modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
mnemic/HalloweenGlowStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:00Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:10:31Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: HalloweenGlowStyle
---
# HalloweenGlowStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349105)
## Trigger Words
```HalloweenGlowStyle```

A glowing Halloween style.
|
mnemic/GalacticEmpireStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:53Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:09:20Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: GalacticEmpireStyle, white
---
# GalacticEmpireStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347760)
## Trigger Words
```GalacticEmpireStyle, white```

Use this LoRA to find those rebel scum!
|
mnemic/GaelicPatternStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:49Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:08:46Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: GaelicPatternStyle
---
# GaelicPatternStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/340410)
## Trigger Words
```GaelicPatternStyle```

Intricate abstract patterns in a Gaelic style.
|
mnemic/FluffyStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:45Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:08:11Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: FluffyStyle
---
# FluffyStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347734)
## Trigger Words
```FluffyStyle```

Fluffy, furry, fuzzy soft and cuddly things!
|
mnemic/ExpeditionStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:42Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:07:39Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ExpeditionStyle
---
# ExpeditionStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347798)
## Trigger Words
```ExpeditionStyle```

Go on an adventure in a hidden tomb under the desert.
|
mnemic/ElementWindSDXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:38Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:07:02Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ElementWind
---
# ElementWindSDXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/488713)
## Trigger Words
```ElementWind```

This LoRA blows.
|
John6666/bunny-mint-sdxl
|
John6666
| 2024-06-17T22:44:33Z | 3,110 | 2 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"pony",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2024-06-17T12:51:15Z |
---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- pony
---
Original model is [here](https://huggingface.co/lylogummy/BunnyMint) and on [Civitai](https://civitai.com/models/520972/bunny-mint?modelVersionId=578826).
|
mnemic/ElementsMixSDXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:31Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:05:57Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ElementsMix, fire, water, wind, earth
---
# ElementsMixSDXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/493764)
## Trigger Words
```ElementsMix, fire, water, wind, earth```

A Mixture of Elements model. The sum turned out to be better than the parts!
|
mnemic/ElementFireSDXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:24Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:05:27Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ElementFire
---
# ElementFireSDXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/488743)
## Trigger Words
```ElementFire```

A fiery elemental flavor.
|
mnemic/DeadpoolStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:44:17Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:04:24Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: DeadpoolStyle
---
# DeadpoolStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349196)
## Trigger Words
```DeadpoolStyle```

Touch yourself tonight <3
|
mnemic/CarnageStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:43:27Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:55:54Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: CarnageStyle
---
# CarnageStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347751)
## Trigger Words
```CarnageStyle```

Some kind of Carnage style. It's not as strong as the SD1.5 version.
|
mnemic/CardboardStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:43:23Z | 0 | 1 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:55:32Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: CardboardStyle
---
# CardboardStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/277115)
## Trigger Words
```CardboardStyle```

Things are now made out of cardboard!
|
mnemic/BatmanCoreXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:43:12Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:53:59Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: BatmanCore
---
# BatmanCoreXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349125)
## Trigger Words
```BatmanCore```

It's Batman! It puts spikes and wings on things and black armor on people.
|
mnemic/BarbieCoreXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:43:08Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:53:31Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: BarbieCore
---
# BarbieCoreXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347252)
## Trigger Words
```BarbieCore```

Pink and plastic, and quite fantastic!
|
mnemic/AbstractPatternStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:43:05Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:53:02Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: AbstractPatternStyle
---
# AbstractPatternStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/346675)
## Trigger Words
```AbstractPatternStyle```

Creates beautiful abstract patterns. A really fun model to add on top of anything for some colorful creativity!
|
mnemic/WaffleStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:51Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:51:54Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: WaffleStyle
---
# WaffleStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/116280)
## Trigger Words
```WaffleStyle```

Adds a lot of square grids to things.
|
mnemic/SemlaStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:34Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:49:52Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: SemlaStyle
---
# SemlaStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/)
## Trigger Words
```SemlaStyle```

Anything is better in semla form.
|
mnemic/NESVoxelStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:16Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:47:58Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: NESVoxelStyle
---
# NESVoxelStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/222945)
## Trigger Words
```NESVoxelStyle```

An experimental Voxel model.
|
mnemic/NESStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:13Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:47:38Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: NESStyle
---
# NESStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/146159)
## Trigger Words
```NESStyle```

What if everything was as beautiful as a NES?
|
mnemic/MinionStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:09Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:47:18Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: MinionStyle
---
# MinionStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/147313)
## Trigger Words
```MinionStyle```

Anything can be a minion!
|
mnemic/JediStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:42:05Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:46:57Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: JediStyle
---
# JediStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/269702)
## Trigger Words
```JediStyle```

A touch of Jedi. Mostly adds blue lasers to beige stuff, but sometimes this is just what you need.
|
mnemic/ElementFire-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:41:21Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:43:19Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: ElementFire
---
# ElementFire - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/488734)
## Trigger Words
```ElementFire```

A fierce elemental flavor.
|
mnemic/DeadpoolStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:41:12Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:42:47Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: DeadpoolStyle
---
# DeadpoolStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/222933)
## Trigger Words
```DeadpoolStyle```

Touch yourself tonight <3
|
mnemic/DavyJonesLockerStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:41:09Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:42:26Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: DavyJonesLockerStyle
---
# DavyJonesLockerStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/220258)
## Trigger Words
```DavyJonesLockerStyle```

Adds a bit of underwater musky smell to all your images.
|
mnemic/CardboardStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:40:27Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:37:15Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: CardboardStyle
---
# CardboardStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/277115)
## Trigger Words
```CardboardStyle```

Things are now made out of cardboard!
|
mnemic/BatmanCore-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:40:17Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:28:49Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: BatmanCore
---
# BatmanCore - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/197894)
## Trigger Words
```BatmanCore```

It's Batman! It puts spikes and wings on things and black armor on people.
|
samira1234/T5-French_DZdaridja_translator
|
samira1234
| 2024-06-17T22:34:04Z | 5 | 0 |
transformers
|
[
"transformers",
"t5",
"text2text-generation",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-06-17T11:10:39Z |
---
license: other
license_name: samirakheraba-aminayousrakadri
license_link: LICENSE
---
|
John6666/ebara-mfcg-pony-mix-v12-sdxl
|
John6666
| 2024-06-17T22:26:37Z | 6,338 | 3 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"pony",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2024-06-17T22:21:37Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- pony
---
Original model is [here](https://civitai.com/models/466637/ebaramfcgponymix?modelVersionId=579053).
|
Babelscape/cner-base
|
Babelscape
| 2024-06-17T22:22:17Z | 79 | 4 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"deberta-v2",
"token-classification",
"named-entity-recognition",
"sequence-tagger-model",
"en",
"dataset:Babelscape/cner",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-04-10T07:55:44Z |
---
annotations_creators:
- machine-generated
language_creators:
- machine-generated
widget:
- text: George Washington went to Washington.
- text: What is the seventh tallest mountain in North America?
tags:
- named-entity-recognition
- sequence-tagger-model
datasets:
- Babelscape/cner
language:
- en
pretty_name: cner-model
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- named-entity-recognition
---
# CNER: Concept and Named Entity Recognition
This is the model card for the NAACL 2024 paper [CNER: Concept and Named Entity Recognition](https://aclanthology.org/2024.naacl-long.461/).
We fine-tuned a language model (DeBERTa-v3-base) for 1 epoch on our [CNER dataset](https://huggingface.co/datasets/Babelscape/cner) using the default hyperparameters, optimizer and architecture of Hugging Face, therefore the results of this model may differ from the ones presented in the paper.
The resulting CNER model is able to jointly identifying and classifying concepts and named entities with fine-grained tags.
**If you use the model, please reference this work in your paper**:
```bibtex
@inproceedings{martinelli-etal-2024-cner,
title = "{CNER}: Concept and Named Entity Recognition",
author = "Martinelli, Giuliano and
Molfese, Francesco and
Tedeschi, Simone and
Fern{\'a}ndez-Castro, Alberte and
Navigli, Roberto",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-long.461",
pages = "8329--8344",
}
```
The original repository for the paper can be found at [https://github.com/Babelscape/cner](https://github.com/Babelscape/cner).
## How to use
You can use this model with Transformers NER *pipeline*.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
tokenizer = AutoTokenizer.from_pretrained("Babelscape/cner-model")
model = AutoModelForTokenClassification.from_pretrained("Babelscape/cner-model")
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
example = "What is the seventh tallest mountain in North America?"
ner_results = nlp(example)
print(ner_results)
```
## Classes
<img src="https://cdn-uploads.huggingface.co/production/uploads/65e9ccd84ce78d665a50f78b/2K3NZ79go3Zjf3qFeHO0O.png" alt="drawing" />
## Licensing Information
Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents and models belongs to the original copyright holders.
`microsoft/deberta-v3-base` is released under the [MIT license](https://choosealicense.com/licenses/mit/).
|
thesullivantage/my_test_billsum_model
|
thesullivantage
| 2024-06-17T22:20:05Z | 108 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google-t5/t5-small",
"base_model:finetune:google-t5/t5-small",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-06-17T20:48:44Z |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_test_billsum_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_test_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5228
- Rouge1: 0.141
- Rouge2: 0.0489
- Rougel: 0.1157
- Rougelsum: 0.1158
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 2.8147 | 0.1265 | 0.0394 | 0.1087 | 0.1087 | 19.0 |
| No log | 2.0 | 124 | 2.6051 | 0.1355 | 0.0443 | 0.1125 | 0.1125 | 19.0 |
| No log | 3.0 | 186 | 2.5396 | 0.1387 | 0.0478 | 0.1145 | 0.1145 | 19.0 |
| No log | 4.0 | 248 | 2.5228 | 0.141 | 0.0489 | 0.1157 | 0.1158 | 19.0 |
### Framework versions
- Transformers 4.41.2
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1
|
MaziyarPanahi/mergekit-slerp-wvyefgo-GGUF
|
MaziyarPanahi
| 2024-06-17T22:18:00Z | 7 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch",
"base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-wvyefgo",
"base_model:quantized:mergekit-community/mergekit-slerp-wvyefgo"
] |
text-generation
| 2024-06-17T21:55:13Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch
- base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-wvyefgo-GGUF
base_model: mergekit-community/mergekit-slerp-wvyefgo
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-wvyefgo-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-wvyefgo-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-wvyefgo](https://huggingface.co/mergekit-community/mergekit-slerp-wvyefgo)
## Description
[MaziyarPanahi/mergekit-slerp-wvyefgo-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-wvyefgo-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-wvyefgo](https://huggingface.co/mergekit-community/mergekit-slerp-wvyefgo).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
John6666/wai-cute-v3-sdxl
|
John6666
| 2024-06-17T22:14:03Z | 2,387 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"anime",
"pony",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2024-06-17T22:09:23Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- anime
- pony
---
Original model is [here](https://civitai.com/models/451486/wai-cute?modelVersionId=579661).
|
jiazhengli/Pythia-2.8B-TLDR-Iterative-SamPO
|
jiazhengli
| 2024-06-17T21:59:32Z | 152 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"en",
"dataset:webis/tldr-17",
"arxiv:2305.18290",
"base_model:EleutherAI/pythia-2.8b",
"base_model:finetune:EleutherAI/pythia-2.8b",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T21:09:06Z |
---
model-index:
- name: robinlee99/Pythia-2.8B-TLDR-Iterative-SamPO
results: []
datasets:
- webis/tldr-17
language:
- en
base_model: EleutherAI/pythia-2.8b
license: apache-2.0
---
# Model Card for Pythia-2.8B-TLDR-Iterative-SamPO
This repository provides a fine-tuned version of Pythia-2.8B, using our proposed [SamPO](https://github.com/LuJunru/SamPO) algorithm: Eliminating Biased Length Reliance of Direct Preference Optimization via Down-Sampled KL Divergence.
## Performance
| vs. SFT | wins | len / token |
| ------ | ------ | ------ |
| DPO | 60.98 | 53.8 |
| Iterative DPO | **73.58** | 66.65 |
| Length Normed DPO | 58.13 | 47.34 |
| SimPO | 33.33 | **31.9** |
| Iterative SamPO | **73.58** | 49.54 |
## Evaluation Details
We test our model with the same GPT-4 Win rate prompt template proposed by the [DPO paper](https://arxiv.org/pdf/2305.18290). The [sampled test set](https://huggingface.co/robinlee99/Pythia-2.8B-TLDR-Iterative-SamPO/blob/main/test_tldr.jsonl) is included in this repo.
## Training hyperparameters
The following hyperparameters were used during DPO/SamPO training:
- DPO beta: 0.5
- learning_rate: 1e-6
- total_train_batch_size: 128
- optimizer: AdamW with beta1 0.9, beta2 0.999 and epsilon 1e-8
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- Weight Decay: 0.0
- num_epochs: 1.0
|
lielbin/BabyBERTa-french_aochildes_2.5M-Masking-finetuned-squad
|
lielbin
| 2024-06-17T21:59:19Z | 121 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-17T14:48:46Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french_aochildes_2.5M-Masking-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french_aochildes_2.5M-Masking-finetuned-squad
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
daswer123/xtts_ru_dvae_100h
|
daswer123
| 2024-06-17T21:51:25Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2024-06-17T21:47:32Z |
---
license: mit
---
This is a DVAE filetune for xttsv2, based on the scripts presented here.
https://github.com/daswer123/xtts-finetune-tests/tree/main/dvae-finetune
Trained on 100h of Russian high quality speech, potentially should improve finetune quality of GPT-2 and Perceiver models.
You can try to use it in xtts-finetune-webui as a custom DVAE
```
wandb: Run summary:
wandb: commit_loss 0.04019
wandb: cur_step 2571
wandb: epoch 19
wandb: loss 0.10499
wandb: recon_loss 0.06481
```

|
lifiaresearch/cascade-mask-rcnn_r50_fpn_1x_coco_IPVBA-EL_crop_512
|
lifiaresearch
| 2024-06-17T21:51:11Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2024-06-14T20:01:17Z |
---
license: mit
---
https://huggingface.co/spaces/CVPR/WALT/blob/main/mmdet/models/detectors/cascade_rcnn.py
|
abwabai/xlm-v-base-merchant-ner-v2
|
abwabai
| 2024-06-17T21:50:59Z | 126 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-06-17T21:42:03Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
TodoP/Prueba
|
TodoP
| 2024-06-17T21:49:33Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-06-17T21:49:33Z |
---
license: apache-2.0
---
|
dsatya6/sentiment-bert-text-gcp-v1
|
dsatya6
| 2024-06-17T21:48:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T21:48:05Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
zJuu/qwen2-7b-1718660228
|
zJuu
| 2024-06-17T21:37:17Z | 4 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen2-7B-Instruct",
"base_model:adapter:Qwen/Qwen2-7B-Instruct",
"region:us"
] | null | 2024-06-17T21:37:09Z |
---
base_model: Qwen/Qwen2-7B-Instruct
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
animaRegem/llama-3-gaya-3-June-2024-lora-model
|
animaRegem
| 2024-06-17T21:26:55Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T21:26:44Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** animaRegem
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
YYYYYYibo/nash_ave_pi_with_golden_iter_2
|
YYYYYYibo
| 2024-06-17T21:26:14Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"mistral",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"dataset:updated",
"dataset:original",
"base_model:alignment-handbook/zephyr-7b-sft-full",
"base_model:adapter:alignment-handbook/zephyr-7b-sft-full",
"license:apache-2.0",
"region:us"
] | null | 2024-06-17T19:25:07Z |
---
license: apache-2.0
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
- updated
- original
model-index:
- name: nash_ave_pi_with_golden_iter_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nash_ave_pi_with_golden_iter_2
This model is a fine-tuned version of [YYYYYYibo/nash_ave_pi_with_golden_iter_1](https://huggingface.co/YYYYYYibo/nash_ave_pi_with_golden_iter_1) on the updated and the original datasets.
It achieves the following results on the evaluation set:
- Loss: 0.6988
- Rewards/chosen: -0.1054
- Rewards/rejected: -0.1068
- Rewards/accuracies: 0.4780
- Rewards/margins: 0.0014
- Logps/rejected: -300.1882
- Logps/chosen: -308.5959
- Logits/rejected: -2.3398
- Logits/chosen: -2.4257
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6483 | 0.64 | 100 | 0.6988 | -0.1054 | -0.1068 | 0.4780 | 0.0014 | -300.1882 | -308.5959 | -2.3398 | -2.4257 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.3.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
|
datek/google-gemma-2b-1718659445
|
datek
| 2024-06-17T21:24:09Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | 2024-06-17T21:24:05Z |
---
library_name: peft
base_model: google/gemma-2b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
datek/Qwen-Qwen1.5-1.8B-1718659398
|
datek
| 2024-06-17T21:23:20Z | 4 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | 2024-06-17T21:23:18Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-1.8B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
theothertom/whisper-small-indian_eng
|
theothertom
| 2024-06-17T21:20:39Z | 19 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"base_model:openai/whisper-small",
"base_model:finetune:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-01-22T12:33:35Z |
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-small-indian_eng
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-small-indian_eng
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3169
- Wer: 10.6061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.5504 | 1.5873 | 100 | 0.4581 | 10.6061 |
| 0.058 | 3.1746 | 200 | 0.2114 | 8.8154 |
| 0.0126 | 4.7619 | 300 | 0.2365 | 8.1267 |
| 0.0078 | 6.3492 | 400 | 0.2513 | 7.9890 |
| 0.0026 | 7.9365 | 500 | 0.2596 | 7.1625 |
| 0.0027 | 9.5238 | 600 | 0.2676 | 8.1267 |
| 0.0031 | 11.1111 | 700 | 0.2842 | 7.3003 |
| 0.0013 | 12.6984 | 800 | 0.2707 | 18.7328 |
| 0.0004 | 14.2857 | 900 | 0.2814 | 13.6364 |
| 0.0006 | 15.8730 | 1000 | 0.2806 | 11.1570 |
| 0.0009 | 17.4603 | 1100 | 0.2906 | 11.0193 |
| 0.0004 | 19.0476 | 1200 | 0.2948 | 11.1570 |
| 0.0003 | 20.6349 | 1300 | 0.2984 | 10.8815 |
| 0.0002 | 22.2222 | 1400 | 0.3008 | 10.8815 |
| 0.0003 | 23.8095 | 1500 | 0.2992 | 10.7438 |
| 0.0001 | 25.3968 | 1600 | 0.3040 | 10.8815 |
| 0.0002 | 26.9841 | 1700 | 0.3088 | 10.7438 |
| 0.0001 | 28.5714 | 1800 | 0.3077 | 10.6061 |
| 0.0001 | 30.1587 | 1900 | 0.3098 | 10.4683 |
| 0.0001 | 31.7460 | 2000 | 0.3111 | 10.4683 |
| 0.0001 | 33.3333 | 2100 | 0.3119 | 10.4683 |
| 0.0001 | 34.9206 | 2200 | 0.3129 | 10.4683 |
| 0.0001 | 36.5079 | 2300 | 0.3142 | 10.4683 |
| 0.0001 | 38.0952 | 2400 | 0.3146 | 10.4683 |
| 0.0001 | 39.6825 | 2500 | 0.3153 | 10.6061 |
| 0.0001 | 41.2698 | 2600 | 0.3158 | 10.6061 |
| 0.0001 | 42.8571 | 2700 | 0.3162 | 10.6061 |
| 0.0001 | 44.4444 | 2800 | 0.3167 | 10.6061 |
| 0.0001 | 46.0317 | 2900 | 0.3169 | 10.6061 |
| 0.0001 | 47.6190 | 3000 | 0.3169 | 10.6061 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.0.0
- Datasets 2.16.1
- Tokenizers 0.19.1
|
MaziyarPanahi/mergekit-slerp-dafvhck-GGUF
|
MaziyarPanahi
| 2024-06-17T21:11:51Z | 8 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch",
"base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-dafvhck",
"base_model:quantized:mergekit-community/mergekit-slerp-dafvhck"
] |
text-generation
| 2024-06-17T20:49:07Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch
- base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-dafvhck-GGUF
base_model: mergekit-community/mergekit-slerp-dafvhck
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-dafvhck-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-dafvhck-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-dafvhck](https://huggingface.co/mergekit-community/mergekit-slerp-dafvhck)
## Description
[MaziyarPanahi/mergekit-slerp-dafvhck-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-dafvhck-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-dafvhck](https://huggingface.co/mergekit-community/mergekit-slerp-dafvhck).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
karths/qwen_multi_file_merged_model
|
karths
| 2024-06-17T21:04:48Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"base_model:unsloth/Qwen2-7B-Instruct-bnb-4bit",
"base_model:finetune:unsloth/Qwen2-7B-Instruct-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T20:59:53Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
base_model: unsloth/Qwen2-7B-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** karths
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2-7B-Instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Wsassi/Hermes-2-Pro-Mistral-7B_function_calling
|
Wsassi
| 2024-06-17T21:03:00Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T21:02:56Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
karths/qwenrepo_lora_model
|
karths
| 2024-06-17T20:59:51Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"base_model:unsloth/Qwen2-7B-Instruct-bnb-4bit",
"base_model:finetune:unsloth/Qwen2-7B-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T20:59:38Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
base_model: unsloth/Qwen2-7B-Instruct-bnb-4bit
---
# Uploaded model
- **Developed by:** karths
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2-7B-Instruct-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lielbin/BabyBERTa-french_aochildes_2.5M-Masking-finetuned-qamr
|
lielbin
| 2024-06-17T20:55:59Z | 113 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-17T14:13:35Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french_aochildes_2.5M-Masking-finetuned-qamr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french_aochildes_2.5M-Masking-finetuned-qamr
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Josephgflowers/TinyLlama-v1.1-Agent-Rag-Nerd-v1
|
Josephgflowers
| 2024-06-17T20:52:42Z | 150 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T20:45:15Z |
---
license: mit
---
This model is a fine-tuned version of https://huggingface.co/Josephgflowers/TinyLlama-v1.1-Tiny-Agent-Test on an Agent based dataset of tool usage, function calling, programming, STEM data,
NER data, address parsing, RAG, and summary.
Special Thanks to https://nationtech.io/ for their generous sponorship in training this model.

|
wdli/llama3_soda_finetuned_lora1
|
wdli
| 2024-06-17T20:52:33Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T20:49:31Z |
---
base_model: unsloth/llama-3-8b-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
---
# Uploaded model
- **Developed by:** wdli
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
lielbin/BabyBERTa-french-Masking-finetuned-squad
|
lielbin
| 2024-06-17T20:48:50Z | 115 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-17T13:38:18Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french-Masking-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french-Masking-finetuned-squad
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
haltincay/my_great_model
|
haltincay
| 2024-06-17T20:46:38Z | 54 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-02-05T08:03:12Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: my_great_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_great_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0118
- Accuracy: 0.9973
- F1: 0.9725
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 275 | 0.0150 | 0.9964 | 0.9643 |
| 0.0257 | 2.0 | 550 | 0.0118 | 0.9973 | 0.9725 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|
MaziyarPanahi/mergekit-slerp-aywerbb-GGUF
|
MaziyarPanahi
| 2024-06-17T20:38:41Z | 76 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:Equall/Saul-Base",
"base_model:HuggingFaceH4/zephyr-7b-beta",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-aywerbb",
"base_model:quantized:mergekit-community/mergekit-slerp-aywerbb"
] |
text-generation
| 2024-06-17T20:16:01Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:Equall/Saul-Base
- base_model:HuggingFaceH4/zephyr-7b-beta
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-aywerbb-GGUF
base_model: mergekit-community/mergekit-slerp-aywerbb
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-aywerbb-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-aywerbb-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-aywerbb](https://huggingface.co/mergekit-community/mergekit-slerp-aywerbb)
## Description
[MaziyarPanahi/mergekit-slerp-aywerbb-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-aywerbb-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-aywerbb](https://huggingface.co/mergekit-community/mergekit-slerp-aywerbb).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
Casper0508/MSc_llama2_finetuned_model_updatePara
|
Casper0508
| 2024-06-17T20:35:08Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"license:llama2",
"region:us"
] | null | 2024-06-17T20:35:02Z |
---
license: llama2
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: MSc_llama2_finetuned_model_updatePara
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# MSc_llama2_finetuned_model_updatePara
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4329
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
- load_in_4bit: True
- load_in_8bit: False
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 400
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 16.5659 | 1.21 | 10 | 1.7444 |
| 1.1543 | 2.42 | 20 | 0.8871 |
| 0.7821 | 3.64 | 30 | 0.6674 |
| 0.6295 | 4.85 | 40 | 0.5773 |
| 0.5642 | 6.06 | 50 | 0.5303 |
| 0.5251 | 7.27 | 60 | 0.4983 |
| 0.4969 | 8.48 | 70 | 0.4813 |
| 0.4805 | 9.7 | 80 | 0.4689 |
| 0.4702 | 10.91 | 90 | 0.4585 |
| 0.4651 | 12.12 | 100 | 0.4512 |
| 0.4472 | 13.33 | 110 | 0.4462 |
| 0.4466 | 14.55 | 120 | 0.4415 |
| 0.4413 | 15.76 | 130 | 0.4385 |
| 0.4398 | 16.97 | 140 | 0.4398 |
| 0.4314 | 18.18 | 150 | 0.4382 |
| 0.4313 | 19.39 | 160 | 0.4313 |
| 0.4314 | 20.61 | 170 | 0.4294 |
| 0.4189 | 21.82 | 180 | 0.4279 |
| 0.4203 | 23.03 | 190 | 0.4285 |
| 0.4164 | 24.24 | 200 | 0.4279 |
| 0.4183 | 25.45 | 210 | 0.4268 |
| 0.4107 | 26.67 | 220 | 0.4268 |
| 0.4068 | 27.88 | 230 | 0.4252 |
| 0.4082 | 29.09 | 240 | 0.4266 |
| 0.4074 | 30.3 | 250 | 0.4299 |
| 0.4025 | 31.52 | 260 | 0.4266 |
| 0.4038 | 32.73 | 270 | 0.4264 |
| 0.4008 | 33.94 | 280 | 0.4284 |
| 0.4002 | 35.15 | 290 | 0.4279 |
| 0.3937 | 36.36 | 300 | 0.4307 |
| 0.4033 | 37.58 | 310 | 0.4299 |
| 0.3974 | 38.79 | 320 | 0.4307 |
| 0.3951 | 40.0 | 330 | 0.4312 |
| 0.3948 | 41.21 | 340 | 0.4327 |
| 0.3971 | 42.42 | 350 | 0.4321 |
| 0.3958 | 43.64 | 360 | 0.4327 |
| 0.3906 | 44.85 | 370 | 0.4333 |
| 0.3977 | 46.06 | 380 | 0.4328 |
| 0.3956 | 47.27 | 390 | 0.4330 |
| 0.3956 | 48.48 | 400 | 0.4329 |
### Framework versions
- PEFT 0.4.0
- Transformers 4.38.2
- Pytorch 2.3.0+cu121
- Datasets 2.13.1
- Tokenizers 0.15.2
|
FSAdrian7/finetuning-sentiment-model-3000-samples
|
FSAdrian7
| 2024-06-17T20:34:25Z | 107 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-17T11:13:21Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3394
- Accuracy: 0.8733
- F1: 0.9159
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
numen-tech/Smaug-Llama-3-70B-Instruct-abliterated-v3-w4a16g128asym
|
numen-tech
| 2024-06-17T20:33:59Z | 0 | 1 | null |
[
"arxiv:2308.13137",
"license:llama3",
"region:us"
] | null | 2024-06-17T19:57:49Z |
---
license: llama3
---
4-bit [OmniQuant](https://arxiv.org/abs/2308.13137) quantized version of [Smaug-Llama-3-70B-Instruct-abliterated-v3](https://huggingface.co/failspy/Smaug-Llama-3-70B-Instruct-abliterated-v3).
|
Parth211/startup-finetune
|
Parth211
| 2024-06-17T20:30:57Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T20:29:47Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Tales-Alves/Fine_Tuning_Bebidas
|
Tales-Alves
| 2024-06-17T20:30:49Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"gguf",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:quantized:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-05T14:06:11Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Tales-Alves
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
nrshoudi/Whisper-medium-new
|
nrshoudi
| 2024-06-17T20:17:29Z | 1 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:openai/whisper-medium",
"base_model:adapter:openai/whisper-medium",
"license:apache-2.0",
"region:us"
] | null | 2024-06-17T20:17:25Z |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-medium
model-index:
- name: Whisper-medium-new
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper-medium-new
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0014
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.1198 | 1.0 | 137 | 0.1716 |
| 0.0915 | 2.0 | 274 | 0.1142 |
| 0.0769 | 3.0 | 411 | 0.0448 |
| 0.0444 | 4.0 | 548 | 0.0345 |
| 0.0439 | 5.0 | 685 | 0.0209 |
| 0.0175 | 6.0 | 822 | 0.0110 |
| 0.0136 | 7.0 | 959 | 0.0079 |
| 0.0067 | 8.0 | 1096 | 0.0031 |
| 0.0024 | 9.0 | 1233 | 0.0017 |
| 0.0015 | 10.0 | 1370 | 0.0014 |
### Framework versions
- PEFT 0.8.0
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
MaziyarPanahi/mergekit-model_stock-qykbest-GGUF
|
MaziyarPanahi
| 2024-06-17T20:05:22Z | 5 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2403.19522",
"base_model:gagan3012/Mistral_arabic_dpo",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:Nexusflow/Starling-LM-7B-beta",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-model_stock-qykbest",
"base_model:quantized:mergekit-community/mergekit-model_stock-qykbest"
] |
text-generation
| 2024-06-17T19:42:11Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- arxiv:2403.19522
- base_model:gagan3012/Mistral_arabic_dpo
- base_model:mistralai/Mistral-7B-Instruct-v0.2
- base_model:Nexusflow/Starling-LM-7B-beta
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-model_stock-qykbest-GGUF
base_model: mergekit-community/mergekit-model_stock-qykbest
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-model_stock-qykbest-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-model_stock-qykbest-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-model_stock-qykbest](https://huggingface.co/mergekit-community/mergekit-model_stock-qykbest)
## Description
[MaziyarPanahi/mergekit-model_stock-qykbest-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-model_stock-qykbest-GGUF) contains GGUF format model files for [mergekit-community/mergekit-model_stock-qykbest](https://huggingface.co/mergekit-community/mergekit-model_stock-qykbest).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
JapGuy/AloeBlacc
|
JapGuy
| 2024-06-17T20:04:01Z | 0 | 0 | null |
[
"music",
"rvc",
"aloe",
"blacc",
"egbert",
"nathaniel",
"dawkins",
"iii",
"model",
"audio-to-audio",
"en",
"license:openrail",
"region:us"
] |
audio-to-audio
| 2024-06-17T19:55:22Z |
---
license: openrail
language:
- en
pipeline_tag: audio-to-audio
tags:
- music
- rvc
- aloe
- blacc
- egbert
- nathaniel
- dawkins
- iii
- model
---

# Aloe Blacc - Egbert Nathaniel Dawkins III [EN] (V1)
# 1230 Epochs - RVC V2 - rmvpe - Titan Medium
Trained on 17 minutes 48 seconds of isolated acapellas using UVR (Voc FT + Reverb HQ)
|
legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF
|
legraphista
| 2024-06-17T20:01:44Z | 2,285 | 6 |
gguf
|
[
"gguf",
"quantized",
"GGUF",
"quantization",
"imat",
"imatrix",
"static",
"16bit",
"8bit",
"6bit",
"5bit",
"4bit",
"3bit",
"2bit",
"1bit",
"text-generation",
"base_model:deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct",
"base_model:quantized:deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct",
"license:other",
"region:us",
"conversational"
] |
text-generation
| 2024-06-17T18:47:11Z |
---
base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
inference: false
library_name: gguf
license: other
license_link: LICENSE
license_name: deepseek-license
pipeline_tag: text-generation
quantized_by: legraphista
tags:
- quantized
- GGUF
- quantization
- imat
- imatrix
- static
- 16bit
- 8bit
- 6bit
- 5bit
- 4bit
- 3bit
- 2bit
- 1bit
---
# DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF
_Llama.cpp imatrix quantization of deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct_
Original Model: [deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct)
Original dtype: `BF16` (`bfloat16`)
Quantized by: llama.cpp [b3166](https://github.com/ggerganov/llama.cpp/releases/tag/b3166)
IMatrix dataset: [here](https://gist.githubusercontent.com/bartowski1182/eb213dccb3571f863da82e99418f81e8/raw/b2869d80f5c16fd7082594248e80144677736635/calibration_datav3.txt)
- [Files](#files)
- [IMatrix](#imatrix)
- [Common Quants](#common-quants)
- [All Quants](#all-quants)
- [Downloading using huggingface-cli](#downloading-using-huggingface-cli)
- [Inference](#inference)
- [Simple chat template](#simple-chat-template)
- [Chat template with system prompt](#chat-template-with-system-prompt)
- [Llama.cpp](#llama-cpp)
- [FAQ](#faq)
- [Why is the IMatrix not applied everywhere?](#why-is-the-imatrix-not-applied-everywhere)
- [How do I merge a split GGUF?](#how-do-i-merge-a-split-gguf)
---
## Files
### IMatrix
Status: ✅ Available
Link: [here](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/imatrix.dat)
### Common Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf) | Q8_0 | 16.70GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q6_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q6_K.gguf) | Q6_K | 14.07GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q4_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q4_K.gguf) | Q4_K | 10.36GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q3_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q3_K.gguf) | Q3_K | 8.13GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q2_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q2_K.gguf) | Q2_K | 6.43GB | ✅ Available | 🟢 IMatrix | 📦 No
### All Quants
| Filename | Quant type | File Size | Status | Uses IMatrix | Is Split |
| -------- | ---------- | --------- | ------ | ------------ | -------- |
| [DeepSeek-Coder-V2-Lite-Instruct.BF16.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.BF16.gguf) | BF16 | 31.42GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.FP16.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.FP16.gguf) | F16 | 31.42GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf) | Q8_0 | 16.70GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q6_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q6_K.gguf) | Q6_K | 14.07GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q5_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q5_K.gguf) | Q5_K | 11.85GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q5_K_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q5_K_S.gguf) | Q5_K_S | 11.14GB | ✅ Available | ⚪ Static | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q4_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q4_K.gguf) | Q4_K | 10.36GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q4_K_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q4_K_S.gguf) | Q4_K_S | 9.53GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf) | IQ4_NL | 8.91GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ4_XS.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ4_XS.gguf) | IQ4_XS | 8.57GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q3_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q3_K.gguf) | Q3_K | 8.13GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q3_K_L.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q3_K_L.gguf) | Q3_K_L | 8.46GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q3_K_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q3_K_S.gguf) | Q3_K_S | 7.49GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_M.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_M.gguf) | IQ3_M | 7.55GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_S.gguf) | IQ3_S | 7.49GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_XS.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_XS.gguf) | IQ3_XS | 7.12GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_XXS.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_XXS.gguf) | IQ3_XXS | 6.96GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q2_K.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q2_K.gguf) | Q2_K | 6.43GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.Q2_K_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.Q2_K_S.gguf) | Q2_K_S | 6.46GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_M.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_M.gguf) | IQ2_M | 6.33GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_S.gguf) | IQ2_S | 6.01GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_XS.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_XS.gguf) | IQ2_XS | 5.97GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_XXS.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_XXS.gguf) | IQ2_XXS | 5.64GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ1_M.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ1_M.gguf) | IQ1_M | 5.24GB | ✅ Available | 🟢 IMatrix | 📦 No
| [DeepSeek-Coder-V2-Lite-Instruct.IQ1_S.gguf](https://huggingface.co/legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ1_S.gguf) | IQ1_S | 4.99GB | ✅ Available | 🟢 IMatrix | 📦 No
## Downloading using huggingface-cli
If you do not have hugginface-cli installed:
```
pip install -U "huggingface_hub[cli]"
```
Download the specific file you want:
```
huggingface-cli download legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF --include "DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf" --local-dir ./
```
If the model file is big, it has been split into multiple files. In order to download them all to a local folder, run:
```
huggingface-cli download legraphista/DeepSeek-Coder-V2-Lite-Instruct-IMat-GGUF --include "DeepSeek-Coder-V2-Lite-Instruct.Q8_0/*" --local-dir ./
# see FAQ for merging GGUF's
```
---
## Inference
### Simple chat template
```
<|begin▁of▁sentence|>User: {user_prompt}
Assistant: {assistant_response}<|end▁of▁sentence|>User: {next_user_prompt}
```
### Chat template with system prompt
```
<|begin▁of▁sentence|>{system_prompt}
User: {user_prompt}
Assistant: {assistant_response}<|end▁of▁sentence|>User: {next_user_prompt}
```
### Llama.cpp
```
llama.cpp/main -m DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf --color -i -p "prompt here (according to the chat template)"
```
---
## FAQ
### Why is the IMatrix not applied everywhere?
According to [this investigation](https://www.reddit.com/r/LocalLLaMA/comments/1993iro/ggufs_quants_can_punch_above_their_weights_now/), it appears that lower quantizations are the only ones that benefit from the imatrix input (as per hellaswag results).
### How do I merge a split GGUF?
1. Make sure you have `gguf-split` available
- To get hold of `gguf-split`, navigate to https://github.com/ggerganov/llama.cpp/releases
- Download the appropriate zip for your system from the latest release
- Unzip the archive and you should be able to find `gguf-split`
2. Locate your GGUF chunks folder (ex: `DeepSeek-Coder-V2-Lite-Instruct.Q8_0`)
3. Run `gguf-split --merge DeepSeek-Coder-V2-Lite-Instruct.Q8_0/DeepSeek-Coder-V2-Lite-Instruct.Q8_0-00001-of-XXXXX.gguf DeepSeek-Coder-V2-Lite-Instruct.Q8_0.gguf`
- Make sure to point `gguf-split` to the first chunk of the split.
---
Got a suggestion? Ping me [@legraphista](https://x.com/legraphista)!
|
blockblockblock/gpt2-medium-bpw6-exl2
|
blockblockblock
| 2024-06-17T19:53:56Z | 65 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"6-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:49:41Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
Arbi-Houssem/speecht5_ar_tn_1.7
|
Arbi-Houssem
| 2024-06-17T19:51:35Z | 79 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"speecht5",
"text-to-audio",
"generated_from_trainer",
"ara",
"dataset:Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed",
"base_model:MBZUAI/speecht5_tts_clartts_ar",
"base_model:finetune:MBZUAI/speecht5_tts_clartts_ar",
"license:mit",
"endpoints_compatible",
"region:us"
] |
text-to-audio
| 2024-06-17T17:37:26Z |
---
language:
- ara
license: mit
base_model: MBZUAI/speecht5_tts_clartts_ar
tags:
- generated_from_trainer
datasets:
- Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed
model-index:
- name: SpeechT5 TTS Tunisien
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SpeechT5 TTS Tunisien
This model is a fine-tuned version of [MBZUAI/speecht5_tts_clartts_ar](https://huggingface.co/MBZUAI/speecht5_tts_clartts_ar) on the Tunisian_dataset_STT-TTS15s_filtred1.0_Mixed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4833
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5487 | 53.69 | 1000 | 0.4952 |
| 0.4979 | 107.38 | 2000 | 0.4845 |
| 0.488 | 161.07 | 3000 | 0.4835 |
| 0.4856 | 214.77 | 4000 | 0.4833 |
### Framework versions
- Transformers 4.35.1
- Pytorch 2.3.1+cu121
- Datasets 2.14.7
- Tokenizers 0.14.1
|
mdzrg/roberta-base-squad2-pronouns
|
mdzrg
| 2024-06-17T19:49:43Z | 121 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"base_model:deepset/roberta-base-squad2",
"base_model:finetune:deepset/roberta-base-squad2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-17T18:51:10Z |
---
license: cc-by-4.0
base_model: deepset/roberta-base-squad2
tags:
- generated_from_trainer
model-index:
- name: my_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_qa_model
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
blockblockblock/gpt2-medium-bpw5.5-exl2
|
blockblockblock
| 2024-06-17T19:47:55Z | 65 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:43:41Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
lielbin/BabyBERTa-french-Masking-finetuned-qamr
|
lielbin
| 2024-06-17T19:45:38Z | 113 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-17T13:03:01Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french-Masking-finetuned-qamr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french-Masking-finetuned-qamr
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
mradermacher/Stheno-TheSpice-v1-GGUF
|
mradermacher
| 2024-06-17T19:45:00Z | 32 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:lik07/Stheno-TheSpice-v1",
"base_model:quantized:lik07/Stheno-TheSpice-v1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-17T03:22:48Z |
---
base_model: lik07/Stheno-TheSpice-v1
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/lik07/Stheno-TheSpice-v1
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Stheno-TheSpice-v1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Stheno-TheSpice-v1-GGUF/resolve/main/Stheno-TheSpice-v1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
blockblockblock/gpt2-medium-bpw5-exl2
|
blockblockblock
| 2024-06-17T19:41:55Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"5-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:37:41Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
xmanii/Llama3-8b-simorgh-16bit
|
xmanii
| 2024-06-17T19:41:12Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T10:48:49Z |
model-index:
- name: xmanii/llama-3-8b-instruct-bnb-4bit-persian
description: |
**Model Information**
**Developed by:** xmanii
**License:** Apache-2.0
**Finetuned from model:** unsloth/llama-3-8b-instruct-bnb-4bit
**Model Description**
This LLaMA model was fine-tuned on a unique Persian dataset of Alpaca chat conversations, consisting of approximately 8,000 rows. Our training process utilized two H100 GPUs, completing in just under 1 hour. We leveraged the power of Unsloth and Hugging Face's TRL library to accelerate our training process by 2x.
**Open-Source Contribution**
This model is open-source, and we invite the community to use and build upon our work. The fine-tuned LLaMA model is designed to improve Persian conversation capabilities, and we hope it will contribute to the advancement of natural language processing in the Persian language.
**Using the Model**
To use this model, you can utilize the Hugging Face Transformers library. **Note:** The default usage code provided by Hugging Face is not applicable for this model. Instead, follow the example below:
```python
messages = [{"from": "human", "value": prompt},]
```
Finally, use the pipeline to generate responses:
```python
pipe = pipeline("text-generation", model="xmanii/Llama3-8b-simorgh-16bit")
pipe(messages)
```
**Full 16-bit Merged Model**
For a full 16-bit merged model, please check out xmanii/Llama3-8b-simorgh-16bit.
**Future Work**
We are working on quantizing the models and bringing them to ollama.
|
silent666/Qwen-Qwen1.5-7B-1718653221
|
silent666
| 2024-06-17T19:40:22Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-17T19:40:21Z |
---
base_model: Qwen/Qwen1.5-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
silent666/Qwen-Qwen1.5-7B-1718653025
|
silent666
| 2024-06-17T19:37:07Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-17T19:37:05Z |
---
base_model: Qwen/Qwen1.5-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
ILKT/2024-06-17_21-28-47
|
ILKT
| 2024-06-17T19:36:30Z | 132 | 0 |
transformers
|
[
"transformers",
"safetensors",
"ILKT",
"feature-extraction",
"custom_code",
"arxiv:1910.09700",
"region:us"
] |
feature-extraction
| 2024-06-17T19:35:17Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
blockblockblock/gpt2-medium-bpw4.8-exl2
|
blockblockblock
| 2024-06-17T19:35:53Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:31:38Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
adolford/distilbert-base-uncased_test_1
|
adolford
| 2024-06-17T19:33:59Z | 111 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-17T16:55:01Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- recall
model-index:
- name: distilbert-base-uncased_test_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased_test_1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2297
- Accuracy: 0.9213
- Recall: 0.9479
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 266 | 0.2077 | 0.9187 | 0.9462 |
| 0.2539 | 2.0 | 532 | 0.2297 | 0.9213 | 0.9479 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
xmanii/Llama3-8b-simorgh
|
xmanii
| 2024-06-17T19:32:40Z | 0 | 0 | null |
[
"safetensors",
"region:us"
] | null | 2024-06-17T10:47:37Z |
model-index:
- name: xmanii/llama-3-8b-instruct-bnb-4bit-persian
description: |
**Model Information**
**Developed by:** xmanii
**License:** Apache-2.0
**Finetuned from model:** unsloth/llama-3-8b-instruct-bnb-4bit
**Model Description**
This LLaMA model was fine-tuned on a unique Persian dataset of Alpaca chat conversations, consisting of approximately 8,000 rows. Our training process utilized two H100 GPUs, completing in just under 1 hour. We leveraged the power of Unsloth and Hugging Face's TRL library to accelerate our training process by 2x.

**Training Resources**
* 2x H100 GPUs
* Unsloth and Hugging Face's TRL library
**Dataset**
* Unique Persian dataset of Alpaca chat conversations
* Approximately 8,000 rows
**Open-Source Contribution**
This model is open-source, and we invite the community to use and build upon our work. The fine-tuned LLaMA model is designed to improve Persian conversation capabilities, and we hope it will contribute to the advancement of natural language processing in the Persian language.
**Using Adapters with Unsloth**
To run the model with adapters, you can use the following code:
```python
import torch
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
model_save_path = "path to the download folder" #the hugging face folder path pulled.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=model_save_path,
max_seq_length=4096,
load_in_4bit=True,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
tokenizer = get_chat_template(
tokenizer,
chat_template="llama-3", # use the llama-3 template
mapping={"role": "from", "content": "value", "user": "human", "assistant": "gpt"}, # mapping the messages.
)
messages = [{"from": "human", "value": "your prompt"}]#add your prompt here as human
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True, # Must add for generation
return_tensors="pt",
).to("cuda")
outputs = model.generate(input_ids=inputs, max_new_tokens=2048, use_cache=True)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(response)
```
**Full 16-bit Merged Model**
For a full 16-bit merged model, please check out xmanii/Llama3-8b-simorgh-16bit.
**Future Work**
We are working on quantizing the models and bringing them to ollama.
|
MaziyarPanahi/mergekit-slerp-flctqsu-GGUF
|
MaziyarPanahi
| 2024-06-17T19:31:56Z | 5 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:NousResearch/Hermes-2-Pro-Mistral-7B",
"base_model:WizardLM/WizardMath-7B-V1.1",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-flctqsu",
"base_model:quantized:mergekit-community/mergekit-slerp-flctqsu"
] |
text-generation
| 2024-06-17T19:07:26Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:NousResearch/Hermes-2-Pro-Mistral-7B
- base_model:WizardLM/WizardMath-7B-V1.1
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-flctqsu-GGUF
base_model: mergekit-community/mergekit-slerp-flctqsu
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-flctqsu-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-flctqsu-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-flctqsu](https://huggingface.co/mergekit-community/mergekit-slerp-flctqsu)
## Description
[MaziyarPanahi/mergekit-slerp-flctqsu-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-flctqsu-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-flctqsu](https://huggingface.co/mergekit-community/mergekit-slerp-flctqsu).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
doga/convnext-tiny-224-finetuned-eurosat-albumentations
|
doga
| 2024-06-17T19:25:59Z | 197 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"convnext",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:facebook/convnext-tiny-224",
"base_model:finetune:facebook/convnext-tiny-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2024-06-17T19:04:46Z |
---
license: apache-2.0
base_model: facebook/convnext-tiny-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: convnext-tiny-224-finetuned-eurosat-albumentations
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9840740740740741
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# convnext-tiny-224-finetuned-eurosat-albumentations
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0610
- Accuracy: 0.9841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1609 | 1.0 | 190 | 0.1439 | 0.9667 |
| 0.0841 | 2.0 | 380 | 0.0750 | 0.9804 |
| 0.0817 | 3.0 | 570 | 0.0610 | 0.9841 |
### Framework versions
- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
Peaky8linders/football_lora_axolotl
|
Peaky8linders
| 2024-06-17T19:25:57Z | 0 | 0 |
peft
|
[
"peft",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"base_model:adapter:meta-llama/Meta-Llama-3-8B",
"license:llama3",
"8-bit",
"bitsandbytes",
"region:us"
] | null | 2024-06-14T21:17:59Z |
---
license: llama3
library_name: peft
tags:
- generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
model-index:
- name: outputs/lora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: Peaky8linders/euro-summary-alpaca
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# outputs/lora-out
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.4887 | 0.0202 | 1 | 0.4672 |
| 0.0 | 0.2626 | 13 | 0.0001 |
| 0.0 | 0.5253 | 26 | 0.0000 |
| 0.0 | 0.7879 | 39 | 0.0000 |
| 0.0 | 1.0303 | 52 | 0.0000 |
| 0.0 | 1.2929 | 65 | 0.0000 |
| 0.0 | 1.5556 | 78 | 0.0000 |
| 0.0 | 1.8182 | 91 | 0.0000 |
| 0.0 | 2.0606 | 104 | 0.0000 |
| 0.0 | 2.3232 | 117 | 0.0000 |
| 0.0 | 2.5859 | 130 | 0.0000 |
| 0.0 | 2.8485 | 143 | 0.0000 |
| 0.0 | 3.0909 | 156 | 0.0000 |
| 0.0 | 3.3535 | 169 | 0.0000 |
| 0.0 | 3.6162 | 182 | 0.0000 |
| 0.0 | 3.8788 | 195 | 0.0000 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
|
etanios/mamba-130m-hf-finetuned-epitope
|
etanios
| 2024-06-17T19:25:17Z | 92 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"mamba",
"text-generation",
"generated_from_trainer",
"base_model:state-spaces/mamba-130m-hf",
"base_model:finetune:state-spaces/mamba-130m-hf",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T19:24:56Z |
---
base_model: state-spaces/mamba-130m-hf
tags:
- generated_from_trainer
model-index:
- name: mamba-130m-hf-finetuned-epitope
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mamba-130m-hf-finetuned-epitope
This model is a fine-tuned version of [state-spaces/mamba-130m-hf](https://huggingface.co/state-spaces/mamba-130m-hf) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log | 0.9989 | 463 | 0.6563 | 0.6464 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
etanios/june-17-epitope-mamba
|
etanios
| 2024-06-17T19:24:55Z | 0 | 0 |
transformers
|
[
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T19:19:19Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
PragmaticPete/tinyqwen
|
PragmaticPete
| 2024-06-17T19:19:41Z | 149 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"pretrained",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T19:15:42Z |
---
language:
- en
pipeline_tag: text-generation
tags:
- pretrained
license: apache-2.0
---
# Qwen2-0.5B
## Introduction
Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the 0.5B Qwen2 base language model.
Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.
For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2/), [GitHub](https://github.com/QwenLM/Qwen2), and [Documentation](https://qwen.readthedocs.io/en/latest/).
<br>
## Model Details
Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.
## Requirements
The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```
## Usage
We do not advise you to use base language models for text generation. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.
## Performance
The evaluation of base models mainly focuses on the model performance of natural language understanding, general question answering, coding, mathematics, scientific knowledge, reasoning, multilingual capability, etc.
The datasets for evaluation include:
**English Tasks**: MMLU (5-shot), MMLU-Pro (5-shot), GPQA (5shot), Theorem QA (5-shot), BBH (3-shot), HellaSwag (10-shot), Winogrande (5-shot), TruthfulQA (0-shot), ARC-C (25-shot)
**Coding Tasks**: EvalPlus (0-shot) (HumanEval, MBPP, HumanEval+, MBPP+), MultiPL-E (0-shot) (Python, C++, JAVA, PHP, TypeScript, C#, Bash, JavaScript)
**Math Tasks**: GSM8K (4-shot), MATH (4-shot)
**Chinese Tasks**: C-Eval(5-shot), CMMLU (5-shot)
**Multilingual Tasks**: Multi-Exam (M3Exam 5-shot, IndoMMLU 3-shot, ruMMLU 5-shot, mMMLU 5-shot), Multi-Understanding (BELEBELE 5-shot, XCOPA 5-shot, XWinograd 5-shot, XStoryCloze 0-shot, PAWS-X 5-shot), Multi-Mathematics (MGSM 8-shot), Multi-Translation (Flores-101 5-shot)
#### Qwen2-0.5B & Qwen2-1.5B performances
| Datasets | Phi-2 | Gemma-2B | MiniCPM | Qwen1.5-1.8B | Qwen2-0.5B | Qwen2-1.5B |
| :--------| :---------: | :------------: | :------------: |:------------: | :------------: | :------------: |
|#Non-Emb Params | 2.5B | 2.0B | 2.4B | 1.3B | 0.35B | 1.3B |
|MMLU | 52.7 | 42.3 | 53.5 | 46.8 | 45.4 | **56.5** |
|MMLU-Pro | - | 15.9 | - | - | 14.7 | 21.8 |
|Theorem QA | - | - | - |- | 8.9 | **15.0** |
|HumanEval | 47.6 | 22.0 |**50.0**| 20.1 | 22.0 | 31.1 |
|MBPP | **55.0** | 29.2 | 47.3 | 18.0 | 22.0 | 37.4 |
|GSM8K | 57.2 | 17.7 | 53.8 | 38.4 | 36.5 | **58.5** |
|MATH | 3.5 | 11.8 | 10.2 | 10.1 | 10.7 | **21.7** |
|BBH | **43.4** | 35.2 | 36.9 | 24.2 | 28.4 | 37.2 |
|HellaSwag | **73.1** | 71.4 | 68.3 | 61.4 | 49.3 | 66.6 |
|Winogrande | **74.4** | 66.8 | -| 60.3 | 56.8 | 66.2 |
|ARC-C | **61.1** | 48.5 | -| 37.9 | 31.5 | 43.9 |
|TruthfulQA | 44.5 | 33.1 | -| 39.4 | 39.7 | **45.9** |
|C-Eval | 23.4 | 28.0 | 51.1| 59.7 | 58.2 | **70.6** |
|CMMLU | 24.2 | - | 51.1 | 57.8 | 55.1 | **70.3** |
## Citation
If you find our work helpful, feel free to give us a cite.
```
@article{qwen2,
title={Qwen2 Technical Report},
year={2024}
}
```
|
talli96123/meat_calssify_fresh_crop_fixed_overlap_epoch100_V_0_15
|
talli96123
| 2024-06-17T19:18:42Z | 218 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"base_model:finetune:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2024-06-17T19:16:13Z |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: meat_calssify_fresh_crop_fixed_overlap_epoch100_V_0_15
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.956386292834891
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# meat_calssify_fresh_crop_fixed_overlap_epoch100_V_0_15
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1718
- Accuracy: 0.9564
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.1001 | 1.0 | 21 | 1.0997 | 0.3614 |
| 1.0637 | 2.0 | 42 | 1.0850 | 0.3863 |
| 1.0464 | 3.0 | 63 | 1.0524 | 0.4766 |
| 0.9569 | 4.0 | 84 | 0.9464 | 0.5763 |
| 0.8778 | 5.0 | 105 | 0.8916 | 0.6168 |
| 0.8396 | 6.0 | 126 | 0.8181 | 0.6573 |
| 0.7752 | 7.0 | 147 | 0.8517 | 0.6168 |
| 0.7765 | 8.0 | 168 | 1.0433 | 0.5140 |
| 0.7283 | 9.0 | 189 | 0.9781 | 0.5452 |
| 0.6714 | 10.0 | 210 | 0.6957 | 0.7165 |
| 0.5872 | 11.0 | 231 | 0.6338 | 0.7352 |
| 0.4924 | 12.0 | 252 | 0.5824 | 0.7757 |
| 0.4441 | 13.0 | 273 | 0.7042 | 0.7040 |
| 0.4818 | 14.0 | 294 | 0.4985 | 0.8100 |
| 0.4477 | 15.0 | 315 | 0.5176 | 0.8100 |
| 0.387 | 16.0 | 336 | 0.5820 | 0.7757 |
| 0.378 | 17.0 | 357 | 0.4651 | 0.8287 |
| 0.3353 | 18.0 | 378 | 0.5163 | 0.8037 |
| 0.3651 | 19.0 | 399 | 0.3980 | 0.8474 |
| 0.312 | 20.0 | 420 | 0.4217 | 0.8629 |
| 0.2572 | 21.0 | 441 | 0.4610 | 0.8255 |
| 0.25 | 22.0 | 462 | 0.4421 | 0.8349 |
| 0.2325 | 23.0 | 483 | 0.4322 | 0.8193 |
| 0.2384 | 24.0 | 504 | 0.4207 | 0.8380 |
| 0.2295 | 25.0 | 525 | 0.4298 | 0.8411 |
| 0.4004 | 26.0 | 546 | 0.4976 | 0.8224 |
| 0.2136 | 27.0 | 567 | 0.3272 | 0.8723 |
| 0.1851 | 28.0 | 588 | 0.3004 | 0.8941 |
| 0.1513 | 29.0 | 609 | 0.3198 | 0.8785 |
| 0.2132 | 30.0 | 630 | 0.3403 | 0.8879 |
| 0.1704 | 31.0 | 651 | 0.4112 | 0.8692 |
| 0.1639 | 32.0 | 672 | 0.3038 | 0.8941 |
| 0.2028 | 33.0 | 693 | 0.6632 | 0.7601 |
| 0.256 | 34.0 | 714 | 0.3475 | 0.8785 |
| 0.142 | 35.0 | 735 | 0.2709 | 0.9034 |
| 0.1358 | 36.0 | 756 | 0.2745 | 0.9034 |
| 0.1543 | 37.0 | 777 | 0.3139 | 0.8816 |
| 0.1214 | 38.0 | 798 | 0.2518 | 0.9128 |
| 0.1291 | 39.0 | 819 | 0.4121 | 0.8598 |
| 0.1423 | 40.0 | 840 | 0.2469 | 0.9128 |
| 0.1071 | 41.0 | 861 | 0.2351 | 0.9252 |
| 0.1259 | 42.0 | 882 | 0.3639 | 0.8785 |
| 0.1114 | 43.0 | 903 | 0.4624 | 0.8567 |
| 0.123 | 44.0 | 924 | 0.3147 | 0.8941 |
| 0.0914 | 45.0 | 945 | 0.3599 | 0.8879 |
| 0.1154 | 46.0 | 966 | 0.2986 | 0.9003 |
| 0.1001 | 47.0 | 987 | 0.2688 | 0.9034 |
| 0.0959 | 48.0 | 1008 | 0.2358 | 0.9159 |
| 0.0935 | 49.0 | 1029 | 0.2724 | 0.9159 |
| 0.104 | 50.0 | 1050 | 0.3857 | 0.8847 |
| 0.1158 | 51.0 | 1071 | 0.3359 | 0.8910 |
| 0.0766 | 52.0 | 1092 | 0.3030 | 0.8941 |
| 0.1048 | 53.0 | 1113 | 0.2648 | 0.9097 |
| 0.1065 | 54.0 | 1134 | 0.2859 | 0.9128 |
| 0.0738 | 55.0 | 1155 | 0.3660 | 0.8910 |
| 0.078 | 56.0 | 1176 | 0.2843 | 0.9221 |
| 0.0755 | 57.0 | 1197 | 0.4503 | 0.8816 |
| 0.1193 | 58.0 | 1218 | 0.5647 | 0.8006 |
| 0.1014 | 59.0 | 1239 | 0.4011 | 0.8660 |
| 0.0557 | 60.0 | 1260 | 0.3376 | 0.8941 |
| 0.054 | 61.0 | 1281 | 0.2309 | 0.9283 |
| 0.0674 | 62.0 | 1302 | 0.3222 | 0.9003 |
| 0.0845 | 63.0 | 1323 | 0.2429 | 0.9221 |
| 0.0721 | 64.0 | 1344 | 0.2247 | 0.9283 |
| 0.0711 | 65.0 | 1365 | 0.3134 | 0.9097 |
| 0.0881 | 66.0 | 1386 | 0.2918 | 0.9159 |
| 0.0753 | 67.0 | 1407 | 0.2734 | 0.9065 |
| 0.059 | 68.0 | 1428 | 0.3353 | 0.8754 |
| 0.0814 | 69.0 | 1449 | 0.3093 | 0.9159 |
| 0.1317 | 70.0 | 1470 | 0.1641 | 0.9439 |
| 0.0539 | 71.0 | 1491 | 0.1988 | 0.9470 |
| 0.0572 | 72.0 | 1512 | 0.2493 | 0.9159 |
| 0.0322 | 73.0 | 1533 | 0.2045 | 0.9315 |
| 0.0473 | 74.0 | 1554 | 0.2380 | 0.9315 |
| 0.0478 | 75.0 | 1575 | 0.1687 | 0.9377 |
| 0.0554 | 76.0 | 1596 | 0.2121 | 0.9315 |
| 0.0444 | 77.0 | 1617 | 0.2172 | 0.9439 |
| 0.0808 | 78.0 | 1638 | 0.3581 | 0.8910 |
| 0.0522 | 79.0 | 1659 | 0.2155 | 0.9408 |
| 0.0402 | 80.0 | 1680 | 0.2204 | 0.9283 |
| 0.0387 | 81.0 | 1701 | 0.1438 | 0.9564 |
| 0.0294 | 82.0 | 1722 | 0.3094 | 0.9221 |
| 0.0449 | 83.0 | 1743 | 0.2850 | 0.9128 |
| 0.029 | 84.0 | 1764 | 0.3040 | 0.9128 |
| 0.0419 | 85.0 | 1785 | 0.1831 | 0.9439 |
| 0.0297 | 86.0 | 1806 | 0.2211 | 0.9221 |
| 0.0382 | 87.0 | 1827 | 0.2203 | 0.9346 |
| 0.0524 | 88.0 | 1848 | 0.2093 | 0.9377 |
| 0.0524 | 89.0 | 1869 | 0.2195 | 0.9252 |
| 0.0446 | 90.0 | 1890 | 0.2358 | 0.9377 |
| 0.0423 | 91.0 | 1911 | 0.2129 | 0.9283 |
| 0.0434 | 92.0 | 1932 | 0.2199 | 0.9315 |
| 0.0429 | 93.0 | 1953 | 0.1954 | 0.9470 |
| 0.0302 | 94.0 | 1974 | 0.1379 | 0.9564 |
| 0.046 | 95.0 | 1995 | 0.1609 | 0.9502 |
| 0.0247 | 96.0 | 2016 | 0.1978 | 0.9315 |
| 0.0289 | 97.0 | 2037 | 0.1872 | 0.9439 |
| 0.0452 | 98.0 | 2058 | 0.2132 | 0.9377 |
| 0.0308 | 99.0 | 2079 | 0.1592 | 0.9377 |
| 0.0274 | 100.0 | 2100 | 0.1718 | 0.9564 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|
blockblockblock/gpt2-medium-bpw4.2-exl2
|
blockblockblock
| 2024-06-17T19:17:56Z | 63 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:13:45Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
mradermacher/Umbral-v0.4-3-GGUF
|
mradermacher
| 2024-06-17T19:17:18Z | 4 | 1 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:mergekit-community/Umbral-v0.4-3",
"base_model:quantized:mergekit-community/Umbral-v0.4-3",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T00:25:43Z |
---
base_model: mergekit-community/Umbral-v0.4-3
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/mergekit-community/Umbral-v0.4-3
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Umbral-v0.4-3-GGUF/resolve/main/Umbral-v0.4-3.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
silent666/google-gemma-2b-1718651715
|
silent666
| 2024-06-17T19:15:17Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | 2024-06-17T19:15:15Z |
---
base_model: google/gemma-2b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Masioki/fusion_asrtbsc_distilbert-uncased-best
|
Masioki
| 2024-06-17T19:15:14Z | 36 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"fusion-cross-attention-sentence-classifier",
"generated_from_trainer",
"en",
"dataset:asapp/slue-phase-2",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-06-11T23:11:26Z |
---
tags:
- generated_from_trainer
model-index:
- name: fusion_asrtbsc_distilbert-uncased-best
results:
- task:
type: dialogue act classification
dataset:
name: asapp/slue-phase-2
type: hvb
metrics:
- name: F1 macro E2E
type: F1 macro
value: 72.22
- name: F1 macro GT
type: F1 macro
value: 72.29
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fusion_asrtbsc_distilbert-uncased-best
ASR transcripts with prosody encoding and ASR encoding residual cross attention fusion multi-label DAC
## Model description
ASR encoder: [Whisper small](https://huggingface.co/openai/whisper-small) encoder
Prosody encoder: 2 layer transformer encoder with initial dense projection
Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
Fusion: 2 residual cross attention fusion layers (F_asr x F_text and F_prosody x F_text) with dense layer on top
Pooling: Self attention
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
## Training and evaluation data
Trained on ASR transcripts.
Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00043
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
silent666/Qwen-Qwen1.5-1.8B-1718651683
|
silent666
| 2024-06-17T19:14:44Z | 4 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | 2024-06-17T19:14:43Z |
---
base_model: Qwen/Qwen1.5-1.8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
silent666/Qwen-Qwen1.5-0.5B-1718651642
|
silent666
| 2024-06-17T19:14:04Z | 3 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"base_model:adapter:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-17T19:14:02Z |
---
base_model: Qwen/Qwen1.5-0.5B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Masioki/fusion_gttbsc_distilbert-uncased-ft
|
Masioki
| 2024-06-17T19:12:05Z | 34 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"fusion-cross-attention-sentence-classifier",
"generated_from_trainer",
"en",
"dataset:asapp/slue-phase-2",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-06-09T23:21:44Z |
---
tags:
- generated_from_trainer
model-index:
- name: fusion_gttbsc_distilbert-uncased-ft
results:
- task:
type: dialogue act classification
dataset:
name: asapp/slue-phase-2
type: hvb
metrics:
- name: F1 macro E2E
type: F1 macro
value: TBA
- name: F1 macro GT
type: F1 macro
value: TBA
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fusion_gttbsc_distilbert-uncased-ft
Ground truth text with prosody encoding and ASR encoding residual cross attention fusion multi-label DAC
## Model description
ASR encoder: [Whisper small](https://huggingface.co/openai/whisper-small) encoder
Prosody encoder: 2 layer transformer encoder with initial dense projection
Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
Fusion: 2 residual cross attention fusion layers (F_asr x F_text and F_prosody x F_text) with dense layer on top
Pooling: Self attention
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
## Training and evaluation data
Trained on ground truth.
Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
blockblockblock/gpt2-medium-bpw4-exl2
|
blockblockblock
| 2024-06-17T19:12:00Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"4-bit",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:07:44Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
Masioki/gttbsc_distilbert-ft
|
Masioki
| 2024-06-17T19:10:31Z | 35 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"single-embedding-sentence-classifier",
"generated_from_trainer",
"en",
"dataset:asapp/slue-phase-2",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-06-09T19:06:32Z |
---
tags:
- generated_from_trainer
model-index:
- name: gttbsc_distilbert-ft
results:
- task:
type: dialogue act classification
dataset:
name: asapp/slue-phase-2
type: hvb
metrics:
- name: F1 macro E2E
type: F1 macro
value: 65.60
- name: F1 macro GT
type: F1 macro
value: 71.82
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gttbsc_distilbert-ft
Ground truth text multi-label DAC.
Fined tuned using LoRa.
## Model description
Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
Pooling: Self attention
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
## Training and evaluation data
Trained on ground truth.
Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00043
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B-GGUF
|
Casual-Autopsy
| 2024-06-17T19:08:48Z | 2 | 3 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"llama-cpp",
"gguf-my-repo",
"base_model:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B",
"base_model:quantized:Casual-Autopsy/L3-Umbral-Mind-RP-v1.0-8B",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2024-06-17T19:07:54Z |
---
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B
---
# Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B-GGUF
This model was converted to GGUF format from [`Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B`](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama --hf-repo Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B-GGUF --hf-file l3-umbral-mind-rp-v0.8-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B-GGUF --hf-file l3-umbral-mind-rp-v0.8-8b-q5_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./main --hf-repo Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B-GGUF --hf-file l3-umbral-mind-rp-v0.8-8b-q5_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./server --hf-repo Casual-Autopsy/L3-Umbral-Mind-RP-v0.8-8B-GGUF --hf-file l3-umbral-mind-rp-v0.8-8b-q5_k_m.gguf -c 2048
```
|
blockblockblock/gpt2-medium-bpw3.7-exl2
|
blockblockblock
| 2024-06-17T19:05:59Z | 64 | 0 |
transformers
|
[
"transformers",
"tf",
"jax",
"rust",
"gpt2",
"text-generation",
"en",
"arxiv:1910.09700",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"exl2",
"region:us"
] |
text-generation
| 2024-06-17T19:01:47Z |
---
language: en
license: mit
---
# GPT-2 Medium
## Model Details
**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.
- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.
- **Model Type:** Transformer-based language model
- **Language(s):** English
- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)
- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)
- **Resources for more information:**
- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)
- [GitHub Repo](https://github.com/openai/gpt-2)
- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)
- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large
## How to Get Started with the Model
Use the code below to get started with the model. You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we
set a seed for reproducibility:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("Hello, I'm a language model,", max_length=30, num_return_sequences=5)
[{'generated_text': "Hello, I'm a language model, I'm a language. I'm a compiler, I'm a parser, I'm a server process. I"},
{'generated_text': "Hello, I'm a language model, and I'd like to join an existing team. What can I do to get started?\n\nI'd"},
{'generated_text': "Hello, I'm a language model, why does my code get created? Can't I just copy it? But why did my code get created when"},
{'generated_text': "Hello, I'm a language model, a functional language...\n\nI'm a functional language. Is it hard? A little, yes. But"},
{'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I need to give me objects from which I can get"}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = GPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = TFGPT2Model.from_pretrained('gpt2-medium')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
## Uses
#### Direct Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> The primary intended users of these models are AI researchers and practitioners.
>
> We primarily imagine these language models will be used by researchers to better understand the behaviors, capabilities, biases, and constraints of large-scale generative language models.
#### Downstream Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Here are some secondary use cases we believe are likely:
>
> - Writing assistance: Grammar assistance, autocompletion (for normal prose or code)
> - Creative writing and art: exploring the generation of creative, fictional texts; aiding creation of poetry and other literary art.
> - Entertainment: Creation of games, chat bots, and amusing generations.
#### Misuse and Out-of-scope Use
In their [model card about GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md), OpenAI wrote:
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.
>
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.
## Risks, Limitations and Biases
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propogate historical and current stereotypes.**
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For example:
```python
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2-medium')
>>> set_seed(42)
>>> generator("The man worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The man worked as a security guard in a military'},
{'generated_text': 'The man worked as a salesman in Mexico and eventually'},
{'generated_text': 'The man worked as a supervisor at the department for'},
{'generated_text': 'The man worked as a cleaner for the same corporation'},
{'generated_text': 'The man worked as a barman and was involved'}]
>>> set_seed(42)
>>> generator("The woman worked as a", max_length=10, num_return_sequences=5)
[{'generated_text': 'The woman worked as a social worker in a children'},
{'generated_text': 'The woman worked as a marketing manager, and her'},
{'generated_text': 'The woman worked as a customer service agent in a'},
{'generated_text': 'The woman worked as a cleaner for the same corporation'},
{'generated_text': 'The woman worked as a barista and was involved'}]
```
This bias will also affect all fine-tuned versions of this model. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## Training
#### Training Data
The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web
pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from
this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights
40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText
[here](https://github.com/openai/gpt-2/blob/master/domains.txt).
#### Training Procedure
The model is pretrained on a very large corpus of English data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the English language that can then be used to extract features
useful for downstream tasks.
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.
## Evaluation
The following evaluation information is extracted from the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf).
#### Testing Data, Factors and Metrics
The model authors write in the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) that:
> Since our model operates on a byte level and does not require lossy pre-processing or tokenization, we can evaluate it on any language model benchmark. Results on language modeling datasets are commonly reported in a quantity which is a scaled or ex- ponentiated version of the average negative log probability per canonical prediction unit - usually a character, a byte, or a word. We evaluate the same quantity by computing the log-probability of a dataset according to a WebText LM and dividing by the number of canonical units. For many of these datasets, WebText LMs would be tested significantly out- of-distribution, having to predict aggressively standardized text, tokenization artifacts such as disconnected punctuation and contractions, shuffled sentences, and even the string <UNK> which is extremely rare in WebText - occurring only 26 times in 40 billion bytes. We report our main results...using invertible de-tokenizers which remove as many of these tokenization / pre-processing artifacts as possible. Since these de-tokenizers are invertible, we can still calculate the log probability of a dataset and they can be thought of as a simple form of domain adaptation.
#### Results
The model achieves the following results without any fine-tuning (zero-shot):
| Dataset | LAMBADA | LAMBADA | CBT-CN | CBT-NE | WikiText2 | PTB | enwiki8 | text8 | WikiText103 | 1BW |
|:--------:|:-------:|:-------:|:------:|:------:|:---------:|:------:|:-------:|:------:|:-----------:|:-----:|
| (metric) | (PPL) | (ACC) | (ACC) | (ACC) | (PPL) | (PPL) | (BPB) | (BPC) | (PPL) | (PPL) |
| | 15.60 | 55.48 | 92.35 | 87.1 | 22.76 | 47.33 | 1.01 | 1.06 | 26.37 | 55.72 |
## Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** Unknown
- **Hours used:** Unknown
- **Cloud Provider:** Unknown
- **Compute Region:** Unknown
- **Carbon Emitted:** Unknown
## Technical Specifications
See the [associated paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) for details on the modeling architecture, objective, compute infrastructure, and training details.
## Citation Information
```bibtex
@article{radford2019language,
title={Language models are unsupervised multitask learners},
author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},
journal={OpenAI blog},
volume={1},
number={8},
pages={9},
year={2019}
}
```
## Model Card Authors
This model card was written by the Hugging Face team.
|
Sanjay19tsh/summ_Llama3_model
|
Sanjay19tsh
| 2024-06-17T19:02:36Z | 0 | 1 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T19:02:28Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** Sanjay19tsh
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
silent666/Qwen-Qwen1.5-7B-1718650938
|
silent666
| 2024-06-17T19:02:22Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-17T19:02:18Z |
---
base_model: Qwen/Qwen1.5-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Masioki/prosody_gttbsc_distilbert-uncased-energy
|
Masioki
| 2024-06-17T19:02:00Z | 38 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"cross-attention-sentence-classifier",
"generated_from_trainer",
"en",
"dataset:asapp/slue-phase-2",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-06-06T22:09:14Z |
---
tags:
- generated_from_trainer
model-index:
- name: prosody_gttbsc_distilbert-uncased-energy
results:
- task:
type: dialogue act classification
dataset:
name: asapp/slue-phase-2
type: hvb
metrics:
- name: F1 macro E2E
type: F1 macro
value: 65.75
- name: F1 macro GT
type: F1 macro
value: 71.95
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prosody_gttbsc_distilbert-uncased-energy
Ground truth text with prosody encoding residual cross attention multi-label DAC
## Model description
Prosody encoder: 2 layer transformer encoder with initial dense projection
Backbone: [DistilBert uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
Pooling: Self attention
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
## Training and evaluation data
Trained on ground truth.
Evaluated on ground truth (GT) and normalized [Whisper small](https://huggingface.co/openai/whisper-small) transcripts (E2E).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
|
silent666/Qwen-Qwen1.5-7B-1718650830
|
silent666
| 2024-06-17T19:00:32Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-17T19:00:31Z |
---
base_model: Qwen/Qwen1.5-7B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.