ์ƒ์ž‰ํฌ 220 ํ‘ ์ฃผ์‹ํšŒ์‚ฌ ์—์Šค์—์ด์น˜๋ชฐ'</li></ul> | | 15.0 | <ul><li>'ํ”„๋ฆฌ๋ฏธ์—„ ์•…๋ณด ํŒŒ์ผ 10๋งค~60๋งค ๋ฐด๋“œํ™”์ผ ๋ฉ”๋ชจ ๊ฐ€๋Šฅ 40๋งค_๋ธ”๋ฃจ(๋ฎค์ง)_์ถ”๊ฐ€ ๋‹ค๋‹ค๋‹ค๊ธฐ์—…'</li><li>'A4ํŒŒ์ผ ํด๋ฆฝ๋ณด๋“œ A4ํŒŒ์ผ์ฒ  ๊ฒฐ์žฌํŒ ์„ธ๋กœํ˜• ๊ฐ€๋กœํ˜•_๊ทธ๋ฆฐ ์‚ด๋ฆผ ๋งˆ๋…€'</li><li>'[๋‹ค๋‚˜ ์ฝ”ํผ๋ ˆ์ด์…˜] A4 ํŒŒ์ผ ์ฒ  ํŒŒ์ผ์ผ€์ด์Šค ๊ทธ๋ ˆ์ด ๋‹ค๋‚˜ ์ฝ”ํผ๋ ˆ์ด์…˜'</li></ul> | | 9.0 | <ul><li>'์•„์›Œ๋ชจํ‹ฐํ”„ ํฌ์นด๋ฐ”์ธ๋” 6๊ณต ํฌํ† ์นด๋“œ ๋ฐ”์ธ๋” A5 A5_๋ธ”๋ž™_๋ฐ”์ธ๋” ์›”๊ฐ„๋ฌธ๊ตฌ'</li><li>'๋งˆ์ด๋Ÿฌ๋ธŒ ์ดˆ์ŒํŒŒ์•จ๋ฒ” ๊พธ๋ฏธ๊ธฐ ๋ฑ€๋  ์•„๊ธฐ ๊ฐ์ธ ์‚ฌ์ง„์ •๋ฆฌ ์…€ํ”„ํฌํ† ๋ถ ์•จ๋ฒ” ๋‹จํ’ˆ ํฌ๋ฆผ ์•จ๋ฒ” + ๊พธ๋ฏธ๊ธฐ ์„ธํŠธ_๋งˆ์ด๋Ÿฌ๋ธŒ์•จ๋ฒ”: B๊ธ‰ํฌ๋ฆผ / ์ฃผ์ˆ˜์Šคํ‹ฐ์ปค: ์ปฌ๋Ÿฌ_ํ† ๋ผ๋  + ํ”„๋กœํ•„ ์Šคํ‹ฐ์ปค ์ปคํ”Œ๋Ÿฌ์Šค'</li><li>'์•„์›Œ๋ชจํ‹ฐํ”„ ํฌ์นด๋ฐ”์ธ๋” 6๊ณต ํฌํ† ์นด๋“œ ๋ฐ”์ธ๋” A5 A6_์˜ฌ๋ฆฌ๋ธŒ_๋ฐ”์ธ๋” ์›”๊ฐ„๋ฌธ๊ตฌ'</li></ul> | | 12.0 | <ul><li>'๋กค ํŠธ๋ ˆ์‹ฑ์ง€ ๋กค ํŠธ๋ ˆ์ด์‹ฑ์ง€ idem ํ”Œ๋กœํ„ฐ ๋ฐ˜ํˆฌ๋ช…์ข…์ด A1 ํ•˜์ด๋น„์ฆˆ์ฝ”๋ฆฌ์•„'</li><li>'์‹ ํ•œ ์‚ผ์› ํŠธ๋ ˆ์‹ฑ์ง€ A4 A3 80g 85g ํŠธ๋ ˆ์ด์‹ฑ์ง€ ์‚ผ์› A3 100๋งค ๋””ํฌ์Šคํƒ€'</li><li>'๋กค ํŠธ๋ ˆ์‹ฑ์ง€ ๋กค ํŠธ๋ ˆ์ด์‹ฑ์ง€ idem ํ”Œ๋กœํ„ฐ ๋ฐ˜ํˆฌ๋ช…์ข…์ด A3 10. 12์ธ์น˜x50์•ผ๋“œ(ํฐ์ƒ‰) ํ•˜์ด๋น„์ฆˆ์ฝ”๋ฆฌ์•„'</li></ul> | | 3.0 | <ul><li>'์ข…์ด๋‚˜๋ผ ๋น„๋น„๋“œ ๋งˆ๋ธ”๋ง๋ฌผ๊ฐ 12์ƒ‰ (1๊ฐœ) ๋ฐ”์ดํฌ๋น„'</li><li>'๋„ค์˜ค๋””์›€ ์ž์„ ์›ํ˜• ๊ณ ๋ฆฌ ๋ง‰๋Œ€ ์‚ฌ๊ฐ ๋„ค์˜ค๋””๋ฎด ์ดˆ๊ฐ•๋ ฅ์ž์„ 2 x 1mm ์„ ํƒ.4 ๋„ค์˜ค๋””์›€ ์‚ฌ๊ฐ์ž์„_โ˜… ๋ชจ๋“ ์น˜์ˆ˜์˜ ๋‹จ์œ„๋Š” mm ์ž…๋‹ˆ๋‹คโ˜… ์œ ๋งˆ๊ทธ๋„คํŠธ'</li><li>'๋„๋ฃจ์ฝ” S ์ปคํ„ฐ๋‚  10๋งค ์นผ๋‚  ์ปคํ„ฐ์นผ ์‚ฌ๋ฌด์šฉ์นผ S์ปคํ„ฐ๋‚  10์ž… ์—์ด์น˜ํ‹ฐ๋น„ ํŠธ๋ ˆ์ด๋“œ'</li></ul> | | 1.0 | <ul><li>'2025 ์–‘์ง€ ๋‹ค์ด์–ด๋ฆฌ ์œ ์ฆˆ์–ด๋ฆฌ 25A ๋กœ๊ณ  ์ธ์‡„ ์ˆ˜์ฒฉ&ํฌ์ผ“๋‹ค์ด์–ด๋ฆฌ_์ธ์Šคํƒ€์ผ48_๊ทธ๋ ˆ์ด ์ฃผ์‹ํšŒ์‚ฌ ์ œ์ด์—ํ”„์ƒต'</li><li>'2025 ์•„๋ฅด๋””์›€ ๋จผ์Šฌ๋ฆฌ ํ”Œ๋ž˜๋„ˆ ํ™”์ดํŠธ ๋ฐ์ด๋“œ๋ฆผ ์ง€์›จ์ด์ปจํ…์ธ (JIWAY Contents)'</li><li>'ํ™๋ณด์šฉ ์ƒˆํ•ด ๋ฒฝ๊ฑธ์ด ๋‹ฌ๋ ฅ ํŠน๋ณ„2์ ˆ ์ˆซ์žํŒ 70๋ชจ์กฐ 1๋ถ€ ์ œ์ž‘ ์ˆซ์žํŒ ์บ˜๋ฆฐ๋” ์ฃผ๋ฌธ ์ธ์‡„ ๋ฒฝ๊ฑธ์ด๋‹ฌ๋ ฅ_2-1 2์ ˆ์ˆซ์žํŒ70๋ชจ์กฐ_200๋ถ€ ์ œ์ž‘ 1๋ถ€ ๋‹จ๊ฐ€ ์ด๋ฌด๋‚˜๋ผ ์ฃผ์‹ํšŒ์‚ฌ'</li></ul> | | 8.0 | <ul><li>'์‹ ์ผ SINIL ๋ฐ•์Šคํ…Œ์ดํ”„ ๊ฒฝํฌ์žฅ ํˆฌ๋ช… ํƒ๋ฐฐ ํฌ์žฅ OPP ๊ณ ์ ์ฐฉ ํ…Œ์ดํ”„ 80m 40๊ฐœ SINIL ์ค‘ํฌ์žฅ ํˆฌ๋ช…_50M 50๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์‹ ์ผ'</li><li>'3M ์Šค์นด์น˜ ํˆฌ๋ช…์–‘๋ฉดํ…Œ์ดํ”„ ๋ฆฌํ•„ 017R 017D ๋ณธํ’ˆ ์ข‹์€์‚ฌ๋žŒ๋ฌธ๊ตฌ์œ ํ†ต'</li><li>'์šฐ๋ฆผ ๋ฐ•์Šค ํ…Œ์ดํ”„ L3 50M 50๊ฐœ ๊ฒฝํฌ์žฅ ํˆฌ๋ช… OPP ํฌ์žฅ์šฉ ๋Ÿฌ๋ฒ„ํ…Œ์ดํ”„(๊ฒจ์šธ์šฉ/๋ƒ‰๋™์šฉ)_S์‹œ๋ฆฌ์ฆˆ_(๊ฒจ์šธ์šฉ)S1-๋Ÿฌ๋ฒ„(40Mx50๊ฐœ)ํ™ฉ์ƒ‰ ์šฐ๋ฆผ ๊ฐ•์„œ์ง€์‚ฌ'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9643 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh8") # Run inference preds = model("ํƒ€๊ณตํŒ๋‹ท์ปด ์„ธ๊ณ„์ง€๋„ ๋Œ€ํ˜• ์›”๋“œ๋งต ์„ธ๊ณ„์ง€๋„03_600x900 (์ฃผ)์˜ค๋นŒ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 11.1176 | 26 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0075 | 1 | 0.4622 | - | | 0.3759 | 50 | 0.3276 | - | | 0.7519 | 100 | 0.2741 | - | | 1.1278 | 150 | 0.167 | - | | 1.5038 | 200 | 0.082 | - | | 1.8797 | 250 | 0.0368 | - | | 2.2556 | 300 | 0.0406 | - | | 2.6316 | 350 | 0.0331 | - | | 3.0075 | 400 | 0.0282 | - | | 3.3835 | 450 | 0.0144 | - | | 3.7594 | 500 | 0.005 | - | | 4.1353 | 550 | 0.0036 | - | | 4.5113 | 600 | 0.0036 | - | | 4.8872 | 650 | 0.0005 | - | | 5.2632 | 700 | 0.0003 | - | | 5.6391 | 750 | 0.0003 | - | | 6.0150 | 800 | 0.0002 | - | | 6.3910 | 850 | 0.0003 | - | | 6.7669 | 900 | 0.0002 | - | | 7.1429 | 950 | 0.0002 | - | | 7.5188 | 1000 | 0.0001 | - | | 7.8947 | 1050 | 0.0001 | - | | 8.2707 | 1100 | 0.0001 | - | | 8.6466 | 1150 | 0.0001 | - | | 9.0226 | 1200 | 0.0001 | - | | 9.3985 | 1250 | 0.0001 | - | | 9.7744 | 1300 | 0.0001 | - | | 10.1504 | 1350 | 0.0001 | - | | 10.5263 | 1400 | 0.0001 | - | | 10.9023 | 1450 | 0.0001 | - | | 11.2782 | 1500 | 0.0001 | - | | 11.6541 | 1550 | 0.0001 | - | | 12.0301 | 1600 | 0.0001 | - | | 12.4060 | 1650 | 0.0001 | - | | 12.7820 | 1700 | 0.0001 | - | | 13.1579 | 1750 | 0.0001 | - | | 13.5338 | 1800 | 0.0001 | - | | 13.9098 | 1850 | 0.0001 | - | | 14.2857 | 1900 | 0.0001 | - | | 14.6617 | 1950 | 0.0001 | - | | 15.0376 | 2000 | 0.0001 | - | | 15.4135 | 2050 | 0.0001 | - | | 15.7895 | 2100 | 0.0001 | - | | 16.1654 | 2150 | 0.0001 | - | | 16.5414 | 2200 | 0.0001 | - | | 16.9173 | 2250 | 0.0001 | - | | 17.2932 | 2300 | 0.0001 | - | | 17.6692 | 2350 | 0.0001 | - | | 18.0451 | 2400 | 0.0001 | - | | 18.4211 | 2450 | 0.0001 | - | | 18.7970 | 2500 | 0.0001 | - | | 19.1729 | 2550 | 0.0001 | - | | 19.5489 | 2600 | 0.0001 | - | | 19.9248 | 2650 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
olgagasowska/mbart-large-50-many-to-many-mmt-iva_mt-en-pl
olgagasowska
2024-11-20T15:18:44Z
115
0
transformers
[ "transformers", "tensorboard", "safetensors", "mbart", "text2text-generation", "generated_from_trainer", "en", "dataset:iva_mt_wslot", "base_model:facebook/mbart-large-50-many-to-many-mmt", "base_model:finetune:facebook/mbart-large-50-many-to-many-mmt", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-20T15:14:16Z
--- library_name: transformers base_model: facebook/mbart-large-50-many-to-many-mmt tags: - generated_from_trainer datasets: - iva_mt_wslot metrics: - bleu model-index: - name: iva_mt results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: iva_mt_wslot type: iva_mt_wslot config: en-pl split: validation args: en-pl metrics: - name: Bleu type: bleu value: 8.2225 language: - en --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iva_mt This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the iva_mt_wslot dataset. It achieves the following results on the evaluation set: - Loss: 2.4663 - Bleu: 8.2225 - Gen Len: 14.5833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:------:|:----:|:---------------:|:------:|:-------:| | No log | 0.6154 | 1 | 2.4663 | 8.2225 | 14.5833 | | No log | 1.8462 | 3 | 2.4663 | 8.2225 | 14.5833 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mav23/pythia-1.4b-GGUF
mav23
2024-11-20T15:15:38Z
386
0
null
[ "gguf", "pytorch", "causal-lm", "pythia", "en", "dataset:EleutherAI/the_pile", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T15:03:12Z
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-1.4B ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | โ€” | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | โ€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | โ€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. โ€œEquivalentโ€ models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-1.4B for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-1.4B as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-1.4B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-1.4B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better โ€œfollowโ€ human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most โ€œaccurateโ€ text. Never rely on Pythia-1.4B to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-1.4B may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-1.4B. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-1.4B. ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA โ€“ OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeโ€”Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1ร— their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
outlookAi/MpcozlSWhy
outlookAi
2024-11-20T15:11:55Z
329
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-20T14:38:18Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: cinematicmovietone --- # Mpcozlswhy <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `cinematicmovietone` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('outlookAi/MpcozlSWhy', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
mini1013/master_cate_lh7
mini1013
2024-11-20T15:09:40Z
100
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:09:17Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: SD ๋ฐ”์ด์˜ค ์—์Šค๋”” ์ฝ”๋“œํ”„๋ฆฌ ๋‹น๋‡จ๊ฒ€์‚ฌ์ง€ 4๋ฐ•์Šค 200๋งค (์œ ํšจ๊ธฐ๊ฐ„ 2025๋…„ 03์›”) ์ฝ”๋“œํ”„๋ฆฌ 200๋งค+์•Œ์ฝœ์†œ 100๋งค ์— ์—์Šค๋ฉ”๋””์นผ - text: ์•„ํ์ฒต ์†Œํ”„ํŠธํด๋ฆญ์Šค ์ฑ„ํ˜ˆ๊ธฐ+์ฑ„ํ˜ˆ์นจ 25๊ฐœ ์•กํ‹ฐ๋ธŒ ํผํฌ๋งˆ ์ธ์Šคํ„ดํŠธ ๊ฐ€์ด๋“œ ๋ž€์…‹ ์ฑ„ํ˜ˆ๋ฐ”๋Š˜ ์ฃผ์‹ํšŒ์‚ฌ ๋”์—์Šค์ง€์—  - text: ๋…น์‹ญ์ž ํ˜ˆ๋‹น์‹œํ—˜์ง€ ๋‹น๋‡จ ์‹œํ—˜์ง€ ๊ทธ๋ฆฐ๋‹ฅํ„ฐ 50๋งค ์‹œํ—˜์ง€100๋งค+์ฒดํ˜ˆ์นจ100๊ฐœ ์ž์žฌ์Šคํ† ์–ด - text: HL ์ง€๋‹ฅํ„ฐ ํ˜ˆ๋‹น์‹œํ—˜์ง€ 100๋งค /๋‹น๋‡จ์ธก์ • ๊ฒ€์‚ฌ์ง€ ์ŠคํŠธ๋ฆฝ 1_์ง€๋‹ฅํ„ฐ ํ˜ˆ๋‹น์‹œํ—˜์ง€ 100๋งค+์•Œ์ฝœ์†œ100๋งค ํ—ฌ์Šค๋ผeํ”„ - text: ๋น„๋”” ์šธํŠธ๋ผํŒŒ์ธ ์ธ์А๋ฆฐ ์ฃผ์‚ฌ๊ธฐ 1๋ฐ•์Šค 100๊ฐœ 328821[31G 8mm 0.5ml]BD ํŽœ๋‹ˆ๋“ค ์ฃผ์‚ฌ๋ฐ”๋Š˜ ์šธํŠธ๋ผํŒŒ์ธ2 BD ์ธ์А๋ฆฐ 31G 6mm 0.5ml 1๋ฐ•์Šค(324901) ๋”๋ฉ”๋””์นผ์ƒต inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9786747905559787 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | <ul><li>'ํ”„๋ฆฌ์Šคํƒ€์ผ ๋ฆฌ๋ธŒ๋ ˆ ๋ฌด์ฑ„ํ˜ˆ ์—ฐ์†ํ˜ˆ๋‹น์ธก์ •๊ธฐ(24๋…„1์›”)์–ผ๋ผ์ด๋ธŒํŒจ์น˜1๋งค ๊ฑฐ๋ž˜๋ช…์„ธ์„œ ๊ด‘๋ช…ํ—ฌ์Šค์ผ€์–ด'</li><li>'SD ์ฝ”๋“œํ”„๋ฆฌ ํ˜ˆ๋‹น์ธก์ •๊ธฐ(์ธก์ •๊ธฐ+์ฑ„ํ˜ˆ๊ธฐ+์นจ10๋งค+ํŒŒ์šฐ์น˜)P ์Šคํ† ์–ด์•ŒํŒŒ'</li><li>'์˜ฌ๋ฉ”๋””์ฟ ์Šค ๊ธ€๋ฃจ์ฝ”๋‹ฅํ„ฐ ํƒ‘ ํ˜ˆ๋‹น๊ณ„ AGM-4100+ํŒŒ์šฐ์น˜+์ฑ„ํ˜ˆ๊ธฐ+์ฑ„ํ˜ˆ์นจ 10๊ฐœ ์— ์—์Šค๋ฉ”๋””์นผ'</li></ul> | | 2.0 | <ul><li>'์—์Šค๋”” SD ์ฝ”๋“œํ”„๋ฆฌ ์ธก์ •์ง€|๊ฒ€์‚ฌ์ง€|์‹œํ—˜์ง€ 100๋งค(25๋…„ 2์›”) ๋”๋ฉ”๋””์นผ์ƒต'</li><li>'๋ฐ”๋กœ์žฐ ๋‹น๋‡จ๊ฒ€์‚ฌ ํ˜ˆ๋‹น์‹œํ—˜์ง€ 100๋งค(50๋งคx2ํŒฉ) ์‚ฌ์šฉ๊ธฐํ•œ 25๋…„ 3์›” MinSellAmount ์œ ๋‹ˆํ”„๋ผ์ด์Šค'</li><li>'์˜ตํ‹ฐ์—„ ํ”„๋ฆฌ์Šคํƒ€์ผ ์ผ€ํ†ค์‹œํ—˜์ง€1๋ฐ•์Šค10๋งค ๊ฒ€์‚ฌ์ง€ ํ˜ˆ์ค‘ (24๋…„ 8์›”) ๋ฉ”๋””ํŠธ๋ฆฌ'</li></ul> | | 0.0 | <ul><li>'๋น„๋”” ์šธํŠธ๋ผํŒŒ์ธ ์ธ์А๋ฆฐ ์ฃผ์‚ฌ๊ธฐ 1๋ฐ•์Šค 100์ž… 324901 [31G 6mm 0.5ml] BD ํŽœ๋‹ˆ๋“ค ์ฃผ์‚ฌ๋ฐ”๋Š˜ ์šธํŠธ๋ผํŒŒ์ธ2 BD ์ธ์А๋ฆฐ 31G 8mm 3/10ml(0.5๋‹จ์œ„) 1๋ฐ•์Šค(320440) ๋”๋ฉ”๋””์นผ์ƒต'</li><li>'BD ๋น„๋”” ์šธํŠธ๋ผํŒŒ์ธ ์ธ์А๋ฆฐ ์ฃผ์‚ฌ๊ธฐ ์‹œ๋ฆฐ์ง€ 31G 6mm 1ml 324903 100์ž… ์ฃผ์‹ํšŒ์‚ฌ ๋”์—์Šค์ง€์— '</li><li>'์ •๋ฆผ ๋ฉธ๊ท  ์ผํšŒ์šฉ ์ฃผ์‚ฌ๊ธฐ 3cc 23g 25mm 100๊ฐœ์ž… ๋ฉธ๊ท ์ฃผ์‚ฌ๊ธฐ 10cc 18G 38mm(100ea/pck) (์ฃผ)์ผ€์ด๋””์ƒ์‚ฌ'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9787 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh7") # Run inference preds = model("๋…น์‹ญ์ž ํ˜ˆ๋‹น์‹œํ—˜์ง€ ๋‹น๋‡จ ์‹œํ—˜์ง€ ๊ทธ๋ฆฐ๋‹ฅํ„ฐ 50๋งค ์‹œํ—˜์ง€100๋งค+์ฒดํ˜ˆ์นจ100๊ฐœ ์ž์žฌ์Šคํ† ์–ด") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 9.62 | 21 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0417 | 1 | 0.4565 | - | | 2.0833 | 50 | 0.1836 | - | | 4.1667 | 100 | 0.1645 | - | | 6.25 | 150 | 0.0004 | - | | 8.3333 | 200 | 0.0001 | - | | 10.4167 | 250 | 0.0001 | - | | 12.5 | 300 | 0.0 | - | | 14.5833 | 350 | 0.0 | - | | 16.6667 | 400 | 0.0 | - | | 18.75 | 450 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mini1013/master_cate_lh6
mini1013
2024-11-20T15:06:41Z
212
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:06:18Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์„ ์ธ์žฅ ์†Œํ”„ํŠธ๋ Œ์ฆˆ ๋ Œ์ฆˆ์„ธ์ฒ™๊ธฐ ์ˆ˜๋™ ์…€ํ”„ ์„ธ์ฒ™ ํ•„์ˆ˜์„ ํƒ_ํ•‘ํฌ ์€์ด์—๋ฒค์—์…€ - text: '[๋ฉ•๋ฆฌ๋“ฌ]๋ฉ”๊ตฌ๋ฆฌ์ฆ˜/๋ฉ•๋ฆฌ๋“ฌ ์•„์ด๋งˆ์Šคํฌ ์ˆ˜๋ฉด์•ˆ๋Œ€ 12์ž… 5.์ž˜ ์ต์€ ์œ ์žํ–ฅ 12P ๋กฏ๋ฐ์•„์ด๋ชฐ' - text: ๊ต์ฒด์šฉ ์ผ€์ด์Šค ์†Œํ”„ํŠธ ์ง‘๊ฒŒ ๊ฑฐ์šธ ์ฝ˜ํ…ํŠธ ์„ธํŠธ ๋ธ”๋ฃจ ์Šˆ๊ฐ€๋žœ๋“œ - text: ๋ณด์•„๋ฅด ์•„์ด์›Œ์‹œ ์ดˆ์ŒํŒŒ ์•ˆ๊ฒฝ ๋ Œ์ฆˆ์„ธ์ฒ™๊ธฐ ๋ˆˆ์—๋ณด์ด์ง€ ์•Š๋Š” ๊ฐ์ข… ์„ธ๊ท  99.7% ์™„๋ฒฝ์„ธ์ฒ™ ํ™”์ดํŠธ U0001 ์˜ค์•„ ์ฃผ์‹ํšŒ์‚ฌ - text: ์•ˆ๋Œ€ ์•ผ์˜น์ด ์ฐœ์งˆ 2์ข… ๋ˆˆ์ฐœ์งˆ ์—ฌํ–‰ ์ˆ˜๋ฉด ์บ๋ฆญํ„ฐ ๋ธ”๋ž™ ์— ํฌ์—˜ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9615384615384616 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 3.0 | <ul><li>'๊ตฟ๋‚˜์ž‡ ์˜จ์—ด์•ˆ๋Œ€ ์ˆ˜๋ฉด์•ˆ๋Œ€ ๋ˆˆ์ฐœ์งˆ ๋ˆˆ์ฐœ์งˆ๊ธฐ ๋ˆˆ์ฐœ์งˆํŒฉ MinSellAmount ์˜ค์•„์›”๋“œ'</li><li>'[๋Œ€๊ตฌ๋ฐฑํ™”์ ] [๋ˆ„๋ฆฌ์•„์ด]์•ˆ๊ตฌ๊ฑด์กฐ์ฆ ์น˜๋ฃŒ์˜๋ฃŒ๊ธฐ๊ธฐ ๋ˆ„๋ฆฌ์•„์ด 5800 (์œ„์ƒ์šฉ์‹œํŠธ์ง€ 1๋ฐ•์Šค ) ๋ˆ„๋ฆฌ์•„์ด 5800 ๋Œ€๊ตฌ๋ฐฑํ™”์ '</li><li>'๋™๊ตญ์ œ์•ฝ ๊ตฟ์ž  ์ŠคํŒ€์•ˆ๋Œ€ 3๋ฐ•์Šค ์ˆ˜๋ฉด ์˜จ์—ด์•ˆ๋Œ€ (๋ฌดํ–ฅ/์นด๋ชจ๋งˆ์ผํ–ฅ ์„ ํƒ) 1_๋ฌดํ–ฅ 3๋ฐ•์Šค_AA ๋™๊ตญ์ œ์•ฝ_๋ณธ์‚ฌ์ง์˜'</li></ul> | | 0.0 | <ul><li>'๋ Œ์ฆˆ์ง‘๊ฒŒ ๋ Œ์ฆˆ ๋„ฃ๋Š” ์ง‘๊ฒŒ ๋ผ๋Š” ๋„๊ตฌ ํก์ฐฉ๋ด‰ ์†Œํ”„ํŠธ ๋ Œ์ฆˆ์ง‘๊ฒŒ(ํ•‘ํฌ) ์ฌ๋”๋”œ'</li><li>'๋ฉ”๋ฃจ๋ฃจ ์›๋ฐ์ด ์†Œํ”„ํŠธ๋ Œ์ฆˆ ์ง‘๊ฒŒ ์ฐฉ์šฉ ๋ถ„๋ฆฌ ๊ธฐ๊ตฌ 1์„ธํŠธ MinSellAmount ์ฒด๋ฆฌํŒ์Šค'</li><li>'์†Œํ”„ํŠธ ํ†ต ์ผ€์ด์Šค ๋นผ๋Š”๋„๊ตฌ ์ ‘์‹œ ์šฉํ’ˆ ํก์ฐฉ๋ด‰ ๋ฝ๋ฝ์ด ๋ณด๊ด€ํ†ต ํ•˜๋“œ ๋ Œ์ฆˆํ†ต(๋ธ”๋ฃจ) ๊ธฐ์˜๋‹คํฌ์ƒต'</li></ul> | | 2.0 | <ul><li>'์ดˆ์ŒํŒŒ ๋ณ€ํ™˜์žฅ์น˜ ์ง„๋™๊ธฐ ์‹๊ธฐ ์„ธ์ฒ™๊ธฐ ์ง„๋™ํŒ ์ƒ์„ฑ๊ธฐ ์ดˆ์ŒํŒŒ๋ฐœ์ƒ๊ธฐ ๋ณ€ํ™˜๊ธฐ D. 20-40K1800W (๋น„๊ณ  ์ฃผํŒŒ์ˆ˜) ๋ฉ”ํƒ€๋ชฐ'</li><li>'์ƒˆํ•œ ์ดˆ์ŒํŒŒ์„ธ์ •๊ธฐ SH-1050 / 28kHz / 1.2L / ์‹ ์ œํ’ˆ ์ฃผ์‹ํšŒ์‚ฌ ์ „์ž์ฝ”๋ฆฌ์•„'</li><li>'์ƒˆํ•œ ๋””์ง€ํ„ธ ์ดˆ์ŒํŒŒ ์„ธ์ฒ™๊ธฐ ์„ธ์ •๊ธฐ SH-1050D ์•ˆ๊ฒฝ ๋ Œ์ฆˆ ๊ท€๊ธˆ์† ์„ธ์ฒ™๊ธฐ ์„œ์ง„ํ•˜์ดํ…'</li></ul> | | 1.0 | <ul><li>'ํœด๋จผ๋ฐ”์ด์˜ค ์‹์—ผ์ˆ˜ ์ค‘์™ธ์ œ์•ฝ ์…€๋ผ์ธ ์‹์—ผ์ˆ˜ 370ml 20๊ฐœ, ๋“œ๋ฆผ ํ•˜๋“œ ๋ Œ์ฆˆ์šฉ ์ƒ๋ฆฌ ์‹์—ผ์ˆ˜ ๊ฐ€์ด์•„์ฝ”๋ฆฌ์•„ ํœด๋จผ๋ฐ”์ด์˜ค ์‹์—ผ์ˆ˜ 500ml 20๊ฐœ ๊ฐ€์ด์•„์ฝ”๋ฆฌ์•„(Gaia Korea)'</li><li>'๋ฆฌ๋‰ด ์„ผ์„œํ‹ฐ๋ธŒ 355ml ์”จ์ฑ„๋„์•ˆ๊ฒฝ์ฒด์ธํƒœ๋ฐฑ์ '</li><li>'๋ฐ”์Šˆ๋กฌ ๋ฐ”์ด์˜คํŠธ๋ฃจ 300ml ์œ ์ƒ์ '</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9615 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh6") # Run inference preds = model("๊ต์ฒด์šฉ ์ผ€์ด์Šค ์†Œํ”„ํŠธ ์ง‘๊ฒŒ ๊ฑฐ์šธ ์ฝ˜ํ…ํŠธ ์„ธํŠธ ๋ธ”๋ฃจ ์Šˆ๊ฐ€๋žœ๋“œ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 9.705 | 19 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0312 | 1 | 0.4002 | - | | 1.5625 | 50 | 0.064 | - | | 3.125 | 100 | 0.0021 | - | | 4.6875 | 150 | 0.0004 | - | | 6.25 | 200 | 0.0001 | - | | 7.8125 | 250 | 0.0001 | - | | 9.375 | 300 | 0.0 | - | | 10.9375 | 350 | 0.0 | - | | 12.5 | 400 | 0.0 | - | | 14.0625 | 450 | 0.0 | - | | 15.625 | 500 | 0.0 | - | | 17.1875 | 550 | 0.0 | - | | 18.75 | 600 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mini1013/master_cate_lh5
mini1013
2024-11-20T15:03:34Z
102
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:03:10Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ํ•œ์–‘ ์ถฉ์ „์‹ ์˜จ์ˆ˜ ์ฐœ์งˆ๊ธฐ ์˜จ์—ด BEST ๋ฒจํŠธํ˜• ์ „๊ธฐ ์ฐœ์งˆํŒฉ ๋ฐฐ ํ—ˆ๋ฆฌ ๋ชฉ ์–ด๊นจ ๋ณต๋Œ€ ํ•ซํŒฉ ๋ฒจํŠธํ˜•_๋ณด๋ผ์ƒ‰ ๊ตฌ๋ฆ„๋ชจ์–‘ ์ฃผ์‹ํšŒ์‚ฌ ์›์‚ผ๋ฉ”๋”” - text: '์ถฉ์ „์‹ ์˜จ์ˆ˜ ์ฐœ์งˆ๊ธฐ ์˜จ์—ด ์ „๊ธฐ ์ฐœ์งˆํŒฉ IVB-D1000 ํ•‘ํฌ ' - text: ๋ฉ”์ด์Šค ๋ณด์˜จ ๋ฌผ์ฃผ๋จธ๋‹ˆ ์ฐœ์งˆํŒฉ ์˜จ์—ด ํ—ˆ๋ฆฌ ๋ฐฐ ๋ณต๋ถ€ ์˜จ์ˆ˜ ์˜จ์ฐœ์งˆ ํ•ซํŒฉ ๋ณด์˜จ์ฃผ๋จธ๋‹ˆ 2L ๋ณด์˜จ๋ฌผ์ฃผ๋จธ๋‹ˆ_1L ๋ธŒ๋ผ์šด ๋ฉ”์ด์Šค์ฝ”๋ฆฌ์•„ - text: ์Šˆ์Šˆ์—”์ ค ์—ฐ๋‘ ํŒฅ ์ฐœ์งˆํŒฉ ํ•ซํŒฉ ์ฃผ๋จธ๋‹ˆ ๋ถ€๋ชจ๋‹˜ ์„ ๋ฌผ 1_์„ ํƒ7 ๊ฝƒํŒฅ์ฐœ์งˆํŒฉ ์Šˆ์Šˆ์—”์ ค123 - text: ์˜จ๊ฐํ…Œ๋ผํ”ผ ์˜จ์—ด ๋ชฉ ๋งˆ์Šคํฌ 5๋งค x 5๊ฐœ / ์ปจ๋””์…˜ ์ผ€์–ด 1.์˜จ๊ฐํ…Œ๋ผํ”ผ ์˜จ์—ด ๋ชฉ ๋งˆ์Šคํฌ 5๋งค์ž… x 5๊ฐœ ๋ผ์ด์˜จ์ฝ”๋ฆฌ์•„ ์ฃผ์‹ํšŒ์‚ฌ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9710382513661202 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | <ul><li>'ํŒŒ์‰ฌ ๋…์ผ ๋ณด์˜จ ๋ฌผ์ฃผ๋จธ๋‹ˆ ๋…ธ์ปค๋ฒ„ ๊ธฐ๋ณธํ˜• ์ปค๋ฒ„ ์ฒดํฌ ํ•‘ํฌ๋„ค์ด๋น„ ์ฃผ์‹ํšŒ์‚ฌ ํ•˜์ด์œ ๋กœ'</li><li>'ํŒŒ์‰ฌ ๋…์ผ ๋ณด์˜จ ๋ฌผ์ฃผ๋จธ๋‹ˆ ๋…ธ์ปค๋ฒ„ ๊ธฐ๋ณธํ˜• 3.๋…ธ์ปค๋ฒ„ ๊ธฐ๋ณธํ˜• ๋ ˆ๋“œ ์ฃผ์‹ํšŒ์‚ฌ ํ•˜์ด์œ ๋กœ'</li><li>'๊ผผ๋ ์•„ ๊ตญ์‚ฐ ํ”„๋ฆฌ๋ฏธ์—„ ์˜จ์—ด ํ™ฉํ†  ์ˆœ๋ฉด ๋ƒ‰ ์˜จ ์–ด๊นจ ์ฐœ์งˆ๊ธฐ ์ฐœ์งˆํŒฉ ๋ชฉ ๋“ฑ ์ฐœ์งˆ ์ฟจ๋งคํŠธ ํ—ˆ๋ฆฌ์ฐœ์งˆ๊ธฐ(๊ทธ๋ ˆ์ด) BH์Šคํ† ์–ด'</li></ul> | | 0.0 | <ul><li>'ํ•œ์–‘ ์˜จ์ˆ˜์ฐœ์งˆ๊ธฐ ๋ฐํฌ ํŒŒ์šฐ์น˜ ํšŒ์ƒ‰_SET ๋ฐํฌํŒŒ์šฐ์น˜+๋ณต๋Œ€ ํ•œ์–‘์˜๋ฃŒ๊ธฐ'</li><li>'ํ•œ์–‘ ์˜จ์ˆ˜์ฐœ์งˆ๊ธฐ ๋ฐํฌ ํŒŒ์šฐ์น˜ ๋ธ”๋ž™_๋ฐํฌ ๋ฐœ์ฐœ์งˆ๊ธฐ ํ•œ์–‘์˜๋ฃŒ๊ธฐ'</li><li>'๊ฒŒ๋ฅด๋งˆ๋Š„ ์ „๊ธฐ์ฐœ์งˆ๊ธฐ ๋œธ์งˆ๊ธฐ ์ฐœ์งˆ๊ธฐ ์ฐœ์งˆํŒฉ ์ „๊ธฐ๋ฉ”ํŠธ ํ—ˆ๋ฆฌ ๋ฐฐ ๋ฌด๋ฆŽ ์ฐœ์งˆ MinSellAmount ์Šค๋งˆ์ผ๋ฐฐ์†ก'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9710 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh5") # Run inference preds = model("์ถฉ์ „์‹ ์˜จ์ˆ˜ ์ฐœ์งˆ๊ธฐ ์˜จ์—ด ์ „๊ธฐ ์ฐœ์งˆํŒฉ IVB-D1000 ํ•‘ํฌ ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 4 | 10.73 | 20 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0625 | 1 | 0.3748 | - | | 3.125 | 50 | 0.0002 | - | | 6.25 | 100 | 0.0 | - | | 9.375 | 150 | 0.0 | - | | 12.5 | 200 | 0.0 | - | | 15.625 | 250 | 0.0 | - | | 18.75 | 300 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mini1013/master_cate_lh4
mini1013
2024-11-20T15:01:58Z
220
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T15:01:35Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ๋™์•„์ œ์•ฝ ๊ฐ€๊ทธ๋ฆฐ ์˜ค๋ฆฌ์ง€๋„ ๊ฐ€๊ธ€ 750ml (1๊ฐœ) ๊ฐ€๊ทธ๋ฆฐ ์˜ค๋ฆฌ์ง€๋„ 820ml L์Šคํ† ์–ด - text: ์Šค์ผˆ๋ง ์ž…๋ƒ„์ƒˆ ์Šค์ผ€์ผ๋Ÿฌ ์น˜์„์ œ๊ฑฐ๊ธฐ ๊ตฌ๊ฐ•์ฒญ๊ฒฐ๊ธฐ ์น˜์•„ ๋ณ„์ด ๋น›๋‚˜๋Š” ํ•˜๋Š˜ ๋ณด๋ผ์ƒ‰ ์‚ฌ์น˜(sachi) - text: ํ……๋ธŒ๋Ÿฌ์‰ฌ 4๊ฐœ์„ธํŠธ ํ˜€ํด๋ฆฌ๋„ˆ ์ž…๋ƒ„์ƒˆ์ œ๊ฑฐ ํ˜€๋ฐฑํƒœ์ œ๊ฑฐ ํ˜€์นซ์†” i MinSellAmount ํŽ€ํ‚ค๋ณด์ด - text: '[๊ฐค๋Ÿฌ๋ฆฌ์•„] ํด๋ฆฌ๋ดํŠธ ์˜์น˜ ๋ถ€์ฐฉ์žฌ ๋ฏผํŠธํ–ฅ 70g x5๊ฐœ ํ•œํ™”๊ฐค๋Ÿฌ๋ฆฌ์•„(์ฃผ)' - text: ์• ํ„ฐ๋ฏธ ์น˜์•ฝ ํ”„๋กœํด๋ฆฌ์Šค 200g ์ž…๋ƒ„์ƒˆ ์ œ๊ฑฐ ๋ฏธ๋ฐฑ ์ฝœ๋งˆ ํ”Œ๋ ‰์Šค์„ธ๋ธ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9477272727272728 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 10 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 9.0 | <ul><li>'๋กค๋ฆฌํŒ ์—๋””์Šจ ํ•ญ๊ท  ํ˜€ํด๋ฆฌ๋„ˆ 4์ข… ํผํ”Œ ํŒŒ๋ž‘์ƒˆ๋ž‘'</li><li>'ํ……๋ธŒ๋Ÿฌ์‰ฌ ํ˜€ํด๋ฆฌ๋„ˆ ์ž…๋ƒ„์ƒˆ์ œ๊ฑฐ ๋ฐฑํƒœ์ œ๊ฑฐ ํ˜€์นซ์†” MinSellAmount ํŽ€ํ‚ค๋ณด์ด'</li><li>'[์ƒํ™œ๋„๊ฐ] ํ˜€ํด๋ฆฌ๋„ˆ ์„ธํŠธ ๊ทธ๋ฆฐ2๊ฐœ+๋„ค์ด๋น„2๊ฐœ ์ฃผ์‹ํšŒ์‚ฌ ์ƒํ™œ๋„๊ฐ'</li></ul> | | 2.0 | <ul><li>'์…€ํ”„ ๊ฐ€์ •์šฉ ์Šคํ…Œ์ธ๋ ˆ์Šค ์Šค์ผ€์ผ๋ง ์น˜์„์ œ๊ฑฐ๊ธฐ ์ฒญ์†Œ ๋„๊ตฌ 304 ํ•‘ํฌ 6์ข… ์„ธํŠธ ์ฃผ์‹ํšŒ์‚ฌ ํด๋ผ์šฐ๋“œ'</li><li>'๋„๊ตฌ ์น˜๊ฒฝ ์ œ๊ฑฐ ํŽธ๋„์„ ์ œ๊ฑฐ๊ธฐ ์ž…๋˜ฅ ํŽธ๋„๊ฒฐ์„ ๋ชฉ๋˜ฅ ์…€ํ”„ ๋ฐœ๊ด‘ ๊ท€๊ฑธ์ดx์ˆ˜๋‚ฉํ•จ ๋กœ์–„์‚ฐํ‹ฐ์•„๊ณ '</li><li>'์†Œํ˜• ๊ตฌ์ทจ ์ธก์ •๊ธฐ ํ…Œ์ŠคํŠธ๊ธฐ ํœด๋Œ€์šฉ ๋ƒ„์ƒˆ ์•…์ทจ ํ˜ธํก ๊ตฌ๊ฐ• ์ž…๋ƒ„์ƒˆ์ธก์ •๊ธฐ ์ž๊ฐ€์ง„๋‹จ ์ž๊ฐ€ ๊ฐ€์Šค ํ‘œ์ค€๋ชจ๋ธ _ ๊ฒ€์ • ํ–‰๋ณต์ดˆ์ง€'</li></ul> | | 0.0 | <ul><li>'์กด์Šจ์•ค์กด์Šจ ๊ตฌ๊ฐ•์ฒญ๊ฒฐ ๋ฆฌ์Šคํ…Œ๋ฆฐ ์ฟจ๋ฏผํŠธ 250ml ํ›„๋ ˆ์‰ฌ๋ฒ„์ŠคํŠธ 250ml - 1๊ฐœ ๋””์•„ํฌ์ฝ”๋ฆฌ์•„'</li><li>'์ผํšŒ์šฉ ์—ฌํ–‰์šฉ ๊ฐ€๊ทธ๋ฆฐ ๋ผ์ž„10g 1๊ฐœ ํœด๋Œ€์šฉ ์˜ค๋ฆฌ์ง€๋„ ๊ฐ€๊ธ€์Šคํ‹ฑ ์˜ค๋ฆฌ์ง€๋„ 1๊ฐœ ์˜ˆ๊ทธ๋ฆฐ์ŠคํŽ˜์ด์Šค'</li><li>'๊ฐ€๊ทธ๋ฆฐ ์ œ๋กœ 1200ML ์“ฑ1day๋ฐฐ์†ก'</li></ul> | | 4.0 | <ul><li>'ํˆฌ์Šค๋…ธํŠธ ํ™”์ดํŠธ๋‹๊ฒ” ํ•˜๋ฃจ 2๋ฒˆ 30๋ถ„ ํˆฌ์ž๋กœ ๋ˆ„๋Ÿฐ์ด๋ฅผ ํ•˜์–—๊ฒŒ ํˆฌ์Šค๋…ธํŠธ ํ™”์ดํŠธ๋‹๊ฒ” 2์ฃผ๋ถ„ ์ฃผ์‹ํšŒ์‚ฌ ๋„ค์ด์ฒ˜ํด'</li><li>'๋ฃจ์น˜ํŽ ๋กœ ๋ฏธ์Šคํ‹ฑํฌ๋ ˆ์ŠคํŠธ ์น˜์•ฝ 180g 5๊ฐœ ์›๋ผ์ด๋ธŒํŒฉํ† ๋ฆฌ'</li><li>'๋Œ€ํ˜• ์น˜์•„๋ชจํ˜• ์น˜์•„ ๋ชจ๋ธ ๊ตฌ์กฐ ์ธ์ฒด ๊ตฌ๊ฐ• ์น˜๊ณผ C. ๊ตฌ๊ฐ• 2๋ฐฐ ํ™•๋Œ€(ํ•˜์•„ ์ œ๊ฑฐ ๊ฐ€๋Šฅ) ๋งˆ์ผ“ ์ŠคํŽ˜์ด์Šคํ† ๋ผ'</li></ul> | | 8.0 | <ul><li>'๋ฏธ์†Œ๋ดํƒˆ ๊ต์ •์žฅ์น˜๋ณด๊ด€ํ•จ ๊ต์ •๊ธฐ์ผ€์ด์Šค ๊ต์ •๊ธฐํ†ต ๊ต์ •๊ธฐ๋ณด๊ด€ํ•จ-์˜๋กœ์šฐ (์ฃผ)ํ†กํ†ก๊ทธ๋ฆฐ'</li><li>'์„ฑ์‹ฌ ๋ดํŠธํฌ๋ฆฐ ํ‹€๋‹ˆ์„ธ์ •์ œ 36๊ฐœ์ž… 2๊ฐœ ๊ต์ •๊ธฐ ์„ธ์ฒ™ ํฌ๋ง๋ฉ”๋””'</li><li>'ํด๋ฆฌ๋ดํŠธ ๋งฅ์Šค ์”ฐ ์˜์น˜ ๋ถ€์ฐฉ์žฌ(์˜์น˜ ์ ‘์ฐฉ์ œ) 70gx5๊ฐœ+์ƒ˜ํ”Œ 1๊ฐœ ๋”๋งˆ์ผ“'</li></ul> | | 6.0 | <ul><li>'๋ฐฑ์„ ์ƒ ์™•ํƒ€์นซ์†” ๋ฒ ์ด์ง ์Šคํ†ค 10P ์™•ํƒ€'</li><li>'์ผ„ํŠธ์นซ์†” ํด๋ž˜์‹ 6๊ฐœ์ž… ๋ถ€๋“œ๋Ÿฌ์šด ์นซ์†” ๋ฏธ์„ธ๋ชจ ์น˜์•„๊ด€๋ฆฌ ์–ด๊ธˆ๋‹ˆ ์น˜๊ณผ์นซ์†” ์ผ„ํŠธ ํด๋ž˜์‹ 6๊ฐœ_์ผ„ํŠธ ํƒ„ ์ดˆ๊ทน์„ธ๋ชจ 1๊ฐœ(๋žœ๋ค)_์น˜๊ฐ„์นซ์†” 8๊ฐœ์ž… 1์„ธํŠธ(๋ ˆ๋“œ 0.7mm) (์ฃผ)์ง€๋กœ์ธํ„ฐ๋‚ด์…”๋„'</li><li>'์ฟค๋‹ฌ ๋”ฅ ํด๋ฆฐ ํƒ„๋ ฅ ํ•ญ๊ท  ์ด์ค‘๋ฏธ์„ธ๋ชจ ์นซ์†” ๋ถ€๋“œ๋Ÿฌ์šด๋ชจ, 16์ž…, 1๊ฐœ ๊ตฌ๋ถ„ : ๋ถ€๋“œ๋Ÿฌ์šด๋ชจ ์ŠˆํŒ…๋ฐฐ์†ก'</li></ul> | | 3.0 | <ul><li>'์˜ค๋ž„๋น„ P&G ์™์Šค์น˜์‹ค ๋ฏผํŠธํ–ฅ 50m 01.์™์Šค ์น˜์‹ค ๋ฏผํŠธํ–ฅ 50m TH์ƒ์‚ฌ'</li><li>'์˜ค๋ž„๋น„ C์žํ˜• ์ผํšŒ์šฉ ์น˜์‹ค 30๊ฐœ์ž… 1ํŒฉ NEW)์น˜์‹คC์ž 30๊ฐœ์ž…[O121] ํ•œ๊ตญํ”ผ์•ค์ง€ํŒ๋งค์œ ํ•œํšŒ์‚ฌ'</li><li>'์˜ค๋ž„๋น„ ์™์Šค์น˜์‹ค (50m 1๊ฐœ) ๋ฏผํŠธ ๋””์—”์ง€์œ ํ†ต'</li></ul> | | 5.0 | <ul><li>'LG์ƒํ™œ๊ฑด๊ฐ• ์ฃฝ์—ผ ๋ช…์•ฝ์› ๊ณจ๋“ ํ”„๋กœํด๋ฆฌ์Šค ์น˜์•ฝ ํ”Œ๋Ÿฌ์Šค 120g MinSellAmount ์˜ค๋Š˜๋„์—ฐ๊ตฌ์†Œ'</li><li>'์—˜์ง€์ƒํ™œ๊ฑด๊ฐ• ์ฃฝ์—ผ ์ž‡๋ชธ๊ณ  ์น˜์•ฝ 120g 1๊ฐœ ์œ ๋‹ˆ์Šค'</li><li>'์„ผ์†Œ๋‹ค์ธ ์˜ค๋ฆฌ์ง€๋„ ํ”Œ๋Ÿฌ์Šค ์น˜์•ฝ 100g 1๊ฐœ dm ๋‹ค์ž„์ปค๋จธ์Šค'</li></ul> | | 7.0 | <ul><li>'[์œ ํ•œ์–‘ํ–‰]๋‹ฅํ„ฐ๋ฒ„๋“ค ์น˜์•ฝ+์นซ์†” ์—ฌํ–‰์šฉ์„ธํŠธ 6๊ฐœ ์‹ ์„ธ๊ณ„๋ชฐ'</li><li>'[์œ ํ•œ์–‘ํ–‰]๋‹ฅํ„ฐ๋ฒ„๋“ค ํœด๋Œ€์šฉ ์นซ์†”์น˜์•ฝ์„ธํŠธ 1๊ฐœ ์‹ ์„ธ๊ณ„๋ชฐ'</li><li>'ํˆฌํ†ค ํœด๋Œ€์šฉ ์นซ์†” ์น˜์•ฝ ์ผ€์ด์Šค ์บก์Аํ˜• ๋‹ต๋ก€ํ’ˆ ํˆฌํ†ค์šฉ ์นซ์†”ํ†ต ๋ณด๊ด€ํ•จ ํ™€๋” ์นซ์†”์บก ์บก์А์นซ ํ™”์ดํŠธ๋ธ”๋ฃจ ์ญ๋ฆฌ๋น™'</li></ul> | | 1.0 | <ul><li>'์ผ์ œ ํ˜•์ƒ๊ธฐ์–ต ๋งˆ์šฐ์Šคํ”ผ์Šค ์•„๋ฆฌ๋”์ƒพ'</li><li>'ํ˜€์šฉ ์ฝ”๊ณจ์ด ๋ฐฉ์ง€ ์šฉํ’ˆ ๋Œ€์ฑ…์šฉ ๋งˆ์šฐ์Šคํ”ผ์Šค 8 ๊ฐœ ์„ธํŠธ ์ด์™€์ด๋ฆฌํ…Œ์ผ(EY๋ฆฌํ…Œ์ผ)'</li><li>'์ด๊ฐˆ์ด๋ฐฉ์ง€ ์น˜์•„ ์•ž๋‹ˆ ๋ณดํ˜ธ ์œ ์ง€ ์…€ํ”„ ๋งˆ์šฐ์Šคํ”ผ์Šค ๊ต์ • 2๋‹จ๊ณ„ ์ฝ”์Šค๋ชจ์Šค'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9477 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh4") # Run inference preds = model("์• ํ„ฐ๋ฏธ ์น˜์•ฝ ํ”„๋กœํด๋ฆฌ์Šค 200g ์ž…๋ƒ„์ƒˆ ์ œ๊ฑฐ ๋ฏธ๋ฐฑ ์ฝœ๋งˆ ํ”Œ๋ ‰์Šค์„ธ๋ธ") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 10.026 | 23 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0127 | 1 | 0.4686 | - | | 0.6329 | 50 | 0.2751 | - | | 1.2658 | 100 | 0.1179 | - | | 1.8987 | 150 | 0.0739 | - | | 2.5316 | 200 | 0.0687 | - | | 3.1646 | 250 | 0.0466 | - | | 3.7975 | 300 | 0.0591 | - | | 4.4304 | 350 | 0.0232 | - | | 5.0633 | 400 | 0.0125 | - | | 5.6962 | 450 | 0.0134 | - | | 6.3291 | 500 | 0.0152 | - | | 6.9620 | 550 | 0.0175 | - | | 7.5949 | 600 | 0.0118 | - | | 8.2278 | 650 | 0.007 | - | | 8.8608 | 700 | 0.0003 | - | | 9.4937 | 750 | 0.0002 | - | | 10.1266 | 800 | 0.0001 | - | | 10.7595 | 850 | 0.0001 | - | | 11.3924 | 900 | 0.0001 | - | | 12.0253 | 950 | 0.0001 | - | | 12.6582 | 1000 | 0.0001 | - | | 13.2911 | 1050 | 0.0001 | - | | 13.9241 | 1100 | 0.0001 | - | | 14.5570 | 1150 | 0.0001 | - | | 15.1899 | 1200 | 0.0001 | - | | 15.8228 | 1250 | 0.0001 | - | | 16.4557 | 1300 | 0.0001 | - | | 17.0886 | 1350 | 0.0001 | - | | 17.7215 | 1400 | 0.0001 | - | | 18.3544 | 1450 | 0.0001 | - | | 18.9873 | 1500 | 0.0 | - | | 19.6203 | 1550 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
prithivMLmods/Llama-3.2-1B-GGUF
prithivMLmods
2024-11-20T15:01:35Z
210
7
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "ollama", "fast-llama", "1B", "meta", "meta-llama", "token", "text-generation", "en", "base_model:meta-llama/Llama-3.2-1B", "base_model:quantized:meta-llama/Llama-3.2-1B", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2024-10-26T13:00:49Z
--- base_model: - meta-llama/Llama-3.2-1B language: - en license: creativeml-openrail-m tags: - text-generation-inference - transformers - llama - gguf - ollama - fast-llama - 1B - meta - meta-llama - token pipeline_tag: text-generation --- # Llama-3.2-1B-GGUF [ GPT-Generated Unified Format ] | File Name | Size | Description | |------------------------|----------|-------------------------------------------------------| | `.gitattributes` | 1.73kB | Git configuration file specifying attributes and LFS rules. | | `gguf.gif` | 6.0kB | GIF file showing visual content related to the project. | | `Llama-3.2-1B.F16.gguf`| 2.48GB | Full precision 16-bit float model file for Llama 3.2 1B. | | `Modelfile` | 1.95kB | Model-specific file containing metadata or configurations. | | `README.md` | 3.91kB | Markdown file with project information and instructions. | | `config.json` | 29B | JSON configuration file for setting model parameters. | | Attribute | Description | |-------------------------|-----------------------------------------------------------------------------| | **Developed by** | prithivMLmods | | **License** | Apache-2.0 | | **Finetuned from model**| meta-llama/Llama-3.2-1B | Here's a well-structured README.md documentation for running models with Ollama: # Run with Ollama ๐Ÿฆ™ ## Overview Ollama is a powerful tool that allows you to run machine learning models effortlessly. This guide will help you download, install, and run your own GGUF models in just a few minutes. ## Table of Contents - [Download and Install Ollama](#download-and-install-ollama) - [Steps to Run GGUF Models](#steps-to-run-gguf-models) - [1. Create the Model File](#1-create-the-model-file) - [2. Add the Template Command](#2-add-the-template-command) - [3. Create and Patch the Model](#3-create-and-patch-the-model) - [Running the Model](#running-the-model) - [Sample Usage](#sample-usage) ## Download and Install Ollama๐Ÿฆ™ To get started, download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your Windows or Mac system. ## Steps to Run GGUF Models ### 1. Create the Model File First, create a model file and name it appropriately. For example, you can name your model file `metallama`. ### 2. Add the Template Command In your model file, include a `FROM` line that specifies the base model file you want to use. For instance: ```bash FROM Llama-3.2-1B.F16.gguf ``` Ensure that the model file is in the same directory as your script. ### 3. Create and Patch the Model Open your terminal and run the following command to create and patch your model: ```bash ollama create metallama -f ./metallama ``` Once the process is successful, you will see a confirmation message. To verify that the model was created successfully, you can list all models with: ```bash ollama list ``` Make sure that `metallama` appears in the list of models. --- ## Running the Model To run your newly created model, use the following command in your terminal: ```bash ollama run metallama ``` ### Sample Usage In the command prompt, you can execute: ```bash D:\>ollama run metallama ``` You can interact with the model like this: ```plaintext >>> write a mini passage about space x Space X, the private aerospace company founded by Elon Musk, is revolutionizing the field of space exploration. With its ambitious goals to make humanity a multi-planetary species and establish a sustainable human presence in the cosmos, Space X has become a leading player in the industry. The company's spacecraft, like the Falcon 9, have demonstrated remarkable capabilities, allowing for the transport of crews and cargo into space with unprecedented efficiency. As technology continues to advance, the possibility of establishing permanent colonies on Mars becomes increasingly feasible, thanks in part to the success of reusable rockets that can launch multiple times without sustaining significant damage. The journey towards becoming a multi-planetary species is underway, and Space X plays a pivotal role in pushing the boundaries of human exploration and settlement. ``` --- ## Conclusion With these simple steps, you can easily download, install, and run your own models using Ollama. Whether you're exploring the capabilities of Llama or building your own custom models, Ollama makes it accessible and efficient. - This README provides clear instructions and structured information to help users navigate the process of using Ollama effectively. Adjust any sections as needed based on your specific requirements or additional details you may want to include. # Llama-3.2-1B-GGUF ![Demo of Project](Demo/gguf.gif) Youโ€™re now ready to run your own model with Ollama! ๐Ÿฆ™ - https://youtu.be/_9IcVFuql2s?si=0NjKlJ1GDCmuJHvQ
mini1013/master_cate_lh2
mini1013
2024-11-20T14:46:23Z
292
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T14:46:01Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์ „๊ธฐ ์ŠคํŒ€ํ•ด๋น™๊ธฐ ์ˆ˜๋„ ๋ฐฐ๊ด€ ๋™ํŒŒ๋ฐฉ์ง€ ๊ณ ์˜จ ๊ณต๊ตฌ ์ŠคํŒ€ ๊ณ ์„ฑ๋Šฅ ๊ณ ์•• 2500W ๋””์ง€ํ„ธ 7์  ์„ธํŠธ 2500W ์‚ฐ์—…์šฉ ์˜จ๋„์กฐ์ ˆ 7์ข… ์„ธํŠธ+์ˆ˜๋‚ฉํ•จ ํ•˜๋‹ˆ๋นŒ๋ฆฌ์ง€ - text: ์Šคํ… ๋‚˜์‚ฌ๋ชป ๋ชฉ์žฌ ํ”ผ์Šค ๋ชฉ๊ณต ์ฒ ํŒ ๋‚˜์‚ฌ ์ง๊ฒฐ ์™€์ƒค๋จธ๋ฆฌ 4-13(25๊ฐœ) 11. ์Šคํ… ํŠธ๋ผ์Šค๋จธ๋ฆฌ ๋ณผํŠธ_M5-40 (5๊ฐœ) ๋ฆฌ๋”ํ™”์Šค๋„ˆ - text: ์•ˆ์ „๋ด‰ํˆฌ ํƒ๋ฐฐ ํฌ์žฅ ๋ฝ๋ฝ์ด 0ํ˜ธ 100X100+40 10๋งค ์†Œ๋Ÿ‰ ์ฃผํ™ฉ [๋น„์ ‘์ฐฉ] ํˆฌ๋ช… ์—์–ด์บก ๋ด‰ํˆฌ - 0.2T_18ํ˜ธ 250x350 10๋งค ์ฃผ์‹ํšŒ์‚ฌ ์ด๊ณ ๋‹ค(IGODA CO. ,Ltd.) - text: ํ† ๋„ค์ด๋„ ๋‹ค์ด์•„๋ชฌ๋“œ ์œต์ฐฉ์ฝ”์–ด๋น„ํŠธ ํด๋ฆฌ์‹ฑ ๋Œ€๋ฆฌ์„ ์ฒœ๊ณต TQ5 57_TTC 17 ์ฃผ์‹ํšŒ์‚ฌ ํˆฌ์—‘์Šค - text: ํ‚นํ† ๋‹ˆ ํ•ธ๋“œ์†Œ์ผ“ ๋ณต์Šค์•Œ 233504M 2. ๋กฑํ•ธ๋“œ์†Œ์ผ“(์œก๊ฐ)_2-21 323513M 3/8x13mm ์ œ๋กœ๋‚˜์ธ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6113686482182797 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 19 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1.0 | <ul><li>'์žฅ์ธ๋“ค์˜๋„๊ตฌ๋“ค ์˜คํ† ํ”ผ๋“œ ๋™๊ด€์ปคํ„ฐ๊ธฐ 4๋ถ„์˜1 (๋นจ๊ฐ•) ์—˜๋””์—์Šค์ปดํผ๋‹ˆ(LDS Company)'</li><li>'๋†๋ง‰ ๋ฌผํƒฑํฌ ๋Œ€์šฉ๋Ÿ‰ ํ”Œ๋ผ์Šคํ‹ฑ ์šฐ์ˆ˜ ๋ฌผ์ €์žฅ ๋ฐฐ๋Ÿด ํƒฑํฌ 25kg (๋‚ด๋ถ€ ์ปค๋ฒ„ ํฌํ•จ) ๋ฏธ๋“คํŽ˜์ด์ง€'</li><li>'์ธ์„œํŠธ ๋น„ํŠธ ์„ธํŠธ, 9๊ฐœ ์—์Šค์— ์ƒต'</li></ul> | | 18.0 | <ul><li>'[๋‹ค์ด์†Œ๋ฐ•์Šค] ์˜คํ”ˆํ˜• ์ด์‚ฌ๋ฐ•์Šค ๋‹จํ”„๋ผ ์ด์‚ฟ์ง ํ”Œ๋ผ์Šคํ‹ฑ ์ด์‚ฌ์šฉ 15. (๊ณ ๊ธ‰ํ˜•) ์ค‘ํ˜•๋ฐ•์Šค_(๊ณ ๊ธ‰ํ˜•) ์ค‘ํ˜• ์ฒญ์ƒ‰ ์ฃผ์‹ํšŒ์‚ฌ ์•„์„ฑ์†”๋ฃจ์…˜'</li><li>'PE ๋กค๋น„๋‹ ํ†ต๋น„๋‹ 0.03mm 12cm x 457m 0.1mm_์„ ํƒ29. (ํญ100cm x ๊ธธ์ด91m) ์ฃผ์‹ํšŒ์‚ฌ ์ œ์ผ์žฌ๋‹จ'</li><li>'ํ†ต์ƒต ๊ณต๋‹จ๋ณด์ž๊ธฐ 45cm 10์žฅ๋ฌถ์Œ 65ร—65 -10์žฅ ๋ฌถ์Œ_์—ฐ๋…ธ๋ž‘ ํ†ต์ƒต'</li></ul> | | 5.0 | <ul><li>'๋งˆ๋ผ๋‹ค ์ถฉ์ „์ง์†Œ DJV184Z ๋ณธ์ฒด 18V ์†๋„์กฐ์ ˆ ๋ธŒ๋Ÿฌ์‰ฌ๋ฆฌ์Šค ์ถฉ์ „์ง์˜ ๋””์œ ๋‹ˆ๋งˆ์ผ“'</li><li>'[UDT] ์—์–ด ํ•ด๋จธ ํ•จ๋งˆ ์น˜์ฆ4๊ฐœ ํฌํ•จ UD-1042 ์„ ํƒ3. ์—์–ดํ•ด๋จธ (UD-1043) ์ฃผ์‹ํšŒ์‚ฌ ๋งˆ์ดํฌ๋กœ์— ์•Œ์˜ค'</li><li>'ํƒˆํฌ๊ธฐ ๊ธฐํฌ์ œ๊ฑฐ ๋ ˆ์ง„ ๊ณต์˜ˆ ์‹ค๋ฆฌ์ฝ˜ ๋ชฐ๋“œ ์ง„๊ณต ํ™”์žฅํ’ˆ 19L ์ง€๋ฆ„30Cm ๋†’์ด 30Cm ํ† ๋งˆํ†ก'</li></ul> | | 4.0 | <ul><li>'์นจ๋Œ€ ๋‚œ๊ฐ„ ์–ด๋ฅด์‹  ํ™˜์ž ๊ธฐ์ƒ ๋ณด์กฐ ํ”„๋ ˆ์ž„ A. ํƒ„์†Œ๊ฐ• ์ข์€ ํŒ”๊ฑธ์ด ์‹œ์—˜๋กœ'</li><li>'์ฒญ์†Œ์ค‘ ์ฃผ์ฐจ๊ธˆ์ง€ ์ž…๊ฐ„ํŒ Aํ˜•ํ‘œ์ง€ํŒ ๊ณต์‚ฌ์ค‘ ๋ฏธ๋„๋Ÿผ์ฃผ์˜ ์ฃผ์ฐจ๊ธˆ์ง€ ์‚ฌ์œ„ํƒ'</li><li>'์˜คํ† ์Šค ๊ณ ๊ธ€ ํˆฌ๋ช… ๋ณด์•ˆ๊ฒฝ 618A ๋„“์€ ์‹œ์•ผํ™•๋ณด ๊ธํž˜๋ฐฉ์ง€ ๋ฌด๊ฒŒ 48.4g ๊ฐ€๋ฒผ์šด ๋ณดํ˜ธ์•ˆ๊ฒฝ OTOS ๋ณด์•ˆ๊ฒฝ B-618ASF ์ง€์— ํŠธ๋ฆฌ (GMTree)'</li></ul> | | 14.0 | <ul><li>'ํ‰ ์™€์…” ์Šคํ… M6 1๊ฐœ ๋‚ฑ๊ฐœ ํŒ๋งค ์ œ์ด์›์ปค๋จธ์Šค'</li><li>'ํ”Œ๋žœ์ง€ ํ›„๋ Œ์ง€ ์Šคํ… ํ›„๋ Œ์น˜๋„ˆํŠธ m3 (10๊ฐœ) 5/16์ธ์น˜ (5๊ฐœ) ์ผ์ง„๊ธˆ์†'</li><li>'ํฌ๋‹ˆ ์Šคํ”„๋งํด๋žจํ”„ ์ง‘๊ฒŒ ํ•ธ๋”” ์š”๋ฅด์  ์„ผ ์กฐ๋ช…๊ณ ์ • 3201-HT ๋ฒ ์„ธ์ด XM3 ์ฃผ์‹ํšŒ์‚ฌ ์ข…์›ํˆด๋ง'</li></ul> | | 8.0 | <ul><li>'ํ”„๋กœํŽ  ๋ฏธ๋‹ˆ์œˆ์น˜ ๋‹จ์ƒ 220V ํ˜ธ๋ฐ• ์™€์ด์–ด์œˆ์น˜ PW160 2ํ™€_160kg_PW160 ์ฃผ์‹ํšŒ์‚ฌ ๋‹ค๋ณด์ธํ„ฐ๋‚ด์…”๋„(DAVOInternational Co.,Ltd.)'</li><li>'๋””์›”ํŠธ ์žญ ๋ฆฌํ”„ํŠธ DWHT83550 ๋งŒ๋Šฅ ์ง€๋žซ๋Œ€ ์˜ฎ๊ธฐ๊ธฐ ๋ƒ‰์žฅ๊ณ  ๊ฐ€๊ตฌ ์†Œํ˜• ํ•ธ๋“œ 01.๋””์›”ํŠธ์žญ๋ฆฌํ”„ํŠธ(์‹ค์žฌ๊ณ X ์ž…๊ณ ์‹œ ์ถœ๊ณ ) ์ฃผ์‹ํšŒ์‚ฌ ๋™์„ฑํˆด (dongsungtool)'</li><li>'์‚ฌ๋‹ค๋ฆฌ ์ ‘์ด์‹ ๊ฐ€์ •์šฉ 5๋‹จ aํ˜• ์•ˆ์ „ ๊ด‘ํญ ์ž‘์—…๋ฐœํŒ ๋…ธ๋ž‘ NLS05 ๊ฒฝ๋Ÿ‰์‚ฌ๋‹ค๋ฆฌ_NLL02 2๋‹จ ๊ณต๊ตฌ ์ œํŠธ(Z)'</li></ul> | | 0.0 | <ul><li>'3M ์Šคํฐ์ง€ ํŽ˜ํŒŒ 7136270 02601(600~800๋ฐฉ) (์ฃผ)ํ•œ๋ฉ”์†Œํ”„ํŠธ'</li><li>'์žฅํŒ ํ™ˆํŒŒ๊ธฐ ์ˆ˜๋™ ์นผ ๋‚˜์ดํ”„ ์ปทํ„ฐ ์ปคํŒ…๊ธฐ PVC ๋ฐ”๋‹ฅ ๋‹จ์ผ ์ƒํ’ˆ ๋‚˜์ธํฌ๋ฆฌ์„ธ๋ธ'</li><li>'์Šค๋งˆํ†  ๋กฑ๋ผ์ณ‡๋ Œ์น˜ ํ•œ์ชฝ๋กฑ L 13x17L ์Šค๋งˆํ†  ๋กฑ๋ผ์ณ‡๋ Œ์น˜ (ํ•œ์ชฝ๋กฑ)L 13x17L ๋””์™€์ด์Šคํ† ์–ด'</li></ul> | | 6.0 | <ul><li>'๊ทธ๋ฆฐ์›์Šค ๋ฌด์„  ์ „์ •๊ธฐ 40V GMAX ๋ณธ์ฒด 01. ๋ณธ์ฒด ๋„ค์ด์Šค'</li><li>'D&D PowerDrive BP78 V ๋ฒจํŠธ 134247 ํŠธ๋ฆฌ๋‹ˆํ‹ฐ ์—๋ด ๋กœ์šฐ'</li><li>'ํ˜ผ๋‹ค 4ํ–‰์ • ์˜ˆ์ดˆ๊ธฐ ์…€๋Ÿฌ๋ฆฌํ”ฝ ๋ฐฐ๋‚ญ ํ–‰์ • ๋ฒŒ์ดˆ๊ธฐ ์ œ์ดˆ๊ธฐ ์„ธํŠธ ๋ฐฐ๋‚ญํ˜• 2 GX35 ๋ฐฑํŒฉ 18.8KW ๋Œ€ํ–‰๋ชฐA'</li></ul> | | 12.0 | <ul><li>'๋””์›”ํŠธ ์ถฉ์ „์›ํ˜•ํ†ฑ DCS573N 184mm (18V/20V) ๋ณธ์ฒด๋งŒ ๋””์›”ํŠธ ์ถฉ์ „์›ํ˜•ํ†ฑ DCS573N 184mm ( ์ตœ์ €๊ฐ€์œ ํ†ต๋ชฐ'</li><li>'๋””์›”ํŠธ DCG405P2 20V ๋ธŒ๋Ÿฌ์‰ฌ๋ฆฌ์Šค ์ถฉ์ „ ๊ทธ๋ผ์ธ๋” (5.0Ahx2) ํ’€์„ธํŠธ ์ฃผ์‹ํšŒ์‚ฌ ๋ถ€์ผํˆด๋ฆญ์Šค'</li><li>'์ถฉ์ „์ง์†Œ DJV184Z ๋ณธ์ฒด 18V ์†๋„์กฐ์ ˆ ๋ธŒ๋Ÿฌ์‰ฌ๋ฆฌ์Šค ์ถฉ์ „์ง์˜ ๋งˆ๋ผ๋‹ค ๋ฆฌ์”จ์œ ํ†ต'</li></ul> | | 11.0 | <ul><li>'์ฃผํ”ผํ„ฐ ์ฅฌํ”ผํ„ฐ ๋ฌด์„  ์†กํ’๊ธฐ ๋‚™์—ฝ์ฒญ์†Œ๊ธฐ JUB-18DE ์—์–ด ์ถฉ์ „์‹ 18V ๋””์›”ํŠธ ๋ฐฐํ„ฐ๋ฆฌํ˜ธํ™˜ ์ด์—์Šคํˆด'</li><li>'ํƒ€์ดํƒ„๋“œ๋ฆด๋งจ ์Šคํ‚ค๋น„๋””ํ† ์ผ๋ › ์—…ํƒ€ํ‹ฐ๋งจ ์—…๊ทธ๋ ˆ์ด๋“œ ์Šคํ”ผ์ปค๋งจ ํ™œ๋™ํƒ€์ดํƒ„ํด๋ฝํ‚นํ™ฉ๊ธˆ๋Œ€๊ฒ€-536์ž…์ž ์•„์ด์— 117'</li><li>'ํ•ซ๋“œ๋ฆด ๋ณด์„ ํ๋น… ๋ถ™์ด๋Š” ํŽœ ๋ฐฉ๋ฒ• ๊ฑด ์˜ท ๋‹ค๋ฆผ์งˆ ํฌ์ธํŠธ ์ˆ˜๋ฆฌ ์ฒ  ํ—ค๋“œ ํŒจ์…˜ ์›๋‹จ ๊พธ๋ฏธ๊ธฐ 06 ํ•‘ํฌ ์›ํ˜•ํ—ค๋“œ 7๊ฐœ์ธ๋‘ํ—ค๋“œ ์—†์Œ ์‚ผ๊ฐ ๊ณต์ฃผ&ํŒŒํ‹ฐ'</li></ul> | | 2.0 | <ul><li>'๋ณด์ผ๋Ÿฌ ์˜จ์ˆ˜ ์ˆœํ™˜ ํŽŒํ”„ ๋ชจํ„ฐ ์œŒ๋กœ ์—˜์ง€ PH 045M ๋‹ˆ๋”์Šค๋ชฐ'</li><li>'์˜์ฃผํƒœ์–‘๊ด‘ 3k์ฃผํƒ์šฉ ์ง€์™€์ด(GY)์‚ฐ์—…'</li><li>'์›Œํ„ฐํŽŒํ”„ ๋ฌผํŽŒํ”„ ๋‹ค์ด์•„ํ”„๋žจ ์†Œํ˜• ๋ฏธ๋‹ˆ ์ˆ˜์ค‘ ๊ณ ์—ด ๊ณ ์˜จ DC 12V 30W 04 ์›Œํ„ฐํŽŒํ”„(๊ณ ๊ธ‰ํ˜•-๋„ˆํŠธ) 80W 12V ์ฃผ์‹ํšŒ์‚ฌ ์„ธ์ธํ‹ฐ์—ํ”„'</li></ul> | | 15.0 | <ul><li>'ํœด๋Œ€์šฉ ์ˆ˜๋™ ์นด์šดํ„ฐ๊ธฐ ์ธ์›์ฒดํฌ ์šด๋™๋Ÿ‰ ์ฒดํฌ ๊ณ„์ˆ˜๊ธฐ ๊ฐ•์„ฑ๋…•'</li><li>'ํ‹ฐํ”ผ๋งํฌ TP-LINK Tapo T315 ์Šค๋งˆํŠธ ์˜จ์Šต๋„ ์„ผ์„œ ๋””์Šคํ”Œ๋ ˆ์ดํ˜• Wi-Fi ํ—ˆ๋ธŒ ์ด ์•„์ดํ‹ฐ ์ปค๋จธ์Šค'</li><li>'ํœด๋Œ€์šฉ ๋””์ง€ํ„ธ ์Œ์ฃผ์ธก์ •๊ธฐ ์˜ค์˜์ด๋„ค'</li></ul> | | 16.0 | <ul><li>'๋…ธ๋ฃจํŽ˜์ธํŠธ ์Šˆํผ์—๋‚˜๋ฉœ ํ”Œ๋Ÿฌ์Šค 1L ๋ชฉ์žฌ์šฉ ์ฒ ์žฌ์šฉ ์—๋‚˜๋ฉœ ์œ ์„ฑ ํŽ˜์ธํŠธ ์ ๊ฐˆ์ƒ‰ ์œ ๊ด‘ ํŠน๋…น์ƒ‰_์œ ๊ด‘(Gloss) ์„ธ๊ณ„์ƒ์‚ฌ'</li><li>'pieke ์‹ค๋‚ด ์ธํ…Œ๋ฆฌ์–ด์šฉ ํ”„๋ฆฌ๋ฏธ์—„ ์ˆ˜์„ฑ ํŽ˜์ธํŠธ ํ”ผํฌ ํŽ˜์ธํŠธ(1kg) abyss green (์ฃผ)ํ•ด๊ด‘'</li><li>'[๋ชฌํƒ€๋‚˜] ๋ชฌํƒ€๋‚˜ ๊ณจ๋“œ ๊ทธ๋ž˜๋น„ํ‹ฐ ๋Œ€์šฉ๋Ÿ‰ ๋‹ค์šฉ๋„ ๋„์ƒ‰์šฉ ์•„ํฌ๋ฆด ์บ”์Šคํ”„๋ ˆ์ด 400ml GOLD 5110_HIMALAYA ๋Œ€๋ฆผ๋ฐ์นผ์Šคํ† ์–ด'</li></ul> | | 3.0 | <ul><li>'๋ฌด์„  ์ธ์А๋ฆฐ๋ƒ‰์žฅ๊ณ  ํœด๋Œ€ ์ถฉ์ „ ์†Œํ˜• ์ฐจ๋Ÿ‰ ์•ฝํ’ˆ ๋ณด๊ด€ํ•จ ๋‹จ์ผ ๋ฐฐํ„ฐ๋ฆฌ(๋Œ€๊ธฐ์‹œ๊ฐ„ ์•ฝ 10์‹œ๊ฐ„) ์œ ์–ด์Šคํ† ์–ด'</li><li>'์ง€๋„ฅ์Šค ์ •๋ฐ€๋“œ๋ผ์ด๋ฒ„ ์„ธํŠธ Y์ž ๋ณ„๋‚˜์‚ฌ ์œก๊ฐ Y ์‹œ๊ณ„ ์•ˆ๊ฒฝ ์‚ผ๊ฐ ์ž์„ ์‹ญ์ž 24in1 ์•„์ดํฐ ์ „์šฉ์ˆ˜๋ฆฌ๊ณต๊ตฌ 001339 ์ฃผ์‹ํšŒ์‚ฌ ์›๋นˆ๋‹ค์ด์–ด๋ฆฌ'</li><li>'๋””์›”ํŠธ ํ”„๋ฆฌ๋ฏธ์—„ ์ˆ˜๊ณต๊ตฌ์„ธํŠธ 184PCS ์ฝ”์ŠคํŠธ์ฝ” ์†Œ์ผ“ ๋ผ์ณ‡ ๊ณต๊ตฌ์„ธํŠธ 108PCS ์‹œํฌ๋ฆฟ์นดํŠธ'</li></ul> | | 7.0 | <ul><li>'๊ณ ์˜จ ๊ณ ์•• ์ŠคํŒ€ ์„ธ์ฒ™๊ธฐ ์„ธ์ฐจ๊ธฐ ์ฒญ์†Œ๊ธฐ ์†Œ๋… ์—์–ด์ปจ 2600W ํ™ˆ ์—…๊ทธ๋ ˆ์ด๋“œ ์ง์ ‘ ๋ถ„์‚ฌ ๋ชจ๋ธ ๊ฒ€์ • ๊ตฌ๋ฃจ๋ฏธ์ปดํผ๋‹ˆ'</li><li>'ํฌ๋ ˆํ† ์Šค ์‚ฐ์†Œ๊ฒŒ์ด์ง€ ๊ฐ€์Šค๋ ˆ๊ทค๋ ˆ์ดํ„ฐ ๊ฐ์••๊ธฐ ์กฐ์ •๊ธฐ EX-701 LPG-EX-705 ์•Œํ†ต๊ณต๊ตฌ'</li><li>'ํฌ๋ ˆํ† ์Šค ์‚ฐ์†Œ๊ฒŒ์ด์ง€ ๊ฐ€์Šค๋ ˆ๊ทค๋ ˆ์ดํ„ฐ ๊ฐ์••๊ธฐ ์กฐ์ •๊ธฐ EX-701 CO2-EX-702B 220V-22 ์•Œํ†ต๊ณต๊ตฌ'</li></ul> | | 17.0 | <ul><li>'ํŽ˜์ธํŠธ๋ถ“ ๊ฑด์ถ•๋„์žฅ๊ธฐ๋Šฅ์‚ฌ์ค€๋น„๋ฌผ ๋‚ฉ์ž‘๋ถ“15mm ๋ง‰๋ถ“ ๋นฝ๋ถ“ ๋ฌธ์ž ๋„ํ˜• ํ‰๋ถ“ ์œ ์„ฑ์ˆ˜์„ฑ ๋ฏธ์ˆ ๋ถ“ ํŽ˜์ธํŠธ ๋ถ“ ํญ70mm(11ํ˜ธ) ๋น„์ผ€์ด(B.K)์ฝ”๋ฆฌ์•„'</li><li>'์ธํ„ฐ๊ทธ๋ ˆ์ธ ์šธํŠธ๋ผ๋ฐํฌ ํŒ€๋ฒ„์Šคํ…Œ์ธ 10L ๋ฆฌ์น˜ ์ดˆ์ฝœ๋ › (์ฃผ)๋‚˜๋ฌด์™€์‚ฌ๋žŒ๋“ค ๋˜์—๋“œ์›Œ๋“œ ํŽ˜์ธํŠธ'</li><li>'์ˆ˜์„ฑ ๊ธˆ์† ๋ฐฉ์ฒญํŽ˜์ธํŠธ ์†๊ฑดํ˜• ์นœํ™˜๊ฒฝ ๋ฌด์ทจ ์Šคํ…Œ์ธ๋ฆฌ์Šค/์•Œ๋ฃจ๋ฏธ๋Š„ํ•ฉ๊ธˆ ์ปฌ๋Ÿฌ ๋ธ”๋ฃจx2_350g ์ฃผ์‹ํšŒ์‚ฌ ํ”Œ๋ ˆ์ด์‚ฐ'</li></ul> | | 9.0 | <ul><li>'๋ฐฑ๋งˆ ์–‘์†๊ฐ€์œ„ A-3000(180mm) ๋™์•„์ƒ์‚ฌ'</li><li>'ํ† ์ข…๋ฒŒ ๋ฐ•์Šค ๊ฟ€์ˆ˜ํ™• ๋ฒŒ๊ฟ€ ์•ผ์ƒ๋ฒŒํ†ต ๋ฐ€๋žํŒ ์ฑ„์ง‘ 5๋‹จ ๊ฑด์กฐ 5๋‹จ ๊ฒฉ์ž ์ƒ์ž 1์ฐฝ ์™์Šค 5๋‹จ ๊ฒฉ์ž ์ƒ์ž 5์ฐฝ ๊ฐ๋™์‚ฐ๊ธ€๋กœ๋ฒŒ'</li><li>'ํŒŒ์ข…๊ธฐ ๋ชจ์ข… ๋‹ค๊ธฐ๋Šฅ ์‹ฌ๊ธฐ ์‹œ๊ธˆ์น˜ ๊ธฐ๊ณ„ ์ข…์ž ์‹ฌ๋Š” ๋ฌด ์–‘๋ฐฐ์ถ” ํŒŒ์ข… 6์ค„(์ค„๊ฐ„๊ฒฉ 7.5~9) ์…€๋Ÿฌ๋ฆฌํ”ฝ๋ชฐ'</li></ul> | | 10.0 | <ul><li>'์ง„ํฅ ์ฃผํƒ์šฉ ๊ฐ€์ •์šฉ ๋ˆ„์ „ ์ฐจ๋‹จ๊ธฐ 30A ์†Œํ˜• ์ฐจ๋‹จ๊ธฐ๊ต์ฒด ์ฃผํƒ์šฉ(๊ฐ€์ •์šฉ) ๋ˆ„์ „์ฐจ๋‹จ๊ธฐ_01)2P 30A ์†Œํ˜• ๊ทธ๋ฆฐ์ „๊ธฐ์กฐ๋ช…'</li><li>'๊ตญ์‚ฐ ํ•„์ˆ˜์ „๊ณต ์š”๋น„์„  1์„  ๋นจ๊ฐ• 5m ๋‚š์‹œ๋Œ€์š”๋น„์„ _6.0MM_10EA/SET ํ”ผ์—์Šคํˆด์ฆˆ'</li><li>'์บ ํ•‘ ๋ฆด์„  15m 4๊ตฌ ๋ฐ€๋ฆฌํ„ฐ๋ฆฌ ์บ ํ•‘ ์˜คํ† ์บ ํ•‘ ๋‹ˆ๋“œ์„  ์ „๊ธฐ์„  ์—ฐ์žฅ์„  2๊ตฌ_์นดํ‚ค_15m ๋กฑ์บ '</li></ul> | | 13.0 | <ul><li>'๋‹ค์šฐ์‹ค 707 ๋ฐ”์ด์˜ค ๋ฐฉ์ˆ˜ ์‹ค๋ฆฌ์ฝ˜ ํˆฌ๋ช… ๋ฐ•์Šค 25๊ฐœ์ž… ์ฃผ๋ฐฉ ์‹ฑํฌ๋Œ€ ์š•์‹ค ์š•์กฐ ์ฝ”ํ‚น ๋ฐฉํ™”์šฉ_๋‹ค์šฐ 1199S ํ‘์ƒ‰ ๋ชจ๋ฉ˜ํŠธ๋ฆฌ (MOMENTREE)'</li><li>'๋ฒก์Šค WD-40 ๋‚ฑ๊ฐœ 360ml ์‹ ํ˜• ์Šค๋งˆํŠธ ์ŠคํŠธ๋กœ์šฐ SSํ˜• WD40 ๋ฒก์Šค WD-40 360ml(์ผ๋ฐ˜ํ˜•) ๋ชจ๋ฉ˜ํŠธ๋ฆฌ (MOMENTREE)'</li><li>'์ฒ ๋ฌผํŒฉํ† ๋ฆฌ ๋ฐฑ์ƒ‰ ์ค„๋ˆˆ ๋ฐฑ์‹œ๋ฉ˜ํŠธ ์š•์‹ค ํ™”์žฅ์‹ค ๋ณ€๊ธฐ ๋ณด์ˆ˜ ๋ฉ”์ง€ ํฌ๋ž™ ์ ‘์ฐฉ์ œ Dํ˜• ๊ณ ๋ฌดํ—ค๋ผ ์„ ์ง„ํ•˜๋“œ์›จ์–ด'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6114 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh2") # Run inference preds = model("ํ† ๋„ค์ด๋„ ๋‹ค์ด์•„๋ชฌ๋“œ ์œต์ฐฉ์ฝ”์–ด๋น„ํŠธ ํด๋ฆฌ์‹ฑ ๋Œ€๋ฆฌ์„ ์ฒœ๊ณต TQ5 57_TTC 17 ์ฃผ์‹ํšŒ์‚ฌ ํˆฌ์—‘์Šค") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.7474 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 50 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 50 | | 11.0 | 50 | | 12.0 | 50 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | | 17.0 | 50 | | 18.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0067 | 1 | 0.3954 | - | | 0.3356 | 50 | 0.3839 | - | | 0.6711 | 100 | 0.2913 | - | | 1.0067 | 150 | 0.2101 | - | | 1.3423 | 200 | 0.1066 | - | | 1.6779 | 250 | 0.0475 | - | | 2.0134 | 300 | 0.0342 | - | | 2.3490 | 350 | 0.0274 | - | | 2.6846 | 400 | 0.028 | - | | 3.0201 | 450 | 0.029 | - | | 3.3557 | 500 | 0.0291 | - | | 3.6913 | 550 | 0.0258 | - | | 4.0268 | 600 | 0.0202 | - | | 4.3624 | 650 | 0.0085 | - | | 4.6980 | 700 | 0.0124 | - | | 5.0336 | 750 | 0.0039 | - | | 5.3691 | 800 | 0.0089 | - | | 5.7047 | 850 | 0.0063 | - | | 6.0403 | 900 | 0.0034 | - | | 6.3758 | 950 | 0.0046 | - | | 6.7114 | 1000 | 0.008 | - | | 7.0470 | 1050 | 0.0048 | - | | 7.3826 | 1100 | 0.0028 | - | | 7.7181 | 1150 | 0.0042 | - | | 8.0537 | 1200 | 0.0019 | - | | 8.3893 | 1250 | 0.0008 | - | | 8.7248 | 1300 | 0.0004 | - | | 9.0604 | 1350 | 0.0003 | - | | 9.3960 | 1400 | 0.0003 | - | | 9.7315 | 1450 | 0.0002 | - | | 10.0671 | 1500 | 0.0003 | - | | 10.4027 | 1550 | 0.0002 | - | | 10.7383 | 1600 | 0.0001 | - | | 11.0738 | 1650 | 0.0002 | - | | 11.4094 | 1700 | 0.0001 | - | | 11.7450 | 1750 | 0.0001 | - | | 12.0805 | 1800 | 0.0001 | - | | 12.4161 | 1850 | 0.0001 | - | | 12.7517 | 1900 | 0.0001 | - | | 13.0872 | 1950 | 0.0001 | - | | 13.4228 | 2000 | 0.0001 | - | | 13.7584 | 2050 | 0.0001 | - | | 14.0940 | 2100 | 0.0001 | - | | 14.4295 | 2150 | 0.0001 | - | | 14.7651 | 2200 | 0.0001 | - | | 15.1007 | 2250 | 0.0001 | - | | 15.4362 | 2300 | 0.0001 | - | | 15.7718 | 2350 | 0.0001 | - | | 16.1074 | 2400 | 0.0001 | - | | 16.4430 | 2450 | 0.0001 | - | | 16.7785 | 2500 | 0.0001 | - | | 17.1141 | 2550 | 0.0001 | - | | 17.4497 | 2600 | 0.0001 | - | | 17.7852 | 2650 | 0.0001 | - | | 18.1208 | 2700 | 0.0001 | - | | 18.4564 | 2750 | 0.0001 | - | | 18.7919 | 2800 | 0.0001 | - | | 19.1275 | 2850 | 0.0001 | - | | 19.4631 | 2900 | 0.0001 | - | | 19.7987 | 2950 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
steph0713/deepffnllama-768_12_4-1
steph0713
2024-11-20T14:46:23Z
49
0
transformers
[ "transformers", "safetensors", "deepffn-llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T14:34:15Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
tanbinh2210/mlm_trained_phobert
tanbinh2210
2024-11-20T14:34:47Z
9
0
sentence-transformers
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-20T14:33:18Z
--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("tanbinh2210/mlm_trained_phobert") # Run inference sentences = [ 'The weather is lovely today.', "It's so sunny outside!", 'He drove to the stadium.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Framework Versions - Python: 3.12.6 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.3.1+cu121 - Accelerate: 0.32.1 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
noaebbot/llama3.1-8B-insights
noaebbot
2024-11-20T14:33:52Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-10-31T16:28:40Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft --- # Uploaded model - **Developed by:** noaebbot - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
yakazimir/qwen_uncCPO_entropy_0_01
yakazimir
2024-11-20T14:33:18Z
146
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "alignment-handbook", "trl", "simpo", "generated_from_trainer", "conversational", "dataset:yakazimir/ultrafeedback_binarized", "base_model:trl-lib/qwen1.5-0.5b-sft", "base_model:finetune:trl-lib/qwen1.5-0.5b-sft", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-19T08:19:51Z
--- library_name: transformers license: other base_model: trl-lib/qwen1.5-0.5b-sft tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/ultrafeedback_binarized model-index: - name: qwen_uncCPO_entropy_0_01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen_uncCPO_entropy_0_01 This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.0500 - Sft Loss: 3.9220 - Rewards/chosen: -4.3252 - Rewards/rejected: -5.1044 - Rewards/accuracies: 0.6892 - Rewards/margins: 0.7793 - Logps/rejected: -5.1044 - Logps/chosen: -4.3252 - Logits/rejected: 0.1444 - Logits/chosen: 0.0509 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.0563 | 0.2141 | 400 | 0.0573 | 4.8352 | -5.7454 | -6.0246 | 0.5445 | 0.2792 | -6.0246 | -5.7454 | 0.6512 | 0.5372 | | 0.0533 | 0.4282 | 800 | 0.0524 | 4.2340 | -4.6954 | -5.0777 | 0.6157 | 0.3823 | -5.0777 | -4.6954 | 0.2939 | 0.1644 | | 0.0533 | 0.6422 | 1200 | 0.0518 | 4.1504 | -4.5198 | -5.0186 | 0.6484 | 0.4989 | -5.0186 | -4.5198 | 0.4014 | 0.2684 | | 0.0508 | 0.8563 | 1600 | 0.0512 | 4.0690 | -4.5220 | -5.0081 | 0.6491 | 0.4862 | -5.0081 | -4.5220 | 0.2498 | 0.1344 | | 0.0529 | 1.0704 | 2000 | 0.0508 | 3.9195 | -4.3917 | -4.9646 | 0.6521 | 0.5729 | -4.9646 | -4.3917 | 0.3268 | 0.2181 | | 0.0522 | 1.2845 | 2400 | 0.0504 | 4.1797 | -4.6133 | -5.2771 | 0.6647 | 0.6638 | -5.2771 | -4.6133 | 0.2727 | 0.1622 | | 0.0515 | 1.4986 | 2800 | 0.0504 | 4.0933 | -4.4442 | -5.0786 | 0.6825 | 0.6344 | -5.0786 | -4.4442 | 0.2050 | 0.0984 | | 0.0526 | 1.7127 | 3200 | 0.0503 | 4.0886 | -4.4943 | -5.1537 | 0.6751 | 0.6594 | -5.1537 | -4.4943 | 0.2002 | 0.0920 | | 0.0533 | 1.9267 | 3600 | 0.0501 | 3.9857 | -4.3809 | -5.1003 | 0.6825 | 0.7195 | -5.1003 | -4.3809 | 0.1348 | 0.0421 | | 0.0493 | 2.1408 | 4000 | 0.0500 | 3.9751 | -4.3954 | -5.1537 | 0.6840 | 0.7583 | -5.1537 | -4.3954 | 0.3029 | 0.1980 | | 0.0522 | 2.3549 | 4400 | 0.0500 | 3.9820 | -4.4013 | -5.1632 | 0.6869 | 0.7619 | -5.1632 | -4.4013 | 0.2139 | 0.1131 | | 0.0513 | 2.5690 | 4800 | 0.0500 | 3.9732 | -4.3709 | -5.1160 | 0.6944 | 0.7451 | -5.1160 | -4.3709 | 0.1787 | 0.0785 | | 0.0498 | 2.7831 | 5200 | 0.0500 | 3.9372 | -4.3318 | -5.0969 | 0.6892 | 0.7651 | -5.0969 | -4.3318 | 0.2138 | 0.1134 | | 0.0496 | 2.9972 | 5600 | 0.0500 | 3.9220 | -4.3252 | -5.1044 | 0.6892 | 0.7793 | -5.1044 | -4.3252 | 0.1444 | 0.0509 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
mini1013/master_cate_lh0
mini1013
2024-11-20T14:24:56Z
207
0
setfit
[ "setfit", "safetensors", "roberta", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:mini1013/master_domain", "base_model:finetune:mini1013/master_domain", "model-index", "region:us" ]
text-classification
2024-11-20T09:35:11Z
--- base_model: mini1013/master_domain library_name: setfit metrics: - metric pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: ์•„์—๋ฅด ๋งˆ์Šคํฌ ํ”ผํฌV๋ผ์ดํŠธํ• 10๋งค KF94๋งˆ์Šคํฌ์ƒˆ๋ถ€๋ฆฌํ˜• ์—ฌ๋ฆ„์šฉ ์กฐ์ธ์„ฑ ๋Œ€ํ˜• ๋ธ”๋ž™ 50๋งค ๋ณต๋ฉ์ด๊ฐ€๊ฒŒ - text: ์ „์ž๋‹ด๋ฐฐ ๋ฌดํ™”๊ธฐ ํํ˜ธํก 3 ๊ฐœ/๊ฐ‘ cudo ONID ๋ฏธ๋‹ˆ ํฌ๋“œ ์นดํŠธ๋ฆฌ์ง€ 1.0ohm ์ €ํ•ญ recoment Vape ํŽœ 01 3pcs one pack ์ฌ๋ฐ์ด๋ฌด๋“œ - text: ๋ ‰์ŠคํŒŸ REX POD ๋ฆด๋ ‰์Šค ์ „์ž๋‹ด๋ฐฐ ํŒŸ RELX ํ˜ธํ™˜ ํฌ๋„ ๋ฒ ์ดํ”„์ฝ”๋“œ - text: ์Šˆ์–ผ๋ฆฌ ๋ฐฐ๋ž€ํ…Œ์ŠคํŠธ๊ธฐ 30๊ฐœ์ž…+์ž„ํ…Œ๊ธฐ 3๊ฐœ์ž… ๋ฐฐํ…Œ๊ธฐ ๋ฐฐ๋ž€์ผ ๋ฐฐ๋ž€๊ธฐ [์ž„์‹ ํ…Œ์ŠคํŠธ๊ธฐ]_ํด๋ฆฌ์–ด ์–ผ๋ฆฌ ํŒจ์ŠคํŠธ X 3๊ฐœ ๋‰ดํŠธ๋ฆฌํ—ฌ์Šค์ผ€์–ด ์ฃผ์‹ํšŒ์‚ฌ - text: ๋ถ€ํ‘ธ ๋ธŒ์ด๋ฉ”์ดํŠธ๋งฅ์Šค ์•ก์ƒ์ž…ํ˜ธํก์ž…๋ฌธ์ „์ž๋‹ด๋ฐฐ ์˜ค๋‹‰์Šค๋ธ”๋ž™ ํ† ์ด๋ฒ ์ดํ”„ inference: true model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.9110184776944967 name: Metric --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 17 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4.0 | <ul><li>'์ฒœ๋…„๊ฑฐ๋ถ์˜จ๊ตฌ๊ธฐ(์ ํ™”์‹)+์ง„์˜๊ฐ์ƒ๋ช…์‘ฅ๋ด‰80+ํ„ฐ๋ณด๋ผ์ดํ„ฐ ์„ธ์ง„๋ฉ”๋””์นผ์•ฝํ’ˆ(์ฃผ)'</li><li>'๊ฐ€์ •์šฉ ์™•์‘ฅ๋ด‰ ๋ง๋ฆฐ์‘ฅ ์•ฝ์ˆ™ ์‘ฅ๊ฐ€๋ฃจ ์ฃผ์ „๋ถ€๋ฆฌ ๊น€์ง„์ˆ˜'</li><li>'[NF81261]์••๋ด‰- ๊ธฐํ™ฉ ์€6ํ˜ธ ํ•œ๊ตญ๋ฉ”๋””์นผ'</li></ul> | | 9.0 | <ul><li>'๊ณ ๋ ค์ˆ˜์ง€์นจ ์„œ์•”์ถœํ˜ˆ์นจ๊ด€ ์‚ฌํ˜ˆ๊ธฐ ์„ธํŠธ ์นจ100๊ฐœ ์•Œ์ฝœ100๋งค ํ•œ๋ฐฉ์ข…ํ•ฉ'</li><li>'KM์นจ 1ํ†ต(100์Œˆ 1000๊ฐœ) ์ผํšŒ์šฉ์นจ ์•Œ์ฝœ์†œ 20๋งค ๋ฉธ๊ท  ์Šคํ”„๋ง์นจ ์†Œ๋… 0.40x60 ์ฃผ์‹ํšŒ์‚ฌ ์—์ด์น˜์ด๋ฐ”์ด์˜ค'</li><li>'TG ์„œ์•”๋ด‰1ํ˜ธ/6ํ˜ธ ๊ธˆ์ƒ‰ 5๋ฐ•์Šค 04. 6ํ˜ธ ๊ธˆ์ƒ‰ 5๋ฐ•์Šค '</li></ul> | | 14.0 | <ul><li>'์˜ฌ๋ฐ”์Šค ์˜ค์ผ ์น ๋“œ๋Ÿฐ 12ml ๋Œ€์šฉ๋Ÿ‰ 3. ์˜ฌ๋ฐ”์Šค์˜ค์ผ ์˜ค๋ฆฌ์ง€๋„ 30ml ๋ฐ”์ดํŠธ๋žœ์Šค'</li><li>'๊ฟ€์ž ๊ฟ€์ž  ์ž…๋ฒŒ๋ฆผ ๋ฐฉ์ง€ ๋งˆ์šฐ์Šค ๋ฐด๋“œ(25๋งค)-3๊ฐœ ๋ฉ”๋””ํŒฉํ† ๋ฆฌ'</li><li>'ํž์กฐ ์œ ์นผ๋ฆฝํˆฌ์Šค ๋ฏผํŠธ๋ฐค 25g ๋‹จํ’ˆ ๊ตฌ๋งค_์œ ์นผ๋ฆฝํˆฌ์Šค ๋ฏผํŠธ๋ฐค 30g (2๊ฐœ์ด์ƒ ๋ฌด๋ฃŒ๋ฐฐ์†ก) ํž์กฐ'</li></ul> | | 12.0 | <ul><li>'ํ—ฌ๋ฒ ์ดํ”„ ์ ค๋กœ ๋งฅ์Šค ํŒŸ ๊ณตํŒŸ 0.6์˜ด ๋ฉ”์‰ฌํŒŸ(๋‚ฑ๊ฐœ1๊ฐœ) ์ „์ž๋‹ด๋ฐฐ ์ „๋‹ด ์ฝ”์ผ ์นดํŠธ๋ฆฌ์ง€ ๋””์–ด๋ฒ ์ดํ”„'</li><li>'๋ชฌ์Šคํ„ฐํŽ€์น˜ ์ „์ž๋‹ด๋ฐฐ์•ก์ƒ ์ „๋‹ด์•ก์ƒ ์™„์„ฑํ˜• ์•Œ๋กœ์—๋ฒ ๋ผ ๋ฌด๋‹ˆ์ฝ”ํ‹ด ์›Œ๋ฆฌ์–ด์ปดํผ๋‹ˆ'</li><li>'๊ตญ๋‚ด๋ฐฐ์†ก ์•„์ด์ฝ”์Šค3 ์บก, ํ™€๋” (์•„์ด์ฝ”์Šค ๋“€์˜ค ํ˜ธํ™˜) ๋ฉ”๊ฐ€ํŠธ๋žœ๋””ํŒจ์…˜'</li></ul> | | 5.0 | <ul><li>'๋งˆ์Šคํด๋ฆฝ ๋งˆ์Šคํฌ ์•ˆ์ชฝ๊นŒ์ง€ ๋ณดํ˜ธํ•˜๋Š” ๋งˆ์Šคํฌ์ŠคํŠธ๋žฉ ํ™”์ดํŠธ๊ทธ๋ ˆ์ด ์ฃผ์‹ํšŒ์‚ฌ ์•„์ด๋ฆฌ์Šค'</li><li>'์•„์—๋ฅด ๋„ฅ๋ฐด๋“œ 10์ข… (ํƒ1) ์‹ค๋ฆฌ์ฝ˜ ๋„ฅ์ŠคํŠธ๋žฉ ๋งˆ์Šคํฌ์ค„ ๊ตญ์‚ฐ CS-NB_PIN ๋„ฅ ๋ฐด๋“œ (ํ•‘ํฌ) 1๊ฐœ ํ•ด๋ฐ€์ปดํผ๋‹ˆ ์ฃผ์‹ํšŒ์‚ฌ'</li><li>'์นด๋ก ์Šจ ๊ณ ๊ธ‰ ๋งˆ์Šคํฌ ์ŠคํŠธ๋žฉ ๋ชฉ๊ฑธ์ด 03.๋ฐ€๋ฆฌํ„ฐ๋ฆฌ์นดํ‚ค ํ•‘์…€๋ง(PINGSELLING)'</li></ul> | | 8.0 | <ul><li>'ํœด์กฑ์‹œ๊ฐ„ ์‹ ํ˜• 6๋งค x 3ํŒฉ ๋ฐœํŒจ์น˜ ๋‹ค๋ฆฌ ์ข…์•„๋ฆฌ ์ฟจ๋ง์‹œํŠธ ์ผ๋ณธํžˆํŠธ ๊ฑด๊ฐ•์Šคํ† ์–ด'</li><li>'ํœด์กฑ์‹œ๊ฐ„ ์ฟจ๋ง์‹œํŠธ 6๋งค์ž… x 5๊ฐœ (์ฃผ)์”จ์ œ์ด์ด์—”์— '</li><li>'ํœด์กฑ์‹œ๊ฐ„ ์ฟจ๋ง์‹œํŠธ 6๋งค์ž… x 5๊ฐœ / ๋‹ค๋ฆฌ๊ด€๋ฆฌ ํŒจ์น˜ ์ฟจ๋งํŒจ์น˜ 7.์˜จ๊ฐํ…Œ๋ผํ”ผ ์˜จ์—ด ๋ฐœ๋ฐ”๋‹ฅ๋ฐด๋“œ 4๋งค์ž…x2๊ฐœ jullia2222'</li></ul> | | 16.0 | <ul><li>'๋ฒ ๋ฆฌ๋ฉ”๋”” ํŒŒ๋ผํ•€ ์™์Šค ๋ ˆ๋ชฌ 453g, 12๊ฐœ ์Šˆ์–ดํŠธ๋ ˆ์ด๋“œ'</li><li>'์™์‹ฑ์›Œ๋จธ๊ธฐ ์ œ๋ชจ์šฉ ๊ณ ๊ธ‰ ์—…์†Œ์šฉ ์™์‹ฑ์›Œ๋จธ ์…€ํ”„ ์™์Šค ์˜ค๋ Œ์ง€ ํ•ธ๋“œ ์™์Šค 1์กฐ๊ฐ (450g) ํ—ฌ๋กœ๊ตฌ์ฏ”'</li><li>'ํŒŒ๋ผํ•€ ๋ณด์˜จ ์žฅ๊ฐ‘ ์ฐœ์งˆ ๋ณด์Šต ๋ณดํ˜ธ ๋ฎ๊ฐœ ๊ฐ€์ •์šฉ ์žฅ๊ฐ‘ 052640DC ๋Œ€์ƒ์ปดํผ๋‹ˆ'</li></ul> | | 6.0 | <ul><li>'์ฐ๋งˆ์Šคํฌ KFAD ๋Œ€ํ˜• 50์ž… ํ™”์ดํŠธ [๋‚ด์ถ”๋Ÿดํ‚ค์Šค ์ฐ๋งˆ์Šคํฌ] KFAD๋Œ€ํ˜•ํ™”์ดํŠธ50์ž…๊ฐœ๋ณ„ํฌ์žฅ ์ฃผ์‹ํšŒ์‚ฌ ์›น์ด์ฆˆ'</li><li>'์‹์•ฝ์ฒ˜ ์˜์•ฝ์™ธํ’ˆ ์ˆ˜์ˆ ์šฉ ์ˆ˜์„ฑ ๋ดํƒˆ๋งˆ์Šคํฌ ๋ฐฑ์ƒ‰ 50๋งค ์— ์•Œ์˜ค์ƒต'</li><li>'์•„์ด๋ฐ”๋‚˜๋ฆฌ KF94 ๋งˆ์Šคํฌ ์ƒˆ๋ถ€๋ฆฌํ˜•๋งˆ์Šคํฌ ์ปฌ๋Ÿฌ 10๋งค MS_์ฝ”ํŠผ์•„์ด๋ณด๋ฆฌ ์ฃผ์‹ํšŒ์‚ฌ ๋ผ์˜จ๋ธŒ๋ผ๋”์Šค'</li></ul> | | 13.0 | <ul><li>'์†๊ฐ€๋ฝ๋งˆ์‚ฌ์ง€๊ธฐ ์†๊ฐ€๋ฝ์ง€์••๊ธฐ ์ง€์••๊ตฌ์Šฌ ์†๊ฐ€๋ฝ๋กค๋Ÿฌ ๋กœ์ฆˆ์˜ํ•˜๋ฃจ'</li><li>'์†๊ฐ€๋ฝ ์ง€์••๊ธฐ ํ˜ˆ์ž๋ฆฌ ํ•ฉ๊ณกํ˜ˆ ์ง€์••๋ด‰ ๋ธ”๋ž™ 365๋žœ๋“œ1'</li><li>'์† ๊ฐ€๋ฝ ํ•ธ๋“œ ๋งˆ์‚ฌ์ง€ ์ง€์•• ๋ง›์‚ฌ์ง€ ์•ˆ๋งˆ ๊ธฐ ์†๊ฐ€๋ฝ ๋งˆ์‚ฌ์ง€ ๋กค๋Ÿฌ ์—์Šค๋”๋ธ”์œ ์ปดํผ๋‹ˆ'</li></ul> | | 3.0 | <ul><li>'๋Œ€์žฅ๊ฒ€์‚ฌํ‚คํŠธ ๋ถ„๋ณ€์ž ํ˜ˆ๊ฒ€์‚ฌ ์ด์ง€๋””ํ…ํŠธ ์šฉ์ข…์„ ์ข… 3๋งค ๋Œ€์žฅ๊ฒ€์‚ฌํ‚คํŠธ X 4๋งค (์ฃผ)๋Œ€์ง€์ธํŒœ'</li><li>'๋ฉ”๋””์œ„ ์…€ํ”„ ์ด์ง€๋””ํ…ํŠธ ๋Œ€์žฅ๊ฒ€์‚ฌ์ง€/๊ฐ„ํŽธ2๋ถ„/์ดˆ๊ธฐ ๋Œ€์žฅ์•” ์ž๊ฐ€์ง„๋‹จ/์šฉ์ข… ๊ฒ€์‚ฌ ์ฃผ์‹ํšŒ์‚ฌ ์†Œ์—ฐ'</li><li>'์ฒญํ88 ์ˆ˜๋™์‹ํ‰๋ฒฝ์ง„๋™๊ธฐ ๋ชฉ ๊ฐ€๋ž˜ ์ œ๊ฑฐ๊ธฐ ๋ฐฐ์ถœ๊ธฐ ๊ฐ๋‹ด ์œ ๋„๊ธฐ ํ˜ธํก ์žฌํ™œ ํํ™œ๋Ÿ‰ ์šด๋™๊ธฐ 1_์—ฐ๋‘์ƒ‰(๋ถˆํˆฌ๋ช…) ์ผ€์ด๋น„์Šคํ† ์–ด'</li></ul> | | 1.0 | <ul><li>'ํŽ˜์ด๋ฒ„ R300B ์Šคํฌ์ธ ํŒ”์ฐŒ 3์ค„ํƒ€์ž… ํ•ธ๋“œ๋ฉ”์ด๋“œ ์•ผ๊ตฌ ์šฉํ’ˆ ๋‚จ์ž ์—ฌ์ž R300B-08_XL ๋ฒ„๋“ค๋ฒ„๋“คRYU'</li><li>'๊ฒŒ๋ฅด๋งˆ๋Š„ ์Šคํฌ์ธ ํŒ”์ฐŒ ์Œ์ด์˜จ ๋ฐธ๋Ÿฐ์Šค ๋ฐด๋“œ ๊ฒ€์€์ƒ‰ S์‚ฌ์ด์ฆˆ ๋ฅด๋ณด'</li><li>'๊ฑด๊ฐ•ํŒ”์ฐŒ ๊ฒŒ๋ฅด๋งˆ๋Š„ํŒ”์ฐŒ ์ˆœ๋„ ํšŒ๋ณต ํ”ผ๋กœ 99 ๋‚จ์„ฑ์šฉ ๋กœ์ฆˆ ๊ณจ๋“œ (์˜ฌ ๋ธ”๋ž™ ๊ฒŒ๋ฅด๋งˆ๋Š„) ๋‚˜์˜์„ ๋ฌผ'</li></ul> | | 10.0 | <ul><li>'๋งˆ์Šค์ผ€์–ด ๋ฉ”ํƒˆ ํˆฌ๋ช… ์œ„์ƒ ๋งˆ์Šคํฌ ์‹๋‹น ์ฃผ๋ฐฉ ์ฃผ๋ฐฉ์šฉ ์Œ์‹์  ๋ฉ”ํƒˆ_1๊ฐœ์ž… (์ฃผ)์ฝ”์Šค๋ชจ์Šค์›จ์ด'</li><li>'๋งˆ์Šค์ผ€์–ด ๋ฉ”ํƒˆ ํˆฌ๋ช… ์œ„์ƒ ๋งˆ์Šคํฌ ์‹๋‹น ์ฃผ๋ฐฉ ์ฃผ๋ฐฉ์šฉ ์Œ์‹์  ์—์ฝ”_5๊ฐœ์ž… (์ฃผ)์ฝ”์Šค๋ชจ์Šค์›จ์ด'</li><li>'๋งˆ์Šค์ผ€์–ด ๋ฉ”ํƒˆ ํˆฌ๋ช… ์œ„์ƒ ๋งˆ์Šคํฌ ์‹๋‹น ์ฃผ๋ฐฉ ์ฃผ๋ฐฉ์šฉ ์Œ์‹์  ๋ฉ”ํƒˆ_5๊ฐœ์ž… (์ฃผ)์ฝ”์Šค๋ชจ์Šค์›จ์ด'</li></ul> | | 2.0 | <ul><li>'์•„๋กœ๋งˆ ๊ธˆ์—ฐ ํŒŒ์ดํ”„ ๋‹ˆ์ฝ”ํ‹ด ์—†๋Š” ๋น„ํƒ€ ์Šคํ‹ฑ ํ”ผ์šฐ๋Š” ๋น„ํƒ€๋ฏผ ๋‹ด๋ฐฐ ๋Œ€์ฒด ๋ณต๋งŒ๋‘๋‹ท์ปด'</li><li>'๊ธˆ์—ฐ๋ณด์กฐ์ œ ๊ธˆ์—ฐํŒŒ์ดํ”„ ์•ฝ๊ตญ ๋‹ˆ์ฝ”ํ‹ด ํŒจ์น˜ ๋ฐฐ์ถœ ๊ธˆ์—ฐ์ดˆ ์•ฝ ์˜๋งจ'</li><li>'๋‹ด๋ฐฐ๋Œ€์‹  ํ”ผ์šฐ๋Š” ์•ฝ๊ตญ ๋น„ํƒ€๋ฏผ ๋‹ด๋ฐฐ ํŒŒ์ดํ”„ ์•„๊ทธ์–ผ๋ผ'</li></ul> | | 0.0 | <ul><li>'ํ˜ธ๋ฌด๋กœ ๊ฒจ์šธ์šฉ ๋จผ์ง€์—†๋Š” ๊ณ ๊ธ‰ ์ฐจ๋ ต์ด๋ถˆ ๋‹จํ’ˆ SS Q K SK(๋‹น์ผ์ถœ๊ณ ) ํฌ๋ฆผ_์Šˆํผํ‚น SK ๋ฒ”ํผ์นดํƒ€์š”'</li><li>'ํŽœ๋˜ํŠธ ๋ณด๊ด€ ํšจ๋„ ์•ฝ๋ชฉ๊ฑธ์ด ๋ชฉ๊ฑธ์ด BW5BA3C5 ๊ณจ๋“œ_ํ˜‘์‹ฌ์ฆN ํ•˜๋‹ˆ์Šคํ† ์–ด16'</li><li>'ํ† ๋„ค์ด๋„๋ชฉ๊ฑธ์ด ๋งˆ๋ผํ†ค ex์™€์ด์–ด ๊ฑด๊ฐ• ๋Ÿฌ๋‹ ์Šคํฌ์ธ  ์•ผ๊ตฌjkl493 EX์™€์ด์–ดํ† ๋„ค์ด๋„๋ชฉ๊ฑธ์ดํ•‘ํฌ-ํ™”์ดํŠธ43cm ์ƒตํ”„๋ฆฌG'</li></ul> | | 15.0 | <ul><li>'NS ๋ฐœํฌ์„ธ์ฒ™์ • 50์ • ์„ธ์ฒ™์ œ ์ฝ”์„ธ์ฒ™๊ธฐ ํ…€๋ธ”๋Ÿฌ ๋ฌผ๋ณ‘ ํ‹€๋‹ˆ ์Œ์‹๊ธฐ ์กฐ๋ฆฌ๊ธฐ ์‚ด๊ท  ์„ธ์ •์ œ NS์„ธ์ฒ™์ •(50์ •) ๋ฉ”๋””ํŒŒ์ธ'</li><li>'๋…ธ์ฆˆ์Šค์œ„ํผ ์ฝ”์„ธ์ฒ™๊ธฐ(๋ถ„๋ง10ํฌ)+๋ถ„๋ง100ํฌset/์ฝ”์„ธ์ • MinSellAmount ๋ฉ”๋””ํŒŒ์ธ'</li><li>'๋ˆˆ๊ฐ€์Šต๊ธฐ ํ™˜์ ˆ๊ธฐ ๋น„๊ฐ• ์ฝ”๊ฑด์กฐ ์น˜๋ฃŒ ์ฝง๊ตฌ๋ฉ ์ŠคํŒ€๊ธฐ G. 50ml ์šฉ๋Ÿ‰ + ๋“œ๋ผ์ด ์•„์ดํŒฉ 5ํŒฉ ํ•˜๋Š˜'</li></ul> | | 11.0 | <ul><li>'์•ก์ƒ ์ „์ž๋‹ด๋ฐฐ ์˜ค๋ฆฌ์ง€๋„ Yocan Flat Plus ๋ฐฐํ„ฐ๋ฆฌ ๋ฒ ์ดํ”„ ํŽœ 900mAh 510 ์Šค๋ ˆ๋“œ 10s ์˜ˆ์—ด Cํƒ€์ž… 08ohm ์นดํŠธ๋ฆฌ์ง€ ์ „์ž ๋‹ด๋ฐฐ Black_3pcs ํ†ฑ์ผ“'</li><li>'์ „์ž๋‹ด๋ฐฐ ๋ฌดํ™”๊ธฐ ํํ˜ธํก ๊ต์ฒด ์•„ํฌ๋ฆด ์ฒœ๋‘ฅ ํŒจ๋„ ์ปค๋ฒ„ Cthulhu AIO ๋ฐ•์Šค ๋ชจ๋“œ ์•ก์„ธ์„œ๋ฆฌ 01 WHITE ํŠน๋ณ„ํ•œํ•˜๋ฃจ์ง๊ตฌ'</li><li>'์š”์š” ๋ฉœ๋กœ๋ง์Šค ์ž…ํ˜ธํก ์ „์ž๋‹ด๋ฐฐ ์•ก์ƒ ๋Ÿฌ๋ธŒํ”ผ์น˜ ํ๋‹น์Šค'</li></ul> | | 7.0 | <ul><li>'์˜ˆ์Šค์ด์–ด ์†Œ์Œ๋ฐฉ์ง€ ์ด์–ดํ”Œ๋Ÿฌ๊ทธ ์ˆ˜๋ฉด๊ท€๋งˆ๊ฐœ ์ธต๊ฐ„ ์ฐจ๋‹จ ์ˆ˜์˜ NS4000 FI3000 TI5000 [์ œํ’ˆ2]NS4000_์˜ค๋ Œ์ง€ ์˜ˆ์Šค์ด์–ด๋ณธ์‚ฌ'</li><li>'์‹ค๋ฆฌ์ฝ˜๊ท€๋ฎ๊ฐœ ์—ผ์ƒ‰์šฉ๊ท€๋ณดํ˜ธ์ปค๋ฒ„ ํŒŒ๋งˆ์šฉ๊ท€๋งˆ๊ฐœ ๋ฆฌํ…Œ์ผํŒŒํฌ'</li><li>'๋งฅ์Šค ์†Œ์Œ๋ฐฉ์ง€ ๊ท€๋งˆ๊ฐœ ๋Œ€์šฉ๋Ÿ‰ ์†Œํ”„ํŠธํผ ๋“œ๋ฆผ๊ฑธ 100๊ฐœ์ž… ์ฝ” ๊ณจ์ด ์†Œ์Œ์ฐจ๋‹จ ์ˆ˜๋ฉด ์ด์–ดํ”Œ๋Ÿฌ๊ทธ ์šธํŠธ๋ผ 100๊ฐœ์ž… (์ฃผ)์—๋ฒ„์…€'</li></ul> | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.9110 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the ๐Ÿค— Hub model = SetFitModel.from_pretrained("mini1013/master_cate_lh0") # Run inference preds = model("๋ถ€ํ‘ธ ๋ธŒ์ด๋ฉ”์ดํŠธ๋งฅ์Šค ์•ก์ƒ์ž…ํ˜ธํก์ž…๋ฌธ์ „์ž๋‹ด๋ฐฐ ์˜ค๋‹‰์Šค๋ธ”๋ž™ ํ† ์ด๋ฒ ์ดํ”„") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 10.4659 | 31 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 50 | | 1.0 | 50 | | 2.0 | 25 | | 3.0 | 50 | | 4.0 | 50 | | 5.0 | 50 | | 6.0 | 50 | | 7.0 | 50 | | 8.0 | 50 | | 9.0 | 50 | | 10.0 | 28 | | 11.0 | 50 | | 12.0 | 24 | | 13.0 | 50 | | 14.0 | 50 | | 15.0 | 50 | | 16.0 | 50 | ### Training Hyperparameters - batch_size: (512, 512) - num_epochs: (20, 20) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0082 | 1 | 0.4305 | - | | 0.4098 | 50 | 0.347 | - | | 0.8197 | 100 | 0.1694 | - | | 1.2295 | 150 | 0.0708 | - | | 1.6393 | 200 | 0.0363 | - | | 2.0492 | 250 | 0.0314 | - | | 2.4590 | 300 | 0.0411 | - | | 2.8689 | 350 | 0.0414 | - | | 3.2787 | 400 | 0.0175 | - | | 3.6885 | 450 | 0.0267 | - | | 4.0984 | 500 | 0.0184 | - | | 4.5082 | 550 | 0.0085 | - | | 4.9180 | 600 | 0.0185 | - | | 5.3279 | 650 | 0.0094 | - | | 5.7377 | 700 | 0.0022 | - | | 6.1475 | 750 | 0.0078 | - | | 6.5574 | 800 | 0.0104 | - | | 6.9672 | 850 | 0.004 | - | | 7.3770 | 900 | 0.0081 | - | | 7.7869 | 950 | 0.0058 | - | | 8.1967 | 1000 | 0.0045 | - | | 8.6066 | 1050 | 0.0021 | - | | 9.0164 | 1100 | 0.0079 | - | | 9.4262 | 1150 | 0.0021 | - | | 9.8361 | 1200 | 0.0002 | - | | 10.2459 | 1250 | 0.0001 | - | | 10.6557 | 1300 | 0.0001 | - | | 11.0656 | 1350 | 0.0001 | - | | 11.4754 | 1400 | 0.002 | - | | 11.8852 | 1450 | 0.0002 | - | | 12.2951 | 1500 | 0.0039 | - | | 12.7049 | 1550 | 0.0001 | - | | 13.1148 | 1600 | 0.0001 | - | | 13.5246 | 1650 | 0.002 | - | | 13.9344 | 1700 | 0.0005 | - | | 14.3443 | 1750 | 0.0002 | - | | 14.7541 | 1800 | 0.0001 | - | | 15.1639 | 1850 | 0.0001 | - | | 15.5738 | 1900 | 0.0001 | - | | 15.9836 | 1950 | 0.0001 | - | | 16.3934 | 2000 | 0.0001 | - | | 16.8033 | 2050 | 0.0001 | - | | 17.2131 | 2100 | 0.0001 | - | | 17.6230 | 2150 | 0.0001 | - | | 18.0328 | 2200 | 0.0001 | - | | 18.4426 | 2250 | 0.0001 | - | | 18.8525 | 2300 | 0.0001 | - | | 19.2623 | 2350 | 0.0 | - | | 19.6721 | 2400 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.46.1 - PyTorch: 2.4.0+cu121 - Datasets: 2.20.0 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
botways/mistral_finetune
botways
2024-11-20T14:22:31Z
77
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-20T14:13:28Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cristianmanosalva/NER-finetuning-XMLR-CM-V1
cristianmanosalva
2024-11-20T14:22:16Z
122
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:raulgdp/xml-roberta-large-finetuned-ner", "base_model:finetune:raulgdp/xml-roberta-large-finetuned-ner", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-20T14:20:22Z
--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-XMLR-CM-V1 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9336523819882532 - name: Recall type: recall value: 0.9595349877040018 - name: F1 type: f1 value: 0.9464167585446528 - name: Accuracy type: accuracy value: 0.9819591471596839 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetuning-XMLR-CM-V1 This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0849 - Precision: 0.9337 - Recall: 0.9595 - F1: 0.9464 - Accuracy: 0.9820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2697 | 1.0 | 612 | 0.0995 | 0.9022 | 0.9392 | 0.9203 | 0.9726 | | 0.0954 | 2.0 | 1224 | 0.0909 | 0.9171 | 0.9586 | 0.9374 | 0.9778 | | 0.0661 | 3.0 | 1836 | 0.0789 | 0.9337 | 0.9581 | 0.9457 | 0.9816 | | 0.0533 | 4.0 | 2448 | 0.0853 | 0.9317 | 0.9594 | 0.9454 | 0.9811 | | 0.035 | 5.0 | 3060 | 0.0849 | 0.9337 | 0.9595 | 0.9464 | 0.9820 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
yakazimir/qwen_qfUNL_entropy_0_01
yakazimir
2024-11-20T14:21:03Z
149
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "alignment-handbook", "trl", "simpo", "generated_from_trainer", "conversational", "dataset:yakazimir/ultrafeedback_binarized", "base_model:trl-lib/qwen1.5-0.5b-sft", "base_model:finetune:trl-lib/qwen1.5-0.5b-sft", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-19T08:18:30Z
--- library_name: transformers license: other base_model: trl-lib/qwen1.5-0.5b-sft tags: - alignment-handbook - trl - simpo - generated_from_trainer - trl - simpo - generated_from_trainer datasets: - yakazimir/ultrafeedback_binarized model-index: - name: qwen_qfUNL_entropy_0_01 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qwen_qfUNL_entropy_0_01 This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6685 - Sft Loss: 1.5897 - Rewards/chosen: -1.6017 - Rewards/rejected: -2.2330 - Rewards/accuracies: 0.6506 - Rewards/margins: 0.6314 - Logps/rejected: -2.2330 - Logps/chosen: -1.6017 - Logits/rejected: 0.2142 - Logits/chosen: 0.1178 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6889 | 0.2141 | 400 | 0.7003 | 1.4382 | -1.5229 | -1.6955 | 0.5579 | 0.1726 | -1.6955 | -1.5229 | 0.2817 | 0.1945 | | 0.6916 | 0.4282 | 800 | 0.6822 | 1.5282 | -1.5414 | -1.8469 | 0.6076 | 0.3055 | -1.8469 | -1.5414 | 0.2875 | 0.2001 | | 0.6757 | 0.6422 | 1200 | 0.6771 | 1.5574 | -1.5600 | -1.9539 | 0.6217 | 0.3939 | -1.9539 | -1.5600 | 0.2922 | 0.2043 | | 0.6744 | 0.8563 | 1600 | 0.6739 | 1.5959 | -1.6093 | -2.0408 | 0.6335 | 0.4315 | -2.0408 | -1.6093 | 0.2827 | 0.1913 | | 0.714 | 1.0704 | 2000 | 0.6719 | 1.5564 | -1.5625 | -2.0466 | 0.6269 | 0.4841 | -2.0466 | -1.5625 | 0.1990 | 0.1104 | | 0.6715 | 1.2845 | 2400 | 0.6719 | 1.5799 | -1.5845 | -2.1083 | 0.6380 | 0.5238 | -2.1083 | -1.5845 | 0.2487 | 0.1536 | | 0.6658 | 1.4986 | 2800 | 0.6707 | 1.6055 | -1.6197 | -2.1818 | 0.6454 | 0.5621 | -2.1818 | -1.6197 | 0.1108 | 0.0257 | | 0.6709 | 1.7127 | 3200 | 0.6701 | 1.5845 | -1.5941 | -2.1721 | 0.6476 | 0.5780 | -2.1721 | -1.5941 | 0.1373 | 0.0502 | | 0.659 | 1.9267 | 3600 | 0.6686 | 1.5568 | -1.5549 | -2.1383 | 0.6454 | 0.5835 | -2.1383 | -1.5549 | 0.1189 | 0.0332 | | 0.6241 | 2.1408 | 4000 | 0.6689 | 1.5859 | -1.5837 | -2.1770 | 0.6454 | 0.5933 | -2.1770 | -1.5837 | 0.1840 | 0.0917 | | 0.6443 | 2.3549 | 4400 | 0.6692 | 1.5919 | -1.6001 | -2.2168 | 0.6461 | 0.6166 | -2.2168 | -1.6001 | 0.0426 | -0.0398 | | 0.6356 | 2.5690 | 4800 | 0.6686 | 1.5864 | -1.5964 | -2.2216 | 0.6484 | 0.6252 | -2.2216 | -1.5964 | 0.1106 | 0.0226 | | 0.6448 | 2.7831 | 5200 | 0.6683 | 1.5882 | -1.5994 | -2.2308 | 0.6506 | 0.6314 | -2.2308 | -1.5994 | 0.0974 | 0.0105 | | 0.6368 | 2.9972 | 5600 | 0.6685 | 1.5897 | -1.6017 | -2.2330 | 0.6506 | 0.6314 | -2.2330 | -1.6017 | 0.2142 | 0.1178 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1
tomaarsen/mpnet-base-nq-cgist-triplet-gt
tomaarsen
2024-11-20T14:18:30Z
15
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:50000", "loss:CachedGISTEmbedLoss", "en", "dataset:tomaarsen/gooaq-hard-negatives", "arxiv:1908.10084", "base_model:microsoft/mpnet-base", "base_model:finetune:microsoft/mpnet-base", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-20T14:18:00Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:50000 - loss:CachedGISTEmbedLoss base_model: microsoft/mpnet-base widget: - source_sentence: what does the accounts receivable turnover measure? sentences: - The accounts receivable turnover ratio is an accounting measure used to quantify a company's effectiveness in collecting its receivables or money owed by clients. The ratio shows how well a company uses and manages the credit it extends to customers and how quickly that short-term debt is collected or is paid. - Capital budgeting, and investment appraisal, is the planning process used to determine whether an organization's long term investments such as new machinery, replacement of machinery, new plants, new products, and research development projects are worth the funding of cash through the firm's capitalization structure ( ... - The accounts receivable turnover ratio is an accounting measure used to quantify a company's effectiveness in collecting its receivables or money owed by clients. The ratio shows how well a company uses and manages the credit it extends to customers and how quickly that short-term debt is collected or is paid. - source_sentence: does gabapentin cause liver problems? sentences: - Gabapentin has no appreciable liver metabolism, yet, suspected cases of gabapentin-induced hepatotoxicity have been reported. Per literature review, two cases of possible gabapentin-induced liver injury have been reported. - Strongholds are a type of story mission which only unlocks after enough progression through the game. There are three Stronghold's during the first section of progression through The Division 2. You'll need to complete the first two and have reached level 30 before being able to unlock the final Stronghold. - The most-common side effects attributed to Gabapentin include mild sedation, ataxia, and occasional diarrhea. Sedation can be minimized by tapering from a smaller starting dose to the desired dose. When treating seizures, it is ideal to wean off the drug to reduce the risk of withdrawal seizures. - source_sentence: how long should you wait to give blood after eating? sentences: - Until the bleeding has stopped it is natural to taste blood or to see traces of blood in your saliva. You may stop using gauze after the flow stops โ€“ usually around 8 hours after surgery. - Before donation The first and most important ruleโ€”never donate blood on an empty stomach. โ€œEat a wholesome meal about 2-3 hours before donating to keep your blood sugar stable," says Dr Chaturvedi. The timing of the meal is important too. You need to allow the food to be digested properly before the blood is drawn. - While grid computing involves virtualizing computing resources to store massive amounts of data, whereas cloud computing is where an application doesn't access resources directly, rather it accesses them through a service over the internet. ... - source_sentence: what is the difference between chicken francese and chicken marsala? sentences: - Chicken is the species name, equivalent to our โ€œhuman.โ€ Rooster is an adult male, equivalent to โ€œman.โ€ Hen is an adult female, equivalent to โ€œwoman.โ€ Cockerel is a juvenile male, equivalent to โ€œboy/young man.โ€ - What is 99 kg in pounds? - 99 kg is equal to 218.26 pounds. - The difference between the two is for Francese, the chicken breast is first dipped in flour, then into a beaten egg mixture, before being cooked. For piccata, the chicken is first dipped in egg and then in flour. Both are then simmered in a lemony butter sauce, but the piccata sauce includes capers.โ€ - source_sentence: what energy is released when coal is burned? sentences: - When coal is burned, it reacts with the oxygen in the air. This chemical reaction converts the stored solar energy into thermal energy, which is released as heat. But it also produces carbon dioxide and methane. - When coal is burned it releases a number of airborne toxins and pollutants. They include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various other heavy metals. - Squad Building Challenges allow you to exchange sets of players for coins, packs, and special items in FUT 20. Each of these challenges come with specific requirements, such as including players from certain teams. ... Live SBCs are time-limited challenges which often give out unique, high-rated versions of players. datasets: - tomaarsen/gooaq-hard-negatives pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 co2_eq_emissions: emissions: 40.414352043491995 energy_consumed: 0.10397258579449552 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.297 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: MPNet base trained on Natural Questions pairs results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: cosine_accuracy@1 value: 0.22 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.72 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11599999999999999 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.092 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.09333333333333332 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.195 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.22666666666666666 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.36733333333333335 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.27399441682859144 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36331746031746026 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.20383864617106084 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: cosine_accuracy@1 value: 0.46 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.64 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.76 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.84 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.46 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3760000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.34 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.03065300183409328 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.07824513873584021 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.12190077086725051 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.21649668807903738 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.38922276974007985 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5768571428571428 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.27830317958127815 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: cosine_accuracy@1 value: 0.38 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.54 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.58 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.38 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07200000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.37 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.52 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.57 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.68 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5226736410648857 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4790238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4780826341570998 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: cosine_accuracy@1 value: 0.28 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.52 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.58 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.28 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09599999999999997 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1371904761904762 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.32535714285714284 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3653571428571428 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.42940476190476184 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.34407947120145826 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3881666666666667 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2878001762783797 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: cosine_accuracy@1 value: 0.34 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.58 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.64 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.74 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.34 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21333333333333332 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14800000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.094 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.17 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.32 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.37 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.47 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3814617400581295 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4695793650793651 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.30635937490171045 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.12 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.66 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.12 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11200000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.066 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.12 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.3 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.56 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.66 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3660111210554949 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.27407936507936503 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2870484235732714 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: cosine_accuracy@1 value: 0.32 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.44 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.32 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.21333333333333332 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.196 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.144 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.012173283062756207 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.02038195250132044 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.028711609969173105 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.04001132454412933 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.17348600988460589 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.37288095238095237 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.04905096401443591 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.16 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.38 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.46 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.58 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.16 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.12666666666666665 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09200000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06000000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.15 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.36 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.43 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.54 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.34266003995975836 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2898015873015873 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.29298840458552056 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: cosine_accuracy@1 value: 0.8 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.92 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.96 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.8 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.244 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.13399999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7006666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8553333333333333 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8993333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9566666666666666 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8760206475896655 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8545238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8464432234432234 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: cosine_accuracy@1 value: 0.36 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.48 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.54 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.68 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.25999999999999995 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.21600000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.15200000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.07566666666666669 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.16166666666666665 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.22266666666666668 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.31466666666666665 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2989790025477086 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.44196825396825395 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.23644335943955802 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: cosine_accuracy@1 value: 0.18 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.56 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.64 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.84 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.18 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18666666666666668 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.128 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08399999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.56 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.64 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.84 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5000949127836057 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.392515873015873 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4000896669795642 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: cosine_accuracy@1 value: 0.36 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.46 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.48 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.62 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10400000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.068 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.325 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.44 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.46 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.605 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4619142281323308 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.43007936507936506 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.42744465636932816 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: cosine_accuracy@1 value: 0.5306122448979592 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7142857142857143 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8571428571428571 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9591836734693877 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5306122448979592 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.44217687074829926 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.4122448979591837 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.3530612244897959 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.03881638827876476 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.09899647775241191 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.14503016807403868 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.23921899286976872 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.40436873020254516 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6520651117589893 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3151658515102787 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.3469701726844584 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5303296703296704 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6074725274725276 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7214756671899529 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3469701726844584 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.23401360544217684 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18648037676609108 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.13500470957613817 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18488460123328906 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.32576774706513195 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.3876666429564824 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.48913834108187415 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4103820562345277 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4603737509655877 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3391583508465161 name: Cosine Map@100 --- # MPNet base trained on Natural Questions pairs This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("tomaarsen/mpnet-base-nq-cgist-triplet-gt") # Run inference sentences = [ 'what energy is released when coal is burned?', 'When coal is burned, it reacts with the oxygen in the air. This chemical reaction converts the stored solar energy into thermal energy, which is released as heat. But it also produces carbon dioxide and methane.', 'When coal is burned it releases a number of airborne toxins and pollutants. They include mercury, lead, sulfur dioxide, nitrogen oxides, particulates, and various other heavy metals.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------| | cosine_accuracy@1 | 0.22 | 0.46 | 0.38 | 0.28 | 0.34 | 0.12 | 0.32 | 0.16 | 0.8 | 0.36 | 0.18 | 0.36 | 0.5306 | | cosine_accuracy@3 | 0.44 | 0.64 | 0.54 | 0.5 | 0.58 | 0.3 | 0.4 | 0.38 | 0.9 | 0.48 | 0.56 | 0.46 | 0.7143 | | cosine_accuracy@5 | 0.5 | 0.76 | 0.58 | 0.52 | 0.64 | 0.56 | 0.44 | 0.46 | 0.92 | 0.54 | 0.64 | 0.48 | 0.8571 | | cosine_accuracy@10 | 0.72 | 0.84 | 0.7 | 0.58 | 0.74 | 0.66 | 0.5 | 0.58 | 0.96 | 0.68 | 0.84 | 0.62 | 0.9592 | | cosine_precision@1 | 0.22 | 0.46 | 0.38 | 0.28 | 0.34 | 0.12 | 0.32 | 0.16 | 0.8 | 0.36 | 0.18 | 0.36 | 0.5306 | | cosine_precision@3 | 0.1667 | 0.4 | 0.18 | 0.22 | 0.2133 | 0.1 | 0.2133 | 0.1267 | 0.3667 | 0.26 | 0.1867 | 0.1667 | 0.4422 | | cosine_precision@5 | 0.116 | 0.376 | 0.12 | 0.16 | 0.148 | 0.112 | 0.196 | 0.092 | 0.244 | 0.216 | 0.128 | 0.104 | 0.4122 | | cosine_precision@10 | 0.092 | 0.34 | 0.072 | 0.096 | 0.094 | 0.066 | 0.144 | 0.06 | 0.134 | 0.152 | 0.084 | 0.068 | 0.3531 | | cosine_recall@1 | 0.0933 | 0.0307 | 0.37 | 0.1372 | 0.17 | 0.12 | 0.0122 | 0.15 | 0.7007 | 0.0757 | 0.18 | 0.325 | 0.0388 | | cosine_recall@3 | 0.195 | 0.0782 | 0.52 | 0.3254 | 0.32 | 0.3 | 0.0204 | 0.36 | 0.8553 | 0.1617 | 0.56 | 0.44 | 0.099 | | cosine_recall@5 | 0.2267 | 0.1219 | 0.57 | 0.3654 | 0.37 | 0.56 | 0.0287 | 0.43 | 0.8993 | 0.2227 | 0.64 | 0.46 | 0.145 | | cosine_recall@10 | 0.3673 | 0.2165 | 0.68 | 0.4294 | 0.47 | 0.66 | 0.04 | 0.54 | 0.9567 | 0.3147 | 0.84 | 0.605 | 0.2392 | | **cosine_ndcg@10** | **0.274** | **0.3892** | **0.5227** | **0.3441** | **0.3815** | **0.366** | **0.1735** | **0.3427** | **0.876** | **0.299** | **0.5001** | **0.4619** | **0.4044** | | cosine_mrr@10 | 0.3633 | 0.5769 | 0.479 | 0.3882 | 0.4696 | 0.2741 | 0.3729 | 0.2898 | 0.8545 | 0.442 | 0.3925 | 0.4301 | 0.6521 | | cosine_map@100 | 0.2038 | 0.2783 | 0.4781 | 0.2878 | 0.3064 | 0.287 | 0.0491 | 0.293 | 0.8464 | 0.2364 | 0.4001 | 0.4274 | 0.3152 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.347 | | cosine_accuracy@3 | 0.5303 | | cosine_accuracy@5 | 0.6075 | | cosine_accuracy@10 | 0.7215 | | cosine_precision@1 | 0.347 | | cosine_precision@3 | 0.234 | | cosine_precision@5 | 0.1865 | | cosine_precision@10 | 0.135 | | cosine_recall@1 | 0.1849 | | cosine_recall@3 | 0.3258 | | cosine_recall@5 | 0.3877 | | cosine_recall@10 | 0.4891 | | **cosine_ndcg@10** | **0.4104** | | cosine_mrr@10 | 0.4604 | | cosine_map@100 | 0.3392 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### gooaq-hard-negatives * Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2) * Size: 50,000 training samples * Columns: <code>question</code>, <code>answer</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | question | answer | negative | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 11.53 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 59.79 tokens</li><li>max: 150 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 58.76 tokens</li><li>max: 143 tokens</li></ul> | * Samples: | question | answer | negative | |:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>what is the difference between calories from fat and total fat?</code> | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code> | <code>Fat has more than twice as many calories per gram as carbohydrates and proteins. A gram of fat has about 9 calories, while a gram of carbohydrate or protein has about 4 calories. In other words, you could eat twice as much carbohydrates or proteins as fat for the same amount of calories.</code> | | <code>what is the difference between return transcript and account transcript?</code> | <code>A tax return transcript usually meets the needs of lending institutions offering mortgages and student loans. ... Tax Account Transcript - shows basic data such as return type, marital status, adjusted gross income, taxable income and all payment types. It also shows changes made after you filed your original return.</code> | <code>Trial balance is not a financial statement whereas a balance sheet is a financial statement. Trial balance is solely used for internal purposes whereas a balance sheet is used for purposes other than internal i.e. external. In a trial balance, each and every account is divided into debit (dr.) and credit (cr.)</code> | | <code>how long does my dog need to fast before sedation?</code> | <code>Now, guidelines are aimed towards 6-8 hours before surgery. This pre-op fasting time is much more beneficial for your pets because you have enough food in there to neutralize the stomach acid, preventing it from coming up the esophagus that causes regurgitation under anesthetic.</code> | <code>Try not to let your pooch rapidly wolf down his/her food! Do not let the dog play or exercise (e.g. go for a walk) for at least two hours after having a meal. Ensure continuous fresh water is available to avoid your pet gulping down a large amount after eating.</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Evaluation Dataset #### gooaq-hard-negatives * Dataset: [gooaq-hard-negatives](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives) at [87594a1](https://huggingface.co/datasets/tomaarsen/gooaq-hard-negatives/tree/87594a1e6c58e88b5843afa9da3a97ffd75d01c2) * Size: 10,048,700 evaluation samples * Columns: <code>question</code>, <code>answer</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | question | answer | negative | |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 8 tokens</li><li>mean: 11.61 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 58.16 tokens</li><li>max: 131 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 57.98 tokens</li><li>max: 157 tokens</li></ul> | * Samples: | question | answer | negative | |:--------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>how is height width and length written?</code> | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width.</code> | <code>The Graphics' industry standard is width by height (width x height). Meaning that when you write your measurements, you write them from your point of view, beginning with the width. That's important.</code> | | <code>what is the difference between pork shoulder and loin?</code> | <code>All the recipes I've found for pulled pork recommends a shoulder/butt. Shoulders take longer to cook than a loin, because they're tougher. Loins are lean, while shoulders have marbled fat inside.</code> | <code>They are extracted from the loin, which runs from the hip to the shoulder, and it has a small strip of meat called the tenderloin. Unlike other pork, this pork chop is cut from four major sections, which are the shoulder, also known as the blade chops, ribs chops, loin chops, and the last, which is the sirloin chops.</code> | | <code>is the yin yang symbol religious?</code> | <code>The ubiquitous yin-yang symbol holds its roots in Taoism/Daoism, a Chinese religion and philosophy. The yin, the dark swirl, is associated with shadows, femininity, and the trough of a wave; the yang, the light swirl, represents brightness, passion and growth.</code> | <code>Yin energy is in the calm colors around you, in the soft music, in the soothing sound of a water fountain, or the relaxing images of water. Yang (active energy) is the feng shui energy expressed in strong, vibrant sounds and colors, bright lights, upward moving energy, tall plants, etc.</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:-----:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:| | 0.04 | 1 | 11.5142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2 | 5 | 9.438 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4 | 10 | 5.5516 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6 | 15 | 3.7045 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8 | 20 | 2.7618 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 1.0 | 25 | 2.1657 | 1.3177 | 0.2740 | 0.3892 | 0.5227 | 0.3441 | 0.3815 | 0.3660 | 0.1735 | 0.3427 | 0.8760 | 0.2990 | 0.5001 | 0.4619 | 0.4044 | 0.4104 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.104 kWh - **Carbon Emitted**: 0.040 kg of CO2 - **Hours Used**: 0.297 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.4.0.dev0 - Transformers: 4.46.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 2.20.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
ryefoxlime/gemma-2-2b-it-therapist
ryefoxlime
2024-11-20T14:15:00Z
131
0
transformers
[ "transformers", "safetensors", "gguf", "gemma2", "text-generation", "conversational", "en", "dataset:nbertagnolli/counsel-chat", "arxiv:1910.09700", "base_model:google/gemma-2-2b-it", "base_model:quantized:google/gemma-2-2b-it", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-15T19:10:27Z
--- library_name: transformers datasets: - nbertagnolli/counsel-chat language: - en base_model: - google/gemma-2-2b-it pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eamonmckenna/whisper-small-ga-ie-4000
eamonmckenna
2024-11-20T14:07:25Z
26
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "Irish", "ASR", "Speech_to_text", "Gaeilge", "ga", "gd", "gv", "dataset:google/fleurs", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-05-18T09:11:50Z
--- license: apache-2.0 datasets: - google/fleurs - mozilla-foundation/common_voice_17_0 language: - ga - gd - gv metrics: - accuracy base_model: - openai/whisper-small pipeline_tag: automatic-speech-recognition tags: - Irish - ASR - Speech_to_text - Gaeilge ---
OpenVINO/gemma-2b-it-fp16-ov
OpenVINO
2024-11-20T14:04:42Z
67
0
null
[ "openvino", "gemma", "base_model:google/gemma-2b-it", "base_model:finetune:google/gemma-2b-it", "license:gemma", "region:us" ]
null
2024-10-30T07:07:59Z
--- license: gemma license_link: https://choosealicense.com/licenses/gemma/ base_model: google/gemma-2b-it --- # gemma-2b-it-fp16-ov * Model creator: [google](https://huggingface.co/google) * Original model: [gemma-2b-it](https://huggingface.co/google/gemma-2b-it) ## Description ## Compatibility The provided OpenVINOโ„ข IR model is compatible with: * OpenVINO version 2024.5.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/gemma-2b-it-fp16-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). ## Limitations Check the original model card for [original model card](https://huggingface.co/google/gemma-2b-it) for limitations. ## Legal information The original model is distributed under [gemma](https://choosealicense.com/licenses/gemma/) license. More details can be found in [original model card](https://huggingface.co/google/gemma-2b-it). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intelโ€™s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intelโ€™s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
OpenVINO/gemma-2b-int4-ov
OpenVINO
2024-11-20T13:58:40Z
16
0
null
[ "openvino", "gemma", "base_model:google/gemma-2b", "base_model:quantized:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-10-30T07:31:54Z
--- license: gemma license_link: https://choosealicense.com/licenses/gemma/ base_model: google/gemma-2b base_model_relation: quantized --- # gemma-2b-int4-ov * Model creator: [google](https://huggingface.co/google) * Original model: [gemma-2b](https://huggingface.co/google/gemma-2b) ## Description This is [gemma-2b](https://huggingface.co/google/gemma-2b) model converted to the [OpenVINOโ„ข IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf). ## Quantization Parameters Weight compression was performed using `nncf.compress_weights` with the following parameters: * mode: **int4_asym** * ratio: **1** * group_size: **128** For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html). ## Compatibility The provided OpenVINOโ„ข IR model is compatible with: * OpenVINO version 2024.5.0 and higher * Optimum Intel 1.21.0 and higher ## Running Model Inference 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend: ``` pip install optimum[openvino] ``` 2. Run model inference: ``` from transformers import AutoTokenizer from optimum.intel.openvino import OVModelForCausalLM model_id = "OpenVINO/gemma-2b-int4-ov" tokenizer = AutoTokenizer.from_pretrained(model_id) model = OVModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("What is OpenVINO?", return_tensors="pt") outputs = model.generate(**inputs, max_length=200) text = tokenizer.batch_decode(outputs)[0] print(text) ``` For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html). ## Limitations Check the original model card for [original model card](https://huggingface.co/google/gemma-2b) for limitations. ## Legal information The original model is distributed under [gemma](https://choosealicense.com/licenses/gemma/) license. More details can be found in [original model card](https://huggingface.co/google/gemma-2b). ## Disclaimer Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intelโ€™s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intelโ€™s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
ijohn07/french-english-gte-base
ijohn07
2024-11-20T13:55:05Z
11
0
sentence-transformers
[ "sentence-transformers", "safetensors", "new", "passage-retrieval", "sentence-similarity", "pruned", "custom_code", "fr", "en", "base_model:Alibaba-NLP/gte-multilingual-base", "base_model:quantized:Alibaba-NLP/gte-multilingual-base", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-20T13:37:10Z
--- pipeline_tag: sentence-similarity language: - fr - en license: apache-2.0 tags: - passage-retrieval - sentence-similarity - pruned library_name: sentence-transformers base_model: Alibaba-NLP/gte-multilingual-base base_model_relation: quantized --- # ๐Ÿ‡ซ๐Ÿ‡ท french-gte-multilingual-base This model is a 51.4% smaller version of [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) for the French and English language, created using the [mtem-pruner](https://huggingface.co/spaces/antoinelouis/mtem-pruner) space. This pruned model should perform similarly to the original model for French and English language tasks with a much smaller memory footprint. However, it may not perform well for other languages present in the original multilingual model as tokens not commonly used in French and English were removed from the original multilingual model's vocabulary. ## Usage You can use this model with the Transformers library: ```python from transformers import AutoModel, AutoTokenizer model_name = "ijohn07/french-english-gte-base" model = AutoModel.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True) ``` Or with the sentence-transformers library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("ijohn07/french-english-gte-base") ``` **Credits**: cc [@antoinelouis](https://huggingface.co/antoinelouis)
PrunaAI/NESPED-GEN-StableCode-schemaLinking-dict-bnb-8bit-smashed
PrunaAI
2024-11-20T13:54:05Z
5
0
null
[ "safetensors", "stablelm", "pruna-ai", "base_model:NESPED-GEN/StableCode-schemaLinking-dict", "base_model:quantized:NESPED-GEN/StableCode-schemaLinking-dict", "8-bit", "bitsandbytes", "region:us" ]
null
2024-11-20T13:50:12Z
--- thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg" base_model: NESPED-GEN/StableCode-schemaLinking-dict metrics: - memory_disk - memory_inference - inference_latency - inference_throughput - inference_CO2_emissions - inference_energy_consumption tags: - pruna-ai --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://docs.pruna.ai/en/latest/setup/pip.html" target="_blank" rel="noopener noreferrer"> <img src="https://imgur.com/rVAgqMY.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/rskEr4BZJx) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with llm-int8. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo NESPED-GEN/StableCode-schemaLinking-dict installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install transformers accelerate bitsandbytes>0.37.0 ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("PrunaAI/NESPED-GEN-StableCode-schemaLinking-dict-bnb-8bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("NESPED-GEN/StableCode-schemaLinking-dict") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model NESPED-GEN/StableCode-schemaLinking-dict before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Do it by yourself [here](https://docs.pruna.ai/en/latest/setup/pip.html).
davanstrien/fineweb-edu-classifier-onnx
davanstrien
2024-11-20T13:48:37Z
121
1
transformers
[ "transformers", "onnx", "safetensors", "bert", "text-classification", "en", "dataset:HuggingFaceFW/fineweb-edu-llama3-annotations", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-20T13:27:41Z
--- language: - en license: apache-2.0 datasets: - HuggingFaceFW/fineweb-edu-llama3-annotations library_name: transformers --- # FineWeb-Edu classifier ## Model summary This is a classifier for judging the educational value of web pages. It was developed to filter and curate educational content from web datasets and was trained on 450k [annotations](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu-llama3-annotations) generated by [LLama3-70B-instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) for web samples from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) dataset. We used this classifier to build [FineWeb-Edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu) dataset. ### How to use in transformers To load the FineWeb-Edu classifier, use the following code: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") text = "This is a test sentence." inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = { "text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } print(result) # {'text': 'This is a test sentence.', 'score': 0.07964489609003067, 'int_score': 0} ``` ## Training The classifier was trained on 450,000 pairs of web samples and their scores from 0 to 5, generated by Llama3. The samples were annotated based on their educational quality with 0 being not educational and 5 being highly educational. Below is the prompt used for LLama3 annotations: <div style="text-align: center; margin: 20px 0;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/fjZQ4izIj1rx1xQnBTKKr.png" alt="Prompt for LLM annotation" style="width: 90%; max-width: 800px; height: auto;"> </div> We added a classification head with a single regression output to [Snowflake-arctic-embed](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) and trained the model for 20 epochs with a learning rate of 3e-4. During training, the embedding and encoder layers were frozen to focus on the classification head. The model achieved an F1 score of 82% when converted to a binary classifier using a score threshold of 3. **Training Details:** - Model: Snowflake-arctic-embed with a classification head - Dataset: 450,000 samples from Llama3 annotations - Epochs: 20 - Learning Rate: 3e-4 - Evaluation Metric: F1 score **Classification report** We treat the regression model's predictions as discrete classes to calculate the metrics on a hold-out set of 46867 Llama3-annotated samples. ``` precision recall f1-score support 0 0.75 0.49 0.59 5694 1 0.78 0.84 0.81 26512 2 0.57 0.61 0.59 10322 3 0.56 0.50 0.53 3407 4 0.58 0.35 0.44 807 5 0.33 0.01 0.02 125 accuracy 0.71 46867 macro avg 0.60 0.47 0.50 46867 weighted avg 0.71 0.71 0.71 46867 ``` **Confusion matrix** We verify that the predicted educational scores are indeed close to their ground truth, and are mostry impacted by the noisy annotation. ``` 2791 2858 45 0 0 0 919 22343 3180 69 1 0 y_true 3 3225 6330 757 7 0 1 66 1473 1694 173 0 0 4 98 420 283 2 0 0 18 85 21 1 y_pred ``` ## Limitations While the FineWeb-Edu classifier performs well in distinguishing high-quality educational content for FineWeb dataset, there are some limitations: - Scope: The model's performance might change for other datasets, in particular for out of distribution samples. It is also focused on educational content relevant to primary and grade school levels and may not perform as well on content intended for higher education or specialized domains. - Bias: The model's performance is dependent on the quality and representativeness of the training data and the LLM used for the annotation. Biases in both can affect the classifier's judgments. It might overfit to academic looking content for the higher scores and we recommend using int_score >= 3 as a threshold for data curation. - Context: The classifier evaluates individual web pages or extracts without considering broader context, which might impact its effectiveness in certain scenarios. The training and inference code is available on GitHub https://github.com/huggingface/cosmopedia/tree/main/classification
danelcsb/vitpose-plus-base
danelcsb
2024-11-20T13:47:59Z
54
1
transformers
[ "transformers", "safetensors", "vitpose", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-11-20T13:46:56Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF
ijohn07
2024-11-20T13:43:53Z
27
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-Coder-V2-Lite-Base", "base_model:quantized:deepseek-ai/DeepSeek-Coder-V2-Lite-Base", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-19T16:46:21Z
--- license: other license_name: deepseek-license license_link: LICENSE tags: - llama-cpp - gguf-my-repo base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Base --- # ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-Coder-V2-Lite-Base`](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF --hf-file deepseek-coder-v2-lite-base-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF --hf-file deepseek-coder-v2-lite-base-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF --hf-file deepseek-coder-v2-lite-base-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ijohn07/DeepSeek-Coder-V2-Lite-Base-Q8_0-GGUF --hf-file deepseek-coder-v2-lite-base-q8_0.gguf -c 2048 ```
MayBashendy/Arabic_FineTuningAraBERT_AugV4_k20_task3_organization_fold1
MayBashendy
2024-11-20T13:43:22Z
19
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-13T03:25:23Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV4_k20_task3_organization_fold1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV4_k20_task3_organization_fold1 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8466 - Qwk: -0.1748 - Mse: 0.8466 - Rmse: 0.9201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0043 | 2 | 5.0662 | 0.0562 | 5.0662 | 2.2508 | | No log | 0.0087 | 4 | 2.3744 | 0.1692 | 2.3744 | 1.5409 | | No log | 0.0130 | 6 | 0.5562 | 0.6944 | 0.5562 | 0.7458 | | No log | 0.0174 | 8 | 1.1519 | -0.2692 | 1.1519 | 1.0733 | | No log | 0.0217 | 10 | 1.3157 | -0.3095 | 1.3157 | 1.1471 | | No log | 0.0260 | 12 | 1.3726 | -0.3095 | 1.3726 | 1.1716 | | No log | 0.0304 | 14 | 1.1290 | -0.4444 | 1.1290 | 1.0625 | | No log | 0.0347 | 16 | 0.9114 | 0.0 | 0.9114 | 0.9547 | | No log | 0.0390 | 18 | 0.8245 | 0.0 | 0.8245 | 0.9080 | | No log | 0.0434 | 20 | 1.0369 | -0.0845 | 1.0369 | 1.0183 | | No log | 0.0477 | 22 | 1.1403 | 0.0 | 1.1403 | 1.0678 | | No log | 0.0521 | 24 | 0.9033 | 0.0222 | 0.9033 | 0.9504 | | No log | 0.0564 | 26 | 0.9333 | 0.0222 | 0.9333 | 0.9661 | | No log | 0.0607 | 28 | 0.8953 | 0.0222 | 0.8953 | 0.9462 | | No log | 0.0651 | 30 | 1.0668 | -0.0645 | 1.0668 | 1.0328 | | No log | 0.0694 | 32 | 1.2762 | 0.0 | 1.2762 | 1.1297 | | No log | 0.0738 | 34 | 1.4528 | 0.0 | 1.4528 | 1.2053 | | No log | 0.0781 | 36 | 1.0889 | 0.0884 | 1.0889 | 1.0435 | | No log | 0.0824 | 38 | 0.8171 | 0.0 | 0.8171 | 0.9040 | | No log | 0.0868 | 40 | 0.9300 | -0.3276 | 0.9300 | 0.9644 | | No log | 0.0911 | 42 | 1.0346 | -0.0476 | 1.0346 | 1.0172 | | No log | 0.0954 | 44 | 1.2382 | -0.0097 | 1.2382 | 1.1127 | | No log | 0.0998 | 46 | 1.3373 | 0.0 | 1.3373 | 1.1564 | | No log | 0.1041 | 48 | 1.1701 | -0.0097 | 1.1701 | 1.0817 | | No log | 0.1085 | 50 | 1.1217 | -0.0206 | 1.1217 | 1.0591 | | No log | 0.1128 | 52 | 1.2706 | 0.0 | 1.2706 | 1.1272 | | No log | 0.1171 | 54 | 1.4865 | 0.0 | 1.4865 | 1.2192 | | No log | 0.1215 | 56 | 1.0426 | 0.3452 | 1.0426 | 1.0211 | | No log | 0.1258 | 58 | 1.1278 | -0.0206 | 1.1278 | 1.0620 | | No log | 0.1302 | 60 | 2.1569 | 0.0 | 2.1569 | 1.4686 | | No log | 0.1345 | 62 | 2.3581 | 0.0 | 2.3581 | 1.5356 | | No log | 0.1388 | 64 | 1.7302 | 0.0 | 1.7302 | 1.3154 | | No log | 0.1432 | 66 | 0.8241 | 0.2414 | 0.8241 | 0.9078 | | No log | 0.1475 | 68 | 0.6226 | 0.0 | 0.6226 | 0.7890 | | No log | 0.1518 | 70 | 0.6655 | 0.0 | 0.6655 | 0.8158 | | No log | 0.1562 | 72 | 0.7954 | 0.0 | 0.7954 | 0.8919 | | No log | 0.1605 | 74 | 1.0642 | -0.0206 | 1.0642 | 1.0316 | | No log | 0.1649 | 76 | 1.1631 | -0.1340 | 1.1631 | 1.0785 | | No log | 0.1692 | 78 | 1.4101 | 0.0 | 1.4101 | 1.1875 | | No log | 0.1735 | 80 | 1.4632 | 0.0 | 1.4632 | 1.2096 | | No log | 0.1779 | 82 | 1.1959 | -0.1547 | 1.1959 | 1.0936 | | No log | 0.1822 | 84 | 0.9702 | 0.0517 | 0.9702 | 0.9850 | | No log | 0.1866 | 86 | 1.2792 | -0.1547 | 1.2792 | 1.1310 | | No log | 0.1909 | 88 | 1.6128 | 0.0 | 1.6128 | 1.2700 | | No log | 0.1952 | 90 | 1.4251 | -0.1159 | 1.4251 | 1.1938 | | No log | 0.1996 | 92 | 1.4436 | -0.1159 | 1.4436 | 1.2015 | | No log | 0.2039 | 94 | 1.6535 | 0.0 | 1.6535 | 1.2859 | | No log | 0.2082 | 96 | 1.6642 | 0.0 | 1.6642 | 1.2900 | | No log | 0.2126 | 98 | 1.6197 | 0.0 | 1.6197 | 1.2727 | | No log | 0.2169 | 100 | 1.6019 | -0.0097 | 1.6019 | 1.2657 | | No log | 0.2213 | 102 | 1.6511 | 0.0 | 1.6511 | 1.2850 | | No log | 0.2256 | 104 | 1.7047 | 0.0 | 1.7047 | 1.3057 | | No log | 0.2299 | 106 | 1.7458 | 0.0 | 1.7458 | 1.3213 | | No log | 0.2343 | 108 | 1.5336 | -0.0097 | 1.5336 | 1.2384 | | No log | 0.2386 | 110 | 1.5067 | -0.0206 | 1.5067 | 1.2275 | | No log | 0.2430 | 112 | 1.7453 | 0.0 | 1.7453 | 1.3211 | | No log | 0.2473 | 114 | 1.6037 | 0.0 | 1.6037 | 1.2664 | | No log | 0.2516 | 116 | 1.4906 | 0.0 | 1.4906 | 1.2209 | | No log | 0.2560 | 118 | 1.1787 | -0.0206 | 1.1787 | 1.0857 | | No log | 0.2603 | 120 | 1.1812 | -0.0206 | 1.1812 | 1.0868 | | No log | 0.2646 | 122 | 1.5331 | 0.0 | 1.5331 | 1.2382 | | No log | 0.2690 | 124 | 1.7806 | 0.0 | 1.7806 | 1.3344 | | No log | 0.2733 | 126 | 1.4523 | 0.2099 | 1.4523 | 1.2051 | | No log | 0.2777 | 128 | 1.4744 | 0.2029 | 1.4744 | 1.2142 | | No log | 0.2820 | 130 | 1.6868 | 0.0 | 1.6868 | 1.2988 | | No log | 0.2863 | 132 | 1.6388 | -0.0097 | 1.6388 | 1.2802 | | No log | 0.2907 | 134 | 1.6840 | -0.0097 | 1.6840 | 1.2977 | | No log | 0.2950 | 136 | 1.7372 | 0.0 | 1.7372 | 1.3180 | | No log | 0.2993 | 138 | 1.6976 | 0.0 | 1.6976 | 1.3029 | | No log | 0.3037 | 140 | 1.6619 | 0.0 | 1.6619 | 1.2891 | | No log | 0.3080 | 142 | 1.6420 | 0.0 | 1.6420 | 1.2814 | | No log | 0.3124 | 144 | 1.3727 | -0.0206 | 1.3727 | 1.1716 | | No log | 0.3167 | 146 | 1.5149 | 0.0 | 1.5149 | 1.2308 | | No log | 0.3210 | 148 | 1.6476 | 0.0 | 1.6476 | 1.2836 | | No log | 0.3254 | 150 | 1.6920 | 0.0 | 1.6920 | 1.3008 | | No log | 0.3297 | 152 | 1.3687 | -0.0206 | 1.3687 | 1.1699 | | No log | 0.3341 | 154 | 1.2953 | -0.0206 | 1.2953 | 1.1381 | | No log | 0.3384 | 156 | 1.4127 | -0.0097 | 1.4127 | 1.1886 | | No log | 0.3427 | 158 | 1.3350 | -0.0206 | 1.3350 | 1.1554 | | No log | 0.3471 | 160 | 1.3169 | 0.0884 | 1.3169 | 1.1476 | | No log | 0.3514 | 162 | 1.6885 | -0.0206 | 1.6885 | 1.2994 | | No log | 0.3557 | 164 | 1.6339 | -0.0206 | 1.6339 | 1.2782 | | No log | 0.3601 | 166 | 1.6417 | 0.0833 | 1.6417 | 1.2813 | | No log | 0.3644 | 168 | 2.3745 | -0.0087 | 2.3745 | 1.5409 | | No log | 0.3688 | 170 | 2.4787 | 0.0833 | 2.4787 | 1.5744 | | No log | 0.3731 | 172 | 1.7118 | 0.0833 | 1.7118 | 1.3084 | | No log | 0.3774 | 174 | 1.7248 | -0.0087 | 1.7248 | 1.3133 | | No log | 0.3818 | 176 | 1.4414 | -0.0097 | 1.4414 | 1.2006 | | No log | 0.3861 | 178 | 0.9418 | 0.0833 | 0.9418 | 0.9705 | | No log | 0.3905 | 180 | 0.8870 | 0.2414 | 0.8870 | 0.9418 | | No log | 0.3948 | 182 | 1.0472 | 0.0884 | 1.0472 | 1.0233 | | No log | 0.3991 | 184 | 1.4630 | 0.0 | 1.4630 | 1.2095 | | No log | 0.4035 | 186 | 1.2767 | 0.0928 | 1.2767 | 1.1299 | | No log | 0.4078 | 188 | 0.7986 | 0.4310 | 0.7986 | 0.8936 | | No log | 0.4121 | 190 | 0.6140 | 0.0 | 0.6140 | 0.7836 | | No log | 0.4165 | 192 | 0.6122 | 0.0 | 0.6122 | 0.7825 | | No log | 0.4208 | 194 | 0.7978 | 0.3803 | 0.7978 | 0.8932 | | No log | 0.4252 | 196 | 1.3868 | -0.0206 | 1.3868 | 1.1776 | | No log | 0.4295 | 198 | 1.9409 | 0.0 | 1.9409 | 1.3932 | | No log | 0.4338 | 200 | 1.9997 | 0.0 | 1.9997 | 1.4141 | | No log | 0.4382 | 202 | 1.3264 | 0.0884 | 1.3264 | 1.1517 | | No log | 0.4425 | 204 | 0.8400 | 0.0222 | 0.8400 | 0.9165 | | No log | 0.4469 | 206 | 0.8438 | 0.0222 | 0.8438 | 0.9186 | | No log | 0.4512 | 208 | 1.2144 | 0.0884 | 1.2144 | 1.1020 | | No log | 0.4555 | 210 | 1.9430 | 0.0 | 1.9430 | 1.3939 | | No log | 0.4599 | 212 | 1.9468 | 0.0 | 1.9468 | 1.3953 | | No log | 0.4642 | 214 | 1.4920 | -0.0097 | 1.4920 | 1.2215 | | No log | 0.4685 | 216 | 1.1333 | 0.0884 | 1.1333 | 1.0646 | | No log | 0.4729 | 218 | 1.0418 | -0.0476 | 1.0418 | 1.0207 | | No log | 0.4772 | 220 | 1.2766 | -0.0206 | 1.2766 | 1.1299 | | No log | 0.4816 | 222 | 1.5854 | 0.0 | 1.5854 | 1.2591 | | No log | 0.4859 | 224 | 1.4566 | 0.0 | 1.4566 | 1.2069 | | No log | 0.4902 | 226 | 1.3790 | -0.0097 | 1.3790 | 1.1743 | | No log | 0.4946 | 228 | 1.1800 | 0.0884 | 1.1800 | 1.0863 | | No log | 0.4989 | 230 | 1.0396 | 0.0833 | 1.0396 | 1.0196 | | No log | 0.5033 | 232 | 1.1655 | 0.0884 | 1.1655 | 1.0796 | | No log | 0.5076 | 234 | 1.7216 | -0.0097 | 1.7216 | 1.3121 | | No log | 0.5119 | 236 | 1.8556 | -0.0097 | 1.8556 | 1.3622 | | No log | 0.5163 | 238 | 1.4008 | -0.0206 | 1.4008 | 1.1835 | | No log | 0.5206 | 240 | 0.9210 | -0.2791 | 0.9210 | 0.9597 | | No log | 0.5249 | 242 | 0.8218 | 0.0388 | 0.8218 | 0.9065 | | No log | 0.5293 | 244 | 0.9410 | -0.2791 | 0.9410 | 0.9700 | | No log | 0.5336 | 246 | 0.9831 | -0.2394 | 0.9831 | 0.9915 | | No log | 0.5380 | 248 | 1.0366 | -0.0476 | 1.0366 | 1.0182 | | No log | 0.5423 | 250 | 1.1089 | 0.0884 | 1.1089 | 1.0530 | | No log | 0.5466 | 252 | 1.1890 | 0.0884 | 1.1890 | 1.0904 | | No log | 0.5510 | 254 | 1.3395 | 0.0884 | 1.3395 | 1.1574 | | No log | 0.5553 | 256 | 1.6234 | -0.0097 | 1.6234 | 1.2741 | | No log | 0.5597 | 258 | 1.6214 | 0.0 | 1.6214 | 1.2734 | | No log | 0.5640 | 260 | 1.3883 | 0.0 | 1.3883 | 1.1782 | | No log | 0.5683 | 262 | 1.1181 | 0.0884 | 1.1181 | 1.0574 | | No log | 0.5727 | 264 | 0.9934 | -0.0476 | 0.9934 | 0.9967 | | No log | 0.5770 | 266 | 0.9563 | 0.2414 | 0.9563 | 0.9779 | | No log | 0.5813 | 268 | 0.9618 | -0.0645 | 0.9618 | 0.9807 | | No log | 0.5857 | 270 | 0.9073 | -0.1085 | 0.9073 | 0.9525 | | No log | 0.5900 | 272 | 1.0020 | -0.0476 | 1.0020 | 1.0010 | | No log | 0.5944 | 274 | 1.2570 | -0.0097 | 1.2570 | 1.1212 | | No log | 0.5987 | 276 | 1.2858 | 0.0884 | 1.2858 | 1.1339 | | No log | 0.6030 | 278 | 1.5092 | -0.0097 | 1.5092 | 1.2285 | | No log | 0.6074 | 280 | 1.5099 | 0.0928 | 1.5099 | 1.2288 | | No log | 0.6117 | 282 | 1.3045 | 0.0884 | 1.3045 | 1.1422 | | No log | 0.6161 | 284 | 1.4091 | -0.0097 | 1.4091 | 1.1871 | | No log | 0.6204 | 286 | 1.3325 | -0.0097 | 1.3325 | 1.1543 | | No log | 0.6247 | 288 | 1.2049 | 0.0928 | 1.2049 | 1.0977 | | No log | 0.6291 | 290 | 1.0000 | -0.0645 | 1.0000 | 1.0000 | | No log | 0.6334 | 292 | 1.0209 | -0.0645 | 1.0209 | 1.0104 | | No log | 0.6377 | 294 | 1.1506 | 0.0884 | 1.1506 | 1.0727 | | No log | 0.6421 | 296 | 1.2300 | 0.0884 | 1.2300 | 1.1091 | | No log | 0.6464 | 298 | 1.5123 | 0.0 | 1.5123 | 1.2297 | | No log | 0.6508 | 300 | 1.4709 | -0.0097 | 1.4709 | 1.2128 | | No log | 0.6551 | 302 | 1.1026 | 0.0833 | 1.1026 | 1.0501 | | No log | 0.6594 | 304 | 1.0543 | 0.0833 | 1.0543 | 1.0268 | | No log | 0.6638 | 306 | 1.3746 | -0.0097 | 1.3746 | 1.1724 | | No log | 0.6681 | 308 | 2.0208 | 0.0 | 2.0208 | 1.4216 | | No log | 0.6725 | 310 | 1.8322 | 0.0 | 1.8322 | 1.3536 | | No log | 0.6768 | 312 | 1.3155 | -0.0206 | 1.3155 | 1.1469 | | No log | 0.6811 | 314 | 0.8459 | 0.0704 | 0.8459 | 0.9197 | | No log | 0.6855 | 316 | 0.8941 | 0.0704 | 0.8941 | 0.9456 | | No log | 0.6898 | 318 | 1.3748 | 0.0 | 1.3748 | 1.1725 | | No log | 0.6941 | 320 | 1.4663 | 0.0 | 1.4663 | 1.2109 | | No log | 0.6985 | 322 | 1.2884 | -0.0097 | 1.2884 | 1.1351 | | No log | 0.7028 | 324 | 1.0192 | 0.0704 | 1.0192 | 1.0096 | | No log | 0.7072 | 326 | 1.0281 | 0.0704 | 1.0281 | 1.0140 | | No log | 0.7115 | 328 | 0.8707 | -0.1085 | 0.8707 | 0.9331 | | No log | 0.7158 | 330 | 0.9045 | -0.1085 | 0.9045 | 0.9510 | | No log | 0.7202 | 332 | 1.3441 | -0.0097 | 1.3441 | 1.1594 | | No log | 0.7245 | 334 | 1.6187 | -0.0097 | 1.6187 | 1.2723 | | No log | 0.7289 | 336 | 1.3882 | -0.0097 | 1.3882 | 1.1782 | | No log | 0.7332 | 338 | 1.0096 | -0.1085 | 1.0096 | 1.0048 | | No log | 0.7375 | 340 | 1.1220 | 0.0833 | 1.1220 | 1.0593 | | No log | 0.7419 | 342 | 1.4189 | -0.0097 | 1.4189 | 1.1912 | | No log | 0.7462 | 344 | 1.3234 | -0.0206 | 1.3234 | 1.1504 | | No log | 0.7505 | 346 | 1.2649 | -0.0206 | 1.2649 | 1.1247 | | No log | 0.7549 | 348 | 1.0719 | 0.0833 | 1.0719 | 1.0353 | | No log | 0.7592 | 350 | 1.0653 | 0.0833 | 1.0653 | 1.0321 | | No log | 0.7636 | 352 | 0.9979 | -0.0845 | 0.9979 | 0.9990 | | No log | 0.7679 | 354 | 1.1827 | -0.0206 | 1.1827 | 1.0875 | | No log | 0.7722 | 356 | 1.3361 | -0.0097 | 1.3361 | 1.1559 | | No log | 0.7766 | 358 | 1.4385 | -0.0097 | 1.4385 | 1.1994 | | No log | 0.7809 | 360 | 1.5072 | -0.0097 | 1.5072 | 1.2277 | | No log | 0.7852 | 362 | 1.3644 | -0.0206 | 1.3644 | 1.1681 | | No log | 0.7896 | 364 | 1.4307 | -0.0206 | 1.4307 | 1.1961 | | No log | 0.7939 | 366 | 1.4629 | -0.0097 | 1.4629 | 1.2095 | | No log | 0.7983 | 368 | 1.5303 | -0.0097 | 1.5303 | 1.2371 | | No log | 0.8026 | 370 | 1.0586 | 0.0774 | 1.0586 | 1.0289 | | No log | 0.8069 | 372 | 0.7804 | -0.0233 | 0.7804 | 0.8834 | | No log | 0.8113 | 374 | 0.8080 | 0.0 | 0.8080 | 0.8989 | | No log | 0.8156 | 376 | 1.1139 | 0.0774 | 1.1139 | 1.0554 | | No log | 0.8200 | 378 | 1.7624 | -0.0097 | 1.7624 | 1.3275 | | No log | 0.8243 | 380 | 1.7015 | -0.0097 | 1.7015 | 1.3044 | | No log | 0.8286 | 382 | 1.1807 | -0.0206 | 1.1807 | 1.0866 | | No log | 0.8330 | 384 | 0.8461 | 0.0 | 0.8461 | 0.9198 | | No log | 0.8373 | 386 | 0.8355 | 0.0 | 0.8355 | 0.9141 | | No log | 0.8416 | 388 | 0.9670 | -0.1085 | 0.9670 | 0.9834 | | No log | 0.8460 | 390 | 1.0326 | -0.0645 | 1.0326 | 1.0162 | | No log | 0.8503 | 392 | 1.1172 | -0.0206 | 1.1172 | 1.0570 | | No log | 0.8547 | 394 | 1.0097 | -0.0645 | 1.0097 | 1.0048 | | No log | 0.8590 | 396 | 0.9517 | -0.1085 | 0.9517 | 0.9756 | | No log | 0.8633 | 398 | 0.9678 | -0.1085 | 0.9678 | 0.9838 | | No log | 0.8677 | 400 | 1.1795 | -0.0206 | 1.1795 | 1.0861 | | No log | 0.8720 | 402 | 1.2120 | -0.0206 | 1.2120 | 1.1009 | | No log | 0.8764 | 404 | 1.2367 | -0.0206 | 1.2367 | 1.1121 | | No log | 0.8807 | 406 | 0.9727 | -0.0645 | 0.9727 | 0.9863 | | No log | 0.8850 | 408 | 0.9215 | -0.1085 | 0.9215 | 0.9599 | | No log | 0.8894 | 410 | 1.0731 | 0.0833 | 1.0731 | 1.0359 | | No log | 0.8937 | 412 | 1.2664 | -0.0097 | 1.2664 | 1.1253 | | No log | 0.8980 | 414 | 1.2348 | -0.0206 | 1.2348 | 1.1112 | | No log | 0.9024 | 416 | 1.2626 | -0.0206 | 1.2626 | 1.1237 | | No log | 0.9067 | 418 | 1.0823 | 0.0833 | 1.0823 | 1.0403 | | No log | 0.9111 | 420 | 1.1100 | 0.0833 | 1.1100 | 1.0536 | | No log | 0.9154 | 422 | 1.0350 | 0.0833 | 1.0350 | 1.0174 | | No log | 0.9197 | 424 | 1.0261 | -0.0645 | 1.0261 | 1.0130 | | No log | 0.9241 | 426 | 0.9162 | -0.1085 | 0.9162 | 0.9572 | | No log | 0.9284 | 428 | 0.7827 | 0.2667 | 0.7827 | 0.8847 | | No log | 0.9328 | 430 | 0.8152 | 0.2667 | 0.8152 | 0.9029 | | No log | 0.9371 | 432 | 0.8323 | 0.2414 | 0.8323 | 0.9123 | | No log | 0.9414 | 434 | 0.9148 | -0.0845 | 0.9148 | 0.9564 | | No log | 0.9458 | 436 | 0.8934 | 0.2414 | 0.8934 | 0.9452 | | No log | 0.9501 | 438 | 0.8886 | 0.2414 | 0.8886 | 0.9427 | | No log | 0.9544 | 440 | 0.8048 | 0.2414 | 0.8048 | 0.8971 | | No log | 0.9588 | 442 | 0.7205 | 0.0 | 0.7205 | 0.8488 | | No log | 0.9631 | 444 | 0.7498 | 0.0 | 0.7498 | 0.8659 | | No log | 0.9675 | 446 | 0.9554 | -0.1085 | 0.9554 | 0.9775 | | No log | 0.9718 | 448 | 1.4305 | -0.0097 | 1.4305 | 1.1960 | | No log | 0.9761 | 450 | 1.7173 | 0.0 | 1.7173 | 1.3105 | | No log | 0.9805 | 452 | 1.6161 | -0.0097 | 1.6161 | 1.2713 | | No log | 0.9848 | 454 | 1.1899 | -0.1547 | 1.1899 | 1.0908 | | No log | 0.9892 | 456 | 1.0239 | -0.1085 | 1.0239 | 1.0119 | | No log | 0.9935 | 458 | 1.1341 | -0.1786 | 1.1341 | 1.0649 | | No log | 0.9978 | 460 | 1.2042 | -0.1547 | 1.2042 | 1.0973 | | No log | 1.0022 | 462 | 1.4485 | -0.0097 | 1.4485 | 1.2035 | | No log | 1.0065 | 464 | 1.4071 | -0.0097 | 1.4071 | 1.1862 | | No log | 1.0108 | 466 | 1.1786 | -0.1547 | 1.1786 | 1.0856 | | No log | 1.0152 | 468 | 0.9571 | -0.1379 | 0.9571 | 0.9783 | | No log | 1.0195 | 470 | 1.0033 | -0.1379 | 1.0033 | 1.0016 | | No log | 1.0239 | 472 | 1.1087 | -0.0645 | 1.1087 | 1.0529 | | No log | 1.0282 | 474 | 1.3032 | -0.0206 | 1.3032 | 1.1416 | | No log | 1.0325 | 476 | 1.4221 | -0.0097 | 1.4221 | 1.1925 | | No log | 1.0369 | 478 | 1.2143 | -0.0206 | 1.2143 | 1.1019 | | No log | 1.0412 | 480 | 0.9098 | -0.3883 | 0.9098 | 0.9538 | | No log | 1.0456 | 482 | 0.8054 | 0.0 | 0.8054 | 0.8975 | | No log | 1.0499 | 484 | 0.8207 | 0.0222 | 0.8207 | 0.9059 | | No log | 1.0542 | 486 | 0.9864 | -0.3276 | 0.9864 | 0.9932 | | No log | 1.0586 | 488 | 1.3121 | -0.0206 | 1.3121 | 1.1455 | | No log | 1.0629 | 490 | 1.3041 | -0.0206 | 1.3041 | 1.1420 | | No log | 1.0672 | 492 | 1.0500 | -0.0845 | 1.0500 | 1.0247 | | No log | 1.0716 | 494 | 0.7911 | 0.0222 | 0.7911 | 0.8894 | | No log | 1.0759 | 496 | 0.7393 | 0.0 | 0.7393 | 0.8599 | | No log | 1.0803 | 498 | 0.7435 | 0.0 | 0.7435 | 0.8622 | | 0.3565 | 1.0846 | 500 | 0.8847 | 0.0388 | 0.8847 | 0.9406 | | 0.3565 | 1.0889 | 502 | 0.9772 | -0.0845 | 0.9772 | 0.9886 | | 0.3565 | 1.0933 | 504 | 0.9399 | -0.1085 | 0.9399 | 0.9695 | | 0.3565 | 1.0976 | 506 | 0.8800 | -0.1085 | 0.8800 | 0.9381 | | 0.3565 | 1.1020 | 508 | 0.9059 | -0.1085 | 0.9059 | 0.9518 | | 0.3565 | 1.1063 | 510 | 0.9470 | 0.0704 | 0.9470 | 0.9731 | | 0.3565 | 1.1106 | 512 | 0.8273 | -0.1379 | 0.8273 | 0.9095 | | 0.3565 | 1.1150 | 514 | 0.8990 | -0.1085 | 0.8990 | 0.9481 | | 0.3565 | 1.1193 | 516 | 1.2747 | -0.0206 | 1.2747 | 1.1290 | | 0.3565 | 1.1236 | 518 | 1.4330 | -0.0097 | 1.4330 | 1.1971 | | 0.3565 | 1.1280 | 520 | 1.5110 | -0.0097 | 1.5110 | 1.2292 | | 0.3565 | 1.1323 | 522 | 1.2862 | -0.0097 | 1.2862 | 1.1341 | | 0.3565 | 1.1367 | 524 | 0.9178 | -0.1379 | 0.9178 | 0.9580 | | 0.3565 | 1.1410 | 526 | 0.8393 | -0.1379 | 0.8393 | 0.9161 | | 0.3565 | 1.1453 | 528 | 0.9435 | -0.1085 | 0.9435 | 0.9713 | | 0.3565 | 1.1497 | 530 | 1.2124 | -0.0097 | 1.2124 | 1.1011 | | 0.3565 | 1.1540 | 532 | 1.2891 | -0.0097 | 1.2891 | 1.1354 | | 0.3565 | 1.1584 | 534 | 1.1993 | -0.0097 | 1.1993 | 1.0951 | | 0.3565 | 1.1627 | 536 | 1.1898 | -0.0206 | 1.1898 | 1.0908 | | 0.3565 | 1.1670 | 538 | 1.0536 | -0.1085 | 1.0536 | 1.0264 | | 0.3565 | 1.1714 | 540 | 1.0128 | -0.1085 | 1.0128 | 1.0064 | | 0.3565 | 1.1757 | 542 | 0.9398 | -0.1379 | 0.9398 | 0.9695 | | 0.3565 | 1.1800 | 544 | 1.1550 | 0.0774 | 1.1550 | 1.0747 | | 0.3565 | 1.1844 | 546 | 1.1614 | 0.0833 | 1.1614 | 1.0777 | | 0.3565 | 1.1887 | 548 | 1.0559 | -0.0845 | 1.0559 | 1.0276 | | 0.3565 | 1.1931 | 550 | 1.0863 | -0.0845 | 1.0863 | 1.0422 | | 0.3565 | 1.1974 | 552 | 1.1017 | -0.0645 | 1.1017 | 1.0496 | | 0.3565 | 1.2017 | 554 | 1.2607 | -0.0097 | 1.2607 | 1.1228 | | 0.3565 | 1.2061 | 556 | 1.2857 | -0.0097 | 1.2857 | 1.1339 | | 0.3565 | 1.2104 | 558 | 1.1873 | -0.0476 | 1.1873 | 1.0896 | | 0.3565 | 1.2148 | 560 | 1.1625 | -0.0645 | 1.1625 | 1.0782 | | 0.3565 | 1.2191 | 562 | 1.2623 | -0.0645 | 1.2623 | 1.1235 | | 0.3565 | 1.2234 | 564 | 1.4203 | -0.0097 | 1.4203 | 1.1918 | | 0.3565 | 1.2278 | 566 | 1.4948 | -0.0097 | 1.4948 | 1.2226 | | 0.3565 | 1.2321 | 568 | 1.3315 | -0.0097 | 1.3315 | 1.1539 | | 0.3565 | 1.2364 | 570 | 1.1119 | -0.0645 | 1.1119 | 1.0545 | | 0.3565 | 1.2408 | 572 | 1.0944 | -0.0845 | 1.0944 | 1.0461 | | 0.3565 | 1.2451 | 574 | 1.1597 | -0.0476 | 1.1597 | 1.0769 | | 0.3565 | 1.2495 | 576 | 1.3932 | -0.0097 | 1.3932 | 1.1804 | | 0.3565 | 1.2538 | 578 | 1.3756 | -0.0097 | 1.3756 | 1.1728 | | 0.3565 | 1.2581 | 580 | 1.2218 | -0.0097 | 1.2218 | 1.1054 | | 0.3565 | 1.2625 | 582 | 1.1825 | -0.0331 | 1.1825 | 1.0874 | | 0.3565 | 1.2668 | 584 | 0.9621 | -0.1085 | 0.9621 | 0.9808 | | 0.3565 | 1.2711 | 586 | 0.8946 | -0.3276 | 0.8946 | 0.9458 | | 0.3565 | 1.2755 | 588 | 1.0332 | -0.0845 | 1.0332 | 1.0165 | | 0.3565 | 1.2798 | 590 | 1.2843 | -0.0097 | 1.2843 | 1.1333 | | 0.3565 | 1.2842 | 592 | 1.2494 | -0.0097 | 1.2494 | 1.1178 | | 0.3565 | 1.2885 | 594 | 0.9972 | -0.0845 | 0.9972 | 0.9986 | | 0.3565 | 1.2928 | 596 | 0.9671 | -0.1085 | 0.9671 | 0.9834 | | 0.3565 | 1.2972 | 598 | 1.1884 | -0.0097 | 1.1884 | 1.0901 | | 0.3565 | 1.3015 | 600 | 1.4018 | 0.0 | 1.4018 | 1.1840 | | 0.3565 | 1.3059 | 602 | 1.2831 | -0.0097 | 1.2831 | 1.1327 | | 0.3565 | 1.3102 | 604 | 0.9161 | -0.1085 | 0.9161 | 0.9571 | | 0.3565 | 1.3145 | 606 | 0.6359 | 0.0 | 0.6359 | 0.7974 | | 0.3565 | 1.3189 | 608 | 0.6108 | 0.0 | 0.6108 | 0.7815 | | 0.3565 | 1.3232 | 610 | 0.6507 | 0.0 | 0.6507 | 0.8066 | | 0.3565 | 1.3275 | 612 | 0.8850 | -0.1085 | 0.8850 | 0.9408 | | 0.3565 | 1.3319 | 614 | 1.1949 | -0.0097 | 1.1949 | 1.0931 | | 0.3565 | 1.3362 | 616 | 1.2233 | -0.0097 | 1.2233 | 1.1060 | | 0.3565 | 1.3406 | 618 | 0.9858 | -0.0845 | 0.9858 | 0.9929 | | 0.3565 | 1.3449 | 620 | 0.7759 | 0.0 | 0.7759 | 0.8809 | | 0.3565 | 1.3492 | 622 | 0.7823 | -0.0233 | 0.7823 | 0.8845 | | 0.3565 | 1.3536 | 624 | 0.9610 | -0.0845 | 0.9610 | 0.9803 | | 0.3565 | 1.3579 | 626 | 1.4623 | -0.0097 | 1.4623 | 1.2093 | | 0.3565 | 1.3623 | 628 | 1.8708 | 0.0 | 1.8708 | 1.3678 | | 0.3565 | 1.3666 | 630 | 1.8804 | 0.0 | 1.8804 | 1.3713 | | 0.3565 | 1.3709 | 632 | 1.6890 | 0.0 | 1.6890 | 1.2996 | | 0.3565 | 1.3753 | 634 | 1.3530 | -0.0097 | 1.3530 | 1.1632 | | 0.3565 | 1.3796 | 636 | 1.0058 | -0.0845 | 1.0058 | 1.0029 | | 0.3565 | 1.3839 | 638 | 0.8880 | -0.0233 | 0.8880 | 0.9423 | | 0.3565 | 1.3883 | 640 | 0.8838 | -0.0233 | 0.8838 | 0.9401 | | 0.3565 | 1.3926 | 642 | 0.9448 | -0.1379 | 0.9448 | 0.9720 | | 0.3565 | 1.3970 | 644 | 1.1324 | -0.1786 | 1.1324 | 1.0641 | | 0.3565 | 1.4013 | 646 | 1.4073 | -0.0097 | 1.4073 | 1.1863 | | 0.3565 | 1.4056 | 648 | 1.4906 | -0.0097 | 1.4906 | 1.2209 | | 0.3565 | 1.4100 | 650 | 1.3317 | -0.1340 | 1.3317 | 1.1540 | | 0.3565 | 1.4143 | 652 | 1.0507 | -0.0845 | 1.0507 | 1.0250 | | 0.3565 | 1.4187 | 654 | 0.9218 | -0.4667 | 0.9218 | 0.9601 | | 0.3565 | 1.4230 | 656 | 0.8943 | -0.4667 | 0.8943 | 0.9457 | | 0.3565 | 1.4273 | 658 | 0.9607 | -0.1085 | 0.9607 | 0.9801 | | 0.3565 | 1.4317 | 660 | 1.1709 | -0.1786 | 1.1709 | 1.0821 | | 0.3565 | 1.4360 | 662 | 1.2784 | -0.1786 | 1.2784 | 1.1307 | | 0.3565 | 1.4403 | 664 | 1.1723 | -0.1786 | 1.1723 | 1.0827 | | 0.3565 | 1.4447 | 666 | 0.9754 | -0.1085 | 0.9754 | 0.9876 | | 0.3565 | 1.4490 | 668 | 0.8423 | 0.0 | 0.8423 | 0.9178 | | 0.3565 | 1.4534 | 670 | 0.8268 | 0.0 | 0.8268 | 0.9093 | | 0.3565 | 1.4577 | 672 | 0.8936 | -0.4667 | 0.8936 | 0.9453 | | 0.3565 | 1.4620 | 674 | 1.0065 | -0.1085 | 1.0065 | 1.0032 | | 0.3565 | 1.4664 | 676 | 1.0469 | -0.1085 | 1.0469 | 1.0232 | | 0.3565 | 1.4707 | 678 | 0.9450 | -0.3276 | 0.9450 | 0.9721 | | 0.3565 | 1.4751 | 680 | 0.8475 | 0.0 | 0.8475 | 0.9206 | | 0.3565 | 1.4794 | 682 | 0.8920 | -0.4667 | 0.8920 | 0.9444 | | 0.3565 | 1.4837 | 684 | 1.0105 | -0.1085 | 1.0105 | 1.0052 | | 0.3565 | 1.4881 | 686 | 1.2240 | -0.1547 | 1.2240 | 1.1064 | | 0.3565 | 1.4924 | 688 | 1.2480 | -0.1547 | 1.2480 | 1.1171 | | 0.3565 | 1.4967 | 690 | 1.1877 | -0.1547 | 1.1877 | 1.0898 | | 0.3565 | 1.5011 | 692 | 1.1072 | -0.0845 | 1.1072 | 1.0522 | | 0.3565 | 1.5054 | 694 | 1.0791 | -0.0845 | 1.0791 | 1.0388 | | 0.3565 | 1.5098 | 696 | 1.1233 | -0.0476 | 1.1233 | 1.0598 | | 0.3565 | 1.5141 | 698 | 1.0412 | -0.0845 | 1.0412 | 1.0204 | | 0.3565 | 1.5184 | 700 | 0.9640 | -0.3883 | 0.9640 | 0.9818 | | 0.3565 | 1.5228 | 702 | 1.0194 | -0.0845 | 1.0194 | 1.0097 | | 0.3565 | 1.5271 | 704 | 1.1205 | -0.0476 | 1.1205 | 1.0585 | | 0.3565 | 1.5315 | 706 | 1.1237 | -0.0476 | 1.1237 | 1.0601 | | 0.3565 | 1.5358 | 708 | 1.0189 | -0.0845 | 1.0189 | 1.0094 | | 0.3565 | 1.5401 | 710 | 0.9081 | -0.3883 | 0.9081 | 0.9530 | | 0.3565 | 1.5445 | 712 | 0.9146 | -0.3883 | 0.9146 | 0.9563 | | 0.3565 | 1.5488 | 714 | 0.9978 | -0.1085 | 0.9978 | 0.9989 | | 0.3565 | 1.5531 | 716 | 1.0584 | -0.0645 | 1.0584 | 1.0288 | | 0.3565 | 1.5575 | 718 | 1.1822 | -0.1547 | 1.1822 | 1.0873 | | 0.3565 | 1.5618 | 720 | 1.1425 | -0.0476 | 1.1425 | 1.0689 | | 0.3565 | 1.5662 | 722 | 1.0202 | -0.1085 | 1.0202 | 1.0101 | | 0.3565 | 1.5705 | 724 | 0.9700 | -0.1379 | 0.9700 | 0.9849 | | 0.3565 | 1.5748 | 726 | 1.0739 | -0.0845 | 1.0739 | 1.0363 | | 0.3565 | 1.5792 | 728 | 1.1155 | -0.0645 | 1.1155 | 1.0562 | | 0.3565 | 1.5835 | 730 | 1.0329 | -0.0845 | 1.0329 | 1.0163 | | 0.3565 | 1.5879 | 732 | 1.0676 | -0.0845 | 1.0676 | 1.0333 | | 0.3565 | 1.5922 | 734 | 1.0434 | -0.0845 | 1.0434 | 1.0215 | | 0.3565 | 1.5965 | 736 | 0.9042 | -0.3883 | 0.9042 | 0.9509 | | 0.3565 | 1.6009 | 738 | 0.8371 | 0.0 | 0.8371 | 0.9149 | | 0.3565 | 1.6052 | 740 | 0.8631 | 0.0222 | 0.8631 | 0.9291 | | 0.3565 | 1.6095 | 742 | 1.0648 | -0.0845 | 1.0648 | 1.0319 | | 0.3565 | 1.6139 | 744 | 1.3811 | -0.1547 | 1.3811 | 1.1752 | | 0.3565 | 1.6182 | 746 | 1.3722 | -0.1547 | 1.3722 | 1.1714 | | 0.3565 | 1.6226 | 748 | 1.0955 | -0.0645 | 1.0955 | 1.0467 | | 0.3565 | 1.6269 | 750 | 0.8314 | -0.0233 | 0.8314 | 0.9118 | | 0.3565 | 1.6312 | 752 | 0.8235 | -0.0233 | 0.8235 | 0.9075 | | 0.3565 | 1.6356 | 754 | 0.8283 | -0.0233 | 0.8283 | 0.9101 | | 0.3565 | 1.6399 | 756 | 0.8913 | -0.3883 | 0.8913 | 0.9441 | | 0.3565 | 1.6443 | 758 | 1.0161 | -0.1085 | 1.0161 | 1.0080 | | 0.3565 | 1.6486 | 760 | 0.9575 | -0.3276 | 0.9575 | 0.9785 | | 0.3565 | 1.6529 | 762 | 0.8446 | 0.0 | 0.8446 | 0.9190 | | 0.3565 | 1.6573 | 764 | 0.8126 | -0.0233 | 0.8126 | 0.9015 | | 0.3565 | 1.6616 | 766 | 0.8146 | -0.0233 | 0.8146 | 0.9026 | | 0.3565 | 1.6659 | 768 | 0.8276 | 0.0 | 0.8276 | 0.9097 | | 0.3565 | 1.6703 | 770 | 0.8101 | 0.0 | 0.8101 | 0.9000 | | 0.3565 | 1.6746 | 772 | 0.7891 | -0.0421 | 0.7891 | 0.8883 | | 0.3565 | 1.6790 | 774 | 0.7625 | 0.0 | 0.7625 | 0.8732 | | 0.3565 | 1.6833 | 776 | 0.7480 | -0.0233 | 0.7480 | 0.8649 | | 0.3565 | 1.6876 | 778 | 0.7326 | 0.0 | 0.7326 | 0.8559 | | 0.3565 | 1.6920 | 780 | 0.7839 | 0.0222 | 0.7839 | 0.8854 | | 0.3565 | 1.6963 | 782 | 0.8544 | 0.0388 | 0.8544 | 0.9243 | | 0.3565 | 1.7007 | 784 | 0.8095 | 0.0222 | 0.8095 | 0.8997 | | 0.3565 | 1.7050 | 786 | 0.6807 | 0.0 | 0.6807 | 0.8250 | | 0.3565 | 1.7093 | 788 | 0.6211 | 0.0 | 0.6211 | 0.7881 | | 0.3565 | 1.7137 | 790 | 0.6141 | 0.0 | 0.6141 | 0.7837 | | 0.3565 | 1.7180 | 792 | 0.6193 | 0.0 | 0.6193 | 0.7870 | | 0.3565 | 1.7223 | 794 | 0.6695 | 0.0 | 0.6695 | 0.8183 | | 0.3565 | 1.7267 | 796 | 0.7284 | 0.0 | 0.7284 | 0.8535 | | 0.3565 | 1.7310 | 798 | 0.7241 | 0.0 | 0.7241 | 0.8509 | | 0.3565 | 1.7354 | 800 | 0.7381 | 0.0 | 0.7381 | 0.8591 | | 0.3565 | 1.7397 | 802 | 0.7140 | 0.0 | 0.7140 | 0.8450 | | 0.3565 | 1.7440 | 804 | 0.7023 | 0.0 | 0.7023 | 0.8380 | | 0.3565 | 1.7484 | 806 | 0.7513 | 0.0 | 0.7513 | 0.8668 | | 0.3565 | 1.7527 | 808 | 0.8817 | -0.1379 | 0.8817 | 0.9390 | | 0.3565 | 1.7570 | 810 | 1.0829 | -0.0476 | 1.0829 | 1.0406 | | 0.3565 | 1.7614 | 812 | 1.0942 | -0.0476 | 1.0942 | 1.0461 | | 0.3565 | 1.7657 | 814 | 0.9286 | -0.1379 | 0.9286 | 0.9636 | | 0.3565 | 1.7701 | 816 | 0.8321 | 0.0 | 0.8321 | 0.9122 | | 0.3565 | 1.7744 | 818 | 0.7601 | 0.0 | 0.7601 | 0.8719 | | 0.3565 | 1.7787 | 820 | 0.7621 | -0.0233 | 0.7621 | 0.8730 | | 0.3565 | 1.7831 | 822 | 0.8331 | 0.0 | 0.8331 | 0.9127 | | 0.3565 | 1.7874 | 824 | 0.9920 | -0.1085 | 0.9920 | 0.9960 | | 0.3565 | 1.7918 | 826 | 0.9913 | -0.1085 | 0.9913 | 0.9956 | | 0.3565 | 1.7961 | 828 | 0.9742 | -0.1085 | 0.9742 | 0.9870 | | 0.3565 | 1.8004 | 830 | 0.9623 | -0.1085 | 0.9623 | 0.9810 | | 0.3565 | 1.8048 | 832 | 0.9026 | -0.1085 | 0.9026 | 0.9501 | | 0.3565 | 1.8091 | 834 | 0.9173 | -0.1085 | 0.9173 | 0.9578 | | 0.3565 | 1.8134 | 836 | 0.8297 | -0.1748 | 0.8297 | 0.9109 | | 0.3565 | 1.8178 | 838 | 0.8509 | -0.1748 | 0.8509 | 0.9224 | | 0.3565 | 1.8221 | 840 | 0.8056 | 0.2667 | 0.8056 | 0.8975 | | 0.3565 | 1.8265 | 842 | 0.7643 | 0.2667 | 0.7643 | 0.8743 | | 0.3565 | 1.8308 | 844 | 0.8550 | -0.1379 | 0.8550 | 0.9246 | | 0.3565 | 1.8351 | 846 | 0.8426 | -0.1748 | 0.8426 | 0.9180 | | 0.3565 | 1.8395 | 848 | 0.9608 | -0.0845 | 0.9608 | 0.9802 | | 0.3565 | 1.8438 | 850 | 0.9801 | -0.0845 | 0.9801 | 0.9900 | | 0.3565 | 1.8482 | 852 | 0.8307 | 0.2667 | 0.8307 | 0.9114 | | 0.3565 | 1.8525 | 854 | 0.7664 | 0.2667 | 0.7664 | 0.8755 | | 0.3565 | 1.8568 | 856 | 0.8855 | -0.1379 | 0.8855 | 0.9410 | | 0.3565 | 1.8612 | 858 | 1.0829 | -0.0645 | 1.0829 | 1.0406 | | 0.3565 | 1.8655 | 860 | 1.1194 | -0.1547 | 1.1194 | 1.0580 | | 0.3565 | 1.8698 | 862 | 1.0990 | -0.1786 | 1.0990 | 1.0483 | | 0.3565 | 1.8742 | 864 | 1.0013 | -0.0845 | 1.0013 | 1.0006 | | 0.3565 | 1.8785 | 866 | 0.9126 | -0.1085 | 0.9126 | 0.9553 | | 0.3565 | 1.8829 | 868 | 0.8240 | 0.2667 | 0.8240 | 0.9077 | | 0.3565 | 1.8872 | 870 | 0.8947 | -0.1379 | 0.8947 | 0.9459 | | 0.3565 | 1.8915 | 872 | 1.1059 | -0.0645 | 1.1059 | 1.0516 | | 0.3565 | 1.8959 | 874 | 1.1009 | -0.0645 | 1.1009 | 1.0492 | | 0.3565 | 1.9002 | 876 | 0.9601 | -0.1085 | 0.9601 | 0.9799 | | 0.3565 | 1.9046 | 878 | 0.9454 | -0.1085 | 0.9454 | 0.9723 | | 0.3565 | 1.9089 | 880 | 0.9077 | -0.1379 | 0.9077 | 0.9527 | | 0.3565 | 1.9132 | 882 | 0.8609 | -0.1379 | 0.8609 | 0.9279 | | 0.3565 | 1.9176 | 884 | 0.7762 | 0.2667 | 0.7762 | 0.8810 | | 0.3565 | 1.9219 | 886 | 0.7504 | 0.2667 | 0.7504 | 0.8663 | | 0.3565 | 1.9262 | 888 | 0.8559 | -0.1379 | 0.8559 | 0.9251 | | 0.3565 | 1.9306 | 890 | 1.1076 | 0.0884 | 1.1076 | 1.0524 | | 0.3565 | 1.9349 | 892 | 1.0588 | -0.0645 | 1.0588 | 1.0290 | | 0.3565 | 1.9393 | 894 | 0.8856 | -0.1085 | 0.8856 | 0.9411 | | 0.3565 | 1.9436 | 896 | 0.7334 | 0.2667 | 0.7334 | 0.8564 | | 0.3565 | 1.9479 | 898 | 0.7163 | -0.0233 | 0.7163 | 0.8463 | | 0.3565 | 1.9523 | 900 | 0.7181 | -0.0233 | 0.7181 | 0.8474 | | 0.3565 | 1.9566 | 902 | 0.8519 | -0.1379 | 0.8519 | 0.9230 | | 0.3565 | 1.9610 | 904 | 0.9699 | -0.1085 | 0.9699 | 0.9848 | | 0.3565 | 1.9653 | 906 | 0.9044 | -0.1379 | 0.9044 | 0.9510 | | 0.3565 | 1.9696 | 908 | 0.8281 | -0.1379 | 0.8281 | 0.9100 | | 0.3565 | 1.9740 | 910 | 0.7533 | 0.2667 | 0.7533 | 0.8679 | | 0.3565 | 1.9783 | 912 | 0.7093 | 0.0 | 0.7093 | 0.8422 | | 0.3565 | 1.9826 | 914 | 0.7837 | 0.2667 | 0.7837 | 0.8853 | | 0.3565 | 1.9870 | 916 | 0.9010 | -0.1085 | 0.9010 | 0.9492 | | 0.3565 | 1.9913 | 918 | 1.1934 | -0.0331 | 1.1934 | 1.0924 | | 0.3565 | 1.9957 | 920 | 1.1619 | -0.0645 | 1.1619 | 1.0779 | | 0.3565 | 2.0 | 922 | 0.8957 | -0.1379 | 0.8957 | 0.9464 | | 0.3565 | 2.0043 | 924 | 0.7776 | -0.0233 | 0.7776 | 0.8818 | | 0.3565 | 2.0087 | 926 | 0.8034 | -0.0233 | 0.8034 | 0.8963 | | 0.3565 | 2.0130 | 928 | 0.9800 | -0.1085 | 0.9800 | 0.9899 | | 0.3565 | 2.0174 | 930 | 1.1847 | -0.0845 | 1.1847 | 1.0885 | | 0.3565 | 2.0217 | 932 | 1.2347 | -0.1786 | 1.2347 | 1.1111 | | 0.3565 | 2.0260 | 934 | 1.1708 | -0.2065 | 1.1708 | 1.0820 | | 0.3565 | 2.0304 | 936 | 0.9788 | -0.0845 | 0.9788 | 0.9893 | | 0.3565 | 2.0347 | 938 | 0.8995 | -0.1748 | 0.8995 | 0.9484 | | 0.3565 | 2.0390 | 940 | 0.9337 | -0.1379 | 0.9337 | 0.9663 | | 0.3565 | 2.0434 | 942 | 0.9820 | -0.0845 | 0.9820 | 0.9909 | | 0.3565 | 2.0477 | 944 | 0.9380 | -0.1379 | 0.9380 | 0.9685 | | 0.3565 | 2.0521 | 946 | 0.8469 | -0.4667 | 0.8469 | 0.9203 | | 0.3565 | 2.0564 | 948 | 0.8451 | 0.0 | 0.8451 | 0.9193 | | 0.3565 | 2.0607 | 950 | 0.8987 | -0.1748 | 0.8987 | 0.9480 | | 0.3565 | 2.0651 | 952 | 0.9205 | -0.1379 | 0.9205 | 0.9594 | | 0.3565 | 2.0694 | 954 | 0.8628 | -0.1748 | 0.8628 | 0.9289 | | 0.3565 | 2.0738 | 956 | 0.8766 | -0.1748 | 0.8766 | 0.9363 | | 0.3565 | 2.0781 | 958 | 0.9642 | -0.1379 | 0.9642 | 0.9819 | | 0.3565 | 2.0824 | 960 | 0.8924 | -0.1748 | 0.8924 | 0.9447 | | 0.3565 | 2.0868 | 962 | 0.8917 | -0.1748 | 0.8917 | 0.9443 | | 0.3565 | 2.0911 | 964 | 0.9993 | -0.1085 | 0.9993 | 0.9997 | | 0.3565 | 2.0954 | 966 | 1.0963 | -0.0845 | 1.0963 | 1.0471 | | 0.3565 | 2.0998 | 968 | 1.0526 | -0.0845 | 1.0526 | 1.0260 | | 0.3565 | 2.1041 | 970 | 0.9075 | -0.4667 | 0.9075 | 0.9526 | | 0.3565 | 2.1085 | 972 | 0.8740 | 0.0 | 0.8740 | 0.9349 | | 0.3565 | 2.1128 | 974 | 0.9042 | -0.4667 | 0.9042 | 0.9509 | | 0.3565 | 2.1171 | 976 | 0.9488 | -0.1748 | 0.9488 | 0.9741 | | 0.3565 | 2.1215 | 978 | 1.0742 | -0.0845 | 1.0742 | 1.0364 | | 0.3565 | 2.1258 | 980 | 1.1035 | -0.0845 | 1.1035 | 1.0505 | | 0.3565 | 2.1302 | 982 | 1.1369 | -0.0845 | 1.1369 | 1.0663 | | 0.3565 | 2.1345 | 984 | 1.0774 | -0.0845 | 1.0774 | 1.0380 | | 0.3565 | 2.1388 | 986 | 1.1307 | -0.0845 | 1.1307 | 1.0633 | | 0.3565 | 2.1432 | 988 | 1.2363 | -0.1786 | 1.2363 | 1.1119 | | 0.3565 | 2.1475 | 990 | 1.1652 | -0.2065 | 1.1652 | 1.0794 | | 0.3565 | 2.1518 | 992 | 0.9717 | -0.1085 | 0.9717 | 0.9858 | | 0.3565 | 2.1562 | 994 | 0.9052 | -0.4667 | 0.9052 | 0.9514 | | 0.3565 | 2.1605 | 996 | 0.9267 | -0.1379 | 0.9267 | 0.9627 | | 0.3565 | 2.1649 | 998 | 0.9712 | -0.1085 | 0.9712 | 0.9855 | | 0.1294 | 2.1692 | 1000 | 0.9731 | -0.1085 | 0.9731 | 0.9865 | | 0.1294 | 2.1735 | 1002 | 0.9668 | -0.1085 | 0.9668 | 0.9833 | | 0.1294 | 2.1779 | 1004 | 0.9704 | -0.1085 | 0.9704 | 0.9851 | | 0.1294 | 2.1822 | 1006 | 0.9216 | -0.1748 | 0.9216 | 0.9600 | | 0.1294 | 2.1866 | 1008 | 0.8840 | 0.0 | 0.8840 | 0.9402 | | 0.1294 | 2.1909 | 1010 | 0.8426 | 0.0 | 0.8426 | 0.9180 | | 0.1294 | 2.1952 | 1012 | 0.9055 | -0.1748 | 0.9055 | 0.9516 | | 0.1294 | 2.1996 | 1014 | 0.9871 | -0.1085 | 0.9871 | 0.9935 | | 0.1294 | 2.2039 | 1016 | 1.0155 | -0.1085 | 1.0155 | 1.0077 | | 0.1294 | 2.2082 | 1018 | 0.9137 | -0.1379 | 0.9137 | 0.9559 | | 0.1294 | 2.2126 | 1020 | 0.8282 | 0.0 | 0.8282 | 0.9101 | | 0.1294 | 2.2169 | 1022 | 0.8860 | -0.1379 | 0.8860 | 0.9413 | | 0.1294 | 2.2213 | 1024 | 0.9730 | -0.1085 | 0.9730 | 0.9864 | | 0.1294 | 2.2256 | 1026 | 1.0642 | -0.1085 | 1.0642 | 1.0316 | | 0.1294 | 2.2299 | 1028 | 0.9709 | -0.1085 | 0.9709 | 0.9853 | | 0.1294 | 2.2343 | 1030 | 0.8583 | 0.0222 | 0.8583 | 0.9264 | | 0.1294 | 2.2386 | 1032 | 0.8330 | 0.0222 | 0.8330 | 0.9127 | | 0.1294 | 2.2430 | 1034 | 0.8932 | -0.1379 | 0.8932 | 0.9451 | | 0.1294 | 2.2473 | 1036 | 0.9335 | -0.1085 | 0.9335 | 0.9662 | | 0.1294 | 2.2516 | 1038 | 0.8972 | -0.1379 | 0.8972 | 0.9472 | | 0.1294 | 2.2560 | 1040 | 0.8722 | -0.1748 | 0.8722 | 0.9339 | | 0.1294 | 2.2603 | 1042 | 0.9621 | -0.1085 | 0.9621 | 0.9809 | | 0.1294 | 2.2646 | 1044 | 1.0792 | -0.1085 | 1.0792 | 1.0388 | | 0.1294 | 2.2690 | 1046 | 1.0557 | -0.1085 | 1.0557 | 1.0275 | | 0.1294 | 2.2733 | 1048 | 0.9694 | -0.1786 | 0.9694 | 0.9846 | | 0.1294 | 2.2777 | 1050 | 0.9696 | -0.1786 | 0.9696 | 0.9847 | | 0.1294 | 2.2820 | 1052 | 1.0594 | -0.1085 | 1.0594 | 1.0293 | | 0.1294 | 2.2863 | 1054 | 1.1515 | -0.2394 | 1.1515 | 1.0731 | | 0.1294 | 2.2907 | 1056 | 1.0261 | -0.1085 | 1.0261 | 1.0130 | | 0.1294 | 2.2950 | 1058 | 0.8928 | -0.1379 | 0.8928 | 0.9449 | | 0.1294 | 2.2993 | 1060 | 0.8653 | -0.1748 | 0.8653 | 0.9302 | | 0.1294 | 2.3037 | 1062 | 0.8581 | -0.1748 | 0.8581 | 0.9264 | | 0.1294 | 2.3080 | 1064 | 0.9250 | -0.1085 | 0.9250 | 0.9617 | | 0.1294 | 2.3124 | 1066 | 0.9524 | -0.1085 | 0.9524 | 0.9759 | | 0.1294 | 2.3167 | 1068 | 0.9141 | -0.1085 | 0.9141 | 0.9561 | | 0.1294 | 2.3210 | 1070 | 0.8805 | -0.1748 | 0.8805 | 0.9384 | | 0.1294 | 2.3254 | 1072 | 0.8769 | -0.1748 | 0.8769 | 0.9364 | | 0.1294 | 2.3297 | 1074 | 0.8333 | 0.0 | 0.8333 | 0.9129 | | 0.1294 | 2.3341 | 1076 | 0.8894 | -0.1748 | 0.8894 | 0.9431 | | 0.1294 | 2.3384 | 1078 | 0.9085 | -0.1379 | 0.9085 | 0.9532 | | 0.1294 | 2.3427 | 1080 | 0.9958 | -0.1085 | 0.9958 | 0.9979 | | 0.1294 | 2.3471 | 1082 | 0.9917 | -0.1085 | 0.9917 | 0.9958 | | 0.1294 | 2.3514 | 1084 | 0.9060 | -0.1440 | 0.9060 | 0.9518 | | 0.1294 | 2.3557 | 1086 | 0.8915 | -0.1379 | 0.8915 | 0.9442 | | 0.1294 | 2.3601 | 1088 | 0.9537 | -0.1085 | 0.9537 | 0.9766 | | 0.1294 | 2.3644 | 1090 | 0.9069 | -0.1085 | 0.9069 | 0.9523 | | 0.1294 | 2.3688 | 1092 | 0.8461 | 0.2667 | 0.8461 | 0.9198 | | 0.1294 | 2.3731 | 1094 | 0.8795 | -0.1379 | 0.8795 | 0.9378 | | 0.1294 | 2.3774 | 1096 | 0.9203 | -0.1085 | 0.9203 | 0.9593 | | 0.1294 | 2.3818 | 1098 | 0.8677 | -0.1379 | 0.8677 | 0.9315 | | 0.1294 | 2.3861 | 1100 | 0.9068 | -0.1379 | 0.9068 | 0.9523 | | 0.1294 | 2.3905 | 1102 | 0.8125 | 0.2222 | 0.8125 | 0.9014 | | 0.1294 | 2.3948 | 1104 | 0.7822 | -0.0233 | 0.7822 | 0.8844 | | 0.1294 | 2.3991 | 1106 | 0.7775 | -0.0233 | 0.7775 | 0.8818 | | 0.1294 | 2.4035 | 1108 | 0.8418 | 0.2524 | 0.8418 | 0.9175 | | 0.1294 | 2.4078 | 1110 | 1.0500 | -0.1085 | 1.0500 | 1.0247 | | 0.1294 | 2.4121 | 1112 | 1.1210 | -0.0645 | 1.1210 | 1.0588 | | 0.1294 | 2.4165 | 1114 | 0.9788 | -0.1085 | 0.9788 | 0.9893 | | 0.1294 | 2.4208 | 1116 | 0.8464 | 0.2524 | 0.8464 | 0.9200 | | 0.1294 | 2.4252 | 1118 | 0.8620 | -0.1379 | 0.8620 | 0.9285 | | 0.1294 | 2.4295 | 1120 | 0.8787 | -0.1379 | 0.8787 | 0.9374 | | 0.1294 | 2.4338 | 1122 | 0.9961 | -0.1085 | 0.9961 | 0.9981 | | 0.1294 | 2.4382 | 1124 | 1.1814 | -0.1547 | 1.1814 | 1.0869 | | 0.1294 | 2.4425 | 1126 | 1.1605 | -0.1547 | 1.1605 | 1.0773 | | 0.1294 | 2.4469 | 1128 | 0.9985 | -0.1085 | 0.9985 | 0.9993 | | 0.1294 | 2.4512 | 1130 | 0.9388 | -0.1379 | 0.9388 | 0.9689 | | 0.1294 | 2.4555 | 1132 | 1.0021 | -0.1085 | 1.0021 | 1.0010 | | 0.1294 | 2.4599 | 1134 | 1.0069 | -0.1085 | 1.0069 | 1.0034 | | 0.1294 | 2.4642 | 1136 | 0.9278 | -0.1379 | 0.9278 | 0.9632 | | 0.1294 | 2.4685 | 1138 | 0.9098 | -0.1379 | 0.9098 | 0.9538 | | 0.1294 | 2.4729 | 1140 | 0.8393 | 0.2524 | 0.8393 | 0.9161 | | 0.1294 | 2.4772 | 1142 | 0.8939 | 0.2524 | 0.8939 | 0.9455 | | 0.1294 | 2.4816 | 1144 | 1.0018 | -0.1379 | 1.0018 | 1.0009 | | 0.1294 | 2.4859 | 1146 | 0.9573 | -0.1379 | 0.9573 | 0.9784 | | 0.1294 | 2.4902 | 1148 | 0.8183 | 0.2524 | 0.8183 | 0.9046 | | 0.1294 | 2.4946 | 1150 | 0.7542 | 0.2222 | 0.7542 | 0.8685 | | 0.1294 | 2.4989 | 1152 | 0.7850 | 0.2524 | 0.7850 | 0.8860 | | 0.1294 | 2.5033 | 1154 | 0.8740 | 0.2524 | 0.8740 | 0.9349 | | 0.1294 | 2.5076 | 1156 | 0.8629 | 0.2524 | 0.8629 | 0.9289 | | 0.1294 | 2.5119 | 1158 | 0.8164 | 0.2524 | 0.8164 | 0.9035 | | 0.1294 | 2.5163 | 1160 | 0.7629 | 0.2667 | 0.7629 | 0.8734 | | 0.1294 | 2.5206 | 1162 | 0.7815 | 0.2667 | 0.7815 | 0.8840 | | 0.1294 | 2.5249 | 1164 | 0.7630 | 0.2667 | 0.7630 | 0.8735 | | 0.1294 | 2.5293 | 1166 | 0.8132 | 0.2667 | 0.8132 | 0.9018 | | 0.1294 | 2.5336 | 1168 | 0.8564 | 0.2524 | 0.8564 | 0.9254 | | 0.1294 | 2.5380 | 1170 | 0.8388 | 0.2667 | 0.8388 | 0.9159 | | 0.1294 | 2.5423 | 1172 | 0.7894 | 0.0 | 0.7894 | 0.8885 | | 0.1294 | 2.5466 | 1174 | 0.7635 | 0.0 | 0.7635 | 0.8738 | | 0.1294 | 2.5510 | 1176 | 0.7890 | 0.0 | 0.7890 | 0.8883 | | 0.1294 | 2.5553 | 1178 | 0.8535 | 0.2667 | 0.8535 | 0.9238 | | 0.1294 | 2.5597 | 1180 | 0.8728 | 0.2524 | 0.8728 | 0.9343 | | 0.1294 | 2.5640 | 1182 | 0.7860 | 0.0 | 0.7860 | 0.8865 | | 0.1294 | 2.5683 | 1184 | 0.7285 | -0.0233 | 0.7285 | 0.8535 | | 0.1294 | 2.5727 | 1186 | 0.7642 | -0.2737 | 0.7642 | 0.8742 | | 0.1294 | 2.5770 | 1188 | 0.7583 | -0.0233 | 0.7583 | 0.8708 | | 0.1294 | 2.5813 | 1190 | 0.8256 | -0.0233 | 0.8256 | 0.9086 | | 0.1294 | 2.5857 | 1192 | 1.0324 | -0.0645 | 1.0324 | 1.0161 | | 0.1294 | 2.5900 | 1194 | 1.0743 | -0.0645 | 1.0743 | 1.0365 | | 0.1294 | 2.5944 | 1196 | 0.9035 | 0.2414 | 0.9035 | 0.9505 | | 0.1294 | 2.5987 | 1198 | 0.7630 | -0.0233 | 0.7630 | 0.8735 | | 0.1294 | 2.6030 | 1200 | 0.7422 | -0.0233 | 0.7422 | 0.8615 | | 0.1294 | 2.6074 | 1202 | 0.7600 | 0.0 | 0.7600 | 0.8718 | | 0.1294 | 2.6117 | 1204 | 0.8121 | 0.0 | 0.8121 | 0.9011 | | 0.1294 | 2.6161 | 1206 | 0.9161 | -0.1085 | 0.9161 | 0.9572 | | 0.1294 | 2.6204 | 1208 | 0.8692 | 0.0 | 0.8692 | 0.9323 | | 0.1294 | 2.6247 | 1210 | 0.8014 | -0.0233 | 0.8014 | 0.8952 | | 0.1294 | 2.6291 | 1212 | 0.8233 | -0.0233 | 0.8233 | 0.9074 | | 0.1294 | 2.6334 | 1214 | 0.8970 | -0.0233 | 0.8970 | 0.9471 | | 0.1294 | 2.6377 | 1216 | 1.0236 | -0.1085 | 1.0236 | 1.0117 | | 0.1294 | 2.6421 | 1218 | 1.1842 | -0.1786 | 1.1842 | 1.0882 | | 0.1294 | 2.6464 | 1220 | 1.1733 | -0.1786 | 1.1733 | 1.0832 | | 0.1294 | 2.6508 | 1222 | 1.0163 | -0.0845 | 1.0163 | 1.0081 | | 0.1294 | 2.6551 | 1224 | 0.8901 | 0.0 | 0.8901 | 0.9434 | | 0.1294 | 2.6594 | 1226 | 0.8056 | -0.0233 | 0.8056 | 0.8976 | | 0.1294 | 2.6638 | 1228 | 0.8057 | -0.0233 | 0.8057 | 0.8976 | | 0.1294 | 2.6681 | 1230 | 0.8420 | -0.0233 | 0.8420 | 0.9176 | | 0.1294 | 2.6725 | 1232 | 0.9172 | 0.0 | 0.9172 | 0.9577 | | 0.1294 | 2.6768 | 1234 | 0.8963 | 0.0 | 0.8963 | 0.9467 | | 0.1294 | 2.6811 | 1236 | 0.8495 | 0.0 | 0.8495 | 0.9217 | | 0.1294 | 2.6855 | 1238 | 0.7944 | -0.0233 | 0.7944 | 0.8913 | | 0.1294 | 2.6898 | 1240 | 0.7696 | -0.0233 | 0.7696 | 0.8773 | | 0.1294 | 2.6941 | 1242 | 0.7634 | -0.0233 | 0.7634 | 0.8737 | | 0.1294 | 2.6985 | 1244 | 0.7855 | -0.0233 | 0.7855 | 0.8863 | | 0.1294 | 2.7028 | 1246 | 0.8925 | 0.2667 | 0.8925 | 0.9447 | | 0.1294 | 2.7072 | 1248 | 0.9571 | -0.1085 | 0.9571 | 0.9783 | | 0.1294 | 2.7115 | 1250 | 0.9167 | -0.1748 | 0.9167 | 0.9574 | | 0.1294 | 2.7158 | 1252 | 0.8539 | -0.0233 | 0.8539 | 0.9241 | | 0.1294 | 2.7202 | 1254 | 0.8615 | 0.2222 | 0.8615 | 0.9282 | | 0.1294 | 2.7245 | 1256 | 0.9181 | -0.1085 | 0.9181 | 0.9582 | | 0.1294 | 2.7289 | 1258 | 0.9063 | 0.2667 | 0.9063 | 0.9520 | | 0.1294 | 2.7332 | 1260 | 0.8423 | -0.0233 | 0.8423 | 0.9178 | | 0.1294 | 2.7375 | 1262 | 0.8304 | -0.0233 | 0.8304 | 0.9112 | | 0.1294 | 2.7419 | 1264 | 0.8324 | -0.0233 | 0.8324 | 0.9123 | | 0.1294 | 2.7462 | 1266 | 0.8692 | 0.2222 | 0.8692 | 0.9323 | | 0.1294 | 2.7505 | 1268 | 0.8434 | 0.2222 | 0.8434 | 0.9184 | | 0.1294 | 2.7549 | 1270 | 0.7951 | -0.0233 | 0.7951 | 0.8917 | | 0.1294 | 2.7592 | 1272 | 0.7989 | -0.0233 | 0.7989 | 0.8938 | | 0.1294 | 2.7636 | 1274 | 0.8612 | 0.2222 | 0.8612 | 0.9280 | | 0.1294 | 2.7679 | 1276 | 0.9839 | -0.1085 | 0.9839 | 0.9919 | | 0.1294 | 2.7722 | 1278 | 1.0455 | -0.0845 | 1.0455 | 1.0225 | | 0.1294 | 2.7766 | 1280 | 1.0945 | -0.0645 | 1.0945 | 1.0462 | | 0.1294 | 2.7809 | 1282 | 0.9889 | -0.0845 | 0.9889 | 0.9944 | | 0.1294 | 2.7852 | 1284 | 0.8930 | -0.1085 | 0.8930 | 0.9450 | | 0.1294 | 2.7896 | 1286 | 0.7936 | 0.2667 | 0.7936 | 0.8908 | | 0.1294 | 2.7939 | 1288 | 0.7141 | -0.0233 | 0.7141 | 0.8450 | | 0.1294 | 2.7983 | 1290 | 0.6980 | -0.0233 | 0.6980 | 0.8355 | | 0.1294 | 2.8026 | 1292 | 0.7178 | 0.0 | 0.7178 | 0.8472 | | 0.1294 | 2.8069 | 1294 | 0.7619 | 0.2667 | 0.7619 | 0.8729 | | 0.1294 | 2.8113 | 1296 | 0.8313 | 0.2414 | 0.8313 | 0.9117 | | 0.1294 | 2.8156 | 1298 | 0.8830 | -0.1085 | 0.8830 | 0.9397 | | 0.1294 | 2.8200 | 1300 | 0.8080 | 0.2524 | 0.8080 | 0.8989 | | 0.1294 | 2.8243 | 1302 | 0.7278 | -0.0233 | 0.7278 | 0.8531 | | 0.1294 | 2.8286 | 1304 | 0.7301 | 0.0 | 0.7301 | 0.8544 | | 0.1294 | 2.8330 | 1306 | 0.7766 | 0.2667 | 0.7766 | 0.8813 | | 0.1294 | 2.8373 | 1308 | 0.8437 | 0.2414 | 0.8437 | 0.9185 | | 0.1294 | 2.8416 | 1310 | 0.7946 | 0.2524 | 0.7946 | 0.8914 | | 0.1294 | 2.8460 | 1312 | 0.7508 | 0.0 | 0.7508 | 0.8665 | | 0.1294 | 2.8503 | 1314 | 0.7526 | 0.0 | 0.7526 | 0.8675 | | 0.1294 | 2.8547 | 1316 | 0.7815 | 0.0 | 0.7815 | 0.8840 | | 0.1294 | 2.8590 | 1318 | 0.7916 | 0.0 | 0.7916 | 0.8897 | | 0.1294 | 2.8633 | 1320 | 0.7576 | 0.0 | 0.7576 | 0.8704 | | 0.1294 | 2.8677 | 1322 | 0.7118 | 0.0 | 0.7118 | 0.8437 | | 0.1294 | 2.8720 | 1324 | 0.7038 | -0.0233 | 0.7038 | 0.8389 | | 0.1294 | 2.8764 | 1326 | 0.7171 | -0.0233 | 0.7171 | 0.8468 | | 0.1294 | 2.8807 | 1328 | 0.7476 | -0.0233 | 0.7476 | 0.8646 | | 0.1294 | 2.8850 | 1330 | 0.8733 | -0.1085 | 0.8733 | 0.9345 | | 0.1294 | 2.8894 | 1332 | 1.0505 | -0.1085 | 1.0505 | 1.0249 | | 0.1294 | 2.8937 | 1334 | 1.0532 | -0.1085 | 1.0532 | 1.0263 | | 0.1294 | 2.8980 | 1336 | 1.0173 | -0.1085 | 1.0173 | 1.0086 | | 0.1294 | 2.9024 | 1338 | 0.8921 | -0.1085 | 0.8921 | 0.9445 | | 0.1294 | 2.9067 | 1340 | 0.9185 | -0.1085 | 0.9185 | 0.9584 | | 0.1294 | 2.9111 | 1342 | 0.8985 | -0.1085 | 0.8985 | 0.9479 | | 0.1294 | 2.9154 | 1344 | 0.8939 | -0.1085 | 0.8939 | 0.9455 | | 0.1294 | 2.9197 | 1346 | 0.8907 | -0.1085 | 0.8907 | 0.9438 | | 0.1294 | 2.9241 | 1348 | 0.8292 | 0.2524 | 0.8292 | 0.9106 | | 0.1294 | 2.9284 | 1350 | 0.8838 | -0.1085 | 0.8838 | 0.9401 | | 0.1294 | 2.9328 | 1352 | 1.0314 | -0.1085 | 1.0314 | 1.0156 | | 0.1294 | 2.9371 | 1354 | 1.0946 | -0.0645 | 1.0946 | 1.0462 | | 0.1294 | 2.9414 | 1356 | 0.9684 | -0.1085 | 0.9684 | 0.9840 | | 0.1294 | 2.9458 | 1358 | 0.9063 | -0.1085 | 0.9063 | 0.9520 | | 0.1294 | 2.9501 | 1360 | 0.9447 | -0.1085 | 0.9447 | 0.9720 | | 0.1294 | 2.9544 | 1362 | 1.0365 | -0.1085 | 1.0365 | 1.0181 | | 0.1294 | 2.9588 | 1364 | 0.9885 | -0.1085 | 0.9885 | 0.9942 | | 0.1294 | 2.9631 | 1366 | 0.8530 | 0.2524 | 0.8530 | 0.9236 | | 0.1294 | 2.9675 | 1368 | 0.8279 | 0.0222 | 0.8279 | 0.9099 | | 0.1294 | 2.9718 | 1370 | 0.9011 | -0.1085 | 0.9011 | 0.9492 | | 0.1294 | 2.9761 | 1372 | 0.9321 | -0.1085 | 0.9321 | 0.9655 | | 0.1294 | 2.9805 | 1374 | 1.0065 | -0.0845 | 1.0065 | 1.0033 | | 0.1294 | 2.9848 | 1376 | 0.9843 | -0.1085 | 0.9843 | 0.9921 | | 0.1294 | 2.9892 | 1378 | 0.8764 | -0.1379 | 0.8764 | 0.9362 | | 0.1294 | 2.9935 | 1380 | 0.8363 | 0.0 | 0.8363 | 0.9145 | | 0.1294 | 2.9978 | 1382 | 0.8188 | 0.0 | 0.8188 | 0.9049 | | 0.1294 | 3.0022 | 1384 | 0.8116 | 0.2667 | 0.8116 | 0.9009 | | 0.1294 | 3.0065 | 1386 | 0.9211 | -0.1085 | 0.9211 | 0.9598 | | 0.1294 | 3.0108 | 1388 | 1.0282 | -0.0845 | 1.0282 | 1.0140 | | 0.1294 | 3.0152 | 1390 | 1.0520 | -0.0845 | 1.0520 | 1.0257 | | 0.1294 | 3.0195 | 1392 | 0.9526 | -0.1085 | 0.9526 | 0.9760 | | 0.1294 | 3.0239 | 1394 | 0.8067 | -0.0233 | 0.8067 | 0.8982 | | 0.1294 | 3.0282 | 1396 | 0.7626 | -0.0233 | 0.7626 | 0.8733 | | 0.1294 | 3.0325 | 1398 | 0.7671 | -0.0233 | 0.7671 | 0.8758 | | 0.1294 | 3.0369 | 1400 | 0.8200 | -0.0233 | 0.8200 | 0.9055 | | 0.1294 | 3.0412 | 1402 | 0.8994 | -0.1085 | 0.8994 | 0.9484 | | 0.1294 | 3.0456 | 1404 | 0.9130 | -0.1085 | 0.9130 | 0.9555 | | 0.1294 | 3.0499 | 1406 | 0.8738 | -0.1379 | 0.8738 | 0.9348 | | 0.1294 | 3.0542 | 1408 | 0.8191 | -0.0233 | 0.8191 | 0.9050 | | 0.1294 | 3.0586 | 1410 | 0.8423 | 0.0 | 0.8423 | 0.9178 | | 0.1294 | 3.0629 | 1412 | 0.9059 | -0.1085 | 0.9059 | 0.9518 | | 0.1294 | 3.0672 | 1414 | 0.9830 | -0.1085 | 0.9830 | 0.9914 | | 0.1294 | 3.0716 | 1416 | 1.0022 | -0.1085 | 1.0022 | 1.0011 | | 0.1294 | 3.0759 | 1418 | 0.9371 | -0.1085 | 0.9371 | 0.9681 | | 0.1294 | 3.0803 | 1420 | 0.8459 | -0.4667 | 0.8459 | 0.9197 | | 0.1294 | 3.0846 | 1422 | 0.8296 | 0.0 | 0.8296 | 0.9108 | | 0.1294 | 3.0889 | 1424 | 0.8847 | -0.1379 | 0.8847 | 0.9406 | | 0.1294 | 3.0933 | 1426 | 0.9566 | -0.1085 | 0.9566 | 0.9780 | | 0.1294 | 3.0976 | 1428 | 0.9662 | -0.1085 | 0.9662 | 0.9830 | | 0.1294 | 3.1020 | 1430 | 0.8925 | -0.3276 | 0.8925 | 0.9447 | | 0.1294 | 3.1063 | 1432 | 0.8560 | -0.0233 | 0.8560 | 0.9252 | | 0.1294 | 3.1106 | 1434 | 0.8762 | -0.0233 | 0.8762 | 0.9361 | | 0.1294 | 3.1150 | 1436 | 0.9733 | -0.1085 | 0.9733 | 0.9866 | | 0.1294 | 3.1193 | 1438 | 1.0849 | -0.0845 | 1.0849 | 1.0416 | | 0.1294 | 3.1236 | 1440 | 1.1162 | -0.1547 | 1.1162 | 1.0565 | | 0.1294 | 3.1280 | 1442 | 1.0359 | -0.0845 | 1.0359 | 1.0178 | | 0.1294 | 3.1323 | 1444 | 0.9485 | -0.1085 | 0.9485 | 0.9739 | | 0.1294 | 3.1367 | 1446 | 0.8727 | 0.2524 | 0.8727 | 0.9342 | | 0.1294 | 3.1410 | 1448 | 0.8819 | -0.1085 | 0.8819 | 0.9391 | | 0.1294 | 3.1453 | 1450 | 0.9472 | -0.1085 | 0.9472 | 0.9733 | | 0.1294 | 3.1497 | 1452 | 1.0992 | -0.0476 | 1.0992 | 1.0484 | | 0.1294 | 3.1540 | 1454 | 1.1516 | -0.0097 | 1.1516 | 1.0731 | | 0.1294 | 3.1584 | 1456 | 1.0585 | -0.0476 | 1.0585 | 1.0289 | | 0.1294 | 3.1627 | 1458 | 0.9158 | -0.1085 | 0.9158 | 0.9570 | | 0.1294 | 3.1670 | 1460 | 0.8246 | 0.0 | 0.8246 | 0.9081 | | 0.1294 | 3.1714 | 1462 | 0.7891 | -0.0233 | 0.7891 | 0.8883 | | 0.1294 | 3.1757 | 1464 | 0.7945 | -0.0233 | 0.7945 | 0.8914 | | 0.1294 | 3.1800 | 1466 | 0.7965 | 0.0 | 0.7965 | 0.8924 | | 0.1294 | 3.1844 | 1468 | 0.7861 | -0.0233 | 0.7861 | 0.8866 | | 0.1294 | 3.1887 | 1470 | 0.8140 | 0.2667 | 0.8140 | 0.9022 | | 0.1294 | 3.1931 | 1472 | 0.8810 | -0.1379 | 0.8810 | 0.9386 | | 0.1294 | 3.1974 | 1474 | 0.9118 | -0.1085 | 0.9118 | 0.9549 | | 0.1294 | 3.2017 | 1476 | 0.9122 | -0.1085 | 0.9122 | 0.9551 | | 0.1294 | 3.2061 | 1478 | 0.8892 | -0.1786 | 0.8892 | 0.9430 | | 0.1294 | 3.2104 | 1480 | 0.9002 | -0.1786 | 0.9002 | 0.9488 | | 0.1294 | 3.2148 | 1482 | 0.9592 | -0.1085 | 0.9592 | 0.9794 | | 0.1294 | 3.2191 | 1484 | 0.9535 | -0.1085 | 0.9535 | 0.9765 | | 0.1294 | 3.2234 | 1486 | 0.8673 | 0.2222 | 0.8673 | 0.9313 | | 0.1294 | 3.2278 | 1488 | 0.8285 | -0.0233 | 0.8285 | 0.9102 | | 0.1294 | 3.2321 | 1490 | 0.8366 | -0.0233 | 0.8366 | 0.9147 | | 0.1294 | 3.2364 | 1492 | 0.8884 | -0.1786 | 0.8884 | 0.9425 | | 0.1294 | 3.2408 | 1494 | 1.0466 | -0.1085 | 1.0466 | 1.0230 | | 0.1294 | 3.2451 | 1496 | 1.1195 | -0.2065 | 1.1195 | 1.0581 | | 0.1294 | 3.2495 | 1498 | 1.0550 | -0.1085 | 1.0550 | 1.0271 | | 0.0943 | 3.2538 | 1500 | 0.9237 | -0.1085 | 0.9237 | 0.9611 | | 0.0943 | 3.2581 | 1502 | 0.8154 | 0.0 | 0.8154 | 0.9030 | | 0.0943 | 3.2625 | 1504 | 0.7962 | -0.0233 | 0.7962 | 0.8923 | | 0.0943 | 3.2668 | 1506 | 0.8210 | -0.0233 | 0.8210 | 0.9061 | | 0.0943 | 3.2711 | 1508 | 0.9349 | -0.1085 | 0.9349 | 0.9669 | | 0.0943 | 3.2755 | 1510 | 1.1090 | -0.2065 | 1.1090 | 1.0531 | | 0.0943 | 3.2798 | 1512 | 1.2055 | -0.2065 | 1.2055 | 1.0979 | | 0.0943 | 3.2842 | 1514 | 1.1489 | -0.2065 | 1.1489 | 1.0719 | | 0.0943 | 3.2885 | 1516 | 1.0131 | -0.1159 | 1.0131 | 1.0065 | | 0.0943 | 3.2928 | 1518 | 0.9838 | -0.1159 | 0.9838 | 0.9919 | | 0.0943 | 3.2972 | 1520 | 1.0453 | -0.1159 | 1.0453 | 1.0224 | | 0.0943 | 3.3015 | 1522 | 1.1701 | -0.2065 | 1.1701 | 1.0817 | | 0.0943 | 3.3059 | 1524 | 1.1739 | -0.2065 | 1.1739 | 1.0835 | | 0.0943 | 3.3102 | 1526 | 1.0692 | -0.1085 | 1.0692 | 1.0340 | | 0.0943 | 3.3145 | 1528 | 0.9931 | -0.1085 | 0.9931 | 0.9966 | | 0.0943 | 3.3189 | 1530 | 0.9714 | -0.1159 | 0.9714 | 0.9856 | | 0.0943 | 3.3232 | 1532 | 0.9567 | -0.1786 | 0.9567 | 0.9781 | | 0.0943 | 3.3275 | 1534 | 0.9948 | -0.1159 | 0.9948 | 0.9974 | | 0.0943 | 3.3319 | 1536 | 0.9996 | -0.1159 | 0.9996 | 0.9998 | | 0.0943 | 3.3362 | 1538 | 1.0050 | -0.1159 | 1.0050 | 1.0025 | | 0.0943 | 3.3406 | 1540 | 0.9650 | -0.1159 | 0.9650 | 0.9824 | | 0.0943 | 3.3449 | 1542 | 0.8997 | -0.4444 | 0.8997 | 0.9485 | | 0.0943 | 3.3492 | 1544 | 0.8933 | -0.4444 | 0.8933 | 0.9452 | | 0.0943 | 3.3536 | 1546 | 0.8893 | -0.4444 | 0.8893 | 0.9430 | | 0.0943 | 3.3579 | 1548 | 0.9449 | -0.1085 | 0.9449 | 0.9720 | | 0.0943 | 3.3623 | 1550 | 1.0436 | -0.1085 | 1.0436 | 1.0216 | | 0.0943 | 3.3666 | 1552 | 1.0504 | -0.1085 | 1.0504 | 1.0249 | | 0.0943 | 3.3709 | 1554 | 0.9763 | -0.1085 | 0.9763 | 0.9881 | | 0.0943 | 3.3753 | 1556 | 0.8912 | -0.4667 | 0.8912 | 0.9440 | | 0.0943 | 3.3796 | 1558 | 0.8509 | -0.0233 | 0.8509 | 0.9224 | | 0.0943 | 3.3839 | 1560 | 0.8629 | -0.0233 | 0.8629 | 0.9289 | | 0.0943 | 3.3883 | 1562 | 0.8806 | -0.0233 | 0.8806 | 0.9384 | | 0.0943 | 3.3926 | 1564 | 0.9479 | -0.4444 | 0.9479 | 0.9736 | | 0.0943 | 3.3970 | 1566 | 0.9888 | -0.1159 | 0.9888 | 0.9944 | | 0.0943 | 3.4013 | 1568 | 0.9573 | -0.1786 | 0.9573 | 0.9784 | | 0.0943 | 3.4056 | 1570 | 0.8953 | -0.0233 | 0.8953 | 0.9462 | | 0.0943 | 3.4100 | 1572 | 0.8852 | -0.0233 | 0.8852 | 0.9409 | | 0.0943 | 3.4143 | 1574 | 0.8781 | -0.0233 | 0.8781 | 0.9371 | | 0.0943 | 3.4187 | 1576 | 0.9035 | -0.4444 | 0.9035 | 0.9505 | | 0.0943 | 3.4230 | 1578 | 0.9973 | -0.1159 | 0.9973 | 0.9986 | | 0.0943 | 3.4273 | 1580 | 1.1495 | -0.0845 | 1.1495 | 1.0721 | | 0.0943 | 3.4317 | 1582 | 1.1578 | -0.0845 | 1.1578 | 1.0760 | | 0.0943 | 3.4360 | 1584 | 1.0766 | -0.1085 | 1.0766 | 1.0376 | | 0.0943 | 3.4403 | 1586 | 0.9602 | -0.4444 | 0.9602 | 0.9799 | | 0.0943 | 3.4447 | 1588 | 0.9122 | -0.0233 | 0.9122 | 0.9551 | | 0.0943 | 3.4490 | 1590 | 0.8975 | -0.0233 | 0.8975 | 0.9474 | | 0.0943 | 3.4534 | 1592 | 0.8960 | -0.0233 | 0.8960 | 0.9466 | | 0.0943 | 3.4577 | 1594 | 0.9424 | -0.4444 | 0.9424 | 0.9708 | | 0.0943 | 3.4620 | 1596 | 1.0232 | -0.1085 | 1.0232 | 1.0115 | | 0.0943 | 3.4664 | 1598 | 1.0998 | -0.0845 | 1.0998 | 1.0487 | | 0.0943 | 3.4707 | 1600 | 1.0940 | -0.0845 | 1.0940 | 1.0459 | | 0.0943 | 3.4751 | 1602 | 0.9860 | -0.1085 | 0.9860 | 0.9930 | | 0.0943 | 3.4794 | 1604 | 0.8568 | -0.0233 | 0.8568 | 0.9256 | | 0.0943 | 3.4837 | 1606 | 0.8303 | -0.0233 | 0.8303 | 0.9112 | | 0.0943 | 3.4881 | 1608 | 0.8390 | -0.0233 | 0.8390 | 0.9160 | | 0.0943 | 3.4924 | 1610 | 0.8657 | -0.0233 | 0.8657 | 0.9305 | | 0.0943 | 3.4967 | 1612 | 0.8944 | -0.4444 | 0.8944 | 0.9457 | | 0.0943 | 3.5011 | 1614 | 0.9187 | -0.4444 | 0.9187 | 0.9585 | | 0.0943 | 3.5054 | 1616 | 0.9433 | -0.4444 | 0.9433 | 0.9712 | | 0.0943 | 3.5098 | 1618 | 0.9703 | -0.4444 | 0.9703 | 0.9850 | | 0.0943 | 3.5141 | 1620 | 0.9664 | -0.1440 | 0.9664 | 0.9831 | | 0.0943 | 3.5184 | 1622 | 0.9212 | -0.4444 | 0.9212 | 0.9598 | | 0.0943 | 3.5228 | 1624 | 0.8955 | -0.0233 | 0.8955 | 0.9463 | | 0.0943 | 3.5271 | 1626 | 0.9080 | -0.0233 | 0.9080 | 0.9529 | | 0.0943 | 3.5315 | 1628 | 0.9080 | -0.0233 | 0.9080 | 0.9529 | | 0.0943 | 3.5358 | 1630 | 0.9265 | -0.1440 | 0.9265 | 0.9625 | | 0.0943 | 3.5401 | 1632 | 0.9378 | -0.1440 | 0.9378 | 0.9684 | | 0.0943 | 3.5445 | 1634 | 0.9230 | -0.1440 | 0.9230 | 0.9607 | | 0.0943 | 3.5488 | 1636 | 0.8712 | -0.0233 | 0.8712 | 0.9334 | | 0.0943 | 3.5531 | 1638 | 0.8488 | -0.0233 | 0.8488 | 0.9213 | | 0.0943 | 3.5575 | 1640 | 0.8604 | -0.4444 | 0.8604 | 0.9276 | | 0.0943 | 3.5618 | 1642 | 0.9232 | -0.1379 | 0.9232 | 0.9608 | | 0.0943 | 3.5662 | 1644 | 0.9373 | -0.1085 | 0.9373 | 0.9682 | | 0.0943 | 3.5705 | 1646 | 0.9000 | -0.1379 | 0.9000 | 0.9487 | | 0.0943 | 3.5748 | 1648 | 0.8947 | -0.1379 | 0.8947 | 0.9459 | | 0.0943 | 3.5792 | 1650 | 0.8399 | -0.4667 | 0.8399 | 0.9164 | | 0.0943 | 3.5835 | 1652 | 0.8061 | -0.0233 | 0.8061 | 0.8978 | | 0.0943 | 3.5879 | 1654 | 0.8103 | -0.0233 | 0.8103 | 0.9002 | | 0.0943 | 3.5922 | 1656 | 0.7960 | -0.0233 | 0.7960 | 0.8922 | | 0.0943 | 3.5965 | 1658 | 0.7849 | 0.0 | 0.7849 | 0.8859 | | 0.0943 | 3.6009 | 1660 | 0.8118 | -0.1748 | 0.8118 | 0.9010 | | 0.0943 | 3.6052 | 1662 | 0.8176 | -0.1748 | 0.8176 | 0.9042 | | 0.0943 | 3.6095 | 1664 | 0.7686 | 0.0 | 0.7686 | 0.8767 | | 0.0943 | 3.6139 | 1666 | 0.7195 | 0.0 | 0.7195 | 0.8482 | | 0.0943 | 3.6182 | 1668 | 0.7154 | -0.0233 | 0.7154 | 0.8458 | | 0.0943 | 3.6226 | 1670 | 0.7409 | 0.0 | 0.7409 | 0.8607 | | 0.0943 | 3.6269 | 1672 | 0.8294 | 0.2667 | 0.8294 | 0.9107 | | 0.0943 | 3.6312 | 1674 | 0.9022 | -0.1085 | 0.9022 | 0.9498 | | 0.0943 | 3.6356 | 1676 | 0.8721 | -0.1748 | 0.8721 | 0.9339 | | 0.0943 | 3.6399 | 1678 | 0.7751 | 0.0 | 0.7751 | 0.8804 | | 0.0943 | 3.6443 | 1680 | 0.7276 | -0.0233 | 0.7276 | 0.8530 | | 0.0943 | 3.6486 | 1682 | 0.7277 | -0.0233 | 0.7277 | 0.8530 | | 0.0943 | 3.6529 | 1684 | 0.7478 | -0.0233 | 0.7478 | 0.8648 | | 0.0943 | 3.6573 | 1686 | 0.8431 | 0.2667 | 0.8431 | 0.9182 | | 0.0943 | 3.6616 | 1688 | 0.9896 | -0.1085 | 0.9896 | 0.9948 | | 0.0943 | 3.6659 | 1690 | 1.0743 | -0.0645 | 1.0743 | 1.0365 | | 0.0943 | 3.6703 | 1692 | 0.9992 | -0.1085 | 0.9992 | 0.9996 | | 0.0943 | 3.6746 | 1694 | 0.8785 | -0.1379 | 0.8785 | 0.9373 | | 0.0943 | 3.6790 | 1696 | 0.7708 | -0.0233 | 0.7708 | 0.8779 | | 0.0943 | 3.6833 | 1698 | 0.7483 | -0.0233 | 0.7483 | 0.8651 | | 0.0943 | 3.6876 | 1700 | 0.7656 | -0.0233 | 0.7656 | 0.8750 | | 0.0943 | 3.6920 | 1702 | 0.8453 | -0.1748 | 0.8453 | 0.9194 | | 0.0943 | 3.6963 | 1704 | 0.9123 | -0.1085 | 0.9123 | 0.9551 | | 0.0943 | 3.7007 | 1706 | 1.0214 | -0.1085 | 1.0214 | 1.0106 | | 0.0943 | 3.7050 | 1708 | 1.0174 | -0.1085 | 1.0174 | 1.0087 | | 0.0943 | 3.7093 | 1710 | 0.9397 | -0.1085 | 0.9397 | 0.9694 | | 0.0943 | 3.7137 | 1712 | 0.8186 | 0.2667 | 0.8186 | 0.9048 | | 0.0943 | 3.7180 | 1714 | 0.7702 | 0.2667 | 0.7702 | 0.8776 | | 0.0943 | 3.7223 | 1716 | 0.7415 | 0.0 | 0.7415 | 0.8611 | | 0.0943 | 3.7267 | 1718 | 0.7228 | 0.0 | 0.7228 | 0.8502 | | 0.0943 | 3.7310 | 1720 | 0.7319 | 0.0 | 0.7319 | 0.8555 | | 0.0943 | 3.7354 | 1722 | 0.7720 | 0.0 | 0.7720 | 0.8786 | | 0.0943 | 3.7397 | 1724 | 0.7968 | 0.0 | 0.7968 | 0.8927 | | 0.0943 | 3.7440 | 1726 | 0.7831 | 0.0 | 0.7831 | 0.8849 | | 0.0943 | 3.7484 | 1728 | 0.8023 | 0.0 | 0.8023 | 0.8957 | | 0.0943 | 3.7527 | 1730 | 0.8075 | 0.0 | 0.8075 | 0.8986 | | 0.0943 | 3.7570 | 1732 | 0.7933 | -0.0233 | 0.7933 | 0.8907 | | 0.0943 | 3.7614 | 1734 | 0.7986 | 0.0 | 0.7986 | 0.8936 | | 0.0943 | 3.7657 | 1736 | 0.8444 | -0.1748 | 0.8444 | 0.9189 | | 0.0943 | 3.7701 | 1738 | 0.9492 | -0.1085 | 0.9492 | 0.9743 | | 0.0943 | 3.7744 | 1740 | 0.9711 | -0.1085 | 0.9711 | 0.9854 | | 0.0943 | 3.7787 | 1742 | 0.9569 | -0.1085 | 0.9569 | 0.9782 | | 0.0943 | 3.7831 | 1744 | 0.8643 | -0.1748 | 0.8643 | 0.9297 | | 0.0943 | 3.7874 | 1746 | 0.8130 | -0.0233 | 0.8130 | 0.9017 | | 0.0943 | 3.7918 | 1748 | 0.8201 | -0.0233 | 0.8201 | 0.9056 | | 0.0943 | 3.7961 | 1750 | 0.8415 | -0.0233 | 0.8415 | 0.9173 | | 0.0943 | 3.8004 | 1752 | 0.8950 | -0.1748 | 0.8950 | 0.9461 | | 0.0943 | 3.8048 | 1754 | 0.9175 | -0.1748 | 0.9175 | 0.9579 | | 0.0943 | 3.8091 | 1756 | 0.8998 | -0.1748 | 0.8998 | 0.9486 | | 0.0943 | 3.8134 | 1758 | 0.8403 | 0.2222 | 0.8403 | 0.9167 | | 0.0943 | 3.8178 | 1760 | 0.8323 | -0.0233 | 0.8323 | 0.9123 | | 0.0943 | 3.8221 | 1762 | 0.8547 | 0.2222 | 0.8547 | 0.9245 | | 0.0943 | 3.8265 | 1764 | 0.9092 | -0.1748 | 0.9092 | 0.9535 | | 0.0943 | 3.8308 | 1766 | 0.9451 | -0.1085 | 0.9451 | 0.9722 | | 0.0943 | 3.8351 | 1768 | 1.0235 | -0.0845 | 1.0235 | 1.0117 | | 0.0943 | 3.8395 | 1770 | 0.9939 | -0.1085 | 0.9939 | 0.9969 | | 0.0943 | 3.8438 | 1772 | 0.8995 | -0.1379 | 0.8995 | 0.9484 | | 0.0943 | 3.8482 | 1774 | 0.8846 | -0.1748 | 0.8846 | 0.9406 | | 0.0943 | 3.8525 | 1776 | 0.8554 | -0.1748 | 0.8554 | 0.9249 | | 0.0943 | 3.8568 | 1778 | 0.8430 | -0.1748 | 0.8430 | 0.9181 | | 0.0943 | 3.8612 | 1780 | 0.8512 | -0.1748 | 0.8512 | 0.9226 | | 0.0943 | 3.8655 | 1782 | 0.9131 | -0.1379 | 0.9131 | 0.9556 | | 0.0943 | 3.8698 | 1784 | 0.9442 | -0.1379 | 0.9442 | 0.9717 | | 0.0943 | 3.8742 | 1786 | 0.8799 | -0.1379 | 0.8799 | 0.9380 | | 0.0943 | 3.8785 | 1788 | 0.8044 | 0.2667 | 0.8044 | 0.8969 | | 0.0943 | 3.8829 | 1790 | 0.7650 | 0.0 | 0.7650 | 0.8746 | | 0.0943 | 3.8872 | 1792 | 0.7799 | 0.0 | 0.7799 | 0.8831 | | 0.0943 | 3.8915 | 1794 | 0.8428 | 0.2667 | 0.8428 | 0.9180 | | 0.0943 | 3.8959 | 1796 | 0.9758 | -0.1085 | 0.9758 | 0.9879 | | 0.0943 | 3.9002 | 1798 | 1.1190 | -0.2065 | 1.1190 | 1.0578 | | 0.0943 | 3.9046 | 1800 | 1.1249 | -0.2065 | 1.1249 | 1.0606 | | 0.0943 | 3.9089 | 1802 | 1.0262 | -0.0845 | 1.0262 | 1.0130 | | 0.0943 | 3.9132 | 1804 | 0.8945 | -0.1748 | 0.8945 | 0.9458 | | 0.0943 | 3.9176 | 1806 | 0.8692 | -0.1748 | 0.8692 | 0.9323 | | 0.0943 | 3.9219 | 1808 | 0.9075 | -0.1748 | 0.9075 | 0.9527 | | 0.0943 | 3.9262 | 1810 | 0.9620 | -0.1379 | 0.9620 | 0.9808 | | 0.0943 | 3.9306 | 1812 | 0.9790 | -0.1379 | 0.9790 | 0.9895 | | 0.0943 | 3.9349 | 1814 | 0.9431 | -0.1379 | 0.9431 | 0.9711 | | 0.0943 | 3.9393 | 1816 | 0.9014 | -0.1748 | 0.9014 | 0.9494 | | 0.0943 | 3.9436 | 1818 | 0.9118 | -0.1379 | 0.9118 | 0.9549 | | 0.0943 | 3.9479 | 1820 | 1.0050 | -0.1379 | 1.0050 | 1.0025 | | 0.0943 | 3.9523 | 1822 | 1.0507 | -0.0845 | 1.0507 | 1.0250 | | 0.0943 | 3.9566 | 1824 | 0.9685 | -0.1379 | 0.9685 | 0.9841 | | 0.0943 | 3.9610 | 1826 | 0.8397 | 0.0 | 0.8397 | 0.9163 | | 0.0943 | 3.9653 | 1828 | 0.7907 | -0.0233 | 0.7907 | 0.8892 | | 0.0943 | 3.9696 | 1830 | 0.7867 | -0.0233 | 0.7867 | 0.8870 | | 0.0943 | 3.9740 | 1832 | 0.7668 | 0.0 | 0.7668 | 0.8756 | | 0.0943 | 3.9783 | 1834 | 0.8042 | 0.0 | 0.8042 | 0.8967 | | 0.0943 | 3.9826 | 1836 | 0.9515 | -0.1379 | 0.9515 | 0.9755 | | 0.0943 | 3.9870 | 1838 | 1.1416 | -0.1547 | 1.1416 | 1.0685 | | 0.0943 | 3.9913 | 1840 | 1.2486 | -0.1547 | 1.2486 | 1.1174 | | 0.0943 | 3.9957 | 1842 | 1.1937 | -0.1786 | 1.1937 | 1.0926 | | 0.0943 | 4.0 | 1844 | 1.0371 | -0.0845 | 1.0371 | 1.0184 | | 0.0943 | 4.0043 | 1846 | 0.8464 | -0.1748 | 0.8464 | 0.9200 | | 0.0943 | 4.0087 | 1848 | 0.7712 | -0.0233 | 0.7712 | 0.8782 | | 0.0943 | 4.0130 | 1850 | 0.7924 | -0.0421 | 0.7924 | 0.8902 | | 0.0943 | 4.0174 | 1852 | 0.7887 | -0.0421 | 0.7887 | 0.8881 | | 0.0943 | 4.0217 | 1854 | 0.7555 | -0.0233 | 0.7555 | 0.8692 | | 0.0943 | 4.0260 | 1856 | 0.7583 | 0.0 | 0.7583 | 0.8708 | | 0.0943 | 4.0304 | 1858 | 0.8603 | -0.1748 | 0.8603 | 0.9275 | | 0.0943 | 4.0347 | 1860 | 0.9234 | -0.1379 | 0.9234 | 0.9609 | | 0.0943 | 4.0390 | 1862 | 0.9184 | -0.1379 | 0.9184 | 0.9583 | | 0.0943 | 4.0434 | 1864 | 0.8551 | -0.1748 | 0.8551 | 0.9247 | | 0.0943 | 4.0477 | 1866 | 0.7881 | 0.0 | 0.7881 | 0.8877 | | 0.0943 | 4.0521 | 1868 | 0.7770 | 0.0 | 0.7770 | 0.8815 | | 0.0943 | 4.0564 | 1870 | 0.7921 | -0.0233 | 0.7921 | 0.8900 | | 0.0943 | 4.0607 | 1872 | 0.8232 | 0.0 | 0.8232 | 0.9073 | | 0.0943 | 4.0651 | 1874 | 0.9313 | -0.1379 | 0.9313 | 0.9650 | | 0.0943 | 4.0694 | 1876 | 1.0042 | -0.1085 | 1.0042 | 1.0021 | | 0.0943 | 4.0738 | 1878 | 0.9814 | -0.1085 | 0.9814 | 0.9907 | | 0.0943 | 4.0781 | 1880 | 0.9009 | -0.1379 | 0.9009 | 0.9492 | | 0.0943 | 4.0824 | 1882 | 0.8267 | 0.0 | 0.8267 | 0.9093 | | 0.0943 | 4.0868 | 1884 | 0.7958 | -0.0233 | 0.7958 | 0.8921 | | 0.0943 | 4.0911 | 1886 | 0.8159 | -0.0233 | 0.8159 | 0.9033 | | 0.0943 | 4.0954 | 1888 | 0.8115 | -0.0233 | 0.8115 | 0.9009 | | 0.0943 | 4.0998 | 1890 | 0.8038 | -0.0233 | 0.8038 | 0.8965 | | 0.0943 | 4.1041 | 1892 | 0.8450 | 0.0 | 0.8450 | 0.9192 | | 0.0943 | 4.1085 | 1894 | 0.9339 | -0.1379 | 0.9339 | 0.9664 | | 0.0943 | 4.1128 | 1896 | 0.9615 | -0.1379 | 0.9615 | 0.9806 | | 0.0943 | 4.1171 | 1898 | 0.9288 | -0.1379 | 0.9288 | 0.9637 | | 0.0943 | 4.1215 | 1900 | 0.8498 | -0.4667 | 0.8498 | 0.9218 | | 0.0943 | 4.1258 | 1902 | 0.7787 | 0.0 | 0.7787 | 0.8824 | | 0.0943 | 4.1302 | 1904 | 0.7624 | 0.0 | 0.7624 | 0.8731 | | 0.0943 | 4.1345 | 1906 | 0.7663 | 0.0 | 0.7663 | 0.8754 | | 0.0943 | 4.1388 | 1908 | 0.7858 | 0.0 | 0.7858 | 0.8864 | | 0.0943 | 4.1432 | 1910 | 0.8344 | 0.0 | 0.8344 | 0.9135 | | 0.0943 | 4.1475 | 1912 | 0.9262 | -0.1379 | 0.9262 | 0.9624 | | 0.0943 | 4.1518 | 1914 | 1.0095 | -0.1085 | 1.0095 | 1.0047 | | 0.0943 | 4.1562 | 1916 | 0.9931 | -0.1085 | 0.9931 | 0.9965 | | 0.0943 | 4.1605 | 1918 | 0.9081 | -0.1379 | 0.9081 | 0.9529 | | 0.0943 | 4.1649 | 1920 | 0.8375 | 0.0 | 0.8375 | 0.9152 | | 0.0943 | 4.1692 | 1922 | 0.8144 | -0.0233 | 0.8144 | 0.9025 | | 0.0943 | 4.1735 | 1924 | 0.8221 | -0.0233 | 0.8221 | 0.9067 | | 0.0943 | 4.1779 | 1926 | 0.8567 | 0.0 | 0.8567 | 0.9256 | | 0.0943 | 4.1822 | 1928 | 0.9549 | -0.1379 | 0.9549 | 0.9772 | | 0.0943 | 4.1866 | 1930 | 1.0508 | -0.1085 | 1.0508 | 1.0251 | | 0.0943 | 4.1909 | 1932 | 1.0729 | -0.0845 | 1.0729 | 1.0358 | | 0.0943 | 4.1952 | 1934 | 1.0392 | -0.1085 | 1.0392 | 1.0194 | | 0.0943 | 4.1996 | 1936 | 0.9743 | -0.1085 | 0.9743 | 0.9871 | | 0.0943 | 4.2039 | 1938 | 0.9051 | -0.1748 | 0.9051 | 0.9514 | | 0.0943 | 4.2082 | 1940 | 0.8353 | -0.0233 | 0.8353 | 0.9140 | | 0.0943 | 4.2126 | 1942 | 0.8195 | -0.0233 | 0.8195 | 0.9053 | | 0.0943 | 4.2169 | 1944 | 0.8250 | -0.0233 | 0.8250 | 0.9083 | | 0.0943 | 4.2213 | 1946 | 0.8236 | -0.0233 | 0.8236 | 0.9075 | | 0.0943 | 4.2256 | 1948 | 0.8369 | 0.0 | 0.8369 | 0.9148 | | 0.0943 | 4.2299 | 1950 | 0.8734 | -0.1748 | 0.8734 | 0.9346 | | 0.0943 | 4.2343 | 1952 | 0.9168 | -0.1379 | 0.9168 | 0.9575 | | 0.0943 | 4.2386 | 1954 | 0.9361 | -0.1379 | 0.9361 | 0.9675 | | 0.0943 | 4.2430 | 1956 | 0.9195 | -0.1379 | 0.9195 | 0.9589 | | 0.0943 | 4.2473 | 1958 | 0.8739 | -0.1748 | 0.8739 | 0.9349 | | 0.0943 | 4.2516 | 1960 | 0.8520 | 0.2667 | 0.8520 | 0.9230 | | 0.0943 | 4.2560 | 1962 | 0.8392 | 0.0 | 0.8392 | 0.9161 | | 0.0943 | 4.2603 | 1964 | 0.8483 | 0.0 | 0.8483 | 0.9210 | | 0.0943 | 4.2646 | 1966 | 0.8568 | 0.0 | 0.8568 | 0.9257 | | 0.0943 | 4.2690 | 1968 | 0.8431 | 0.0 | 0.8431 | 0.9182 | | 0.0943 | 4.2733 | 1970 | 0.8381 | -0.0233 | 0.8381 | 0.9155 | | 0.0943 | 4.2777 | 1972 | 0.8597 | -0.0233 | 0.8597 | 0.9272 | | 0.0943 | 4.2820 | 1974 | 0.8673 | 0.0 | 0.8673 | 0.9313 | | 0.0943 | 4.2863 | 1976 | 0.8912 | 0.2667 | 0.8912 | 0.9441 | | 0.0943 | 4.2907 | 1978 | 0.9231 | -0.1379 | 0.9231 | 0.9608 | | 0.0943 | 4.2950 | 1980 | 0.8883 | 0.2667 | 0.8883 | 0.9425 | | 0.0943 | 4.2993 | 1982 | 0.8556 | 0.0 | 0.8556 | 0.9250 | | 0.0943 | 4.3037 | 1984 | 0.8648 | -0.0233 | 0.8648 | 0.9300 | | 0.0943 | 4.3080 | 1986 | 0.9016 | -0.0233 | 0.9016 | 0.9495 | | 0.0943 | 4.3124 | 1988 | 0.9481 | -0.1786 | 0.9481 | 0.9737 | | 0.0943 | 4.3167 | 1990 | 1.0042 | -0.1379 | 1.0042 | 1.0021 | | 0.0943 | 4.3210 | 1992 | 1.0443 | -0.0845 | 1.0443 | 1.0219 | | 0.0943 | 4.3254 | 1994 | 0.9988 | -0.1379 | 0.9988 | 0.9994 | | 0.0943 | 4.3297 | 1996 | 0.9688 | -0.1786 | 0.9688 | 0.9843 | | 0.0943 | 4.3341 | 1998 | 0.9381 | -0.0233 | 0.9381 | 0.9686 | | 0.0749 | 4.3384 | 2000 | 0.9461 | -0.0233 | 0.9461 | 0.9727 | | 0.0749 | 4.3427 | 2002 | 0.9532 | -0.0233 | 0.9532 | 0.9763 | | 0.0749 | 4.3471 | 2004 | 0.9692 | -0.1786 | 0.9692 | 0.9845 | | 0.0749 | 4.3514 | 2006 | 1.0127 | -0.1379 | 1.0127 | 1.0063 | | 0.0749 | 4.3557 | 2008 | 1.0092 | -0.1379 | 1.0092 | 1.0046 | | 0.0749 | 4.3601 | 2010 | 0.9806 | -0.1379 | 0.9806 | 0.9903 | | 0.0749 | 4.3644 | 2012 | 0.9501 | -0.1748 | 0.9501 | 0.9747 | | 0.0749 | 4.3688 | 2014 | 0.9090 | 0.2667 | 0.9090 | 0.9534 | | 0.0749 | 4.3731 | 2016 | 0.8904 | 0.2667 | 0.8904 | 0.9436 | | 0.0749 | 4.3774 | 2018 | 0.8988 | 0.2667 | 0.8988 | 0.9480 | | 0.0749 | 4.3818 | 2020 | 0.9305 | -0.1379 | 0.9305 | 0.9646 | | 0.0749 | 4.3861 | 2022 | 0.9500 | -0.1379 | 0.9500 | 0.9747 | | 0.0749 | 4.3905 | 2024 | 0.9701 | -0.1379 | 0.9701 | 0.9849 | | 0.0749 | 4.3948 | 2026 | 0.9199 | -0.1379 | 0.9199 | 0.9591 | | 0.0749 | 4.3991 | 2028 | 0.8606 | 0.0 | 0.8606 | 0.9277 | | 0.0749 | 4.4035 | 2030 | 0.8449 | 0.0 | 0.8449 | 0.9192 | | 0.0749 | 4.4078 | 2032 | 0.8665 | 0.2667 | 0.8665 | 0.9308 | | 0.0749 | 4.4121 | 2034 | 0.9115 | -0.1379 | 0.9115 | 0.9547 | | 0.0749 | 4.4165 | 2036 | 0.9083 | -0.1379 | 0.9083 | 0.9530 | | 0.0749 | 4.4208 | 2038 | 0.9143 | -0.1379 | 0.9143 | 0.9562 | | 0.0749 | 4.4252 | 2040 | 0.9340 | -0.1379 | 0.9340 | 0.9664 | | 0.0749 | 4.4295 | 2042 | 0.8821 | -0.1379 | 0.8821 | 0.9392 | | 0.0749 | 4.4338 | 2044 | 0.8511 | 0.0 | 0.8511 | 0.9225 | | 0.0749 | 4.4382 | 2046 | 0.8385 | 0.0 | 0.8385 | 0.9157 | | 0.0749 | 4.4425 | 2048 | 0.8597 | 0.0 | 0.8597 | 0.9272 | | 0.0749 | 4.4469 | 2050 | 0.8862 | -0.1379 | 0.8862 | 0.9414 | | 0.0749 | 4.4512 | 2052 | 0.8630 | 0.0 | 0.8630 | 0.9290 | | 0.0749 | 4.4555 | 2054 | 0.8454 | 0.0 | 0.8454 | 0.9195 | | 0.0749 | 4.4599 | 2056 | 0.8575 | 0.0 | 0.8575 | 0.9260 | | 0.0749 | 4.4642 | 2058 | 0.8562 | 0.0 | 0.8562 | 0.9253 | | 0.0749 | 4.4685 | 2060 | 0.8440 | 0.0 | 0.8440 | 0.9187 | | 0.0749 | 4.4729 | 2062 | 0.8387 | 0.0 | 0.8387 | 0.9158 | | 0.0749 | 4.4772 | 2064 | 0.8614 | -0.4667 | 0.8614 | 0.9281 | | 0.0749 | 4.4816 | 2066 | 0.9377 | -0.1379 | 0.9377 | 0.9683 | | 0.0749 | 4.4859 | 2068 | 1.0063 | -0.1085 | 1.0063 | 1.0032 | | 0.0749 | 4.4902 | 2070 | 0.9952 | -0.1085 | 0.9952 | 0.9976 | | 0.0749 | 4.4946 | 2072 | 0.9560 | -0.1379 | 0.9560 | 0.9778 | | 0.0749 | 4.4989 | 2074 | 0.9396 | -0.1379 | 0.9396 | 0.9693 | | 0.0749 | 4.5033 | 2076 | 0.9042 | -0.1748 | 0.9042 | 0.9509 | | 0.0749 | 4.5076 | 2078 | 0.9010 | -0.1748 | 0.9010 | 0.9492 | | 0.0749 | 4.5119 | 2080 | 0.9134 | -0.1379 | 0.9134 | 0.9557 | | 0.0749 | 4.5163 | 2082 | 0.9204 | -0.1379 | 0.9204 | 0.9594 | | 0.0749 | 4.5206 | 2084 | 0.9284 | -0.1379 | 0.9284 | 0.9635 | | 0.0749 | 4.5249 | 2086 | 0.9265 | -0.1379 | 0.9265 | 0.9625 | | 0.0749 | 4.5293 | 2088 | 0.9193 | -0.1379 | 0.9193 | 0.9588 | | 0.0749 | 4.5336 | 2090 | 0.8666 | -0.4667 | 0.8666 | 0.9309 | | 0.0749 | 4.5380 | 2092 | 0.8343 | -0.0233 | 0.8343 | 0.9134 | | 0.0749 | 4.5423 | 2094 | 0.8352 | -0.0233 | 0.8352 | 0.9139 | | 0.0749 | 4.5466 | 2096 | 0.8373 | -0.0233 | 0.8373 | 0.9151 | | 0.0749 | 4.5510 | 2098 | 0.8650 | 0.0 | 0.8650 | 0.9300 | | 0.0749 | 4.5553 | 2100 | 0.9246 | -0.1379 | 0.9246 | 0.9616 | | 0.0749 | 4.5597 | 2102 | 0.9451 | -0.1379 | 0.9451 | 0.9722 | | 0.0749 | 4.5640 | 2104 | 0.9359 | -0.1379 | 0.9359 | 0.9674 | | 0.0749 | 4.5683 | 2106 | 0.8923 | -0.1379 | 0.8923 | 0.9446 | | 0.0749 | 4.5727 | 2108 | 0.8765 | -0.4667 | 0.8765 | 0.9362 | | 0.0749 | 4.5770 | 2110 | 0.8750 | 0.0 | 0.8750 | 0.9354 | | 0.0749 | 4.5813 | 2112 | 0.8800 | 0.0 | 0.8800 | 0.9381 | | 0.0749 | 4.5857 | 2114 | 0.8832 | -0.0233 | 0.8832 | 0.9398 | | 0.0749 | 4.5900 | 2116 | 0.8870 | -0.0233 | 0.8870 | 0.9418 | | 0.0749 | 4.5944 | 2118 | 0.8878 | -0.0233 | 0.8878 | 0.9422 | | 0.0749 | 4.5987 | 2120 | 0.9051 | -0.3750 | 0.9051 | 0.9513 | | 0.0749 | 4.6030 | 2122 | 0.9227 | -0.1379 | 0.9227 | 0.9606 | | 0.0749 | 4.6074 | 2124 | 0.9045 | -0.3883 | 0.9045 | 0.9511 | | 0.0749 | 4.6117 | 2126 | 0.8951 | -0.3883 | 0.8951 | 0.9461 | | 0.0749 | 4.6161 | 2128 | 0.9075 | -0.1379 | 0.9075 | 0.9526 | | 0.0749 | 4.6204 | 2130 | 0.8906 | -0.3883 | 0.8906 | 0.9437 | | 0.0749 | 4.6247 | 2132 | 0.9136 | -0.1379 | 0.9136 | 0.9558 | | 0.0749 | 4.6291 | 2134 | 0.8952 | -0.1379 | 0.8952 | 0.9462 | | 0.0749 | 4.6334 | 2136 | 0.8933 | -0.1379 | 0.8933 | 0.9452 | | 0.0749 | 4.6377 | 2138 | 0.9083 | -0.1379 | 0.9083 | 0.9530 | | 0.0749 | 4.6421 | 2140 | 0.8662 | -0.3883 | 0.8662 | 0.9307 | | 0.0749 | 4.6464 | 2142 | 0.8202 | 0.0 | 0.8202 | 0.9056 | | 0.0749 | 4.6508 | 2144 | 0.7937 | 0.0 | 0.7937 | 0.8909 | | 0.0749 | 4.6551 | 2146 | 0.8031 | 0.0 | 0.8031 | 0.8961 | | 0.0749 | 4.6594 | 2148 | 0.8402 | 0.0 | 0.8402 | 0.9166 | | 0.0749 | 4.6638 | 2150 | 0.8968 | -0.3883 | 0.8968 | 0.9470 | | 0.0749 | 4.6681 | 2152 | 0.9555 | -0.1379 | 0.9555 | 0.9775 | | 0.0749 | 4.6725 | 2154 | 0.9650 | -0.1379 | 0.9650 | 0.9823 | | 0.0749 | 4.6768 | 2156 | 0.9151 | -0.3883 | 0.9151 | 0.9566 | | 0.0749 | 4.6811 | 2158 | 0.8566 | -0.4667 | 0.8566 | 0.9255 | | 0.0749 | 4.6855 | 2160 | 0.8421 | 0.0 | 0.8421 | 0.9177 | | 0.0749 | 4.6898 | 2162 | 0.8640 | -0.4667 | 0.8640 | 0.9295 | | 0.0749 | 4.6941 | 2164 | 0.9153 | -0.1379 | 0.9153 | 0.9567 | | 0.0749 | 4.6985 | 2166 | 0.9134 | -0.1379 | 0.9134 | 0.9557 | | 0.0749 | 4.7028 | 2168 | 0.8623 | -0.4667 | 0.8623 | 0.9286 | | 0.0749 | 4.7072 | 2170 | 0.8322 | 0.0 | 0.8322 | 0.9123 | | 0.0749 | 4.7115 | 2172 | 0.8539 | -0.4667 | 0.8539 | 0.9241 | | 0.0749 | 4.7158 | 2174 | 0.8983 | -0.1379 | 0.8983 | 0.9478 | | 0.0749 | 4.7202 | 2176 | 0.9016 | -0.1379 | 0.9016 | 0.9495 | | 0.0749 | 4.7245 | 2178 | 0.9308 | -0.1379 | 0.9308 | 0.9648 | | 0.0749 | 4.7289 | 2180 | 0.8912 | -0.1379 | 0.8912 | 0.9440 | | 0.0749 | 4.7332 | 2182 | 0.8199 | 0.0 | 0.8199 | 0.9055 | | 0.0749 | 4.7375 | 2184 | 0.8011 | 0.0 | 0.8011 | 0.8951 | | 0.0749 | 4.7419 | 2186 | 0.8272 | -0.1379 | 0.8272 | 0.9095 | | 0.0749 | 4.7462 | 2188 | 0.8308 | -0.1379 | 0.8308 | 0.9115 | | 0.0749 | 4.7505 | 2190 | 0.8268 | -0.1379 | 0.8268 | 0.9093 | | 0.0749 | 4.7549 | 2192 | 0.8551 | -0.1379 | 0.8551 | 0.9247 | | 0.0749 | 4.7592 | 2194 | 0.8765 | -0.1379 | 0.8765 | 0.9362 | | 0.0749 | 4.7636 | 2196 | 0.8778 | -0.1379 | 0.8778 | 0.9369 | | 0.0749 | 4.7679 | 2198 | 0.8293 | -0.1379 | 0.8293 | 0.9107 | | 0.0749 | 4.7722 | 2200 | 0.7634 | 0.0 | 0.7634 | 0.8737 | | 0.0749 | 4.7766 | 2202 | 0.7595 | 0.0 | 0.7595 | 0.8715 | | 0.0749 | 4.7809 | 2204 | 0.7848 | 0.0 | 0.7848 | 0.8859 | | 0.0749 | 4.7852 | 2206 | 0.8576 | -0.1379 | 0.8576 | 0.9261 | | 0.0749 | 4.7896 | 2208 | 0.9053 | -0.1379 | 0.9053 | 0.9515 | | 0.0749 | 4.7939 | 2210 | 0.9536 | -0.1379 | 0.9536 | 0.9765 | | 0.0749 | 4.7983 | 2212 | 0.9173 | -0.1379 | 0.9173 | 0.9578 | | 0.0749 | 4.8026 | 2214 | 0.9220 | -0.1379 | 0.9220 | 0.9602 | | 0.0749 | 4.8069 | 2216 | 0.9156 | -0.1379 | 0.9156 | 0.9569 | | 0.0749 | 4.8113 | 2218 | 0.9176 | -0.1379 | 0.9176 | 0.9579 | | 0.0749 | 4.8156 | 2220 | 0.8493 | -0.1379 | 0.8493 | 0.9216 | | 0.0749 | 4.8200 | 2222 | 0.7936 | 0.0 | 0.7936 | 0.8908 | | 0.0749 | 4.8243 | 2224 | 0.7835 | 0.0 | 0.7835 | 0.8851 | | 0.0749 | 4.8286 | 2226 | 0.8121 | 0.2524 | 0.8121 | 0.9012 | | 0.0749 | 4.8330 | 2228 | 0.8369 | -0.1379 | 0.8369 | 0.9148 | | 0.0749 | 4.8373 | 2230 | 0.8660 | -0.1379 | 0.8660 | 0.9306 | | 0.0749 | 4.8416 | 2232 | 0.9270 | -0.1085 | 0.9270 | 0.9628 | | 0.0749 | 4.8460 | 2234 | 0.9109 | -0.1379 | 0.9109 | 0.9544 | | 0.0749 | 4.8503 | 2236 | 0.8880 | -0.1379 | 0.8880 | 0.9423 | | 0.0749 | 4.8547 | 2238 | 0.8122 | 0.2524 | 0.8122 | 0.9012 | | 0.0749 | 4.8590 | 2240 | 0.7534 | 0.0 | 0.7534 | 0.8680 | | 0.0749 | 4.8633 | 2242 | 0.7404 | 0.0 | 0.7404 | 0.8605 | | 0.0749 | 4.8677 | 2244 | 0.7333 | 0.0 | 0.7333 | 0.8564 | | 0.0749 | 4.8720 | 2246 | 0.7718 | 0.2667 | 0.7718 | 0.8785 | | 0.0749 | 4.8764 | 2248 | 0.8739 | -0.1379 | 0.8739 | 0.9348 | | 0.0749 | 4.8807 | 2250 | 0.9292 | -0.1085 | 0.9292 | 0.9640 | | 0.0749 | 4.8850 | 2252 | 0.9005 | -0.1085 | 0.9005 | 0.9490 | | 0.0749 | 4.8894 | 2254 | 0.8106 | 0.2524 | 0.8106 | 0.9003 | | 0.0749 | 4.8937 | 2256 | 0.7218 | 0.0 | 0.7218 | 0.8496 | | 0.0749 | 4.8980 | 2258 | 0.7031 | 0.0 | 0.7031 | 0.8385 | | 0.0749 | 4.9024 | 2260 | 0.7134 | 0.0 | 0.7134 | 0.8446 | | 0.0749 | 4.9067 | 2262 | 0.7523 | 0.0 | 0.7523 | 0.8673 | | 0.0749 | 4.9111 | 2264 | 0.8425 | 0.2524 | 0.8425 | 0.9179 | | 0.0749 | 4.9154 | 2266 | 0.9044 | -0.1085 | 0.9044 | 0.9510 | | 0.0749 | 4.9197 | 2268 | 0.8834 | -0.1085 | 0.8834 | 0.9399 | | 0.0749 | 4.9241 | 2270 | 0.8171 | 0.2524 | 0.8171 | 0.9039 | | 0.0749 | 4.9284 | 2272 | 0.7627 | 0.2667 | 0.7627 | 0.8733 | | 0.0749 | 4.9328 | 2274 | 0.7405 | 0.0 | 0.7405 | 0.8605 | | 0.0749 | 4.9371 | 2276 | 0.7688 | 0.2667 | 0.7688 | 0.8768 | | 0.0749 | 4.9414 | 2278 | 0.8221 | 0.2524 | 0.8221 | 0.9067 | | 0.0749 | 4.9458 | 2280 | 0.8244 | 0.2524 | 0.8244 | 0.9080 | | 0.0749 | 4.9501 | 2282 | 0.8273 | 0.2524 | 0.8273 | 0.9096 | | 0.0749 | 4.9544 | 2284 | 0.7784 | 0.2667 | 0.7784 | 0.8823 | | 0.0749 | 4.9588 | 2286 | 0.7708 | 0.0 | 0.7708 | 0.8779 | | 0.0749 | 4.9631 | 2288 | 0.7650 | 0.0 | 0.7650 | 0.8747 | | 0.0749 | 4.9675 | 2290 | 0.8055 | 0.2667 | 0.8055 | 0.8975 | | 0.0749 | 4.9718 | 2292 | 0.8985 | -0.1379 | 0.8985 | 0.9479 | | 0.0749 | 4.9761 | 2294 | 1.0486 | -0.1085 | 1.0486 | 1.0240 | | 0.0749 | 4.9805 | 2296 | 1.0878 | -0.2394 | 1.0878 | 1.0430 | | 0.0749 | 4.9848 | 2298 | 1.0169 | -0.1085 | 1.0169 | 1.0084 | | 0.0749 | 4.9892 | 2300 | 0.9092 | -0.1379 | 0.9092 | 0.9535 | | 0.0749 | 4.9935 | 2302 | 0.8250 | 0.0 | 0.8250 | 0.9083 | | 0.0749 | 4.9978 | 2304 | 0.7943 | 0.0 | 0.7943 | 0.8912 | | 0.0749 | 5.0022 | 2306 | 0.7901 | 0.0 | 0.7901 | 0.8889 | | 0.0749 | 5.0065 | 2308 | 0.8078 | 0.0 | 0.8078 | 0.8988 | | 0.0749 | 5.0108 | 2310 | 0.8465 | 0.0 | 0.8465 | 0.9200 | | 0.0749 | 5.0152 | 2312 | 0.9124 | -0.1379 | 0.9124 | 0.9552 | | 0.0749 | 5.0195 | 2314 | 0.9431 | -0.1085 | 0.9431 | 0.9711 | | 0.0749 | 5.0239 | 2316 | 0.9250 | -0.1379 | 0.9250 | 0.9618 | | 0.0749 | 5.0282 | 2318 | 0.8526 | 0.0 | 0.8526 | 0.9234 | | 0.0749 | 5.0325 | 2320 | 0.8065 | 0.0 | 0.8065 | 0.8981 | | 0.0749 | 5.0369 | 2322 | 0.8003 | 0.0 | 0.8003 | 0.8946 | | 0.0749 | 5.0412 | 2324 | 0.8167 | 0.0 | 0.8167 | 0.9037 | | 0.0749 | 5.0456 | 2326 | 0.8575 | -0.4667 | 0.8575 | 0.9260 | | 0.0749 | 5.0499 | 2328 | 0.9105 | -0.1379 | 0.9105 | 0.9542 | | 0.0749 | 5.0542 | 2330 | 0.9542 | -0.1085 | 0.9542 | 0.9768 | | 0.0749 | 5.0586 | 2332 | 0.9581 | -0.1085 | 0.9581 | 0.9788 | | 0.0749 | 5.0629 | 2334 | 0.9172 | -0.1379 | 0.9172 | 0.9577 | | 0.0749 | 5.0672 | 2336 | 0.8471 | 0.0 | 0.8471 | 0.9204 | | 0.0749 | 5.0716 | 2338 | 0.8036 | 0.0 | 0.8036 | 0.8964 | | 0.0749 | 5.0759 | 2340 | 0.7954 | 0.0 | 0.7954 | 0.8918 | | 0.0749 | 5.0803 | 2342 | 0.8032 | 0.0 | 0.8032 | 0.8962 | | 0.0749 | 5.0846 | 2344 | 0.8203 | 0.0 | 0.8203 | 0.9057 | | 0.0749 | 5.0889 | 2346 | 0.8682 | -0.4667 | 0.8682 | 0.9318 | | 0.0749 | 5.0933 | 2348 | 0.9126 | -0.1379 | 0.9126 | 0.9553 | | 0.0749 | 5.0976 | 2350 | 0.9256 | -0.1085 | 0.9256 | 0.9621 | | 0.0749 | 5.1020 | 2352 | 0.9186 | -0.1085 | 0.9186 | 0.9584 | | 0.0749 | 5.1063 | 2354 | 0.8728 | -0.3883 | 0.8728 | 0.9342 | | 0.0749 | 5.1106 | 2356 | 0.8303 | 0.0 | 0.8303 | 0.9112 | | 0.0749 | 5.1150 | 2358 | 0.8121 | 0.0 | 0.8121 | 0.9012 | | 0.0749 | 5.1193 | 2360 | 0.7920 | 0.0 | 0.7920 | 0.8900 | | 0.0749 | 5.1236 | 2362 | 0.7813 | 0.0 | 0.7813 | 0.8839 | | 0.0749 | 5.1280 | 2364 | 0.7950 | 0.0 | 0.7950 | 0.8916 | | 0.0749 | 5.1323 | 2366 | 0.8292 | 0.0 | 0.8292 | 0.9106 | | 0.0749 | 5.1367 | 2368 | 0.8258 | 0.0 | 0.8258 | 0.9087 | | 0.0749 | 5.1410 | 2370 | 0.8022 | 0.0 | 0.8022 | 0.8956 | | 0.0749 | 5.1453 | 2372 | 0.8060 | 0.0 | 0.8060 | 0.8977 | | 0.0749 | 5.1497 | 2374 | 0.8262 | 0.0 | 0.8262 | 0.9090 | | 0.0749 | 5.1540 | 2376 | 0.8390 | 0.0 | 0.8390 | 0.9160 | | 0.0749 | 5.1584 | 2378 | 0.8339 | 0.0 | 0.8339 | 0.9132 | | 0.0749 | 5.1627 | 2380 | 0.8424 | 0.0 | 0.8424 | 0.9178 | | 0.0749 | 5.1670 | 2382 | 0.8692 | -0.4667 | 0.8692 | 0.9323 | | 0.0749 | 5.1714 | 2384 | 0.8807 | -0.4667 | 0.8807 | 0.9385 | | 0.0749 | 5.1757 | 2386 | 0.8490 | 0.0 | 0.8490 | 0.9214 | | 0.0749 | 5.1800 | 2388 | 0.8131 | 0.0 | 0.8131 | 0.9017 | | 0.0749 | 5.1844 | 2390 | 0.7777 | 0.0 | 0.7777 | 0.8819 | | 0.0749 | 5.1887 | 2392 | 0.7664 | 0.0 | 0.7664 | 0.8754 | | 0.0749 | 5.1931 | 2394 | 0.7724 | 0.0 | 0.7724 | 0.8788 | | 0.0749 | 5.1974 | 2396 | 0.8024 | 0.0 | 0.8024 | 0.8957 | | 0.0749 | 5.2017 | 2398 | 0.8492 | -0.4667 | 0.8492 | 0.9215 | | 0.0749 | 5.2061 | 2400 | 0.9115 | -0.1379 | 0.9115 | 0.9547 | | 0.0749 | 5.2104 | 2402 | 0.9401 | -0.1085 | 0.9401 | 0.9696 | | 0.0749 | 5.2148 | 2404 | 0.9074 | -0.1379 | 0.9074 | 0.9526 | | 0.0749 | 5.2191 | 2406 | 0.8523 | 0.0 | 0.8523 | 0.9232 | | 0.0749 | 5.2234 | 2408 | 0.8262 | 0.0 | 0.8262 | 0.9090 | | 0.0749 | 5.2278 | 2410 | 0.8320 | -0.0233 | 0.8320 | 0.9121 | | 0.0749 | 5.2321 | 2412 | 0.8386 | -0.0233 | 0.8386 | 0.9157 | | 0.0749 | 5.2364 | 2414 | 0.8431 | 0.0 | 0.8431 | 0.9182 | | 0.0749 | 5.2408 | 2416 | 0.8755 | -0.1748 | 0.8755 | 0.9357 | | 0.0749 | 5.2451 | 2418 | 0.9175 | -0.1085 | 0.9175 | 0.9579 | | 0.0749 | 5.2495 | 2420 | 0.9159 | -0.1085 | 0.9159 | 0.9570 | | 0.0749 | 5.2538 | 2422 | 0.8861 | -0.1379 | 0.8861 | 0.9413 | | 0.0749 | 5.2581 | 2424 | 0.8704 | -0.1379 | 0.8704 | 0.9329 | | 0.0749 | 5.2625 | 2426 | 0.8527 | -0.4667 | 0.8527 | 0.9234 | | 0.0749 | 5.2668 | 2428 | 0.8433 | 0.0 | 0.8433 | 0.9183 | | 0.0749 | 5.2711 | 2430 | 0.8560 | -0.4667 | 0.8560 | 0.9252 | | 0.0749 | 5.2755 | 2432 | 0.8542 | -0.4667 | 0.8542 | 0.9242 | | 0.0749 | 5.2798 | 2434 | 0.8523 | 0.0 | 0.8523 | 0.9232 | | 0.0749 | 5.2842 | 2436 | 0.8872 | -0.1379 | 0.8872 | 0.9419 | | 0.0749 | 5.2885 | 2438 | 0.9346 | -0.1085 | 0.9346 | 0.9667 | | 0.0749 | 5.2928 | 2440 | 0.9419 | -0.1085 | 0.9419 | 0.9705 | | 0.0749 | 5.2972 | 2442 | 0.9381 | -0.1085 | 0.9381 | 0.9686 | | 0.0749 | 5.3015 | 2444 | 0.9090 | -0.1379 | 0.9090 | 0.9534 | | 0.0749 | 5.3059 | 2446 | 0.8478 | 0.0 | 0.8478 | 0.9208 | | 0.0749 | 5.3102 | 2448 | 0.8273 | 0.0 | 0.8273 | 0.9096 | | 0.0749 | 5.3145 | 2450 | 0.8254 | 0.0 | 0.8254 | 0.9085 | | 0.0749 | 5.3189 | 2452 | 0.8299 | 0.0 | 0.8299 | 0.9110 | | 0.0749 | 5.3232 | 2454 | 0.8416 | 0.0 | 0.8416 | 0.9174 | | 0.0749 | 5.3275 | 2456 | 0.8750 | -0.1379 | 0.8750 | 0.9354 | | 0.0749 | 5.3319 | 2458 | 0.9380 | -0.1085 | 0.9380 | 0.9685 | | 0.0749 | 5.3362 | 2460 | 0.9491 | -0.1085 | 0.9491 | 0.9742 | | 0.0749 | 5.3406 | 2462 | 0.9215 | -0.1085 | 0.9215 | 0.9600 | | 0.0749 | 5.3449 | 2464 | 0.9176 | -0.1085 | 0.9176 | 0.9579 | | 0.0749 | 5.3492 | 2466 | 0.9240 | -0.1085 | 0.9240 | 0.9613 | | 0.0749 | 5.3536 | 2468 | 0.8953 | -0.1379 | 0.8953 | 0.9462 | | 0.0749 | 5.3579 | 2470 | 0.8443 | 0.0 | 0.8443 | 0.9188 | | 0.0749 | 5.3623 | 2472 | 0.8326 | -0.0233 | 0.8326 | 0.9125 | | 0.0749 | 5.3666 | 2474 | 0.8310 | -0.0233 | 0.8310 | 0.9116 | | 0.0749 | 5.3709 | 2476 | 0.8411 | 0.0 | 0.8411 | 0.9171 | | 0.0749 | 5.3753 | 2478 | 0.8776 | -0.4667 | 0.8776 | 0.9368 | | 0.0749 | 5.3796 | 2480 | 0.8980 | -0.1379 | 0.8980 | 0.9476 | | 0.0749 | 5.3839 | 2482 | 0.8837 | -0.3883 | 0.8837 | 0.9401 | | 0.0749 | 5.3883 | 2484 | 0.8535 | 0.0 | 0.8535 | 0.9239 | | 0.0749 | 5.3926 | 2486 | 0.8349 | 0.0 | 0.8349 | 0.9137 | | 0.0749 | 5.3970 | 2488 | 0.8126 | 0.0 | 0.8126 | 0.9014 | | 0.0749 | 5.4013 | 2490 | 0.8181 | 0.0 | 0.8181 | 0.9045 | | 0.0749 | 5.4056 | 2492 | 0.8478 | 0.0 | 0.8478 | 0.9207 | | 0.0749 | 5.4100 | 2494 | 0.8897 | -0.4667 | 0.8897 | 0.9432 | | 0.0749 | 5.4143 | 2496 | 0.9561 | -0.1085 | 0.9561 | 0.9778 | | 0.0749 | 5.4187 | 2498 | 0.9837 | -0.1085 | 0.9837 | 0.9918 | | 0.0629 | 5.4230 | 2500 | 0.9421 | -0.1085 | 0.9421 | 0.9706 | | 0.0629 | 5.4273 | 2502 | 0.8618 | 0.0 | 0.8618 | 0.9283 | | 0.0629 | 5.4317 | 2504 | 0.8278 | 0.0 | 0.8278 | 0.9098 | | 0.0629 | 5.4360 | 2506 | 0.8192 | 0.0 | 0.8192 | 0.9051 | | 0.0629 | 5.4403 | 2508 | 0.8240 | 0.0 | 0.8240 | 0.9077 | | 0.0629 | 5.4447 | 2510 | 0.8460 | 0.0 | 0.8460 | 0.9198 | | 0.0629 | 5.4490 | 2512 | 0.8909 | -0.4667 | 0.8909 | 0.9439 | | 0.0629 | 5.4534 | 2514 | 0.9170 | -0.1085 | 0.9170 | 0.9576 | | 0.0629 | 5.4577 | 2516 | 0.8912 | -0.4667 | 0.8912 | 0.9440 | | 0.0629 | 5.4620 | 2518 | 0.8531 | 0.0 | 0.8531 | 0.9237 | | 0.0629 | 5.4664 | 2520 | 0.8421 | 0.0 | 0.8421 | 0.9177 | | 0.0629 | 5.4707 | 2522 | 0.8192 | 0.0 | 0.8192 | 0.9051 | | 0.0629 | 5.4751 | 2524 | 0.8151 | -0.0233 | 0.8151 | 0.9028 | | 0.0629 | 5.4794 | 2526 | 0.8195 | 0.0 | 0.8195 | 0.9052 | | 0.0629 | 5.4837 | 2528 | 0.8485 | 0.0 | 0.8485 | 0.9211 | | 0.0629 | 5.4881 | 2530 | 0.9112 | -0.1085 | 0.9112 | 0.9546 | | 0.0629 | 5.4924 | 2532 | 0.9264 | -0.1085 | 0.9264 | 0.9625 | | 0.0629 | 5.4967 | 2534 | 0.8884 | -0.3883 | 0.8884 | 0.9426 | | 0.0629 | 5.5011 | 2536 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0629 | 5.5054 | 2538 | 0.7876 | 0.0 | 0.7876 | 0.8875 | | 0.0629 | 5.5098 | 2540 | 0.7843 | 0.0 | 0.7843 | 0.8856 | | 0.0629 | 5.5141 | 2542 | 0.7939 | 0.0 | 0.7939 | 0.8910 | | 0.0629 | 5.5184 | 2544 | 0.8013 | 0.0 | 0.8013 | 0.8951 | | 0.0629 | 5.5228 | 2546 | 0.8147 | 0.0 | 0.8147 | 0.9026 | | 0.0629 | 5.5271 | 2548 | 0.8333 | 0.0 | 0.8333 | 0.9128 | | 0.0629 | 5.5315 | 2550 | 0.8383 | 0.0 | 0.8383 | 0.9156 | | 0.0629 | 5.5358 | 2552 | 0.8267 | 0.0 | 0.8267 | 0.9092 | | 0.0629 | 5.5401 | 2554 | 0.8144 | -0.0233 | 0.8144 | 0.9025 | | 0.0629 | 5.5445 | 2556 | 0.8139 | 0.0 | 0.8139 | 0.9022 | | 0.0629 | 5.5488 | 2558 | 0.8180 | 0.0 | 0.8180 | 0.9044 | | 0.0629 | 5.5531 | 2560 | 0.8258 | 0.0 | 0.8258 | 0.9087 | | 0.0629 | 5.5575 | 2562 | 0.8019 | 0.0 | 0.8019 | 0.8955 | | 0.0629 | 5.5618 | 2564 | 0.7814 | 0.0 | 0.7814 | 0.8840 | | 0.0629 | 5.5662 | 2566 | 0.7578 | 0.0 | 0.7578 | 0.8705 | | 0.0629 | 5.5705 | 2568 | 0.7489 | 0.0 | 0.7489 | 0.8654 | | 0.0629 | 5.5748 | 2570 | 0.7374 | 0.0 | 0.7374 | 0.8587 | | 0.0629 | 5.5792 | 2572 | 0.7373 | 0.0 | 0.7373 | 0.8586 | | 0.0629 | 5.5835 | 2574 | 0.7491 | 0.0 | 0.7491 | 0.8655 | | 0.0629 | 5.5879 | 2576 | 0.7702 | 0.0 | 0.7702 | 0.8776 | | 0.0629 | 5.5922 | 2578 | 0.7961 | 0.0 | 0.7961 | 0.8922 | | 0.0629 | 5.5965 | 2580 | 0.7802 | 0.0 | 0.7802 | 0.8833 | | 0.0629 | 5.6009 | 2582 | 0.7691 | 0.0 | 0.7691 | 0.8770 | | 0.0629 | 5.6052 | 2584 | 0.7518 | 0.0 | 0.7518 | 0.8671 | | 0.0629 | 5.6095 | 2586 | 0.7238 | 0.0 | 0.7238 | 0.8508 | | 0.0629 | 5.6139 | 2588 | 0.7189 | 0.0 | 0.7189 | 0.8479 | | 0.0629 | 5.6182 | 2590 | 0.7239 | -0.0233 | 0.7239 | 0.8508 | | 0.0629 | 5.6226 | 2592 | 0.7381 | 0.0 | 0.7381 | 0.8591 | | 0.0629 | 5.6269 | 2594 | 0.7614 | 0.0 | 0.7614 | 0.8726 | | 0.0629 | 5.6312 | 2596 | 0.7949 | 0.0222 | 0.7949 | 0.8916 | | 0.0629 | 5.6356 | 2598 | 0.7997 | 0.0222 | 0.7997 | 0.8943 | | 0.0629 | 5.6399 | 2600 | 0.8091 | 0.0222 | 0.8091 | 0.8995 | | 0.0629 | 5.6443 | 2602 | 0.7974 | 0.0222 | 0.7974 | 0.8930 | | 0.0629 | 5.6486 | 2604 | 0.7908 | 0.0222 | 0.7908 | 0.8893 | | 0.0629 | 5.6529 | 2606 | 0.7625 | 0.0 | 0.7625 | 0.8732 | | 0.0629 | 5.6573 | 2608 | 0.7481 | 0.0 | 0.7481 | 0.8649 | | 0.0629 | 5.6616 | 2610 | 0.7586 | 0.0 | 0.7586 | 0.8710 | | 0.0629 | 5.6659 | 2612 | 0.7984 | 0.0222 | 0.7984 | 0.8935 | | 0.0629 | 5.6703 | 2614 | 0.8151 | 0.0222 | 0.8151 | 0.9028 | | 0.0629 | 5.6746 | 2616 | 0.8224 | 0.0222 | 0.8224 | 0.9069 | | 0.0629 | 5.6790 | 2618 | 0.8353 | 0.0222 | 0.8353 | 0.9139 | | 0.0629 | 5.6833 | 2620 | 0.8763 | -0.1379 | 0.8763 | 0.9361 | | 0.0629 | 5.6876 | 2622 | 0.9318 | -0.1379 | 0.9318 | 0.9653 | | 0.0629 | 5.6920 | 2624 | 0.9401 | -0.1379 | 0.9401 | 0.9696 | | 0.0629 | 5.6963 | 2626 | 0.8672 | -0.1379 | 0.8672 | 0.9312 | | 0.0629 | 5.7007 | 2628 | 0.7759 | 0.0 | 0.7759 | 0.8809 | | 0.0629 | 5.7050 | 2630 | 0.7331 | 0.0 | 0.7331 | 0.8562 | | 0.0629 | 5.7093 | 2632 | 0.7297 | -0.0233 | 0.7297 | 0.8542 | | 0.0629 | 5.7137 | 2634 | 0.7281 | -0.0233 | 0.7281 | 0.8533 | | 0.0629 | 5.7180 | 2636 | 0.7270 | -0.0233 | 0.7270 | 0.8526 | | 0.0629 | 5.7223 | 2638 | 0.7498 | 0.0 | 0.7498 | 0.8659 | | 0.0629 | 5.7267 | 2640 | 0.7848 | 0.0222 | 0.7848 | 0.8859 | | 0.0629 | 5.7310 | 2642 | 0.8355 | 0.2524 | 0.8355 | 0.9141 | | 0.0629 | 5.7354 | 2644 | 0.8361 | 0.2524 | 0.8361 | 0.9144 | | 0.0629 | 5.7397 | 2646 | 0.7922 | 0.0222 | 0.7922 | 0.8901 | | 0.0629 | 5.7440 | 2648 | 0.7558 | 0.0 | 0.7558 | 0.8694 | | 0.0629 | 5.7484 | 2650 | 0.7385 | 0.0 | 0.7385 | 0.8593 | | 0.0629 | 5.7527 | 2652 | 0.7339 | 0.0 | 0.7339 | 0.8567 | | 0.0629 | 5.7570 | 2654 | 0.7385 | 0.0 | 0.7385 | 0.8594 | | 0.0629 | 5.7614 | 2656 | 0.7373 | 0.0 | 0.7373 | 0.8587 | | 0.0629 | 5.7657 | 2658 | 0.7397 | 0.0 | 0.7397 | 0.8601 | | 0.0629 | 5.7701 | 2660 | 0.7391 | -0.0233 | 0.7391 | 0.8597 | | 0.0629 | 5.7744 | 2662 | 0.7391 | -0.0233 | 0.7391 | 0.8597 | | 0.0629 | 5.7787 | 2664 | 0.7394 | 0.0 | 0.7394 | 0.8599 | | 0.0629 | 5.7831 | 2666 | 0.7402 | 0.0 | 0.7402 | 0.8603 | | 0.0629 | 5.7874 | 2668 | 0.7393 | 0.0 | 0.7393 | 0.8598 | | 0.0629 | 5.7918 | 2670 | 0.7342 | -0.0233 | 0.7342 | 0.8569 | | 0.0629 | 5.7961 | 2672 | 0.7354 | -0.0233 | 0.7354 | 0.8575 | | 0.0629 | 5.8004 | 2674 | 0.7444 | -0.0421 | 0.7444 | 0.8628 | | 0.0629 | 5.8048 | 2676 | 0.7306 | -0.0233 | 0.7306 | 0.8547 | | 0.0629 | 5.8091 | 2678 | 0.7149 | 0.0 | 0.7149 | 0.8455 | | 0.0629 | 5.8134 | 2680 | 0.7122 | 0.0 | 0.7122 | 0.8439 | | 0.0629 | 5.8178 | 2682 | 0.7073 | 0.0 | 0.7073 | 0.8410 | | 0.0629 | 5.8221 | 2684 | 0.7033 | 0.0 | 0.7033 | 0.8386 | | 0.0629 | 5.8265 | 2686 | 0.6973 | 0.0 | 0.6973 | 0.8350 | | 0.0629 | 5.8308 | 2688 | 0.6948 | 0.0 | 0.6948 | 0.8335 | | 0.0629 | 5.8351 | 2690 | 0.6990 | 0.0 | 0.6990 | 0.8360 | | 0.0629 | 5.8395 | 2692 | 0.7017 | 0.0 | 0.7017 | 0.8377 | | 0.0629 | 5.8438 | 2694 | 0.7151 | 0.0 | 0.7151 | 0.8457 | | 0.0629 | 5.8482 | 2696 | 0.7334 | 0.0 | 0.7334 | 0.8564 | | 0.0629 | 5.8525 | 2698 | 0.7516 | 0.0222 | 0.7516 | 0.8669 | | 0.0629 | 5.8568 | 2700 | 0.7713 | 0.2524 | 0.7713 | 0.8782 | | 0.0629 | 5.8612 | 2702 | 0.7596 | 0.2524 | 0.7596 | 0.8715 | | 0.0629 | 5.8655 | 2704 | 0.7293 | 0.0 | 0.7293 | 0.8540 | | 0.0629 | 5.8698 | 2706 | 0.7182 | 0.0 | 0.7182 | 0.8475 | | 0.0629 | 5.8742 | 2708 | 0.7209 | 0.0 | 0.7209 | 0.8490 | | 0.0629 | 5.8785 | 2710 | 0.7319 | 0.0 | 0.7319 | 0.8555 | | 0.0629 | 5.8829 | 2712 | 0.7663 | 0.2524 | 0.7663 | 0.8754 | | 0.0629 | 5.8872 | 2714 | 0.8499 | -0.1379 | 0.8499 | 0.9219 | | 0.0629 | 5.8915 | 2716 | 0.9109 | -0.1085 | 0.9109 | 0.9544 | | 0.0629 | 5.8959 | 2718 | 0.9397 | -0.0845 | 0.9397 | 0.9694 | | 0.0629 | 5.9002 | 2720 | 0.8874 | -0.1085 | 0.8874 | 0.9420 | | 0.0629 | 5.9046 | 2722 | 0.8051 | 0.2524 | 0.8051 | 0.8973 | | 0.0629 | 5.9089 | 2724 | 0.7606 | 0.0 | 0.7606 | 0.8721 | | 0.0629 | 5.9132 | 2726 | 0.7363 | -0.0233 | 0.7363 | 0.8581 | | 0.0629 | 5.9176 | 2728 | 0.7345 | 0.0 | 0.7345 | 0.8570 | | 0.0629 | 5.9219 | 2730 | 0.7586 | 0.0 | 0.7586 | 0.8710 | | 0.0629 | 5.9262 | 2732 | 0.8450 | -0.1379 | 0.8450 | 0.9193 | | 0.0629 | 5.9306 | 2734 | 0.9369 | -0.0845 | 0.9369 | 0.9679 | | 0.0629 | 5.9349 | 2736 | 0.9954 | -0.0845 | 0.9954 | 0.9977 | | 0.0629 | 5.9393 | 2738 | 0.9932 | -0.0845 | 0.9932 | 0.9966 | | 0.0629 | 5.9436 | 2740 | 0.9312 | -0.0845 | 0.9312 | 0.9650 | | 0.0629 | 5.9479 | 2742 | 0.8416 | -0.1379 | 0.8416 | 0.9174 | | 0.0629 | 5.9523 | 2744 | 0.7778 | 0.2524 | 0.7778 | 0.8819 | | 0.0629 | 5.9566 | 2746 | 0.7591 | 0.0 | 0.7591 | 0.8713 | | 0.0629 | 5.9610 | 2748 | 0.7761 | 0.0222 | 0.7761 | 0.8810 | | 0.0629 | 5.9653 | 2750 | 0.8317 | -0.1379 | 0.8317 | 0.9120 | | 0.0629 | 5.9696 | 2752 | 0.8522 | -0.1379 | 0.8522 | 0.9231 | | 0.0629 | 5.9740 | 2754 | 0.8173 | -0.1379 | 0.8173 | 0.9040 | | 0.0629 | 5.9783 | 2756 | 0.7749 | 0.0 | 0.7749 | 0.8803 | | 0.0629 | 5.9826 | 2758 | 0.7574 | 0.0 | 0.7574 | 0.8703 | | 0.0629 | 5.9870 | 2760 | 0.7685 | 0.0 | 0.7685 | 0.8767 | | 0.0629 | 5.9913 | 2762 | 0.8131 | 0.2524 | 0.8131 | 0.9017 | | 0.0629 | 5.9957 | 2764 | 0.8843 | -0.1379 | 0.8843 | 0.9404 | | 0.0629 | 6.0 | 2766 | 0.8921 | -0.1379 | 0.8921 | 0.9445 | | 0.0629 | 6.0043 | 2768 | 0.8550 | -0.1379 | 0.8550 | 0.9246 | | 0.0629 | 6.0087 | 2770 | 0.8265 | 0.2524 | 0.8265 | 0.9091 | | 0.0629 | 6.0130 | 2772 | 0.7734 | 0.0 | 0.7734 | 0.8794 | | 0.0629 | 6.0174 | 2774 | 0.7362 | 0.0 | 0.7362 | 0.8580 | | 0.0629 | 6.0217 | 2776 | 0.7197 | 0.0 | 0.7197 | 0.8484 | | 0.0629 | 6.0260 | 2778 | 0.7163 | 0.0 | 0.7163 | 0.8464 | | 0.0629 | 6.0304 | 2780 | 0.7178 | 0.0 | 0.7178 | 0.8473 | | 0.0629 | 6.0347 | 2782 | 0.7279 | 0.0 | 0.7279 | 0.8532 | | 0.0629 | 6.0390 | 2784 | 0.7505 | 0.0 | 0.7505 | 0.8663 | | 0.0629 | 6.0434 | 2786 | 0.7557 | 0.0 | 0.7557 | 0.8693 | | 0.0629 | 6.0477 | 2788 | 0.7582 | 0.0 | 0.7582 | 0.8708 | | 0.0629 | 6.0521 | 2790 | 0.7787 | 0.0 | 0.7787 | 0.8824 | | 0.0629 | 6.0564 | 2792 | 0.7873 | 0.0 | 0.7873 | 0.8873 | | 0.0629 | 6.0607 | 2794 | 0.7785 | 0.0 | 0.7785 | 0.8823 | | 0.0629 | 6.0651 | 2796 | 0.7598 | 0.0 | 0.7598 | 0.8716 | | 0.0629 | 6.0694 | 2798 | 0.7432 | -0.0233 | 0.7432 | 0.8621 | | 0.0629 | 6.0738 | 2800 | 0.7320 | -0.0233 | 0.7320 | 0.8556 | | 0.0629 | 6.0781 | 2802 | 0.7277 | 0.0 | 0.7277 | 0.8530 | | 0.0629 | 6.0824 | 2804 | 0.7512 | 0.0 | 0.7512 | 0.8667 | | 0.0629 | 6.0868 | 2806 | 0.7886 | 0.0 | 0.7886 | 0.8881 | | 0.0629 | 6.0911 | 2808 | 0.8145 | 0.0 | 0.8145 | 0.9025 | | 0.0629 | 6.0954 | 2810 | 0.8390 | 0.0222 | 0.8390 | 0.9160 | | 0.0629 | 6.0998 | 2812 | 0.8136 | 0.0 | 0.8136 | 0.9020 | | 0.0629 | 6.1041 | 2814 | 0.7602 | 0.0 | 0.7602 | 0.8719 | | 0.0629 | 6.1085 | 2816 | 0.7283 | 0.0 | 0.7283 | 0.8534 | | 0.0629 | 6.1128 | 2818 | 0.7168 | 0.0 | 0.7168 | 0.8467 | | 0.0629 | 6.1171 | 2820 | 0.7228 | 0.0 | 0.7228 | 0.8502 | | 0.0629 | 6.1215 | 2822 | 0.7461 | 0.0 | 0.7461 | 0.8638 | | 0.0629 | 6.1258 | 2824 | 0.7801 | 0.0 | 0.7801 | 0.8832 | | 0.0629 | 6.1302 | 2826 | 0.8081 | 0.0 | 0.8081 | 0.8989 | | 0.0629 | 6.1345 | 2828 | 0.8467 | -0.3276 | 0.8467 | 0.9202 | | 0.0629 | 6.1388 | 2830 | 0.8354 | -0.3883 | 0.8354 | 0.9140 | | 0.0629 | 6.1432 | 2832 | 0.7892 | 0.0 | 0.7892 | 0.8884 | | 0.0629 | 6.1475 | 2834 | 0.7589 | 0.0 | 0.7589 | 0.8712 | | 0.0629 | 6.1518 | 2836 | 0.7518 | -0.0233 | 0.7518 | 0.8671 | | 0.0629 | 6.1562 | 2838 | 0.7578 | 0.0 | 0.7578 | 0.8705 | | 0.0629 | 6.1605 | 2840 | 0.7802 | 0.0 | 0.7802 | 0.8833 | | 0.0629 | 6.1649 | 2842 | 0.8273 | 0.0 | 0.8273 | 0.9095 | | 0.0629 | 6.1692 | 2844 | 0.8612 | -0.3276 | 0.8612 | 0.9280 | | 0.0629 | 6.1735 | 2846 | 0.8462 | -0.3276 | 0.8462 | 0.9199 | | 0.0629 | 6.1779 | 2848 | 0.8283 | -0.4667 | 0.8283 | 0.9101 | | 0.0629 | 6.1822 | 2850 | 0.8014 | 0.0 | 0.8014 | 0.8952 | | 0.0629 | 6.1866 | 2852 | 0.7900 | 0.0 | 0.7900 | 0.8888 | | 0.0629 | 6.1909 | 2854 | 0.7828 | 0.0 | 0.7828 | 0.8847 | | 0.0629 | 6.1952 | 2856 | 0.8010 | 0.0 | 0.8010 | 0.8950 | | 0.0629 | 6.1996 | 2858 | 0.8285 | -0.4667 | 0.8285 | 0.9102 | | 0.0629 | 6.2039 | 2860 | 0.8727 | -0.1085 | 0.8727 | 0.9342 | | 0.0629 | 6.2082 | 2862 | 0.9241 | -0.1085 | 0.9241 | 0.9613 | | 0.0629 | 6.2126 | 2864 | 0.9377 | -0.1085 | 0.9377 | 0.9683 | | 0.0629 | 6.2169 | 2866 | 0.9107 | -0.1085 | 0.9107 | 0.9543 | | 0.0629 | 6.2213 | 2868 | 0.8894 | -0.1085 | 0.8894 | 0.9431 | | 0.0629 | 6.2256 | 2870 | 0.8468 | -0.4667 | 0.8468 | 0.9202 | | 0.0629 | 6.2299 | 2872 | 0.8050 | 0.0 | 0.8050 | 0.8972 | | 0.0629 | 6.2343 | 2874 | 0.8026 | 0.0 | 0.8026 | 0.8959 | | 0.0629 | 6.2386 | 2876 | 0.8253 | 0.0 | 0.8253 | 0.9084 | | 0.0629 | 6.2430 | 2878 | 0.8491 | 0.0 | 0.8491 | 0.9215 | | 0.0629 | 6.2473 | 2880 | 0.8653 | -0.3883 | 0.8653 | 0.9302 | | 0.0629 | 6.2516 | 2882 | 0.8911 | -0.3276 | 0.8911 | 0.9440 | | 0.0629 | 6.2560 | 2884 | 0.9252 | -0.3276 | 0.9252 | 0.9619 | | 0.0629 | 6.2603 | 2886 | 0.9252 | -0.3276 | 0.9252 | 0.9619 | | 0.0629 | 6.2646 | 2888 | 0.9211 | -0.3276 | 0.9211 | 0.9597 | | 0.0629 | 6.2690 | 2890 | 0.8809 | -0.3883 | 0.8809 | 0.9386 | | 0.0629 | 6.2733 | 2892 | 0.8277 | 0.0 | 0.8277 | 0.9098 | | 0.0629 | 6.2777 | 2894 | 0.7953 | -0.0233 | 0.7953 | 0.8918 | | 0.0629 | 6.2820 | 2896 | 0.7914 | -0.0233 | 0.7914 | 0.8896 | | 0.0629 | 6.2863 | 2898 | 0.8009 | -0.0233 | 0.8009 | 0.8949 | | 0.0629 | 6.2907 | 2900 | 0.8318 | 0.0 | 0.8318 | 0.9120 | | 0.0629 | 6.2950 | 2902 | 0.8702 | 0.0388 | 0.8702 | 0.9329 | | 0.0629 | 6.2993 | 2904 | 0.8943 | 0.0517 | 0.8943 | 0.9457 | | 0.0629 | 6.3037 | 2906 | 0.9061 | 0.0517 | 0.9061 | 0.9519 | | 0.0629 | 6.3080 | 2908 | 0.8751 | 0.0517 | 0.8751 | 0.9355 | | 0.0629 | 6.3124 | 2910 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0629 | 6.3167 | 2912 | 0.8128 | 0.0 | 0.8128 | 0.9015 | | 0.0629 | 6.3210 | 2914 | 0.7909 | 0.0 | 0.7909 | 0.8893 | | 0.0629 | 6.3254 | 2916 | 0.7567 | 0.0 | 0.7567 | 0.8699 | | 0.0629 | 6.3297 | 2918 | 0.7476 | 0.0 | 0.7476 | 0.8646 | | 0.0629 | 6.3341 | 2920 | 0.7574 | 0.0 | 0.7574 | 0.8703 | | 0.0629 | 6.3384 | 2922 | 0.7682 | 0.0 | 0.7682 | 0.8765 | | 0.0629 | 6.3427 | 2924 | 0.8077 | 0.0 | 0.8077 | 0.8987 | | 0.0629 | 6.3471 | 2926 | 0.8552 | 0.0388 | 0.8552 | 0.9248 | | 0.0629 | 6.3514 | 2928 | 0.8571 | 0.0222 | 0.8571 | 0.9258 | | 0.0629 | 6.3557 | 2930 | 0.8638 | 0.0388 | 0.8638 | 0.9294 | | 0.0629 | 6.3601 | 2932 | 0.8435 | 0.0222 | 0.8435 | 0.9184 | | 0.0629 | 6.3644 | 2934 | 0.8093 | 0.0 | 0.8093 | 0.8996 | | 0.0629 | 6.3688 | 2936 | 0.8020 | 0.0 | 0.8020 | 0.8956 | | 0.0629 | 6.3731 | 2938 | 0.8199 | 0.0 | 0.8199 | 0.9055 | | 0.0629 | 6.3774 | 2940 | 0.8190 | 0.0 | 0.8190 | 0.9050 | | 0.0629 | 6.3818 | 2942 | 0.8010 | 0.0 | 0.8010 | 0.8950 | | 0.0629 | 6.3861 | 2944 | 0.7663 | 0.0 | 0.7663 | 0.8754 | | 0.0629 | 6.3905 | 2946 | 0.7581 | 0.0 | 0.7581 | 0.8707 | | 0.0629 | 6.3948 | 2948 | 0.7777 | 0.0 | 0.7777 | 0.8818 | | 0.0629 | 6.3991 | 2950 | 0.8079 | 0.0 | 0.8079 | 0.8988 | | 0.0629 | 6.4035 | 2952 | 0.8323 | 0.0 | 0.8323 | 0.9123 | | 0.0629 | 6.4078 | 2954 | 0.8216 | 0.0 | 0.8216 | 0.9064 | | 0.0629 | 6.4121 | 2956 | 0.8078 | 0.0 | 0.8078 | 0.8988 | | 0.0629 | 6.4165 | 2958 | 0.8106 | 0.0 | 0.8106 | 0.9003 | | 0.0629 | 6.4208 | 2960 | 0.8227 | 0.0 | 0.8227 | 0.9070 | | 0.0629 | 6.4252 | 2962 | 0.8182 | 0.0 | 0.8182 | 0.9045 | | 0.0629 | 6.4295 | 2964 | 0.7936 | 0.0 | 0.7936 | 0.8909 | | 0.0629 | 6.4338 | 2966 | 0.7741 | 0.0 | 0.7741 | 0.8799 | | 0.0629 | 6.4382 | 2968 | 0.7913 | 0.0 | 0.7913 | 0.8896 | | 0.0629 | 6.4425 | 2970 | 0.8388 | 0.0222 | 0.8388 | 0.9159 | | 0.0629 | 6.4469 | 2972 | 0.9116 | -0.0845 | 0.9116 | 0.9548 | | 0.0629 | 6.4512 | 2974 | 0.9280 | -0.0845 | 0.9280 | 0.9634 | | 0.0629 | 6.4555 | 2976 | 0.8872 | -0.0845 | 0.8872 | 0.9419 | | 0.0629 | 6.4599 | 2978 | 0.8270 | 0.0 | 0.8270 | 0.9094 | | 0.0629 | 6.4642 | 2980 | 0.7975 | 0.0 | 0.7975 | 0.8930 | | 0.0629 | 6.4685 | 2982 | 0.7792 | 0.0 | 0.7792 | 0.8827 | | 0.0629 | 6.4729 | 2984 | 0.7857 | 0.0 | 0.7857 | 0.8864 | | 0.0629 | 6.4772 | 2986 | 0.8114 | 0.0 | 0.8114 | 0.9008 | | 0.0629 | 6.4816 | 2988 | 0.8122 | 0.0 | 0.8122 | 0.9012 | | 0.0629 | 6.4859 | 2990 | 0.8100 | 0.0 | 0.8100 | 0.9000 | | 0.0629 | 6.4902 | 2992 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0629 | 6.4946 | 2994 | 0.8171 | 0.0 | 0.8171 | 0.9039 | | 0.0629 | 6.4989 | 2996 | 0.7833 | 0.0 | 0.7833 | 0.8850 | | 0.0629 | 6.5033 | 2998 | 0.7461 | 0.0 | 0.7461 | 0.8638 | | 0.0564 | 6.5076 | 3000 | 0.7329 | -0.0233 | 0.7329 | 0.8561 | | 0.0564 | 6.5119 | 3002 | 0.7294 | -0.0233 | 0.7294 | 0.8540 | | 0.0564 | 6.5163 | 3004 | 0.7305 | -0.0233 | 0.7305 | 0.8547 | | 0.0564 | 6.5206 | 3006 | 0.7321 | 0.0 | 0.7321 | 0.8556 | | 0.0564 | 6.5249 | 3008 | 0.7373 | 0.0 | 0.7373 | 0.8587 | | 0.0564 | 6.5293 | 3010 | 0.7599 | 0.0 | 0.7599 | 0.8717 | | 0.0564 | 6.5336 | 3012 | 0.7652 | 0.0 | 0.7652 | 0.8747 | | 0.0564 | 6.5380 | 3014 | 0.7658 | 0.0 | 0.7658 | 0.8751 | | 0.0564 | 6.5423 | 3016 | 0.7833 | 0.0 | 0.7833 | 0.8851 | | 0.0564 | 6.5466 | 3018 | 0.7918 | 0.0 | 0.7918 | 0.8899 | | 0.0564 | 6.5510 | 3020 | 0.7888 | 0.0 | 0.7888 | 0.8881 | | 0.0564 | 6.5553 | 3022 | 0.7715 | 0.0 | 0.7715 | 0.8783 | | 0.0564 | 6.5597 | 3024 | 0.7611 | 0.0 | 0.7611 | 0.8724 | | 0.0564 | 6.5640 | 3026 | 0.7521 | 0.0 | 0.7521 | 0.8673 | | 0.0564 | 6.5683 | 3028 | 0.7529 | 0.0 | 0.7529 | 0.8677 | | 0.0564 | 6.5727 | 3030 | 0.7582 | 0.0 | 0.7582 | 0.8708 | | 0.0564 | 6.5770 | 3032 | 0.7803 | 0.0 | 0.7803 | 0.8834 | | 0.0564 | 6.5813 | 3034 | 0.8377 | 0.0222 | 0.8377 | 0.9153 | | 0.0564 | 6.5857 | 3036 | 0.8742 | -0.1379 | 0.8742 | 0.9350 | | 0.0564 | 6.5900 | 3038 | 0.8550 | -0.1379 | 0.8550 | 0.9247 | | 0.0564 | 6.5944 | 3040 | 0.8104 | 0.0 | 0.8104 | 0.9002 | | 0.0564 | 6.5987 | 3042 | 0.7677 | 0.0 | 0.7677 | 0.8762 | | 0.0564 | 6.6030 | 3044 | 0.7485 | 0.0 | 0.7485 | 0.8651 | | 0.0564 | 6.6074 | 3046 | 0.7357 | -0.0233 | 0.7357 | 0.8577 | | 0.0564 | 6.6117 | 3048 | 0.7313 | -0.0233 | 0.7313 | 0.8552 | | 0.0564 | 6.6161 | 3050 | 0.7352 | -0.0233 | 0.7352 | 0.8575 | | 0.0564 | 6.6204 | 3052 | 0.7540 | 0.0 | 0.7540 | 0.8683 | | 0.0564 | 6.6247 | 3054 | 0.7777 | 0.0 | 0.7777 | 0.8819 | | 0.0564 | 6.6291 | 3056 | 0.8006 | 0.0222 | 0.8006 | 0.8948 | | 0.0564 | 6.6334 | 3058 | 0.8572 | -0.1379 | 0.8572 | 0.9259 | | 0.0564 | 6.6377 | 3060 | 0.9006 | -0.0845 | 0.9006 | 0.9490 | | 0.0564 | 6.6421 | 3062 | 0.8947 | -0.1085 | 0.8947 | 0.9459 | | 0.0564 | 6.6464 | 3064 | 0.8420 | -0.1379 | 0.8420 | 0.9176 | | 0.0564 | 6.6508 | 3066 | 0.8040 | 0.0 | 0.8040 | 0.8966 | | 0.0564 | 6.6551 | 3068 | 0.7789 | -0.0233 | 0.7789 | 0.8825 | | 0.0564 | 6.6594 | 3070 | 0.7668 | -0.0233 | 0.7668 | 0.8757 | | 0.0564 | 6.6638 | 3072 | 0.7714 | -0.0233 | 0.7714 | 0.8783 | | 0.0564 | 6.6681 | 3074 | 0.7777 | -0.0233 | 0.7777 | 0.8819 | | 0.0564 | 6.6725 | 3076 | 0.8086 | -0.0233 | 0.8086 | 0.8992 | | 0.0564 | 6.6768 | 3078 | 0.8367 | 0.0 | 0.8367 | 0.9147 | | 0.0564 | 6.6811 | 3080 | 0.8587 | -0.1379 | 0.8587 | 0.9266 | | 0.0564 | 6.6855 | 3082 | 0.8831 | -0.1379 | 0.8831 | 0.9397 | | 0.0564 | 6.6898 | 3084 | 0.8677 | -0.1379 | 0.8677 | 0.9315 | | 0.0564 | 6.6941 | 3086 | 0.8358 | 0.2143 | 0.8358 | 0.9142 | | 0.0564 | 6.6985 | 3088 | 0.8112 | -0.0233 | 0.8112 | 0.9007 | | 0.0564 | 6.7028 | 3090 | 0.8141 | -0.0233 | 0.8141 | 0.9022 | | 0.0564 | 6.7072 | 3092 | 0.8437 | -0.1379 | 0.8437 | 0.9185 | | 0.0564 | 6.7115 | 3094 | 0.8920 | -0.1085 | 0.8920 | 0.9445 | | 0.0564 | 6.7158 | 3096 | 0.8987 | -0.1085 | 0.8987 | 0.9480 | | 0.0564 | 6.7202 | 3098 | 0.8754 | -0.1379 | 0.8754 | 0.9356 | | 0.0564 | 6.7245 | 3100 | 0.8371 | 0.2524 | 0.8371 | 0.9149 | | 0.0564 | 6.7289 | 3102 | 0.7898 | -0.0233 | 0.7898 | 0.8887 | | 0.0564 | 6.7332 | 3104 | 0.7744 | -0.0233 | 0.7744 | 0.8800 | | 0.0564 | 6.7375 | 3106 | 0.7713 | -0.0233 | 0.7713 | 0.8782 | | 0.0564 | 6.7419 | 3108 | 0.7816 | -0.0233 | 0.7816 | 0.8841 | | 0.0564 | 6.7462 | 3110 | 0.8152 | 0.0 | 0.8152 | 0.9029 | | 0.0564 | 6.7505 | 3112 | 0.8705 | -0.1379 | 0.8705 | 0.9330 | | 0.0564 | 6.7549 | 3114 | 0.8868 | -0.1085 | 0.8868 | 0.9417 | | 0.0564 | 6.7592 | 3116 | 0.8673 | -0.1379 | 0.8673 | 0.9313 | | 0.0564 | 6.7636 | 3118 | 0.8180 | 0.0 | 0.8180 | 0.9045 | | 0.0564 | 6.7679 | 3120 | 0.7760 | 0.0 | 0.7760 | 0.8809 | | 0.0564 | 6.7722 | 3122 | 0.7648 | 0.0 | 0.7648 | 0.8746 | | 0.0564 | 6.7766 | 3124 | 0.7703 | 0.0 | 0.7703 | 0.8777 | | 0.0564 | 6.7809 | 3126 | 0.7727 | 0.0 | 0.7727 | 0.8791 | | 0.0564 | 6.7852 | 3128 | 0.7878 | 0.0 | 0.7878 | 0.8876 | | 0.0564 | 6.7896 | 3130 | 0.8187 | 0.0 | 0.8187 | 0.9048 | | 0.0564 | 6.7939 | 3132 | 0.8485 | -0.1379 | 0.8485 | 0.9212 | | 0.0564 | 6.7983 | 3134 | 0.8827 | -0.1085 | 0.8827 | 0.9395 | | 0.0564 | 6.8026 | 3136 | 0.8638 | -0.1085 | 0.8638 | 0.9294 | | 0.0564 | 6.8069 | 3138 | 0.8096 | 0.2667 | 0.8096 | 0.8998 | | 0.0564 | 6.8113 | 3140 | 0.7777 | 0.0 | 0.7777 | 0.8819 | | 0.0564 | 6.8156 | 3142 | 0.7490 | -0.0233 | 0.7490 | 0.8655 | | 0.0564 | 6.8200 | 3144 | 0.7454 | -0.0233 | 0.7454 | 0.8634 | | 0.0564 | 6.8243 | 3146 | 0.7558 | 0.0 | 0.7558 | 0.8694 | | 0.0564 | 6.8286 | 3148 | 0.7597 | 0.0 | 0.7597 | 0.8716 | | 0.0564 | 6.8330 | 3150 | 0.7806 | 0.0 | 0.7806 | 0.8835 | | 0.0564 | 6.8373 | 3152 | 0.8214 | 0.2524 | 0.8214 | 0.9063 | | 0.0564 | 6.8416 | 3154 | 0.8310 | -0.1379 | 0.8310 | 0.9116 | | 0.0564 | 6.8460 | 3156 | 0.8085 | 0.2667 | 0.8085 | 0.8992 | | 0.0564 | 6.8503 | 3158 | 0.7638 | 0.0 | 0.7638 | 0.8740 | | 0.0564 | 6.8547 | 3160 | 0.7272 | 0.0 | 0.7272 | 0.8528 | | 0.0564 | 6.8590 | 3162 | 0.7169 | 0.0 | 0.7169 | 0.8467 | | 0.0564 | 6.8633 | 3164 | 0.7208 | 0.0 | 0.7208 | 0.8490 | | 0.0564 | 6.8677 | 3166 | 0.7428 | 0.0 | 0.7428 | 0.8618 | | 0.0564 | 6.8720 | 3168 | 0.7932 | 0.0 | 0.7932 | 0.8906 | | 0.0564 | 6.8764 | 3170 | 0.8466 | -0.1085 | 0.8466 | 0.9201 | | 0.0564 | 6.8807 | 3172 | 0.8513 | -0.1085 | 0.8513 | 0.9227 | | 0.0564 | 6.8850 | 3174 | 0.8157 | 0.2524 | 0.8157 | 0.9032 | | 0.0564 | 6.8894 | 3176 | 0.7620 | 0.0 | 0.7620 | 0.8729 | | 0.0564 | 6.8937 | 3178 | 0.7237 | 0.0 | 0.7237 | 0.8507 | | 0.0564 | 6.8980 | 3180 | 0.7193 | 0.0 | 0.7193 | 0.8481 | | 0.0564 | 6.9024 | 3182 | 0.7203 | 0.0 | 0.7203 | 0.8487 | | 0.0564 | 6.9067 | 3184 | 0.7322 | 0.0 | 0.7322 | 0.8557 | | 0.0564 | 6.9111 | 3186 | 0.7628 | 0.0 | 0.7628 | 0.8734 | | 0.0564 | 6.9154 | 3188 | 0.8307 | -0.3276 | 0.8307 | 0.9114 | | 0.0564 | 6.9197 | 3190 | 0.9205 | -0.0845 | 0.9205 | 0.9594 | | 0.0564 | 6.9241 | 3192 | 0.9620 | -0.0845 | 0.9620 | 0.9808 | | 0.0564 | 6.9284 | 3194 | 0.9527 | -0.0845 | 0.9527 | 0.9761 | | 0.0564 | 6.9328 | 3196 | 0.9168 | -0.1085 | 0.9168 | 0.9575 | | 0.0564 | 6.9371 | 3198 | 0.8669 | -0.1085 | 0.8669 | 0.9311 | | 0.0564 | 6.9414 | 3200 | 0.8436 | -0.3883 | 0.8436 | 0.9185 | | 0.0564 | 6.9458 | 3202 | 0.8410 | -0.4667 | 0.8410 | 0.9171 | | 0.0564 | 6.9501 | 3204 | 0.8571 | -0.3883 | 0.8571 | 0.9258 | | 0.0564 | 6.9544 | 3206 | 0.8687 | -0.3883 | 0.8687 | 0.9320 | | 0.0564 | 6.9588 | 3208 | 0.8801 | -0.3276 | 0.8801 | 0.9382 | | 0.0564 | 6.9631 | 3210 | 0.9093 | -0.1085 | 0.9093 | 0.9536 | | 0.0564 | 6.9675 | 3212 | 0.9348 | -0.1085 | 0.9348 | 0.9669 | | 0.0564 | 6.9718 | 3214 | 0.9299 | -0.1085 | 0.9299 | 0.9643 | | 0.0564 | 6.9761 | 3216 | 0.8893 | -0.3276 | 0.8893 | 0.9430 | | 0.0564 | 6.9805 | 3218 | 0.8480 | -0.4667 | 0.8480 | 0.9209 | | 0.0564 | 6.9848 | 3220 | 0.8358 | 0.0 | 0.8358 | 0.9142 | | 0.0564 | 6.9892 | 3222 | 0.8539 | -0.4667 | 0.8539 | 0.9240 | | 0.0564 | 6.9935 | 3224 | 0.8522 | -0.4667 | 0.8522 | 0.9232 | | 0.0564 | 6.9978 | 3226 | 0.8610 | -0.4667 | 0.8610 | 0.9279 | | 0.0564 | 7.0022 | 3228 | 0.8810 | -0.3276 | 0.8810 | 0.9386 | | 0.0564 | 7.0065 | 3230 | 0.8850 | -0.3276 | 0.8850 | 0.9407 | | 0.0564 | 7.0108 | 3232 | 0.8829 | -0.3276 | 0.8829 | 0.9396 | | 0.0564 | 7.0152 | 3234 | 0.8610 | -0.4667 | 0.8610 | 0.9279 | | 0.0564 | 7.0195 | 3236 | 0.8532 | 0.0 | 0.8532 | 0.9237 | | 0.0564 | 7.0239 | 3238 | 0.8535 | 0.0 | 0.8535 | 0.9239 | | 0.0564 | 7.0282 | 3240 | 0.8753 | -0.3883 | 0.8753 | 0.9356 | | 0.0564 | 7.0325 | 3242 | 0.8913 | -0.3276 | 0.8913 | 0.9441 | | 0.0564 | 7.0369 | 3244 | 0.8889 | -0.3883 | 0.8889 | 0.9428 | | 0.0564 | 7.0412 | 3246 | 0.8717 | -0.4667 | 0.8717 | 0.9337 | | 0.0564 | 7.0456 | 3248 | 0.8551 | 0.0 | 0.8551 | 0.9247 | | 0.0564 | 7.0499 | 3250 | 0.8630 | -0.4667 | 0.8630 | 0.9290 | | 0.0564 | 7.0542 | 3252 | 0.8649 | -0.4667 | 0.8649 | 0.9300 | | 0.0564 | 7.0586 | 3254 | 0.8680 | -0.4667 | 0.8680 | 0.9317 | | 0.0564 | 7.0629 | 3256 | 0.8483 | 0.0 | 0.8483 | 0.9210 | | 0.0564 | 7.0672 | 3258 | 0.8298 | 0.0 | 0.8298 | 0.9109 | | 0.0564 | 7.0716 | 3260 | 0.8259 | 0.0 | 0.8259 | 0.9088 | | 0.0564 | 7.0759 | 3262 | 0.8490 | 0.0 | 0.8490 | 0.9214 | | 0.0564 | 7.0803 | 3264 | 0.8960 | -0.3276 | 0.8960 | 0.9466 | | 0.0564 | 7.0846 | 3266 | 0.9225 | -0.1085 | 0.9225 | 0.9604 | | 0.0564 | 7.0889 | 3268 | 0.9116 | -0.1085 | 0.9116 | 0.9548 | | 0.0564 | 7.0933 | 3270 | 0.8758 | -0.4667 | 0.8758 | 0.9359 | | 0.0564 | 7.0976 | 3272 | 0.8521 | 0.0 | 0.8521 | 0.9231 | | 0.0564 | 7.1020 | 3274 | 0.8448 | 0.0 | 0.8448 | 0.9191 | | 0.0564 | 7.1063 | 3276 | 0.8498 | 0.0 | 0.8498 | 0.9218 | | 0.0564 | 7.1106 | 3278 | 0.8833 | -0.3276 | 0.8833 | 0.9398 | | 0.0564 | 7.1150 | 3280 | 0.9088 | -0.1085 | 0.9088 | 0.9533 | | 0.0564 | 7.1193 | 3282 | 0.9274 | -0.1085 | 0.9274 | 0.9630 | | 0.0564 | 7.1236 | 3284 | 0.9034 | -0.1085 | 0.9034 | 0.9505 | | 0.0564 | 7.1280 | 3286 | 0.8671 | -0.3883 | 0.8671 | 0.9312 | | 0.0564 | 7.1323 | 3288 | 0.8532 | -0.4667 | 0.8532 | 0.9237 | | 0.0564 | 7.1367 | 3290 | 0.8525 | -0.4667 | 0.8525 | 0.9233 | | 0.0564 | 7.1410 | 3292 | 0.8283 | 0.0 | 0.8283 | 0.9101 | | 0.0564 | 7.1453 | 3294 | 0.8048 | 0.0 | 0.8048 | 0.8971 | | 0.0564 | 7.1497 | 3296 | 0.8069 | 0.0 | 0.8069 | 0.8983 | | 0.0564 | 7.1540 | 3298 | 0.8200 | 0.0 | 0.8200 | 0.9055 | | 0.0564 | 7.1584 | 3300 | 0.8260 | 0.0 | 0.8260 | 0.9088 | | 0.0564 | 7.1627 | 3302 | 0.8554 | -0.1085 | 0.8554 | 0.9249 | | 0.0564 | 7.1670 | 3304 | 0.8754 | -0.1085 | 0.8754 | 0.9356 | | 0.0564 | 7.1714 | 3306 | 0.8672 | -0.1085 | 0.8672 | 0.9313 | | 0.0564 | 7.1757 | 3308 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0564 | 7.1800 | 3310 | 0.8044 | 0.0 | 0.8044 | 0.8969 | | 0.0564 | 7.1844 | 3312 | 0.7903 | 0.0 | 0.7903 | 0.8890 | | 0.0564 | 7.1887 | 3314 | 0.7991 | 0.0 | 0.7991 | 0.8939 | | 0.0564 | 7.1931 | 3316 | 0.8370 | 0.2524 | 0.8370 | 0.9149 | | 0.0564 | 7.1974 | 3318 | 0.8869 | -0.1085 | 0.8869 | 0.9418 | | 0.0564 | 7.2017 | 3320 | 0.9156 | -0.1085 | 0.9156 | 0.9569 | | 0.0564 | 7.2061 | 3322 | 0.9120 | -0.1085 | 0.9120 | 0.9550 | | 0.0564 | 7.2104 | 3324 | 0.8748 | -0.1085 | 0.8748 | 0.9353 | | 0.0564 | 7.2148 | 3326 | 0.8307 | 0.0 | 0.8307 | 0.9115 | | 0.0564 | 7.2191 | 3328 | 0.7993 | 0.0 | 0.7993 | 0.8940 | | 0.0564 | 7.2234 | 3330 | 0.8002 | 0.0 | 0.8002 | 0.8945 | | 0.0564 | 7.2278 | 3332 | 0.8090 | 0.0 | 0.8090 | 0.8994 | | 0.0564 | 7.2321 | 3334 | 0.8493 | -0.1085 | 0.8493 | 0.9216 | | 0.0564 | 7.2364 | 3336 | 0.9280 | -0.1085 | 0.9280 | 0.9633 | | 0.0564 | 7.2408 | 3338 | 0.9843 | -0.0845 | 0.9843 | 0.9921 | | 0.0564 | 7.2451 | 3340 | 0.9883 | -0.0845 | 0.9883 | 0.9941 | | 0.0564 | 7.2495 | 3342 | 0.9515 | -0.1085 | 0.9515 | 0.9755 | | 0.0564 | 7.2538 | 3344 | 0.8959 | -0.1085 | 0.8959 | 0.9465 | | 0.0564 | 7.2581 | 3346 | 0.8637 | -0.1085 | 0.8637 | 0.9294 | | 0.0564 | 7.2625 | 3348 | 0.8709 | -0.1085 | 0.8709 | 0.9332 | | 0.0564 | 7.2668 | 3350 | 0.8944 | -0.1085 | 0.8944 | 0.9457 | | 0.0564 | 7.2711 | 3352 | 0.9198 | -0.1085 | 0.9198 | 0.9590 | | 0.0564 | 7.2755 | 3354 | 0.9251 | -0.1085 | 0.9251 | 0.9618 | | 0.0564 | 7.2798 | 3356 | 0.8942 | -0.1085 | 0.8942 | 0.9456 | | 0.0564 | 7.2842 | 3358 | 0.8825 | -0.1085 | 0.8825 | 0.9394 | | 0.0564 | 7.2885 | 3360 | 0.8585 | -0.1085 | 0.8585 | 0.9265 | | 0.0564 | 7.2928 | 3362 | 0.8346 | 0.0 | 0.8346 | 0.9136 | | 0.0564 | 7.2972 | 3364 | 0.8257 | 0.0 | 0.8257 | 0.9087 | | 0.0564 | 7.3015 | 3366 | 0.8350 | 0.0 | 0.8350 | 0.9138 | | 0.0564 | 7.3059 | 3368 | 0.8496 | 0.0222 | 0.8496 | 0.9217 | | 0.0564 | 7.3102 | 3370 | 0.8795 | -0.1085 | 0.8795 | 0.9378 | | 0.0564 | 7.3145 | 3372 | 0.9157 | -0.1085 | 0.9157 | 0.9569 | | 0.0564 | 7.3189 | 3374 | 0.9265 | -0.1085 | 0.9265 | 0.9625 | | 0.0564 | 7.3232 | 3376 | 0.9145 | -0.1085 | 0.9145 | 0.9563 | | 0.0564 | 7.3275 | 3378 | 0.9072 | -0.1085 | 0.9072 | 0.9525 | | 0.0564 | 7.3319 | 3380 | 0.8780 | -0.1085 | 0.8780 | 0.9370 | | 0.0564 | 7.3362 | 3382 | 0.8546 | 0.0222 | 0.8546 | 0.9245 | | 0.0564 | 7.3406 | 3384 | 0.8462 | 0.0 | 0.8462 | 0.9199 | | 0.0564 | 7.3449 | 3386 | 0.8476 | 0.0 | 0.8476 | 0.9206 | | 0.0564 | 7.3492 | 3388 | 0.8638 | -0.1085 | 0.8638 | 0.9294 | | 0.0564 | 7.3536 | 3390 | 0.8482 | 0.0 | 0.8482 | 0.9210 | | 0.0564 | 7.3579 | 3392 | 0.8328 | 0.0 | 0.8328 | 0.9126 | | 0.0564 | 7.3623 | 3394 | 0.8251 | 0.0 | 0.8251 | 0.9084 | | 0.0564 | 7.3666 | 3396 | 0.8426 | 0.0 | 0.8426 | 0.9180 | | 0.0564 | 7.3709 | 3398 | 0.8738 | -0.1085 | 0.8738 | 0.9348 | | 0.0564 | 7.3753 | 3400 | 0.8957 | -0.1085 | 0.8957 | 0.9464 | | 0.0564 | 7.3796 | 3402 | 0.8932 | -0.1085 | 0.8932 | 0.9451 | | 0.0564 | 7.3839 | 3404 | 0.8720 | -0.1085 | 0.8720 | 0.9338 | | 0.0564 | 7.3883 | 3406 | 0.8446 | 0.0 | 0.8446 | 0.9190 | | 0.0564 | 7.3926 | 3408 | 0.8341 | 0.0 | 0.8341 | 0.9133 | | 0.0564 | 7.3970 | 3410 | 0.8260 | 0.0 | 0.8260 | 0.9088 | | 0.0564 | 7.4013 | 3412 | 0.8331 | 0.0 | 0.8331 | 0.9128 | | 0.0564 | 7.4056 | 3414 | 0.8629 | -0.4667 | 0.8629 | 0.9289 | | 0.0564 | 7.4100 | 3416 | 0.8807 | -0.1085 | 0.8807 | 0.9385 | | 0.0564 | 7.4143 | 3418 | 0.8859 | -0.1085 | 0.8859 | 0.9412 | | 0.0564 | 7.4187 | 3420 | 0.8748 | -0.3276 | 0.8748 | 0.9353 | | 0.0564 | 7.4230 | 3422 | 0.8751 | -0.3276 | 0.8751 | 0.9355 | | 0.0564 | 7.4273 | 3424 | 0.8738 | -0.3276 | 0.8738 | 0.9347 | | 0.0564 | 7.4317 | 3426 | 0.8628 | -0.4667 | 0.8628 | 0.9289 | | 0.0564 | 7.4360 | 3428 | 0.8481 | 0.0 | 0.8481 | 0.9209 | | 0.0564 | 7.4403 | 3430 | 0.8510 | 0.0 | 0.8510 | 0.9225 | | 0.0564 | 7.4447 | 3432 | 0.8567 | -0.4667 | 0.8567 | 0.9256 | | 0.0564 | 7.4490 | 3434 | 0.8719 | -0.3883 | 0.8719 | 0.9338 | | 0.0564 | 7.4534 | 3436 | 0.8905 | -0.1085 | 0.8905 | 0.9436 | | 0.0564 | 7.4577 | 3438 | 0.8879 | -0.1085 | 0.8879 | 0.9423 | | 0.0564 | 7.4620 | 3440 | 0.8687 | -0.3883 | 0.8687 | 0.9320 | | 0.0564 | 7.4664 | 3442 | 0.8479 | 0.0 | 0.8479 | 0.9208 | | 0.0564 | 7.4707 | 3444 | 0.8332 | 0.0 | 0.8332 | 0.9128 | | 0.0564 | 7.4751 | 3446 | 0.8213 | 0.0 | 0.8213 | 0.9062 | | 0.0564 | 7.4794 | 3448 | 0.8287 | 0.0 | 0.8287 | 0.9103 | | 0.0564 | 7.4837 | 3450 | 0.8382 | 0.0 | 0.8382 | 0.9155 | | 0.0564 | 7.4881 | 3452 | 0.8284 | 0.0 | 0.8284 | 0.9101 | | 0.0564 | 7.4924 | 3454 | 0.8277 | 0.0 | 0.8277 | 0.9098 | | 0.0564 | 7.4967 | 3456 | 0.8426 | 0.0 | 0.8426 | 0.9179 | | 0.0564 | 7.5011 | 3458 | 0.8657 | -0.3883 | 0.8657 | 0.9304 | | 0.0564 | 7.5054 | 3460 | 0.8771 | -0.1379 | 0.8771 | 0.9365 | | 0.0564 | 7.5098 | 3462 | 0.8860 | -0.1085 | 0.8860 | 0.9413 | | 0.0564 | 7.5141 | 3464 | 0.8863 | -0.1085 | 0.8863 | 0.9414 | | 0.0564 | 7.5184 | 3466 | 0.8725 | -0.1379 | 0.8725 | 0.9341 | | 0.0564 | 7.5228 | 3468 | 0.8470 | 0.0 | 0.8470 | 0.9203 | | 0.0564 | 7.5271 | 3470 | 0.8248 | 0.0 | 0.8248 | 0.9082 | | 0.0564 | 7.5315 | 3472 | 0.8167 | 0.0 | 0.8167 | 0.9037 | | 0.0564 | 7.5358 | 3474 | 0.8039 | 0.0 | 0.8039 | 0.8966 | | 0.0564 | 7.5401 | 3476 | 0.8000 | 0.0 | 0.8000 | 0.8945 | | 0.0564 | 7.5445 | 3478 | 0.8161 | 0.0 | 0.8161 | 0.9034 | | 0.0564 | 7.5488 | 3480 | 0.8198 | 0.0 | 0.8198 | 0.9054 | | 0.0564 | 7.5531 | 3482 | 0.8178 | 0.0 | 0.8178 | 0.9043 | | 0.0564 | 7.5575 | 3484 | 0.8021 | 0.0 | 0.8021 | 0.8956 | | 0.0564 | 7.5618 | 3486 | 0.7966 | 0.0 | 0.7966 | 0.8925 | | 0.0564 | 7.5662 | 3488 | 0.7989 | 0.0 | 0.7989 | 0.8938 | | 0.0564 | 7.5705 | 3490 | 0.8126 | 0.0 | 0.8126 | 0.9014 | | 0.0564 | 7.5748 | 3492 | 0.8335 | 0.0 | 0.8335 | 0.9130 | | 0.0564 | 7.5792 | 3494 | 0.8500 | -0.1379 | 0.8500 | 0.9220 | | 0.0564 | 7.5835 | 3496 | 0.8659 | -0.1379 | 0.8659 | 0.9305 | | 0.0564 | 7.5879 | 3498 | 0.8690 | -0.1379 | 0.8690 | 0.9322 | | 0.0481 | 7.5922 | 3500 | 0.8805 | -0.1085 | 0.8805 | 0.9384 | | 0.0481 | 7.5965 | 3502 | 0.8903 | -0.1085 | 0.8903 | 0.9436 | | 0.0481 | 7.6009 | 3504 | 0.8657 | -0.1379 | 0.8657 | 0.9304 | | 0.0481 | 7.6052 | 3506 | 0.8285 | 0.0 | 0.8285 | 0.9102 | | 0.0481 | 7.6095 | 3508 | 0.7895 | 0.0 | 0.7895 | 0.8885 | | 0.0481 | 7.6139 | 3510 | 0.7707 | 0.0 | 0.7707 | 0.8779 | | 0.0481 | 7.6182 | 3512 | 0.7691 | 0.0 | 0.7691 | 0.8770 | | 0.0481 | 7.6226 | 3514 | 0.7755 | 0.0 | 0.7755 | 0.8806 | | 0.0481 | 7.6269 | 3516 | 0.7794 | 0.0 | 0.7794 | 0.8828 | | 0.0481 | 7.6312 | 3518 | 0.7921 | 0.0 | 0.7921 | 0.8900 | | 0.0481 | 7.6356 | 3520 | 0.8085 | 0.0 | 0.8085 | 0.8992 | | 0.0481 | 7.6399 | 3522 | 0.8354 | 0.0 | 0.8354 | 0.9140 | | 0.0481 | 7.6443 | 3524 | 0.8534 | 0.2524 | 0.8534 | 0.9238 | | 0.0481 | 7.6486 | 3526 | 0.8547 | 0.2524 | 0.8547 | 0.9245 | | 0.0481 | 7.6529 | 3528 | 0.8623 | -0.1379 | 0.8623 | 0.9286 | | 0.0481 | 7.6573 | 3530 | 0.8790 | -0.1085 | 0.8790 | 0.9375 | | 0.0481 | 7.6616 | 3532 | 0.8870 | -0.1085 | 0.8870 | 0.9418 | | 0.0481 | 7.6659 | 3534 | 0.8879 | -0.1085 | 0.8879 | 0.9423 | | 0.0481 | 7.6703 | 3536 | 0.8824 | -0.1085 | 0.8824 | 0.9394 | | 0.0481 | 7.6746 | 3538 | 0.8676 | -0.1379 | 0.8676 | 0.9315 | | 0.0481 | 7.6790 | 3540 | 0.8784 | -0.1085 | 0.8784 | 0.9372 | | 0.0481 | 7.6833 | 3542 | 0.8821 | -0.1085 | 0.8821 | 0.9392 | | 0.0481 | 7.6876 | 3544 | 0.9022 | -0.1085 | 0.9022 | 0.9499 | | 0.0481 | 7.6920 | 3546 | 0.8882 | -0.1085 | 0.8882 | 0.9425 | | 0.0481 | 7.6963 | 3548 | 0.8900 | -0.1085 | 0.8900 | 0.9434 | | 0.0481 | 7.7007 | 3550 | 0.8822 | -0.1085 | 0.8822 | 0.9392 | | 0.0481 | 7.7050 | 3552 | 0.8594 | -0.3883 | 0.8594 | 0.9270 | | 0.0481 | 7.7093 | 3554 | 0.8259 | 0.0 | 0.8259 | 0.9088 | | 0.0481 | 7.7137 | 3556 | 0.7969 | 0.0 | 0.7969 | 0.8927 | | 0.0481 | 7.7180 | 3558 | 0.7942 | 0.0 | 0.7942 | 0.8912 | | 0.0481 | 7.7223 | 3560 | 0.8133 | 0.0 | 0.8133 | 0.9018 | | 0.0481 | 7.7267 | 3562 | 0.8264 | 0.0 | 0.8264 | 0.9091 | | 0.0481 | 7.7310 | 3564 | 0.8263 | 0.0 | 0.8263 | 0.9090 | | 0.0481 | 7.7354 | 3566 | 0.8532 | -0.4667 | 0.8532 | 0.9237 | | 0.0481 | 7.7397 | 3568 | 0.8713 | -0.1379 | 0.8713 | 0.9334 | | 0.0481 | 7.7440 | 3570 | 0.8714 | -0.1379 | 0.8714 | 0.9335 | | 0.0481 | 7.7484 | 3572 | 0.8769 | -0.1379 | 0.8769 | 0.9364 | | 0.0481 | 7.7527 | 3574 | 0.8686 | -0.1379 | 0.8686 | 0.9320 | | 0.0481 | 7.7570 | 3576 | 0.8566 | -0.1379 | 0.8566 | 0.9255 | | 0.0481 | 7.7614 | 3578 | 0.8216 | 0.0 | 0.8216 | 0.9064 | | 0.0481 | 7.7657 | 3580 | 0.7926 | 0.0 | 0.7926 | 0.8903 | | 0.0481 | 7.7701 | 3582 | 0.7782 | -0.0233 | 0.7782 | 0.8822 | | 0.0481 | 7.7744 | 3584 | 0.7805 | -0.0233 | 0.7805 | 0.8834 | | 0.0481 | 7.7787 | 3586 | 0.7954 | -0.0233 | 0.7954 | 0.8919 | | 0.0481 | 7.7831 | 3588 | 0.8110 | 0.0 | 0.8110 | 0.9006 | | 0.0481 | 7.7874 | 3590 | 0.8355 | 0.0 | 0.8355 | 0.9141 | | 0.0481 | 7.7918 | 3592 | 0.8535 | -0.4667 | 0.8535 | 0.9238 | | 0.0481 | 7.7961 | 3594 | 0.8800 | -0.1379 | 0.8800 | 0.9381 | | 0.0481 | 7.8004 | 3596 | 0.8961 | -0.1085 | 0.8961 | 0.9466 | | 0.0481 | 7.8048 | 3598 | 0.9048 | -0.1085 | 0.9048 | 0.9512 | | 0.0481 | 7.8091 | 3600 | 0.9023 | -0.1085 | 0.9023 | 0.9499 | | 0.0481 | 7.8134 | 3602 | 0.8970 | -0.1085 | 0.8970 | 0.9471 | | 0.0481 | 7.8178 | 3604 | 0.8874 | -0.1379 | 0.8874 | 0.9420 | | 0.0481 | 7.8221 | 3606 | 0.8570 | -0.1748 | 0.8570 | 0.9258 | | 0.0481 | 7.8265 | 3608 | 0.8220 | 0.0 | 0.8220 | 0.9067 | | 0.0481 | 7.8308 | 3610 | 0.7959 | 0.0 | 0.7959 | 0.8921 | | 0.0481 | 7.8351 | 3612 | 0.7913 | 0.0 | 0.7913 | 0.8895 | | 0.0481 | 7.8395 | 3614 | 0.8020 | 0.0 | 0.8020 | 0.8956 | | 0.0481 | 7.8438 | 3616 | 0.8200 | 0.0 | 0.8200 | 0.9056 | | 0.0481 | 7.8482 | 3618 | 0.8398 | -0.4667 | 0.8398 | 0.9164 | | 0.0481 | 7.8525 | 3620 | 0.8452 | -0.4667 | 0.8452 | 0.9194 | | 0.0481 | 7.8568 | 3622 | 0.8487 | -0.4667 | 0.8487 | 0.9212 | | 0.0481 | 7.8612 | 3624 | 0.8579 | -0.1379 | 0.8579 | 0.9262 | | 0.0481 | 7.8655 | 3626 | 0.8546 | -0.1379 | 0.8546 | 0.9244 | | 0.0481 | 7.8698 | 3628 | 0.8491 | -0.4667 | 0.8491 | 0.9215 | | 0.0481 | 7.8742 | 3630 | 0.8563 | -0.1379 | 0.8563 | 0.9254 | | 0.0481 | 7.8785 | 3632 | 0.8661 | -0.1379 | 0.8661 | 0.9307 | | 0.0481 | 7.8829 | 3634 | 0.8550 | -0.4667 | 0.8550 | 0.9246 | | 0.0481 | 7.8872 | 3636 | 0.8390 | -0.4667 | 0.8390 | 0.9160 | | 0.0481 | 7.8915 | 3638 | 0.8377 | -0.4667 | 0.8377 | 0.9153 | | 0.0481 | 7.8959 | 3640 | 0.8404 | -0.4667 | 0.8404 | 0.9167 | | 0.0481 | 7.9002 | 3642 | 0.8286 | 0.0 | 0.8286 | 0.9103 | | 0.0481 | 7.9046 | 3644 | 0.8113 | 0.0 | 0.8113 | 0.9007 | | 0.0481 | 7.9089 | 3646 | 0.8076 | -0.0233 | 0.8076 | 0.8987 | | 0.0481 | 7.9132 | 3648 | 0.8128 | 0.0 | 0.8128 | 0.9016 | | 0.0481 | 7.9176 | 3650 | 0.8333 | -0.4667 | 0.8333 | 0.9129 | | 0.0481 | 7.9219 | 3652 | 0.8461 | -0.4667 | 0.8461 | 0.9199 | | 0.0481 | 7.9262 | 3654 | 0.8551 | -0.1748 | 0.8551 | 0.9247 | | 0.0481 | 7.9306 | 3656 | 0.8694 | -0.1379 | 0.8694 | 0.9324 | | 0.0481 | 7.9349 | 3658 | 0.8590 | -0.1379 | 0.8590 | 0.9268 | | 0.0481 | 7.9393 | 3660 | 0.8413 | -0.1748 | 0.8413 | 0.9172 | | 0.0481 | 7.9436 | 3662 | 0.8133 | 0.0 | 0.8133 | 0.9018 | | 0.0481 | 7.9479 | 3664 | 0.7993 | 0.0 | 0.7993 | 0.8941 | | 0.0481 | 7.9523 | 3666 | 0.7851 | 0.0 | 0.7851 | 0.8860 | | 0.0481 | 7.9566 | 3668 | 0.7875 | 0.0 | 0.7875 | 0.8874 | | 0.0481 | 7.9610 | 3670 | 0.8047 | 0.0 | 0.8047 | 0.8971 | | 0.0481 | 7.9653 | 3672 | 0.8286 | -0.4667 | 0.8286 | 0.9103 | | 0.0481 | 7.9696 | 3674 | 0.8485 | -0.1748 | 0.8485 | 0.9212 | | 0.0481 | 7.9740 | 3676 | 0.8649 | -0.1379 | 0.8649 | 0.9300 | | 0.0481 | 7.9783 | 3678 | 0.9069 | -0.1085 | 0.9069 | 0.9523 | | 0.0481 | 7.9826 | 3680 | 0.9317 | -0.1085 | 0.9317 | 0.9652 | | 0.0481 | 7.9870 | 3682 | 0.9332 | -0.1085 | 0.9332 | 0.9660 | | 0.0481 | 7.9913 | 3684 | 0.9108 | -0.1085 | 0.9108 | 0.9543 | | 0.0481 | 7.9957 | 3686 | 0.8783 | -0.1379 | 0.8783 | 0.9372 | | 0.0481 | 8.0 | 3688 | 0.8434 | -0.1748 | 0.8434 | 0.9184 | | 0.0481 | 8.0043 | 3690 | 0.8177 | -0.4667 | 0.8177 | 0.9043 | | 0.0481 | 8.0087 | 3692 | 0.8068 | 0.0 | 0.8068 | 0.8982 | | 0.0481 | 8.0130 | 3694 | 0.8115 | 0.0 | 0.8115 | 0.9008 | | 0.0481 | 8.0174 | 3696 | 0.8122 | 0.0 | 0.8122 | 0.9012 | | 0.0481 | 8.0217 | 3698 | 0.8117 | 0.0 | 0.8117 | 0.9009 | | 0.0481 | 8.0260 | 3700 | 0.7959 | 0.0 | 0.7959 | 0.8922 | | 0.0481 | 8.0304 | 3702 | 0.7827 | 0.0 | 0.7827 | 0.8847 | | 0.0481 | 8.0347 | 3704 | 0.7726 | 0.0 | 0.7726 | 0.8790 | | 0.0481 | 8.0390 | 3706 | 0.7690 | 0.0 | 0.7690 | 0.8769 | | 0.0481 | 8.0434 | 3708 | 0.7769 | 0.0 | 0.7769 | 0.8814 | | 0.0481 | 8.0477 | 3710 | 0.7987 | 0.0 | 0.7987 | 0.8937 | | 0.0481 | 8.0521 | 3712 | 0.8373 | -0.1748 | 0.8373 | 0.9150 | | 0.0481 | 8.0564 | 3714 | 0.8658 | -0.1379 | 0.8658 | 0.9305 | | 0.0481 | 8.0607 | 3716 | 0.8735 | -0.1379 | 0.8735 | 0.9346 | | 0.0481 | 8.0651 | 3718 | 0.8575 | -0.1379 | 0.8575 | 0.9260 | | 0.0481 | 8.0694 | 3720 | 0.8439 | -0.1748 | 0.8439 | 0.9186 | | 0.0481 | 8.0738 | 3722 | 0.8176 | 0.0 | 0.8176 | 0.9042 | | 0.0481 | 8.0781 | 3724 | 0.7962 | 0.0 | 0.7962 | 0.8923 | | 0.0481 | 8.0824 | 3726 | 0.7796 | 0.0 | 0.7796 | 0.8830 | | 0.0481 | 8.0868 | 3728 | 0.7775 | 0.0 | 0.7775 | 0.8817 | | 0.0481 | 8.0911 | 3730 | 0.7895 | 0.0 | 0.7895 | 0.8886 | | 0.0481 | 8.0954 | 3732 | 0.8038 | 0.0 | 0.8038 | 0.8965 | | 0.0481 | 8.0998 | 3734 | 0.8100 | 0.0 | 0.8100 | 0.9000 | | 0.0481 | 8.1041 | 3736 | 0.8169 | -0.4667 | 0.8169 | 0.9038 | | 0.0481 | 8.1085 | 3738 | 0.8056 | 0.0 | 0.8056 | 0.8975 | | 0.0481 | 8.1128 | 3740 | 0.7899 | 0.0 | 0.7899 | 0.8888 | | 0.0481 | 8.1171 | 3742 | 0.7878 | 0.0 | 0.7878 | 0.8876 | | 0.0481 | 8.1215 | 3744 | 0.7877 | 0.0 | 0.7877 | 0.8875 | | 0.0481 | 8.1258 | 3746 | 0.8001 | 0.0 | 0.8001 | 0.8945 | | 0.0481 | 8.1302 | 3748 | 0.8258 | 0.0 | 0.8258 | 0.9087 | | 0.0481 | 8.1345 | 3750 | 0.8657 | -0.1748 | 0.8657 | 0.9304 | | 0.0481 | 8.1388 | 3752 | 0.8926 | -0.1085 | 0.8926 | 0.9448 | | 0.0481 | 8.1432 | 3754 | 0.8992 | -0.1085 | 0.8992 | 0.9483 | | 0.0481 | 8.1475 | 3756 | 0.9076 | -0.1085 | 0.9076 | 0.9527 | | 0.0481 | 8.1518 | 3758 | 0.9148 | -0.1085 | 0.9148 | 0.9564 | | 0.0481 | 8.1562 | 3760 | 0.9269 | -0.1085 | 0.9269 | 0.9628 | | 0.0481 | 8.1605 | 3762 | 0.9222 | -0.1085 | 0.9222 | 0.9603 | | 0.0481 | 8.1649 | 3764 | 0.8979 | -0.1085 | 0.8979 | 0.9476 | | 0.0481 | 8.1692 | 3766 | 0.8650 | -0.1748 | 0.8650 | 0.9301 | | 0.0481 | 8.1735 | 3768 | 0.8303 | -0.4667 | 0.8303 | 0.9112 | | 0.0481 | 8.1779 | 3770 | 0.8074 | 0.0 | 0.8074 | 0.8985 | | 0.0481 | 8.1822 | 3772 | 0.7965 | 0.0 | 0.7965 | 0.8924 | | 0.0481 | 8.1866 | 3774 | 0.7996 | 0.0 | 0.7996 | 0.8942 | | 0.0481 | 8.1909 | 3776 | 0.8149 | 0.0 | 0.8149 | 0.9027 | | 0.0481 | 8.1952 | 3778 | 0.8354 | -0.4667 | 0.8354 | 0.9140 | | 0.0481 | 8.1996 | 3780 | 0.8393 | -0.4667 | 0.8393 | 0.9162 | | 0.0481 | 8.2039 | 3782 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0481 | 8.2082 | 3784 | 0.8220 | 0.0 | 0.8220 | 0.9067 | | 0.0481 | 8.2126 | 3786 | 0.8229 | 0.0 | 0.8229 | 0.9071 | | 0.0481 | 8.2169 | 3788 | 0.8321 | -0.4667 | 0.8321 | 0.9122 | | 0.0481 | 8.2213 | 3790 | 0.8390 | -0.4667 | 0.8390 | 0.9160 | | 0.0481 | 8.2256 | 3792 | 0.8452 | -0.4667 | 0.8452 | 0.9194 | | 0.0481 | 8.2299 | 3794 | 0.8586 | -0.1748 | 0.8586 | 0.9266 | | 0.0481 | 8.2343 | 3796 | 0.8648 | -0.1379 | 0.8648 | 0.9300 | | 0.0481 | 8.2386 | 3798 | 0.8660 | -0.1379 | 0.8660 | 0.9306 | | 0.0481 | 8.2430 | 3800 | 0.8771 | -0.1379 | 0.8771 | 0.9365 | | 0.0481 | 8.2473 | 3802 | 0.8804 | -0.1085 | 0.8804 | 0.9383 | | 0.0481 | 8.2516 | 3804 | 0.8736 | -0.1379 | 0.8736 | 0.9347 | | 0.0481 | 8.2560 | 3806 | 0.8549 | -0.3883 | 0.8549 | 0.9246 | | 0.0481 | 8.2603 | 3808 | 0.8266 | 0.0 | 0.8266 | 0.9092 | | 0.0481 | 8.2646 | 3810 | 0.8024 | 0.0 | 0.8024 | 0.8958 | | 0.0481 | 8.2690 | 3812 | 0.7933 | 0.0 | 0.7933 | 0.8907 | | 0.0481 | 8.2733 | 3814 | 0.7951 | 0.0 | 0.7951 | 0.8917 | | 0.0481 | 8.2777 | 3816 | 0.8111 | 0.0 | 0.8111 | 0.9006 | | 0.0481 | 8.2820 | 3818 | 0.8377 | 0.0 | 0.8377 | 0.9153 | | 0.0481 | 8.2863 | 3820 | 0.8703 | -0.1379 | 0.8703 | 0.9329 | | 0.0481 | 8.2907 | 3822 | 0.9033 | -0.1085 | 0.9033 | 0.9504 | | 0.0481 | 8.2950 | 3824 | 0.9256 | -0.1085 | 0.9256 | 0.9621 | | 0.0481 | 8.2993 | 3826 | 0.9208 | -0.1085 | 0.9208 | 0.9596 | | 0.0481 | 8.3037 | 3828 | 0.8964 | -0.1085 | 0.8964 | 0.9468 | | 0.0481 | 8.3080 | 3830 | 0.8607 | -0.1379 | 0.8607 | 0.9278 | | 0.0481 | 8.3124 | 3832 | 0.8233 | 0.0 | 0.8233 | 0.9074 | | 0.0481 | 8.3167 | 3834 | 0.8049 | 0.0 | 0.8049 | 0.8972 | | 0.0481 | 8.3210 | 3836 | 0.8040 | 0.0 | 0.8040 | 0.8967 | | 0.0481 | 8.3254 | 3838 | 0.8130 | 0.0 | 0.8130 | 0.9016 | | 0.0481 | 8.3297 | 3840 | 0.8232 | 0.0 | 0.8232 | 0.9073 | | 0.0481 | 8.3341 | 3842 | 0.8334 | 0.0 | 0.8334 | 0.9129 | | 0.0481 | 8.3384 | 3844 | 0.8563 | -0.1748 | 0.8563 | 0.9253 | | 0.0481 | 8.3427 | 3846 | 0.8765 | -0.1379 | 0.8765 | 0.9362 | | 0.0481 | 8.3471 | 3848 | 0.8977 | -0.1085 | 0.8977 | 0.9475 | | 0.0481 | 8.3514 | 3850 | 0.9002 | -0.1085 | 0.9002 | 0.9488 | | 0.0481 | 8.3557 | 3852 | 0.8837 | -0.1379 | 0.8837 | 0.9401 | | 0.0481 | 8.3601 | 3854 | 0.8665 | -0.1379 | 0.8665 | 0.9309 | | 0.0481 | 8.3644 | 3856 | 0.8459 | -0.1748 | 0.8459 | 0.9197 | | 0.0481 | 8.3688 | 3858 | 0.8324 | 0.0 | 0.8324 | 0.9123 | | 0.0481 | 8.3731 | 3860 | 0.8181 | 0.0 | 0.8181 | 0.9045 | | 0.0481 | 8.3774 | 3862 | 0.8217 | 0.0 | 0.8217 | 0.9065 | | 0.0481 | 8.3818 | 3864 | 0.8386 | -0.4667 | 0.8386 | 0.9158 | | 0.0481 | 8.3861 | 3866 | 0.8499 | -0.1748 | 0.8499 | 0.9219 | | 0.0481 | 8.3905 | 3868 | 0.8642 | -0.1379 | 0.8642 | 0.9296 | | 0.0481 | 8.3948 | 3870 | 0.8644 | -0.1748 | 0.8644 | 0.9297 | | 0.0481 | 8.3991 | 3872 | 0.8527 | -0.1748 | 0.8527 | 0.9234 | | 0.0481 | 8.4035 | 3874 | 0.8287 | 0.0 | 0.8287 | 0.9103 | | 0.0481 | 8.4078 | 3876 | 0.8119 | 0.0 | 0.8119 | 0.9011 | | 0.0481 | 8.4121 | 3878 | 0.8047 | 0.0 | 0.8047 | 0.8971 | | 0.0481 | 8.4165 | 3880 | 0.8074 | 0.0 | 0.8074 | 0.8986 | | 0.0481 | 8.4208 | 3882 | 0.8165 | 0.0 | 0.8165 | 0.9036 | | 0.0481 | 8.4252 | 3884 | 0.8336 | 0.0 | 0.8336 | 0.9130 | | 0.0481 | 8.4295 | 3886 | 0.8460 | -0.4667 | 0.8460 | 0.9198 | | 0.0481 | 8.4338 | 3888 | 0.8659 | -0.1748 | 0.8659 | 0.9305 | | 0.0481 | 8.4382 | 3890 | 0.8715 | -0.1379 | 0.8715 | 0.9336 | | 0.0481 | 8.4425 | 3892 | 0.8657 | -0.1748 | 0.8657 | 0.9304 | | 0.0481 | 8.4469 | 3894 | 0.8621 | -0.1748 | 0.8621 | 0.9285 | | 0.0481 | 8.4512 | 3896 | 0.8659 | -0.1748 | 0.8659 | 0.9305 | | 0.0481 | 8.4555 | 3898 | 0.8681 | -0.1748 | 0.8681 | 0.9317 | | 0.0481 | 8.4599 | 3900 | 0.8652 | -0.1748 | 0.8652 | 0.9301 | | 0.0481 | 8.4642 | 3902 | 0.8620 | -0.1748 | 0.8620 | 0.9285 | | 0.0481 | 8.4685 | 3904 | 0.8646 | -0.1748 | 0.8646 | 0.9298 | | 0.0481 | 8.4729 | 3906 | 0.8542 | -0.4667 | 0.8542 | 0.9242 | | 0.0481 | 8.4772 | 3908 | 0.8345 | 0.0 | 0.8345 | 0.9135 | | 0.0481 | 8.4816 | 3910 | 0.8181 | 0.0 | 0.8181 | 0.9045 | | 0.0481 | 8.4859 | 3912 | 0.8089 | 0.0 | 0.8089 | 0.8994 | | 0.0481 | 8.4902 | 3914 | 0.8131 | 0.0 | 0.8131 | 0.9017 | | 0.0481 | 8.4946 | 3916 | 0.8276 | 0.0 | 0.8276 | 0.9097 | | 0.0481 | 8.4989 | 3918 | 0.8443 | -0.4667 | 0.8443 | 0.9189 | | 0.0481 | 8.5033 | 3920 | 0.8716 | -0.1379 | 0.8716 | 0.9336 | | 0.0481 | 8.5076 | 3922 | 0.8941 | -0.1085 | 0.8941 | 0.9456 | | 0.0481 | 8.5119 | 3924 | 0.9018 | -0.1085 | 0.9018 | 0.9496 | | 0.0481 | 8.5163 | 3926 | 0.8891 | -0.1085 | 0.8891 | 0.9429 | | 0.0481 | 8.5206 | 3928 | 0.8806 | -0.1085 | 0.8806 | 0.9384 | | 0.0481 | 8.5249 | 3930 | 0.8677 | -0.1379 | 0.8677 | 0.9315 | | 0.0481 | 8.5293 | 3932 | 0.8549 | -0.1748 | 0.8549 | 0.9246 | | 0.0481 | 8.5336 | 3934 | 0.8384 | -0.4667 | 0.8384 | 0.9156 | | 0.0481 | 8.5380 | 3936 | 0.8256 | 0.0 | 0.8256 | 0.9086 | | 0.0481 | 8.5423 | 3938 | 0.8137 | 0.0 | 0.8137 | 0.9020 | | 0.0481 | 8.5466 | 3940 | 0.8102 | 0.0 | 0.8102 | 0.9001 | | 0.0481 | 8.5510 | 3942 | 0.8078 | 0.0 | 0.8078 | 0.8988 | | 0.0481 | 8.5553 | 3944 | 0.8061 | 0.0 | 0.8061 | 0.8978 | | 0.0481 | 8.5597 | 3946 | 0.8096 | 0.0 | 0.8096 | 0.8998 | | 0.0481 | 8.5640 | 3948 | 0.8249 | -0.4667 | 0.8249 | 0.9082 | | 0.0481 | 8.5683 | 3950 | 0.8417 | -0.1748 | 0.8417 | 0.9175 | | 0.0481 | 8.5727 | 3952 | 0.8702 | -0.1379 | 0.8702 | 0.9328 | | 0.0481 | 8.5770 | 3954 | 0.8882 | -0.1085 | 0.8882 | 0.9424 | | 0.0481 | 8.5813 | 3956 | 0.8951 | -0.1085 | 0.8951 | 0.9461 | | 0.0481 | 8.5857 | 3958 | 0.8916 | -0.1085 | 0.8916 | 0.9443 | | 0.0481 | 8.5900 | 3960 | 0.8842 | -0.1085 | 0.8842 | 0.9403 | | 0.0481 | 8.5944 | 3962 | 0.8744 | -0.1085 | 0.8744 | 0.9351 | | 0.0481 | 8.5987 | 3964 | 0.8639 | -0.1379 | 0.8639 | 0.9294 | | 0.0481 | 8.6030 | 3966 | 0.8456 | -0.1748 | 0.8456 | 0.9196 | | 0.0481 | 8.6074 | 3968 | 0.8202 | 0.0 | 0.8202 | 0.9056 | | 0.0481 | 8.6117 | 3970 | 0.7957 | 0.0 | 0.7957 | 0.8920 | | 0.0481 | 8.6161 | 3972 | 0.7889 | 0.0 | 0.7889 | 0.8882 | | 0.0481 | 8.6204 | 3974 | 0.7940 | 0.0 | 0.7940 | 0.8911 | | 0.0481 | 8.6247 | 3976 | 0.7962 | 0.0 | 0.7962 | 0.8923 | | 0.0481 | 8.6291 | 3978 | 0.7892 | 0.0 | 0.7892 | 0.8884 | | 0.0481 | 8.6334 | 3980 | 0.7881 | 0.0 | 0.7881 | 0.8877 | | 0.0481 | 8.6377 | 3982 | 0.7899 | 0.0 | 0.7899 | 0.8888 | | 0.0481 | 8.6421 | 3984 | 0.7974 | 0.0 | 0.7974 | 0.8930 | | 0.0481 | 8.6464 | 3986 | 0.8016 | 0.0 | 0.8016 | 0.8953 | | 0.0481 | 8.6508 | 3988 | 0.8152 | 0.0 | 0.8152 | 0.9029 | | 0.0481 | 8.6551 | 3990 | 0.8299 | 0.0 | 0.8299 | 0.9110 | | 0.0481 | 8.6594 | 3992 | 0.8492 | -0.1379 | 0.8492 | 0.9215 | | 0.0481 | 8.6638 | 3994 | 0.8585 | -0.1379 | 0.8585 | 0.9266 | | 0.0481 | 8.6681 | 3996 | 0.8551 | -0.1379 | 0.8551 | 0.9247 | | 0.0481 | 8.6725 | 3998 | 0.8441 | -0.1379 | 0.8441 | 0.9187 | | 0.0428 | 8.6768 | 4000 | 0.8308 | 0.0 | 0.8308 | 0.9115 | | 0.0428 | 8.6811 | 4002 | 0.8173 | 0.0 | 0.8173 | 0.9041 | | 0.0428 | 8.6855 | 4004 | 0.8039 | 0.0 | 0.8039 | 0.8966 | | 0.0428 | 8.6898 | 4006 | 0.7906 | 0.0 | 0.7906 | 0.8891 | | 0.0428 | 8.6941 | 4008 | 0.7841 | 0.0 | 0.7841 | 0.8855 | | 0.0428 | 8.6985 | 4010 | 0.7794 | 0.0 | 0.7794 | 0.8828 | | 0.0428 | 8.7028 | 4012 | 0.7832 | 0.0 | 0.7832 | 0.8850 | | 0.0428 | 8.7072 | 4014 | 0.7903 | 0.0 | 0.7903 | 0.8890 | | 0.0428 | 8.7115 | 4016 | 0.8001 | 0.0 | 0.8001 | 0.8945 | | 0.0428 | 8.7158 | 4018 | 0.8167 | 0.0 | 0.8167 | 0.9037 | | 0.0428 | 8.7202 | 4020 | 0.8402 | -0.4667 | 0.8402 | 0.9166 | | 0.0428 | 8.7245 | 4022 | 0.8584 | -0.1379 | 0.8584 | 0.9265 | | 0.0428 | 8.7289 | 4024 | 0.8682 | -0.1379 | 0.8682 | 0.9318 | | 0.0428 | 8.7332 | 4026 | 0.8754 | -0.1085 | 0.8754 | 0.9356 | | 0.0428 | 8.7375 | 4028 | 0.8720 | -0.1085 | 0.8720 | 0.9338 | | 0.0428 | 8.7419 | 4030 | 0.8630 | -0.1379 | 0.8630 | 0.9290 | | 0.0428 | 8.7462 | 4032 | 0.8437 | -0.4667 | 0.8437 | 0.9186 | | 0.0428 | 8.7505 | 4034 | 0.8259 | 0.0 | 0.8259 | 0.9088 | | 0.0428 | 8.7549 | 4036 | 0.8160 | 0.0 | 0.8160 | 0.9033 | | 0.0428 | 8.7592 | 4038 | 0.8073 | 0.0 | 0.8073 | 0.8985 | | 0.0428 | 8.7636 | 4040 | 0.8055 | 0.0 | 0.8055 | 0.8975 | | 0.0428 | 8.7679 | 4042 | 0.8071 | 0.0 | 0.8071 | 0.8984 | | 0.0428 | 8.7722 | 4044 | 0.8128 | 0.0 | 0.8128 | 0.9015 | | 0.0428 | 8.7766 | 4046 | 0.8137 | 0.0 | 0.8137 | 0.9020 | | 0.0428 | 8.7809 | 4048 | 0.8107 | 0.0 | 0.8107 | 0.9004 | | 0.0428 | 8.7852 | 4050 | 0.8042 | 0.0 | 0.8042 | 0.8968 | | 0.0428 | 8.7896 | 4052 | 0.8029 | 0.0 | 0.8029 | 0.8961 | | 0.0428 | 8.7939 | 4054 | 0.8093 | 0.0 | 0.8093 | 0.8996 | | 0.0428 | 8.7983 | 4056 | 0.8147 | 0.0 | 0.8147 | 0.9026 | | 0.0428 | 8.8026 | 4058 | 0.8242 | 0.0 | 0.8242 | 0.9078 | | 0.0428 | 8.8069 | 4060 | 0.8312 | 0.0 | 0.8312 | 0.9117 | | 0.0428 | 8.8113 | 4062 | 0.8365 | 0.0 | 0.8365 | 0.9146 | | 0.0428 | 8.8156 | 4064 | 0.8471 | -0.4667 | 0.8471 | 0.9204 | | 0.0428 | 8.8200 | 4066 | 0.8552 | -0.4667 | 0.8552 | 0.9248 | | 0.0428 | 8.8243 | 4068 | 0.8641 | -0.3883 | 0.8641 | 0.9296 | | 0.0428 | 8.8286 | 4070 | 0.8682 | -0.1379 | 0.8682 | 0.9318 | | 0.0428 | 8.8330 | 4072 | 0.8615 | -0.4667 | 0.8615 | 0.9282 | | 0.0428 | 8.8373 | 4074 | 0.8527 | -0.4667 | 0.8527 | 0.9234 | | 0.0428 | 8.8416 | 4076 | 0.8519 | -0.4667 | 0.8519 | 0.9230 | | 0.0428 | 8.8460 | 4078 | 0.8460 | -0.4667 | 0.8460 | 0.9198 | | 0.0428 | 8.8503 | 4080 | 0.8369 | -0.4667 | 0.8369 | 0.9148 | | 0.0428 | 8.8547 | 4082 | 0.8403 | -0.4667 | 0.8403 | 0.9167 | | 0.0428 | 8.8590 | 4084 | 0.8499 | -0.4667 | 0.8499 | 0.9219 | | 0.0428 | 8.8633 | 4086 | 0.8668 | -0.1379 | 0.8668 | 0.9310 | | 0.0428 | 8.8677 | 4088 | 0.8784 | -0.1085 | 0.8784 | 0.9372 | | 0.0428 | 8.8720 | 4090 | 0.8848 | -0.1085 | 0.8848 | 0.9406 | | 0.0428 | 8.8764 | 4092 | 0.8801 | -0.1085 | 0.8801 | 0.9381 | | 0.0428 | 8.8807 | 4094 | 0.8640 | -0.1748 | 0.8640 | 0.9295 | | 0.0428 | 8.8850 | 4096 | 0.8478 | -0.4667 | 0.8478 | 0.9207 | | 0.0428 | 8.8894 | 4098 | 0.8454 | -0.4667 | 0.8454 | 0.9195 | | 0.0428 | 8.8937 | 4100 | 0.8536 | -0.4667 | 0.8536 | 0.9239 | | 0.0428 | 8.8980 | 4102 | 0.8694 | -0.1748 | 0.8694 | 0.9324 | | 0.0428 | 8.9024 | 4104 | 0.8855 | -0.1085 | 0.8855 | 0.9410 | | 0.0428 | 8.9067 | 4106 | 0.8977 | -0.1085 | 0.8977 | 0.9475 | | 0.0428 | 8.9111 | 4108 | 0.9137 | -0.1085 | 0.9137 | 0.9559 | | 0.0428 | 8.9154 | 4110 | 0.9337 | -0.1085 | 0.9337 | 0.9663 | | 0.0428 | 8.9197 | 4112 | 0.9344 | -0.1085 | 0.9344 | 0.9666 | | 0.0428 | 8.9241 | 4114 | 0.9309 | -0.1085 | 0.9309 | 0.9648 | | 0.0428 | 8.9284 | 4116 | 0.9199 | -0.1085 | 0.9199 | 0.9591 | | 0.0428 | 8.9328 | 4118 | 0.9001 | -0.1085 | 0.9001 | 0.9487 | | 0.0428 | 8.9371 | 4120 | 0.8779 | -0.1379 | 0.8779 | 0.9370 | | 0.0428 | 8.9414 | 4122 | 0.8708 | -0.1379 | 0.8708 | 0.9332 | | 0.0428 | 8.9458 | 4124 | 0.8729 | -0.1379 | 0.8729 | 0.9343 | | 0.0428 | 8.9501 | 4126 | 0.8796 | -0.1379 | 0.8796 | 0.9379 | | 0.0428 | 8.9544 | 4128 | 0.8862 | -0.1085 | 0.8862 | 0.9414 | | 0.0428 | 8.9588 | 4130 | 0.8897 | -0.1085 | 0.8897 | 0.9432 | | 0.0428 | 8.9631 | 4132 | 0.8941 | -0.1085 | 0.8941 | 0.9456 | | 0.0428 | 8.9675 | 4134 | 0.8969 | -0.1085 | 0.8969 | 0.9471 | | 0.0428 | 8.9718 | 4136 | 0.8996 | -0.1085 | 0.8996 | 0.9485 | | 0.0428 | 8.9761 | 4138 | 0.9109 | -0.1085 | 0.9109 | 0.9544 | | 0.0428 | 8.9805 | 4140 | 0.9136 | -0.1085 | 0.9136 | 0.9558 | | 0.0428 | 8.9848 | 4142 | 0.9190 | -0.1085 | 0.9190 | 0.9586 | | 0.0428 | 8.9892 | 4144 | 0.9148 | -0.1085 | 0.9148 | 0.9565 | | 0.0428 | 8.9935 | 4146 | 0.9022 | -0.1085 | 0.9022 | 0.9498 | | 0.0428 | 8.9978 | 4148 | 0.8880 | -0.1085 | 0.8880 | 0.9424 | | 0.0428 | 9.0022 | 4150 | 0.8873 | -0.1085 | 0.8873 | 0.9420 | | 0.0428 | 9.0065 | 4152 | 0.8944 | -0.1085 | 0.8944 | 0.9457 | | 0.0428 | 9.0108 | 4154 | 0.8880 | -0.1085 | 0.8880 | 0.9423 | | 0.0428 | 9.0152 | 4156 | 0.8729 | -0.1379 | 0.8729 | 0.9343 | | 0.0428 | 9.0195 | 4158 | 0.8622 | -0.1379 | 0.8622 | 0.9285 | | 0.0428 | 9.0239 | 4160 | 0.8501 | -0.1748 | 0.8501 | 0.9220 | | 0.0428 | 9.0282 | 4162 | 0.8397 | -0.4667 | 0.8397 | 0.9164 | | 0.0428 | 9.0325 | 4164 | 0.8391 | -0.4667 | 0.8391 | 0.9160 | | 0.0428 | 9.0369 | 4166 | 0.8432 | -0.4667 | 0.8432 | 0.9182 | | 0.0428 | 9.0412 | 4168 | 0.8544 | -0.1379 | 0.8544 | 0.9243 | | 0.0428 | 9.0456 | 4170 | 0.8664 | -0.1379 | 0.8664 | 0.9308 | | 0.0428 | 9.0499 | 4172 | 0.8824 | -0.1085 | 0.8824 | 0.9394 | | 0.0428 | 9.0542 | 4174 | 0.8950 | -0.1085 | 0.8950 | 0.9461 | | 0.0428 | 9.0586 | 4176 | 0.9008 | -0.1085 | 0.9008 | 0.9491 | | 0.0428 | 9.0629 | 4178 | 0.9005 | -0.1085 | 0.9005 | 0.9490 | | 0.0428 | 9.0672 | 4180 | 0.8960 | -0.1085 | 0.8960 | 0.9466 | | 0.0428 | 9.0716 | 4182 | 0.8950 | -0.1085 | 0.8950 | 0.9460 | | 0.0428 | 9.0759 | 4184 | 0.8854 | -0.1379 | 0.8854 | 0.9410 | | 0.0428 | 9.0803 | 4186 | 0.8838 | -0.1379 | 0.8838 | 0.9401 | | 0.0428 | 9.0846 | 4188 | 0.8830 | -0.1379 | 0.8830 | 0.9397 | | 0.0428 | 9.0889 | 4190 | 0.8901 | -0.1085 | 0.8901 | 0.9435 | | 0.0428 | 9.0933 | 4192 | 0.9019 | -0.1085 | 0.9019 | 0.9497 | | 0.0428 | 9.0976 | 4194 | 0.9153 | -0.1085 | 0.9153 | 0.9567 | | 0.0428 | 9.1020 | 4196 | 0.9137 | -0.1085 | 0.9137 | 0.9559 | | 0.0428 | 9.1063 | 4198 | 0.9038 | -0.1085 | 0.9038 | 0.9507 | | 0.0428 | 9.1106 | 4200 | 0.8870 | -0.1379 | 0.8870 | 0.9418 | | 0.0428 | 9.1150 | 4202 | 0.8646 | -0.1748 | 0.8646 | 0.9298 | | 0.0428 | 9.1193 | 4204 | 0.8491 | -0.4667 | 0.8491 | 0.9215 | | 0.0428 | 9.1236 | 4206 | 0.8344 | 0.0 | 0.8344 | 0.9134 | | 0.0428 | 9.1280 | 4208 | 0.8296 | 0.0 | 0.8296 | 0.9108 | | 0.0428 | 9.1323 | 4210 | 0.8316 | 0.0 | 0.8316 | 0.9119 | | 0.0428 | 9.1367 | 4212 | 0.8408 | -0.4667 | 0.8408 | 0.9170 | | 0.0428 | 9.1410 | 4214 | 0.8554 | -0.1748 | 0.8554 | 0.9249 | | 0.0428 | 9.1453 | 4216 | 0.8731 | -0.1379 | 0.8731 | 0.9344 | | 0.0428 | 9.1497 | 4218 | 0.8842 | -0.1379 | 0.8842 | 0.9403 | | 0.0428 | 9.1540 | 4220 | 0.8928 | -0.1085 | 0.8928 | 0.9449 | | 0.0428 | 9.1584 | 4222 | 0.9002 | -0.1085 | 0.9002 | 0.9488 | | 0.0428 | 9.1627 | 4224 | 0.9061 | -0.1085 | 0.9061 | 0.9519 | | 0.0428 | 9.1670 | 4226 | 0.9117 | -0.1085 | 0.9117 | 0.9548 | | 0.0428 | 9.1714 | 4228 | 0.9122 | -0.1085 | 0.9122 | 0.9551 | | 0.0428 | 9.1757 | 4230 | 0.9066 | -0.1085 | 0.9066 | 0.9521 | | 0.0428 | 9.1800 | 4232 | 0.8987 | -0.1085 | 0.8987 | 0.9480 | | 0.0428 | 9.1844 | 4234 | 0.8909 | -0.1085 | 0.8909 | 0.9439 | | 0.0428 | 9.1887 | 4236 | 0.8868 | -0.1379 | 0.8868 | 0.9417 | | 0.0428 | 9.1931 | 4238 | 0.8808 | -0.1379 | 0.8808 | 0.9385 | | 0.0428 | 9.1974 | 4240 | 0.8752 | -0.1379 | 0.8752 | 0.9355 | | 0.0428 | 9.2017 | 4242 | 0.8691 | -0.1379 | 0.8691 | 0.9323 | | 0.0428 | 9.2061 | 4244 | 0.8678 | -0.1748 | 0.8678 | 0.9316 | | 0.0428 | 9.2104 | 4246 | 0.8726 | -0.1379 | 0.8726 | 0.9341 | | 0.0428 | 9.2148 | 4248 | 0.8724 | -0.1379 | 0.8724 | 0.9340 | | 0.0428 | 9.2191 | 4250 | 0.8685 | -0.1379 | 0.8685 | 0.9319 | | 0.0428 | 9.2234 | 4252 | 0.8612 | -0.1748 | 0.8612 | 0.9280 | | 0.0428 | 9.2278 | 4254 | 0.8547 | -0.4667 | 0.8547 | 0.9245 | | 0.0428 | 9.2321 | 4256 | 0.8478 | -0.4667 | 0.8478 | 0.9207 | | 0.0428 | 9.2364 | 4258 | 0.8449 | -0.4667 | 0.8449 | 0.9192 | | 0.0428 | 9.2408 | 4260 | 0.8439 | -0.4667 | 0.8439 | 0.9186 | | 0.0428 | 9.2451 | 4262 | 0.8463 | -0.4667 | 0.8463 | 0.9199 | | 0.0428 | 9.2495 | 4264 | 0.8484 | -0.4667 | 0.8484 | 0.9211 | | 0.0428 | 9.2538 | 4266 | 0.8569 | -0.1748 | 0.8569 | 0.9257 | | 0.0428 | 9.2581 | 4268 | 0.8622 | -0.1748 | 0.8622 | 0.9285 | | 0.0428 | 9.2625 | 4270 | 0.8645 | -0.1379 | 0.8645 | 0.9298 | | 0.0428 | 9.2668 | 4272 | 0.8713 | -0.1379 | 0.8713 | 0.9335 | | 0.0428 | 9.2711 | 4274 | 0.8746 | -0.1379 | 0.8746 | 0.9352 | | 0.0428 | 9.2755 | 4276 | 0.8822 | -0.1085 | 0.8822 | 0.9392 | | 0.0428 | 9.2798 | 4278 | 0.8926 | -0.1085 | 0.8926 | 0.9448 | | 0.0428 | 9.2842 | 4280 | 0.9062 | -0.1085 | 0.9062 | 0.9520 | | 0.0428 | 9.2885 | 4282 | 0.9123 | -0.1085 | 0.9123 | 0.9551 | | 0.0428 | 9.2928 | 4284 | 0.9190 | -0.1085 | 0.9190 | 0.9586 | | 0.0428 | 9.2972 | 4286 | 0.9182 | -0.1085 | 0.9182 | 0.9582 | | 0.0428 | 9.3015 | 4288 | 0.9149 | -0.1085 | 0.9149 | 0.9565 | | 0.0428 | 9.3059 | 4290 | 0.9149 | -0.1085 | 0.9149 | 0.9565 | | 0.0428 | 9.3102 | 4292 | 0.9097 | -0.1085 | 0.9097 | 0.9538 | | 0.0428 | 9.3145 | 4294 | 0.9012 | -0.1085 | 0.9012 | 0.9493 | | 0.0428 | 9.3189 | 4296 | 0.8884 | -0.1085 | 0.8884 | 0.9426 | | 0.0428 | 9.3232 | 4298 | 0.8760 | -0.1379 | 0.8760 | 0.9359 | | 0.0428 | 9.3275 | 4300 | 0.8629 | -0.1748 | 0.8629 | 0.9289 | | 0.0428 | 9.3319 | 4302 | 0.8524 | -0.1748 | 0.8524 | 0.9232 | | 0.0428 | 9.3362 | 4304 | 0.8452 | -0.4667 | 0.8452 | 0.9194 | | 0.0428 | 9.3406 | 4306 | 0.8428 | -0.4667 | 0.8428 | 0.9180 | | 0.0428 | 9.3449 | 4308 | 0.8410 | -0.4667 | 0.8410 | 0.9170 | | 0.0428 | 9.3492 | 4310 | 0.8431 | -0.4667 | 0.8431 | 0.9182 | | 0.0428 | 9.3536 | 4312 | 0.8462 | -0.4667 | 0.8462 | 0.9199 | | 0.0428 | 9.3579 | 4314 | 0.8508 | -0.1748 | 0.8508 | 0.9224 | | 0.0428 | 9.3623 | 4316 | 0.8607 | -0.1748 | 0.8607 | 0.9277 | | 0.0428 | 9.3666 | 4318 | 0.8717 | -0.1748 | 0.8717 | 0.9336 | | 0.0428 | 9.3709 | 4320 | 0.8788 | -0.1379 | 0.8788 | 0.9374 | | 0.0428 | 9.3753 | 4322 | 0.8877 | -0.1085 | 0.8877 | 0.9422 | | 0.0428 | 9.3796 | 4324 | 0.8914 | -0.1085 | 0.8914 | 0.9442 | | 0.0428 | 9.3839 | 4326 | 0.8980 | -0.1085 | 0.8980 | 0.9476 | | 0.0428 | 9.3883 | 4328 | 0.9047 | -0.1085 | 0.9047 | 0.9512 | | 0.0428 | 9.3926 | 4330 | 0.9076 | -0.1085 | 0.9076 | 0.9527 | | 0.0428 | 9.3970 | 4332 | 0.9026 | -0.1085 | 0.9026 | 0.9500 | | 0.0428 | 9.4013 | 4334 | 0.8914 | -0.1085 | 0.8914 | 0.9441 | | 0.0428 | 9.4056 | 4336 | 0.8797 | -0.1085 | 0.8797 | 0.9379 | | 0.0428 | 9.4100 | 4338 | 0.8727 | -0.1748 | 0.8727 | 0.9342 | | 0.0428 | 9.4143 | 4340 | 0.8622 | -0.1748 | 0.8622 | 0.9286 | | 0.0428 | 9.4187 | 4342 | 0.8578 | -0.1748 | 0.8578 | 0.9262 | | 0.0428 | 9.4230 | 4344 | 0.8567 | -0.1748 | 0.8567 | 0.9256 | | 0.0428 | 9.4273 | 4346 | 0.8584 | -0.1748 | 0.8584 | 0.9265 | | 0.0428 | 9.4317 | 4348 | 0.8563 | -0.1748 | 0.8563 | 0.9254 | | 0.0428 | 9.4360 | 4350 | 0.8552 | -0.1748 | 0.8552 | 0.9248 | | 0.0428 | 9.4403 | 4352 | 0.8569 | -0.1748 | 0.8569 | 0.9257 | | 0.0428 | 9.4447 | 4354 | 0.8606 | -0.1748 | 0.8606 | 0.9277 | | 0.0428 | 9.4490 | 4356 | 0.8648 | -0.1748 | 0.8648 | 0.9299 | | 0.0428 | 9.4534 | 4358 | 0.8680 | -0.1748 | 0.8680 | 0.9317 | | 0.0428 | 9.4577 | 4360 | 0.8737 | -0.1379 | 0.8737 | 0.9347 | | 0.0428 | 9.4620 | 4362 | 0.8787 | -0.1085 | 0.8787 | 0.9374 | | 0.0428 | 9.4664 | 4364 | 0.8852 | -0.1085 | 0.8852 | 0.9408 | | 0.0428 | 9.4707 | 4366 | 0.8878 | -0.1085 | 0.8878 | 0.9423 | | 0.0428 | 9.4751 | 4368 | 0.8901 | -0.1085 | 0.8901 | 0.9435 | | 0.0428 | 9.4794 | 4370 | 0.8899 | -0.1085 | 0.8899 | 0.9434 | | 0.0428 | 9.4837 | 4372 | 0.8861 | -0.1085 | 0.8861 | 0.9413 | | 0.0428 | 9.4881 | 4374 | 0.8844 | -0.1085 | 0.8844 | 0.9404 | | 0.0428 | 9.4924 | 4376 | 0.8838 | -0.1085 | 0.8838 | 0.9401 | | 0.0428 | 9.4967 | 4378 | 0.8867 | -0.1085 | 0.8867 | 0.9417 | | 0.0428 | 9.5011 | 4380 | 0.8877 | -0.1085 | 0.8877 | 0.9422 | | 0.0428 | 9.5054 | 4382 | 0.8847 | -0.1085 | 0.8847 | 0.9406 | | 0.0428 | 9.5098 | 4384 | 0.8771 | -0.1085 | 0.8771 | 0.9365 | | 0.0428 | 9.5141 | 4386 | 0.8698 | -0.1379 | 0.8698 | 0.9326 | | 0.0428 | 9.5184 | 4388 | 0.8684 | -0.1379 | 0.8684 | 0.9319 | | 0.0428 | 9.5228 | 4390 | 0.8661 | -0.1379 | 0.8661 | 0.9306 | | 0.0428 | 9.5271 | 4392 | 0.8627 | -0.1748 | 0.8627 | 0.9288 | | 0.0428 | 9.5315 | 4394 | 0.8614 | -0.1748 | 0.8614 | 0.9281 | | 0.0428 | 9.5358 | 4396 | 0.8584 | -0.1748 | 0.8584 | 0.9265 | | 0.0428 | 9.5401 | 4398 | 0.8602 | -0.1748 | 0.8602 | 0.9274 | | 0.0428 | 9.5445 | 4400 | 0.8586 | -0.1748 | 0.8586 | 0.9266 | | 0.0428 | 9.5488 | 4402 | 0.8530 | -0.1748 | 0.8530 | 0.9236 | | 0.0428 | 9.5531 | 4404 | 0.8446 | -0.4667 | 0.8446 | 0.9190 | | 0.0428 | 9.5575 | 4406 | 0.8379 | -0.4667 | 0.8379 | 0.9154 | | 0.0428 | 9.5618 | 4408 | 0.8339 | 0.0 | 0.8339 | 0.9132 | | 0.0428 | 9.5662 | 4410 | 0.8300 | 0.0 | 0.8300 | 0.9111 | | 0.0428 | 9.5705 | 4412 | 0.8250 | 0.0 | 0.8250 | 0.9083 | | 0.0428 | 9.5748 | 4414 | 0.8216 | 0.0 | 0.8216 | 0.9064 | | 0.0428 | 9.5792 | 4416 | 0.8189 | 0.0 | 0.8189 | 0.9049 | | 0.0428 | 9.5835 | 4418 | 0.8191 | 0.0 | 0.8191 | 0.9051 | | 0.0428 | 9.5879 | 4420 | 0.8189 | 0.0 | 0.8189 | 0.9049 | | 0.0428 | 9.5922 | 4422 | 0.8227 | 0.0 | 0.8227 | 0.9070 | | 0.0428 | 9.5965 | 4424 | 0.8276 | 0.0 | 0.8276 | 0.9097 | | 0.0428 | 9.6009 | 4426 | 0.8322 | 0.0 | 0.8322 | 0.9122 | | 0.0428 | 9.6052 | 4428 | 0.8337 | 0.0 | 0.8337 | 0.9130 | | 0.0428 | 9.6095 | 4430 | 0.8334 | 0.0 | 0.8334 | 0.9129 | | 0.0428 | 9.6139 | 4432 | 0.8330 | 0.0 | 0.8330 | 0.9127 | | 0.0428 | 9.6182 | 4434 | 0.8328 | 0.0 | 0.8328 | 0.9126 | | 0.0428 | 9.6226 | 4436 | 0.8321 | 0.0 | 0.8321 | 0.9122 | | 0.0428 | 9.6269 | 4438 | 0.8329 | 0.0 | 0.8329 | 0.9126 | | 0.0428 | 9.6312 | 4440 | 0.8311 | 0.0 | 0.8311 | 0.9116 | | 0.0428 | 9.6356 | 4442 | 0.8288 | 0.0 | 0.8288 | 0.9104 | | 0.0428 | 9.6399 | 4444 | 0.8296 | 0.0 | 0.8296 | 0.9108 | | 0.0428 | 9.6443 | 4446 | 0.8312 | 0.0 | 0.8312 | 0.9117 | | 0.0428 | 9.6486 | 4448 | 0.8337 | 0.0 | 0.8337 | 0.9131 | | 0.0428 | 9.6529 | 4450 | 0.8378 | -0.4667 | 0.8378 | 0.9153 | | 0.0428 | 9.6573 | 4452 | 0.8437 | -0.4667 | 0.8437 | 0.9185 | | 0.0428 | 9.6616 | 4454 | 0.8490 | -0.1748 | 0.8490 | 0.9214 | | 0.0428 | 9.6659 | 4456 | 0.8515 | -0.1748 | 0.8515 | 0.9228 | | 0.0428 | 9.6703 | 4458 | 0.8525 | -0.1748 | 0.8525 | 0.9233 | | 0.0428 | 9.6746 | 4460 | 0.8542 | -0.1748 | 0.8542 | 0.9242 | | 0.0428 | 9.6790 | 4462 | 0.8541 | -0.1748 | 0.8541 | 0.9242 | | 0.0428 | 9.6833 | 4464 | 0.8552 | -0.1748 | 0.8552 | 0.9248 | | 0.0428 | 9.6876 | 4466 | 0.8541 | -0.1748 | 0.8541 | 0.9242 | | 0.0428 | 9.6920 | 4468 | 0.8514 | -0.1748 | 0.8514 | 0.9227 | | 0.0428 | 9.6963 | 4470 | 0.8500 | -0.1748 | 0.8500 | 0.9219 | | 0.0428 | 9.7007 | 4472 | 0.8504 | -0.1748 | 0.8504 | 0.9222 | | 0.0428 | 9.7050 | 4474 | 0.8521 | -0.1748 | 0.8521 | 0.9231 | | 0.0428 | 9.7093 | 4476 | 0.8533 | -0.1748 | 0.8533 | 0.9238 | | 0.0428 | 9.7137 | 4478 | 0.8520 | -0.1748 | 0.8520 | 0.9230 | | 0.0428 | 9.7180 | 4480 | 0.8525 | -0.1748 | 0.8525 | 0.9233 | | 0.0428 | 9.7223 | 4482 | 0.8513 | -0.1748 | 0.8513 | 0.9226 | | 0.0428 | 9.7267 | 4484 | 0.8477 | -0.1748 | 0.8477 | 0.9207 | | 0.0428 | 9.7310 | 4486 | 0.8422 | -0.4667 | 0.8422 | 0.9177 | | 0.0428 | 9.7354 | 4488 | 0.8362 | -0.4667 | 0.8362 | 0.9144 | | 0.0428 | 9.7397 | 4490 | 0.8334 | 0.0 | 0.8334 | 0.9129 | | 0.0428 | 9.7440 | 4492 | 0.8301 | 0.0 | 0.8301 | 0.9111 | | 0.0428 | 9.7484 | 4494 | 0.8276 | 0.0 | 0.8276 | 0.9097 | | 0.0428 | 9.7527 | 4496 | 0.8274 | 0.0 | 0.8274 | 0.9096 | | 0.0428 | 9.7570 | 4498 | 0.8273 | 0.0 | 0.8273 | 0.9095 | | 0.0392 | 9.7614 | 4500 | 0.8264 | 0.0 | 0.8264 | 0.9091 | | 0.0392 | 9.7657 | 4502 | 0.8260 | 0.0 | 0.8260 | 0.9088 | | 0.0392 | 9.7701 | 4504 | 0.8258 | 0.0 | 0.8258 | 0.9087 | | 0.0392 | 9.7744 | 4506 | 0.8254 | 0.0 | 0.8254 | 0.9085 | | 0.0392 | 9.7787 | 4508 | 0.8243 | 0.0 | 0.8243 | 0.9079 | | 0.0392 | 9.7831 | 4510 | 0.8246 | 0.0 | 0.8246 | 0.9081 | | 0.0392 | 9.7874 | 4512 | 0.8269 | 0.0 | 0.8269 | 0.9093 | | 0.0392 | 9.7918 | 4514 | 0.8299 | 0.0 | 0.8299 | 0.9110 | | 0.0392 | 9.7961 | 4516 | 0.8326 | 0.0 | 0.8326 | 0.9125 | | 0.0392 | 9.8004 | 4518 | 0.8366 | -0.4667 | 0.8366 | 0.9146 | | 0.0392 | 9.8048 | 4520 | 0.8411 | -0.4667 | 0.8411 | 0.9171 | | 0.0392 | 9.8091 | 4522 | 0.8458 | -0.1748 | 0.8458 | 0.9196 | | 0.0392 | 9.8134 | 4524 | 0.8502 | -0.1748 | 0.8502 | 0.9221 | | 0.0392 | 9.8178 | 4526 | 0.8521 | -0.1748 | 0.8521 | 0.9231 | | 0.0392 | 9.8221 | 4528 | 0.8535 | -0.1748 | 0.8535 | 0.9239 | | 0.0392 | 9.8265 | 4530 | 0.8547 | -0.1748 | 0.8547 | 0.9245 | | 0.0392 | 9.8308 | 4532 | 0.8557 | -0.1748 | 0.8557 | 0.9250 | | 0.0392 | 9.8351 | 4534 | 0.8558 | -0.1748 | 0.8558 | 0.9251 | | 0.0392 | 9.8395 | 4536 | 0.8553 | -0.1748 | 0.8553 | 0.9248 | | 0.0392 | 9.8438 | 4538 | 0.8549 | -0.1748 | 0.8549 | 0.9246 | | 0.0392 | 9.8482 | 4540 | 0.8546 | -0.1748 | 0.8546 | 0.9244 | | 0.0392 | 9.8525 | 4542 | 0.8536 | -0.1748 | 0.8536 | 0.9239 | | 0.0392 | 9.8568 | 4544 | 0.8524 | -0.1748 | 0.8524 | 0.9232 | | 0.0392 | 9.8612 | 4546 | 0.8520 | -0.1748 | 0.8520 | 0.9230 | | 0.0392 | 9.8655 | 4548 | 0.8514 | -0.1748 | 0.8514 | 0.9227 | | 0.0392 | 9.8698 | 4550 | 0.8503 | -0.1748 | 0.8503 | 0.9221 | | 0.0392 | 9.8742 | 4552 | 0.8484 | -0.1748 | 0.8484 | 0.9211 | | 0.0392 | 9.8785 | 4554 | 0.8470 | -0.1748 | 0.8470 | 0.9203 | | 0.0392 | 9.8829 | 4556 | 0.8452 | -0.1748 | 0.8452 | 0.9194 | | 0.0392 | 9.8872 | 4558 | 0.8434 | -0.4667 | 0.8434 | 0.9184 | | 0.0392 | 9.8915 | 4560 | 0.8427 | -0.4667 | 0.8427 | 0.9180 | | 0.0392 | 9.8959 | 4562 | 0.8420 | -0.4667 | 0.8420 | 0.9176 | | 0.0392 | 9.9002 | 4564 | 0.8414 | -0.4667 | 0.8414 | 0.9173 | | 0.0392 | 9.9046 | 4566 | 0.8409 | -0.4667 | 0.8409 | 0.9170 | | 0.0392 | 9.9089 | 4568 | 0.8400 | -0.4667 | 0.8400 | 0.9165 | | 0.0392 | 9.9132 | 4570 | 0.8395 | -0.4667 | 0.8395 | 0.9162 | | 0.0392 | 9.9176 | 4572 | 0.8399 | -0.4667 | 0.8399 | 0.9164 | | 0.0392 | 9.9219 | 4574 | 0.8407 | -0.4667 | 0.8407 | 0.9169 | | 0.0392 | 9.9262 | 4576 | 0.8420 | -0.4667 | 0.8420 | 0.9176 | | 0.0392 | 9.9306 | 4578 | 0.8430 | -0.4667 | 0.8430 | 0.9181 | | 0.0392 | 9.9349 | 4580 | 0.8439 | -0.4667 | 0.8439 | 0.9187 | | 0.0392 | 9.9393 | 4582 | 0.8445 | -0.1748 | 0.8445 | 0.9190 | | 0.0392 | 9.9436 | 4584 | 0.8448 | -0.1748 | 0.8448 | 0.9191 | | 0.0392 | 9.9479 | 4586 | 0.8448 | -0.1748 | 0.8448 | 0.9191 | | 0.0392 | 9.9523 | 4588 | 0.8450 | -0.1748 | 0.8450 | 0.9192 | | 0.0392 | 9.9566 | 4590 | 0.8450 | -0.1748 | 0.8450 | 0.9192 | | 0.0392 | 9.9610 | 4592 | 0.8454 | -0.1748 | 0.8454 | 0.9195 | | 0.0392 | 9.9653 | 4594 | 0.8461 | -0.1748 | 0.8461 | 0.9198 | | 0.0392 | 9.9696 | 4596 | 0.8465 | -0.1748 | 0.8465 | 0.9200 | | 0.0392 | 9.9740 | 4598 | 0.8466 | -0.1748 | 0.8466 | 0.9201 | | 0.0392 | 9.9783 | 4600 | 0.8467 | -0.1748 | 0.8467 | 0.9202 | | 0.0392 | 9.9826 | 4602 | 0.8467 | -0.1748 | 0.8467 | 0.9202 | | 0.0392 | 9.9870 | 4604 | 0.8467 | -0.1748 | 0.8467 | 0.9202 | | 0.0392 | 9.9913 | 4606 | 0.8467 | -0.1748 | 0.8467 | 0.9201 | | 0.0392 | 9.9957 | 4608 | 0.8466 | -0.1748 | 0.8466 | 0.9201 | | 0.0392 | 10.0 | 4610 | 0.8466 | -0.1748 | 0.8466 | 0.9201 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
danelcsb/vitpose-base-coco-aic-mpii
danelcsb
2024-11-20T13:39:34Z
42
0
transformers
[ "transformers", "safetensors", "vitpose", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-11-20T13:38:51Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MaziyarPanahi/Mistral-Large-Instruct-2411-GGUF
MaziyarPanahi
2024-11-20T13:39:30Z
707,932
1
null
[ "gguf", "quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "text-generation", "base_model:mistralai/Mistral-Large-Instruct-2411", "base_model:quantized:mistralai/Mistral-Large-Instruct-2411", "region:us", "conversational" ]
text-generation
2024-11-18T22:30:28Z
--- base_model: mistralai/Mistral-Large-Instruct-2411 inference: false model_creator: mistralai model_name: Mistral-Large-Instruct-2411-GGUF pipeline_tag: text-generation quantized_by: MaziyarPanahi tags: - quantized - 2-bit - 3-bit - 4-bit - 5-bit - 6-bit - 8-bit - GGUF - text-generation --- # [MaziyarPanahi/Mistral-Large-Instruct-2411-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-Large-Instruct-2411-GGUF) - Model creator: [mistralai](https://huggingface.co/mistralai) - Original model: [mistralai/Mistral-Large-Instruct-2411](https://huggingface.co/mistralai/Mistral-Large-Instruct-2411) ## Description [MaziyarPanahi/Mistral-Large-Instruct-2411-GGUF](https://huggingface.co/MaziyarPanahi/Mistral-Large-Instruct-2411-GGUF) contains GGUF format model files for [mistralai/Mistral-Large-Instruct-2411](https://huggingface.co/mistralai/Mistral-Large-Instruct-2411). ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## Special thanks ๐Ÿ™ Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
cristianmanosalva/NER-finetuning-BBU-CM-V1
cristianmanosalva
2024-11-20T13:38:12Z
120
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-20T13:37:30Z
--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BBU-CM-V1 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9299403078856425 - name: Recall type: recall value: 0.9512587038028923 - name: F1 type: f1 value: 0.9404787121372591 - name: Accuracy type: accuracy value: 0.9771331458040319 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetuning-BBU-CM-V1 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1111 - Precision: 0.9299 - Recall: 0.9513 - F1: 0.9405 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4331 | 1.0 | 612 | 0.1091 | 0.8914 | 0.9413 | 0.9156 | 0.9713 | | 0.1313 | 2.0 | 1224 | 0.1077 | 0.8941 | 0.9494 | 0.9209 | 0.9718 | | 0.0869 | 3.0 | 1836 | 0.0888 | 0.9308 | 0.9555 | 0.9430 | 0.9786 | | 0.0726 | 4.0 | 2448 | 0.0957 | 0.9253 | 0.9578 | 0.9413 | 0.9767 | | 0.0507 | 5.0 | 3060 | 0.0936 | 0.9287 | 0.9554 | 0.9419 | 0.9770 | | 0.0451 | 6.0 | 3672 | 0.1051 | 0.9276 | 0.9538 | 0.9405 | 0.9762 | | 0.0383 | 7.0 | 4284 | 0.1038 | 0.9218 | 0.9576 | 0.9394 | 0.9760 | | 0.036 | 8.0 | 4896 | 0.1094 | 0.9245 | 0.9533 | 0.9387 | 0.9765 | | 0.0284 | 9.0 | 5508 | 0.1082 | 0.9296 | 0.9516 | 0.9404 | 0.9768 | | 0.0256 | 10.0 | 6120 | 0.1111 | 0.9299 | 0.9513 | 0.9405 | 0.9771 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
cvmil/deit-base-patch16-224_rice-disease-02
cvmil
2024-11-20T13:37:48Z
203
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:facebook/deit-base-patch16-224", "base_model:finetune:facebook/deit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-11-20T04:13:46Z
--- library_name: transformers license: apache-2.0 base_model: facebook/deit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: deit-base-patch16-224_rice-disease-02_112024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deit-base-patch16-224_rice-disease-02_112024 This model is a fine-tuned version of [facebook/deit-base-patch16-224](https://huggingface.co/facebook/deit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3063 - Accuracy: 0.9148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.8862 | 1.0 | 212 | 0.7092 | 1.2580 | | 0.8631 | 2.0 | 424 | 0.8190 | 0.6676 | | 0.5449 | 3.0 | 636 | 0.8523 | 0.5124 | | 0.4396 | 4.0 | 848 | 0.8736 | 0.4459 | | 0.3852 | 5.0 | 1060 | 0.8816 | 0.4026 | | 0.3488 | 6.0 | 1272 | 0.8902 | 0.3763 | | 0.324 | 7.0 | 1484 | 0.8942 | 0.3588 | | 0.3072 | 8.0 | 1696 | 0.9062 | 0.3420 | | 0.2928 | 9.0 | 1908 | 0.9055 | 0.3330 | | 0.2826 | 10.0 | 2120 | 0.9082 | 0.3231 | | 0.2732 | 11.0 | 2332 | 0.9115 | 0.3172 | | 0.2669 | 12.0 | 2544 | 0.3119 | 0.9128 | | 0.2619 | 13.0 | 2756 | 0.3086 | 0.9155 | | 0.258 | 14.0 | 2968 | 0.3068 | 0.9155 | | 0.2566 | 15.0 | 3180 | 0.3063 | 0.9148 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
letuandat/tts-nnng-2411-v2
letuandat
2024-11-20T13:36:45Z
109
0
transformers
[ "transformers", "safetensors", "vits", "text-to-audio", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-to-audio
2024-11-08T08:10:07Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hi-Q/krx_gemma_9B_it_1120_CT
Hi-Q
2024-11-20T13:35:28Z
5
0
transformers
[ "transformers", "safetensors", "gemma2", "text-generation", "krx", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T12:57:37Z
--- library_name: transformers tags: - krx --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lweng35/RoBERTa-best
lweng35
2024-11-20T13:34:25Z
106
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-19T22:01:01Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF
ijohn07
2024-11-20T13:31:54Z
11
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:deepseek-ai/DeepSeek-V2-Lite", "base_model:quantized:deepseek-ai/DeepSeek-V2-Lite", "license:other", "endpoints_compatible", "region:us", "conversational" ]
null
2024-10-19T16:54:21Z
--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL tags: - llama-cpp - gguf-my-repo base_model: deepseek-ai/DeepSeek-V2-Lite --- # ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF This model was converted to GGUF format from [`deepseek-ai/DeepSeek-V2-Lite`](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF --hf-file deepseek-v2-lite-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF --hf-file deepseek-v2-lite-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF --hf-file deepseek-v2-lite-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo ijohn07/DeepSeek-V2-Lite-Q8_0-GGUF --hf-file deepseek-v2-lite-q8_0.gguf -c 2048 ```
HugoFresh/flux_Maximilian
HugoFresh
2024-11-20T13:28:31Z
6
1
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2024-11-20T12:42:57Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MaximilianIT --- # Flux_Maximilian <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MaximilianIT` to trigger the image generation. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('HugoFresh/flux_Maximilian', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
Nama2024/ast-finetuned-audioset-10-10-0.4593-finetuned-gunshot
Nama2024
2024-11-20T13:25:16Z
213
0
transformers
[ "transformers", "tensorboard", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "base_model:MIT/ast-finetuned-audioset-10-10-0.4593", "base_model:finetune:MIT/ast-finetuned-audioset-10-10-0.4593", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2024-11-20T12:56:04Z
--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gunshot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gunshot This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9969 - Accuracy: 0.7412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.398 | 1.0 | 341 | 1.3407 | 0.6059 | | 1.0815 | 2.0 | 682 | 0.7835 | 0.7118 | | 0.1502 | 3.0 | 1023 | 0.9741 | 0.6706 | | 0.1563 | 4.0 | 1364 | 0.7744 | 0.7765 | | 0.3851 | 5.0 | 1705 | 0.6325 | 0.8176 | | 0.3527 | 6.0 | 2046 | 0.6877 | 0.7765 | | 0.0537 | 7.0 | 2387 | 0.5326 | 0.7353 | | 0.154 | 8.0 | 2728 | 0.7756 | 0.7824 | | 0.0984 | 9.0 | 3069 | 0.9495 | 0.7412 | | 0.3237 | 10.0 | 3410 | 0.9969 | 0.7412 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.1.dev0 - Tokenizers 0.20.3
anime-sssh/model
anime-sssh
2024-11-20T13:23:45Z
64
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/SmolLM2-1.7B-Instruct", "base_model:quantized:unsloth/SmolLM2-1.7B-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-18T11:03:25Z
--- base_model: unsloth/SmolLM2-1.7B-Instruct tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** anime-sssh - **License:** apache-2.0 - **Finetuned from model :** unsloth/SmolLM2-1.7B-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Clark88/Tinyllama-QNA-thesmartest-1.0
Clark88
2024-11-20T13:22:16Z
225
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T13:20:30Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Conspirators/krx_qwen2.5-7b-it_nv6
Conspirators
2024-11-20T13:22:10Z
7
0
null
[ "pytorch", "qwen2", "unsloth", "krx", "trl", "sft", "base_model:Qwen/Qwen2.5-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-7B-Instruct", "license:apache-2.0", "region:us" ]
null
2024-11-20T12:23:51Z
--- license: apache-2.0 base_model: - Qwen/Qwen2.5-7B-Instruct tags: - unsloth - krx - trl - qwen2 - sft ---
JacobLinCool/rvc-jacob-2
JacobLinCool
2024-11-20T13:17:05Z
6
0
null
[ "tensorboard", "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2024-11-19T20:53:21Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Library: [More Information Needed] - Docs: [More Information Needed]
nteku1/GPT2_point5_2
nteku1
2024-11-20T13:15:37Z
5
0
null
[ "tensorboard", "safetensors", "gpt2", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "region:us" ]
null
2024-11-20T13:15:18Z
--- license: mit base_model: openai-community/gpt2 tags: - generated_from_trainer model-index: - name: GPT2_point5_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GPT2_point5_2 This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.15.2
ProdocAI/Intent-classification-1b-GGUF-v1
ProdocAI
2024-11-20T13:14:36Z
15
2
null
[ "pytorch", "gguf", "llama", "classification", "intent", "healthcare", "conversational", "LLM", "multilingual", "base_model:unsloth/Llama-3.2-1B-Instruct", "base_model:quantized:unsloth/Llama-3.2-1B-Instruct", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-11-20T12:47:26Z
--- license: mit language: multilingual base_model: unsloth/Llama-3.2-1B-Instruct quantized_by: prodoc.ai tags: - classification - intent - healthcare - conversational - LLM widget: - text: "I want to book an appointment for my child." - text: "Can you help me with lab test results?" --- # ProdocAI/HealthIntent-Classifier-1b-GGUF-v1 `HealthIntent-Classifier-1b-GGUF-v1` is a fine-tuned version of the `Llama3.2-1B` model, trained to classify healthcare-related queries into predefined intents. This model is designed to streamline user interactions by identifying their specific healthcare-related needs efficiently. # Ollama Integration Leverage seamless integration with Ollama, where the model is fully hosted and ready to run. Simply execute the command `ollama run Prodoc/intent-classification-1b` to start utilizing the model's intent classification capabilities. Transform your healthcare conversational systems with precision and ease. ## Model Details - **Model Name**: `Intent-classification-1b-GGUF-v1` - **Base Model**: `Llama3.2-1B` - **Number of Parameters**: 1 Billion - **Dataset**: Custom dataset of healthcare-related conversation - **Training Data Statistics**: - **Languages**: Includes `en`, `mr`, `te`, `hi`, `bn`, among others (detailed in Language Map section) ## Model Objective The model identifies the intent behind healthcare-related queries and classifies them into one of the predefined categories. This allows for better routing and handling of user requests in healthcare systems. ### Supported Intents 1. **Appointment Booking** 2. **Surgery Enquiry** 3. **Emergency Assistance** 4. **Lab Test Results Inquiry** 5. **Symptom Consultation** 6. **Hospital Services Enquiry** 7. **Job or Internship Enquiry** 8. **Complaint or Feedback** 9. **Health Check-Up Packages** 10. **Health Insurance Enquiry** 11. **Irrelevant Query** ## Dataset Overview The dataset includes 3,000 unique conversations mapped to the above intents. Conversations are provided in multiple languages to support diverse user bases. ### Example Input Format Input to the model should be provided in the following format: ```plaintext "Below is the conversation between the bot and user user: Hello bot: Hello! I am Aisha, a Health-Care Executive at Madhavbaug. How can I assist you today with your health concern? user: Is my appointment confirmed for tomorrow bot: I can help you with that. Can you please provide me with your name and contact number so I can check the appointment status for you? user: ๐Ÿ‘† bot: I can help you check the status of your appointment. Please provide me with your name and contact number. user: Krishnan Iyer 9323195487 bot: Current location, city name, or postal code is required to book an appointment, please provide your location details so I can assist you further user: Booking is already done for tomorrow 10 am bot: It seems that your message does not include information about your location. Could you please provide your current city name or postal code? This will help me assist you better in booking an appointment. user: Thane bot: Oh great! We have found 20 expert doctors in your area. Could you please let us know your exact location in Thane? user: Majiwada Thane West bot: Clinic list Sent user: โœ… Your appointment has been successfully booked! *Appointment Details:* *Clinic Name:* Kolshet Road (Thane W ) *Date & Time:* 19-Oct-2024 10:00 *Clinic Address:* Shop no.102, First floor, Krishna towers, above Sanman hotel kolshet road, kapurbawdi,Thane West, Thane, MAHARASHTRA - 400607 Thank you for booking appointment with us! We shall call you shortly to confirm your appointment. bot: Your appointment has been successfully booked at Kolshet Road (Thane W) clinic on 19-Oct-2024 at 10:00. The clinic address is Shop no.102, First floor, Krishna towers, above Sanman hotel kolshet road, kapurbawdi, Thane West, Thane, MAHARASHTRA - 400607. Thank you for booking the appointment! user: Hope it is confirmed bot: Yes, your appointment at Kolshet Road (Thane W) clinic on 19-Oct-2024 at 10:00 is confirmed. Thank you for booking the appointment! user: Thanks"
cristianmanosalva/NER-finetuning-BETO-CM-V3
cristianmanosalva
2024-11-20T13:13:13Z
106
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:NazaGara/NER-fine-tuned-BETO", "base_model:finetune:NazaGara/NER-fine-tuned-BETO", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-20T10:13:02Z
--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-CM-V3 results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9332171260485892 - name: Recall type: recall value: 0.9462056776759086 - name: F1 type: f1 value: 0.9396665204036859 - name: Accuracy type: accuracy value: 0.9769126559714795 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetuning-BETO-CM-V3 This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1234 - Precision: 0.9332 - Recall: 0.9462 - F1: 0.9397 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3448 | 1.0 | 612 | 0.1106 | 0.9187 | 0.9255 | 0.9221 | 0.9719 | | 0.1036 | 2.0 | 1224 | 0.0990 | 0.9202 | 0.9507 | 0.9352 | 0.9763 | | 0.073 | 3.0 | 1836 | 0.0982 | 0.9356 | 0.9493 | 0.9424 | 0.9783 | | 0.057 | 4.0 | 2448 | 0.1070 | 0.9304 | 0.9493 | 0.9397 | 0.9771 | | 0.0405 | 5.0 | 3060 | 0.1034 | 0.9353 | 0.9486 | 0.9419 | 0.9783 | | 0.0361 | 6.0 | 3672 | 0.1081 | 0.9280 | 0.9474 | 0.9376 | 0.9767 | | 0.0287 | 7.0 | 4284 | 0.1106 | 0.9309 | 0.9490 | 0.9398 | 0.9777 | | 0.0284 | 8.0 | 4896 | 0.1182 | 0.9288 | 0.9463 | 0.9375 | 0.9768 | | 0.0212 | 9.0 | 5508 | 0.1195 | 0.9340 | 0.9464 | 0.9402 | 0.9774 | | 0.0191 | 10.0 | 6120 | 0.1234 | 0.9332 | 0.9462 | 0.9397 | 0.9769 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/Swallow-MoE-4x7B-lisa-GGUF
mradermacher
2024-11-20T13:12:44Z
92
1
transformers
[ "transformers", "gguf", "merge", "moe", "lisa", "ja", "dataset:kunishou/amenokaku-code-instruct", "dataset:llm-jp/oasst1-21k-en", "dataset:hieunguyenminh/roleplay", "dataset:meta-math/MetaMathQA", "dataset:kunishou/jp-effective-instructions", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-19T21:23:42Z
--- base_model: Aratako/Swallow-MoE-4x7B-lisa datasets: - kunishou/amenokaku-code-instruct - llm-jp/oasst1-21k-en - hieunguyenminh/roleplay - meta-math/MetaMathQA - kunishou/jp-effective-instructions language: - ja library_name: transformers license: cc-by-nc-sa-4.0 quantized_by: mradermacher tags: - merge - moe - lisa --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/Aratako/Swallow-MoE-4x7B-lisa <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q2_K.gguf) | Q2_K | 7.4 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q3_K_S.gguf) | Q3_K_S | 8.7 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q3_K_M.gguf) | Q3_K_M | 9.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q3_K_L.gguf) | Q3_K_L | 10.5 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.IQ4_XS.gguf) | IQ4_XS | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q4_K_S.gguf) | Q4_K_S | 11.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q4_K_M.gguf) | Q4_K_M | 12.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q5_K_S.gguf) | Q5_K_S | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q5_K_M.gguf) | Q5_K_M | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q6_K.gguf) | Q6_K | 16.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Swallow-MoE-4x7B-lisa-GGUF/resolve/main/Swallow-MoE-4x7B-lisa.Q8_0.gguf) | Q8_0 | 21.2 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
gdshaji/gd-ms-nem-5k-v1
gdshaji
2024-11-20T13:11:04Z
6
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T13:07:55Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
danelcsb/vitpose-base
danelcsb
2024-11-20T13:10:45Z
36
0
transformers
[ "transformers", "safetensors", "vitpose", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-11-20T13:09:58Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF
Triangle104
2024-11-20T13:08:20Z
6
1
transformers
[ "transformers", "gguf", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "en", "base_model:FallenMerick/MN-Chunky-Lotus-12B", "base_model:quantized:FallenMerick/MN-Chunky-Lotus-12B", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T13:06:48Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Chunky-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF This model was converted to GGUF format from [`FallenMerick/MN-Chunky-Lotus-12B`](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) for more details on the model. --- Model details: - I had originally planned to use this model for future/further merges, but decided to go ahead and release it since it scored rather high on my local EQ Bench testing (79.58 w/ 100% parsed @ 8-bit). Bear in mind that most models tend to score a bit higher on my own local tests as compared to their posted scores. Still, its the highest score I've personally seen from all the models I've tested. Its a decent model, with great emotional intelligence and acceptable adherence to various character personalities. It does a good job at roleplaying despite being a bit bland at times. Overall, I like the way it writes, but it has a few formatting issues that show up from time to time, and it has an uncommon tendency to paste walls of character feelings/intentions at the end of some outputs without any prompting. This is something I hope to correct with future iterations. This is a merge of pre-trained language models created using mergekit. Merge Method - This model was merged using the TIES merge method. Models Merged - The following models were included in the merge: Epiculous/Violet_Twilight-v0.2 nbeerbower/mistral-nemo-gutenberg-12B-v4 flammenai/Mahou-1.5-mistral-nemo-12B Configuration - The following YAML configuration was used to produce this model: models: - model: Epiculous/Violet_Twilight-v0.2 parameters: weight: 1.0 density: 1.0 - model: nbeerbower/mistral-nemo-gutenberg-12B-v4 parameters: weight: 1.0 density: 0.54 - model: flammenai/Mahou-1.5-mistral-nemo-12B parameters: weight: 1.0 density: 0.26 merge_method: ties base_model: TheDrummer/Rocinante-12B-v1.1 parameters: normalize: true dtype: bfloat16 The idea behind this recipe was to take the long-form writing capabilities of Gutenberg, curtail it a bit with the very short output formatting of Mahou, and use Violet Twilight as an extremely solid roleplaying foundation underneath. Rocinante is used as the base model in this merge in order to really target the delta weights from Gutenberg, since those seemed to have the highest impact on the resulting EQ of the model. Special shoutout to @matchaaaaa for helping with testing, and for all the great model recommendations. Also, for just being an all around great person who's really inspired and motivated me to continue merging and working on models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF --hf-file mn-chunky-lotus-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF --hf-file mn-chunky-lotus-12b-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF --hf-file mn-chunky-lotus-12b-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q8_0-GGUF --hf-file mn-chunky-lotus-12b-q8_0.gguf -c 2048 ```
alibaba-pai/EasyAnimateV2-XL-2-512x512
alibaba-pai
2024-11-20T12:56:09Z
2
4
diffusers
[ "diffusers", "safetensors", "text-generation-inference", "en", "arxiv:2405.18991", "license:apache-2.0", "diffusers:PixArtAlphaPipeline", "region:us" ]
text-to-image
2024-06-03T09:40:10Z
--- license: apache-2.0 language: - en tags: - text-generation-inference --- # ๐Ÿ“ท EasyAnimate | An End-to-End Solution for High-Resolution and Long Video Generation ๐Ÿ˜Š EasyAnimate is an end-to-end solution for generating high-resolution and long videos. We can train transformer based diffusion generators, train VAEs for processing long videos, and preprocess metadata. ๐Ÿ˜Š Based on Sora like structure and DIT, we use transformer as a diffuser for video generation. We built easyanimate based on motion module, u-vit and slice-vae. In the future, we will try more training programs to improve the effect. ๐Ÿ˜Š Welcome! The model trained with size 512\*512\*144 for [EasyAnimate](https://github.com/aigc-apps/EasyAnimate). We give a simple usage here, for more details, you can refer to [EasyAnimate](https://github.com/aigc-apps/EasyAnimate). # Table of Contents - [Result Gallery](#result-gallery) - [How to use](#how-to-use) - [Model zoo](#model-zoo) - [Algorithm Detailed](#algorithm-detailed) - [TODO List](#todo-list) - [Contact Us](#contact-us) - [Reference](#reference) - [License](#license) # Result Gallery These are our generated results [GALLERY](scripts/Result_Gallery.md): <video controls src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v2/easyanimate.mp4" title="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v2/easyanimate.mov"></video> Our UI interface is as follows: ![ui](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/ui.png) # How to use ``` # clone code git clone https://github.com/aigc-apps/EasyAnimate.git # enter EasyAnimate's dir cd EasyAnimate # download weights mkdir models/Diffusion_Transformer mkdir models/Motion_Module mkdir models/Personalized_Model cd models/Diffusion_Transformer/ git lfs install git clone https://huggingface.co/alibaba-pai/EasyAnimateV2-XL-2-512x512 cd ../../ ``` # Model zoo EasyAnimateV2: | Name | Type | Storage Space | Url | Hugging Face | Model Scope | Description | |--|--|--|--|--|--|--| | EasyAnimateV2-XL-2-512x512.tar | EasyAnimateV2 | 16.2GB | - | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/EasyAnimateV2-XL-2-512x512)| [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/EasyAnimateV2-XL-2-512x512)| EasyAnimateV2 official weights for 512x512 resolution. Training with 144 frames and fps 24 | | EasyAnimateV2-XL-2-768x768.tar | EasyAnimateV2 | 16.2GB | - | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/EasyAnimateV2-XL-2-768x768) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/EasyAnimateV2-XL-2-768x768)| EasyAnimateV2 official weights for 768x768 resolution. Training with 144 frames and fps 24 | | easyanimatev2_minimalism_lora.safetensors | Lora of Pixart | 485.1MB | [Download](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/Personalized_Model/easyanimatev2_minimalism_lora.safetensors)| - | - | A lora training with a specifial type images. Images can be downloaded from [Url](https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v2/Minimalism.zip). | # Algorithm Detailed ### 1. Data Preprocessing **Video Cut** For long video cut, EasyAnimate utilizes PySceneDetect to identify scene changes within the video and performs scene cutting based on certain threshold values to ensure consistency in the themes of the video segments. After cutting, we only keep segments with lengths ranging from 3 to 10 seconds for model training. **Video Cleaning and Description** Following SVD's data preparation process, EasyAnimate provides a simple yet effective data processing pipeline for high-quality data filtering and labeling. It also supports distributed processing to accelerate the speed of data preprocessing. The overall process is as follows: - Duration filtering: Analyze the basic information of the video to filter out low-quality videos that are short in duration or low in resolution. - Aesthetic filtering: Filter out videos with poor content (blurry, dim, etc.) by calculating the average aesthetic score of uniformly distributed 4 frames. - Text filtering: Use easyocr to calculate the text proportion of middle frames to filter out videos with a large proportion of text. - Motion filtering: Calculate interframe optical flow differences to filter out videos that move too slowly or too quickly. - Text description: Recaption video frames using videochat2 and vila. PAI is also developing a higher quality video recaption model, which will be released for use as soon as possible. ### 2. Model Architecture We have adopted [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha) as the base model and modified the VAE and DiT model structures on this basis to better support video generation. The overall structure of EasyAnimate is as follows: The diagram below outlines the pipeline of EasyAnimate. It includes the Text Encoder, Video VAE (video encoder and decoder), and Diffusion Transformer (DiT). The T5 Encoder is used as the text encoder. Other components are detailed in the sections below. <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/pipeline_v2.jpg" alt="ui" style="zoom:50%;" /> To introduce feature information along the temporal axis, EasyAnimate incorporates the Motion Module to achieve the expansion from 2D images to 3D videos. For better generation effects, it jointly finetunes the Backbone together with the Motion Module, thereby achieving image generation and video generation within a single Pipeline. Additionally, referencing U-ViT, it introduces a skip connection structure into EasyAnimate to further optimize deeper features by incorporating shallow features. A fully connected layer is also zero-initialized for each skip connection structure, allowing it to be applied as a plug-in module to previously trained and well-performing DiTs. Moreover, it proposes Slice VAE, which addresses the memory difficulties encountered by MagViT when dealing with long and large videos, while also achieving greater compression in the temporal dimension during video encoding and decoding stages compared to MagViT. For more details, please refer to [arxiv](https://arxiv.org/abs/2405.18991). # TODO List - Support model with larger resolution. - Support video inpaint model. # Contact Us 1. Use Dingding to search group 77450006752 or Scan to join 2. You need to scan the image to join the WeChat group or if it is expired, add this student as a friend first to invite you. <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/dd.png" alt="ding group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/wechat.jpg" alt="Wechat group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/person.jpg" alt="Person" width="30%"/> # Reference - magvit: https://github.com/google-research/magvit - PixArt: https://github.com/PixArt-alpha/PixArt-alpha - Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan - Open-Sora: https://github.com/hpcaitech/Open-Sora - Animatediff: https://github.com/guoyww/AnimateDiff # License This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
alibaba-pai/EasyAnimateV3-XL-2-InP-960x960
alibaba-pai
2024-11-20T12:54:53Z
11
4
diffusers
[ "diffusers", "safetensors", "text-generation-inference", "en", "arxiv:2405.18991", "license:apache-2.0", "diffusers:PixArtAlphaPipeline", "region:us" ]
text-to-image
2024-07-05T07:50:25Z
--- license: apache-2.0 language: - en tags: - text-generation-inference --- # ๐Ÿ“ท EasyAnimate | An End-to-End Solution for High-Resolution and Long Video Generation ๐Ÿ˜Š EasyAnimate is an end-to-end solution for generating high-resolution and long videos. We can train transformer based diffusion generators, train VAEs for processing long videos, and preprocess metadata. ๐Ÿ˜Š Based on Sora like structure and DIT, we use transformer as a diffuser for video generation. We built easyanimate based on motion module, u-vit and slice-vae. In the future, we will try more training programs to improve the effect. ๐Ÿ˜Š Welcome! The model trained with size 960\*960\*144 for [EasyAnimate](https://github.com/aigc-apps/EasyAnimate) for both text-to-video and image-to-video. We give a simple usage here, for more details, you can refer to [EasyAnimate](https://github.com/aigc-apps/EasyAnimate). # Table of Contents - [Result Gallery](#result-gallery) - [How to use](#how-to-use) - [Model zoo](#model-zoo) - [Algorithm Detailed](#algorithm-detailed) - [TODO List](#todo-list) - [Contact Us](#contact-us) - [Reference](#reference) - [License](#license) # Result Gallery These are our generated results: <video controls src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/v3/EasyAnimate-v3-DemoShow.mp4" title="movie"></video> Our UI interface is as follows: ![ui](https://pai-quickstart-predeploy-hangzhou.oss-cn-hangzhou.aliyuncs.com/aigclib/model_docs/easyanimate/v3.0.0/ui.png) # How to use ``` # clone code git clone https://github.com/aigc-apps/EasyAnimate.git # enter EasyAnimate's dir cd EasyAnimate # download weights mkdir models/Diffusion_Transformer mkdir models/Motion_Module mkdir models/Personalized_Model cd models/Diffusion_Transformer/ git lfs install git clone https://huggingface.co/alibaba-pai/EasyAnimateV3-XL-2-InP-960x960 cd ../../ ``` # Model zoo EasyAnimateV3: | Name | Type | Storage Space | Hugging Face | Model Scope | Description | |--|--|--|--|--|--| | EasyAnimateV3-XL-2-InP-512x512.tar | EasyAnimateV3 | 18.2GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/EasyAnimateV3-XL-2-InP-512x512)| [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/EasyAnimateV3-XL-2-InP-512x512) | EasyAnimateV3 official weights for 512x512 text and image to video resolution. Training with 144 frames and fps 24 | | EasyAnimateV3-XL-2-InP-768x768.tar | EasyAnimateV3 | 18.2GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/EasyAnimateV3-XL-2-InP-768x768) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/EasyAnimateV3-XL-2-InP-768x768) | EasyAnimateV3 official weights for 768x768 text and image to video resolution. Training with 144 frames and fps 24 | | EasyAnimateV3-XL-2-InP-960x960.tar | EasyAnimateV3 | 18.2GB | [๐Ÿค—Link](https://huggingface.co/alibaba-pai/EasyAnimateV3-XL-2-InP-960x960) | [๐Ÿ˜„Link](https://modelscope.cn/models/PAI/EasyAnimateV3-XL-2-InP-960x960) | EasyAnimateV3 official weights for 960x960 text and image to video resolution. Training with 144 frames and fps 24 | # Algorithm Detailed ### 1. Data Preprocessing **Video Cut** For long video cut, EasyAnimate utilizes PySceneDetect to identify scene changes within the video and performs scene cutting based on certain threshold values to ensure consistency in the themes of the video segments. After cutting, we only keep segments with lengths ranging from 3 to 10 seconds for model training. **Video Cleaning and Description** Following SVD's data preparation process, EasyAnimate provides a simple yet effective data processing pipeline for high-quality data filtering and labeling. It also supports distributed processing to accelerate the speed of data preprocessing. The overall process is as follows: - Duration filtering: Analyze the basic information of the video to filter out low-quality videos that are short in duration or low in resolution. - Aesthetic filtering: Filter out videos with poor content (blurry, dim, etc.) by calculating the average aesthetic score of uniformly distributed 4 frames. - Text filtering: Use easyocr to calculate the text proportion of middle frames to filter out videos with a large proportion of text. - Motion filtering: Calculate interframe optical flow differences to filter out videos that move too slowly or too quickly. - Text description: Recaption video frames using videochat2 and vila. PAI is also developing a higher quality video recaption model, which will be released for use as soon as possible. ### 2. Model Architecture We have adopted [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha) as the base model and modified the VAE and DiT model structures on this basis to better support video generation. The overall structure of EasyAnimate is as follows: The diagram below outlines the pipeline of EasyAnimate. It includes the Text Encoder, Video VAE (video encoder and decoder), and Diffusion Transformer (DiT). The T5 Encoder is used as the text encoder. Other components are detailed in the sections below. <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/pipeline_v2.jpg" alt="ui" style="zoom:50%;" /> To introduce feature information along the temporal axis, EasyAnimate incorporates the Motion Module to achieve the expansion from 2D images to 3D videos. For better generation effects, it jointly finetunes the Backbone together with the Motion Module, thereby achieving image generation and video generation within a single Pipeline. Additionally, referencing U-ViT, it introduces a skip connection structure into EasyAnimate to further optimize deeper features by incorporating shallow features. A fully connected layer is also zero-initialized for each skip connection structure, allowing it to be applied as a plug-in module to previously trained and well-performing DiTs. Moreover, it proposes Slice VAE, which addresses the memory difficulties encountered by MagViT when dealing with long and large videos, while also achieving greater compression in the temporal dimension during video encoding and decoding stages compared to MagViT. For more details, please refer to [arxiv](https://arxiv.org/abs/2405.18991). # TODO List - Support model with larger resolution. - Support video inpaint model. # Contact Us 1. Use Dingding to search group 77450006752 or Scan to join 2. You need to scan the image to join the WeChat group or if it is expired, add this student as a friend first to invite you. <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/dd.png" alt="ding group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/wechat.jpg" alt="Wechat group" width="30%"/> <img src="https://pai-aigc-photog.oss-cn-hangzhou.aliyuncs.com/easyanimate/asset/group/person.jpg" alt="Person" width="30%"/> # Reference - magvit: https://github.com/google-research/magvit - PixArt: https://github.com/PixArt-alpha/PixArt-alpha - Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan - Open-Sora: https://github.com/hpcaitech/Open-Sora - Animatediff: https://github.com/guoyww/AnimateDiff # License This project is licensed under the [Apache License (Version 2.0)](https://github.com/modelscope/modelscope/blob/master/LICENSE).
mav23/bloomz-1b1-GGUF
mav23
2024-11-20T12:52:29Z
5
0
null
[ "gguf", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "dataset:bigscience/xP3", "arxiv:2211.01786", "license:bigscience-bloom-rail-1.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T12:33:22Z
--- datasets: - bigscience/xP3 license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: "ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚ไฝ ่ฎคไธบ่ฟ™ๅฅ่ฏ็š„็ซ‹ๅœบๆ˜ฏ่ตžๆ‰ฌใ€ไธญ็ซ‹่ฟ˜ๆ˜ฏๆ‰น่ฏ„๏ผŸ" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mแบกng neural nhรขn tแบกo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clรฉs concernant ยซRรฉseau de neurones artificielsยป." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" model-index: - name: bloomz-1b1 results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 52.33 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 50.49 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 59.04 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.82 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.75 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 53.97 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 55.16 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.3 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 33.5 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 34.5 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 58.93 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 65.7 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.59 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.4 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.12 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 39.32 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.11 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.55 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 48.51 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.89 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.81 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.29 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.93 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.51 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.37 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.19 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.63 - task: type: Program synthesis dataset: type: openai_humaneval name: HumanEval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 2.62 - type: Pass@10 value: 6.22 - type: Pass@100 value: 11.68 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: "2016" split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 62.75 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 63.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 55.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 60.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 64.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 57.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 59.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 55.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 63.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 53.54 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 58.37 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 52.35 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.92 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 57.97 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 47.05 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 50.3 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 49.97 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 55.86 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 58.17 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je tโ€™aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚ไฝ ่ฎคไธบ่ฟ™ๅฅ่ฏ็š„็ซ‹ๅœบๆ˜ฏ่ตžๆ‰ฌใ€ไธญ็ซ‹่ฟ˜ๆ˜ฏๆ‰น่ฏ„? - Suggest at least five related search terms to "Mแบกng neural nhรขn tแบกo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-1b1" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-1b1" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-1b1" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [bloom-1b1](https://huggingface.co/bigscience/bloom-1b1), also refer to the `config.json` file - **Finetuning steps:** 250 - **Finetuning tokens:** 502 million - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 1x data parallel - **Precision:** float16 ## Hardware - **CPUs:** AMD CPUs with 512GB memory per node - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links - **Communication:** NCCL-communications network with a fully dedicated subnet ## Software - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```
abdulmannan-01/qwen-2.5-1.5b-finetuned-for-json-function-calling
abdulmannan-01
2024-11-20T12:50:56Z
143
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T12:42:10Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF
Triangle104
2024-11-20T12:48:06Z
9
1
transformers
[ "transformers", "gguf", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "en", "base_model:FallenMerick/MN-Chunky-Lotus-12B", "base_model:quantized:FallenMerick/MN-Chunky-Lotus-12B", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T12:46:46Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Chunky-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF This model was converted to GGUF format from [`FallenMerick/MN-Chunky-Lotus-12B`](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) for more details on the model. --- Model details: - I had originally planned to use this model for future/further merges, but decided to go ahead and release it since it scored rather high on my local EQ Bench testing (79.58 w/ 100% parsed @ 8-bit). Bear in mind that most models tend to score a bit higher on my own local tests as compared to their posted scores. Still, its the highest score I've personally seen from all the models I've tested. Its a decent model, with great emotional intelligence and acceptable adherence to various character personalities. It does a good job at roleplaying despite being a bit bland at times. Overall, I like the way it writes, but it has a few formatting issues that show up from time to time, and it has an uncommon tendency to paste walls of character feelings/intentions at the end of some outputs without any prompting. This is something I hope to correct with future iterations. This is a merge of pre-trained language models created using mergekit. Merge Method - This model was merged using the TIES merge method. Models Merged - The following models were included in the merge: Epiculous/Violet_Twilight-v0.2 nbeerbower/mistral-nemo-gutenberg-12B-v4 flammenai/Mahou-1.5-mistral-nemo-12B Configuration - The following YAML configuration was used to produce this model: models: - model: Epiculous/Violet_Twilight-v0.2 parameters: weight: 1.0 density: 1.0 - model: nbeerbower/mistral-nemo-gutenberg-12B-v4 parameters: weight: 1.0 density: 0.54 - model: flammenai/Mahou-1.5-mistral-nemo-12B parameters: weight: 1.0 density: 0.26 merge_method: ties base_model: TheDrummer/Rocinante-12B-v1.1 parameters: normalize: true dtype: bfloat16 The idea behind this recipe was to take the long-form writing capabilities of Gutenberg, curtail it a bit with the very short output formatting of Mahou, and use Violet Twilight as an extremely solid roleplaying foundation underneath. Rocinante is used as the base model in this merge in order to really target the delta weights from Gutenberg, since those seemed to have the highest impact on the resulting EQ of the model. Special shoutout to @matchaaaaa for helping with testing, and for all the great model recommendations. Also, for just being an all around great person who's really inspired and motivated me to continue merging and working on models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF --hf-file mn-chunky-lotus-12b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF --hf-file mn-chunky-lotus-12b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF --hf-file mn-chunky-lotus-12b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q5_K_S-GGUF --hf-file mn-chunky-lotus-12b-q5_k_s.gguf -c 2048 ```
qubvel-hf/vitpose-base
qubvel-hf
2024-11-20T12:36:18Z
39
0
transformers
[ "transformers", "safetensors", "vitpose", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-11-20T12:36:04Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF
Triangle104
2024-11-20T12:30:54Z
15
1
transformers
[ "transformers", "gguf", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "en", "base_model:FallenMerick/MN-Chunky-Lotus-12B", "base_model:quantized:FallenMerick/MN-Chunky-Lotus-12B", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T12:28:54Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Chunky-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF This model was converted to GGUF format from [`FallenMerick/MN-Chunky-Lotus-12B`](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FallenMerick/MN-Chunky-Lotus-12B) for more details on the model. --- Model details: - I had originally planned to use this model for future/further merges, but decided to go ahead and release it since it scored rather high on my local EQ Bench testing (79.58 w/ 100% parsed @ 8-bit). Bear in mind that most models tend to score a bit higher on my own local tests as compared to their posted scores. Still, its the highest score I've personally seen from all the models I've tested. Its a decent model, with great emotional intelligence and acceptable adherence to various character personalities. It does a good job at roleplaying despite being a bit bland at times. Overall, I like the way it writes, but it has a few formatting issues that show up from time to time, and it has an uncommon tendency to paste walls of character feelings/intentions at the end of some outputs without any prompting. This is something I hope to correct with future iterations. This is a merge of pre-trained language models created using mergekit. Merge Method - This model was merged using the TIES merge method. Models Merged - The following models were included in the merge: Epiculous/Violet_Twilight-v0.2 nbeerbower/mistral-nemo-gutenberg-12B-v4 flammenai/Mahou-1.5-mistral-nemo-12B Configuration - The following YAML configuration was used to produce this model: models: - model: Epiculous/Violet_Twilight-v0.2 parameters: weight: 1.0 density: 1.0 - model: nbeerbower/mistral-nemo-gutenberg-12B-v4 parameters: weight: 1.0 density: 0.54 - model: flammenai/Mahou-1.5-mistral-nemo-12B parameters: weight: 1.0 density: 0.26 merge_method: ties base_model: TheDrummer/Rocinante-12B-v1.1 parameters: normalize: true dtype: bfloat16 The idea behind this recipe was to take the long-form writing capabilities of Gutenberg, curtail it a bit with the very short output formatting of Mahou, and use Violet Twilight as an extremely solid roleplaying foundation underneath. Rocinante is used as the base model in this merge in order to really target the delta weights from Gutenberg, since those seemed to have the highest impact on the resulting EQ of the model. Special shoutout to @matchaaaaa for helping with testing, and for all the great model recommendations. Also, for just being an all around great person who's really inspired and motivated me to continue merging and working on models. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF --hf-file mn-chunky-lotus-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF --hf-file mn-chunky-lotus-12b-q4_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF --hf-file mn-chunky-lotus-12b-q4_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MN-Chunky-Lotus-12B-Q4_K_S-GGUF --hf-file mn-chunky-lotus-12b-q4_k_s.gguf -c 2048 ```
mav23/bloomz-7b1-mt-GGUF
mav23
2024-11-20T12:27:43Z
108
0
null
[ "gguf", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "dataset:bigscience/xP3mt", "arxiv:2211.01786", "license:bigscience-bloom-rail-1.0", "model-index", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T11:08:58Z
--- datasets: - bigscience/xP3mt license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: "ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚ไฝ ่ฎคไธบ่ฟ™ๅฅ่ฏ็š„็ซ‹ๅœบๆ˜ฏ่ตžๆ‰ฌใ€ไธญ็ซ‹่ฟ˜ๆ˜ฏๆ‰น่ฏ„๏ผŸ" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mแบกng neural nhรขn tแบกo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clรฉs concernant ยซRรฉseau de neurones artificielsยป." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" model-index: - name: bloomz-7b1-mt results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 56.51 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 65.76 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.83 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.82 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.41 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 55.87 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 62.7 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42.6 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 39.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42.0 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 83.93 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 82.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.58 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.9 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 48.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.89 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 57.35 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 56.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.45 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 50.24 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 48.27 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.08 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.71 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 49.48 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 54.5 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 54.3 - task: type: Program synthesis dataset: type: openai_humaneval name: HumanEval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 7.23 - type: Pass@10 value: 14.46 - type: Pass@100 value: 25.86 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: "2016" split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 89.58 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 84.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 54.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 73.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 62.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 62.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 77.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 80.0 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 83.85 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 88.82 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.26 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 80.41 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 84.58 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 51.56 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 64.26 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 71.01 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.06 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 85.9 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je tโ€™aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - ไธ€ไธชไผ ๅฅ‡็š„ๅผ€็ซฏ๏ผŒไธ€ไธชไธ็ญ็š„็ฅž่ฏ๏ผŒ่ฟ™ไธไป…ไป…ๆ˜ฏไธ€้ƒจ็”ตๅฝฑ๏ผŒ่€Œๆ˜ฏไฝœไธบไธ€ไธช่ตฐ่ฟ›ๆ–ฐๆ—ถไปฃ็š„ๆ ‡็ญพ๏ผŒๆฐธ่ฟœๅฝช็‚ณๅฒๅ†Œใ€‚ไฝ ่ฎคไธบ่ฟ™ๅฅ่ฏ็š„็ซ‹ๅœบๆ˜ฏ่ตžๆ‰ฌใ€ไธญ็ซ‹่ฟ˜ๆ˜ฏๆ‰น่ฏ„? - Suggest at least five related search terms to "Mแบกng neural nhรขn tแบกo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je tโ€™aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1), also refer to the `config.json` file - **Finetuning steps:** 1000 - **Finetuning tokens:** 4.19 billion - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 64x data parallel - **Precision:** float16 ## Hardware - **CPUs:** AMD CPUs with 512GB memory per node - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links - **Communication:** NCCL-communications network with a fully dedicated subnet ## Software - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```
Kort/i207
Kort
2024-11-20T12:06:59Z
36
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T12:03:09Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cristianmanosalva/NER-finetuning-BETO-CM-V1
cristianmanosalva
2024-11-20T12:06:44Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:biobert_json", "base_model:NazaGara/NER-fine-tuned-BETO", "base_model:finetune:NazaGara/NER-fine-tuned-BETO", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-11-13T09:04:44Z
--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-CM-V1 results: - task: type: token-classification name: Token Classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - type: precision value: 0.949653802801782 name: Precision - type: recall value: 0.9613670941099761 name: Recall - type: f1 value: 0.9554745511003105 name: F1 - type: accuracy value: 0.976855614973262 name: Accuracy pipeline_tag: token-classification --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-finetuning-BETO-CM-V1 This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1236 - Precision: 0.9497 - Recall: 0.9614 - F1: 0.9555 - Accuracy: 0.9769 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3411 | 1.0 | 612 | 0.1137 | 0.9437 | 0.9474 | 0.9456 | 0.9707 | | 0.1072 | 2.0 | 1224 | 0.1090 | 0.9304 | 0.9685 | 0.9491 | 0.9727 | | 0.0757 | 3.0 | 1836 | 0.1024 | 0.9450 | 0.9692 | 0.9569 | 0.9768 | | 0.0589 | 4.0 | 2448 | 0.1050 | 0.9492 | 0.9666 | 0.9578 | 0.9774 | | 0.0419 | 5.0 | 3060 | 0.1054 | 0.9498 | 0.9621 | 0.9559 | 0.9771 | | 0.0365 | 6.0 | 3672 | 0.1124 | 0.9460 | 0.9583 | 0.9521 | 0.9753 | | 0.0299 | 7.0 | 4284 | 0.1119 | 0.9495 | 0.9632 | 0.9563 | 0.9774 | | 0.0282 | 8.0 | 4896 | 0.1187 | 0.9482 | 0.9625 | 0.9553 | 0.9771 | | 0.0221 | 9.0 | 5508 | 0.1203 | 0.9496 | 0.9608 | 0.9551 | 0.9768 | | 0.0192 | 10.0 | 6120 | 0.1236 | 0.9497 | 0.9614 | 0.9555 | 0.9769 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
tomaarsen/mpnet-base-nq-cgist-2-gte
tomaarsen
2024-11-20T11:53:02Z
6
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:50000", "loss:CachedGISTEmbedLoss", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "base_model:microsoft/mpnet-base", "base_model:finetune:microsoft/mpnet-base", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-11-20T11:52:34Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:50000 - loss:CachedGISTEmbedLoss base_model: microsoft/mpnet-base widget: - source_sentence: who ordered the charge of the light brigade sentences: - Charge of the Light Brigade The Charge of the Light Brigade was a charge of British light cavalry led by Lord Cardigan against Russian forces during the Battle of Balaclava on 25 October 1854 in the Crimean War. Lord Raglan, overall commander of the British forces, had intended to send the Light Brigade to prevent the Russians from removing captured guns from overrun Turkish positions, a task well-suited to light cavalry. - UNICEF The United Nations International Children's Emergency Fund was created by the United Nations General Assembly on 11 December 1946, to provide emergency food and healthcare to children in countries that had been devastated by World War II. The Polish physician Ludwik Rajchman is widely regarded as the founder of UNICEF and served as its first chairman from 1946. On Rajchman's suggestion, the American Maurice Pate was appointed its first executive director, serving from 1947 until his death in 1965.[5][6] In 1950, UNICEF's mandate was extended to address the long-term needs of children and women in developing countries everywhere. In 1953 it became a permanent part of the United Nations System, and the words "international" and "emergency" were dropped from the organization's name, making it simply the United Nations Children's Fund, retaining the original acronym, "UNICEF".[3] - Marcus Jordan Marcus James Jordan (born December 24, 1990) is an American former college basketball player who played for the UCF Knights men's basketball team of Conference USA.[1] He is the son of retired Hall of Fame basketball player Michael Jordan. - source_sentence: what part of the cow is the rib roast sentences: - Standing rib roast A standing rib roast, also known as prime rib, is a cut of beef from the primal rib, one of the nine primal cuts of beef. While the entire rib section comprises ribs six through 12, a standing rib roast may contain anywhere from two to seven ribs. - Blaine Anderson Kurt begins to mend their relationship in "Thanksgiving", just before New Directions loses at Sectionals to the Warblers, and they spend Christmas together in New York City.[29][30] Though he and Kurt continue to be on good terms, Blaine finds himself developing a crush on his best friend, Sam, which he knows will come to nothing as he knows Sam is not gay; the two of them team up to find evidence that the Warblers cheated at Sectionals, which means New Directions will be competing at Regionals. He ends up going to the Sadie Hawkins dance with Tina Cohen-Chang (Jenna Ushkowitz), who has developed a crush on him, but as friends only.[31] When Kurt comes to Lima for the wedding of glee club director Will (Matthew Morrison) and Emma (Jayma Mays)โ€”which Emma fleesโ€”he and Blaine make out beforehand, and sleep together afterward, though they do not resume a permanent relationship.[32] - 'Soviet Union The Soviet Union (Russian: ะกะพะฒะตฬั‚ัะบะธะน ะกะพัŽฬะท, tr. Sovรฉtsky Soyรบz, IPA:ย [sษหˆvสฒษ›tอกskสฒษชj sษหˆjus]ย (ย listen)), officially the Union of Soviet Socialist Republics (Russian: ะกะพัŽฬะท ะกะพะฒะตฬั‚ัะบะธั… ะกะพั†ะธะฐะปะธัั‚ะธฬั‡ะตัะบะธั… ะ ะตัะฟัƒฬะฑะปะธะบ, tr. Soyรบz Sovรฉtskikh Sotsialistรญcheskikh Respรบblik, IPA:ย [sษหˆjus sษหˆvสฒษ›tskสฒษชx sษ™tsษจษ™lสฒษชsหˆtสฒitษ•ษชskสฒษชx rสฒษชหˆspublสฒษชk]ย (ย listen)), abbreviated as the USSR (Russian: ะกะกะกะ , tr. SSSR), was a socialist state in Eurasia that existed from 1922 to 1991. Nominally a union of multiple national Soviet republics,[a] its government and economy were highly centralized. The country was a one-party state, governed by the Communist Party with Moscow as its capital in its largest republic, the Russian Soviet Federative Socialist Republic. The Russian nation had constitutionally equal status among the many nations of the union but exerted de facto dominance in various respects.[7] Other major urban centres were Leningrad, Kiev, Minsk, Alma-Ata and Novosibirsk. The Soviet Union was one of the five recognized nuclear weapons states and possessed the largest stockpile of weapons of mass destruction.[8] It was a founding permanent member of the United Nations Security Council, as well as a member of the Organization for Security and Co-operation in Europe (OSCE) and the leading member of the Council for Mutual Economic Assistance (CMEA) and the Warsaw Pact.' - source_sentence: what is the current big bang theory season sentences: - Byzantine army From the seventh to the 12th centuries, the Byzantine army was among the most powerful and effective military forces in the world รขโ‚ฌโ€œ neither Middle Ages Europe nor (following its early successes) the fracturing Caliphate could match the strategies and the efficiency of the Byzantine army. Restricted to a largely defensive role in the 7th to mid-9th centuries, the Byzantines developed the theme-system to counter the more powerful Caliphate. From the mid-9th century, however, they gradually went on the offensive, culminating in the great conquests of the 10th century under a series of soldier-emperors such as Nikephoros II Phokas, John Tzimiskes and Basil II. The army they led was less reliant on the militia of the themes; it was by now a largely professional force, with a strong and well-drilled infantry at its core and augmented by a revived heavy cavalry arm. With one of the most powerful economies in the world at the time, the Empire had the resources to put to the field a powerful host when needed, in order to reclaim its long-lost territories. - The Big Bang Theory The Big Bang Theory is an American television sitcom created by Chuck Lorre and Bill Prady, both of whom serve as executive producers on the series, along with Steven Molaro. All three also serve as head writers. The show premiered on CBS on September 24, 2007.[3] The series' tenth season premiered on September 19, 2016.[4] In March 2017, the series was renewed for two additional seasons, bringing its total to twelve, and running through the 2018รขโ‚ฌโ€œ19 television season. The eleventh season is set to premiere on September 25, 2017.[5] - 2016 NCAA Division I Softball Tournament The 2016 NCAA Division I Softball Tournament was held from May 20 through June 8, 2016 as the final part of the 2016 NCAA Division I softball season. The 64 NCAA Division I college softball teams were to be selected out of an eligible 293 teams on May 15, 2016. Thirty-two teams were awarded an automatic bid as champions of their conference, and thirty-two teams were selected at-large by the NCAA Division I softball selection committee. The tournament culminated with eight teams playing in the 2016 Women's College World Series at ASA Hall of Fame Stadium in Oklahoma City in which the Oklahoma Sooners were crowned the champions. - source_sentence: what happened to tates mom on days of our lives sentences: - 'Paige O''Hara Donna Paige Helmintoller, better known as Paige O''Hara (born May 10, 1956),[1] is an American actress, voice actress, singer and painter. O''Hara began her career as a Broadway actress in 1983 when she portrayed Ellie May Chipley in the musical Showboat. In 1991, she made her motion picture debut in Disney''s Beauty and the Beast, in which she voiced the film''s heroine, Belle. Following the critical and commercial success of Beauty and the Beast, O''Hara reprised her role as Belle in the film''s two direct-to-video follow-ups, Beauty and the Beast: The Enchanted Christmas and Belle''s Magical World.' - M. Shadows Matthew Charles Sanders (born July 31, 1981), better known as M. Shadows, is an American singer, songwriter, and musician. He is best known as the lead vocalist, songwriter, and a founding member of the American heavy metal band Avenged Sevenfold. In 2017, he was voted 3rd in the list of Top 25 Greatest Modern Frontmen by Ultimate Guitar.[1] - Theresa Donovan In July 2013, Jeannie returns to Salem, this time going by her middle name, Theresa. Initially, she strikes up a connection with resident bad boy JJ Deveraux (Casey Moss) while trying to secure some pot.[28] During a confrontation with JJ and his mother Jennifer Horton (Melissa Reeves) in her office, her aunt Kayla confirms that Theresa is in fact Jeannie and that Jen promised to hire her as her assistant, a promise she reluctantly agrees to. Kayla reminds Theresa it is her last chance at a fresh start.[29] Theresa also strikes up a bad first impression with Jennifer's daughter Abigail Deveraux (Kate Mansi) when Abigail smells pot on Theresa in her mother's office.[30] To continue to battle against Jennifer, she teams up with Anne Milbauer (Meredith Scott Lynn) in hopes of exacting her perfect revenge. In a ploy, Theresa reveals her intentions to hopefully woo Dr. Daniel Jonas (Shawn Christian). After sleeping with JJ, Theresa overdoses on marijuana and GHB. Upon hearing of their daughter's overdose and continuing problems, Shane and Kimberly return to town in the hopes of handling their daughter's problem, together. After believing that Theresa has a handle on her addictions, Shane and Kimberly leave town together. Theresa then teams up with hospital co-worker Anne Milbauer (Meredith Scott Lynn) to conspire against Jennifer, using Daniel as a way to hurt their relationship. In early 2014, following a Narcotics Anonymous (NA) meeting, she begins a sexual and drugged-fused relationship with Brady Black (Eric Martsolf). In 2015, after it is found that Kristen DiMera (Eileen Davidson) stole Theresa's embryo and carried it to term, Brady and Melanie Jonas return her son, Christopher, to her and Brady, and the pair rename him Tate. When Theresa moves into the Kiriakis mansion, tensions arise between her and Victor. She eventually expresses her interest in purchasing Basic Black and running it as her own fashion company, with financial backing from Maggie Horton (Suzanne Rogers). In the hopes of finding the right partner, she teams up with Kate Roberts (Lauren Koslow) and Nicole Walker (Arianne Zucker) to achieve the goal of purchasing Basic Black, with Kate and Nicole's business background and her own interest in fashion design. As she and Brady share several instances of rekindling their romance, she is kicked out of the mansion by Victor; as a result, Brady quits Titan and moves in with Theresa and Tate, in their own penthouse. - source_sentence: where does the last name francisco come from sentences: - Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis). - 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]' - Times Square Times Square is a major commercial intersection, tourist destination, entertainment center and neighborhood in the Midtown Manhattan section of New York City at the junction of Broadway and Seventh Avenue. It stretches from West 42nd to West 47th Streets.[1] Brightly adorned with billboards and advertisements, Times Square is sometimes referred to as "The Crossroads of the World",[2] "The Center of the Universe",[3] "the heart of The Great White Way",[4][5][6] and the "heart of the world".[7] One of the world's busiest pedestrian areas,[8] it is also the hub of the Broadway Theater District[9] and a major center of the world's entertainment industry.[10] Times Square is one of the world's most visited tourist attractions, drawing an estimated 50 million visitors annually.[11] Approximately 330,000 people pass through Times Square daily,[12] many of them tourists,[13] while over 460,000 pedestrians walk through Times Square on its busiest days.[7] datasets: - sentence-transformers/natural-questions pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 co2_eq_emissions: emissions: 59.31009589078217 energy_consumed: 0.15258500314066348 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.396 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: MPNet base trained on Natural Questions pairs results: - task: type: information-retrieval name: Information Retrieval dataset: name: NanoClimateFEVER type: NanoClimateFEVER metrics: - type: cosine_accuracy@1 value: 0.16 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.34 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.56 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.64 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.16 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.12 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.128 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08199999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.06 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.12166666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.24833333333333332 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.31566666666666665 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.22803817515986124 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.30941269841269836 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1655130902515993 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoDBPedia type: NanoDBPedia metrics: - type: cosine_accuracy@1 value: 0.52 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.62 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.78 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.52 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.36 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.364 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.322 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.0336711515516074 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.06005334302891617 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.1119370784549358 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.1974683849453542 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.37302114460618035 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5887222222222221 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2524550843440785 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFEVER type: NanoFEVER metrics: - type: cosine_accuracy@1 value: 0.28 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.52 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.62 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.28 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.16666666666666663 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10800000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.064 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.28 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.48 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.51 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4358687601068153 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.38569047619047614 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.3903171462871314 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoFiQA2018 type: NanoFiQA2018 metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.32 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.36 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.46 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.06933333333333333 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.20319047619047617 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.2276904761904762 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.32354761904761903 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2271808224609275 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.23985714285714288 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.18355553344945122 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoHotpotQA type: NanoHotpotQA metrics: - type: cosine_accuracy@1 value: 0.32 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.44 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.48 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.58 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.32 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1733333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11600000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.068 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.26 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.29 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.34 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.30497689087635044 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.39905555555555544 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.26301906759091515 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoMSMARCO type: NanoMSMARCO metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.28 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.44 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.09333333333333332 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.068 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.044000000000000004 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.28 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.34 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.44 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.27595760463916813 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.22488095238095238 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.24656541883369498 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNFCorpus type: NanoNFCorpus metrics: - type: cosine_accuracy@1 value: 0.22 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.3 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.34 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.36 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.22 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1533333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.124 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.096 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.007116944515649617 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.01288483574625764 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.02025290517580909 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.02555956272966021 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.11695533319556885 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.2651904761904762 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.030363746300173234 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoNQ type: NanoNQ metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.24 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.32 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.48 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.07999999999999999 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.06400000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.05 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.13 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.22 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.29 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.46 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.2706566987839319 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.22174603174603175 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.22631004639318789 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoQuoraRetrieval type: NanoQuoraRetrieval metrics: - type: cosine_accuracy@1 value: 0.78 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.88 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.94 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.78 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.35999999999999993 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.23999999999999994 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.13199999999999998 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6806666666666666 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8346666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8793333333333334 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9366666666666665 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8528887039265185 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8324126984126984 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.820234632034632 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSCIDOCS type: NanoSCIDOCS metrics: - type: cosine_accuracy@1 value: 0.28 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.42 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.52 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.62 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.28 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22666666666666668 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.2 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.12399999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.05866666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.14066666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.20566666666666666 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.25566666666666665 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.24909911706779386 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.38332539682539685 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.20162687946594338 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoArguAna type: NanoArguAna metrics: - type: cosine_accuracy@1 value: 0.18 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.52 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.64 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.88 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.18 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.17333333333333337 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.128 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.088 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.52 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.64 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.88 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5102396499498778 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3946269841269841 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4001733643377607 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoSciFact type: NanoSciFact metrics: - type: cosine_accuracy@1 value: 0.3 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.34 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.42 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.3 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.11999999999999998 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.09200000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.055999999999999994 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.265 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.315 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.485 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3688721552089384 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.3476666666666667 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.34115921547380024 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: NanoTouche2020 type: NanoTouche2020 metrics: - type: cosine_accuracy@1 value: 0.4897959183673469 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7346938775510204 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8163265306122449 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9387755102040817 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.4897959183673469 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.4013605442176871 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.3673469387755102 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.3102040816326531 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.036516156386696134 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.08582342270510718 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.12560656255524566 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.2064747763464094 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3575303928348819 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6281098153547133 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.27828847509729454 name: Cosine Map@100 - task: type: nano-beir name: Nano BEIR dataset: name: NanoBEIR mean type: NanoBEIR_mean metrics: - type: cosine_accuracy@1 value: 0.30383045525902674 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.45651491365777075 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5320251177394035 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6337519623233908 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.30383045525902674 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19702773417059127 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16148822605965465 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.11586185243328104 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.16161314762466306 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.2718424675131352 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.32990925813152305 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.42046541100531104 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.35163734221667803 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4015920859186165 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2922755153738202 name: Cosine Map@100 --- # MPNet base trained on Natural Questions pairs This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the ๐Ÿค— Hub model = SentenceTransformer("tomaarsen/mpnet-base-nq-cgist-2-gte") # Run inference sentences = [ 'where does the last name francisco come from', 'Francisco Francisco is the Spanish and Portuguese form of the masculine given name Franciscus (corresponding to English Francis).', 'Book of Esther The Book of Esther, also known in Hebrew as "the Scroll" (Megillah), is a book in the third section (Ketuvim, "Writings") of the Jewish Tanakh (the Hebrew Bible) and in the Christian Old Testament. It is one of the five Scrolls (Megillot) in the Hebrew Bible. It relates the story of a Hebrew woman in Persia, born as Hadassah but known as Esther, who becomes queen of Persia and thwarts a genocide of her people. The story forms the core of the Jewish festival of Purim, during which it is read aloud twice: once in the evening and again the following morning. The books of Esther and Song of Songs are the only books in the Hebrew Bible that do not explicitly mention God.[2]', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 | |:--------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------| | cosine_accuracy@1 | 0.16 | 0.52 | 0.28 | 0.14 | 0.32 | 0.14 | 0.22 | 0.14 | 0.78 | 0.28 | 0.18 | 0.3 | 0.4898 | | cosine_accuracy@3 | 0.34 | 0.62 | 0.5 | 0.32 | 0.44 | 0.28 | 0.3 | 0.24 | 0.88 | 0.42 | 0.52 | 0.34 | 0.7347 | | cosine_accuracy@5 | 0.56 | 0.7 | 0.52 | 0.36 | 0.48 | 0.34 | 0.34 | 0.32 | 0.9 | 0.52 | 0.64 | 0.42 | 0.8163 | | cosine_accuracy@10 | 0.64 | 0.78 | 0.62 | 0.46 | 0.58 | 0.44 | 0.36 | 0.48 | 0.94 | 0.62 | 0.88 | 0.5 | 0.9388 | | cosine_precision@1 | 0.16 | 0.52 | 0.28 | 0.14 | 0.32 | 0.14 | 0.22 | 0.14 | 0.78 | 0.28 | 0.18 | 0.3 | 0.4898 | | cosine_precision@3 | 0.12 | 0.36 | 0.1667 | 0.1333 | 0.1733 | 0.0933 | 0.1533 | 0.08 | 0.36 | 0.2267 | 0.1733 | 0.12 | 0.4014 | | cosine_precision@5 | 0.128 | 0.364 | 0.108 | 0.1 | 0.116 | 0.068 | 0.124 | 0.064 | 0.24 | 0.2 | 0.128 | 0.092 | 0.3673 | | cosine_precision@10 | 0.082 | 0.322 | 0.064 | 0.07 | 0.068 | 0.044 | 0.096 | 0.05 | 0.132 | 0.124 | 0.088 | 0.056 | 0.3102 | | cosine_recall@1 | 0.06 | 0.0337 | 0.28 | 0.0693 | 0.16 | 0.14 | 0.0071 | 0.13 | 0.6807 | 0.0587 | 0.18 | 0.265 | 0.0365 | | cosine_recall@3 | 0.1217 | 0.0601 | 0.48 | 0.2032 | 0.26 | 0.28 | 0.0129 | 0.22 | 0.8347 | 0.1407 | 0.52 | 0.315 | 0.0858 | | cosine_recall@5 | 0.2483 | 0.1119 | 0.51 | 0.2277 | 0.29 | 0.34 | 0.0203 | 0.29 | 0.8793 | 0.2057 | 0.64 | 0.4 | 0.1256 | | cosine_recall@10 | 0.3157 | 0.1975 | 0.6 | 0.3235 | 0.34 | 0.44 | 0.0256 | 0.46 | 0.9367 | 0.2557 | 0.88 | 0.485 | 0.2065 | | **cosine_ndcg@10** | **0.228** | **0.373** | **0.4359** | **0.2272** | **0.305** | **0.276** | **0.117** | **0.2707** | **0.8529** | **0.2491** | **0.5102** | **0.3689** | **0.3575** | | cosine_mrr@10 | 0.3094 | 0.5887 | 0.3857 | 0.2399 | 0.3991 | 0.2249 | 0.2652 | 0.2217 | 0.8324 | 0.3833 | 0.3946 | 0.3477 | 0.6281 | | cosine_map@100 | 0.1655 | 0.2525 | 0.3903 | 0.1836 | 0.263 | 0.2466 | 0.0304 | 0.2263 | 0.8202 | 0.2016 | 0.4002 | 0.3412 | 0.2783 | #### Nano BEIR * Dataset: `NanoBEIR_mean` * Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.3038 | | cosine_accuracy@3 | 0.4565 | | cosine_accuracy@5 | 0.532 | | cosine_accuracy@10 | 0.6338 | | cosine_precision@1 | 0.3038 | | cosine_precision@3 | 0.197 | | cosine_precision@5 | 0.1615 | | cosine_precision@10 | 0.1159 | | cosine_recall@1 | 0.1616 | | cosine_recall@3 | 0.2718 | | cosine_recall@5 | 0.3299 | | cosine_recall@10 | 0.4205 | | **cosine_ndcg@10** | **0.3516** | | cosine_mrr@10 | 0.4016 | | cosine_map@100 | 0.2923 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 50,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.74 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 137.2 tokens</li><li>max: 508 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who is required to report according to the hmda</code> | <code>Home Mortgage Disclosure Act US financial institutions must report HMDA data to their regulator if they meet certain criteria, such as having assets above a specific threshold. The criteria is different for depository and non-depository institutions and are available on the FFIEC website.[4] In 2012, there were 7,400 institutions that reported a total of 18.7 million HMDA records.[5]</code> | | <code>what is the definition of endoplasmic reticulum in biology</code> | <code>Endoplasmic reticulum The endoplasmic reticulum (ER) is a type of organelle in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most types of eukaryotic cells, but is absent from red blood cells and spermatozoa. There are two types of endoplasmic reticulum: rough and smooth. The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. The rough endoplasmic reticulum is especially prominent in cells such as hepatocytes. The smooth endoplasmic reticulum lacks ribosomes and functions in lipid manufacture and metabolism, the production of steroid hormones, and detoxification.[1] The smooth ER is especially abundant in mammalian liver and gonad cells. The lacy membranes of the endoplasmic reticulum were first seen in 1945 using elect...</code> | | <code>what does the ski mean in polish names</code> | <code>Polish name Since the High Middle Ages, Polish-sounding surnames ending with the masculine -ski suffix, including -cki and -dzki, and the corresponding feminine suffix -ska/-cka/-dzka were associated with the nobility (Polish szlachta), which alone, in the early years, had such suffix distinctions.[1] They are widely popular today.</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 100,231 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.78 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 135.64 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>difference between russian blue and british blue cat</code> | <code>Russian Blue The coat is known as a "double coat", with the undercoat being soft, downy and equal in length to the guard hairs, which are an even blue with silver tips. However, the tail may have a few very dull, almost unnoticeable stripes. The coat is described as thick, plush and soft to the touch. The feeling is softer than the softest silk. The silver tips give the coat a shimmering appearance. Its eyes are almost always a dark and vivid green. Any white patches of fur or yellow eyes in adulthood are seen as flaws in show cats.[3] Russian Blues should not be confused with British Blues (which are not a distinct breed, but rather a British Shorthair with a blue coat as the British Shorthair breed itself comes in a wide variety of colors and patterns), nor the Chartreux or Korat which are two other naturally occurring breeds of blue cats, although they have similar traits.</code> | | <code>who played the little girl on mrs doubtfire</code> | <code>Mara Wilson Mara Elizabeth Wilson[2] (born July 24, 1987) is an American writer and former child actress. She is known for playing Natalie Hillard in Mrs. Doubtfire (1993), Susan Walker in Miracle on 34th Street (1994), Matilda Wormwood in Matilda (1996) and Lily Stone in Thomas and the Magic Railroad (2000). Since retiring from film acting, Wilson has focused on writing.</code> | | <code>what year did the movie the sound of music come out</code> | <code>The Sound of Music (film) The film was released on March 2, 1965 in the United States, initially as a limited roadshow theatrical release. Although critical response to the film was widely mixed, the film was a major commercial success, becoming the number one box office movie after four weeks, and the highest-grossing film of 1965. By November 1966, The Sound of Music had become the highest-grossing film of all-timeโ€”surpassing Gone with the Windโ€”and held that distinction for five years. The film was just as popular throughout the world, breaking previous box-office records in twenty-nine countries. Following an initial theatrical release that lasted four and a half years, and two successful re-releases, the film sold 283 million admissions worldwide and earned a total worldwide gross of $286,000,000.</code> | * Loss: [<code>CachedGISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss) with these parameters: ```json {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.01} ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `seed`: 12 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 2048 - `per_device_eval_batch_size`: 2048 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 12 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 | |:-----:|:----:|:-------------:|:---------------:|:-------------------------------:|:--------------------------:|:------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:---------------------:|:---------------------------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-----------------------------:|:----------------------------:| | 0.04 | 1 | 15.537 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.2 | 5 | 11.6576 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.4 | 10 | 7.1392 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.6 | 15 | 5.0005 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.8 | 20 | 4.0541 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | 1.0 | 25 | 3.4117 | 2.3797 | 0.2280 | 0.3730 | 0.4359 | 0.2272 | 0.3050 | 0.2760 | 0.1170 | 0.2707 | 0.8529 | 0.2491 | 0.5102 | 0.3689 | 0.3575 | 0.3516 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.153 kWh - **Carbon Emitted**: 0.059 kg of CO2 - **Hours Used**: 0.396 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.4.0.dev0 - Transformers: 4.46.2 - PyTorch: 2.5.0+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 2.20.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF
mradermacher
2024-11-20T11:52:20Z
164
1
transformers
[ "transformers", "gguf", "gemma2", "instruct", "bggpt", "insait", "bg", "en", "base_model:INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0", "base_model:quantized:INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0", "license:gemma", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-20T02:56:26Z
--- base_model: INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0 language: - bg - en library_name: transformers license: gemma quantized_by: mradermacher tags: - gemma2 - instruct - bggpt - insait --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/INSAIT-Institute/BgGPT-Gemma-2-9B-IT-v1.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ1_S.gguf) | i1-IQ1_S | 2.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ1_M.gguf) | i1-IQ1_M | 2.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.9 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ2_S.gguf) | i1-IQ2_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ2_M.gguf) | i1-IQ2_M | 3.5 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q2_K.gguf) | i1-Q2_K | 3.9 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ3_S.gguf) | i1-IQ3_S | 4.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 4.4 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ3_M.gguf) | i1-IQ3_M | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 5.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 5.3 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 5.5 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 5.5 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 5.5 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_0.gguf) | i1-Q4_0 | 5.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 5.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 6.6 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 6.7 | | | [GGUF](https://huggingface.co/mradermacher/BgGPT-Gemma-2-9B-IT-v1.0-i1-GGUF/resolve/main/BgGPT-Gemma-2-9B-IT-v1.0.i1-Q6_K.gguf) | i1-Q6_K | 7.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/granite-3.0-2b-instruct-i1-GGUF
mradermacher
2024-11-20T11:52:20Z
44
0
transformers
[ "transformers", "gguf", "language", "granite-3.0", "en", "base_model:ibm-granite/granite-3.0-2b-instruct", "base_model:quantized:ibm-granite/granite-3.0-2b-instruct", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2024-11-20T10:25:53Z
--- base_model: ibm-granite/granite-3.0-2b-instruct language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - language - granite-3.0 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/ibm-granite/granite-3.0-2b-instruct <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/granite-3.0-2b-instruct-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ1_S.gguf) | i1-IQ1_S | 0.7 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ1_M.gguf) | i1-IQ1_M | 0.8 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ2_S.gguf) | i1-IQ2_S | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ2_M.gguf) | i1-IQ2_M | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q2_K.gguf) | i1-Q2_K | 1.1 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 1.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ3_XS.gguf) | i1-IQ3_XS | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q3_K_S.gguf) | i1-Q3_K_S | 1.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ3_S.gguf) | i1-IQ3_S | 1.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ3_M.gguf) | i1-IQ3_M | 1.3 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q3_K_M.gguf) | i1-Q3_K_M | 1.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.5 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.5 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_0_4_4.gguf) | i1-Q4_0_4_4 | 1.6 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_0_4_8.gguf) | i1-Q4_0_4_8 | 1.6 | fast on arm+i8mm, low quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_0_8_8.gguf) | i1-Q4_0_8_8 | 1.6 | fast on arm+sve, low quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_0.gguf) | i1-Q4_0 | 1.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.6 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q5_K_M.gguf) | i1-Q5_K_M | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/granite-3.0-2b-instruct-i1-GGUF/resolve/main/granite-3.0-2b-instruct.i1-Q6_K.gguf) | i1-Q6_K | 2.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
Kort/i206
Kort
2024-11-20T11:50:44Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T11:47:03Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/YamShadow-7B-GGUF
mradermacher
2024-11-20T11:43:37Z
32
0
transformers
[ "transformers", "gguf", "merge", "mergekit", "lazymergekit", "automerger", "en", "base_model:automerger/YamShadow-7B", "base_model:quantized:automerger/YamShadow-7B", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-11-20T09:22:09Z
--- base_model: automerger/YamShadow-7B language: - en library_name: transformers license: apache-2.0 quantized_by: mradermacher tags: - merge - mergekit - lazymergekit - automerger --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/automerger/YamShadow-7B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/YamShadow-7B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.2 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/YamShadow-7B-GGUF/resolve/main/YamShadow-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
arthd24/pegasus_informative_trial_10k
arthd24
2024-11-20T11:37:34Z
63
0
transformers
[ "transformers", "tf", "pegasus", "text2text-generation", "generated_from_keras_callback", "base_model:thonyyy/pegasus_indonesian_base-finetune", "base_model:finetune:thonyyy/pegasus_indonesian_base-finetune", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-11-20T05:52:56Z
--- library_name: transformers license: apache-2.0 base_model: thonyyy/pegasus_indonesian_base-finetune tags: - generated_from_keras_callback model-index: - name: arthd24/pegasus_informative_trial_10k results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # arthd24/pegasus_informative_trial_10k This model is a fine-tuned version of [thonyyy/pegasus_indonesian_base-finetune](https://huggingface.co/thonyyy/pegasus_indonesian_base-finetune) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0309 - Validation Loss: 1.2656 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1622 | 1.2417 | 0 | | 1.0914 | 1.2541 | 1 | | 1.0309 | 1.2656 | 2 | ### Framework versions - Transformers 4.45.1 - TensorFlow 2.16.1 - Datasets 3.0.1 - Tokenizers 0.20.0
HarshGT/HSGPT_Merged
HarshGT
2024-11-20T11:37:07Z
5
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T11:31:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
bunnycore/Qandora-2.5-7B-Creative
bunnycore
2024-11-20T11:26:53Z
8
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "merge", "conversational", "base_model:bunnycore/Qandora-2.5-7B", "base_model:merge:bunnycore/Qandora-2.5-7B", "base_model:bunnycore/Qwen-2.1-7b-Persona-lora_model", "base_model:merge:bunnycore/Qwen-2.1-7b-Persona-lora_model", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T11:22:46Z
--- base_model: - bunnycore/Qandora-2.5-7B - bunnycore/Qwen-2.1-7b-Persona-lora_model library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the passthrough merge method using [bunnycore/Qandora-2.5-7B](https://huggingface.co/bunnycore/Qandora-2.5-7B) + [bunnycore/Qwen-2.1-7b-Persona-lora_model](https://huggingface.co/bunnycore/Qwen-2.1-7b-Persona-lora_model) as a base. ### Models Merged The following models were included in the merge: ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: bunnycore/Qandora-2.5-7B+bunnycore/Qwen-2.1-7b-Persona-lora_model dtype: bfloat16 merge_method: passthrough models: - model: bunnycore/Qandora-2.5-7B+bunnycore/Qwen-2.1-7b-Persona-lora_model ```
wath5/kgl_lmsys_pref_classif
wath5
2024-11-20T11:23:40Z
12
0
transformers
[ "transformers", "safetensors", "gemma2", "text-classification", "en", "base_model:google/gemma-2-9b-it", "base_model:quantized:google/gemma-2-9b-it", "text-generation-inference", "endpoints_compatible", "8-bit", "gptq", "region:us" ]
text-classification
2024-11-20T09:43:55Z
--- library_name: transformers language: - en base_model: - google/gemma-2-9b-it pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> Given a (Query, ModelAAnswer, ModelBAnswer) This model gives a vector in 3D like lMSYS (ModelAWin Proba), (ModelBWin Proba), (Tie Proba) ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** @sayoulala (Yang Zhou) - **Model type:** Gemma for Sentence Classification - **Language(s) (NLP):** English Only ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses Mimic human preference given a query and 2 different answers. ### Direct Use ```python import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss from transformers import Gemma2PreTrainedModel,Gemma2Model, Cache, AutoTokenizer from transformers.modeling_outputs import SequenceClassifierOutputWithPast from typing import Optional, List, Union, Tuple from dataclasses import dataclass @dataclass class Config: gemma_dir = 'wath5/kgl_lmsys_pref_classif' max_length = 2000 batch_size = 8 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") cfg = Config() class Gemma2ForSequenceClassificationV1(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(hidden_states.device) else: sequence_lengths = -1 hidden_states = hidden_states[ torch.arange(batch_size, device=hidden_states.device), sequence_lengths] # eos pooled_logits = self.score(hidden_states) return pooled_logits tokenizer = AutoTokenizer.from_pretrained("/kaggle/input/v7-dpo-16bit-01234-8bit-all/v7_dpo_16bit_01234_8bit_all") model = Gemma2ForSequenceClassificationV1.from_pretrained( cfg.gemma_dir, num_labels=3, device_map=cfg.device, use_cache=False, ) model.config.pad_token_id = tokenizer.pad_token_id ``` ## How to Get Started with the Model ```python from transformers.data.data_collator import pad_without_fast_tokenizer_warning @torch.no_grad() def single_prompt_inference(prompt, model, device, max_length=cfg.max_length): """ Perform inference on a single prompt. Args: prompt (str): The input prompt for inference. model (torch.nn.Module): The model used for inference. device (torch.device): The device to run inference on. tokenizer (Tokenizer): Tokenizer for preprocessing input text. max_length (int): Maximum sequence length for tokenization. Returns: dict: Probabilities for "a_win", "b_win", and "tie". """ # Tokenize the input prompt input_ids = tokenizer(prompt, truncation=True, max_length=max_length)['input_ids'] input_ids.append(tokenizer.eos_token_id) # Add EOS token if needed # Prepare inputs inputs = pad_without_fast_tokenizer_warning( tokenizer, {"input_ids": [input_ids]}, # Wrap in a list for compatibility padding="max_length", pad_to_multiple_of=None, max_length=max_length, return_tensors="pt", ) # Move inputs to the appropriate device inputs = inputs.to(device) # Run the model outputs = model(**inputs) # Get probabilities using softmax proba = outputs.softmax(-1).cpu().squeeze() return { "winner_model_a": proba[0].item(), "winner_model_b": proba[1].item(), "tie": proba[2].item(), } def create_rounds(query: str, answer_a: str, answer_b: str) -> str: prompt =f"""User question: \"""{query}\""" Answer A: \"""{answer_a}\""" Answer B: \"""{answer_b}\""" """ return prompt query = "Hello, what is the height of the reassembled blind product?" answer_a = "Vous pouvez trouver toutes les informations techniques, y compris la hauteur du produit store remontรฉ, directement sur la fiche produit de notre site. Cliquez sur l'onglet 'Produits' dnas la barre de navigation ou utilisez le moteur de recherche pour accรฉder au produit recherchรฉ. Avez vous une autre question ?" answer_b = "The height of the aluminum Venetian blind is 130 cm." prompt_direct = create_rounds(query, answer_a, answer_b) single_prompt_inference(prompt_direct, model=model, device=cfg.device) ``` ## Training Details https://github.com/shyoulala/LMSYS_BlackPearl
Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF
Triangle104
2024-11-20T11:20:09Z
11
1
transformers
[ "transformers", "gguf", "storywriting", "text adventure", "creative", "story", "writing", "fiction", "roleplaying", "rp", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "en", "base_model:FallenMerick/MN-Violet-Lotus-12B", "base_model:quantized:FallenMerick/MN-Violet-Lotus-12B", "license:cc-by-4.0", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-20T11:18:40Z
--- license: cc-by-4.0 language: - en base_model: FallenMerick/MN-Violet-Lotus-12B library_name: transformers tags: - storywriting - text adventure - creative - story - writing - fiction - roleplaying - rp - mergekit - merge - llama-cpp - gguf-my-repo --- # Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF This model was converted to GGUF format from [`FallenMerick/MN-Violet-Lotus-12B`](https://huggingface.co/FallenMerick/MN-Violet-Lotus-12B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/FallenMerick/MN-Violet-Lotus-12B) for more details on the model. --- Model details: - This is the model I was trying to create when Chunky-Lotus emerged. Not only does this model score higher on my local EQ benchmarks (80.00 w/ 100% parsed @ 8-bit), but it does an even better job at roleplaying and producing creative outputs while still adhering to wide ranges of character personalities. The high levels of emotional intelligence are really quite noticeable as well. Once again, models tend to score higher on my local tests when compared to their posted scores, but this has become the new high score for models I've personally tested. I really like the way this model writes, and I hope you'll enjoy using it as well! Merge Details - This is a merge of pre-trained language models created using mergekit. Merge Method - This model was merged using the Model Stock merge method. Models Merged The following models were included in the merge: Epiculous/Violet_Twilight-v0.2 NeverSleep/Lumimaid-v0.2-12B flammenai/Mahou-1.5-mistral-nemo-12B Sao10K/MN-12B-Lyra-v4 Configuration - The following YAML configuration was used to produce this model: models: - model: FallenMerick/MN-Twilight-Maid-SLERP-12B #(unreleased) - model: Sao10K/MN-12B-Lyra-v4 - model: flammenai/Mahou-1.5-mistral-nemo-12B merge_method: model_stock base_model: mistralai/Mistral-Nemo-Instruct-2407 parameters: normalize: true dtype: bfloat16 In this recipe, Violet Twilight and Lumimaid were first blended using the SLERP method to create a strong roleplaying foundation. Lyra v4 is then added to the mix for its great creativity and roleplaying performance, along with Mahou to once again curtail the outputs and prevent the resulting model from becoming too wordy. Model Stock was used for the final merge in order to really push the resulting weights in the proper direction while using Nemo Instruct as a strong anchor point. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF --hf-file mn-violet-lotus-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF --hf-file mn-violet-lotus-12b-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF --hf-file mn-violet-lotus-12b-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/MN-Violet-Lotus-12B-Q6_K-GGUF --hf-file mn-violet-lotus-12b-q6_k.gguf -c 2048 ```
Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF
Darkknight535
2024-11-20T11:15:56Z
44
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:Darkknight535/MS-Moonlight-22B-v3", "base_model:quantized:Darkknight535/MS-Moonlight-22B-v3", "endpoints_compatible", "region:us", "conversational" ]
null
2024-11-20T11:14:17Z
--- base_model: Darkknight535/MS-Moonlight-22B-v3 tags: - llama-cpp - gguf-my-repo --- # Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF This model was converted to GGUF format from [`Darkknight535/MS-Moonlight-22B-v3`](https://huggingface.co/Darkknight535/MS-Moonlight-22B-v3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Darkknight535/MS-Moonlight-22B-v3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF --hf-file ms-moonlight-22b-v3-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF --hf-file ms-moonlight-22b-v3-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF --hf-file ms-moonlight-22b-v3-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Darkknight535/MS-Moonlight-22B-v3-Q8_0-GGUF --hf-file ms-moonlight-22b-v3-q8_0.gguf -c 2048 ```
BlackBeenie/Bloslain-8B-v0.2
BlackBeenie
2024-11-20T11:11:44Z
12
1
null
[ "safetensors", "llama", "merge", "mergekit", "lazymergekit", "BlackBeenie/Neos-Llama-3.1-8B", "Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "Solshine/reflection-llama-3.1-8B", "base_model:BlackBeenie/Neos-Llama-3.1-8B", "base_model:merge:BlackBeenie/Neos-Llama-3.1-8B", "base_model:Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "base_model:merge:Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder", "base_model:Solshine/reflection-llama-3.1-8B", "base_model:merge:Solshine/reflection-llama-3.1-8B", "model-index", "region:us" ]
null
2024-11-19T03:57:57Z
--- tags: - merge - mergekit - lazymergekit - BlackBeenie/Neos-Llama-3.1-8B - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - Solshine/reflection-llama-3.1-8B base_model: - BlackBeenie/Neos-Llama-3.1-8B - Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder - Solshine/reflection-llama-3.1-8B model-index: - name: Bloslain-8B-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 50.23 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 30.66 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 14.5 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 7.49 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.45 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.48 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BlackBeenie/Bloslain-8B-v0.2 name: Open LLM Leaderboard --- # Bloslain-8B-v0.2 Bloslain-8B-v0.2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [BlackBeenie/Neos-Llama-3.1-8B](https://huggingface.co/BlackBeenie/Neos-Llama-3.1-8B) * [Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder](https://huggingface.co/Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder) * [Solshine/reflection-llama-3.1-8B](https://huggingface.co/Solshine/reflection-llama-3.1-8B) ## ๐Ÿงฉ Configuration ```yaml models: - model: NousResearch/Meta-Llama-3.1-8B-Instruct # No parameters necessary for base model - model: BlackBeenie/Neos-Llama-3.1-8B parameters: density: 0.53 weight: 0.4 - model: Solshine/Meta-Llama-3.1-8B-Instruct-Python-Coder parameters: density: 0.53 weight: 0.3 - model: Solshine/reflection-llama-3.1-8B parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3.1-8B-Instruct parameters: int8_mask: true dtype: bfloat16 ``` ## ๐Ÿ’ป Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "BlackBeenie/Bloslain-8B-v0.2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BlackBeenie__Bloslain-8B-v0.2) | Metric |Value| |-------------------|----:| |Avg. |23.80| |IFEval (0-Shot) |50.23| |BBH (3-Shot) |30.66| |MATH Lvl 5 (4-Shot)|14.50| |GPQA (0-shot) | 7.49| |MuSR (0-shot) |10.45| |MMLU-PRO (5-shot) |29.48|
osmanh/LLama-3.2-1B-Quantiz-text-generation
osmanh
2024-11-20T11:10:34Z
79
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-11-20T11:04:33Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
wassimm/llama-3-1-8b-Instruct-bnb-4bit-psycology-w
wassimm
2024-11-20T11:08:26Z
10
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "base_model:finetune:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-11-20T10:21:17Z
--- base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** wassimm - **License:** apache-2.0 - **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
MayBashendy/Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold0
MayBashendy
2024-11-20T11:08:03Z
7
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:aubmindlab/bert-base-arabertv02", "base_model:finetune:aubmindlab/bert-base-arabertv02", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-11-12T23:49:14Z
--- library_name: transformers base_model: aubmindlab/bert-base-arabertv02 tags: - generated_from_trainer model-index: - name: Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Arabic_FineTuningAraBERT_AugV4_k15_task3_organization_fold0 This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9951 - Qwk: 0.0892 - Mse: 0.9951 - Rmse: 0.9976 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse | |:-------------:|:------:|:----:|:---------------:|:-------:|:------:|:------:| | No log | 0.0052 | 2 | 5.1585 | 0.0 | 5.1585 | 2.2712 | | No log | 0.0105 | 4 | 2.8572 | -0.0577 | 2.8572 | 1.6903 | | No log | 0.0157 | 6 | 1.1924 | 0.1895 | 1.1924 | 1.0920 | | No log | 0.0210 | 8 | 0.7981 | 0.0 | 0.7981 | 0.8934 | | No log | 0.0262 | 10 | 0.9258 | -0.2222 | 0.9258 | 0.9622 | | No log | 0.0315 | 12 | 1.2159 | -0.1000 | 1.2159 | 1.1027 | | No log | 0.0367 | 14 | 1.1946 | -0.3538 | 1.1946 | 1.0930 | | No log | 0.0420 | 16 | 1.2013 | -0.1786 | 1.2013 | 1.0960 | | No log | 0.0472 | 18 | 1.0582 | -0.0694 | 1.0582 | 1.0287 | | No log | 0.0525 | 20 | 0.9011 | 0.0 | 0.9011 | 0.9492 | | No log | 0.0577 | 22 | 0.9211 | 0.0 | 0.9211 | 0.9597 | | No log | 0.0630 | 24 | 1.0786 | -0.2222 | 1.0786 | 1.0385 | | No log | 0.0682 | 26 | 1.4372 | 0.0 | 1.4372 | 1.1988 | | No log | 0.0735 | 28 | 1.3939 | 0.0 | 1.3939 | 1.1806 | | No log | 0.0787 | 30 | 0.9801 | 0.2667 | 0.9801 | 0.9900 | | No log | 0.0840 | 32 | 0.7175 | 0.0 | 0.7175 | 0.8470 | | No log | 0.0892 | 34 | 0.7295 | 0.0 | 0.7295 | 0.8541 | | No log | 0.0945 | 36 | 0.7406 | 0.0 | 0.7406 | 0.8606 | | No log | 0.0997 | 38 | 0.8721 | 0.3889 | 0.8721 | 0.9338 | | No log | 0.1050 | 40 | 1.0357 | 0.1270 | 1.0357 | 1.0177 | | No log | 0.1102 | 42 | 0.9271 | 0.3210 | 0.9271 | 0.9628 | | No log | 0.1155 | 44 | 0.7938 | 0.0 | 0.7938 | 0.8909 | | No log | 0.1207 | 46 | 0.7414 | 0.0 | 0.7414 | 0.8611 | | No log | 0.1260 | 48 | 0.7661 | 0.0 | 0.7661 | 0.8753 | | No log | 0.1312 | 50 | 0.9624 | 0.2924 | 0.9624 | 0.9810 | | No log | 0.1365 | 52 | 0.9366 | 0.1037 | 0.9366 | 0.9678 | | No log | 0.1417 | 54 | 0.8864 | -0.0185 | 0.8864 | 0.9415 | | No log | 0.1470 | 56 | 1.0448 | 0.1444 | 1.0448 | 1.0221 | | No log | 0.1522 | 58 | 1.0542 | 0.1270 | 1.0542 | 1.0268 | | No log | 0.1575 | 60 | 0.8958 | -0.0342 | 0.8958 | 0.9465 | | No log | 0.1627 | 62 | 0.7927 | 0.0 | 0.7927 | 0.8903 | | No log | 0.1680 | 64 | 0.7804 | 0.0 | 0.7804 | 0.8834 | | No log | 0.1732 | 66 | 0.8005 | 0.0 | 0.8005 | 0.8947 | | No log | 0.1785 | 68 | 0.9649 | 0.1852 | 0.9649 | 0.9823 | | No log | 0.1837 | 70 | 1.3201 | 0.0 | 1.3201 | 1.1490 | | No log | 0.1890 | 72 | 1.7101 | 0.0 | 1.7101 | 1.3077 | | No log | 0.1942 | 74 | 1.5078 | 0.0 | 1.5078 | 1.2279 | | No log | 0.1995 | 76 | 1.0546 | -0.1000 | 1.0546 | 1.0269 | | No log | 0.2047 | 78 | 0.9158 | 0.2092 | 0.9158 | 0.9570 | | No log | 0.2100 | 80 | 0.8941 | 0.4296 | 0.8941 | 0.9456 | | No log | 0.2152 | 82 | 0.9223 | 0.3889 | 0.9223 | 0.9604 | | No log | 0.2205 | 84 | 1.0538 | -0.0864 | 1.0538 | 1.0266 | | No log | 0.2257 | 86 | 1.0547 | 0.0351 | 1.0547 | 1.0270 | | No log | 0.2310 | 88 | 0.8609 | 0.4296 | 0.8609 | 0.9279 | | No log | 0.2362 | 90 | 0.9217 | 0.2361 | 0.9217 | 0.9601 | | No log | 0.2415 | 92 | 1.4220 | 0.0 | 1.4220 | 1.1925 | | No log | 0.2467 | 94 | 1.4854 | 0.0 | 1.4854 | 1.2188 | | No log | 0.2520 | 96 | 0.9959 | 0.0351 | 0.9959 | 0.9979 | | No log | 0.2572 | 98 | 0.9345 | 0.1852 | 0.9345 | 0.9667 | | No log | 0.2625 | 100 | 1.4116 | 0.0 | 1.4116 | 1.1881 | | No log | 0.2677 | 102 | 1.5023 | 0.0 | 1.5023 | 1.2257 | | No log | 0.2730 | 104 | 1.6127 | 0.0 | 1.6127 | 1.2699 | | No log | 0.2782 | 106 | 1.4688 | 0.1270 | 1.4688 | 1.2120 | | No log | 0.2835 | 108 | 0.9138 | 0.1852 | 0.9138 | 0.9559 | | No log | 0.2887 | 110 | 0.8849 | 0.1037 | 0.8849 | 0.9407 | | No log | 0.2940 | 112 | 0.8854 | -0.0185 | 0.8854 | 0.9410 | | No log | 0.2992 | 114 | 0.8904 | 0.1270 | 0.8904 | 0.9436 | | No log | 0.3045 | 116 | 1.2375 | 0.0 | 1.2375 | 1.1124 | | No log | 0.3097 | 118 | 1.4920 | 0.0 | 1.4920 | 1.2215 | | No log | 0.3150 | 120 | 1.3126 | 0.0 | 1.3126 | 1.1457 | | No log | 0.3202 | 122 | 0.8399 | 0.2092 | 0.8399 | 0.9165 | | No log | 0.3255 | 124 | 0.8407 | 0.2092 | 0.8407 | 0.9169 | | No log | 0.3307 | 126 | 1.2377 | 0.1270 | 1.2377 | 1.1125 | | No log | 0.3360 | 128 | 1.7342 | 0.0 | 1.7342 | 1.3169 | | No log | 0.3412 | 130 | 1.7192 | 0.0 | 1.7192 | 1.3112 | | No log | 0.3465 | 132 | 1.3658 | 0.1270 | 1.3658 | 1.1687 | | No log | 0.3517 | 134 | 0.8717 | 0.2924 | 0.8717 | 0.9337 | | No log | 0.3570 | 136 | 0.6946 | 0.1538 | 0.6946 | 0.8334 | | No log | 0.3622 | 138 | 0.7223 | 0.1270 | 0.7223 | 0.8499 | | No log | 0.3675 | 140 | 1.0067 | 0.2667 | 1.0067 | 1.0033 | | No log | 0.3727 | 142 | 1.2800 | 0.0 | 1.2800 | 1.1314 | | No log | 0.3780 | 144 | 1.4809 | 0.0 | 1.4809 | 1.2169 | | No log | 0.3832 | 146 | 1.4458 | 0.0 | 1.4458 | 1.2024 | | No log | 0.3885 | 148 | 1.3449 | 0.0 | 1.3449 | 1.1597 | | No log | 0.3937 | 150 | 1.2736 | 0.0 | 1.2736 | 1.1285 | | No log | 0.3990 | 152 | 1.1680 | 0.1270 | 1.1680 | 1.0807 | | No log | 0.4042 | 154 | 1.4844 | 0.0 | 1.4844 | 1.2184 | | No log | 0.4094 | 156 | 1.4872 | 0.0 | 1.4872 | 1.2195 | | No log | 0.4147 | 158 | 0.9314 | 0.3529 | 0.9314 | 0.9651 | | No log | 0.4199 | 160 | 0.7977 | 0.3529 | 0.7977 | 0.8931 | | No log | 0.4252 | 162 | 1.1665 | 0.1270 | 1.1665 | 1.0800 | | No log | 0.4304 | 164 | 1.8253 | -0.0087 | 1.8253 | 1.3510 | | No log | 0.4357 | 166 | 1.8819 | -0.0154 | 1.8819 | 1.3718 | | No log | 0.4409 | 168 | 1.4302 | 0.0 | 1.4302 | 1.1959 | | No log | 0.4462 | 170 | 0.9288 | 0.3529 | 0.9287 | 0.9637 | | No log | 0.4514 | 172 | 0.8775 | 0.3529 | 0.8775 | 0.9368 | | No log | 0.4567 | 174 | 1.0389 | 0.2924 | 1.0389 | 1.0193 | | No log | 0.4619 | 176 | 1.3262 | 0.0 | 1.3262 | 1.1516 | | No log | 0.4672 | 178 | 1.2896 | 0.0106 | 1.2896 | 1.1356 | | No log | 0.4724 | 180 | 0.9069 | -0.0593 | 0.9069 | 0.9523 | | No log | 0.4777 | 182 | 0.8331 | -0.0476 | 0.8331 | 0.9128 | | No log | 0.4829 | 184 | 0.9903 | 0.1852 | 0.9903 | 0.9951 | | No log | 0.4882 | 186 | 1.2051 | 0.0106 | 1.2051 | 1.0978 | | No log | 0.4934 | 188 | 1.4503 | 0.0 | 1.4503 | 1.2043 | | No log | 0.4987 | 190 | 1.3204 | 0.0 | 1.3204 | 1.1491 | | No log | 0.5039 | 192 | 1.0350 | 0.1852 | 1.0350 | 1.0174 | | No log | 0.5092 | 194 | 0.9435 | 0.0654 | 0.9435 | 0.9713 | | No log | 0.5144 | 196 | 1.0457 | 0.1852 | 1.0457 | 1.0226 | | No log | 0.5197 | 198 | 1.2034 | 0.0351 | 1.2034 | 1.0970 | | No log | 0.5249 | 200 | 1.4355 | 0.0 | 1.4355 | 1.1981 | | No log | 0.5302 | 202 | 1.4400 | 0.0106 | 1.4400 | 1.2000 | | No log | 0.5354 | 204 | 1.4913 | 0.0106 | 1.4913 | 1.2212 | | No log | 0.5407 | 206 | 1.5593 | 0.0106 | 1.5593 | 1.2487 | | No log | 0.5459 | 208 | 1.8235 | 0.0 | 1.8235 | 1.3504 | | No log | 0.5512 | 210 | 1.9656 | 0.0 | 1.9656 | 1.4020 | | No log | 0.5564 | 212 | 1.2205 | 0.1444 | 1.2205 | 1.1047 | | No log | 0.5617 | 214 | 0.7094 | 0.1538 | 0.7094 | 0.8422 | | No log | 0.5669 | 216 | 0.7089 | 0.4762 | 0.7089 | 0.8420 | | No log | 0.5722 | 218 | 0.9571 | 0.1444 | 0.9571 | 0.9783 | | No log | 0.5774 | 220 | 1.4906 | 0.0 | 1.4906 | 1.2209 | | No log | 0.5827 | 222 | 1.6810 | 0.0 | 1.6810 | 1.2965 | | No log | 0.5879 | 224 | 1.4617 | 0.0 | 1.4617 | 1.2090 | | No log | 0.5932 | 226 | 0.9090 | 0.2924 | 0.9090 | 0.9534 | | No log | 0.5984 | 228 | 0.7757 | 0.3210 | 0.7757 | 0.8807 | | No log | 0.6037 | 230 | 0.8235 | 0.3210 | 0.8235 | 0.9075 | | No log | 0.6089 | 232 | 1.2346 | 0.1444 | 1.2346 | 1.1111 | | No log | 0.6142 | 234 | 1.7010 | 0.0 | 1.7010 | 1.3042 | | No log | 0.6194 | 236 | 1.6649 | 0.0 | 1.6649 | 1.2903 | | No log | 0.6247 | 238 | 1.1486 | 0.0106 | 1.1486 | 1.0717 | | No log | 0.6299 | 240 | 0.7860 | 0.3419 | 0.7860 | 0.8866 | | No log | 0.6352 | 242 | 0.8148 | 0.3419 | 0.8148 | 0.9027 | | No log | 0.6404 | 244 | 1.1538 | 0.1444 | 1.1538 | 1.0742 | | No log | 0.6457 | 246 | 1.0500 | 0.2924 | 1.0500 | 1.0247 | | No log | 0.6509 | 248 | 1.2892 | 0.1444 | 1.2892 | 1.1354 | | No log | 0.6562 | 250 | 1.4334 | 0.1444 | 1.4334 | 1.1972 | | No log | 0.6614 | 252 | 1.3731 | 0.1444 | 1.3731 | 1.1718 | | No log | 0.6667 | 254 | 1.2068 | 0.1444 | 1.2068 | 1.0986 | | No log | 0.6719 | 256 | 0.9498 | 0.2924 | 0.9498 | 0.9746 | | No log | 0.6772 | 258 | 1.1941 | 0.1444 | 1.1941 | 1.0927 | | No log | 0.6824 | 260 | 1.7117 | 0.1000 | 1.7117 | 1.3083 | | No log | 0.6877 | 262 | 1.9335 | 0.0873 | 1.9335 | 1.3905 | | No log | 0.6929 | 264 | 1.3672 | 0.0106 | 1.3672 | 1.1693 | | No log | 0.6982 | 266 | 0.8064 | 0.3210 | 0.8064 | 0.8980 | | No log | 0.7034 | 268 | 0.7523 | 0.1270 | 0.7523 | 0.8674 | | No log | 0.7087 | 270 | 0.9503 | 0.2924 | 0.9503 | 0.9748 | | No log | 0.7139 | 272 | 1.2665 | 0.0106 | 1.2665 | 1.1254 | | No log | 0.7192 | 274 | 1.1794 | 0.0106 | 1.1794 | 1.0860 | | No log | 0.7244 | 276 | 0.9198 | 0.2924 | 0.9198 | 0.9591 | | No log | 0.7297 | 278 | 0.8598 | 0.2924 | 0.8598 | 0.9272 | | No log | 0.7349 | 280 | 1.0150 | 0.1444 | 1.0150 | 1.0075 | | No log | 0.7402 | 282 | 1.4208 | 0.0 | 1.4208 | 1.1920 | | No log | 0.7454 | 284 | 1.8097 | 0.0 | 1.8097 | 1.3453 | | No log | 0.7507 | 286 | 1.7147 | 0.0 | 1.7147 | 1.3095 | | No log | 0.7559 | 288 | 1.3247 | 0.0 | 1.3247 | 1.1510 | | No log | 0.7612 | 290 | 0.9930 | 0.1444 | 0.9930 | 0.9965 | | No log | 0.7664 | 292 | 1.0556 | 0.1444 | 1.0556 | 1.0274 | | No log | 0.7717 | 294 | 1.1920 | 0.0106 | 1.1920 | 1.0918 | | No log | 0.7769 | 296 | 1.1338 | 0.1444 | 1.1338 | 1.0648 | | No log | 0.7822 | 298 | 1.1484 | 0.1444 | 1.1484 | 1.0716 | | No log | 0.7874 | 300 | 1.4066 | 0.0106 | 1.4066 | 1.1860 | | No log | 0.7927 | 302 | 1.5537 | 0.0106 | 1.5537 | 1.2465 | | No log | 0.7979 | 304 | 1.5806 | 0.0106 | 1.5806 | 1.2572 | | No log | 0.8031 | 306 | 1.2893 | 0.0106 | 1.2893 | 1.1355 | | No log | 0.8084 | 308 | 1.2001 | 0.1444 | 1.2001 | 1.0955 | | No log | 0.8136 | 310 | 0.9759 | 0.1444 | 0.9759 | 0.9879 | | No log | 0.8189 | 312 | 1.0270 | 0.1444 | 1.0270 | 1.0134 | | No log | 0.8241 | 314 | 1.4009 | 0.0 | 1.4009 | 1.1836 | | No log | 0.8294 | 316 | 1.6518 | 0.0 | 1.6518 | 1.2852 | | No log | 0.8346 | 318 | 1.8953 | 0.0 | 1.8953 | 1.3767 | | No log | 0.8399 | 320 | 1.6007 | 0.0 | 1.6007 | 1.2652 | | No log | 0.8451 | 322 | 1.0938 | 0.1444 | 1.0938 | 1.0459 | | No log | 0.8504 | 324 | 1.0238 | 0.1444 | 1.0238 | 1.0118 | | No log | 0.8556 | 326 | 1.3276 | 0.1444 | 1.3276 | 1.1522 | | No log | 0.8609 | 328 | 1.3732 | 0.0106 | 1.3732 | 1.1718 | | No log | 0.8661 | 330 | 1.3330 | 0.1444 | 1.3330 | 1.1545 | | No log | 0.8714 | 332 | 1.0972 | 0.1444 | 1.0972 | 1.0475 | | No log | 0.8766 | 334 | 1.2427 | 0.1444 | 1.2427 | 1.1148 | | No log | 0.8819 | 336 | 1.5608 | 0.0 | 1.5608 | 1.2493 | | No log | 0.8871 | 338 | 1.4975 | 0.0 | 1.4975 | 1.2237 | | No log | 0.8924 | 340 | 1.2103 | 0.1444 | 1.2103 | 1.1002 | | No log | 0.8976 | 342 | 0.9392 | 0.1444 | 0.9392 | 0.9691 | | No log | 0.9029 | 344 | 0.9963 | 0.1444 | 0.9963 | 0.9982 | | No log | 0.9081 | 346 | 1.3097 | 0.1444 | 1.3097 | 1.1444 | | No log | 0.9134 | 348 | 1.4172 | 0.0 | 1.4172 | 1.1905 | | No log | 0.9186 | 350 | 1.2153 | 0.1444 | 1.2153 | 1.1024 | | No log | 0.9239 | 352 | 0.9300 | 0.1444 | 0.9300 | 0.9644 | | No log | 0.9291 | 354 | 0.9042 | 0.1637 | 0.9042 | 0.9509 | | No log | 0.9344 | 356 | 1.0288 | 0.1444 | 1.0288 | 1.0143 | | No log | 0.9396 | 358 | 1.1006 | 0.1444 | 1.1006 | 1.0491 | | No log | 0.9449 | 360 | 1.3180 | 0.1444 | 1.3180 | 1.1481 | | No log | 0.9501 | 362 | 1.2985 | 0.1444 | 1.2985 | 1.1395 | | No log | 0.9554 | 364 | 1.1472 | 0.1444 | 1.1472 | 1.0711 | | No log | 0.9606 | 366 | 1.1917 | 0.1444 | 1.1917 | 1.0916 | | No log | 0.9659 | 368 | 1.1457 | 0.1444 | 1.1457 | 1.0704 | | No log | 0.9711 | 370 | 0.9949 | 0.1444 | 0.9949 | 0.9974 | | No log | 0.9764 | 372 | 0.9734 | 0.1444 | 0.9734 | 0.9866 | | No log | 0.9816 | 374 | 1.1985 | 0.1444 | 1.1985 | 1.0947 | | No log | 0.9869 | 376 | 1.3699 | 0.0106 | 1.3699 | 1.1704 | | No log | 0.9921 | 378 | 1.4171 | 0.0106 | 1.4171 | 1.1904 | | No log | 0.9974 | 380 | 1.4769 | 0.0 | 1.4769 | 1.2153 | | No log | 1.0026 | 382 | 1.2159 | 0.1444 | 1.2159 | 1.1027 | | No log | 1.0079 | 384 | 0.9214 | 0.1444 | 0.9214 | 0.9599 | | No log | 1.0131 | 386 | 0.9635 | 0.1444 | 0.9635 | 0.9816 | | No log | 1.0184 | 388 | 1.0288 | 0.1444 | 1.0288 | 1.0143 | | No log | 1.0236 | 390 | 1.0396 | 0.1444 | 1.0396 | 1.0196 | | No log | 1.0289 | 392 | 1.1776 | 0.0106 | 1.1776 | 1.0852 | | No log | 1.0341 | 394 | 1.3084 | 0.0106 | 1.3084 | 1.1438 | | No log | 1.0394 | 396 | 1.1995 | 0.0106 | 1.1995 | 1.0952 | | No log | 1.0446 | 398 | 1.0139 | 0.1444 | 1.0139 | 1.0069 | | No log | 1.0499 | 400 | 1.0759 | 0.1444 | 1.0759 | 1.0373 | | No log | 1.0551 | 402 | 1.1233 | 0.1444 | 1.1233 | 1.0598 | | No log | 1.0604 | 404 | 1.0307 | 0.1444 | 1.0307 | 1.0152 | | No log | 1.0656 | 406 | 0.9918 | 0.1444 | 0.9918 | 0.9959 | | No log | 1.0709 | 408 | 0.9706 | 0.1444 | 0.9706 | 0.9852 | | No log | 1.0761 | 410 | 0.8595 | 0.2092 | 0.8595 | 0.9271 | | No log | 1.0814 | 412 | 0.8311 | 0.2092 | 0.8311 | 0.9116 | | No log | 1.0866 | 414 | 0.9841 | 0.1444 | 0.9841 | 0.9920 | | No log | 1.0919 | 416 | 1.5320 | 0.0106 | 1.5320 | 1.2377 | | No log | 1.0971 | 418 | 1.8817 | 0.0 | 1.8817 | 1.3717 | | No log | 1.1024 | 420 | 1.7101 | 0.0106 | 1.7101 | 1.3077 | | No log | 1.1076 | 422 | 1.1085 | 0.1444 | 1.1085 | 1.0528 | | No log | 1.1129 | 424 | 0.7554 | 0.2763 | 0.7554 | 0.8691 | | No log | 1.1181 | 426 | 0.7295 | 0.3077 | 0.7295 | 0.8541 | | No log | 1.1234 | 428 | 0.8579 | 0.3210 | 0.8579 | 0.9262 | | No log | 1.1286 | 430 | 1.3197 | 0.1444 | 1.3197 | 1.1488 | | No log | 1.1339 | 432 | 1.4374 | 0.0 | 1.4374 | 1.1989 | | No log | 1.1391 | 434 | 1.2504 | 0.0106 | 1.2504 | 1.1182 | | No log | 1.1444 | 436 | 0.9499 | 0.1444 | 0.9499 | 0.9746 | | No log | 1.1496 | 438 | 0.8274 | 0.3529 | 0.8274 | 0.9096 | | No log | 1.1549 | 440 | 0.8259 | 0.3529 | 0.8259 | 0.9088 | | No log | 1.1601 | 442 | 0.9663 | 0.1444 | 0.9663 | 0.9830 | | No log | 1.1654 | 444 | 1.2851 | 0.0106 | 1.2851 | 1.1336 | | No log | 1.1706 | 446 | 1.4290 | 0.0106 | 1.4290 | 1.1954 | | No log | 1.1759 | 448 | 1.2178 | 0.1444 | 1.2178 | 1.1035 | | No log | 1.1811 | 450 | 0.9275 | 0.1444 | 0.9275 | 0.9630 | | No log | 1.1864 | 452 | 1.0018 | 0.1444 | 1.0018 | 1.0009 | | No log | 1.1916 | 454 | 1.3210 | 0.0106 | 1.3210 | 1.1493 | | No log | 1.1969 | 456 | 1.4898 | 0.0106 | 1.4898 | 1.2206 | | No log | 1.2021 | 458 | 1.6165 | 0.0 | 1.6165 | 1.2714 | | No log | 1.2073 | 460 | 1.3235 | 0.1444 | 1.3235 | 1.1504 | | No log | 1.2126 | 462 | 1.0257 | 0.1444 | 1.0257 | 1.0128 | | No log | 1.2178 | 464 | 0.8501 | 0.2924 | 0.8501 | 0.9220 | | No log | 1.2231 | 466 | 0.8815 | 0.2924 | 0.8815 | 0.9389 | | No log | 1.2283 | 468 | 1.0237 | 0.1444 | 1.0237 | 1.0118 | | No log | 1.2336 | 470 | 1.0212 | 0.1444 | 1.0212 | 1.0105 | | No log | 1.2388 | 472 | 1.0273 | 0.1444 | 1.0273 | 1.0135 | | No log | 1.2441 | 474 | 0.8989 | 0.2924 | 0.8989 | 0.9481 | | No log | 1.2493 | 476 | 0.9502 | 0.1444 | 0.9502 | 0.9748 | | No log | 1.2546 | 478 | 1.2638 | 0.1444 | 1.2638 | 1.1242 | | No log | 1.2598 | 480 | 1.3562 | 0.0106 | 1.3562 | 1.1646 | | No log | 1.2651 | 482 | 1.1932 | 0.1444 | 1.1932 | 1.0924 | | No log | 1.2703 | 484 | 0.9404 | 0.1444 | 0.9404 | 0.9698 | | No log | 1.2756 | 486 | 0.8977 | 0.2924 | 0.8977 | 0.9475 | | No log | 1.2808 | 488 | 0.9714 | 0.1444 | 0.9714 | 0.9856 | | No log | 1.2861 | 490 | 0.9746 | 0.1444 | 0.9746 | 0.9872 | | No log | 1.2913 | 492 | 1.1098 | 0.1444 | 1.1098 | 1.0535 | | No log | 1.2966 | 494 | 1.2008 | 0.1444 | 1.2008 | 1.0958 | | No log | 1.3018 | 496 | 1.0760 | 0.1444 | 1.0760 | 1.0373 | | No log | 1.3071 | 498 | 0.8973 | 0.2924 | 0.8973 | 0.9473 | | 0.3889 | 1.3123 | 500 | 0.8979 | 0.2924 | 0.8979 | 0.9476 | | 0.3889 | 1.3176 | 502 | 1.0951 | 0.1444 | 1.0951 | 1.0465 | | 0.3889 | 1.3228 | 504 | 1.2992 | 0.1444 | 1.2992 | 1.1398 | | 0.3889 | 1.3281 | 506 | 1.3158 | 0.1444 | 1.3158 | 1.1471 | | 0.3889 | 1.3333 | 508 | 1.2937 | 0.1444 | 1.2937 | 1.1374 | | 0.3889 | 1.3386 | 510 | 1.1436 | 0.1444 | 1.1436 | 1.0694 | | 0.3889 | 1.3438 | 512 | 0.9966 | 0.1444 | 0.9966 | 0.9983 | | 0.3889 | 1.3491 | 514 | 1.0585 | 0.1444 | 1.0585 | 1.0288 | | 0.3889 | 1.3543 | 516 | 1.0489 | 0.1444 | 1.0489 | 1.0242 | | 0.3889 | 1.3596 | 518 | 0.9591 | 0.1444 | 0.9591 | 0.9793 | | 0.3889 | 1.3648 | 520 | 0.8419 | 0.3529 | 0.8419 | 0.9175 | | 0.3889 | 1.3701 | 522 | 0.9081 | 0.1444 | 0.9081 | 0.9529 | | 0.3889 | 1.3753 | 524 | 1.1393 | 0.1444 | 1.1393 | 1.0674 | | 0.3889 | 1.3806 | 526 | 1.2929 | 0.1444 | 1.2929 | 1.1370 | | 0.3889 | 1.3858 | 528 | 1.1077 | 0.1444 | 1.1077 | 1.0525 | | 0.3889 | 1.3911 | 530 | 0.9450 | 0.1451 | 0.9450 | 0.9721 | | 0.3889 | 1.3963 | 532 | 0.9360 | 0.1451 | 0.9360 | 0.9675 | | 0.3889 | 1.4016 | 534 | 1.1582 | 0.1444 | 1.1582 | 1.0762 | | 0.3889 | 1.4068 | 536 | 1.2938 | 0.1444 | 1.2938 | 1.1374 | | 0.3889 | 1.4121 | 538 | 1.2143 | 0.1444 | 1.2143 | 1.1020 | | 0.3889 | 1.4173 | 540 | 1.0015 | 0.1444 | 1.0015 | 1.0008 | | 0.3889 | 1.4226 | 542 | 0.8021 | 0.3373 | 0.8021 | 0.8956 | | 0.3889 | 1.4278 | 544 | 0.7728 | 0.5096 | 0.7728 | 0.8791 | | 0.3889 | 1.4331 | 546 | 0.8942 | 0.1444 | 0.8942 | 0.9456 | | 0.3889 | 1.4383 | 548 | 1.1181 | 0.1444 | 1.1181 | 1.0574 | | 0.3889 | 1.4436 | 550 | 1.1124 | 0.1444 | 1.1124 | 1.0547 | | 0.3889 | 1.4488 | 552 | 0.9010 | 0.1444 | 0.9010 | 0.9492 | | 0.3889 | 1.4541 | 554 | 0.7398 | 0.5417 | 0.7398 | 0.8601 | | 0.3889 | 1.4593 | 556 | 0.7783 | 0.3210 | 0.7783 | 0.8822 | | 0.3889 | 1.4646 | 558 | 0.8784 | 0.2924 | 0.8784 | 0.9372 | | 0.3889 | 1.4698 | 560 | 1.0635 | 0.1444 | 1.0635 | 1.0312 | | 0.3889 | 1.4751 | 562 | 1.1227 | 0.1444 | 1.1227 | 1.0596 | | 0.3889 | 1.4803 | 564 | 0.9576 | 0.1444 | 0.9576 | 0.9786 | | 0.3889 | 1.4856 | 566 | 0.8681 | 0.2924 | 0.8681 | 0.9317 | | 0.3889 | 1.4908 | 568 | 0.8302 | 0.3210 | 0.8302 | 0.9112 | | 0.3889 | 1.4961 | 570 | 0.9554 | 0.1444 | 0.9554 | 0.9774 | | 0.3889 | 1.5013 | 572 | 1.1533 | 0.1444 | 1.1533 | 1.0739 | | 0.3889 | 1.5066 | 574 | 1.1506 | 0.1444 | 1.1506 | 1.0727 | | 0.3889 | 1.5118 | 576 | 0.9412 | 0.1444 | 0.9412 | 0.9702 | | 0.3889 | 1.5171 | 578 | 0.8597 | 0.3210 | 0.8597 | 0.9272 | | 0.3889 | 1.5223 | 580 | 0.9259 | 0.1444 | 0.9259 | 0.9622 | | 0.3889 | 1.5276 | 582 | 1.0626 | 0.1444 | 1.0626 | 1.0308 | | 0.3889 | 1.5328 | 584 | 1.1112 | 0.1444 | 1.1112 | 1.0541 | | 0.3889 | 1.5381 | 586 | 0.9573 | 0.1444 | 0.9573 | 0.9784 | | 0.3889 | 1.5433 | 588 | 0.9422 | 0.1637 | 0.9422 | 0.9707 | | 0.3889 | 1.5486 | 590 | 1.0093 | 0.1444 | 1.0093 | 1.0046 | | 0.3889 | 1.5538 | 592 | 0.9733 | 0.1637 | 0.9733 | 0.9866 | | 0.3889 | 1.5591 | 594 | 1.0891 | 0.1444 | 1.0891 | 1.0436 | | 0.3889 | 1.5643 | 596 | 1.1793 | 0.1444 | 1.1793 | 1.0860 | | 0.3889 | 1.5696 | 598 | 1.0361 | 0.1637 | 1.0361 | 1.0179 | | 0.3889 | 1.5748 | 600 | 0.9821 | 0.1637 | 0.9821 | 0.9910 | | 0.3889 | 1.5801 | 602 | 0.9681 | 0.1637 | 0.9681 | 0.9839 | | 0.3889 | 1.5853 | 604 | 0.9969 | 0.1444 | 0.9969 | 0.9984 | | 0.3889 | 1.5906 | 606 | 1.0051 | 0.1444 | 1.0051 | 1.0025 | | 0.3889 | 1.5958 | 608 | 0.9398 | 0.1444 | 0.9398 | 0.9695 | | 0.3889 | 1.6010 | 610 | 0.9300 | 0.1444 | 0.9300 | 0.9644 | | 0.3889 | 1.6063 | 612 | 0.9529 | 0.1444 | 0.9529 | 0.9762 | | 0.3889 | 1.6115 | 614 | 1.1260 | 0.1444 | 1.1260 | 1.0611 | | 0.3889 | 1.6168 | 616 | 1.4263 | 0.0106 | 1.4263 | 1.1943 | | 0.3889 | 1.6220 | 618 | 1.4007 | 0.1444 | 1.4007 | 1.1835 | | 0.3889 | 1.6273 | 620 | 1.1734 | 0.1444 | 1.1734 | 1.0832 | | 0.3889 | 1.6325 | 622 | 0.8234 | 0.3086 | 0.8234 | 0.9074 | | 0.3889 | 1.6378 | 624 | 0.7303 | 0.4211 | 0.7303 | 0.8546 | | 0.3889 | 1.6430 | 626 | 0.7481 | 0.2878 | 0.7481 | 0.8649 | | 0.3889 | 1.6483 | 628 | 0.8600 | 0.3210 | 0.8600 | 0.9273 | | 0.3889 | 1.6535 | 630 | 1.0495 | 0.1444 | 1.0495 | 1.0244 | | 0.3889 | 1.6588 | 632 | 1.0508 | 0.1444 | 1.0508 | 1.0251 | | 0.3889 | 1.6640 | 634 | 0.9574 | 0.1444 | 0.9574 | 0.9785 | | 0.3889 | 1.6693 | 636 | 0.8377 | 0.3210 | 0.8377 | 0.9153 | | 0.3889 | 1.6745 | 638 | 0.7107 | 0.5096 | 0.7107 | 0.8430 | | 0.3889 | 1.6798 | 640 | 0.7768 | 0.3210 | 0.7768 | 0.8813 | | 0.3889 | 1.6850 | 642 | 1.0020 | 0.1444 | 1.0020 | 1.0010 | | 0.3889 | 1.6903 | 644 | 1.0488 | 0.1444 | 1.0488 | 1.0241 | | 0.3889 | 1.6955 | 646 | 0.9881 | 0.1444 | 0.9881 | 0.9940 | | 0.3889 | 1.7008 | 648 | 0.9907 | 0.1444 | 0.9907 | 0.9953 | | 0.3889 | 1.7060 | 650 | 0.8734 | 0.1637 | 0.8734 | 0.9345 | | 0.3889 | 1.7113 | 652 | 0.7851 | 0.3210 | 0.7851 | 0.8861 | | 0.3889 | 1.7165 | 654 | 0.8964 | 0.1444 | 0.8964 | 0.9468 | | 0.3889 | 1.7218 | 656 | 1.0746 | 0.1444 | 1.0746 | 1.0366 | | 0.3889 | 1.7270 | 658 | 1.2271 | 0.1444 | 1.2271 | 1.1077 | | 0.3889 | 1.7323 | 660 | 1.1701 | 0.1444 | 1.1701 | 1.0817 | | 0.3889 | 1.7375 | 662 | 0.9293 | 0.1444 | 0.9293 | 0.9640 | | 0.3889 | 1.7428 | 664 | 0.8319 | 0.1637 | 0.8319 | 0.9121 | | 0.3889 | 1.7480 | 666 | 0.8159 | 0.1637 | 0.8159 | 0.9033 | | 0.3889 | 1.7533 | 668 | 0.9447 | 0.1637 | 0.9447 | 0.9720 | | 0.3889 | 1.7585 | 670 | 1.1645 | 0.1444 | 1.1645 | 1.0791 | | 0.3889 | 1.7638 | 672 | 1.2537 | 0.1444 | 1.2537 | 1.1197 | | 0.3889 | 1.7690 | 674 | 1.1733 | 0.1444 | 1.1733 | 1.0832 | | 0.3889 | 1.7743 | 676 | 1.0815 | 0.1444 | 1.0815 | 1.0400 | | 0.3889 | 1.7795 | 678 | 0.9240 | 0.2924 | 0.9240 | 0.9613 | | 0.3889 | 1.7848 | 680 | 0.9271 | 0.3210 | 0.9271 | 0.9628 | | 0.3889 | 1.7900 | 682 | 0.8811 | 0.3210 | 0.8811 | 0.9387 | | 0.3889 | 1.7953 | 684 | 0.9125 | 0.3210 | 0.9125 | 0.9552 | | 0.3889 | 1.8005 | 686 | 1.0291 | 0.1444 | 1.0291 | 1.0145 | | 0.3889 | 1.8058 | 688 | 1.0551 | 0.1444 | 1.0551 | 1.0272 | | 0.3889 | 1.8110 | 690 | 1.1908 | 0.1444 | 1.1908 | 1.0913 | | 0.3889 | 1.8163 | 692 | 1.1869 | 0.1444 | 1.1869 | 1.0895 | | 0.3889 | 1.8215 | 694 | 1.4308 | 0.0106 | 1.4308 | 1.1962 | | 0.3889 | 1.8268 | 696 | 1.4412 | 0.0106 | 1.4412 | 1.2005 | | 0.3889 | 1.8320 | 698 | 1.1571 | 0.1444 | 1.1571 | 1.0757 | | 0.3889 | 1.8373 | 700 | 1.0250 | 0.1444 | 1.0250 | 1.0124 | | 0.3889 | 1.8425 | 702 | 0.8913 | 0.3210 | 0.8913 | 0.9441 | | 0.3889 | 1.8478 | 704 | 0.8880 | 0.3210 | 0.8880 | 0.9423 | | 0.3889 | 1.8530 | 706 | 0.8046 | 0.4296 | 0.8046 | 0.8970 | | 0.3889 | 1.8583 | 708 | 0.8025 | 0.4296 | 0.8025 | 0.8958 | | 0.3889 | 1.8635 | 710 | 0.9379 | 0.2924 | 0.9379 | 0.9685 | | 0.3889 | 1.8688 | 712 | 1.0131 | 0.1444 | 1.0131 | 1.0065 | | 0.3889 | 1.8740 | 714 | 0.9086 | 0.2924 | 0.9086 | 0.9532 | | 0.3889 | 1.8793 | 716 | 0.7839 | 0.2092 | 0.7839 | 0.8854 | | 0.3889 | 1.8845 | 718 | 0.8552 | 0.3210 | 0.8552 | 0.9248 | | 0.3889 | 1.8898 | 720 | 1.1461 | 0.1444 | 1.1461 | 1.0705 | | 0.3889 | 1.8950 | 722 | 1.3771 | 0.1444 | 1.3771 | 1.1735 | | 0.3889 | 1.9003 | 724 | 1.4631 | 0.0106 | 1.4631 | 1.2096 | | 0.3889 | 1.9055 | 726 | 1.2432 | 0.0106 | 1.2432 | 1.1150 | | 0.3889 | 1.9108 | 728 | 0.9728 | 0.2924 | 0.9728 | 0.9863 | | 0.3889 | 1.9160 | 730 | 0.7411 | 0.1270 | 0.7411 | 0.8609 | | 0.3889 | 1.9213 | 732 | 0.6861 | 0.0 | 0.6861 | 0.8283 | | 0.3889 | 1.9265 | 734 | 0.6925 | 0.0 | 0.6925 | 0.8322 | | 0.3889 | 1.9318 | 736 | 0.7731 | 0.2361 | 0.7731 | 0.8793 | | 0.3889 | 1.9370 | 738 | 0.9625 | 0.2924 | 0.9625 | 0.9811 | | 0.3889 | 1.9423 | 740 | 1.2184 | 0.1444 | 1.2184 | 1.1038 | | 0.3889 | 1.9475 | 742 | 1.2194 | 0.1444 | 1.2194 | 1.1043 | | 0.3889 | 1.9528 | 744 | 1.0165 | 0.2924 | 1.0165 | 1.0082 | | 0.3889 | 1.9580 | 746 | 0.7954 | 0.3210 | 0.7954 | 0.8919 | | 0.3889 | 1.9633 | 748 | 0.7552 | 0.3373 | 0.7552 | 0.8690 | | 0.3889 | 1.9685 | 750 | 0.8507 | 0.3210 | 0.8507 | 0.9223 | | 0.3889 | 1.9738 | 752 | 1.1020 | 0.1444 | 1.1020 | 1.0498 | | 0.3889 | 1.9790 | 754 | 1.2714 | 0.1444 | 1.2714 | 1.1275 | | 0.3889 | 1.9843 | 756 | 1.2609 | 0.1444 | 1.2609 | 1.1229 | | 0.3889 | 1.9895 | 758 | 1.1044 | 0.1444 | 1.1044 | 1.0509 | | 0.3889 | 1.9948 | 760 | 0.8672 | 0.3210 | 0.8672 | 0.9312 | | 0.3889 | 2.0 | 762 | 0.7351 | 0.2361 | 0.7351 | 0.8574 | | 0.3889 | 2.0052 | 764 | 0.7006 | 0.4460 | 0.7006 | 0.8370 | | 0.3889 | 2.0105 | 766 | 0.7214 | 0.4296 | 0.7214 | 0.8493 | | 0.3889 | 2.0157 | 768 | 0.8199 | 0.3529 | 0.8199 | 0.9055 | | 0.3889 | 2.0210 | 770 | 0.9252 | 0.3210 | 0.9252 | 0.9619 | | 0.3889 | 2.0262 | 772 | 0.8760 | 0.3210 | 0.8760 | 0.9360 | | 0.3889 | 2.0315 | 774 | 0.8073 | 0.2361 | 0.8073 | 0.8985 | | 0.3889 | 2.0367 | 776 | 0.7210 | 0.1538 | 0.7210 | 0.8491 | | 0.3889 | 2.0420 | 778 | 0.6944 | 0.1791 | 0.6944 | 0.8333 | | 0.3889 | 2.0472 | 780 | 0.7051 | 0.3077 | 0.7051 | 0.8397 | | 0.3889 | 2.0525 | 782 | 0.7485 | 0.1295 | 0.7485 | 0.8652 | | 0.3889 | 2.0577 | 784 | 0.9524 | 0.2924 | 0.9524 | 0.9759 | | 0.3889 | 2.0630 | 786 | 1.1063 | 0.1444 | 1.1063 | 1.0518 | | 0.3889 | 2.0682 | 788 | 1.0631 | 0.1444 | 1.0631 | 1.0311 | | 0.3889 | 2.0735 | 790 | 0.9235 | 0.2924 | 0.9235 | 0.9610 | | 0.3889 | 2.0787 | 792 | 0.8927 | 0.3086 | 0.8927 | 0.9448 | | 0.3889 | 2.0840 | 794 | 0.8392 | 0.2293 | 0.8392 | 0.9161 | | 0.3889 | 2.0892 | 796 | 0.9106 | 0.2924 | 0.9106 | 0.9542 | | 0.3889 | 2.0945 | 798 | 0.9592 | 0.2924 | 0.9592 | 0.9794 | | 0.3889 | 2.0997 | 800 | 0.9618 | 0.2924 | 0.9618 | 0.9807 | | 0.3889 | 2.1050 | 802 | 0.8451 | 0.2361 | 0.8451 | 0.9193 | | 0.3889 | 2.1102 | 804 | 0.7548 | 0.1538 | 0.7548 | 0.8688 | | 0.3889 | 2.1155 | 806 | 0.7482 | 0.1538 | 0.7482 | 0.8650 | | 0.3889 | 2.1207 | 808 | 0.8002 | 0.2293 | 0.8002 | 0.8946 | | 0.3889 | 2.1260 | 810 | 1.0174 | 0.1444 | 1.0174 | 1.0086 | | 0.3889 | 2.1312 | 812 | 1.1848 | 0.1444 | 1.1848 | 1.0885 | | 0.3889 | 2.1365 | 814 | 1.1368 | 0.1444 | 1.1368 | 1.0662 | | 0.3889 | 2.1417 | 816 | 0.9530 | 0.1444 | 0.9530 | 0.9762 | | 0.3889 | 2.1470 | 818 | 0.8122 | 0.2361 | 0.8122 | 0.9012 | | 0.3889 | 2.1522 | 820 | 0.8028 | 0.2361 | 0.8028 | 0.8960 | | 0.3889 | 2.1575 | 822 | 0.8130 | 0.2361 | 0.8130 | 0.9016 | | 0.3889 | 2.1627 | 824 | 0.8269 | 0.2361 | 0.8269 | 0.9093 | | 0.3889 | 2.1680 | 826 | 0.8581 | 0.2293 | 0.8581 | 0.9263 | | 0.3889 | 2.1732 | 828 | 0.8973 | 0.3086 | 0.8973 | 0.9472 | | 0.3889 | 2.1785 | 830 | 1.0175 | 0.1444 | 1.0175 | 1.0087 | | 0.3889 | 2.1837 | 832 | 1.0534 | 0.1444 | 1.0534 | 1.0264 | | 0.3889 | 2.1890 | 834 | 0.9244 | 0.2924 | 0.9244 | 0.9615 | | 0.3889 | 2.1942 | 836 | 0.8071 | 0.2293 | 0.8071 | 0.8984 | | 0.3889 | 2.1995 | 838 | 0.7532 | 0.3529 | 0.7532 | 0.8679 | | 0.3889 | 2.2047 | 840 | 0.7584 | 0.2293 | 0.7584 | 0.8708 | | 0.3889 | 2.2100 | 842 | 0.8044 | 0.3529 | 0.8044 | 0.8969 | | 0.3889 | 2.2152 | 844 | 0.8537 | 0.3529 | 0.8537 | 0.9240 | | 0.3889 | 2.2205 | 846 | 0.9336 | 0.1444 | 0.9336 | 0.9662 | | 0.3889 | 2.2257 | 848 | 0.9108 | 0.1444 | 0.9108 | 0.9544 | | 0.3889 | 2.2310 | 850 | 0.8116 | 0.3529 | 0.8117 | 0.9009 | | 0.3889 | 2.2362 | 852 | 0.7186 | 0.2293 | 0.7186 | 0.8477 | | 0.3889 | 2.2415 | 854 | 0.7250 | 0.2293 | 0.7250 | 0.8514 | | 0.3889 | 2.2467 | 856 | 0.8222 | 0.3529 | 0.8222 | 0.9068 | | 0.3889 | 2.2520 | 858 | 1.1052 | 0.1444 | 1.1052 | 1.0513 | | 0.3889 | 2.2572 | 860 | 1.2621 | 0.1444 | 1.2621 | 1.1234 | | 0.3889 | 2.2625 | 862 | 1.1672 | 0.1444 | 1.1672 | 1.0804 | | 0.3889 | 2.2677 | 864 | 0.9148 | 0.2924 | 0.9148 | 0.9564 | | 0.3889 | 2.2730 | 866 | 0.7918 | 0.2361 | 0.7918 | 0.8898 | | 0.3889 | 2.2782 | 868 | 0.7312 | 0.2293 | 0.7312 | 0.8551 | | 0.3889 | 2.2835 | 870 | 0.7741 | 0.3529 | 0.7741 | 0.8798 | | 0.3889 | 2.2887 | 872 | 0.8891 | 0.2924 | 0.8891 | 0.9429 | | 0.3889 | 2.2940 | 874 | 1.0303 | 0.1444 | 1.0303 | 1.0151 | | 0.3889 | 2.2992 | 876 | 1.0050 | 0.1444 | 1.0050 | 1.0025 | | 0.3889 | 2.3045 | 878 | 0.8744 | 0.3210 | 0.8744 | 0.9351 | | 0.3889 | 2.3097 | 880 | 0.7860 | 0.3529 | 0.7860 | 0.8865 | | 0.3889 | 2.3150 | 882 | 0.7332 | 0.3373 | 0.7332 | 0.8563 | | 0.3889 | 2.3202 | 884 | 0.7138 | 0.5217 | 0.7138 | 0.8449 | | 0.3889 | 2.3255 | 886 | 0.7238 | 0.2293 | 0.7238 | 0.8508 | | 0.3889 | 2.3307 | 888 | 0.8203 | 0.3373 | 0.8203 | 0.9057 | | 0.3889 | 2.3360 | 890 | 0.9743 | 0.1444 | 0.9743 | 0.9871 | | 0.3889 | 2.3412 | 892 | 1.0418 | 0.1444 | 1.0418 | 1.0207 | | 0.3889 | 2.3465 | 894 | 0.9269 | 0.1637 | 0.9269 | 0.9627 | | 0.3889 | 2.3517 | 896 | 0.7862 | 0.3529 | 0.7862 | 0.8867 | | 0.3889 | 2.3570 | 898 | 0.7438 | 0.2293 | 0.7438 | 0.8624 | | 0.3889 | 2.3622 | 900 | 0.7907 | 0.3529 | 0.7907 | 0.8892 | | 0.3889 | 2.3675 | 902 | 0.8283 | 0.3210 | 0.8283 | 0.9101 | | 0.3889 | 2.3727 | 904 | 0.8704 | 0.3210 | 0.8704 | 0.9329 | | 0.3889 | 2.3780 | 906 | 0.7928 | 0.3529 | 0.7928 | 0.8904 | | 0.3889 | 2.3832 | 908 | 0.7618 | 0.2361 | 0.7618 | 0.8728 | | 0.3889 | 2.3885 | 910 | 0.7648 | 0.2361 | 0.7648 | 0.8745 | | 0.3889 | 2.3937 | 912 | 0.7963 | 0.3529 | 0.7963 | 0.8924 | | 0.3889 | 2.3990 | 914 | 0.8714 | 0.3210 | 0.8714 | 0.9335 | | 0.3889 | 2.4042 | 916 | 0.7926 | 0.3529 | 0.7926 | 0.8903 | | 0.3889 | 2.4094 | 918 | 0.7796 | 0.3529 | 0.7796 | 0.8829 | | 0.3889 | 2.4147 | 920 | 0.7395 | 0.2361 | 0.7395 | 0.8600 | | 0.3889 | 2.4199 | 922 | 0.7660 | 0.2361 | 0.7660 | 0.8752 | | 0.3889 | 2.4252 | 924 | 0.7979 | 0.3529 | 0.7979 | 0.8933 | | 0.3889 | 2.4304 | 926 | 0.7401 | 0.2361 | 0.7401 | 0.8603 | | 0.3889 | 2.4357 | 928 | 0.7184 | 0.2361 | 0.7184 | 0.8476 | | 0.3889 | 2.4409 | 930 | 0.7262 | 0.2361 | 0.7262 | 0.8522 | | 0.3889 | 2.4462 | 932 | 0.7646 | 0.2361 | 0.7646 | 0.8744 | | 0.3889 | 2.4514 | 934 | 0.8370 | 0.3210 | 0.8370 | 0.9149 | | 0.3889 | 2.4567 | 936 | 0.8038 | 0.2092 | 0.8038 | 0.8965 | | 0.3889 | 2.4619 | 938 | 0.7863 | 0.2092 | 0.7863 | 0.8867 | | 0.3889 | 2.4672 | 940 | 0.7969 | 0.2048 | 0.7969 | 0.8927 | | 0.3889 | 2.4724 | 942 | 1.0116 | 0.1444 | 1.0116 | 1.0058 | | 0.3889 | 2.4777 | 944 | 1.2470 | 0.1444 | 1.2470 | 1.1167 | | 0.3889 | 2.4829 | 946 | 1.1478 | 0.1444 | 1.1478 | 1.0713 | | 0.3889 | 2.4882 | 948 | 0.9689 | 0.1444 | 0.9689 | 0.9843 | | 0.3889 | 2.4934 | 950 | 0.8443 | 0.2092 | 0.8443 | 0.9188 | | 0.3889 | 2.4987 | 952 | 0.8995 | 0.3210 | 0.8995 | 0.9484 | | 0.3889 | 2.5039 | 954 | 0.9837 | 0.1444 | 0.9837 | 0.9918 | | 0.3889 | 2.5092 | 956 | 0.9129 | 0.2924 | 0.9129 | 0.9555 | | 0.3889 | 2.5144 | 958 | 0.8466 | 0.2092 | 0.8466 | 0.9201 | | 0.3889 | 2.5197 | 960 | 0.8629 | 0.2092 | 0.8629 | 0.9289 | | 0.3889 | 2.5249 | 962 | 0.9626 | 0.1444 | 0.9626 | 0.9811 | | 0.3889 | 2.5302 | 964 | 0.9761 | 0.1444 | 0.9761 | 0.9880 | | 0.3889 | 2.5354 | 966 | 0.9024 | 0.3210 | 0.9024 | 0.9500 | | 0.3889 | 2.5407 | 968 | 0.9433 | 0.1444 | 0.9433 | 0.9712 | | 0.3889 | 2.5459 | 970 | 0.9129 | 0.3210 | 0.9129 | 0.9555 | | 0.3889 | 2.5512 | 972 | 0.8383 | 0.2092 | 0.8383 | 0.9156 | | 0.3889 | 2.5564 | 974 | 0.7286 | 0.2568 | 0.7286 | 0.8536 | | 0.3889 | 2.5617 | 976 | 0.7256 | 0.2568 | 0.7256 | 0.8518 | | 0.3889 | 2.5669 | 978 | 0.8553 | 0.3086 | 0.8553 | 0.9248 | | 0.3889 | 2.5722 | 980 | 1.2594 | 0.1444 | 1.2594 | 1.1222 | | 0.3889 | 2.5774 | 982 | 1.4789 | 0.0106 | 1.4789 | 1.2161 | | 0.3889 | 2.5827 | 984 | 1.4294 | 0.0106 | 1.4294 | 1.1956 | | 0.3889 | 2.5879 | 986 | 1.1745 | 0.1444 | 1.1745 | 1.0838 | | 0.3889 | 2.5932 | 988 | 0.8377 | 0.3210 | 0.8377 | 0.9153 | | 0.3889 | 2.5984 | 990 | 0.7497 | 0.2361 | 0.7497 | 0.8658 | | 0.3889 | 2.6037 | 992 | 0.7706 | 0.2361 | 0.7706 | 0.8778 | | 0.3889 | 2.6089 | 994 | 0.8922 | 0.3210 | 0.8922 | 0.9446 | | 0.3889 | 2.6142 | 996 | 1.1003 | 0.1444 | 1.1003 | 1.0489 | | 0.3889 | 2.6194 | 998 | 1.1434 | 0.1444 | 1.1434 | 1.0693 | | 0.1313 | 2.6247 | 1000 | 1.0184 | 0.1637 | 1.0184 | 1.0092 | | 0.1313 | 2.6299 | 1002 | 0.9176 | 0.3210 | 0.9176 | 0.9579 | | 0.1313 | 2.6352 | 1004 | 0.9320 | 0.3210 | 0.9320 | 0.9654 | | 0.1313 | 2.6404 | 1006 | 0.9873 | 0.3210 | 0.9873 | 0.9936 | | 0.1313 | 2.6457 | 1008 | 1.0830 | 0.1444 | 1.0830 | 1.0407 | | 0.1313 | 2.6509 | 1010 | 1.0833 | 0.1444 | 1.0833 | 1.0408 | | 0.1313 | 2.6562 | 1012 | 0.9617 | 0.2924 | 0.9617 | 0.9807 | | 0.1313 | 2.6614 | 1014 | 0.8060 | 0.2361 | 0.8060 | 0.8978 | | 0.1313 | 2.6667 | 1016 | 0.7493 | 0.1538 | 0.7493 | 0.8656 | | 0.1313 | 2.6719 | 1018 | 0.7350 | 0.1538 | 0.7350 | 0.8573 | | 0.1313 | 2.6772 | 1020 | 0.7466 | -0.0476 | 0.7466 | 0.8641 | | 0.1313 | 2.6824 | 1022 | 0.8196 | 0.3529 | 0.8196 | 0.9053 | | 0.1313 | 2.6877 | 1024 | 1.0006 | 0.2924 | 1.0006 | 1.0003 | | 0.1313 | 2.6929 | 1026 | 1.1077 | 0.1444 | 1.1077 | 1.0525 | | 0.1313 | 2.6982 | 1028 | 1.0172 | 0.2924 | 1.0172 | 1.0086 | | 0.1313 | 2.7034 | 1030 | 0.8443 | 0.3210 | 0.8443 | 0.9189 | | 0.1313 | 2.7087 | 1032 | 0.7847 | 0.3529 | 0.7847 | 0.8859 | | 0.1313 | 2.7139 | 1034 | 0.8286 | 0.3529 | 0.8286 | 0.9103 | | 0.1313 | 2.7192 | 1036 | 0.8382 | 0.3210 | 0.8382 | 0.9155 | | 0.1313 | 2.7244 | 1038 | 0.8303 | 0.3210 | 0.8303 | 0.9112 | | 0.1313 | 2.7297 | 1040 | 0.8712 | 0.3210 | 0.8712 | 0.9334 | | 0.1313 | 2.7349 | 1042 | 0.8490 | 0.3210 | 0.8490 | 0.9214 | | 0.1313 | 2.7402 | 1044 | 0.7507 | 0.3529 | 0.7507 | 0.8664 | | 0.1313 | 2.7454 | 1046 | 0.6927 | 0.2763 | 0.6927 | 0.8323 | | 0.1313 | 2.7507 | 1048 | 0.7025 | 0.1295 | 0.7025 | 0.8381 | | 0.1313 | 2.7559 | 1050 | 0.7807 | 0.3529 | 0.7807 | 0.8836 | | 0.1313 | 2.7612 | 1052 | 1.0446 | 0.1444 | 1.0446 | 1.0221 | | 0.1313 | 2.7664 | 1054 | 1.2503 | 0.1444 | 1.2503 | 1.1182 | | 0.1313 | 2.7717 | 1056 | 1.2285 | 0.1444 | 1.2285 | 1.1084 | | 0.1313 | 2.7769 | 1058 | 1.0470 | 0.1444 | 1.0470 | 1.0232 | | 0.1313 | 2.7822 | 1060 | 0.8634 | 0.3210 | 0.8634 | 0.9292 | | 0.1313 | 2.7874 | 1062 | 0.7487 | 0.2361 | 0.7487 | 0.8653 | | 0.1313 | 2.7927 | 1064 | 0.7170 | -0.0185 | 0.7170 | 0.8467 | | 0.1313 | 2.7979 | 1066 | 0.7183 | -0.0185 | 0.7183 | 0.8475 | | 0.1313 | 2.8031 | 1068 | 0.7743 | 0.2361 | 0.7743 | 0.8799 | | 0.1313 | 2.8084 | 1070 | 0.8529 | 0.3210 | 0.8529 | 0.9235 | | 0.1313 | 2.8136 | 1072 | 0.8818 | 0.3210 | 0.8818 | 0.9390 | | 0.1313 | 2.8189 | 1074 | 0.9494 | 0.1637 | 0.9494 | 0.9744 | | 0.1313 | 2.8241 | 1076 | 0.9085 | 0.3210 | 0.9085 | 0.9531 | | 0.1313 | 2.8294 | 1078 | 0.7996 | 0.3210 | 0.7996 | 0.8942 | | 0.1313 | 2.8346 | 1080 | 0.7753 | 0.3529 | 0.7753 | 0.8805 | | 0.1313 | 2.8399 | 1082 | 0.7567 | 0.2361 | 0.7567 | 0.8699 | | 0.1313 | 2.8451 | 1084 | 0.8117 | 0.3210 | 0.8117 | 0.9010 | | 0.1313 | 2.8504 | 1086 | 0.7710 | 0.3210 | 0.7710 | 0.8780 | | 0.1313 | 2.8556 | 1088 | 0.7247 | 0.2361 | 0.7247 | 0.8513 | | 0.1313 | 2.8609 | 1090 | 0.7210 | 0.2361 | 0.7210 | 0.8491 | | 0.1313 | 2.8661 | 1092 | 0.7113 | 0.2667 | 0.7113 | 0.8434 | | 0.1313 | 2.8714 | 1094 | 0.7734 | 0.3210 | 0.7734 | 0.8794 | | 0.1313 | 2.8766 | 1096 | 0.8319 | 0.3210 | 0.8319 | 0.9121 | | 0.1313 | 2.8819 | 1098 | 0.8152 | 0.3210 | 0.8152 | 0.9029 | | 0.1313 | 2.8871 | 1100 | 0.7180 | 0.1270 | 0.7180 | 0.8474 | | 0.1313 | 2.8924 | 1102 | 0.6746 | 0.0 | 0.6746 | 0.8213 | | 0.1313 | 2.8976 | 1104 | 0.6747 | 0.0 | 0.6747 | 0.8214 | | 0.1313 | 2.9029 | 1106 | 0.7232 | 0.1037 | 0.7232 | 0.8504 | | 0.1313 | 2.9081 | 1108 | 0.8437 | 0.3210 | 0.8437 | 0.9185 | | 0.1313 | 2.9134 | 1110 | 0.8978 | 0.1637 | 0.8978 | 0.9475 | | 0.1313 | 2.9186 | 1112 | 0.8424 | 0.3210 | 0.8424 | 0.9178 | | 0.1313 | 2.9239 | 1114 | 0.7156 | 0.4699 | 0.7156 | 0.8459 | | 0.1313 | 2.9291 | 1116 | 0.6848 | 0.5075 | 0.6848 | 0.8275 | | 0.1313 | 2.9344 | 1118 | 0.6804 | 0.5075 | 0.6804 | 0.8249 | | 0.1313 | 2.9396 | 1120 | 0.7434 | 0.3529 | 0.7434 | 0.8622 | | 0.1313 | 2.9449 | 1122 | 0.8946 | 0.1637 | 0.8946 | 0.9458 | | 0.1313 | 2.9501 | 1124 | 0.8727 | 0.1637 | 0.8727 | 0.9342 | | 0.1313 | 2.9554 | 1126 | 0.7659 | 0.3529 | 0.7659 | 0.8751 | | 0.1313 | 2.9606 | 1128 | 0.6879 | 0.3889 | 0.6879 | 0.8294 | | 0.1313 | 2.9659 | 1130 | 0.7001 | 0.1538 | 0.7001 | 0.8367 | | 0.1313 | 2.9711 | 1132 | 0.7020 | 0.1538 | 0.7020 | 0.8379 | | 0.1313 | 2.9764 | 1134 | 0.7129 | 0.1538 | 0.7129 | 0.8444 | | 0.1313 | 2.9816 | 1136 | 0.7223 | 0.1295 | 0.7223 | 0.8499 | | 0.1313 | 2.9869 | 1138 | 0.7775 | 0.3210 | 0.7775 | 0.8817 | | 0.1313 | 2.9921 | 1140 | 0.8505 | 0.3210 | 0.8505 | 0.9222 | | 0.1313 | 2.9974 | 1142 | 0.8354 | 0.3210 | 0.8354 | 0.9140 | | 0.1313 | 3.0026 | 1144 | 0.8816 | 0.1637 | 0.8816 | 0.9389 | | 0.1313 | 3.0079 | 1146 | 0.8145 | 0.2048 | 0.8145 | 0.9025 | | 0.1313 | 3.0131 | 1148 | 0.8146 | 0.2048 | 0.8146 | 0.9026 | | 0.1313 | 3.0184 | 1150 | 0.8190 | 0.2048 | 0.8190 | 0.9050 | | 0.1313 | 3.0236 | 1152 | 0.8285 | 0.2048 | 0.8285 | 0.9102 | | 0.1313 | 3.0289 | 1154 | 0.8222 | 0.2048 | 0.8222 | 0.9068 | | 0.1313 | 3.0341 | 1156 | 0.8745 | 0.3210 | 0.8745 | 0.9352 | | 0.1313 | 3.0394 | 1158 | 0.9385 | 0.1444 | 0.9385 | 0.9687 | | 0.1313 | 3.0446 | 1160 | 0.9199 | 0.1444 | 0.9199 | 0.9591 | | 0.1313 | 3.0499 | 1162 | 0.8314 | 0.2092 | 0.8314 | 0.9118 | | 0.1313 | 3.0551 | 1164 | 0.8056 | 0.0833 | 0.8056 | 0.8976 | | 0.1313 | 3.0604 | 1166 | 0.8486 | 0.2092 | 0.8486 | 0.9212 | | 0.1313 | 3.0656 | 1168 | 0.9491 | 0.1444 | 0.9491 | 0.9742 | | 0.1313 | 3.0709 | 1170 | 0.9783 | 0.1444 | 0.9783 | 0.9891 | | 0.1313 | 3.0761 | 1172 | 0.8793 | 0.0494 | 0.8793 | 0.9377 | | 0.1313 | 3.0814 | 1174 | 0.8173 | 0.2092 | 0.8173 | 0.9040 | | 0.1313 | 3.0866 | 1176 | 0.7753 | 0.1295 | 0.7753 | 0.8805 | | 0.1313 | 3.0919 | 1178 | 0.7589 | 0.5075 | 0.7589 | 0.8711 | | 0.1313 | 3.0971 | 1180 | 0.7710 | 0.3231 | 0.7710 | 0.8781 | | 0.1313 | 3.1024 | 1182 | 0.8615 | 0.0494 | 0.8615 | 0.9282 | | 0.1313 | 3.1076 | 1184 | 0.8923 | 0.0494 | 0.8923 | 0.9446 | | 0.1313 | 3.1129 | 1186 | 0.8195 | 0.2092 | 0.8195 | 0.9053 | | 0.1313 | 3.1181 | 1188 | 0.7876 | 0.0833 | 0.7876 | 0.8874 | | 0.1313 | 3.1234 | 1190 | 0.7468 | 0.3419 | 0.7468 | 0.8641 | | 0.1313 | 3.1286 | 1192 | 0.7439 | 0.3419 | 0.7439 | 0.8625 | | 0.1313 | 3.1339 | 1194 | 0.7840 | 0.0833 | 0.7840 | 0.8854 | | 0.1313 | 3.1391 | 1196 | 0.8747 | 0.0494 | 0.8747 | 0.9353 | | 0.1313 | 3.1444 | 1198 | 0.9294 | 0.1637 | 0.9294 | 0.9640 | | 0.1313 | 3.1496 | 1200 | 0.8671 | 0.2092 | 0.8671 | 0.9312 | | 0.1313 | 3.1549 | 1202 | 0.8465 | 0.2092 | 0.8465 | 0.9201 | | 0.1313 | 3.1601 | 1204 | 0.8931 | 0.2092 | 0.8931 | 0.9451 | | 0.1313 | 3.1654 | 1206 | 0.8434 | 0.2092 | 0.8434 | 0.9183 | | 0.1313 | 3.1706 | 1208 | 0.7850 | 0.0892 | 0.7850 | 0.8860 | | 0.1313 | 3.1759 | 1210 | 0.7938 | 0.0892 | 0.7938 | 0.8910 | | 0.1313 | 3.1811 | 1212 | 0.8508 | 0.0833 | 0.8508 | 0.9224 | | 0.1313 | 3.1864 | 1214 | 0.8567 | 0.0833 | 0.8567 | 0.9256 | | 0.1313 | 3.1916 | 1216 | 0.8219 | 0.0892 | 0.8219 | 0.9066 | | 0.1313 | 3.1969 | 1218 | 0.8423 | 0.0892 | 0.8423 | 0.9178 | | 0.1313 | 3.2021 | 1220 | 0.9218 | 0.2048 | 0.9218 | 0.9601 | | 0.1313 | 3.2073 | 1222 | 0.9122 | 0.2048 | 0.9122 | 0.9551 | | 0.1313 | 3.2126 | 1224 | 0.9361 | 0.2048 | 0.9361 | 0.9675 | | 0.1313 | 3.2178 | 1226 | 0.8950 | 0.2048 | 0.8950 | 0.9461 | | 0.1313 | 3.2231 | 1228 | 0.8666 | 0.0892 | 0.8666 | 0.9309 | | 0.1313 | 3.2283 | 1230 | 0.8257 | 0.0892 | 0.8257 | 0.9087 | | 0.1313 | 3.2336 | 1232 | 0.8295 | 0.0892 | 0.8295 | 0.9107 | | 0.1313 | 3.2388 | 1234 | 0.8338 | 0.0892 | 0.8338 | 0.9132 | | 0.1313 | 3.2441 | 1236 | 0.8717 | 0.2092 | 0.8717 | 0.9337 | | 0.1313 | 3.2493 | 1238 | 0.8773 | 0.2092 | 0.8773 | 0.9367 | | 0.1313 | 3.2546 | 1240 | 0.9406 | 0.1637 | 0.9406 | 0.9698 | | 0.1313 | 3.2598 | 1242 | 0.9364 | 0.1637 | 0.9364 | 0.9677 | | 0.1313 | 3.2651 | 1244 | 0.8620 | 0.2048 | 0.8620 | 0.9284 | | 0.1313 | 3.2703 | 1246 | 0.7980 | 0.0892 | 0.7980 | 0.8933 | | 0.1313 | 3.2756 | 1248 | 0.8300 | 0.2048 | 0.8300 | 0.9110 | | 0.1313 | 3.2808 | 1250 | 0.8144 | 0.2092 | 0.8144 | 0.9025 | | 0.1313 | 3.2861 | 1252 | 0.8122 | 0.2092 | 0.8122 | 0.9012 | | 0.1313 | 3.2913 | 1254 | 0.8008 | 0.2092 | 0.8008 | 0.8949 | | 0.1313 | 3.2966 | 1256 | 0.8092 | 0.3210 | 0.8092 | 0.8995 | | 0.1313 | 3.3018 | 1258 | 0.8135 | 0.3210 | 0.8135 | 0.9019 | | 0.1313 | 3.3071 | 1260 | 0.7441 | -0.0342 | 0.7441 | 0.8626 | | 0.1313 | 3.3123 | 1262 | 0.7169 | 0.0179 | 0.7169 | 0.8467 | | 0.1313 | 3.3176 | 1264 | 0.7208 | 0.0179 | 0.7208 | 0.8490 | | 0.1313 | 3.3228 | 1266 | 0.7558 | -0.0342 | 0.7558 | 0.8694 | | 0.1313 | 3.3281 | 1268 | 0.8975 | 0.3210 | 0.8975 | 0.9474 | | 0.1313 | 3.3333 | 1270 | 1.0004 | 0.1444 | 1.0004 | 1.0002 | | 0.1313 | 3.3386 | 1272 | 0.9524 | 0.2924 | 0.9524 | 0.9759 | | 0.1313 | 3.3438 | 1274 | 0.8949 | 0.3210 | 0.8949 | 0.9460 | | 0.1313 | 3.3491 | 1276 | 0.8802 | 0.2092 | 0.8802 | 0.9382 | | 0.1313 | 3.3543 | 1278 | 0.9025 | 0.3210 | 0.9025 | 0.9500 | | 0.1313 | 3.3596 | 1280 | 0.9010 | 0.3210 | 0.9010 | 0.9492 | | 0.1313 | 3.3648 | 1282 | 0.8703 | 0.3210 | 0.8703 | 0.9329 | | 0.1313 | 3.3701 | 1284 | 0.8009 | 0.0833 | 0.8009 | 0.8949 | | 0.1313 | 3.3753 | 1286 | 0.7777 | 0.1081 | 0.7777 | 0.8819 | | 0.1313 | 3.3806 | 1288 | 0.8209 | 0.2092 | 0.8209 | 0.9060 | | 0.1313 | 3.3858 | 1290 | 0.8870 | 0.3210 | 0.8870 | 0.9418 | | 0.1313 | 3.3911 | 1292 | 0.8717 | 0.3210 | 0.8717 | 0.9336 | | 0.1313 | 3.3963 | 1294 | 0.7832 | 0.0833 | 0.7832 | 0.8850 | | 0.1313 | 3.4016 | 1296 | 0.7657 | 0.2568 | 0.7657 | 0.8750 | | 0.1313 | 3.4068 | 1298 | 0.7904 | 0.0892 | 0.7904 | 0.8890 | | 0.1313 | 3.4121 | 1300 | 0.8684 | 0.3210 | 0.8684 | 0.9319 | | 0.1313 | 3.4173 | 1302 | 0.9244 | 0.1637 | 0.9244 | 0.9614 | | 0.1313 | 3.4226 | 1304 | 0.8495 | 0.3210 | 0.8495 | 0.9217 | | 0.1313 | 3.4278 | 1306 | 0.7822 | 0.0892 | 0.7822 | 0.8844 | | 0.1313 | 3.4331 | 1308 | 0.7575 | 0.4615 | 0.7575 | 0.8704 | | 0.1313 | 3.4383 | 1310 | 0.7622 | 0.4211 | 0.7622 | 0.8730 | | 0.1313 | 3.4436 | 1312 | 0.8096 | 0.2048 | 0.8096 | 0.8998 | | 0.1313 | 3.4488 | 1314 | 0.8917 | 0.3210 | 0.8917 | 0.9443 | | 0.1313 | 3.4541 | 1316 | 0.9005 | 0.3210 | 0.9005 | 0.9489 | | 0.1313 | 3.4593 | 1318 | 0.8582 | 0.3210 | 0.8582 | 0.9264 | | 0.1313 | 3.4646 | 1320 | 0.7586 | 0.0833 | 0.7586 | 0.8710 | | 0.1313 | 3.4698 | 1322 | 0.7302 | 0.3231 | 0.7302 | 0.8545 | | 0.1313 | 3.4751 | 1324 | 0.7524 | 0.2667 | 0.7524 | 0.8674 | | 0.1313 | 3.4803 | 1326 | 0.8157 | 0.3210 | 0.8157 | 0.9031 | | 0.1313 | 3.4856 | 1328 | 0.7970 | 0.0833 | 0.7970 | 0.8927 | | 0.1313 | 3.4908 | 1330 | 0.7411 | 0.2878 | 0.7411 | 0.8609 | | 0.1313 | 3.4961 | 1332 | 0.7435 | 0.1081 | 0.7435 | 0.8622 | | 0.1313 | 3.5013 | 1334 | 0.7960 | 0.0833 | 0.7960 | 0.8922 | | 0.1313 | 3.5066 | 1336 | 0.7957 | 0.0833 | 0.7957 | 0.8920 | | 0.1313 | 3.5118 | 1338 | 0.7541 | 0.1081 | 0.7541 | 0.8684 | | 0.1313 | 3.5171 | 1340 | 0.7597 | 0.1081 | 0.7597 | 0.8716 | | 0.1313 | 3.5223 | 1342 | 0.8164 | 0.0833 | 0.8164 | 0.9035 | | 0.1313 | 3.5276 | 1344 | 0.8142 | 0.2092 | 0.8142 | 0.9023 | | 0.1313 | 3.5328 | 1346 | 0.8123 | 0.2092 | 0.8123 | 0.9013 | | 0.1313 | 3.5381 | 1348 | 0.8219 | 0.2092 | 0.8219 | 0.9066 | | 0.1313 | 3.5433 | 1350 | 0.7637 | 0.1081 | 0.7637 | 0.8739 | | 0.1313 | 3.5486 | 1352 | 0.7536 | 0.4615 | 0.7536 | 0.8681 | | 0.1313 | 3.5538 | 1354 | 0.7711 | 0.1081 | 0.7711 | 0.8781 | | 0.1313 | 3.5591 | 1356 | 0.8708 | 0.3210 | 0.8708 | 0.9331 | | 0.1313 | 3.5643 | 1358 | 0.9693 | 0.3210 | 0.9693 | 0.9846 | | 0.1313 | 3.5696 | 1360 | 0.9401 | 0.3210 | 0.9401 | 0.9696 | | 0.1313 | 3.5748 | 1362 | 0.8285 | 0.3210 | 0.8285 | 0.9102 | | 0.1313 | 3.5801 | 1364 | 0.7625 | 0.1037 | 0.7625 | 0.8732 | | 0.1313 | 3.5853 | 1366 | 0.7172 | 0.0 | 0.7172 | 0.8469 | | 0.1313 | 3.5906 | 1368 | 0.7153 | 0.0 | 0.7153 | 0.8458 | | 0.1313 | 3.5958 | 1370 | 0.7431 | 0.1270 | 0.7431 | 0.8620 | | 0.1313 | 3.6010 | 1372 | 0.8359 | 0.3210 | 0.8359 | 0.9143 | | 0.1313 | 3.6063 | 1374 | 0.8879 | 0.3210 | 0.8879 | 0.9423 | | 0.1313 | 3.6115 | 1376 | 0.8424 | 0.2092 | 0.8424 | 0.9178 | | 0.1313 | 3.6168 | 1378 | 0.8183 | 0.0892 | 0.8183 | 0.9046 | | 0.1313 | 3.6220 | 1380 | 0.8255 | 0.0892 | 0.8255 | 0.9086 | | 0.1313 | 3.6273 | 1382 | 0.8335 | 0.0892 | 0.8335 | 0.9130 | | 0.1313 | 3.6325 | 1384 | 0.8389 | 0.0892 | 0.8389 | 0.9159 | | 0.1313 | 3.6378 | 1386 | 0.8084 | 0.1081 | 0.8084 | 0.8991 | | 0.1313 | 3.6430 | 1388 | 0.8359 | 0.2048 | 0.8359 | 0.9143 | | 0.1313 | 3.6483 | 1390 | 0.9175 | 0.3210 | 0.9175 | 0.9579 | | 0.1313 | 3.6535 | 1392 | 0.9421 | 0.3210 | 0.9421 | 0.9706 | | 0.1313 | 3.6588 | 1394 | 0.8712 | 0.2092 | 0.8712 | 0.9334 | | 0.1313 | 3.6640 | 1396 | 0.8107 | 0.1081 | 0.8107 | 0.9004 | | 0.1313 | 3.6693 | 1398 | 0.7971 | 0.0 | 0.7971 | 0.8928 | | 0.1313 | 3.6745 | 1400 | 0.8095 | 0.0 | 0.8095 | 0.8997 | | 0.1313 | 3.6798 | 1402 | 0.8677 | 0.2048 | 0.8677 | 0.9315 | | 0.1313 | 3.6850 | 1404 | 0.9135 | 0.2048 | 0.9135 | 0.9558 | | 0.1313 | 3.6903 | 1406 | 0.9368 | 0.2048 | 0.9368 | 0.9679 | | 0.1313 | 3.6955 | 1408 | 0.9147 | 0.2048 | 0.9147 | 0.9564 | | 0.1313 | 3.7008 | 1410 | 0.9070 | 0.2048 | 0.9070 | 0.9524 | | 0.1313 | 3.7060 | 1412 | 0.8908 | 0.2048 | 0.8908 | 0.9438 | | 0.1313 | 3.7113 | 1414 | 0.9415 | 0.3210 | 0.9415 | 0.9703 | | 0.1313 | 3.7165 | 1416 | 1.0274 | 0.1444 | 1.0274 | 1.0136 | | 0.1313 | 3.7218 | 1418 | 0.9826 | 0.1444 | 0.9826 | 0.9913 | | 0.1313 | 3.7270 | 1420 | 0.8651 | 0.3210 | 0.8651 | 0.9301 | | 0.1313 | 3.7323 | 1422 | 0.7702 | -0.0185 | 0.7702 | 0.8776 | | 0.1313 | 3.7375 | 1424 | 0.7585 | 0.0179 | 0.7585 | 0.8709 | | 0.1313 | 3.7428 | 1426 | 0.7660 | 0.0179 | 0.7660 | 0.8752 | | 0.1313 | 3.7480 | 1428 | 0.7726 | 0.0 | 0.7726 | 0.8790 | | 0.1313 | 3.7533 | 1430 | 0.8643 | 0.2092 | 0.8643 | 0.9297 | | 0.1313 | 3.7585 | 1432 | 0.9647 | 0.1637 | 0.9647 | 0.9822 | | 0.1313 | 3.7638 | 1434 | 0.9666 | 0.1637 | 0.9666 | 0.9832 | | 0.1313 | 3.7690 | 1436 | 0.9043 | 0.3210 | 0.9043 | 0.9509 | | 0.1313 | 3.7743 | 1438 | 0.8402 | 0.0892 | 0.8402 | 0.9166 | | 0.1313 | 3.7795 | 1440 | 0.8481 | 0.2092 | 0.8481 | 0.9209 | | 0.1313 | 3.7848 | 1442 | 0.9195 | 0.1637 | 0.9195 | 0.9589 | | 0.1313 | 3.7900 | 1444 | 0.9185 | 0.1637 | 0.9185 | 0.9584 | | 0.1313 | 3.7953 | 1446 | 0.8203 | 0.2361 | 0.8203 | 0.9057 | | 0.1313 | 3.8005 | 1448 | 0.7960 | 0.3016 | 0.7960 | 0.8922 | | 0.1313 | 3.8058 | 1450 | 0.7779 | -0.0185 | 0.7779 | 0.8820 | | 0.1313 | 3.8110 | 1452 | 0.7906 | 0.3016 | 0.7906 | 0.8892 | | 0.1313 | 3.8163 | 1454 | 0.7860 | -0.0154 | 0.7860 | 0.8866 | | 0.1313 | 3.8215 | 1456 | 0.8437 | 0.3210 | 0.8437 | 0.9185 | | 0.1313 | 3.8268 | 1458 | 0.8996 | 0.3210 | 0.8996 | 0.9485 | | 0.1313 | 3.8320 | 1460 | 0.9179 | 0.3210 | 0.9179 | 0.9581 | | 0.1313 | 3.8373 | 1462 | 0.8228 | 0.3210 | 0.8228 | 0.9071 | | 0.1313 | 3.8425 | 1464 | 0.7617 | 0.0 | 0.7617 | 0.8727 | | 0.1313 | 3.8478 | 1466 | 0.7690 | -0.0154 | 0.7690 | 0.8769 | | 0.1313 | 3.8530 | 1468 | 0.8533 | 0.3210 | 0.8533 | 0.9237 | | 0.1313 | 3.8583 | 1470 | 0.9036 | 0.3210 | 0.9036 | 0.9506 | | 0.1313 | 3.8635 | 1472 | 0.8847 | 0.3210 | 0.8847 | 0.9406 | | 0.1313 | 3.8688 | 1474 | 0.8545 | 0.3210 | 0.8545 | 0.9244 | | 0.1313 | 3.8740 | 1476 | 0.8200 | 0.2092 | 0.8200 | 0.9055 | | 0.1313 | 3.8793 | 1478 | 0.8158 | 0.2092 | 0.8158 | 0.9032 | | 0.1313 | 3.8845 | 1480 | 0.8079 | 0.1037 | 0.8079 | 0.8988 | | 0.1313 | 3.8898 | 1482 | 0.7836 | -0.0154 | 0.7836 | 0.8852 | | 0.1313 | 3.8950 | 1484 | 0.7913 | -0.0154 | 0.7913 | 0.8895 | | 0.1313 | 3.9003 | 1486 | 0.8356 | 0.0892 | 0.8356 | 0.9141 | | 0.1313 | 3.9055 | 1488 | 0.9712 | 0.3210 | 0.9712 | 0.9855 | | 0.1313 | 3.9108 | 1490 | 1.0579 | 0.1444 | 1.0579 | 1.0285 | | 0.1313 | 3.9160 | 1492 | 1.0206 | 0.2924 | 1.0206 | 1.0102 | | 0.1313 | 3.9213 | 1494 | 0.9031 | 0.3210 | 0.9031 | 0.9503 | | 0.1313 | 3.9265 | 1496 | 0.8005 | -0.0154 | 0.8005 | 0.8947 | | 0.1313 | 3.9318 | 1498 | 0.7932 | 0.0 | 0.7932 | 0.8906 | | 0.0892 | 3.9370 | 1500 | 0.7914 | 0.0 | 0.7914 | 0.8896 | | 0.0892 | 3.9423 | 1502 | 0.7977 | -0.0154 | 0.7977 | 0.8931 | | 0.0892 | 3.9475 | 1504 | 0.8282 | -0.2222 | 0.8282 | 0.9101 | | 0.0892 | 3.9528 | 1506 | 0.8520 | 0.2092 | 0.8520 | 0.9230 | | 0.0892 | 3.9580 | 1508 | 0.8237 | -0.2222 | 0.8237 | 0.9076 | | 0.0892 | 3.9633 | 1510 | 0.8026 | -0.0154 | 0.8026 | 0.8959 | | 0.0892 | 3.9685 | 1512 | 0.7996 | -0.0154 | 0.7996 | 0.8942 | | 0.0892 | 3.9738 | 1514 | 0.8212 | -0.2222 | 0.8212 | 0.9062 | | 0.0892 | 3.9790 | 1516 | 0.8140 | 0.1037 | 0.8140 | 0.9022 | | 0.0892 | 3.9843 | 1518 | 0.8200 | 0.1081 | 0.8200 | 0.9055 | | 0.0892 | 3.9895 | 1520 | 0.8354 | 0.2048 | 0.8354 | 0.9140 | | 0.0892 | 3.9948 | 1522 | 0.8236 | 0.0892 | 0.8236 | 0.9075 | | 0.0892 | 4.0 | 1524 | 0.8539 | 0.2048 | 0.8539 | 0.9241 | | 0.0892 | 4.0052 | 1526 | 0.8378 | 0.2048 | 0.8378 | 0.9153 | | 0.0892 | 4.0105 | 1528 | 0.8407 | 0.2048 | 0.8407 | 0.9169 | | 0.0892 | 4.0157 | 1530 | 0.8315 | 0.2048 | 0.8315 | 0.9118 | | 0.0892 | 4.0210 | 1532 | 0.8509 | 0.2092 | 0.8509 | 0.9224 | | 0.0892 | 4.0262 | 1534 | 0.8337 | 0.2048 | 0.8337 | 0.9131 | | 0.0892 | 4.0315 | 1536 | 0.8602 | 0.2092 | 0.8602 | 0.9274 | | 0.0892 | 4.0367 | 1538 | 0.8497 | 0.2092 | 0.8497 | 0.9218 | | 0.0892 | 4.0420 | 1540 | 0.8107 | 0.0892 | 0.8107 | 0.9004 | | 0.0892 | 4.0472 | 1542 | 0.8104 | 0.0833 | 0.8104 | 0.9002 | | 0.0892 | 4.0525 | 1544 | 0.8355 | 0.0833 | 0.8355 | 0.9141 | | 0.0892 | 4.0577 | 1546 | 0.8398 | 0.0833 | 0.8398 | 0.9164 | | 0.0892 | 4.0630 | 1548 | 0.8580 | 0.0833 | 0.8580 | 0.9263 | | 0.0892 | 4.0682 | 1550 | 0.8416 | 0.0833 | 0.8416 | 0.9174 | | 0.0892 | 4.0735 | 1552 | 0.8468 | 0.0833 | 0.8468 | 0.9202 | | 0.0892 | 4.0787 | 1554 | 0.8324 | 0.0892 | 0.8324 | 0.9124 | | 0.0892 | 4.0840 | 1556 | 0.8242 | 0.0892 | 0.8242 | 0.9079 | | 0.0892 | 4.0892 | 1558 | 0.8089 | 0.2568 | 0.8089 | 0.8994 | | 0.0892 | 4.0945 | 1560 | 0.8514 | 0.2092 | 0.8514 | 0.9227 | | 0.0892 | 4.0997 | 1562 | 0.8618 | 0.2092 | 0.8618 | 0.9284 | | 0.0892 | 4.1050 | 1564 | 0.8439 | 0.2092 | 0.8439 | 0.9187 | | 0.0892 | 4.1102 | 1566 | 0.7940 | 0.2667 | 0.7940 | 0.8911 | | 0.0892 | 4.1155 | 1568 | 0.7675 | -0.0342 | 0.7675 | 0.8760 | | 0.0892 | 4.1207 | 1570 | 0.7869 | -0.0342 | 0.7869 | 0.8871 | | 0.0892 | 4.1260 | 1572 | 0.8552 | 0.2092 | 0.8552 | 0.9248 | | 0.0892 | 4.1312 | 1574 | 0.8870 | 0.3210 | 0.8870 | 0.9418 | | 0.0892 | 4.1365 | 1576 | 0.8345 | 0.3889 | 0.8345 | 0.9135 | | 0.0892 | 4.1417 | 1578 | 0.7978 | -0.0342 | 0.7978 | 0.8932 | | 0.0892 | 4.1470 | 1580 | 0.7885 | 0.0 | 0.7885 | 0.8880 | | 0.0892 | 4.1522 | 1582 | 0.7976 | 0.0 | 0.7976 | 0.8931 | | 0.0892 | 4.1575 | 1584 | 0.8168 | -0.0154 | 0.8168 | 0.9038 | | 0.0892 | 4.1627 | 1586 | 0.9263 | 0.2092 | 0.9263 | 0.9624 | | 0.0892 | 4.1680 | 1588 | 1.0255 | 0.0351 | 1.0255 | 1.0127 | | 0.0892 | 4.1732 | 1590 | 1.0228 | 0.0351 | 1.0228 | 1.0113 | | 0.0892 | 4.1785 | 1592 | 0.9447 | 0.2092 | 0.9447 | 0.9720 | | 0.0892 | 4.1837 | 1594 | 0.8427 | -0.0342 | 0.8427 | 0.9180 | | 0.0892 | 4.1890 | 1596 | 0.8014 | 0.0 | 0.8014 | 0.8952 | | 0.0892 | 4.1942 | 1598 | 0.8065 | 0.0179 | 0.8065 | 0.8981 | | 0.0892 | 4.1995 | 1600 | 0.8005 | 0.0179 | 0.8005 | 0.8947 | | 0.0892 | 4.2047 | 1602 | 0.8089 | -0.0185 | 0.8089 | 0.8994 | | 0.0892 | 4.2100 | 1604 | 0.8294 | -0.0342 | 0.8294 | 0.9107 | | 0.0892 | 4.2152 | 1606 | 0.8608 | 0.0833 | 0.8608 | 0.9278 | | 0.0892 | 4.2205 | 1608 | 0.9130 | 0.2092 | 0.9130 | 0.9555 | | 0.0892 | 4.2257 | 1610 | 0.8914 | 0.2092 | 0.8914 | 0.9442 | | 0.0892 | 4.2310 | 1612 | 0.8749 | 0.2092 | 0.8749 | 0.9354 | | 0.0892 | 4.2362 | 1614 | 0.8247 | -0.0154 | 0.8247 | 0.9081 | | 0.0892 | 4.2415 | 1616 | 0.7975 | -0.0154 | 0.7975 | 0.8930 | | 0.0892 | 4.2467 | 1618 | 0.8028 | -0.0154 | 0.8028 | 0.8960 | | 0.0892 | 4.2520 | 1620 | 0.8198 | 0.3016 | 0.8198 | 0.9054 | | 0.0892 | 4.2572 | 1622 | 0.8792 | 0.2092 | 0.8792 | 0.9376 | | 0.0892 | 4.2625 | 1624 | 0.9072 | 0.2092 | 0.9072 | 0.9525 | | 0.0892 | 4.2677 | 1626 | 0.8754 | 0.2092 | 0.8754 | 0.9356 | | 0.0892 | 4.2730 | 1628 | 0.7962 | -0.0342 | 0.7962 | 0.8923 | | 0.0892 | 4.2782 | 1630 | 0.7727 | 0.0 | 0.7727 | 0.8790 | | 0.0892 | 4.2835 | 1632 | 0.7824 | 0.0 | 0.7824 | 0.8845 | | 0.0892 | 4.2887 | 1634 | 0.7758 | 0.0 | 0.7758 | 0.8808 | | 0.0892 | 4.2940 | 1636 | 0.8194 | -0.0342 | 0.8194 | 0.9052 | | 0.0892 | 4.2992 | 1638 | 0.9055 | 0.2092 | 0.9055 | 0.9516 | | 0.0892 | 4.3045 | 1640 | 0.9788 | 0.2092 | 0.9788 | 0.9894 | | 0.0892 | 4.3097 | 1642 | 0.9598 | 0.2092 | 0.9598 | 0.9797 | | 0.0892 | 4.3150 | 1644 | 0.8790 | 0.2048 | 0.8790 | 0.9376 | | 0.0892 | 4.3202 | 1646 | 0.8444 | -0.1871 | 0.8444 | 0.9189 | | 0.0892 | 4.3255 | 1648 | 0.8345 | 0.0 | 0.8345 | 0.9135 | | 0.0892 | 4.3307 | 1650 | 0.8389 | -0.0154 | 0.8389 | 0.9159 | | 0.0892 | 4.3360 | 1652 | 0.8823 | 0.2048 | 0.8823 | 0.9393 | | 0.0892 | 4.3412 | 1654 | 0.9982 | 0.1852 | 0.9982 | 0.9991 | | 0.0892 | 4.3465 | 1656 | 1.0302 | 0.1444 | 1.0302 | 1.0150 | | 0.0892 | 4.3517 | 1658 | 0.9649 | 0.2092 | 0.9649 | 0.9823 | | 0.0892 | 4.3570 | 1660 | 0.8605 | 0.2092 | 0.8605 | 0.9276 | | 0.0892 | 4.3622 | 1662 | 0.7969 | 0.0 | 0.7969 | 0.8927 | | 0.0892 | 4.3675 | 1664 | 0.7879 | 0.0 | 0.7879 | 0.8877 | | 0.0892 | 4.3727 | 1666 | 0.7865 | 0.0 | 0.7865 | 0.8869 | | 0.0892 | 4.3780 | 1668 | 0.8385 | 0.2092 | 0.8385 | 0.9157 | | 0.0892 | 4.3832 | 1670 | 0.8844 | 0.2092 | 0.8844 | 0.9404 | | 0.0892 | 4.3885 | 1672 | 0.8671 | 0.2092 | 0.8671 | 0.9312 | | 0.0892 | 4.3937 | 1674 | 0.8455 | 0.2092 | 0.8455 | 0.9195 | | 0.0892 | 4.3990 | 1676 | 0.8419 | 0.2092 | 0.8419 | 0.9175 | | 0.0892 | 4.4042 | 1678 | 0.8173 | -0.2222 | 0.8173 | 0.9041 | | 0.0892 | 4.4094 | 1680 | 0.7913 | -0.0154 | 0.7913 | 0.8895 | | 0.0892 | 4.4147 | 1682 | 0.7888 | -0.0154 | 0.7888 | 0.8881 | | 0.0892 | 4.4199 | 1684 | 0.8165 | 0.0833 | 0.8165 | 0.9036 | | 0.0892 | 4.4252 | 1686 | 0.8626 | 0.3210 | 0.8626 | 0.9287 | | 0.0892 | 4.4304 | 1688 | 0.8651 | 0.3210 | 0.8651 | 0.9301 | | 0.0892 | 4.4357 | 1690 | 0.8076 | 0.2092 | 0.8076 | 0.8987 | | 0.0892 | 4.4409 | 1692 | 0.7726 | 0.3016 | 0.7726 | 0.8790 | | 0.0892 | 4.4462 | 1694 | 0.7537 | 0.3016 | 0.7537 | 0.8682 | | 0.0892 | 4.4514 | 1696 | 0.7727 | 0.3016 | 0.7727 | 0.8790 | | 0.0892 | 4.4567 | 1698 | 0.7989 | 0.2092 | 0.7989 | 0.8938 | | 0.0892 | 4.4619 | 1700 | 0.7936 | 0.2092 | 0.7936 | 0.8908 | | 0.0892 | 4.4672 | 1702 | 0.8101 | 0.2092 | 0.8101 | 0.9001 | | 0.0892 | 4.4724 | 1704 | 0.7920 | 0.3016 | 0.7920 | 0.8899 | | 0.0892 | 4.4777 | 1706 | 0.7833 | 0.3016 | 0.7833 | 0.8851 | | 0.0892 | 4.4829 | 1708 | 0.7756 | 0.3016 | 0.7756 | 0.8807 | | 0.0892 | 4.4882 | 1710 | 0.7784 | 0.3016 | 0.7784 | 0.8823 | | 0.0892 | 4.4934 | 1712 | 0.8211 | 0.3016 | 0.8211 | 0.9061 | | 0.0892 | 4.4987 | 1714 | 0.8433 | 0.0833 | 0.8433 | 0.9183 | | 0.0892 | 4.5039 | 1716 | 0.8503 | 0.0833 | 0.8503 | 0.9221 | | 0.0892 | 4.5092 | 1718 | 0.8368 | 0.1037 | 0.8368 | 0.9148 | | 0.0892 | 4.5144 | 1720 | 0.8489 | 0.1037 | 0.8489 | 0.9214 | | 0.0892 | 4.5197 | 1722 | 0.8955 | 0.2092 | 0.8955 | 0.9463 | | 0.0892 | 4.5249 | 1724 | 0.8775 | 0.0833 | 0.8775 | 0.9368 | | 0.0892 | 4.5302 | 1726 | 0.8378 | 0.1037 | 0.8378 | 0.9153 | | 0.0892 | 4.5354 | 1728 | 0.8129 | 0.1037 | 0.8129 | 0.9016 | | 0.0892 | 4.5407 | 1730 | 0.7986 | 0.3016 | 0.7986 | 0.8937 | | 0.0892 | 4.5459 | 1732 | 0.7833 | 0.3016 | 0.7833 | 0.8850 | | 0.0892 | 4.5512 | 1734 | 0.7829 | 0.3016 | 0.7829 | 0.8848 | | 0.0892 | 4.5564 | 1736 | 0.8033 | 0.1037 | 0.8033 | 0.8963 | | 0.0892 | 4.5617 | 1738 | 0.8243 | 0.1037 | 0.8243 | 0.9079 | | 0.0892 | 4.5669 | 1740 | 0.8305 | 0.1037 | 0.8305 | 0.9113 | | 0.0892 | 4.5722 | 1742 | 0.8180 | 0.1081 | 0.8180 | 0.9044 | | 0.0892 | 4.5774 | 1744 | 0.8136 | 0.1081 | 0.8136 | 0.9020 | | 0.0892 | 4.5827 | 1746 | 0.8161 | 0.1081 | 0.8161 | 0.9034 | | 0.0892 | 4.5879 | 1748 | 0.8226 | 0.1081 | 0.8226 | 0.9070 | | 0.0892 | 4.5932 | 1750 | 0.8558 | 0.2048 | 0.8558 | 0.9251 | | 0.0892 | 4.5984 | 1752 | 0.9614 | 0.2092 | 0.9614 | 0.9805 | | 0.0892 | 4.6037 | 1754 | 0.9652 | 0.0494 | 0.9652 | 0.9825 | | 0.0892 | 4.6089 | 1756 | 0.8792 | 0.2092 | 0.8792 | 0.9377 | | 0.0892 | 4.6142 | 1758 | 0.7971 | 0.2092 | 0.7971 | 0.8928 | | 0.0892 | 4.6194 | 1760 | 0.7555 | 0.3016 | 0.7555 | 0.8692 | | 0.0892 | 4.6247 | 1762 | 0.7519 | 0.3016 | 0.7519 | 0.8671 | | 0.0892 | 4.6299 | 1764 | 0.7866 | 0.4296 | 0.7866 | 0.8869 | | 0.0892 | 4.6352 | 1766 | 0.8555 | 0.2092 | 0.8555 | 0.9249 | | 0.0892 | 4.6404 | 1768 | 0.8470 | 0.2092 | 0.8470 | 0.9203 | | 0.0892 | 4.6457 | 1770 | 0.8095 | 0.3889 | 0.8095 | 0.8997 | | 0.0892 | 4.6509 | 1772 | 0.7864 | 0.3016 | 0.7864 | 0.8868 | | 0.0892 | 4.6562 | 1774 | 0.7977 | 0.2878 | 0.7977 | 0.8931 | | 0.0892 | 4.6614 | 1776 | 0.8131 | 0.0892 | 0.8131 | 0.9017 | | 0.0892 | 4.6667 | 1778 | 0.8088 | 0.0892 | 0.8088 | 0.8993 | | 0.0892 | 4.6719 | 1780 | 0.8176 | 0.0892 | 0.8176 | 0.9042 | | 0.0892 | 4.6772 | 1782 | 0.8336 | 0.0833 | 0.8336 | 0.9130 | | 0.0892 | 4.6824 | 1784 | 0.8660 | 0.0833 | 0.8660 | 0.9306 | | 0.0892 | 4.6877 | 1786 | 0.8470 | 0.0833 | 0.8470 | 0.9203 | | 0.0892 | 4.6929 | 1788 | 0.8042 | 0.0833 | 0.8042 | 0.8968 | | 0.0892 | 4.6982 | 1790 | 0.7720 | 0.2667 | 0.7720 | 0.8786 | | 0.0892 | 4.7034 | 1792 | 0.7611 | 0.2878 | 0.7611 | 0.8724 | | 0.0892 | 4.7087 | 1794 | 0.7811 | 0.2667 | 0.7811 | 0.8838 | | 0.0892 | 4.7139 | 1796 | 0.8411 | 0.0833 | 0.8411 | 0.9171 | | 0.0892 | 4.7192 | 1798 | 0.9133 | 0.2092 | 0.9133 | 0.9556 | | 0.0892 | 4.7244 | 1800 | 0.9431 | 0.1637 | 0.9431 | 0.9711 | | 0.0892 | 4.7297 | 1802 | 0.8841 | 0.0833 | 0.8841 | 0.9402 | | 0.0892 | 4.7349 | 1804 | 0.8089 | 0.0892 | 0.8089 | 0.8994 | | 0.0892 | 4.7402 | 1806 | 0.7967 | 0.2878 | 0.7967 | 0.8926 | | 0.0892 | 4.7454 | 1808 | 0.8064 | 0.0892 | 0.8064 | 0.8980 | | 0.0892 | 4.7507 | 1810 | 0.8802 | 0.0833 | 0.8802 | 0.9382 | | 0.0892 | 4.7559 | 1812 | 1.0575 | 0.1637 | 1.0575 | 1.0283 | | 0.0892 | 4.7612 | 1814 | 1.1252 | 0.1444 | 1.1252 | 1.0607 | | 0.0892 | 4.7664 | 1816 | 1.0839 | 0.1444 | 1.0839 | 1.0411 | | 0.0892 | 4.7717 | 1818 | 0.9707 | 0.1637 | 0.9707 | 0.9853 | | 0.0892 | 4.7769 | 1820 | 0.8325 | 0.0833 | 0.8325 | 0.9124 | | 0.0892 | 4.7822 | 1822 | 0.7552 | 0.0 | 0.7552 | 0.8690 | | 0.0892 | 4.7874 | 1824 | 0.7628 | 0.2080 | 0.7628 | 0.8734 | | 0.0892 | 4.7927 | 1826 | 0.7627 | 0.2080 | 0.7627 | 0.8733 | | 0.0892 | 4.7979 | 1828 | 0.7590 | 0.0 | 0.7590 | 0.8712 | | 0.0892 | 4.8031 | 1830 | 0.8176 | 0.0833 | 0.8176 | 0.9042 | | 0.0892 | 4.8084 | 1832 | 0.8727 | 0.0833 | 0.8727 | 0.9342 | | 0.0892 | 4.8136 | 1834 | 0.8504 | 0.0833 | 0.8504 | 0.9222 | | 0.0892 | 4.8189 | 1836 | 0.8134 | 0.0892 | 0.8134 | 0.9019 | | 0.0892 | 4.8241 | 1838 | 0.8121 | 0.0892 | 0.8121 | 0.9012 | | 0.0892 | 4.8294 | 1840 | 0.8245 | 0.0892 | 0.8245 | 0.9080 | | 0.0892 | 4.8346 | 1842 | 0.8526 | 0.0833 | 0.8526 | 0.9234 | | 0.0892 | 4.8399 | 1844 | 0.8869 | 0.0833 | 0.8869 | 0.9418 | | 0.0892 | 4.8451 | 1846 | 0.8595 | 0.0833 | 0.8595 | 0.9271 | | 0.0892 | 4.8504 | 1848 | 0.8169 | 0.2667 | 0.8169 | 0.9038 | | 0.0892 | 4.8556 | 1850 | 0.8073 | 0.3016 | 0.8073 | 0.8985 | | 0.0892 | 4.8609 | 1852 | 0.8179 | 0.2667 | 0.8179 | 0.9044 | | 0.0892 | 4.8661 | 1854 | 0.8395 | 0.0833 | 0.8395 | 0.9162 | | 0.0892 | 4.8714 | 1856 | 0.8513 | 0.0833 | 0.8513 | 0.9226 | | 0.0892 | 4.8766 | 1858 | 0.8679 | 0.0833 | 0.8679 | 0.9316 | | 0.0892 | 4.8819 | 1860 | 0.8210 | 0.0833 | 0.8210 | 0.9061 | | 0.0892 | 4.8871 | 1862 | 0.7921 | 0.3016 | 0.7921 | 0.8900 | | 0.0892 | 4.8924 | 1864 | 0.8076 | 0.2667 | 0.8076 | 0.8987 | | 0.0892 | 4.8976 | 1866 | 0.8602 | 0.0833 | 0.8602 | 0.9275 | | 0.0892 | 4.9029 | 1868 | 0.8446 | 0.0833 | 0.8446 | 0.9190 | | 0.0892 | 4.9081 | 1870 | 0.8056 | 0.2667 | 0.8056 | 0.8976 | | 0.0892 | 4.9134 | 1872 | 0.8216 | 0.0833 | 0.8216 | 0.9064 | | 0.0892 | 4.9186 | 1874 | 0.8772 | 0.0833 | 0.8772 | 0.9366 | | 0.0892 | 4.9239 | 1876 | 0.8664 | 0.0833 | 0.8664 | 0.9308 | | 0.0892 | 4.9291 | 1878 | 0.8055 | 0.0833 | 0.8055 | 0.8975 | | 0.0892 | 4.9344 | 1880 | 0.7571 | 0.2878 | 0.7571 | 0.8701 | | 0.0892 | 4.9396 | 1882 | 0.7550 | 0.2878 | 0.7550 | 0.8689 | | 0.0892 | 4.9449 | 1884 | 0.7765 | 0.2667 | 0.7765 | 0.8812 | | 0.0892 | 4.9501 | 1886 | 0.8050 | 0.0833 | 0.8050 | 0.8972 | | 0.0892 | 4.9554 | 1888 | 0.8373 | 0.0833 | 0.8373 | 0.9150 | | 0.0892 | 4.9606 | 1890 | 0.8176 | 0.0833 | 0.8176 | 0.9042 | | 0.0892 | 4.9659 | 1892 | 0.8373 | 0.0833 | 0.8373 | 0.9150 | | 0.0892 | 4.9711 | 1894 | 0.8483 | 0.0833 | 0.8483 | 0.9210 | | 0.0892 | 4.9764 | 1896 | 0.8192 | 0.0833 | 0.8192 | 0.9051 | | 0.0892 | 4.9816 | 1898 | 0.8205 | 0.0833 | 0.8205 | 0.9058 | | 0.0892 | 4.9869 | 1900 | 0.8366 | 0.0833 | 0.8366 | 0.9147 | | 0.0892 | 4.9921 | 1902 | 0.8322 | 0.0833 | 0.8322 | 0.9122 | | 0.0892 | 4.9974 | 1904 | 0.8380 | 0.0833 | 0.8380 | 0.9154 | | 0.0892 | 5.0026 | 1906 | 0.8209 | 0.2667 | 0.8209 | 0.9060 | | 0.0892 | 5.0079 | 1908 | 0.8050 | 0.3016 | 0.8050 | 0.8972 | | 0.0892 | 5.0131 | 1910 | 0.8150 | 0.3016 | 0.8150 | 0.9028 | | 0.0892 | 5.0184 | 1912 | 0.8206 | 0.2667 | 0.8206 | 0.9059 | | 0.0892 | 5.0236 | 1914 | 0.8120 | 0.2878 | 0.8120 | 0.9011 | | 0.0892 | 5.0289 | 1916 | 0.8209 | 0.2568 | 0.8209 | 0.9060 | | 0.0892 | 5.0341 | 1918 | 0.8495 | 0.0892 | 0.8495 | 0.9217 | | 0.0892 | 5.0394 | 1920 | 0.8664 | 0.0892 | 0.8664 | 0.9308 | | 0.0892 | 5.0446 | 1922 | 0.8620 | 0.0892 | 0.8620 | 0.9284 | | 0.0892 | 5.0499 | 1924 | 0.8440 | 0.0892 | 0.8440 | 0.9187 | | 0.0892 | 5.0551 | 1926 | 0.8210 | 0.0892 | 0.8210 | 0.9061 | | 0.0892 | 5.0604 | 1928 | 0.8175 | 0.0892 | 0.8175 | 0.9042 | | 0.0892 | 5.0656 | 1930 | 0.8003 | 0.1037 | 0.8003 | 0.8946 | | 0.0892 | 5.0709 | 1932 | 0.7853 | -0.0185 | 0.7853 | 0.8862 | | 0.0892 | 5.0761 | 1934 | 0.7928 | 0.1037 | 0.7928 | 0.8904 | | 0.0892 | 5.0814 | 1936 | 0.8075 | 0.0833 | 0.8075 | 0.8986 | | 0.0892 | 5.0866 | 1938 | 0.8167 | 0.0833 | 0.8167 | 0.9037 | | 0.0892 | 5.0919 | 1940 | 0.8059 | 0.1081 | 0.8059 | 0.8977 | | 0.0892 | 5.0971 | 1942 | 0.8116 | 0.1081 | 0.8116 | 0.9009 | | 0.0892 | 5.1024 | 1944 | 0.8127 | -0.0154 | 0.8127 | 0.9015 | | 0.0892 | 5.1076 | 1946 | 0.8323 | 0.0892 | 0.8323 | 0.9123 | | 0.0892 | 5.1129 | 1948 | 0.8942 | 0.2092 | 0.8942 | 0.9456 | | 0.0892 | 5.1181 | 1950 | 0.9448 | 0.2092 | 0.9448 | 0.9720 | | 0.0892 | 5.1234 | 1952 | 0.9169 | 0.2092 | 0.9169 | 0.9576 | | 0.0892 | 5.1286 | 1954 | 0.8816 | 0.0833 | 0.8816 | 0.9389 | | 0.0892 | 5.1339 | 1956 | 0.8331 | 0.0833 | 0.8331 | 0.9128 | | 0.0892 | 5.1391 | 1958 | 0.8024 | -0.0154 | 0.8024 | 0.8958 | | 0.0892 | 5.1444 | 1960 | 0.8055 | 0.0 | 0.8055 | 0.8975 | | 0.0892 | 5.1496 | 1962 | 0.8068 | 0.0 | 0.8068 | 0.8982 | | 0.0892 | 5.1549 | 1964 | 0.8078 | 0.2878 | 0.8078 | 0.8988 | | 0.0892 | 5.1601 | 1966 | 0.8487 | 0.0833 | 0.8487 | 0.9213 | | 0.0892 | 5.1654 | 1968 | 0.8955 | 0.2092 | 0.8955 | 0.9463 | | 0.0892 | 5.1706 | 1970 | 0.8847 | 0.0833 | 0.8847 | 0.9406 | | 0.0892 | 5.1759 | 1972 | 0.8634 | 0.0833 | 0.8634 | 0.9292 | | 0.0892 | 5.1811 | 1974 | 0.8475 | 0.0833 | 0.8475 | 0.9206 | | 0.0892 | 5.1864 | 1976 | 0.8330 | 0.0833 | 0.8330 | 0.9127 | | 0.0892 | 5.1916 | 1978 | 0.8432 | 0.0833 | 0.8432 | 0.9183 | | 0.0892 | 5.1969 | 1980 | 0.8409 | 0.0833 | 0.8409 | 0.9170 | | 0.0892 | 5.2021 | 1982 | 0.8435 | 0.0833 | 0.8435 | 0.9184 | | 0.0892 | 5.2073 | 1984 | 0.8377 | 0.0892 | 0.8377 | 0.9152 | | 0.0892 | 5.2126 | 1986 | 0.8541 | 0.0892 | 0.8541 | 0.9242 | | 0.0892 | 5.2178 | 1988 | 0.8731 | 0.0892 | 0.8731 | 0.9344 | | 0.0892 | 5.2231 | 1990 | 0.9370 | 0.0833 | 0.9370 | 0.9680 | | 0.0892 | 5.2283 | 1992 | 0.9510 | 0.0833 | 0.9510 | 0.9752 | | 0.0892 | 5.2336 | 1994 | 0.8961 | 0.0833 | 0.8961 | 0.9466 | | 0.0892 | 5.2388 | 1996 | 0.8480 | 0.0892 | 0.8480 | 0.9209 | | 0.0892 | 5.2441 | 1998 | 0.8458 | 0.2568 | 0.8458 | 0.9197 | | 0.0691 | 5.2493 | 2000 | 0.8478 | 0.0892 | 0.8478 | 0.9208 | | 0.0691 | 5.2546 | 2002 | 0.8713 | 0.0833 | 0.8713 | 0.9334 | | 0.0691 | 5.2598 | 2004 | 0.8933 | 0.0833 | 0.8933 | 0.9452 | | 0.0691 | 5.2651 | 2006 | 0.8749 | 0.0833 | 0.8749 | 0.9354 | | 0.0691 | 5.2703 | 2008 | 0.8377 | 0.0892 | 0.8377 | 0.9153 | | 0.0691 | 5.2756 | 2010 | 0.8323 | 0.0892 | 0.8323 | 0.9123 | | 0.0691 | 5.2808 | 2012 | 0.8527 | 0.0892 | 0.8527 | 0.9234 | | 0.0691 | 5.2861 | 2014 | 0.8879 | 0.0892 | 0.8879 | 0.9423 | | 0.0691 | 5.2913 | 2016 | 0.9412 | 0.0833 | 0.9412 | 0.9702 | | 0.0691 | 5.2966 | 2018 | 0.9650 | 0.0892 | 0.9650 | 0.9824 | | 0.0691 | 5.3018 | 2020 | 0.9373 | 0.0892 | 0.9373 | 0.9681 | | 0.0691 | 5.3071 | 2022 | 0.9128 | 0.0892 | 0.9128 | 0.9554 | | 0.0691 | 5.3123 | 2024 | 0.9024 | 0.0892 | 0.9024 | 0.9499 | | 0.0691 | 5.3176 | 2026 | 0.9032 | 0.0892 | 0.9032 | 0.9504 | | 0.0691 | 5.3228 | 2028 | 0.9674 | 0.2092 | 0.9674 | 0.9836 | | 0.0691 | 5.3281 | 2030 | 0.9954 | 0.1637 | 0.9954 | 0.9977 | | 0.0691 | 5.3333 | 2032 | 0.9468 | 0.2092 | 0.9468 | 0.9730 | | 0.0691 | 5.3386 | 2034 | 0.8651 | 0.0833 | 0.8651 | 0.9301 | | 0.0691 | 5.3438 | 2036 | 0.8126 | -0.1871 | 0.8126 | 0.9015 | | 0.0691 | 5.3491 | 2038 | 0.8047 | 0.0 | 0.8047 | 0.8971 | | 0.0691 | 5.3543 | 2040 | 0.8172 | 0.1081 | 0.8172 | 0.9040 | | 0.0691 | 5.3596 | 2042 | 0.8518 | 0.0833 | 0.8518 | 0.9229 | | 0.0691 | 5.3648 | 2044 | 0.9086 | 0.2092 | 0.9086 | 0.9532 | | 0.0691 | 5.3701 | 2046 | 0.9193 | 0.2092 | 0.9193 | 0.9588 | | 0.0691 | 5.3753 | 2048 | 0.9249 | 0.2092 | 0.9249 | 0.9617 | | 0.0691 | 5.3806 | 2050 | 0.8749 | 0.0833 | 0.8749 | 0.9354 | | 0.0691 | 5.3858 | 2052 | 0.8363 | 0.0892 | 0.8363 | 0.9145 | | 0.0691 | 5.3911 | 2054 | 0.8101 | 0.1081 | 0.8101 | 0.9001 | | 0.0691 | 5.3963 | 2056 | 0.8004 | 0.1081 | 0.8004 | 0.8947 | | 0.0691 | 5.4016 | 2058 | 0.8076 | 0.0833 | 0.8076 | 0.8987 | | 0.0691 | 5.4068 | 2060 | 0.8052 | 0.0833 | 0.8052 | 0.8973 | | 0.0691 | 5.4121 | 2062 | 0.8356 | 0.0833 | 0.8356 | 0.9141 | | 0.0691 | 5.4173 | 2064 | 0.8438 | 0.0833 | 0.8438 | 0.9186 | | 0.0691 | 5.4226 | 2066 | 0.8096 | 0.0833 | 0.8096 | 0.8998 | | 0.0691 | 5.4278 | 2068 | 0.7880 | 0.2878 | 0.7880 | 0.8877 | | 0.0691 | 5.4331 | 2070 | 0.7815 | 0.0 | 0.7815 | 0.8840 | | 0.0691 | 5.4383 | 2072 | 0.7902 | 0.0 | 0.7902 | 0.8889 | | 0.0691 | 5.4436 | 2074 | 0.8150 | 0.0892 | 0.8150 | 0.9028 | | 0.0691 | 5.4488 | 2076 | 0.8650 | 0.0833 | 0.8650 | 0.9301 | | 0.0691 | 5.4541 | 2078 | 0.9021 | 0.0833 | 0.9021 | 0.9498 | | 0.0691 | 5.4593 | 2080 | 0.8900 | 0.0892 | 0.8900 | 0.9434 | | 0.0691 | 5.4646 | 2082 | 0.8983 | 0.0833 | 0.8983 | 0.9478 | | 0.0691 | 5.4698 | 2084 | 0.8828 | 0.0892 | 0.8828 | 0.9396 | | 0.0691 | 5.4751 | 2086 | 0.8409 | 0.0892 | 0.8409 | 0.9170 | | 0.0691 | 5.4803 | 2088 | 0.8300 | 0.0892 | 0.8300 | 0.9110 | | 0.0691 | 5.4856 | 2090 | 0.8225 | 0.0892 | 0.8225 | 0.9069 | | 0.0691 | 5.4908 | 2092 | 0.8167 | 0.0892 | 0.8167 | 0.9037 | | 0.0691 | 5.4961 | 2094 | 0.8371 | 0.0892 | 0.8371 | 0.9149 | | 0.0691 | 5.5013 | 2096 | 0.8525 | 0.0833 | 0.8525 | 0.9233 | | 0.0691 | 5.5066 | 2098 | 0.8791 | 0.0833 | 0.8791 | 0.9376 | | 0.0691 | 5.5118 | 2100 | 0.8735 | 0.0833 | 0.8735 | 0.9346 | | 0.0691 | 5.5171 | 2102 | 0.8351 | 0.0833 | 0.8351 | 0.9139 | | 0.0691 | 5.5223 | 2104 | 0.7809 | 0.3419 | 0.7809 | 0.8837 | | 0.0691 | 5.5276 | 2106 | 0.7674 | 0.0 | 0.7674 | 0.8760 | | 0.0691 | 5.5328 | 2108 | 0.7705 | 0.0 | 0.7705 | 0.8778 | | 0.0691 | 5.5381 | 2110 | 0.7952 | 0.0833 | 0.7952 | 0.8918 | | 0.0691 | 5.5433 | 2112 | 0.8208 | 0.0833 | 0.8208 | 0.9060 | | 0.0691 | 5.5486 | 2114 | 0.8405 | 0.0892 | 0.8405 | 0.9168 | | 0.0691 | 5.5538 | 2116 | 0.8538 | 0.0892 | 0.8538 | 0.9240 | | 0.0691 | 5.5591 | 2118 | 0.8905 | 0.0833 | 0.8905 | 0.9437 | | 0.0691 | 5.5643 | 2120 | 0.8989 | 0.0833 | 0.8989 | 0.9481 | | 0.0691 | 5.5696 | 2122 | 0.8784 | 0.0833 | 0.8784 | 0.9372 | | 0.0691 | 5.5748 | 2124 | 0.8555 | 0.0892 | 0.8555 | 0.9250 | | 0.0691 | 5.5801 | 2126 | 0.8808 | 0.0833 | 0.8808 | 0.9385 | | 0.0691 | 5.5853 | 2128 | 0.9085 | 0.2092 | 0.9085 | 0.9532 | | 0.0691 | 5.5906 | 2130 | 0.8793 | 0.0833 | 0.8793 | 0.9377 | | 0.0691 | 5.5958 | 2132 | 0.8200 | 0.0833 | 0.8200 | 0.9055 | | 0.0691 | 5.6010 | 2134 | 0.7964 | 0.2878 | 0.7964 | 0.8924 | | 0.0691 | 5.6063 | 2136 | 0.8085 | 0.0892 | 0.8085 | 0.8992 | | 0.0691 | 5.6115 | 2138 | 0.8386 | 0.0833 | 0.8386 | 0.9157 | | 0.0691 | 5.6168 | 2140 | 0.9102 | 0.2092 | 0.9102 | 0.9541 | | 0.0691 | 5.6220 | 2142 | 0.9871 | 0.1637 | 0.9871 | 0.9935 | | 0.0691 | 5.6273 | 2144 | 1.0329 | 0.1637 | 1.0329 | 1.0163 | | 0.0691 | 5.6325 | 2146 | 0.9957 | 0.1637 | 0.9957 | 0.9978 | | 0.0691 | 5.6378 | 2148 | 0.9520 | 0.0494 | 0.9520 | 0.9757 | | 0.0691 | 5.6430 | 2150 | 0.8803 | 0.0892 | 0.8803 | 0.9382 | | 0.0691 | 5.6483 | 2152 | 0.8594 | 0.0892 | 0.8594 | 0.9270 | | 0.0691 | 5.6535 | 2154 | 0.8637 | 0.0892 | 0.8637 | 0.9294 | | 0.0691 | 5.6588 | 2156 | 0.8869 | 0.0892 | 0.8869 | 0.9418 | | 0.0691 | 5.6640 | 2158 | 0.9460 | 0.0833 | 0.9460 | 0.9726 | | 0.0691 | 5.6693 | 2160 | 1.0159 | 0.0494 | 1.0159 | 1.0079 | | 0.0691 | 5.6745 | 2162 | 1.0131 | 0.0494 | 1.0131 | 1.0065 | | 0.0691 | 5.6798 | 2164 | 0.9573 | -0.0784 | 0.9573 | 0.9784 | | 0.0691 | 5.6850 | 2166 | 0.8897 | 0.0833 | 0.8897 | 0.9432 | | 0.0691 | 5.6903 | 2168 | 0.8805 | 0.3231 | 0.8805 | 0.9384 | | 0.0691 | 5.6955 | 2170 | 0.9085 | 0.2080 | 0.9085 | 0.9531 | | 0.0691 | 5.7008 | 2172 | 0.9107 | 0.2080 | 0.9107 | 0.9543 | | 0.0691 | 5.7060 | 2174 | 0.9004 | 0.3231 | 0.9004 | 0.9489 | | 0.0691 | 5.7113 | 2176 | 0.9088 | 0.0892 | 0.9088 | 0.9533 | | 0.0691 | 5.7165 | 2178 | 0.9318 | 0.0833 | 0.9318 | 0.9653 | | 0.0691 | 5.7218 | 2180 | 0.9426 | 0.0833 | 0.9426 | 0.9709 | | 0.0691 | 5.7270 | 2182 | 0.9362 | 0.0833 | 0.9362 | 0.9676 | | 0.0691 | 5.7323 | 2184 | 0.9142 | 0.0892 | 0.9142 | 0.9561 | | 0.0691 | 5.7375 | 2186 | 0.9009 | 0.0892 | 0.9009 | 0.9492 | | 0.0691 | 5.7428 | 2188 | 0.8976 | 0.2568 | 0.8976 | 0.9474 | | 0.0691 | 5.7480 | 2190 | 0.8900 | 0.2878 | 0.8900 | 0.9434 | | 0.0691 | 5.7533 | 2192 | 0.8881 | 0.2568 | 0.8881 | 0.9424 | | 0.0691 | 5.7585 | 2194 | 0.9055 | 0.0833 | 0.9055 | 0.9516 | | 0.0691 | 5.7638 | 2196 | 0.9395 | 0.0833 | 0.9395 | 0.9693 | | 0.0691 | 5.7690 | 2198 | 0.9315 | 0.0833 | 0.9315 | 0.9652 | | 0.0691 | 5.7743 | 2200 | 0.8885 | 0.0833 | 0.8885 | 0.9426 | | 0.0691 | 5.7795 | 2202 | 0.8450 | 0.2878 | 0.8450 | 0.9192 | | 0.0691 | 5.7848 | 2204 | 0.8458 | 0.0 | 0.8458 | 0.9197 | | 0.0691 | 5.7900 | 2206 | 0.8568 | 0.1791 | 0.8568 | 0.9256 | | 0.0691 | 5.7953 | 2208 | 0.8596 | 0.1791 | 0.8596 | 0.9272 | | 0.0691 | 5.8005 | 2210 | 0.8519 | 0.3231 | 0.8519 | 0.9230 | | 0.0691 | 5.8058 | 2212 | 0.8689 | 0.0892 | 0.8689 | 0.9321 | | 0.0691 | 5.8110 | 2214 | 0.9024 | 0.0833 | 0.9024 | 0.9500 | | 0.0691 | 5.8163 | 2216 | 0.9286 | 0.0833 | 0.9286 | 0.9636 | | 0.0691 | 5.8215 | 2218 | 0.9357 | 0.0833 | 0.9357 | 0.9673 | | 0.0691 | 5.8268 | 2220 | 0.9356 | 0.0833 | 0.9356 | 0.9673 | | 0.0691 | 5.8320 | 2222 | 0.9175 | 0.0833 | 0.9175 | 0.9578 | | 0.0691 | 5.8373 | 2224 | 0.8886 | 0.2568 | 0.8886 | 0.9427 | | 0.0691 | 5.8425 | 2226 | 0.8778 | 0.2568 | 0.8778 | 0.9369 | | 0.0691 | 5.8478 | 2228 | 0.8769 | 0.2667 | 0.8769 | 0.9364 | | 0.0691 | 5.8530 | 2230 | 0.8896 | 0.0833 | 0.8896 | 0.9432 | | 0.0691 | 5.8583 | 2232 | 0.8916 | 0.0833 | 0.8916 | 0.9443 | | 0.0691 | 5.8635 | 2234 | 0.8777 | 0.2667 | 0.8777 | 0.9369 | | 0.0691 | 5.8688 | 2236 | 0.8697 | 0.2667 | 0.8697 | 0.9326 | | 0.0691 | 5.8740 | 2238 | 0.8716 | 0.2878 | 0.8716 | 0.9336 | | 0.0691 | 5.8793 | 2240 | 0.8794 | 0.2568 | 0.8794 | 0.9378 | | 0.0691 | 5.8845 | 2242 | 0.8920 | 0.2568 | 0.8920 | 0.9445 | | 0.0691 | 5.8898 | 2244 | 0.8918 | 0.2568 | 0.8918 | 0.9444 | | 0.0691 | 5.8950 | 2246 | 0.8853 | 0.2568 | 0.8853 | 0.9409 | | 0.0691 | 5.9003 | 2248 | 0.8887 | 0.2568 | 0.8887 | 0.9427 | | 0.0691 | 5.9055 | 2250 | 0.8939 | 0.2568 | 0.8939 | 0.9455 | | 0.0691 | 5.9108 | 2252 | 0.9066 | 0.0892 | 0.9066 | 0.9521 | | 0.0691 | 5.9160 | 2254 | 0.9332 | 0.0892 | 0.9332 | 0.9660 | | 0.0691 | 5.9213 | 2256 | 0.9289 | 0.0892 | 0.9289 | 0.9638 | | 0.0691 | 5.9265 | 2258 | 0.9107 | 0.0892 | 0.9107 | 0.9543 | | 0.0691 | 5.9318 | 2260 | 0.8937 | 0.0892 | 0.8937 | 0.9454 | | 0.0691 | 5.9370 | 2262 | 0.8839 | 0.0892 | 0.8839 | 0.9402 | | 0.0691 | 5.9423 | 2264 | 0.8854 | 0.0892 | 0.8854 | 0.9410 | | 0.0691 | 5.9475 | 2266 | 0.8803 | 0.0892 | 0.8803 | 0.9382 | | 0.0691 | 5.9528 | 2268 | 0.8844 | 0.0892 | 0.8844 | 0.9404 | | 0.0691 | 5.9580 | 2270 | 0.8840 | 0.0833 | 0.8840 | 0.9402 | | 0.0691 | 5.9633 | 2272 | 0.8782 | 0.0833 | 0.8782 | 0.9371 | | 0.0691 | 5.9685 | 2274 | 0.8700 | 0.0833 | 0.8700 | 0.9328 | | 0.0691 | 5.9738 | 2276 | 0.8641 | 0.2667 | 0.8641 | 0.9296 | | 0.0691 | 5.9790 | 2278 | 0.8528 | 0.2568 | 0.8528 | 0.9234 | | 0.0691 | 5.9843 | 2280 | 0.8528 | 0.2667 | 0.8528 | 0.9235 | | 0.0691 | 5.9895 | 2282 | 0.8719 | 0.0833 | 0.8719 | 0.9337 | | 0.0691 | 5.9948 | 2284 | 0.8904 | 0.2092 | 0.8904 | 0.9436 | | 0.0691 | 6.0 | 2286 | 0.9232 | 0.0494 | 0.9232 | 0.9608 | | 0.0691 | 6.0052 | 2288 | 0.9108 | 0.0494 | 0.9108 | 0.9544 | | 0.0691 | 6.0105 | 2290 | 0.8821 | 0.0833 | 0.8821 | 0.9392 | | 0.0691 | 6.0157 | 2292 | 0.8648 | 0.2878 | 0.8648 | 0.9300 | | 0.0691 | 6.0210 | 2294 | 0.8735 | 0.4615 | 0.8735 | 0.9346 | | 0.0691 | 6.0262 | 2296 | 0.8646 | 0.4615 | 0.8646 | 0.9298 | | 0.0691 | 6.0315 | 2298 | 0.8571 | 0.2568 | 0.8571 | 0.9258 | | 0.0691 | 6.0367 | 2300 | 0.8695 | 0.0833 | 0.8695 | 0.9325 | | 0.0691 | 6.0420 | 2302 | 0.8867 | 0.2092 | 0.8867 | 0.9416 | | 0.0691 | 6.0472 | 2304 | 0.8810 | 0.2092 | 0.8810 | 0.9386 | | 0.0691 | 6.0525 | 2306 | 0.8618 | 0.2667 | 0.8618 | 0.9283 | | 0.0691 | 6.0577 | 2308 | 0.8406 | 0.3016 | 0.8406 | 0.9168 | | 0.0691 | 6.0630 | 2310 | 0.8347 | 0.3231 | 0.8347 | 0.9136 | | 0.0691 | 6.0682 | 2312 | 0.8369 | 0.3231 | 0.8369 | 0.9148 | | 0.0691 | 6.0735 | 2314 | 0.8421 | 0.3231 | 0.8421 | 0.9177 | | 0.0691 | 6.0787 | 2316 | 0.8540 | 0.3231 | 0.8540 | 0.9241 | | 0.0691 | 6.0840 | 2318 | 0.8665 | 0.2878 | 0.8665 | 0.9309 | | 0.0691 | 6.0892 | 2320 | 0.8845 | 0.2568 | 0.8845 | 0.9405 | | 0.0691 | 6.0945 | 2322 | 0.8924 | 0.2568 | 0.8924 | 0.9447 | | 0.0691 | 6.0997 | 2324 | 0.9019 | 0.2568 | 0.9019 | 0.9497 | | 0.0691 | 6.1050 | 2326 | 0.9286 | 0.0892 | 0.9286 | 0.9636 | | 0.0691 | 6.1102 | 2328 | 0.9455 | 0.0892 | 0.9455 | 0.9724 | | 0.0691 | 6.1155 | 2330 | 0.9358 | 0.0892 | 0.9358 | 0.9674 | | 0.0691 | 6.1207 | 2332 | 0.9115 | 0.0892 | 0.9115 | 0.9547 | | 0.0691 | 6.1260 | 2334 | 0.9037 | 0.2568 | 0.9037 | 0.9506 | | 0.0691 | 6.1312 | 2336 | 0.8962 | 0.2568 | 0.8962 | 0.9467 | | 0.0691 | 6.1365 | 2338 | 0.9019 | 0.0892 | 0.9019 | 0.9497 | | 0.0691 | 6.1417 | 2340 | 0.9044 | 0.0892 | 0.9044 | 0.9510 | | 0.0691 | 6.1470 | 2342 | 0.9151 | 0.0892 | 0.9151 | 0.9566 | | 0.0691 | 6.1522 | 2344 | 0.9130 | 0.0892 | 0.9130 | 0.9555 | | 0.0691 | 6.1575 | 2346 | 0.9086 | 0.2568 | 0.9086 | 0.9532 | | 0.0691 | 6.1627 | 2348 | 0.9051 | 0.2568 | 0.9051 | 0.9514 | | 0.0691 | 6.1680 | 2350 | 0.8972 | 0.2568 | 0.8972 | 0.9472 | | 0.0691 | 6.1732 | 2352 | 0.8912 | 0.2568 | 0.8912 | 0.9440 | | 0.0691 | 6.1785 | 2354 | 0.8965 | 0.0892 | 0.8965 | 0.9468 | | 0.0691 | 6.1837 | 2356 | 0.9122 | 0.0833 | 0.9122 | 0.9551 | | 0.0691 | 6.1890 | 2358 | 0.9298 | 0.0833 | 0.9298 | 0.9643 | | 0.0691 | 6.1942 | 2360 | 0.9296 | 0.0833 | 0.9296 | 0.9642 | | 0.0691 | 6.1995 | 2362 | 0.9270 | 0.0892 | 0.9270 | 0.9628 | | 0.0691 | 6.2047 | 2364 | 0.9211 | 0.0892 | 0.9211 | 0.9598 | | 0.0691 | 6.2100 | 2366 | 0.9282 | 0.0892 | 0.9282 | 0.9634 | | 0.0691 | 6.2152 | 2368 | 0.9226 | 0.0892 | 0.9226 | 0.9605 | | 0.0691 | 6.2205 | 2370 | 0.9058 | 0.0892 | 0.9058 | 0.9518 | | 0.0691 | 6.2257 | 2372 | 0.8992 | 0.0892 | 0.8992 | 0.9483 | | 0.0691 | 6.2310 | 2374 | 0.8810 | 0.2568 | 0.8810 | 0.9386 | | 0.0691 | 6.2362 | 2376 | 0.8734 | 0.2568 | 0.8734 | 0.9346 | | 0.0691 | 6.2415 | 2378 | 0.8760 | 0.2568 | 0.8760 | 0.9360 | | 0.0691 | 6.2467 | 2380 | 0.8829 | 0.0892 | 0.8829 | 0.9396 | | 0.0691 | 6.2520 | 2382 | 0.8764 | 0.0892 | 0.8764 | 0.9362 | | 0.0691 | 6.2572 | 2384 | 0.8828 | 0.0892 | 0.8828 | 0.9396 | | 0.0691 | 6.2625 | 2386 | 0.8951 | 0.0892 | 0.8951 | 0.9461 | | 0.0691 | 6.2677 | 2388 | 0.9021 | 0.0892 | 0.9021 | 0.9498 | | 0.0691 | 6.2730 | 2390 | 0.9209 | 0.0833 | 0.9209 | 0.9596 | | 0.0691 | 6.2782 | 2392 | 0.9216 | 0.0833 | 0.9216 | 0.9600 | | 0.0691 | 6.2835 | 2394 | 0.8967 | 0.0892 | 0.8967 | 0.9469 | | 0.0691 | 6.2887 | 2396 | 0.8802 | 0.0892 | 0.8802 | 0.9382 | | 0.0691 | 6.2940 | 2398 | 0.8696 | 0.2568 | 0.8696 | 0.9325 | | 0.0691 | 6.2992 | 2400 | 0.8681 | 0.2568 | 0.8681 | 0.9317 | | 0.0691 | 6.3045 | 2402 | 0.8719 | 0.0892 | 0.8719 | 0.9337 | | 0.0691 | 6.3097 | 2404 | 0.8668 | 0.2568 | 0.8668 | 0.9310 | | 0.0691 | 6.3150 | 2406 | 0.8663 | 0.2568 | 0.8663 | 0.9308 | | 0.0691 | 6.3202 | 2408 | 0.8677 | 0.2568 | 0.8677 | 0.9315 | | 0.0691 | 6.3255 | 2410 | 0.8705 | 0.2568 | 0.8705 | 0.9330 | | 0.0691 | 6.3307 | 2412 | 0.8692 | 0.2878 | 0.8692 | 0.9323 | | 0.0691 | 6.3360 | 2414 | 0.8710 | 0.2878 | 0.8710 | 0.9333 | | 0.0691 | 6.3412 | 2416 | 0.8705 | 0.2878 | 0.8705 | 0.9330 | | 0.0691 | 6.3465 | 2418 | 0.8799 | 0.0892 | 0.8799 | 0.9380 | | 0.0691 | 6.3517 | 2420 | 0.8964 | 0.0892 | 0.8964 | 0.9468 | | 0.0691 | 6.3570 | 2422 | 0.9241 | 0.0833 | 0.9241 | 0.9613 | | 0.0691 | 6.3622 | 2424 | 0.9313 | 0.0833 | 0.9313 | 0.9651 | | 0.0691 | 6.3675 | 2426 | 0.9409 | 0.0833 | 0.9409 | 0.9700 | | 0.0691 | 6.3727 | 2428 | 0.9167 | 0.0892 | 0.9167 | 0.9575 | | 0.0691 | 6.3780 | 2430 | 0.8944 | 0.0892 | 0.8944 | 0.9457 | | 0.0691 | 6.3832 | 2432 | 0.8956 | 0.0892 | 0.8956 | 0.9463 | | 0.0691 | 6.3885 | 2434 | 0.9037 | 0.0892 | 0.9037 | 0.9507 | | 0.0691 | 6.3937 | 2436 | 0.9089 | 0.0892 | 0.9089 | 0.9534 | | 0.0691 | 6.3990 | 2438 | 0.9121 | 0.0892 | 0.9121 | 0.9550 | | 0.0691 | 6.4042 | 2440 | 0.9188 | 0.0892 | 0.9188 | 0.9586 | | 0.0691 | 6.4094 | 2442 | 0.9296 | 0.0892 | 0.9296 | 0.9642 | | 0.0691 | 6.4147 | 2444 | 0.9357 | 0.0892 | 0.9357 | 0.9673 | | 0.0691 | 6.4199 | 2446 | 0.9386 | 0.0892 | 0.9386 | 0.9688 | | 0.0691 | 6.4252 | 2448 | 0.9412 | 0.0892 | 0.9412 | 0.9701 | | 0.0691 | 6.4304 | 2450 | 0.9373 | 0.0892 | 0.9373 | 0.9681 | | 0.0691 | 6.4357 | 2452 | 0.9267 | 0.0892 | 0.9267 | 0.9627 | | 0.0691 | 6.4409 | 2454 | 0.9282 | 0.0892 | 0.9282 | 0.9634 | | 0.0691 | 6.4462 | 2456 | 0.9485 | 0.0833 | 0.9485 | 0.9739 | | 0.0691 | 6.4514 | 2458 | 0.9503 | 0.0892 | 0.9503 | 0.9748 | | 0.0691 | 6.4567 | 2460 | 0.9447 | 0.0892 | 0.9447 | 0.9720 | | 0.0691 | 6.4619 | 2462 | 0.9552 | 0.0892 | 0.9552 | 0.9774 | | 0.0691 | 6.4672 | 2464 | 0.9667 | 0.0892 | 0.9667 | 0.9832 | | 0.0691 | 6.4724 | 2466 | 0.9739 | 0.0892 | 0.9739 | 0.9869 | | 0.0691 | 6.4777 | 2468 | 0.9763 | 0.0892 | 0.9763 | 0.9881 | | 0.0691 | 6.4829 | 2470 | 0.9664 | 0.0892 | 0.9664 | 0.9830 | | 0.0691 | 6.4882 | 2472 | 0.9590 | 0.0892 | 0.9590 | 0.9793 | | 0.0691 | 6.4934 | 2474 | 0.9631 | 0.0892 | 0.9631 | 0.9814 | | 0.0691 | 6.4987 | 2476 | 0.9689 | 0.0892 | 0.9689 | 0.9843 | | 0.0691 | 6.5039 | 2478 | 0.9822 | 0.0892 | 0.9822 | 0.9910 | | 0.0691 | 6.5092 | 2480 | 1.0197 | -0.0784 | 1.0197 | 1.0098 | | 0.0691 | 6.5144 | 2482 | 1.0549 | -0.0784 | 1.0549 | 1.0271 | | 0.0691 | 6.5197 | 2484 | 1.0492 | -0.0784 | 1.0492 | 1.0243 | | 0.0691 | 6.5249 | 2486 | 1.0145 | 0.0833 | 1.0145 | 1.0072 | | 0.0691 | 6.5302 | 2488 | 0.9845 | 0.0892 | 0.9845 | 0.9922 | | 0.0691 | 6.5354 | 2490 | 0.9721 | 0.0892 | 0.9721 | 0.9860 | | 0.0691 | 6.5407 | 2492 | 0.9781 | 0.0892 | 0.9781 | 0.9890 | | 0.0691 | 6.5459 | 2494 | 0.9868 | 0.0892 | 0.9868 | 0.9934 | | 0.0691 | 6.5512 | 2496 | 0.9870 | 0.0892 | 0.9870 | 0.9935 | | 0.0691 | 6.5564 | 2498 | 0.9815 | 0.0892 | 0.9815 | 0.9907 | | 0.0543 | 6.5617 | 2500 | 0.9864 | 0.0892 | 0.9864 | 0.9932 | | 0.0543 | 6.5669 | 2502 | 0.9921 | 0.0833 | 0.9921 | 0.9960 | | 0.0543 | 6.5722 | 2504 | 0.9745 | 0.0892 | 0.9745 | 0.9872 | | 0.0543 | 6.5774 | 2506 | 0.9604 | 0.0892 | 0.9604 | 0.9800 | | 0.0543 | 6.5827 | 2508 | 0.9482 | 0.2568 | 0.9482 | 0.9738 | | 0.0543 | 6.5879 | 2510 | 0.9473 | 0.2568 | 0.9473 | 0.9733 | | 0.0543 | 6.5932 | 2512 | 0.9442 | 0.2878 | 0.9442 | 0.9717 | | 0.0543 | 6.5984 | 2514 | 0.9406 | 0.2568 | 0.9406 | 0.9699 | | 0.0543 | 6.6037 | 2516 | 0.9549 | 0.0892 | 0.9549 | 0.9772 | | 0.0543 | 6.6089 | 2518 | 0.9626 | 0.0892 | 0.9626 | 0.9811 | | 0.0543 | 6.6142 | 2520 | 0.9550 | 0.0892 | 0.9550 | 0.9772 | | 0.0543 | 6.6194 | 2522 | 0.9540 | 0.0892 | 0.9540 | 0.9767 | | 0.0543 | 6.6247 | 2524 | 0.9494 | 0.0892 | 0.9494 | 0.9744 | | 0.0543 | 6.6299 | 2526 | 0.9330 | 0.2568 | 0.9330 | 0.9659 | | 0.0543 | 6.6352 | 2528 | 0.9232 | 0.2568 | 0.9232 | 0.9608 | | 0.0543 | 6.6404 | 2530 | 0.9202 | 0.2568 | 0.9202 | 0.9593 | | 0.0543 | 6.6457 | 2532 | 0.9199 | 0.2568 | 0.9199 | 0.9591 | | 0.0543 | 6.6509 | 2534 | 0.9262 | 0.2568 | 0.9262 | 0.9624 | | 0.0543 | 6.6562 | 2536 | 0.9446 | 0.0892 | 0.9446 | 0.9719 | | 0.0543 | 6.6614 | 2538 | 0.9629 | 0.0833 | 0.9629 | 0.9813 | | 0.0543 | 6.6667 | 2540 | 0.9769 | -0.0784 | 0.9769 | 0.9884 | | 0.0543 | 6.6719 | 2542 | 0.9702 | 0.0892 | 0.9702 | 0.9850 | | 0.0543 | 6.6772 | 2544 | 0.9700 | 0.2568 | 0.9700 | 0.9849 | | 0.0543 | 6.6824 | 2546 | 0.9836 | 0.2568 | 0.9836 | 0.9918 | | 0.0543 | 6.6877 | 2548 | 0.9909 | 0.2568 | 0.9909 | 0.9954 | | 0.0543 | 6.6929 | 2550 | 0.9955 | 0.0892 | 0.9955 | 0.9977 | | 0.0543 | 6.6982 | 2552 | 1.0157 | -0.0602 | 1.0157 | 1.0078 | | 0.0543 | 6.7034 | 2554 | 1.0333 | -0.0784 | 1.0333 | 1.0165 | | 0.0543 | 6.7087 | 2556 | 1.0218 | -0.0784 | 1.0218 | 1.0108 | | 0.0543 | 6.7139 | 2558 | 0.9983 | -0.0784 | 0.9983 | 0.9991 | | 0.0543 | 6.7192 | 2560 | 0.9681 | 0.0892 | 0.9681 | 0.9839 | | 0.0543 | 6.7244 | 2562 | 0.9547 | 0.0892 | 0.9547 | 0.9771 | | 0.0543 | 6.7297 | 2564 | 0.9546 | 0.0892 | 0.9546 | 0.9770 | | 0.0543 | 6.7349 | 2566 | 0.9537 | 0.0833 | 0.9537 | 0.9766 | | 0.0543 | 6.7402 | 2568 | 0.9467 | 0.0892 | 0.9467 | 0.9730 | | 0.0543 | 6.7454 | 2570 | 0.9304 | 0.2568 | 0.9304 | 0.9646 | | 0.0543 | 6.7507 | 2572 | 0.9285 | 0.2568 | 0.9285 | 0.9636 | | 0.0543 | 6.7559 | 2574 | 0.9378 | 0.0892 | 0.9378 | 0.9684 | | 0.0543 | 6.7612 | 2576 | 0.9388 | 0.0833 | 0.9388 | 0.9689 | | 0.0543 | 6.7664 | 2578 | 0.9546 | 0.0833 | 0.9546 | 0.9770 | | 0.0543 | 6.7717 | 2580 | 0.9622 | 0.0833 | 0.9622 | 0.9809 | | 0.0543 | 6.7769 | 2582 | 0.9521 | 0.0833 | 0.9521 | 0.9758 | | 0.0543 | 6.7822 | 2584 | 0.9370 | 0.0833 | 0.9370 | 0.9680 | | 0.0543 | 6.7874 | 2586 | 0.9223 | 0.2568 | 0.9223 | 0.9603 | | 0.0543 | 6.7927 | 2588 | 0.9178 | 0.2568 | 0.9178 | 0.9580 | | 0.0543 | 6.7979 | 2590 | 0.9151 | 0.2878 | 0.9151 | 0.9566 | | 0.0543 | 6.8031 | 2592 | 0.9193 | 0.2568 | 0.9193 | 0.9588 | | 0.0543 | 6.8084 | 2594 | 0.9345 | 0.0892 | 0.9345 | 0.9667 | | 0.0543 | 6.8136 | 2596 | 0.9383 | 0.0892 | 0.9383 | 0.9686 | | 0.0543 | 6.8189 | 2598 | 0.9364 | 0.0892 | 0.9364 | 0.9677 | | 0.0543 | 6.8241 | 2600 | 0.9313 | 0.0892 | 0.9313 | 0.9650 | | 0.0543 | 6.8294 | 2602 | 0.9357 | 0.0892 | 0.9357 | 0.9673 | | 0.0543 | 6.8346 | 2604 | 0.9470 | 0.0892 | 0.9470 | 0.9731 | | 0.0543 | 6.8399 | 2606 | 0.9544 | 0.0892 | 0.9544 | 0.9769 | | 0.0543 | 6.8451 | 2608 | 0.9669 | 0.0892 | 0.9669 | 0.9833 | | 0.0543 | 6.8504 | 2610 | 0.9805 | 0.0892 | 0.9805 | 0.9902 | | 0.0543 | 6.8556 | 2612 | 0.9934 | 0.0892 | 0.9934 | 0.9967 | | 0.0543 | 6.8609 | 2614 | 0.9924 | 0.0892 | 0.9924 | 0.9962 | | 0.0543 | 6.8661 | 2616 | 0.9809 | 0.0892 | 0.9809 | 0.9904 | | 0.0543 | 6.8714 | 2618 | 0.9839 | 0.0892 | 0.9839 | 0.9919 | | 0.0543 | 6.8766 | 2620 | 0.9929 | 0.0892 | 0.9929 | 0.9964 | | 0.0543 | 6.8819 | 2622 | 0.9983 | -0.0784 | 0.9983 | 0.9992 | | 0.0543 | 6.8871 | 2624 | 0.9779 | 0.0833 | 0.9779 | 0.9889 | | 0.0543 | 6.8924 | 2626 | 0.9634 | 0.0892 | 0.9634 | 0.9815 | | 0.0543 | 6.8976 | 2628 | 0.9463 | 0.0892 | 0.9463 | 0.9728 | | 0.0543 | 6.9029 | 2630 | 0.9493 | 0.0892 | 0.9493 | 0.9743 | | 0.0543 | 6.9081 | 2632 | 0.9598 | 0.0892 | 0.9598 | 0.9797 | | 0.0543 | 6.9134 | 2634 | 0.9807 | 0.0833 | 0.9807 | 0.9903 | | 0.0543 | 6.9186 | 2636 | 0.9985 | -0.0784 | 0.9985 | 0.9992 | | 0.0543 | 6.9239 | 2638 | 0.9944 | -0.0784 | 0.9944 | 0.9972 | | 0.0543 | 6.9291 | 2640 | 0.9802 | 0.0833 | 0.9802 | 0.9901 | | 0.0543 | 6.9344 | 2642 | 0.9635 | 0.0892 | 0.9635 | 0.9816 | | 0.0543 | 6.9396 | 2644 | 0.9597 | 0.0892 | 0.9597 | 0.9797 | | 0.0543 | 6.9449 | 2646 | 0.9601 | 0.0833 | 0.9601 | 0.9798 | | 0.0543 | 6.9501 | 2648 | 0.9578 | 0.0833 | 0.9578 | 0.9787 | | 0.0543 | 6.9554 | 2650 | 0.9655 | -0.0784 | 0.9655 | 0.9826 | | 0.0543 | 6.9606 | 2652 | 0.9692 | -0.0784 | 0.9692 | 0.9845 | | 0.0543 | 6.9659 | 2654 | 0.9596 | -0.0784 | 0.9596 | 0.9796 | | 0.0543 | 6.9711 | 2656 | 0.9488 | 0.0833 | 0.9488 | 0.9741 | | 0.0543 | 6.9764 | 2658 | 0.9396 | 0.2568 | 0.9396 | 0.9693 | | 0.0543 | 6.9816 | 2660 | 0.9443 | 0.2568 | 0.9443 | 0.9718 | | 0.0543 | 6.9869 | 2662 | 0.9509 | 0.2568 | 0.9509 | 0.9751 | | 0.0543 | 6.9921 | 2664 | 0.9570 | 0.0892 | 0.9570 | 0.9783 | | 0.0543 | 6.9974 | 2666 | 0.9583 | 0.0892 | 0.9583 | 0.9789 | | 0.0543 | 7.0026 | 2668 | 0.9602 | 0.0892 | 0.9602 | 0.9799 | | 0.0543 | 7.0079 | 2670 | 0.9616 | 0.0892 | 0.9616 | 0.9806 | | 0.0543 | 7.0131 | 2672 | 0.9875 | -0.0784 | 0.9875 | 0.9937 | | 0.0543 | 7.0184 | 2674 | 1.0030 | -0.0784 | 1.0030 | 1.0015 | | 0.0543 | 7.0236 | 2676 | 0.9870 | -0.0784 | 0.9870 | 0.9935 | | 0.0543 | 7.0289 | 2678 | 0.9549 | 0.0833 | 0.9549 | 0.9772 | | 0.0543 | 7.0341 | 2680 | 0.9309 | 0.0833 | 0.9309 | 0.9648 | | 0.0543 | 7.0394 | 2682 | 0.9138 | 0.0892 | 0.9138 | 0.9559 | | 0.0543 | 7.0446 | 2684 | 0.9063 | 0.2568 | 0.9063 | 0.9520 | | 0.0543 | 7.0499 | 2686 | 0.9049 | 0.2568 | 0.9049 | 0.9513 | | 0.0543 | 7.0551 | 2688 | 0.8997 | 0.2878 | 0.8997 | 0.9485 | | 0.0543 | 7.0604 | 2690 | 0.9061 | 0.2568 | 0.9061 | 0.9519 | | 0.0543 | 7.0656 | 2692 | 0.9145 | 0.0833 | 0.9145 | 0.9563 | | 0.0543 | 7.0709 | 2694 | 0.9177 | 0.0833 | 0.9177 | 0.9580 | | 0.0543 | 7.0761 | 2696 | 0.9222 | 0.0833 | 0.9222 | 0.9603 | | 0.0543 | 7.0814 | 2698 | 0.9394 | 0.0833 | 0.9394 | 0.9692 | | 0.0543 | 7.0866 | 2700 | 0.9499 | 0.0833 | 0.9499 | 0.9746 | | 0.0543 | 7.0919 | 2702 | 0.9492 | 0.0833 | 0.9492 | 0.9743 | | 0.0543 | 7.0971 | 2704 | 0.9431 | 0.0892 | 0.9431 | 0.9711 | | 0.0543 | 7.1024 | 2706 | 0.9443 | 0.0892 | 0.9443 | 0.9717 | | 0.0543 | 7.1076 | 2708 | 0.9481 | 0.0892 | 0.9481 | 0.9737 | | 0.0543 | 7.1129 | 2710 | 0.9519 | 0.0833 | 0.9519 | 0.9756 | | 0.0543 | 7.1181 | 2712 | 0.9487 | 0.0892 | 0.9487 | 0.9740 | | 0.0543 | 7.1234 | 2714 | 0.9494 | 0.0892 | 0.9494 | 0.9744 | | 0.0543 | 7.1286 | 2716 | 0.9607 | 0.0892 | 0.9607 | 0.9802 | | 0.0543 | 7.1339 | 2718 | 0.9785 | 0.0892 | 0.9785 | 0.9892 | | 0.0543 | 7.1391 | 2720 | 1.0039 | 0.0833 | 1.0039 | 1.0020 | | 0.0543 | 7.1444 | 2722 | 1.0278 | -0.0784 | 1.0278 | 1.0138 | | 0.0543 | 7.1496 | 2724 | 1.0234 | 0.0833 | 1.0234 | 1.0116 | | 0.0543 | 7.1549 | 2726 | 1.0111 | 0.0892 | 1.0111 | 1.0055 | | 0.0543 | 7.1601 | 2728 | 0.9946 | 0.0892 | 0.9946 | 0.9973 | | 0.0543 | 7.1654 | 2730 | 0.9796 | 0.0892 | 0.9796 | 0.9897 | | 0.0543 | 7.1706 | 2732 | 0.9662 | 0.2568 | 0.9662 | 0.9830 | | 0.0543 | 7.1759 | 2734 | 0.9580 | 0.2568 | 0.9580 | 0.9788 | | 0.0543 | 7.1811 | 2736 | 0.9602 | 0.0892 | 0.9602 | 0.9799 | | 0.0543 | 7.1864 | 2738 | 0.9687 | 0.0892 | 0.9687 | 0.9842 | | 0.0543 | 7.1916 | 2740 | 0.9862 | 0.0833 | 0.9862 | 0.9931 | | 0.0543 | 7.1969 | 2742 | 0.9910 | 0.0833 | 0.9910 | 0.9955 | | 0.0543 | 7.2021 | 2744 | 0.9857 | 0.0892 | 0.9857 | 0.9928 | | 0.0543 | 7.2073 | 2746 | 0.9893 | 0.0833 | 0.9893 | 0.9946 | | 0.0543 | 7.2126 | 2748 | 0.9849 | 0.0892 | 0.9849 | 0.9924 | | 0.0543 | 7.2178 | 2750 | 0.9807 | 0.0892 | 0.9807 | 0.9903 | | 0.0543 | 7.2231 | 2752 | 0.9740 | 0.0892 | 0.9740 | 0.9869 | | 0.0543 | 7.2283 | 2754 | 0.9709 | 0.0892 | 0.9709 | 0.9854 | | 0.0543 | 7.2336 | 2756 | 0.9777 | 0.0892 | 0.9777 | 0.9888 | | 0.0543 | 7.2388 | 2758 | 0.9824 | 0.0833 | 0.9824 | 0.9912 | | 0.0543 | 7.2441 | 2760 | 0.9826 | 0.0833 | 0.9826 | 0.9912 | | 0.0543 | 7.2493 | 2762 | 0.9723 | 0.0892 | 0.9723 | 0.9861 | | 0.0543 | 7.2546 | 2764 | 0.9719 | 0.0833 | 0.9719 | 0.9858 | | 0.0543 | 7.2598 | 2766 | 0.9689 | 0.0833 | 0.9689 | 0.9843 | | 0.0543 | 7.2651 | 2768 | 0.9680 | 0.0833 | 0.9680 | 0.9839 | | 0.0543 | 7.2703 | 2770 | 0.9724 | 0.0833 | 0.9724 | 0.9861 | | 0.0543 | 7.2756 | 2772 | 0.9734 | 0.0833 | 0.9734 | 0.9866 | | 0.0543 | 7.2808 | 2774 | 0.9791 | 0.0833 | 0.9791 | 0.9895 | | 0.0543 | 7.2861 | 2776 | 0.9729 | 0.0892 | 0.9729 | 0.9864 | | 0.0543 | 7.2913 | 2778 | 0.9732 | 0.0892 | 0.9732 | 0.9865 | | 0.0543 | 7.2966 | 2780 | 0.9748 | 0.0892 | 0.9748 | 0.9873 | | 0.0543 | 7.3018 | 2782 | 0.9798 | 0.0892 | 0.9798 | 0.9899 | | 0.0543 | 7.3071 | 2784 | 0.9946 | 0.0833 | 0.9946 | 0.9973 | | 0.0543 | 7.3123 | 2786 | 1.0237 | -0.0784 | 1.0237 | 1.0118 | | 0.0543 | 7.3176 | 2788 | 1.0290 | -0.0784 | 1.0290 | 1.0144 | | 0.0543 | 7.3228 | 2790 | 1.0097 | -0.0784 | 1.0097 | 1.0048 | | 0.0543 | 7.3281 | 2792 | 0.9808 | 0.0833 | 0.9808 | 0.9903 | | 0.0543 | 7.3333 | 2794 | 0.9638 | 0.0833 | 0.9638 | 0.9818 | | 0.0543 | 7.3386 | 2796 | 0.9476 | 0.0892 | 0.9476 | 0.9734 | | 0.0543 | 7.3438 | 2798 | 0.9428 | 0.0892 | 0.9428 | 0.9710 | | 0.0543 | 7.3491 | 2800 | 0.9461 | 0.0892 | 0.9461 | 0.9727 | | 0.0543 | 7.3543 | 2802 | 0.9509 | 0.0833 | 0.9509 | 0.9751 | | 0.0543 | 7.3596 | 2804 | 0.9533 | 0.0833 | 0.9533 | 0.9764 | | 0.0543 | 7.3648 | 2806 | 0.9509 | 0.0833 | 0.9509 | 0.9751 | | 0.0543 | 7.3701 | 2808 | 0.9439 | 0.0833 | 0.9439 | 0.9715 | | 0.0543 | 7.3753 | 2810 | 0.9428 | 0.0892 | 0.9428 | 0.9710 | | 0.0543 | 7.3806 | 2812 | 0.9393 | 0.0833 | 0.9393 | 0.9692 | | 0.0543 | 7.3858 | 2814 | 0.9480 | 0.0833 | 0.9480 | 0.9736 | | 0.0543 | 7.3911 | 2816 | 0.9606 | 0.0833 | 0.9606 | 0.9801 | | 0.0543 | 7.3963 | 2818 | 0.9634 | 0.0833 | 0.9634 | 0.9815 | | 0.0543 | 7.4016 | 2820 | 0.9536 | 0.0833 | 0.9536 | 0.9765 | | 0.0543 | 7.4068 | 2822 | 0.9444 | 0.0892 | 0.9444 | 0.9718 | | 0.0543 | 7.4121 | 2824 | 0.9350 | 0.2568 | 0.9350 | 0.9670 | | 0.0543 | 7.4173 | 2826 | 0.9296 | 0.2568 | 0.9296 | 0.9642 | | 0.0543 | 7.4226 | 2828 | 0.9317 | 0.2568 | 0.9317 | 0.9653 | | 0.0543 | 7.4278 | 2830 | 0.9369 | 0.0833 | 0.9369 | 0.9680 | | 0.0543 | 7.4331 | 2832 | 0.9562 | 0.0833 | 0.9562 | 0.9779 | | 0.0543 | 7.4383 | 2834 | 0.9698 | -0.0784 | 0.9698 | 0.9848 | | 0.0543 | 7.4436 | 2836 | 0.9650 | -0.0784 | 0.9650 | 0.9823 | | 0.0543 | 7.4488 | 2838 | 0.9649 | 0.0833 | 0.9649 | 0.9823 | | 0.0543 | 7.4541 | 2840 | 0.9802 | 0.0833 | 0.9802 | 0.9901 | | 0.0543 | 7.4593 | 2842 | 0.9911 | 0.0892 | 0.9911 | 0.9955 | | 0.0543 | 7.4646 | 2844 | 0.9939 | 0.0892 | 0.9939 | 0.9970 | | 0.0543 | 7.4698 | 2846 | 0.9914 | 0.0892 | 0.9914 | 0.9957 | | 0.0543 | 7.4751 | 2848 | 0.9959 | 0.0892 | 0.9959 | 0.9980 | | 0.0543 | 7.4803 | 2850 | 0.9955 | 0.0892 | 0.9955 | 0.9978 | | 0.0543 | 7.4856 | 2852 | 1.0033 | 0.0892 | 1.0033 | 1.0016 | | 0.0543 | 7.4908 | 2854 | 1.0089 | 0.0892 | 1.0089 | 1.0044 | | 0.0543 | 7.4961 | 2856 | 1.0175 | 0.0892 | 1.0175 | 1.0087 | | 0.0543 | 7.5013 | 2858 | 1.0236 | -0.0784 | 1.0236 | 1.0117 | | 0.0543 | 7.5066 | 2860 | 1.0194 | -0.0784 | 1.0194 | 1.0097 | | 0.0543 | 7.5118 | 2862 | 1.0047 | -0.0784 | 1.0047 | 1.0023 | | 0.0543 | 7.5171 | 2864 | 0.9860 | 0.0833 | 0.9860 | 0.9930 | | 0.0543 | 7.5223 | 2866 | 0.9812 | 0.0833 | 0.9812 | 0.9906 | | 0.0543 | 7.5276 | 2868 | 0.9714 | 0.0833 | 0.9714 | 0.9856 | | 0.0543 | 7.5328 | 2870 | 0.9644 | 0.0892 | 0.9644 | 0.9820 | | 0.0543 | 7.5381 | 2872 | 0.9630 | 0.0892 | 0.9630 | 0.9813 | | 0.0543 | 7.5433 | 2874 | 0.9592 | 0.2568 | 0.9592 | 0.9794 | | 0.0543 | 7.5486 | 2876 | 0.9727 | 0.1316 | 0.9727 | 0.9863 | | 0.0543 | 7.5538 | 2878 | 0.9883 | 0.1538 | 0.9883 | 0.9941 | | 0.0543 | 7.5591 | 2880 | 0.9924 | 0.1316 | 0.9924 | 0.9962 | | 0.0543 | 7.5643 | 2882 | 1.0016 | 0.0892 | 1.0016 | 1.0008 | | 0.0543 | 7.5696 | 2884 | 1.0358 | 0.0892 | 1.0358 | 1.0177 | | 0.0543 | 7.5748 | 2886 | 1.0930 | -0.0784 | 1.0930 | 1.0455 | | 0.0543 | 7.5801 | 2888 | 1.1269 | 0.0494 | 1.1269 | 1.0615 | | 0.0543 | 7.5853 | 2890 | 1.1232 | 0.0494 | 1.1232 | 1.0598 | | 0.0543 | 7.5906 | 2892 | 1.0906 | -0.0784 | 1.0906 | 1.0443 | | 0.0543 | 7.5958 | 2894 | 1.0476 | -0.0784 | 1.0476 | 1.0235 | | 0.0543 | 7.6010 | 2896 | 1.0256 | 0.0892 | 1.0256 | 1.0127 | | 0.0543 | 7.6063 | 2898 | 1.0160 | 0.0892 | 1.0160 | 1.0080 | | 0.0543 | 7.6115 | 2900 | 1.0108 | 0.0892 | 1.0108 | 1.0054 | | 0.0543 | 7.6168 | 2902 | 1.0043 | 0.0892 | 1.0043 | 1.0021 | | 0.0543 | 7.6220 | 2904 | 1.0057 | 0.0892 | 1.0057 | 1.0029 | | 0.0543 | 7.6273 | 2906 | 1.0003 | 0.0892 | 1.0003 | 1.0002 | | 0.0543 | 7.6325 | 2908 | 0.9976 | 0.0892 | 0.9976 | 0.9988 | | 0.0543 | 7.6378 | 2910 | 1.0017 | 0.0892 | 1.0017 | 1.0008 | | 0.0543 | 7.6430 | 2912 | 1.0031 | 0.0833 | 1.0031 | 1.0015 | | 0.0543 | 7.6483 | 2914 | 1.0075 | -0.0784 | 1.0074 | 1.0037 | | 0.0543 | 7.6535 | 2916 | 0.9951 | 0.0833 | 0.9951 | 0.9976 | | 0.0543 | 7.6588 | 2918 | 0.9729 | 0.0892 | 0.9729 | 0.9864 | | 0.0543 | 7.6640 | 2920 | 0.9613 | 0.0892 | 0.9613 | 0.9804 | | 0.0543 | 7.6693 | 2922 | 0.9596 | 0.2878 | 0.9596 | 0.9796 | | 0.0543 | 7.6745 | 2924 | 0.9620 | 0.0892 | 0.9620 | 0.9808 | | 0.0543 | 7.6798 | 2926 | 0.9689 | 0.0892 | 0.9689 | 0.9843 | | 0.0543 | 7.6850 | 2928 | 0.9872 | 0.0833 | 0.9872 | 0.9936 | | 0.0543 | 7.6903 | 2930 | 1.0077 | -0.0784 | 1.0077 | 1.0038 | | 0.0543 | 7.6955 | 2932 | 1.0145 | -0.0784 | 1.0145 | 1.0072 | | 0.0543 | 7.7008 | 2934 | 1.0184 | -0.0784 | 1.0184 | 1.0092 | | 0.0543 | 7.7060 | 2936 | 1.0079 | 0.0892 | 1.0079 | 1.0040 | | 0.0543 | 7.7113 | 2938 | 1.0013 | 0.0892 | 1.0013 | 1.0006 | | 0.0543 | 7.7165 | 2940 | 0.9937 | 0.0892 | 0.9937 | 0.9969 | | 0.0543 | 7.7218 | 2942 | 0.9869 | 0.0892 | 0.9869 | 0.9934 | | 0.0543 | 7.7270 | 2944 | 0.9864 | 0.0892 | 0.9864 | 0.9932 | | 0.0543 | 7.7323 | 2946 | 0.9949 | 0.0892 | 0.9949 | 0.9974 | | 0.0543 | 7.7375 | 2948 | 1.0062 | 0.0892 | 1.0062 | 1.0031 | | 0.0543 | 7.7428 | 2950 | 1.0049 | 0.0892 | 1.0049 | 1.0025 | | 0.0543 | 7.7480 | 2952 | 0.9930 | 0.0892 | 0.9930 | 0.9965 | | 0.0543 | 7.7533 | 2954 | 0.9812 | 0.0892 | 0.9812 | 0.9906 | | 0.0543 | 7.7585 | 2956 | 0.9743 | 0.0892 | 0.9743 | 0.9871 | | 0.0543 | 7.7638 | 2958 | 0.9762 | 0.0892 | 0.9762 | 0.9880 | | 0.0543 | 7.7690 | 2960 | 0.9786 | 0.0833 | 0.9786 | 0.9892 | | 0.0543 | 7.7743 | 2962 | 0.9838 | 0.0833 | 0.9838 | 0.9919 | | 0.0543 | 7.7795 | 2964 | 0.9726 | 0.0833 | 0.9726 | 0.9862 | | 0.0543 | 7.7848 | 2966 | 0.9581 | 0.0892 | 0.9581 | 0.9788 | | 0.0543 | 7.7900 | 2968 | 0.9485 | 0.0892 | 0.9485 | 0.9739 | | 0.0543 | 7.7953 | 2970 | 0.9503 | 0.0892 | 0.9503 | 0.9748 | | 0.0543 | 7.8005 | 2972 | 0.9582 | 0.1081 | 0.9582 | 0.9789 | | 0.0543 | 7.8058 | 2974 | 0.9622 | 0.0892 | 0.9622 | 0.9809 | | 0.0543 | 7.8110 | 2976 | 0.9661 | 0.0892 | 0.9661 | 0.9829 | | 0.0543 | 7.8163 | 2978 | 0.9745 | 0.0892 | 0.9745 | 0.9872 | | 0.0543 | 7.8215 | 2980 | 0.9849 | 0.0892 | 0.9849 | 0.9924 | | 0.0543 | 7.8268 | 2982 | 0.9925 | 0.0892 | 0.9925 | 0.9962 | | 0.0543 | 7.8320 | 2984 | 1.0065 | -0.0784 | 1.0065 | 1.0032 | | 0.0543 | 7.8373 | 2986 | 1.0075 | -0.0784 | 1.0075 | 1.0038 | | 0.0543 | 7.8425 | 2988 | 0.9909 | 0.0833 | 0.9909 | 0.9954 | | 0.0543 | 7.8478 | 2990 | 0.9749 | 0.0892 | 0.9749 | 0.9874 | | 0.0543 | 7.8530 | 2992 | 0.9661 | 0.0892 | 0.9661 | 0.9829 | | 0.0543 | 7.8583 | 2994 | 0.9620 | 0.0892 | 0.9620 | 0.9808 | | 0.0543 | 7.8635 | 2996 | 0.9593 | 0.0892 | 0.9593 | 0.9795 | | 0.0543 | 7.8688 | 2998 | 0.9636 | 0.0892 | 0.9636 | 0.9816 | | 0.045 | 7.8740 | 3000 | 0.9774 | 0.0892 | 0.9774 | 0.9886 | | 0.045 | 7.8793 | 3002 | 0.9949 | -0.0784 | 0.9949 | 0.9974 | | 0.045 | 7.8845 | 3004 | 0.9976 | -0.0784 | 0.9976 | 0.9988 | | 0.045 | 7.8898 | 3006 | 0.9845 | 0.0892 | 0.9845 | 0.9922 | | 0.045 | 7.8950 | 3008 | 0.9701 | 0.0892 | 0.9701 | 0.9850 | | 0.045 | 7.9003 | 3010 | 0.9571 | 0.0892 | 0.9571 | 0.9783 | | 0.045 | 7.9055 | 3012 | 0.9471 | 0.0892 | 0.9471 | 0.9732 | | 0.045 | 7.9108 | 3014 | 0.9457 | 0.0892 | 0.9457 | 0.9725 | | 0.045 | 7.9160 | 3016 | 0.9545 | 0.0833 | 0.9545 | 0.9770 | | 0.045 | 7.9213 | 3018 | 0.9674 | -0.0784 | 0.9674 | 0.9835 | | 0.045 | 7.9265 | 3020 | 0.9742 | -0.0784 | 0.9742 | 0.9870 | | 0.045 | 7.9318 | 3022 | 0.9707 | 0.0833 | 0.9707 | 0.9852 | | 0.045 | 7.9370 | 3024 | 0.9561 | 0.0833 | 0.9561 | 0.9778 | | 0.045 | 7.9423 | 3026 | 0.9518 | 0.0892 | 0.9518 | 0.9756 | | 0.045 | 7.9475 | 3028 | 0.9535 | 0.0892 | 0.9535 | 0.9765 | | 0.045 | 7.9528 | 3030 | 0.9642 | 0.0892 | 0.9642 | 0.9819 | | 0.045 | 7.9580 | 3032 | 0.9737 | 0.0892 | 0.9737 | 0.9868 | | 0.045 | 7.9633 | 3034 | 0.9768 | 0.0892 | 0.9768 | 0.9883 | | 0.045 | 7.9685 | 3036 | 0.9822 | 0.0892 | 0.9822 | 0.9911 | | 0.045 | 7.9738 | 3038 | 0.9797 | 0.0892 | 0.9797 | 0.9898 | | 0.045 | 7.9790 | 3040 | 0.9748 | 0.0892 | 0.9748 | 0.9873 | | 0.045 | 7.9843 | 3042 | 0.9657 | 0.0892 | 0.9657 | 0.9827 | | 0.045 | 7.9895 | 3044 | 0.9657 | 0.0892 | 0.9657 | 0.9827 | | 0.045 | 7.9948 | 3046 | 0.9652 | 0.0892 | 0.9652 | 0.9825 | | 0.045 | 8.0 | 3048 | 0.9722 | 0.0833 | 0.9722 | 0.9860 | | 0.045 | 8.0052 | 3050 | 0.9777 | 0.0833 | 0.9777 | 0.9888 | | 0.045 | 8.0105 | 3052 | 0.9805 | -0.0784 | 0.9805 | 0.9902 | | 0.045 | 8.0157 | 3054 | 0.9660 | 0.0892 | 0.9660 | 0.9829 | | 0.045 | 8.0210 | 3056 | 0.9491 | 0.0892 | 0.9491 | 0.9742 | | 0.045 | 8.0262 | 3058 | 0.9384 | 0.1081 | 0.9384 | 0.9687 | | 0.045 | 8.0315 | 3060 | 0.9351 | 0.1081 | 0.9351 | 0.9670 | | 0.045 | 8.0367 | 3062 | 0.9394 | 0.0892 | 0.9394 | 0.9692 | | 0.045 | 8.0420 | 3064 | 0.9402 | 0.0892 | 0.9402 | 0.9697 | | 0.045 | 8.0472 | 3066 | 0.9370 | 0.0892 | 0.9370 | 0.9680 | | 0.045 | 8.0525 | 3068 | 0.9419 | 0.0892 | 0.9419 | 0.9705 | | 0.045 | 8.0577 | 3070 | 0.9519 | 0.0833 | 0.9519 | 0.9757 | | 0.045 | 8.0630 | 3072 | 0.9566 | 0.0833 | 0.9566 | 0.9781 | | 0.045 | 8.0682 | 3074 | 0.9495 | 0.0892 | 0.9495 | 0.9744 | | 0.045 | 8.0735 | 3076 | 0.9462 | 0.0892 | 0.9462 | 0.9727 | | 0.045 | 8.0787 | 3078 | 0.9495 | 0.0892 | 0.9495 | 0.9744 | | 0.045 | 8.0840 | 3080 | 0.9596 | 0.0892 | 0.9596 | 0.9796 | | 0.045 | 8.0892 | 3082 | 0.9694 | 0.0892 | 0.9694 | 0.9846 | | 0.045 | 8.0945 | 3084 | 0.9744 | 0.0892 | 0.9744 | 0.9871 | | 0.045 | 8.0997 | 3086 | 0.9646 | 0.0892 | 0.9646 | 0.9821 | | 0.045 | 8.1050 | 3088 | 0.9514 | 0.0892 | 0.9514 | 0.9754 | | 0.045 | 8.1102 | 3090 | 0.9477 | 0.0892 | 0.9477 | 0.9735 | | 0.045 | 8.1155 | 3092 | 0.9438 | 0.0892 | 0.9438 | 0.9715 | | 0.045 | 8.1207 | 3094 | 0.9491 | 0.0892 | 0.9491 | 0.9742 | | 0.045 | 8.1260 | 3096 | 0.9534 | 0.0892 | 0.9534 | 0.9764 | | 0.045 | 8.1312 | 3098 | 0.9551 | 0.0892 | 0.9551 | 0.9773 | | 0.045 | 8.1365 | 3100 | 0.9595 | 0.0892 | 0.9595 | 0.9796 | | 0.045 | 8.1417 | 3102 | 0.9608 | 0.0892 | 0.9608 | 0.9802 | | 0.045 | 8.1470 | 3104 | 0.9690 | 0.0892 | 0.9690 | 0.9844 | | 0.045 | 8.1522 | 3106 | 0.9720 | 0.0892 | 0.9720 | 0.9859 | | 0.045 | 8.1575 | 3108 | 0.9691 | 0.0892 | 0.9691 | 0.9844 | | 0.045 | 8.1627 | 3110 | 0.9723 | 0.0892 | 0.9723 | 0.9860 | | 0.045 | 8.1680 | 3112 | 0.9736 | 0.0892 | 0.9736 | 0.9867 | | 0.045 | 8.1732 | 3114 | 0.9712 | 0.0892 | 0.9712 | 0.9855 | | 0.045 | 8.1785 | 3116 | 0.9630 | 0.0892 | 0.9630 | 0.9813 | | 0.045 | 8.1837 | 3118 | 0.9582 | 0.0892 | 0.9582 | 0.9789 | | 0.045 | 8.1890 | 3120 | 0.9461 | 0.0892 | 0.9461 | 0.9727 | | 0.045 | 8.1942 | 3122 | 0.9416 | 0.0892 | 0.9416 | 0.9704 | | 0.045 | 8.1995 | 3124 | 0.9449 | 0.0833 | 0.9449 | 0.9721 | | 0.045 | 8.2047 | 3126 | 0.9457 | 0.0833 | 0.9457 | 0.9725 | | 0.045 | 8.2100 | 3128 | 0.9410 | 0.0833 | 0.9410 | 0.9701 | | 0.045 | 8.2152 | 3130 | 0.9371 | 0.0892 | 0.9371 | 0.9681 | | 0.045 | 8.2205 | 3132 | 0.9361 | 0.0892 | 0.9361 | 0.9675 | | 0.045 | 8.2257 | 3134 | 0.9340 | 0.1081 | 0.9340 | 0.9664 | | 0.045 | 8.2310 | 3136 | 0.9351 | 0.1081 | 0.9351 | 0.9670 | | 0.045 | 8.2362 | 3138 | 0.9345 | 0.1295 | 0.9345 | 0.9667 | | 0.045 | 8.2415 | 3140 | 0.9349 | 0.1081 | 0.9349 | 0.9669 | | 0.045 | 8.2467 | 3142 | 0.9340 | 0.1081 | 0.9340 | 0.9664 | | 0.045 | 8.2520 | 3144 | 0.9396 | 0.0892 | 0.9396 | 0.9693 | | 0.045 | 8.2572 | 3146 | 0.9587 | 0.0833 | 0.9587 | 0.9791 | | 0.045 | 8.2625 | 3148 | 0.9830 | -0.0784 | 0.9830 | 0.9915 | | 0.045 | 8.2677 | 3150 | 0.9892 | -0.0784 | 0.9892 | 0.9946 | | 0.045 | 8.2730 | 3152 | 0.9821 | -0.0784 | 0.9821 | 0.9910 | | 0.045 | 8.2782 | 3154 | 0.9626 | 0.0833 | 0.9626 | 0.9811 | | 0.045 | 8.2835 | 3156 | 0.9429 | 0.0833 | 0.9429 | 0.9710 | | 0.045 | 8.2887 | 3158 | 0.9318 | 0.0892 | 0.9318 | 0.9653 | | 0.045 | 8.2940 | 3160 | 0.9262 | 0.0892 | 0.9262 | 0.9624 | | 0.045 | 8.2992 | 3162 | 0.9238 | 0.0892 | 0.9238 | 0.9611 | | 0.045 | 8.3045 | 3164 | 0.9238 | 0.0892 | 0.9238 | 0.9611 | | 0.045 | 8.3097 | 3166 | 0.9300 | 0.0892 | 0.9300 | 0.9644 | | 0.045 | 8.3150 | 3168 | 0.9411 | 0.0833 | 0.9411 | 0.9701 | | 0.045 | 8.3202 | 3170 | 0.9478 | 0.0833 | 0.9478 | 0.9736 | | 0.045 | 8.3255 | 3172 | 0.9619 | 0.0833 | 0.9619 | 0.9808 | | 0.045 | 8.3307 | 3174 | 0.9841 | -0.0784 | 0.9841 | 0.9920 | | 0.045 | 8.3360 | 3176 | 0.9966 | -0.0784 | 0.9966 | 0.9983 | | 0.045 | 8.3412 | 3178 | 0.9902 | -0.0784 | 0.9902 | 0.9951 | | 0.045 | 8.3465 | 3180 | 0.9710 | 0.0833 | 0.9710 | 0.9854 | | 0.045 | 8.3517 | 3182 | 0.9555 | 0.0833 | 0.9555 | 0.9775 | | 0.045 | 8.3570 | 3184 | 0.9392 | 0.0833 | 0.9392 | 0.9691 | | 0.045 | 8.3622 | 3186 | 0.9294 | 0.0892 | 0.9294 | 0.9640 | | 0.045 | 8.3675 | 3188 | 0.9280 | 0.0892 | 0.9280 | 0.9633 | | 0.045 | 8.3727 | 3190 | 0.9308 | 0.0892 | 0.9308 | 0.9648 | | 0.045 | 8.3780 | 3192 | 0.9366 | 0.0833 | 0.9366 | 0.9678 | | 0.045 | 8.3832 | 3194 | 0.9399 | 0.0892 | 0.9399 | 0.9695 | | 0.045 | 8.3885 | 3196 | 0.9488 | 0.0892 | 0.9488 | 0.9741 | | 0.045 | 8.3937 | 3198 | 0.9605 | 0.0833 | 0.9605 | 0.9800 | | 0.045 | 8.3990 | 3200 | 0.9662 | 0.0833 | 0.9662 | 0.9829 | | 0.045 | 8.4042 | 3202 | 0.9727 | 0.0833 | 0.9727 | 0.9862 | | 0.045 | 8.4094 | 3204 | 0.9663 | 0.0833 | 0.9663 | 0.9830 | | 0.045 | 8.4147 | 3206 | 0.9611 | 0.0892 | 0.9611 | 0.9803 | | 0.045 | 8.4199 | 3208 | 0.9681 | 0.0892 | 0.9681 | 0.9839 | | 0.045 | 8.4252 | 3210 | 0.9722 | 0.0892 | 0.9722 | 0.9860 | | 0.045 | 8.4304 | 3212 | 0.9744 | 0.0892 | 0.9744 | 0.9871 | | 0.045 | 8.4357 | 3214 | 0.9796 | 0.0892 | 0.9796 | 0.9898 | | 0.045 | 8.4409 | 3216 | 0.9869 | 0.0892 | 0.9869 | 0.9934 | | 0.045 | 8.4462 | 3218 | 0.9948 | 0.0892 | 0.9948 | 0.9974 | | 0.045 | 8.4514 | 3220 | 0.9988 | 0.0892 | 0.9988 | 0.9994 | | 0.045 | 8.4567 | 3222 | 1.0015 | 0.0892 | 1.0015 | 1.0007 | | 0.045 | 8.4619 | 3224 | 1.0056 | 0.0892 | 1.0056 | 1.0028 | | 0.045 | 8.4672 | 3226 | 1.0104 | 0.0892 | 1.0104 | 1.0052 | | 0.045 | 8.4724 | 3228 | 1.0190 | 0.0892 | 1.0190 | 1.0095 | | 0.045 | 8.4777 | 3230 | 1.0245 | 0.0892 | 1.0245 | 1.0122 | | 0.045 | 8.4829 | 3232 | 1.0256 | 0.0892 | 1.0256 | 1.0127 | | 0.045 | 8.4882 | 3234 | 1.0293 | 0.0892 | 1.0293 | 1.0146 | | 0.045 | 8.4934 | 3236 | 1.0304 | 0.0892 | 1.0304 | 1.0151 | | 0.045 | 8.4987 | 3238 | 1.0350 | 0.0892 | 1.0350 | 1.0173 | | 0.045 | 8.5039 | 3240 | 1.0390 | -0.0784 | 1.0390 | 1.0193 | | 0.045 | 8.5092 | 3242 | 1.0484 | -0.0784 | 1.0484 | 1.0239 | | 0.045 | 8.5144 | 3244 | 1.0454 | -0.0784 | 1.0454 | 1.0225 | | 0.045 | 8.5197 | 3246 | 1.0366 | -0.0784 | 1.0366 | 1.0181 | | 0.045 | 8.5249 | 3248 | 1.0179 | -0.0784 | 1.0179 | 1.0089 | | 0.045 | 8.5302 | 3250 | 0.9954 | 0.0833 | 0.9954 | 0.9977 | | 0.045 | 8.5354 | 3252 | 0.9771 | 0.0833 | 0.9771 | 0.9885 | | 0.045 | 8.5407 | 3254 | 0.9701 | 0.0892 | 0.9701 | 0.9849 | | 0.045 | 8.5459 | 3256 | 0.9667 | 0.0892 | 0.9667 | 0.9832 | | 0.045 | 8.5512 | 3258 | 0.9684 | 0.1538 | 0.9684 | 0.9841 | | 0.045 | 8.5564 | 3260 | 0.9704 | 0.1538 | 0.9704 | 0.9851 | | 0.045 | 8.5617 | 3262 | 0.9719 | 0.2878 | 0.9719 | 0.9858 | | 0.045 | 8.5669 | 3264 | 0.9750 | 0.0892 | 0.9750 | 0.9874 | | 0.045 | 8.5722 | 3266 | 0.9800 | 0.0892 | 0.9800 | 0.9899 | | 0.045 | 8.5774 | 3268 | 0.9826 | 0.0892 | 0.9826 | 0.9913 | | 0.045 | 8.5827 | 3270 | 0.9902 | 0.0892 | 0.9902 | 0.9951 | | 0.045 | 8.5879 | 3272 | 0.9963 | 0.0892 | 0.9963 | 0.9982 | | 0.045 | 8.5932 | 3274 | 0.9989 | 0.0892 | 0.9989 | 0.9994 | | 0.045 | 8.5984 | 3276 | 1.0012 | 0.0892 | 1.0012 | 1.0006 | | 0.045 | 8.6037 | 3278 | 1.0012 | 0.0892 | 1.0012 | 1.0006 | | 0.045 | 8.6089 | 3280 | 0.9966 | 0.0892 | 0.9966 | 0.9983 | | 0.045 | 8.6142 | 3282 | 0.9883 | 0.0892 | 0.9883 | 0.9941 | | 0.045 | 8.6194 | 3284 | 0.9814 | 0.0892 | 0.9814 | 0.9906 | | 0.045 | 8.6247 | 3286 | 0.9778 | 0.0892 | 0.9778 | 0.9888 | | 0.045 | 8.6299 | 3288 | 0.9728 | 0.0892 | 0.9728 | 0.9863 | | 0.045 | 8.6352 | 3290 | 0.9683 | 0.0833 | 0.9683 | 0.9840 | | 0.045 | 8.6404 | 3292 | 0.9666 | 0.0833 | 0.9666 | 0.9832 | | 0.045 | 8.6457 | 3294 | 0.9663 | 0.0833 | 0.9663 | 0.9830 | | 0.045 | 8.6509 | 3296 | 0.9658 | 0.0833 | 0.9658 | 0.9828 | | 0.045 | 8.6562 | 3298 | 0.9606 | 0.0833 | 0.9606 | 0.9801 | | 0.045 | 8.6614 | 3300 | 0.9555 | 0.0833 | 0.9555 | 0.9775 | | 0.045 | 8.6667 | 3302 | 0.9445 | 0.0833 | 0.9445 | 0.9719 | | 0.045 | 8.6719 | 3304 | 0.9335 | 0.0833 | 0.9335 | 0.9662 | | 0.045 | 8.6772 | 3306 | 0.9319 | 0.2878 | 0.9319 | 0.9653 | | 0.045 | 8.6824 | 3308 | 0.9380 | 0.3231 | 0.9380 | 0.9685 | | 0.045 | 8.6877 | 3310 | 0.9457 | 0.3231 | 0.9457 | 0.9725 | | 0.045 | 8.6929 | 3312 | 0.9508 | 0.2878 | 0.9508 | 0.9751 | | 0.045 | 8.6982 | 3314 | 0.9550 | 0.0892 | 0.9550 | 0.9772 | | 0.045 | 8.7034 | 3316 | 0.9621 | 0.0892 | 0.9621 | 0.9809 | | 0.045 | 8.7087 | 3318 | 0.9770 | 0.0833 | 0.9770 | 0.9885 | | 0.045 | 8.7139 | 3320 | 0.9889 | 0.0833 | 0.9889 | 0.9945 | | 0.045 | 8.7192 | 3322 | 1.0007 | 0.0833 | 1.0007 | 1.0003 | | 0.045 | 8.7244 | 3324 | 1.0041 | 0.0833 | 1.0041 | 1.0021 | | 0.045 | 8.7297 | 3326 | 1.0003 | 0.0833 | 1.0003 | 1.0002 | | 0.045 | 8.7349 | 3328 | 0.9956 | 0.0892 | 0.9956 | 0.9978 | | 0.045 | 8.7402 | 3330 | 0.9930 | 0.0892 | 0.9930 | 0.9965 | | 0.045 | 8.7454 | 3332 | 0.9939 | 0.0892 | 0.9939 | 0.9970 | | 0.045 | 8.7507 | 3334 | 0.9955 | 0.0892 | 0.9955 | 0.9978 | | 0.045 | 8.7559 | 3336 | 0.9967 | 0.0892 | 0.9967 | 0.9983 | | 0.045 | 8.7612 | 3338 | 1.0003 | 0.0892 | 1.0003 | 1.0001 | | 0.045 | 8.7664 | 3340 | 1.0027 | 0.0833 | 1.0027 | 1.0013 | | 0.045 | 8.7717 | 3342 | 1.0062 | 0.0833 | 1.0062 | 1.0031 | | 0.045 | 8.7769 | 3344 | 1.0113 | 0.0833 | 1.0113 | 1.0056 | | 0.045 | 8.7822 | 3346 | 1.0069 | 0.0833 | 1.0069 | 1.0034 | | 0.045 | 8.7874 | 3348 | 0.9962 | 0.0833 | 0.9962 | 0.9981 | | 0.045 | 8.7927 | 3350 | 0.9827 | 0.0833 | 0.9827 | 0.9913 | | 0.045 | 8.7979 | 3352 | 0.9756 | 0.0892 | 0.9756 | 0.9877 | | 0.045 | 8.8031 | 3354 | 0.9756 | 0.0892 | 0.9756 | 0.9877 | | 0.045 | 8.8084 | 3356 | 0.9778 | 0.0892 | 0.9778 | 0.9888 | | 0.045 | 8.8136 | 3358 | 0.9823 | 0.0892 | 0.9823 | 0.9911 | | 0.045 | 8.8189 | 3360 | 0.9921 | 0.0892 | 0.9921 | 0.9960 | | 0.045 | 8.8241 | 3362 | 0.9998 | 0.0892 | 0.9998 | 0.9999 | | 0.045 | 8.8294 | 3364 | 1.0016 | 0.0892 | 1.0016 | 1.0008 | | 0.045 | 8.8346 | 3366 | 1.0013 | 0.0892 | 1.0013 | 1.0006 | | 0.045 | 8.8399 | 3368 | 1.0042 | 0.0892 | 1.0042 | 1.0021 | | 0.045 | 8.8451 | 3370 | 1.0097 | 0.0892 | 1.0097 | 1.0048 | | 0.045 | 8.8504 | 3372 | 1.0146 | 0.0892 | 1.0146 | 1.0073 | | 0.045 | 8.8556 | 3374 | 1.0145 | 0.0833 | 1.0145 | 1.0072 | | 0.045 | 8.8609 | 3376 | 1.0128 | 0.0833 | 1.0128 | 1.0064 | | 0.045 | 8.8661 | 3378 | 1.0071 | 0.0833 | 1.0071 | 1.0036 | | 0.045 | 8.8714 | 3380 | 1.0094 | 0.0833 | 1.0094 | 1.0047 | | 0.045 | 8.8766 | 3382 | 1.0080 | 0.0833 | 1.0080 | 1.0040 | | 0.045 | 8.8819 | 3384 | 1.0005 | 0.0833 | 1.0005 | 1.0002 | | 0.045 | 8.8871 | 3386 | 0.9918 | 0.0833 | 0.9918 | 0.9959 | | 0.045 | 8.8924 | 3388 | 0.9821 | 0.0833 | 0.9821 | 0.9910 | | 0.045 | 8.8976 | 3390 | 0.9740 | 0.0833 | 0.9740 | 0.9869 | | 0.045 | 8.9029 | 3392 | 0.9673 | 0.0833 | 0.9673 | 0.9835 | | 0.045 | 8.9081 | 3394 | 0.9590 | 0.0892 | 0.9590 | 0.9793 | | 0.045 | 8.9134 | 3396 | 0.9556 | 0.0892 | 0.9556 | 0.9775 | | 0.045 | 8.9186 | 3398 | 0.9516 | 0.0833 | 0.9516 | 0.9755 | | 0.045 | 8.9239 | 3400 | 0.9504 | 0.0833 | 0.9504 | 0.9749 | | 0.045 | 8.9291 | 3402 | 0.9537 | 0.0833 | 0.9537 | 0.9766 | | 0.045 | 8.9344 | 3404 | 0.9548 | 0.0833 | 0.9548 | 0.9772 | | 0.045 | 8.9396 | 3406 | 0.9537 | 0.0833 | 0.9537 | 0.9766 | | 0.045 | 8.9449 | 3408 | 0.9508 | 0.0833 | 0.9508 | 0.9751 | | 0.045 | 8.9501 | 3410 | 0.9512 | 0.0833 | 0.9512 | 0.9753 | | 0.045 | 8.9554 | 3412 | 0.9519 | 0.0833 | 0.9519 | 0.9756 | | 0.045 | 8.9606 | 3414 | 0.9503 | 0.0833 | 0.9503 | 0.9748 | | 0.045 | 8.9659 | 3416 | 0.9510 | 0.0833 | 0.9510 | 0.9752 | | 0.045 | 8.9711 | 3418 | 0.9548 | 0.0833 | 0.9548 | 0.9771 | | 0.045 | 8.9764 | 3420 | 0.9554 | 0.0833 | 0.9554 | 0.9774 | | 0.045 | 8.9816 | 3422 | 0.9570 | 0.0833 | 0.9570 | 0.9783 | | 0.045 | 8.9869 | 3424 | 0.9587 | 0.0833 | 0.9587 | 0.9791 | | 0.045 | 8.9921 | 3426 | 0.9612 | 0.0833 | 0.9612 | 0.9804 | | 0.045 | 8.9974 | 3428 | 0.9624 | 0.0833 | 0.9624 | 0.9810 | | 0.045 | 9.0026 | 3430 | 0.9640 | 0.0833 | 0.9640 | 0.9819 | | 0.045 | 9.0079 | 3432 | 0.9632 | 0.0833 | 0.9632 | 0.9814 | | 0.045 | 9.0131 | 3434 | 0.9659 | 0.0892 | 0.9659 | 0.9828 | | 0.045 | 9.0184 | 3436 | 0.9723 | 0.0892 | 0.9723 | 0.9861 | | 0.045 | 9.0236 | 3438 | 0.9779 | 0.0892 | 0.9779 | 0.9889 | | 0.045 | 9.0289 | 3440 | 0.9851 | 0.0833 | 0.9851 | 0.9925 | | 0.045 | 9.0341 | 3442 | 0.9930 | 0.0833 | 0.9930 | 0.9965 | | 0.045 | 9.0394 | 3444 | 0.9956 | 0.0833 | 0.9956 | 0.9978 | | 0.045 | 9.0446 | 3446 | 0.9959 | 0.0833 | 0.9959 | 0.9979 | | 0.045 | 9.0499 | 3448 | 0.9931 | 0.0833 | 0.9931 | 0.9966 | | 0.045 | 9.0551 | 3450 | 0.9908 | 0.0833 | 0.9908 | 0.9954 | | 0.045 | 9.0604 | 3452 | 0.9843 | 0.0833 | 0.9843 | 0.9921 | | 0.045 | 9.0656 | 3454 | 0.9790 | 0.0833 | 0.9790 | 0.9894 | | 0.045 | 9.0709 | 3456 | 0.9737 | 0.0892 | 0.9737 | 0.9868 | | 0.045 | 9.0761 | 3458 | 0.9727 | 0.0892 | 0.9727 | 0.9863 | | 0.045 | 9.0814 | 3460 | 0.9751 | 0.0892 | 0.9751 | 0.9875 | | 0.045 | 9.0866 | 3462 | 0.9785 | 0.0892 | 0.9785 | 0.9892 | | 0.045 | 9.0919 | 3464 | 0.9815 | 0.0892 | 0.9815 | 0.9907 | | 0.045 | 9.0971 | 3466 | 0.9868 | 0.0833 | 0.9868 | 0.9934 | | 0.045 | 9.1024 | 3468 | 0.9889 | 0.0833 | 0.9889 | 0.9944 | | 0.045 | 9.1076 | 3470 | 0.9865 | 0.0833 | 0.9865 | 0.9932 | | 0.045 | 9.1129 | 3472 | 0.9806 | 0.0892 | 0.9806 | 0.9902 | | 0.045 | 9.1181 | 3474 | 0.9739 | 0.0892 | 0.9739 | 0.9869 | | 0.045 | 9.1234 | 3476 | 0.9714 | 0.0892 | 0.9714 | 0.9856 | | 0.045 | 9.1286 | 3478 | 0.9720 | 0.0892 | 0.9720 | 0.9859 | | 0.045 | 9.1339 | 3480 | 0.9730 | 0.0892 | 0.9730 | 0.9864 | | 0.045 | 9.1391 | 3482 | 0.9752 | 0.0892 | 0.9752 | 0.9875 | | 0.045 | 9.1444 | 3484 | 0.9769 | 0.0892 | 0.9769 | 0.9884 | | 0.045 | 9.1496 | 3486 | 0.9785 | 0.0892 | 0.9785 | 0.9892 | | 0.045 | 9.1549 | 3488 | 0.9803 | 0.0892 | 0.9803 | 0.9901 | | 0.045 | 9.1601 | 3490 | 0.9793 | 0.0892 | 0.9793 | 0.9896 | | 0.045 | 9.1654 | 3492 | 0.9765 | 0.0892 | 0.9765 | 0.9882 | | 0.045 | 9.1706 | 3494 | 0.9742 | 0.0892 | 0.9742 | 0.9870 | | 0.045 | 9.1759 | 3496 | 0.9724 | 0.0892 | 0.9724 | 0.9861 | | 0.045 | 9.1811 | 3498 | 0.9736 | 0.0892 | 0.9736 | 0.9867 | | 0.0402 | 9.1864 | 3500 | 0.9737 | 0.0892 | 0.9737 | 0.9868 | | 0.0402 | 9.1916 | 3502 | 0.9746 | 0.0892 | 0.9746 | 0.9872 | | 0.0402 | 9.1969 | 3504 | 0.9777 | 0.0833 | 0.9777 | 0.9888 | | 0.0402 | 9.2021 | 3506 | 0.9839 | 0.0833 | 0.9839 | 0.9919 | | 0.0402 | 9.2073 | 3508 | 0.9886 | 0.0833 | 0.9886 | 0.9943 | | 0.0402 | 9.2126 | 3510 | 0.9872 | 0.0833 | 0.9872 | 0.9936 | | 0.0402 | 9.2178 | 3512 | 0.9872 | 0.0833 | 0.9872 | 0.9936 | | 0.0402 | 9.2231 | 3514 | 0.9836 | 0.0833 | 0.9836 | 0.9918 | | 0.0402 | 9.2283 | 3516 | 0.9803 | 0.0833 | 0.9803 | 0.9901 | | 0.0402 | 9.2336 | 3518 | 0.9799 | 0.0833 | 0.9799 | 0.9899 | | 0.0402 | 9.2388 | 3520 | 0.9798 | 0.0833 | 0.9798 | 0.9898 | | 0.0402 | 9.2441 | 3522 | 0.9813 | 0.0833 | 0.9813 | 0.9906 | | 0.0402 | 9.2493 | 3524 | 0.9862 | 0.0833 | 0.9862 | 0.9931 | | 0.0402 | 9.2546 | 3526 | 0.9946 | 0.0833 | 0.9946 | 0.9973 | | 0.0402 | 9.2598 | 3528 | 1.0017 | 0.0833 | 1.0017 | 1.0009 | | 0.0402 | 9.2651 | 3530 | 1.0062 | 0.0833 | 1.0062 | 1.0031 | | 0.0402 | 9.2703 | 3532 | 1.0123 | 0.0833 | 1.0123 | 1.0061 | | 0.0402 | 9.2756 | 3534 | 1.0161 | 0.0833 | 1.0161 | 1.0080 | | 0.0402 | 9.2808 | 3536 | 1.0199 | 0.0892 | 1.0199 | 1.0099 | | 0.0402 | 9.2861 | 3538 | 1.0217 | 0.0892 | 1.0217 | 1.0108 | | 0.0402 | 9.2913 | 3540 | 1.0211 | 0.0892 | 1.0211 | 1.0105 | | 0.0402 | 9.2966 | 3542 | 1.0222 | -0.0353 | 1.0222 | 1.0110 | | 0.0402 | 9.3018 | 3544 | 1.0244 | -0.0353 | 1.0244 | 1.0121 | | 0.0402 | 9.3071 | 3546 | 1.0253 | -0.0353 | 1.0253 | 1.0126 | | 0.0402 | 9.3123 | 3548 | 1.0264 | -0.0353 | 1.0264 | 1.0131 | | 0.0402 | 9.3176 | 3550 | 1.0267 | -0.0353 | 1.0267 | 1.0133 | | 0.0402 | 9.3228 | 3552 | 1.0269 | -0.0353 | 1.0269 | 1.0133 | | 0.0402 | 9.3281 | 3554 | 1.0260 | -0.0353 | 1.0260 | 1.0129 | | 0.0402 | 9.3333 | 3556 | 1.0256 | -0.0353 | 1.0256 | 1.0127 | | 0.0402 | 9.3386 | 3558 | 1.0260 | -0.0353 | 1.0260 | 1.0129 | | 0.0402 | 9.3438 | 3560 | 1.0272 | -0.0353 | 1.0272 | 1.0135 | | 0.0402 | 9.3491 | 3562 | 1.0269 | -0.0353 | 1.0269 | 1.0134 | | 0.0402 | 9.3543 | 3564 | 1.0250 | 0.0892 | 1.0250 | 1.0124 | | 0.0402 | 9.3596 | 3566 | 1.0218 | 0.0892 | 1.0218 | 1.0109 | | 0.0402 | 9.3648 | 3568 | 1.0200 | 0.0892 | 1.0200 | 1.0099 | | 0.0402 | 9.3701 | 3570 | 1.0153 | 0.0892 | 1.0153 | 1.0076 | | 0.0402 | 9.3753 | 3572 | 1.0100 | 0.0892 | 1.0100 | 1.0050 | | 0.0402 | 9.3806 | 3574 | 1.0058 | 0.0892 | 1.0058 | 1.0029 | | 0.0402 | 9.3858 | 3576 | 1.0011 | 0.0892 | 1.0011 | 1.0006 | | 0.0402 | 9.3911 | 3578 | 0.9983 | 0.0892 | 0.9983 | 0.9991 | | 0.0402 | 9.3963 | 3580 | 0.9961 | -0.0353 | 0.9961 | 0.9980 | | 0.0402 | 9.4016 | 3582 | 0.9950 | -0.0353 | 0.9950 | 0.9975 | | 0.0402 | 9.4068 | 3584 | 0.9962 | 0.0892 | 0.9962 | 0.9981 | | 0.0402 | 9.4121 | 3586 | 0.9995 | 0.0892 | 0.9995 | 0.9998 | | 0.0402 | 9.4173 | 3588 | 1.0028 | 0.0892 | 1.0028 | 1.0014 | | 0.0402 | 9.4226 | 3590 | 1.0054 | 0.0892 | 1.0054 | 1.0027 | | 0.0402 | 9.4278 | 3592 | 1.0089 | 0.0892 | 1.0089 | 1.0044 | | 0.0402 | 9.4331 | 3594 | 1.0130 | 0.0892 | 1.0130 | 1.0065 | | 0.0402 | 9.4383 | 3596 | 1.0167 | 0.0892 | 1.0167 | 1.0083 | | 0.0402 | 9.4436 | 3598 | 1.0187 | 0.0892 | 1.0187 | 1.0093 | | 0.0402 | 9.4488 | 3600 | 1.0197 | 0.0892 | 1.0197 | 1.0098 | | 0.0402 | 9.4541 | 3602 | 1.0199 | 0.0833 | 1.0199 | 1.0099 | | 0.0402 | 9.4593 | 3604 | 1.0181 | 0.0833 | 1.0181 | 1.0090 | | 0.0402 | 9.4646 | 3606 | 1.0158 | 0.0833 | 1.0158 | 1.0079 | | 0.0402 | 9.4698 | 3608 | 1.0116 | 0.0833 | 1.0116 | 1.0058 | | 0.0402 | 9.4751 | 3610 | 1.0050 | 0.0833 | 1.0050 | 1.0025 | | 0.0402 | 9.4803 | 3612 | 0.9979 | 0.0833 | 0.9979 | 0.9990 | | 0.0402 | 9.4856 | 3614 | 0.9931 | 0.0833 | 0.9931 | 0.9966 | | 0.0402 | 9.4908 | 3616 | 0.9880 | 0.0833 | 0.9880 | 0.9940 | | 0.0402 | 9.4961 | 3618 | 0.9853 | 0.0833 | 0.9853 | 0.9926 | | 0.0402 | 9.5013 | 3620 | 0.9837 | 0.0833 | 0.9837 | 0.9918 | | 0.0402 | 9.5066 | 3622 | 0.9821 | 0.0833 | 0.9821 | 0.9910 | | 0.0402 | 9.5118 | 3624 | 0.9787 | 0.0833 | 0.9787 | 0.9893 | | 0.0402 | 9.5171 | 3626 | 0.9755 | 0.0833 | 0.9755 | 0.9877 | | 0.0402 | 9.5223 | 3628 | 0.9743 | 0.0833 | 0.9743 | 0.9871 | | 0.0402 | 9.5276 | 3630 | 0.9739 | 0.0833 | 0.9739 | 0.9869 | | 0.0402 | 9.5328 | 3632 | 0.9737 | 0.0833 | 0.9737 | 0.9868 | | 0.0402 | 9.5381 | 3634 | 0.9753 | 0.0833 | 0.9753 | 0.9876 | | 0.0402 | 9.5433 | 3636 | 0.9783 | 0.0833 | 0.9783 | 0.9891 | | 0.0402 | 9.5486 | 3638 | 0.9803 | 0.0833 | 0.9803 | 0.9901 | | 0.0402 | 9.5538 | 3640 | 0.9805 | 0.0833 | 0.9805 | 0.9902 | | 0.0402 | 9.5591 | 3642 | 0.9796 | 0.0833 | 0.9796 | 0.9897 | | 0.0402 | 9.5643 | 3644 | 0.9802 | 0.0833 | 0.9802 | 0.9900 | | 0.0402 | 9.5696 | 3646 | 0.9800 | 0.0833 | 0.9800 | 0.9900 | | 0.0402 | 9.5748 | 3648 | 0.9795 | 0.0833 | 0.9795 | 0.9897 | | 0.0402 | 9.5801 | 3650 | 0.9798 | 0.0892 | 0.9798 | 0.9898 | | 0.0402 | 9.5853 | 3652 | 0.9812 | 0.0892 | 0.9812 | 0.9905 | | 0.0402 | 9.5906 | 3654 | 0.9837 | 0.0892 | 0.9837 | 0.9918 | | 0.0402 | 9.5958 | 3656 | 0.9865 | 0.0892 | 0.9865 | 0.9932 | | 0.0402 | 9.6010 | 3658 | 0.9889 | 0.0833 | 0.9889 | 0.9944 | | 0.0402 | 9.6063 | 3660 | 0.9920 | 0.0833 | 0.9920 | 0.9960 | | 0.0402 | 9.6115 | 3662 | 0.9951 | 0.0833 | 0.9951 | 0.9975 | | 0.0402 | 9.6168 | 3664 | 0.9971 | 0.0833 | 0.9971 | 0.9985 | | 0.0402 | 9.6220 | 3666 | 0.9988 | 0.0833 | 0.9988 | 0.9994 | | 0.0402 | 9.6273 | 3668 | 1.0015 | 0.0833 | 1.0015 | 1.0008 | | 0.0402 | 9.6325 | 3670 | 1.0028 | 0.0833 | 1.0028 | 1.0014 | | 0.0402 | 9.6378 | 3672 | 1.0046 | 0.0833 | 1.0046 | 1.0023 | | 0.0402 | 9.6430 | 3674 | 1.0074 | 0.0833 | 1.0074 | 1.0037 | | 0.0402 | 9.6483 | 3676 | 1.0090 | 0.0833 | 1.0090 | 1.0045 | | 0.0402 | 9.6535 | 3678 | 1.0109 | 0.0833 | 1.0109 | 1.0054 | | 0.0402 | 9.6588 | 3680 | 1.0129 | 0.0833 | 1.0129 | 1.0064 | | 0.0402 | 9.6640 | 3682 | 1.0135 | 0.0833 | 1.0135 | 1.0067 | | 0.0402 | 9.6693 | 3684 | 1.0128 | 0.0833 | 1.0128 | 1.0064 | | 0.0402 | 9.6745 | 3686 | 1.0123 | 0.0833 | 1.0123 | 1.0061 | | 0.0402 | 9.6798 | 3688 | 1.0126 | 0.0833 | 1.0126 | 1.0063 | | 0.0402 | 9.6850 | 3690 | 1.0136 | 0.0833 | 1.0136 | 1.0068 | | 0.0402 | 9.6903 | 3692 | 1.0142 | 0.0833 | 1.0142 | 1.0071 | | 0.0402 | 9.6955 | 3694 | 1.0134 | 0.0833 | 1.0134 | 1.0067 | | 0.0402 | 9.7008 | 3696 | 1.0114 | 0.0833 | 1.0114 | 1.0057 | | 0.0402 | 9.7060 | 3698 | 1.0091 | 0.0833 | 1.0091 | 1.0045 | | 0.0402 | 9.7113 | 3700 | 1.0061 | 0.0833 | 1.0061 | 1.0031 | | 0.0402 | 9.7165 | 3702 | 1.0038 | 0.0892 | 1.0038 | 1.0019 | | 0.0402 | 9.7218 | 3704 | 1.0016 | 0.0892 | 1.0016 | 1.0008 | | 0.0402 | 9.7270 | 3706 | 0.9993 | 0.0892 | 0.9993 | 0.9996 | | 0.0402 | 9.7323 | 3708 | 0.9976 | 0.0892 | 0.9976 | 0.9988 | | 0.0402 | 9.7375 | 3710 | 0.9960 | 0.0892 | 0.9960 | 0.9980 | | 0.0402 | 9.7428 | 3712 | 0.9948 | 0.0892 | 0.9948 | 0.9974 | | 0.0402 | 9.7480 | 3714 | 0.9943 | 0.0892 | 0.9943 | 0.9972 | | 0.0402 | 9.7533 | 3716 | 0.9935 | 0.0892 | 0.9935 | 0.9968 | | 0.0402 | 9.7585 | 3718 | 0.9932 | 0.0892 | 0.9932 | 0.9966 | | 0.0402 | 9.7638 | 3720 | 0.9921 | 0.0892 | 0.9921 | 0.9961 | | 0.0402 | 9.7690 | 3722 | 0.9914 | 0.0833 | 0.9914 | 0.9957 | | 0.0402 | 9.7743 | 3724 | 0.9913 | 0.0833 | 0.9913 | 0.9956 | | 0.0402 | 9.7795 | 3726 | 0.9909 | 0.0833 | 0.9909 | 0.9954 | | 0.0402 | 9.7848 | 3728 | 0.9912 | 0.0833 | 0.9912 | 0.9956 | | 0.0402 | 9.7900 | 3730 | 0.9920 | 0.0833 | 0.9920 | 0.9960 | | 0.0402 | 9.7953 | 3732 | 0.9921 | 0.0833 | 0.9921 | 0.9961 | | 0.0402 | 9.8005 | 3734 | 0.9926 | 0.0833 | 0.9926 | 0.9963 | | 0.0402 | 9.8058 | 3736 | 0.9925 | 0.0833 | 0.9925 | 0.9962 | | 0.0402 | 9.8110 | 3738 | 0.9926 | 0.0833 | 0.9926 | 0.9963 | | 0.0402 | 9.8163 | 3740 | 0.9929 | 0.0833 | 0.9929 | 0.9965 | | 0.0402 | 9.8215 | 3742 | 0.9934 | 0.0833 | 0.9934 | 0.9967 | | 0.0402 | 9.8268 | 3744 | 0.9934 | 0.0833 | 0.9934 | 0.9967 | | 0.0402 | 9.8320 | 3746 | 0.9931 | 0.0833 | 0.9931 | 0.9966 | | 0.0402 | 9.8373 | 3748 | 0.9927 | 0.0833 | 0.9927 | 0.9963 | | 0.0402 | 9.8425 | 3750 | 0.9924 | 0.0833 | 0.9924 | 0.9962 | | 0.0402 | 9.8478 | 3752 | 0.9925 | 0.0833 | 0.9925 | 0.9962 | | 0.0402 | 9.8530 | 3754 | 0.9924 | 0.0833 | 0.9924 | 0.9962 | | 0.0402 | 9.8583 | 3756 | 0.9928 | 0.0833 | 0.9928 | 0.9964 | | 0.0402 | 9.8635 | 3758 | 0.9932 | 0.0833 | 0.9932 | 0.9966 | | 0.0402 | 9.8688 | 3760 | 0.9938 | 0.0833 | 0.9938 | 0.9969 | | 0.0402 | 9.8740 | 3762 | 0.9944 | 0.0833 | 0.9944 | 0.9972 | | 0.0402 | 9.8793 | 3764 | 0.9948 | 0.0833 | 0.9948 | 0.9974 | | 0.0402 | 9.8845 | 3766 | 0.9952 | 0.0833 | 0.9952 | 0.9976 | | 0.0402 | 9.8898 | 3768 | 0.9951 | 0.0833 | 0.9951 | 0.9976 | | 0.0402 | 9.8950 | 3770 | 0.9951 | 0.0833 | 0.9951 | 0.9976 | | 0.0402 | 9.9003 | 3772 | 0.9948 | 0.0833 | 0.9948 | 0.9974 | | 0.0402 | 9.9055 | 3774 | 0.9949 | 0.0833 | 0.9949 | 0.9974 | | 0.0402 | 9.9108 | 3776 | 0.9950 | 0.0833 | 0.9950 | 0.9975 | | 0.0402 | 9.9160 | 3778 | 0.9954 | 0.0833 | 0.9954 | 0.9977 | | 0.0402 | 9.9213 | 3780 | 0.9957 | 0.0833 | 0.9957 | 0.9978 | | 0.0402 | 9.9265 | 3782 | 0.9957 | 0.0833 | 0.9957 | 0.9978 | | 0.0402 | 9.9318 | 3784 | 0.9956 | 0.0833 | 0.9956 | 0.9978 | | 0.0402 | 9.9370 | 3786 | 0.9957 | 0.0892 | 0.9957 | 0.9978 | | 0.0402 | 9.9423 | 3788 | 0.9959 | 0.0892 | 0.9959 | 0.9979 | | 0.0402 | 9.9475 | 3790 | 0.9959 | 0.0892 | 0.9959 | 0.9980 | | 0.0402 | 9.9528 | 3792 | 0.9959 | 0.0892 | 0.9959 | 0.9980 | | 0.0402 | 9.9580 | 3794 | 0.9958 | 0.0892 | 0.9958 | 0.9979 | | 0.0402 | 9.9633 | 3796 | 0.9957 | 0.0892 | 0.9957 | 0.9978 | | 0.0402 | 9.9685 | 3798 | 0.9956 | 0.0892 | 0.9956 | 0.9978 | | 0.0402 | 9.9738 | 3800 | 0.9955 | 0.0892 | 0.9955 | 0.9978 | | 0.0402 | 9.9790 | 3802 | 0.9954 | 0.0892 | 0.9954 | 0.9977 | | 0.0402 | 9.9843 | 3804 | 0.9953 | 0.0892 | 0.9953 | 0.9976 | | 0.0402 | 9.9895 | 3806 | 0.9952 | 0.0892 | 0.9952 | 0.9976 | | 0.0402 | 9.9948 | 3808 | 0.9951 | 0.0892 | 0.9951 | 0.9976 | | 0.0402 | 10.0 | 3810 | 0.9951 | 0.0892 | 0.9951 | 0.9976 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1
bu1/IQ_classification_112_new1_-10db
bu1
2024-11-20T11:01:37Z
188
0
transformers
[ "transformers", "safetensors", "IQsignal_transformer", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2024-11-20T11:01:33Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]