modelId
string | author
string | last_modified
timestamp[us, tz=UTC] | downloads
int64 | likes
int64 | library_name
string | tags
list | pipeline_tag
string | createdAt
timestamp[us, tz=UTC] | card
string |
---|---|---|---|---|---|---|---|---|---|
jieliu/Storm-7B
|
jieliu
| 2024-06-18T02:35:57Z | 19 | 41 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"storm",
"openchat",
"RLAIF",
"reward model",
"conversational",
"en",
"dataset:berkeley-nest/Nectar",
"arxiv:2406.11817",
"arxiv:2310.03708",
"base_model:openchat/openchat-3.5-0106",
"base_model:finetune:openchat/openchat-3.5-0106",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-04-25T12:46:29Z |
---
license: apache-2.0
library_name: transformers
tags:
- storm
- mistral
- openchat
- RLAIF
- reward model
language:
- en
base_model: openchat/openchat-3.5-0106
datasets:
- berkeley-nest/Nectar
---
# Storm-7B
- **Developed by**: [Jie Liu](https://jieliu.site/) \\(^{*1,2}\\), [Zhanhui Zhou](https://scholar.google.com/citations?user=SbACfYQAAAAJ&hl=zh-CN) \\(^{*2}\\), [Jiaheng Liu](https://liujiaheng.github.io/) \\(^{2}\\), [Xingyuan Bu](https://scholar.google.com.hk/citations?user=cqYaRhUAAAAJ&hl=zh-CN) \\(^{2}\\), [Chao Yang](https://scholar.google.com/citations?user=5KRbHPMAAAAJ&hl=zh-CN) \\(^{2}\\), [Han-Sen Zhong](https://scholar.google.com.hk/citations?user=X_ZfX8sAAAAJ&hl=zh-CN) \\(^{\dag 2}\\), [Wanli Ouyang](https://wlouyang.github.io/) \\(^{1,2}\\).
- \\(^{1}\\)MMLab, The Chinese University of Hong Kong   \\(^{2}\\)Shanghai AI Laboratory
- Paper: [Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level](https://arxiv.org/pdf/2406.11817)
- Finetuned from the model: [openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)
- Dataset: [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar)
- Reward Model: [Starling-RM-34B](https://huggingface.co/Nexusflow/Starling-RM-34B)
Please see our paper for more details.
## Introduction
We released Storm-7B, the first open-source language model comparable to the GPT-4 series on the [AlpacaEval 2.0](https://tatsu-lab.github.io/alpaca_eval/) leaderboard.
Recent studies show that DPO benefits from iterative training with online preferences labeled by a trained reward model. In this work, we identify a pitfall of vanilla iterative DPO - improved response quality can lead to increased verbosity. To address this, we introduce iterative length-regularized DPO (iLR-DPO) to penalize response length. Our empirical results show that iLR-DPO can enhance a 7B model to perform on par with GPT-4 **without increasing verbosity**.
## Performance
Our 7B model achieves a **50.5%** length-controlled win rate against GPT-4 Preview on AlpacaEval 2.0.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/Tj_a1QntAxkhy2SXbOdmT.png" width="60%">
</p>
Our model's LC win rate improves over iterations without significantly changing the response length, indicating better alignment with human values without length bias. The final trained model (iteration 3) achieves a 50.5% LC win rate, making it the first open-source model to surpass the baseline model GPT-4 Preview.
In addition to regular decoding, we also test beam search and best-of-n sampling on top of our trained model. Beam search over our trained model shows a 5% improvement over regular decoding, Best-of-n sampling with Starling-RM-34B achieves 61.6% LC Win rate and outperforms GPT-4 Omni.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/GGa28vaREaVq099MPdqcP.png" width="100%">
</p>
We observe no significant degradation in traditional NLP tasks from the Huggingface Open LLM Leaderboard.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/639be86b59473c6ae02ef9c4/8KEm_Ladg7Kqko8mC63SN.png" width="100%">
</p>
## Uses
Our model uses the same chat template as [Openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106). A sample code snippet for inference using our model is provided below.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
model = AutoModelForCausalLM.from_pretrained("jieliu/Storm-7B").to(device)
tokenizer = AutoTokenizer.from_pretrained("jieliu/Storm-7B")
model.eval().requires_grad_(False)
def generate_response(prompt):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
outputs = model.generate(
input_ids,
max_length=2048,
do_sample=True,
temperature=1.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response_ids = outputs[0]
response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
return response_text
prompt = "How does a telescope work?"
input_prompt = f"GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:"
response_text = generate_response(input_prompt)
print("Response:", response_text)
```
## Scripts
You can reproduce our results on AlphaEval 2.0 using the script provided below.
```bash
git clone https://github.com/tatsu-lab/alpaca_eval.git
cd alpaca_eval
pip install -e .
export OPENAI_API_KEY=<your_api_key>
alpaca_eval evaluate_from_model --model_configs 'Storm-7B'
```
## Limitations
Our work has several limitations:
(1) We focus on aligning with human preferences but only use GPT-4 as a proxy for human judgment to evaluate language models.
(2) We reduce verbosity with a length penalty, though verbosity and length are not necessarily correlated. Future work could train a specific reward model to directly penalize verbosity, replacing the length margin with a verbosity margin, following the standard [MODPO pipeline](https://github.com/ZHZisZZ/modpo).
## Citation
```
@article{liu2024iterative,
title = {Iterative Length-Regularized Direct Preference Optimization: A Case Study on Improving 7B Language Models to GPT-4 Level},
author = {Liu, Jie and Zhou, Zhanhui and Liu, Jiaheng and Bu, Xingyuan and Yang, Chao and Zhong Han-Sen and Ouyang, Wanli},
journal={arXiv preprint arXiv:2406.11817},
year={2024}
}
@article{zhou2023beyond,
title={Beyond one-preference-for-all: Multi-objective direct preference optimization},
author={Zhou, Zhanhui and Liu, Jie and Yang, Chao and Shao, Jing and Liu, Yu and Yue, Xiangyu and Ouyang, Wanli and Qiao, Yu},
journal={arXiv preprint arXiv:2310.03708},
year={2023}
}
```
|
hbin0701/mistral_ultrafeedback_all
|
hbin0701
| 2024-06-18T02:26:00Z | 0 | 0 | null |
[
"safetensors",
"license:apache-2.0",
"region:us"
] | null | 2024-06-18T01:54:19Z |
---
license: apache-2.0
---
|
MaziyarPanahi/mergekit-slerp-rfdxiqs-GGUF
|
MaziyarPanahi
| 2024-06-18T02:21:38Z | 6 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:NousResearch/Hermes-2-Pro-Mistral-7B",
"base_model:WizardLM/WizardMath-7B-V1.1",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-rfdxiqs",
"base_model:quantized:mergekit-community/mergekit-slerp-rfdxiqs"
] |
text-generation
| 2024-06-18T01:58:12Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:NousResearch/Hermes-2-Pro-Mistral-7B
- base_model:WizardLM/WizardMath-7B-V1.1
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-rfdxiqs-GGUF
base_model: mergekit-community/mergekit-slerp-rfdxiqs
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-rfdxiqs-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-rfdxiqs-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-rfdxiqs](https://huggingface.co/mergekit-community/mergekit-slerp-rfdxiqs)
## Description
[MaziyarPanahi/mergekit-slerp-rfdxiqs-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-rfdxiqs-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-rfdxiqs](https://huggingface.co/mergekit-community/mergekit-slerp-rfdxiqs).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
Ganny/llama38binstruct_summarize
|
Ganny
| 2024-06-18T02:19:43Z | 1 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:adapter:NousResearch/Meta-Llama-3-8B-Instruct",
"license:other",
"region:us"
] | null | 2024-06-18T02:19:25Z |
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NousResearch/Meta-Llama-3-8B-Instruct
datasets:
- generator
model-index:
- name: llama38binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama38binstruct_summarize
This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8179
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4723 | 1.25 | 25 | 1.2784 |
| 0.4521 | 2.5 | 50 | 1.5971 |
| 0.2549 | 3.75 | 75 | 1.6460 |
| 0.1039 | 5.0 | 100 | 1.8179 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
overfly83/llama2-7b-hf-adapter
|
overfly83
| 2024-06-18T02:17:06Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-05T05:40:08Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
user10101/model
|
user10101
| 2024-06-18T02:16:56Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-06-18T02:16:52Z |
---
license: apache-2.0
---
|
EmineYoubah/finetunedllama3Technix
|
EmineYoubah
| 2024-06-18T02:15:30Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T02:15:16Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** EmineYoubah
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
jiwonii97/Llama-atalk-jw-Ko-3-8B-v1
|
jiwonii97
| 2024-06-18T02:07:34Z | 76 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2024-06-18T02:03:26Z |
---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
lielbin/BabyBERTa-french1.25M-Masking-finetuned-squad
|
lielbin
| 2024-06-18T02:07:13Z | 121 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-18T01:31:45Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french1.25M-Masking-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french1.25M-Masking-finetuned-squad
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
jsfs11/L3-8B-Stheno-slerp
|
jsfs11
| 2024-06-18T02:02:55Z | 5 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"Sao10K/L3-8B-Stheno-v3.2",
"Sao10K/L3-8B-Stheno-v3.1",
"conversational",
"base_model:Sao10K/L3-8B-Stheno-v3.1",
"base_model:merge:Sao10K/L3-8B-Stheno-v3.1",
"base_model:Sao10K/L3-8B-Stheno-v3.2",
"base_model:merge:Sao10K/L3-8B-Stheno-v3.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T01:54:49Z |
---
base_model:
- Sao10K/L3-8B-Stheno-v3.2
- Sao10K/L3-8B-Stheno-v3.1
tags:
- merge
- mergekit
- lazymergekit
- Sao10K/L3-8B-Stheno-v3.2
- Sao10K/L3-8B-Stheno-v3.1
---
# L3-8B-Stheno-slerp
L3-8B-Stheno-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Sao10K/L3-8B-Stheno-v3.2](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.2)
* [Sao10K/L3-8B-Stheno-v3.1](https://huggingface.co/Sao10K/L3-8B-Stheno-v3.1)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Sao10K/L3-8B-Stheno-v3.2
layer_range: [0, 32]
- model: Sao10K/L3-8B-Stheno-v3.1
layer_range: [0, 32]
merge_method: slerp
base_model: Sao10K/L3-8B-Stheno-v3.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsfs11/L3-8B-Stheno-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
ayelets/Eitan_dog
|
ayelets
| 2024-06-18T02:01:19Z | 1 | 0 |
diffusers
|
[
"diffusers",
"tensorboard",
"text-to-image",
"diffusers-training",
"lora",
"template:sd-lora",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"region:us"
] |
text-to-image
| 2024-06-18T02:01:16Z |
---
license: openrail++
library_name: diffusers
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: a photo of TOK dog
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - ayelets/Eitan_dog
<Gallery />
## Model description
These are ayelets/Eitan_dog LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of TOK dog to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](ayelets/Eitan_dog/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]
|
vinaybassa/llama38binstruct_summarize
|
vinaybassa
| 2024-06-18T02:00:51Z | 1 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:NousResearch/Meta-Llama-3-8B-Instruct",
"base_model:adapter:NousResearch/Meta-Llama-3-8B-Instruct",
"license:other",
"region:us"
] | null | 2024-06-18T02:00:43Z |
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: NousResearch/Meta-Llama-3-8B-Instruct
datasets:
- generator
model-index:
- name: llama38binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama38binstruct_summarize
This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4584 | 1.25 | 25 | 1.1473 |
| 0.4513 | 2.5 | 50 | 1.4473 |
| 0.212 | 3.75 | 75 | 1.4875 |
| 0.1193 | 5.0 | 100 | 1.5170 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
hardy99/finetunedllama3_loramodel
|
hardy99
| 2024-06-18T01:54:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"base_model:finetune:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T01:12:48Z |
---
title: Llama3finetuned Lora
emoji: 💬
colorFrom: yellow
colorTo: purple
sdk_version: 4.36.1
app_file: app.py
pinned: false
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
base_model: unsloth/llama-3-8b-bnb-4bit
---
# Uploaded model
- **Developed by:** hardy99
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
OmnicromsBrain/NeuralStar_Story-9b
|
OmnicromsBrain
| 2024-06-18T01:51:51Z | 6 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"OmnicromsBrain/StoryFusion-7B",
"OmnicromsBrain/NeuralStar-7b-Lazy",
"conversational",
"base_model:OmnicromsBrain/NeuralStar-7b-Lazy",
"base_model:merge:OmnicromsBrain/NeuralStar-7b-Lazy",
"base_model:OmnicromsBrain/StoryFusion-7B",
"base_model:merge:OmnicromsBrain/StoryFusion-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T01:45:15Z |
---
base_model:
- OmnicromsBrain/StoryFusion-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
tags:
- merge
- mergekit
- lazymergekit
- OmnicromsBrain/StoryFusion-7B
- OmnicromsBrain/NeuralStar-7b-Lazy
---
# NeuralStar_Story-9b
**TESTING**
NeuralStar_Story-9b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [OmnicromsBrain/StoryFusion-7B](https://huggingface.co/OmnicromsBrain/StoryFusion-7B)
* [OmnicromsBrain/NeuralStar-7b-Lazy](https://huggingface.co/OmnicromsBrain/NeuralStar-7b-Lazy)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: OmnicromsBrain/StoryFusion-7B
layer_range: [0, 24]
- sources:
- model: OmnicromsBrain/NeuralStar-7b-Lazy
layer_range: [8, 32]
merge_method: passthrough
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "OmnicromsBrain/NeuralStar_Story-9b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
adidrv/paligemma-cord-demo
|
adidrv
| 2024-06-18T01:48:01Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T01:28:09Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
MaziyarPanahi/mergekit-slerp-vhzhpmg-GGUF
|
MaziyarPanahi
| 2024-06-18T01:47:01Z | 20 | 0 |
transformers
|
[
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"safetensors",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02",
"base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:mergekit-community/mergekit-slerp-vhzhpmg",
"base_model:quantized:mergekit-community/mergekit-slerp-vhzhpmg"
] |
text-generation
| 2024-06-18T01:23:54Z |
---
tags:
- quantized
- 2-bit
- 3-bit
- 4-bit
- 5-bit
- 6-bit
- 8-bit
- GGUF
- transformers
- safetensors
- mistral
- text-generation
- mergekit
- merge
- conversational
- base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02
- base_model:arcee-ai/sec-mistral-7b-instruct-1.6-epoch
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- text-generation
model_name: mergekit-slerp-vhzhpmg-GGUF
base_model: mergekit-community/mergekit-slerp-vhzhpmg
inference: false
model_creator: mergekit-community
pipeline_tag: text-generation
quantized_by: MaziyarPanahi
---
# [MaziyarPanahi/mergekit-slerp-vhzhpmg-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-vhzhpmg-GGUF)
- Model creator: [mergekit-community](https://huggingface.co/mergekit-community)
- Original model: [mergekit-community/mergekit-slerp-vhzhpmg](https://huggingface.co/mergekit-community/mergekit-slerp-vhzhpmg)
## Description
[MaziyarPanahi/mergekit-slerp-vhzhpmg-GGUF](https://huggingface.co/MaziyarPanahi/mergekit-slerp-vhzhpmg-GGUF) contains GGUF format model files for [mergekit-community/mergekit-slerp-vhzhpmg](https://huggingface.co/mergekit-community/mergekit-slerp-vhzhpmg).
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
## Special thanks
🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible.
|
ntviet/whisper-small-co2
|
ntviet
| 2024-06-18T01:43:14Z | 78 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"co",
"dataset:ntviet/Co-audio-dataset2",
"base_model:ntviet/whisper-small-co",
"base_model:finetune:ntviet/whisper-small-co",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-06-18T00:38:16Z |
---
language:
- co
license: apache-2.0
base_model: ntviet/whisper-small-co
tags:
- generated_from_trainer
datasets:
- ntviet/Co-audio-dataset2
model-index:
- name: Whisper Small Co 2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Co 2
This model is a fine-tuned version of [ntviet/whisper-small-co](https://huggingface.co/ntviet/whisper-small-co) on the Co audio dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1704
- Cer Ortho: 17.3028
- Cer: 16.8798
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 600
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer Ortho | Cer |
|:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:|
| 0.0 | 85.7143 | 600 | 0.1704 | 17.3028 | 16.8798 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
huhuhuhus/google-gemma-2b-1718674987
|
huhuhuhus
| 2024-06-18T01:43:14Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | 2024-06-18T01:43:08Z |
---
library_name: peft
base_model: google/gemma-2b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
huhuhuhus/Qwen-Qwen1.5-1.8B-1718674912
|
huhuhuhus
| 2024-06-18T01:41:57Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | 2024-06-18T01:41:52Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-1.8B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
MelodyMachine/Deepfake-audio-detection-V2
|
MelodyMachine
| 2024-06-18T01:41:13Z | 1,487 | 9 |
transformers
|
[
"transformers",
"safetensors",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:audiofolder",
"base_model:motheecreator/Deepfake-audio-detection",
"base_model:finetune:motheecreator/Deepfake-audio-detection",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2024-06-17T17:55:52Z |
---
license: apache-2.0
base_model: motheecreator/Deepfake-audio-detection
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: Deepfake-audio-detection-V2
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9972843305874898
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Deepfake-audio-detection-V2
This model is a fine-tuned version of [motheecreator/Deepfake-audio-detection](https://huggingface.co/motheecreator/Deepfake-audio-detection) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0141
- Accuracy: 0.9973
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0503 | 1.0 | 1381 | 0.0514 | 0.9858 |
| 0.0327 | 2.0 | 2762 | 0.0174 | 0.9956 |
| 0.0064 | 3.0 | 4143 | 0.0221 | 0.9950 |
| 0.0003 | 4.0 | 5524 | 0.0174 | 0.9965 |
| 0.0115 | 5.0 | 6905 | 0.0141 | 0.9973 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|
huhuhuhus/Qwen-Qwen1.5-0.5B-1718674808
|
huhuhuhus
| 2024-06-18T01:40:14Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"base_model:adapter:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-18T01:40:08Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-0.5B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
AuraRuby/Taxi-v3
|
AuraRuby
| 2024-06-18T01:38:16Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-06-18T01:38:13Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="AuraRuby/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
huhuhuhus/google-gemma-2b-1718674634
|
huhuhuhus
| 2024-06-18T01:37:22Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | 2024-06-18T01:37:14Z |
---
library_name: peft
base_model: google/gemma-2b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
huhuhuhus/Qwen-Qwen1.5-0.5B-1718674456
|
huhuhuhus
| 2024-06-18T01:34:20Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"base_model:adapter:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-18T01:34:16Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-0.5B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-dpo-step1
|
Minbyul
| 2024-06-18T01:32:27Z | 11 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1",
"base_model:finetune:Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1",
"license:llama3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T01:21:50Z |
---
license: llama3
base_model: Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: llama3-8b-instruct-wo-kqa_golden-iter-dpo-step1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-8b-instruct-wo-kqa_golden-iter-dpo-step1
This model is a fine-tuned version of [Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1](https://huggingface.co/Minbyul/llama3-8b-instruct-wo-kqa_golden-iter-sft-step1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Rewards/chosen: 0.0
- Rewards/rejected: 0.0
- Rewards/accuracies: 0.0
- Rewards/margins: 0.0
- Logps/rejected: -369.7173
- Logps/chosen: -476.8867
- Logits/rejected: -0.5081
- Logits/chosen: -0.6523
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
|
lielbin/BabyBERTa-french1.25M-Masking-finetuned-qasrl
|
lielbin
| 2024-06-18T01:30:57Z | 114 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-18T01:03:59Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french1.25M-Masking-finetuned-qasrl
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french1.25M-Masking-finetuned-qasrl
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
dmo0798/trained_dilibert_sentiment_analysis
|
dmo0798
| 2024-06-18T01:26:21Z | 121 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-14T03:20:05Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: trained_dilibert_sentiment_analysis
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# trained_dilibert_sentiment_analysis
This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3948
- Accuracy: 0.906
- Confusion Matrix: [[174, 46], [48, 732]]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Confusion Matrix |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------------------:|
| No log | 1.0 | 188 | 0.2507 | 0.905 | [[168, 52], [43, 737]] |
| No log | 2.0 | 376 | 0.2797 | 0.904 | [[172, 48], [48, 732]] |
| 0.2241 | 3.0 | 564 | 0.3635 | 0.906 | [[154, 66], [28, 752]] |
| 0.2241 | 4.0 | 752 | 0.3798 | 0.908 | [[171, 49], [43, 737]] |
| 0.2241 | 5.0 | 940 | 0.3948 | 0.906 | [[174, 46], [48, 732]] |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
Vicman229/distilbert-base-uncased-finetuned-sst-2-english-tuning-amazon-baby-5000
|
Vicman229
| 2024-06-18T01:17:24Z | 106 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-16T23:26:05Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-finetuned-sst-2-english-tuning-amazon-baby-5000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst-2-english-tuning-amazon-baby-5000
This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0046
- Accuracy: 0.998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
rtorresb/mi-super-modelo
|
rtorresb
| 2024-06-18T01:15:37Z | 184 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:google-bert/bert-base-cased",
"base_model:finetune:google-bert/bert-base-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-18T00:53:31Z |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: mi-super-modelo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mi-super-modelo
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7744
- Accuracy: 0.1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7125 | 1.0 | 5 | 1.7744 | 0.1 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
mradermacher/Hercules-Stheno-v1-GGUF
|
mradermacher
| 2024-06-18T01:15:15Z | 86 | 1 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:lik07/Hercules-Stheno-v1",
"base_model:quantized:lik07/Hercules-Stheno-v1",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T00:05:59Z |
---
base_model: lik07/Hercules-Stheno-v1
language:
- en
library_name: transformers
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/lik07/Hercules-Stheno-v1
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Hercules-Stheno-v1-GGUF/resolve/main/Hercules-Stheno-v1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
chainup244/Qwen-Qwen1.5-0.5B-1718673245
|
chainup244
| 2024-06-18T01:14:39Z | 152 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T01:14:06Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Vicman229/tmp_trainer
|
Vicman229
| 2024-06-18T01:11:25Z | 108 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"base_model:finetune:distilbert/distilbert-base-uncased-finetuned-sst-2-english",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-16T23:15:57Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tmp_trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tmp_trainer
This model is a fine-tuned version of [distilbert/distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5925
- Accuracy: 0.892
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
MadameMoonflower/CitrusTea-Test
|
MadameMoonflower
| 2024-06-18T01:06:04Z | 5 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"base_model:grimjim/kukulemon-7B",
"base_model:merge:grimjim/kukulemon-7B",
"base_model:matchaaaaa/Chaifighter-20B-v2",
"base_model:merge:matchaaaaa/Chaifighter-20B-v2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T01:01:41Z |
---
base_model:
- matchaaaaa/Chaifighter-20B-v2
- grimjim/kukulemon-7B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [matchaaaaa/Chaifighter-20B-v2](https://huggingface.co/matchaaaaa/Chaifighter-20B-v2)
* [grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: grimjim/kukulemon-7B
layer_range: [0, 24]
- sources:
- model: matchaaaaa/Chaifighter-20B-v2
layer_range: [18, 40]
merge_method: passthrough
dtype: float16
```
|
richardkelly/google-gemma-2b-1718672731
|
richardkelly
| 2024-06-18T01:05:51Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | 2024-06-18T01:05:31Z |
---
library_name: peft
base_model: google/gemma-2b
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step3
|
Minbyul
| 2024-06-18T01:05:41Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step2",
"base_model:finetune:Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step2",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-05-10T04:04:58Z |
---
license: apache-2.0
base_model: Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step2
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: biomistral-7b-wo-kqa_golden-iter-dpo-step3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biomistral-7b-wo-kqa_golden-iter-dpo-step3
This model is a fine-tuned version of [Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step2](https://huggingface.co/Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step2) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6914
- Rewards/chosen: 0.0080
- Rewards/rejected: 0.0043
- Rewards/accuracies: 0.6964
- Rewards/margins: 0.0037
- Logps/rejected: -164.6167
- Logps/chosen: -234.3960
- Logits/rejected: -2.1831
- Logits/chosen: -2.2946
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
|
richardkelly/Qwen-Qwen1.5-7B-1718672669
|
richardkelly
| 2024-06-18T01:04:39Z | 3 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-18T01:04:29Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-7B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
lielbin/BabyBERTa-french1.25M-Masking-finetuned-qamr
|
lielbin
| 2024-06-18T01:03:29Z | 113 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"roberta",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2024-06-18T00:56:31Z |
---
tags:
- generated_from_trainer
model-index:
- name: BabyBERTa-french1.25M-Masking-finetuned-qamr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BabyBERTa-french1.25M-Masking-finetuned-qamr
This model was trained from scratch on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
tomg-group-umd/GenQA-math-llama-3
|
tomg-group-umd
| 2024-06-18T00:56:33Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T23:19:45Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
oscard14/pca_interpretations_contextualizer_falcon_7b_V3
|
oscard14
| 2024-06-18T00:52:52Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T00:52:49Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/AmberChat-GGUF
|
mradermacher
| 2024-06-18T00:48:32Z | 61 | 0 |
transformers
|
[
"transformers",
"gguf",
"nlp",
"llm",
"en",
"dataset:WizardLM/WizardLM_evol_instruct_V2_196k",
"dataset:icybee/share_gpt_90k_v1",
"base_model:LLM360/AmberChat",
"base_model:quantized:LLM360/AmberChat",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-17T22:53:51Z |
---
base_model: LLM360/AmberChat
datasets:
- WizardLM/WizardLM_evol_instruct_V2_196k
- icybee/share_gpt_90k_v1
language:
- en
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
tags:
- nlp
- llm
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co/LLM360/AmberChat
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/AmberChat-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q2_K.gguf) | Q2_K | 2.6 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.IQ3_XS.gguf) | IQ3_XS | 2.9 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.IQ3_M.gguf) | IQ3_M | 3.2 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/AmberChat-GGUF/resolve/main/AmberChat.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
richardkelly/Qwen-Qwen1.5-0.5B-1718671500
|
richardkelly
| 2024-06-18T00:45:06Z | 3 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"base_model:adapter:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | 2024-06-18T00:45:00Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-0.5B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
alivi/fine-tuning_Zephyr-7b_SpanishQA
|
alivi
| 2024-06-18T00:44:45Z | 6 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"en",
"es",
"dataset:alivi/QASpanish",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-16T19:10:03Z |
---
language:
- en
- es
library_name: transformers
datasets:
- alivi/QASpanish
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
T3Q-LLM/T3Q-LLM-TE-NLI-STS-v1.0
|
T3Q-LLM
| 2024-06-18T00:40:00Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-14T04:39:48Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## How to Get Started with the Model
## Evaluation
hf-causal-experimental (pretrained=T3Q-LLM/T3Q-LLM-TE-NLI-STS-v1.0,use_accelerate=true,trust_remote_code=true), limit: None, provide_description: False, num_fewshot: 0, batch_size: 8
| Task |Version| Metric |Value | |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq | 0|acc |0.9509|± |0.0058|
| | |macro_f1|0.9508|± |0.0058|
|kobest_copa | 0|acc |0.7860|± |0.0130|
| | |macro_f1|0.7858|± |0.0130|
|kobest_hellaswag| 0|acc |0.5200|± |0.0224|
| | |acc_norm|0.5360|± |0.0223|
| | |macro_f1|0.5172|± |0.0223|
|kobest_sentineg | 0|acc |0.8791|± |0.0164|
| | |macro_f1|0.8787|± |0.0164|
|
dd3434/distilbert-base-uncased-finetuned-emotion
|
dd3434
| 2024-06-18T00:34:57Z | 121 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-17T23:39:23Z |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.9225
- name: F1
type: f1
value: 0.9225998021167342
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2149
- Accuracy: 0.9225
- F1: 0.9226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8325 | 1.0 | 250 | 0.3096 | 0.914 | 0.9136 |
| 0.2534 | 2.0 | 500 | 0.2149 | 0.9225 | 0.9226 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|
Minbyul/biomistral-7b-wo-kqa_golden-iter-dpo-step1_gamma0
|
Minbyul
| 2024-06-18T00:27:58Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"conversational",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:Minbyul/biomistral-7b-wo-kqa_golden-iter-sft-step1_gamma0",
"base_model:finetune:Minbyul/biomistral-7b-wo-kqa_golden-iter-sft-step1_gamma0",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T00:11:07Z |
---
license: apache-2.0
base_model: Minbyul/biomistral-7b-wo-kqa_golden-iter-sft-step1_gamma0
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: biomistral-7b-wo-kqa_golden-iter-dpo-step1_gamma0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# biomistral-7b-wo-kqa_golden-iter-dpo-step1_gamma0
This model is a fine-tuned version of [Minbyul/biomistral-7b-wo-kqa_golden-iter-sft-step1_gamma0](https://huggingface.co/Minbyul/biomistral-7b-wo-kqa_golden-iter-sft-step1_gamma0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6932
- Rewards/chosen: -0.0011
- Rewards/rejected: 0.0003
- Rewards/accuracies: 0.3333
- Rewards/margins: -0.0014
- Logps/rejected: -193.9042
- Logps/chosen: -136.6186
- Logits/rejected: -2.7172
- Logits/chosen: -3.2298
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
|
kevin36524/ymail_search_qwen2-0.5B-16bit
|
kevin36524
| 2024-06-18T00:26:37Z | 152 | 0 |
transformers
|
[
"transformers",
"pytorch",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-18T00:25:56Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- sft
base_model: unsloth/Qwen2-0.5b-bnb-4bit
---
# Uploaded model
- **Developed by:** kevin36524
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2-0.5b-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
oolson/stest
|
oolson
| 2024-06-18T00:22:57Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-06-18T00:22:57Z |
---
license: apache-2.0
---
|
kevin36524/ymail_search_qwen2_0.5B_lora
|
kevin36524
| 2024-06-18T00:20:17Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"qwen2",
"trl",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-06-18T00:20:09Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
base_model: unsloth/Qwen2-0.5b-bnb-4bit
---
# Uploaded model
- **Developed by:** kevin36524
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen2-0.5b-bnb-4bit
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
gaodrew/cicero
|
gaodrew
| 2024-06-18T00:12:43Z | 182 | 1 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"la",
"dataset:Fece228/latin-literature-dataset-170M",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T09:49:06Z |
---
library_name: transformers
license: apache-2.0
datasets:
- Fece228/latin-literature-dataset-170M
language:
- la
---
Pretrained from scratch using GPT-2 architecture and a dataset of Latin texts ([Corpus Corporum](https://huggingface.co/datasets/Fece228/latin-literature-dataset-170M))
64 token context, loss 4.5, trained on 1 epoch of 492 million tokens
GPT2 style tokenizer trained with min_frequency of 2000
Tends to get repetitive and is not very coherent, due to size and limited data.
|
datek/Qwen-Qwen1.5-7B-1718669361
|
datek
| 2024-06-18T00:09:24Z | 2 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-7B",
"base_model:adapter:Qwen/Qwen1.5-7B",
"region:us"
] | null | 2024-06-18T00:09:22Z |
---
library_name: peft
base_model: Qwen/Qwen1.5-7B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1
|
someoneskilled/exbot_v2
|
someoneskilled
| 2024-06-18T00:09:07Z | 149 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-16T21:44:58Z |
---
license: apache-2.0
---
|
powermove72/Vortex-1
|
powermove72
| 2024-06-18T00:04:40Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"GritLM/GritLM-7B",
"GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"conversational",
"custom_code",
"base_model:GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"base_model:merge:GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"base_model:GritLM/GritLM-7B",
"base_model:merge:GritLM/GritLM-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T23:30:30Z |
---
base_model:
- GritLM/GritLM-7B
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
- GritLM/GritLM-7B
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
- GritLM/GritLM-7B
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
- GritLM/GritLM-7B
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
tags:
- merge
- mergekit
- lazymergekit
- GritLM/GritLM-7B
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
---
# Vortex-1
Vortex-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)
* [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet)
* [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)
* [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet)
* [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)
* [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet)
* [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)
* [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: GritLM/GritLM-7B
layer_range: [0, 4]
- sources:
- model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
layer_range: [4, 8]
- sources:
- model: GritLM/GritLM-7B
layer_range: [8, 12]
- sources:
- model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
layer_range: [12, 16]
- sources:
- model: GritLM/GritLM-7B
layer_range: [16, 20]
- sources:
- model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
layer_range: [20, 24]
- sources:
- model: GritLM/GritLM-7B
layer_range: [24, 28]
- sources:
- model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
layer_range: [28, 32]
merge_method: passthrough
tokenizer_source: union
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "powermove72/Vortex-1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
Xu-Ouyang/pythia-70m-deduped-int4-GPTQ-wikitext2
|
Xu-Ouyang
| 2024-06-18T00:02:50Z | 79 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_neox",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"gptq",
"region:us"
] |
text-generation
| 2024-06-17T21:25:34Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
javierorjuela/results
|
javierorjuela
| 2024-06-18T00:01:37Z | 106 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-multilingual-cased",
"base_model:finetune:distilbert/distilbert-base-multilingual-cased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-06-18T00:01:09Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
annazdr/nace-pl-v2
|
annazdr
| 2024-06-17T23:41:12Z | 6 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"safetensors",
"bert",
"sentence-similarity",
"feature-extraction",
"generated_from_trainer",
"dataset_size:12822",
"loss:BatchAllTripletLoss",
"arxiv:1908.10084",
"arxiv:1703.07737",
"base_model:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"base_model:finetune:sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2024-06-17T23:40:53Z |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:12822
- loss:BatchAllTripletLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
widget:
- source_sentence: parcel-packing and gift-wrapping
sentences:
- retail sale of cleaning products, e
- cafeterias
- ' '
- source_sentence: Sprzedaż detaliczna mięsa i wyrobów z mięsa
sentences:
- ' '
- ' revenues from sale of advertising space'
- g
- source_sentence: g
sentences:
- installation of the system and provision of training and support to users of the
system- activities of auditing and certification of computing and data processing
infrastructures and services
- ' revenues from sale of advertising space'
- 47.75 Retail sale of cosmetic and toilet articles
- source_sentence: lighterage, salvage activities
sentences:
- hairstyling
- ' this class also includes: cladding of metal pipes with plastics'
- usługi pośrednictwa w zakresie transportu pasażerskiego
- source_sentence: manufacture of glass mirrors
sentences:
- manufacture of electroplating machinery
- ' protective face shields/visors, of plastics, e'
- cow peas
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("annazdr/nace-pl-v2")
# Run inference
sentences = [
'manufacture of glass mirrors',
' protective face shields/visors, of plastics, e',
'manufacture of electroplating machinery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 12,822 training samples
* Columns: <code>sentence_0</code> and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | label |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| type | string | int |
| details | <ul><li>min: 2 tokens</li><li>mean: 15.14 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>0: ~0.20%</li><li>1: ~0.10%</li><li>2: ~0.20%</li><li>4: ~0.30%</li><li>5: ~0.10%</li><li>6: ~0.10%</li><li>7: ~0.40%</li><li>9: ~0.10%</li><li>10: ~0.60%</li><li>11: ~0.20%</li><li>12: ~0.30%</li><li>13: ~0.30%</li><li>14: ~0.10%</li><li>15: ~0.10%</li><li>16: ~0.40%</li><li>17: ~0.10%</li><li>18: ~0.40%</li><li>20: ~0.40%</li><li>22: ~0.30%</li><li>23: ~0.30%</li><li>24: ~0.30%</li><li>25: ~0.40%</li><li>27: ~0.20%</li><li>28: ~0.10%</li><li>30: ~0.10%</li><li>32: ~0.10%</li><li>33: ~0.20%</li><li>34: ~0.10%</li><li>35: ~0.30%</li><li>37: ~0.30%</li><li>38: ~0.30%</li><li>39: ~0.30%</li><li>41: ~0.20%</li><li>42: ~0.10%</li><li>43: ~0.20%</li><li>44: ~0.50%</li><li>46: ~0.10%</li><li>48: ~0.20%</li><li>49: ~0.30%</li><li>50: ~0.30%</li><li>51: ~0.20%</li><li>52: ~0.40%</li><li>53: ~0.30%</li><li>54: ~0.20%</li><li>55: ~0.20%</li><li>56: ~0.20%</li><li>58: ~0.20%</li><li>59: ~0.10%</li><li>60: ~0.30%</li><li>61: ~0.20%</li><li>63: ~0.40%</li><li>64: ~0.30%</li><li>65: ~0.10%</li><li>66: ~0.70%</li><li>68: ~0.10%</li><li>69: ~0.20%</li><li>70: ~0.50%</li><li>71: ~0.30%</li><li>72: ~0.10%</li><li>73: ~0.40%</li><li>74: ~0.20%</li><li>75: ~0.30%</li><li>76: ~0.20%</li><li>78: ~0.10%</li><li>79: ~0.10%</li><li>80: ~0.10%</li><li>81: ~0.30%</li><li>82: ~0.30%</li><li>83: ~0.30%</li><li>84: ~0.10%</li><li>85: ~0.20%</li><li>86: ~0.20%</li><li>89: ~0.10%</li><li>90: ~0.10%</li><li>91: ~0.30%</li><li>92: ~0.20%</li><li>93: ~0.10%</li><li>94: ~0.30%</li><li>95: ~0.20%</li><li>96: ~0.20%</li><li>97: ~0.40%</li><li>98: ~0.70%</li><li>99: ~0.20%</li><li>100: ~0.50%</li><li>101: ~0.20%</li><li>102: ~0.10%</li><li>103: ~0.10%</li><li>104: ~0.20%</li><li>106: ~0.10%</li><li>108: ~0.20%</li><li>110: ~0.10%</li><li>111: ~0.10%</li><li>112: ~0.20%</li><li>115: ~0.10%</li><li>116: ~0.10%</li><li>119: ~0.30%</li><li>120: ~0.10%</li><li>121: ~0.20%</li><li>123: ~0.10%</li><li>125: ~0.20%</li><li>126: ~0.10%</li><li>127: ~0.20%</li><li>128: ~0.40%</li><li>130: ~0.20%</li><li>134: ~0.10%</li><li>135: ~0.10%</li><li>136: ~0.10%</li><li>138: ~0.10%</li><li>139: ~0.10%</li><li>140: ~0.20%</li><li>141: ~0.10%</li><li>142: ~0.10%</li><li>143: ~0.40%</li><li>144: ~0.10%</li><li>148: ~0.10%</li><li>149: ~0.10%</li><li>150: ~0.30%</li><li>151: ~0.10%</li><li>152: ~0.30%</li><li>153: ~0.40%</li><li>154: ~0.50%</li><li>156: ~0.10%</li><li>157: ~0.30%</li><li>158: ~0.20%</li><li>159: ~0.30%</li><li>160: ~0.10%</li><li>161: ~0.10%</li><li>162: ~0.10%</li><li>163: ~0.10%</li><li>165: ~0.10%</li><li>166: ~0.20%</li><li>167: ~0.20%</li><li>168: ~0.20%</li><li>170: ~0.10%</li><li>171: ~0.10%</li><li>172: ~0.10%</li><li>173: ~0.10%</li><li>174: ~0.20%</li><li>176: ~0.20%</li><li>178: ~0.10%</li><li>179: ~0.10%</li><li>181: ~0.10%</li><li>182: ~0.30%</li><li>183: ~0.30%</li><li>184: ~0.20%</li><li>185: ~0.30%</li><li>186: ~0.40%</li><li>187: ~0.20%</li><li>188: ~0.40%</li><li>189: ~0.20%</li><li>190: ~0.50%</li><li>191: ~0.30%</li><li>192: ~0.40%</li><li>193: ~0.10%</li><li>196: ~0.20%</li><li>197: ~0.20%</li><li>198: ~0.30%</li><li>199: ~0.60%</li><li>200: ~0.50%</li><li>201: ~0.10%</li><li>202: ~0.10%</li><li>203: ~0.30%</li><li>204: ~0.10%</li><li>205: ~0.30%</li><li>206: ~0.40%</li><li>208: ~0.20%</li><li>210: ~0.20%</li><li>211: ~0.40%</li><li>212: ~0.20%</li><li>214: ~0.30%</li><li>215: ~0.10%</li><li>217: ~0.30%</li><li>218: ~0.20%</li><li>220: ~0.30%</li><li>221: ~0.10%</li><li>222: ~0.20%</li><li>223: ~0.10%</li><li>225: ~0.10%</li><li>226: ~0.10%</li><li>227: ~0.20%</li><li>228: ~0.10%</li><li>230: ~0.10%</li><li>231: ~0.30%</li><li>233: ~0.10%</li><li>234: ~0.10%</li><li>235: ~0.20%</li><li>236: ~0.20%</li><li>237: ~0.20%</li><li>238: ~0.30%</li><li>239: ~0.10%</li><li>240: ~0.10%</li><li>241: ~0.20%</li><li>242: ~0.10%</li><li>243: ~0.40%</li><li>244: ~0.40%</li><li>245: ~0.20%</li><li>246: ~0.20%</li><li>247: ~0.30%</li><li>248: ~0.20%</li><li>249: ~0.20%</li><li>250: ~0.10%</li><li>253: ~0.30%</li><li>254: ~0.50%</li><li>255: ~0.30%</li><li>256: ~0.20%</li><li>257: ~0.20%</li><li>258: ~0.20%</li><li>259: ~0.10%</li><li>260: ~0.60%</li><li>261: ~0.10%</li><li>262: ~0.10%</li><li>264: ~0.30%</li><li>266: ~0.10%</li><li>267: ~0.10%</li><li>269: ~0.20%</li><li>271: ~0.10%</li><li>272: ~0.10%</li><li>273: ~0.10%</li><li>274: ~0.40%</li><li>275: ~0.10%</li><li>276: ~0.30%</li><li>277: ~0.20%</li><li>278: ~0.10%</li><li>279: ~0.20%</li><li>281: ~0.10%</li><li>283: ~0.40%</li><li>284: ~0.10%</li><li>285: ~0.20%</li><li>286: ~0.10%</li><li>287: ~0.20%</li><li>289: ~0.20%</li><li>290: ~0.20%</li><li>291: ~0.20%</li><li>292: ~0.30%</li><li>293: ~0.20%</li><li>294: ~0.20%</li><li>295: ~0.40%</li><li>296: ~0.20%</li><li>297: ~0.20%</li><li>298: ~0.10%</li><li>302: ~0.10%</li><li>303: ~0.10%</li><li>306: ~0.60%</li><li>307: ~0.50%</li><li>310: ~0.40%</li><li>311: ~0.40%</li><li>313: ~0.10%</li><li>314: ~0.40%</li><li>316: ~0.10%</li><li>319: ~0.20%</li><li>320: ~0.10%</li><li>322: ~0.50%</li><li>324: ~0.20%</li><li>325: ~0.30%</li><li>326: ~0.30%</li><li>327: ~0.10%</li><li>328: ~0.10%</li><li>329: ~0.10%</li><li>330: ~0.10%</li><li>331: ~0.10%</li><li>332: ~0.20%</li><li>334: ~0.10%</li><li>336: ~0.30%</li><li>337: ~0.50%</li><li>338: ~0.10%</li><li>341: ~0.10%</li><li>343: ~0.10%</li><li>344: ~0.20%</li><li>347: ~0.20%</li><li>348: ~0.10%</li><li>349: ~0.10%</li><li>350: ~0.50%</li><li>351: ~0.70%</li><li>352: ~0.20%</li><li>353: ~0.10%</li><li>354: ~0.20%</li><li>355: ~0.10%</li><li>356: ~0.10%</li><li>357: ~0.20%</li><li>358: ~0.30%</li><li>359: ~0.10%</li><li>360: ~0.20%</li><li>361: ~0.30%</li><li>362: ~0.10%</li><li>363: ~0.10%</li><li>364: ~0.10%</li><li>365: ~0.30%</li><li>368: ~0.30%</li><li>369: ~0.20%</li><li>372: ~0.30%</li><li>373: ~0.10%</li><li>374: ~0.30%</li><li>375: ~0.70%</li><li>376: ~0.10%</li><li>377: ~0.20%</li><li>378: ~0.20%</li><li>380: ~0.10%</li><li>381: ~0.10%</li><li>382: ~0.20%</li><li>383: ~0.10%</li><li>385: ~0.20%</li><li>393: ~0.10%</li><li>394: ~0.10%</li><li>395: ~0.20%</li><li>396: ~0.30%</li><li>398: ~0.10%</li><li>399: ~0.20%</li><li>401: ~0.20%</li><li>402: ~0.20%</li><li>404: ~0.40%</li><li>405: ~0.10%</li><li>407: ~0.20%</li><li>409: ~0.20%</li><li>410: ~0.10%</li><li>411: ~0.10%</li><li>412: ~0.10%</li><li>413: ~0.20%</li><li>414: ~0.20%</li><li>415: ~0.10%</li><li>416: ~0.10%</li><li>417: ~0.10%</li><li>418: ~0.10%</li><li>419: ~0.20%</li><li>420: ~0.10%</li><li>421: ~0.20%</li><li>423: ~0.30%</li><li>424: ~0.10%</li><li>425: ~0.10%</li><li>427: ~0.20%</li><li>428: ~0.10%</li><li>429: ~0.10%</li><li>430: ~0.10%</li><li>432: ~0.10%</li><li>434: ~0.10%</li><li>435: ~0.40%</li><li>436: ~0.20%</li><li>437: ~0.30%</li><li>438: ~0.20%</li><li>440: ~0.20%</li><li>441: ~0.30%</li><li>442: ~0.20%</li><li>443: ~0.10%</li><li>444: ~0.30%</li><li>445: ~0.20%</li><li>446: ~0.20%</li><li>448: ~0.20%</li><li>449: ~0.30%</li><li>451: ~0.20%</li><li>452: ~0.10%</li><li>454: ~0.20%</li><li>455: ~0.20%</li><li>456: ~0.10%</li><li>458: ~0.30%</li><li>459: ~0.10%</li><li>460: ~0.10%</li><li>462: ~0.10%</li><li>463: ~0.40%</li><li>464: ~0.10%</li><li>465: ~0.20%</li><li>466: ~0.10%</li><li>467: ~0.40%</li><li>468: ~0.10%</li><li>469: ~0.30%</li><li>471: ~0.10%</li><li>475: ~0.30%</li><li>476: ~0.50%</li><li>477: ~0.10%</li><li>479: ~0.40%</li><li>480: ~0.30%</li><li>482: ~0.10%</li><li>483: ~0.30%</li><li>484: ~0.10%</li><li>485: ~0.20%</li><li>486: ~0.10%</li><li>487: ~0.10%</li><li>490: ~0.30%</li><li>491: ~0.40%</li><li>492: ~0.40%</li><li>493: ~0.10%</li><li>494: ~0.10%</li><li>495: ~0.10%</li><li>498: ~0.20%</li><li>499: ~0.40%</li><li>500: ~0.30%</li><li>501: ~0.30%</li><li>502: ~0.30%</li><li>504: ~0.20%</li><li>505: ~0.20%</li><li>506: ~0.10%</li><li>507: ~0.20%</li><li>508: ~0.10%</li><li>511: ~0.10%</li><li>512: ~0.60%</li><li>513: ~0.10%</li><li>515: ~0.10%</li><li>516: ~0.30%</li><li>517: ~0.40%</li><li>519: ~0.30%</li><li>520: ~0.30%</li><li>521: ~0.10%</li><li>522: ~0.20%</li><li>523: ~0.10%</li><li>524: ~0.50%</li><li>525: ~0.60%</li><li>527: ~0.20%</li><li>528: ~0.10%</li><li>530: ~0.10%</li><li>533: ~0.40%</li><li>534: ~0.50%</li><li>535: ~0.40%</li><li>536: ~0.10%</li><li>537: ~0.20%</li><li>538: ~0.40%</li><li>539: ~0.10%</li><li>540: ~0.10%</li><li>542: ~0.30%</li><li>543: ~0.10%</li><li>544: ~0.10%</li><li>545: ~0.20%</li><li>546: ~0.20%</li><li>548: ~0.20%</li><li>549: ~0.20%</li><li>550: ~0.30%</li><li>551: ~0.30%</li><li>552: ~0.10%</li><li>554: ~0.10%</li><li>555: ~0.20%</li><li>557: ~0.20%</li><li>560: ~0.10%</li><li>561: ~0.20%</li><li>562: ~0.10%</li><li>564: ~0.40%</li><li>565: ~0.10%</li><li>566: ~0.10%</li><li>567: ~0.20%</li><li>570: ~0.10%</li><li>572: ~0.30%</li><li>573: ~0.10%</li><li>574: ~0.10%</li><li>575: ~0.10%</li><li>576: ~0.10%</li><li>577: ~0.20%</li><li>578: ~0.50%</li><li>579: ~0.40%</li><li>581: ~0.20%</li><li>585: ~0.40%</li><li>586: ~0.10%</li><li>587: ~0.20%</li><li>588: ~0.20%</li><li>590: ~0.20%</li><li>592: ~0.10%</li><li>595: ~0.10%</li><li>597: ~0.20%</li><li>600: ~0.10%</li><li>601: ~0.10%</li><li>603: ~0.10%</li><li>604: ~0.10%</li><li>608: ~0.10%</li><li>611: ~0.10%</li><li>612: ~0.20%</li><li>613: ~0.10%</li><li>619: ~0.20%</li><li>620: ~0.20%</li><li>622: ~0.10%</li><li>625: ~0.20%</li><li>629: ~0.10%</li><li>631: ~0.20%</li><li>632: ~0.10%</li><li>633: ~0.20%</li><li>634: ~0.10%</li><li>635: ~0.40%</li><li>640: ~0.10%</li><li>643: ~0.10%</li><li>645: ~0.10%</li><li>648: ~0.10%</li></ul> |
* Samples:
| sentence_0 | label |
|:----------------------------------------------------------------------------------|:-----------------|
| <code>swimming clubs</code> | <code>475</code> |
| <code> </code> | <code>581</code> |
| <code>this class includes: mining of ores valued chiefly for iron content</code> | <code>351</code> |
* Loss: [<code>BatchAllTripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#batchalltripletloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### BatchAllTripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->
|
MrezaPRZ/codegemma_data_augmentation_bird_combined_with_synethetic_bird_dev
|
MrezaPRZ
| 2024-06-17T23:40:12Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T22:02:02Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
powermove72/Shark-1
|
powermove72
| 2024-06-17T23:38:46Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gguf",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"GritLM/GritLM-7B",
"argilla/notus-7b-v1",
"GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"conversational",
"custom_code",
"base_model:GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"base_model:merge:GreenNode/GreenNode-mini-7B-multilingual-v1olet",
"base_model:GritLM/GritLM-7B",
"base_model:merge:GritLM/GritLM-7B",
"base_model:argilla/notus-7b-v1",
"base_model:merge:argilla/notus-7b-v1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T23:06:17Z |
---
base_model:
- GritLM/GritLM-7B
- argilla/notus-7b-v1
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
tags:
- merge
- mergekit
- lazymergekit
- GritLM/GritLM-7B
- argilla/notus-7b-v1
- GreenNode/GreenNode-mini-7B-multilingual-v1olet
---
# Shark-1
Shark-1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [GritLM/GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)
* [argilla/notus-7b-v1](https://huggingface.co/argilla/notus-7b-v1)
* [GreenNode/GreenNode-mini-7B-multilingual-v1olet](https://huggingface.co/GreenNode/GreenNode-mini-7B-multilingual-v1olet)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: GritLM/GritLM-7B
layer_range: [0, 8]
- sources:
- model: argilla/notus-7b-v1
layer_range: [8, 20]
- sources:
- model: GreenNode/GreenNode-mini-7B-multilingual-v1olet
layer_range: [20, 32]
merge_method: passthrough
tokenizer_source: union
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "powermove72/Shark-1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|
MarOsz/whisper-small-polish-peft-simple
|
MarOsz
| 2024-06-17T23:20:07Z | 8 | 0 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:openai/whisper-small",
"base_model:adapter:openai/whisper-small",
"region:us"
] | null | 2024-06-16T17:22:44Z |
---
library_name: peft
base_model: openai/whisper-small
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.2.dev0
|
mnemic/ElementMix-PDXL-LoRA
|
mnemic
| 2024-06-17T23:17:17Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:28:59Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: ElementsMix, wind, water, earth, fire
---
# ElementMix - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/493769)
## Trigger Words
```ElementsMix, wind, water, earth, fire```

A Mixture of Elements model. The sum turned out to be better than the parts!
|
mnemic/CakeStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T23:16:57Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:22:19Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: CakeStyle
---
# CakeStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/398363)
## Trigger Words
```CakeStyle```

Turn anything into a cake!
|
tomg-group-umd/GenQA-llama-3
|
tomg-group-umd
| 2024-06-17T23:15:41Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T23:08:04Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mnemic/WrongHoleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:15:27Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:19:49Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: WrongHole
---
# WrongHoleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349150)
## Trigger Words
```WrongHole```

What if you had the power to add a hole to anything?
|
mnemic/WhiteboxStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:15:21Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:19:19Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: WhiteboxStyle
---
# WhiteboxStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347185)
## Trigger Words
```WhiteboxStyle```

A level design support model.
|
mnemic/SemlaStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:15:05Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:16:23Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: SemlaStyle
---
# SemlaStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/337973)
## Trigger Words
```SemlaStyle```

Everything is better in semla form.
|
mnemic/ScienceDNAStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:14:58Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:15:58Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ScienceDNAStyle
---
# ScienceDNAStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/153507)
## Trigger Words
```ScienceDNAStyle```

How are things made? With science!
|
mnemic/HornyfierXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:14:49Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:11:02Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: Hornyfier
---
# HornyfierXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349174)
## Trigger Words
```Hornyfier```

Adds horns to anything. I mean anything, I dare you.
|
mnemic/DavyJonesLockerStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:14:10Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:02:24Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: DavyJonesLockerStyle
---
# DavyJonesLockerStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/220258)
## Trigger Words
```DavyJonesLockerStyle```

Adds a bit of underwater musky smell to all your images.
|
mnemic/dAIversityLoRASDXL-PhotoSemiReal-SDXL-LoRA
|
mnemic
| 2024-06-17T23:13:52Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:01:04Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words:
---
# dAIversityLoRASDXL-PhotoSemiReal - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/477136)

An expremintal detailer LoRA. It currently adds a bit too much style.
|
mnemic/ChocolateWetStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:12:30Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:57:16Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ChocolateWetStyle
---
# ChocolateWetStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/337992)
## Trigger Words
```ChocolateWetStyle```

Put chocolate on almost anything.
|
mnemic/CheeseOnTopStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:12:21Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:56:45Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: CheeseOnTopStyle
---
# CheeseOnTopStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347714)
## Trigger Words
```CheeseOnTopStyle```

Puts color-prompted melted goop on things.
|
mnemic/CakeStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T23:12:16Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:55:00Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: CakeStyle
---
# CakeStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347704)
## Trigger Words
```CakeStyle```

Turn anything into a cake! Works great with the SDXL base model!
|
mnemic/TransformersStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:09:57Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:51:26Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: TransformersStyle
---
# TransformersStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/216460)
## Trigger Words
```TransformersStyle```

Transform into a transformer using transformers!
|
mnemic/SwedishDesserts-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:09:49Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:51:02Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: ChocolateBall, SaffronBun, ApplePie, CinnamonRoll, DaimCake, MarengueCake, RiceAlaMalta, StrawberryCake, RosehipSoup, Butterscotch, PrincessCake, Spettekaka, CheeseCake, RhubarbPie
---
# SwedishDesserts - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/182385)
## Trigger Words
```ChocolateBall, SaffronBun, ApplePie, CinnamonRoll, DaimCake, MarengueCake, RiceAlaMalta, StrawberryCake, RosehipSoup, Butterscotch, PrincessCake, Spettekaka, CheeseCake, RhubarbPie```

Enjoy some Swedish desserts.
|
mnemic/ScienceDNAStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:09:14Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:49:27Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: ScienceDNAStyle
---
# ScienceDNAStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/153507)
## Trigger Words
```ScienceDNAStyle```

How are things made? With science!
|
mnemic/PeachFuzz-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:07:46Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:48:20Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words:
---
# PeachFuzz - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/80920)

Is meant to enhance peach fuzz (vellus hair) on the body.
|
mnemic/HalloweenGlowStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:05:00Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:46:14Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: HalloweenGlowStyle
---
# HalloweenGlowStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/174055)
## Trigger Words
```HalloweenGlowStyle```

A glowing Halloween style.
|
mnemic/GalacticEmpireStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:02:59Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:44:42Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: GalacticEmpireStyle
---
# GalacticEmpireStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/)
## Trigger Words
```GalacticEmpireStyle```

Use this LoRA to find those rebel scum!
|
mnemic/FluffyStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T23:02:30Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:44:10Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: FluffyStyle
---
# FluffyStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/135871)
## Trigger Words
```FluffyStyle```

Fluffy, furry, fuzzy soft and cuddly things!
|
5thCinematic/personalized-subscription-cuts
|
5thCinematic
| 2024-06-17T22:58:57Z | 0 | 0 | null |
[
"feature-extraction",
"en",
"dataset:ruslanmv/ai-medical-chatbot",
"license:bigscience-openrail-m",
"region:us"
] |
feature-extraction
| 2024-06-17T21:52:17Z |
---
license: bigscience-openrail-m
datasets:
- ruslanmv/ai-medical-chatbot
language:
- en
metrics:
- accuracy
pipeline_tag: feature-extraction
---
|
roeybc/bert-base-uncased-finetuned-swag
|
roeybc
| 2024-06-17T22:57:22Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"multiple-choice",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
multiple-choice
| 2024-06-17T22:20:11Z |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-swag
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-swag
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0054
- Accuracy: 0.7890
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7657 | 1.0 | 4597 | 0.6017 | 0.7661 |
| 0.3834 | 2.0 | 9194 | 0.6371 | 0.7886 |
| 0.1364 | 3.0 | 13791 | 1.0054 | 0.7890 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|
CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF
|
CISCai
| 2024-06-17T22:57:09Z | 659 | 1 | null |
[
"gguf",
"code",
"dataset:m-a-p/CodeFeedback-Filtered-Instruction",
"arxiv:2401.06066",
"base_model:deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct",
"base_model:quantized:deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct",
"license:other",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2024-06-17T21:05:11Z |
---
license: other
license_name: deepseek-license
license_link: https://github.com/deepseek-ai/DeepSeek-Coder-V2/raw/main/LICENSE-MODEL
tags:
- code
language:
- code
base_model: deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
model_creator: DeepSeek AI
model_name: DeepSeek-Coder-V2-Lite-Instruct
model_type: deepseek2
datasets:
- m-a-p/CodeFeedback-Filtered-Instruction
quantized_by: CISC
---
# DeepSeek-Coder-V2-Lite-Instruct - SOTA GGUF
- Model creator: [DeepSeek AI](https://huggingface.co/deepseek-ai)
- Original model: [DeepSeek-Coder-V2-Lite-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct)
<!-- description start -->
## Description
This repo contains State Of The Art quantized GGUF format model files for [DeepSeek-Coder-V2-Lite-Instruct](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct).
Quantization was done with an importance matrix that was trained for ~250K tokens (64 batches of 4096 tokens) of answers from the [CodeFeedback-Filtered-Instruction](https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction) dataset.
Fill-in-Middle token metadata has been added, see [example](#simple-llama-cpp-python-example-fill-in-middle-code).
NOTE: Due to some of the tensors in this model being oddly shaped a consequential portion of the quantization fell back to IQ4_NL instead of the specified method, causing somewhat larger (and "smarter"; even IQ1_M is quite usable) model files than usual!
<!-- description end -->
<!-- prompt-template start -->
## Prompt template: DeepSeek v2
```
User: {prompt}
Assistant:
```
<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility
These quantised GGUFv3 files are compatible with llama.cpp from May 29th 2024 onwards, as of commit [fb76ec2](https://github.com/ggerganov/llama.cpp/commit/fb76ec31a9914b7761c1727303ab30380fd4f05c)
They are also compatible with many third party UIs and libraries provided they are built using a recent llama.cpp.
## Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_IQ1_S - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.56 bits per weight (bpw)
* GGML_TYPE_IQ1_M - 1-bit quantization in super-blocks with an importance matrix applied, effectively using 1.75 bpw
* GGML_TYPE_IQ2_XXS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.06 bpw
* GGML_TYPE_IQ2_XS - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.31 bpw
* GGML_TYPE_IQ2_S - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.5 bpw
* GGML_TYPE_IQ2_M - 2-bit quantization in super-blocks with an importance matrix applied, effectively using 2.7 bpw
* GGML_TYPE_IQ3_XXS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.06 bpw
* GGML_TYPE_IQ3_XS - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.3 bpw
* GGML_TYPE_IQ3_S - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.44 bpw
* GGML_TYPE_IQ3_M - 3-bit quantization in super-blocks with an importance matrix applied, effectively using 3.66 bpw
* GGML_TYPE_IQ4_XS - 4-bit quantization in super-blocks with an importance matrix applied, effectively using 4.25 bpw
* GGML_TYPE_IQ4_NL - 4-bit non-linearly mapped quantization with an importance matrix applied, effectively using 4.5 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ1_S.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ1_S.gguf) | IQ1_S | 1 | 4.5 GB| 5.5 GB | smallest, significant quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ1_M.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ1_M.gguf) | IQ1_M | 1 | 4.7 GB| 5.7 GB | very small, significant quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_XXS.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_XXS.gguf) | IQ2_XXS | 2 | 5.1 GB| 6.1 GB | very small, high quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_XS.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_XS.gguf) | IQ2_XS | 2 | 5.4 GB| 6.4 GB | very small, high quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_S.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_S.gguf) | IQ2_S | 2 | 5.4 GB| 6.4 GB | small, substantial quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ2_M.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ2_M.gguf) | IQ2_M | 2 | 5.7 GB| 6.7 GB | small, greater quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_XXS.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_XXS.gguf) | IQ3_XXS | 3 | 6.3 GB| 7.3 GB | very small, high quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_XS.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_XS.gguf) | IQ3_XS | 3 | 6.5 GB| 7.5 GB | small, substantial quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_S.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_S.gguf) | IQ3_S | 3 | 6.8 GB| 7.8 GB | small, greater quality loss |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ3_M.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ3_M.gguf) | IQ3_M | 3 | 6.9 GB| 7.9 GB | medium, balanced quality - recommended |
| [DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf) | IQ4_NL | 4 | 8.1 GB| 9.1 GB | small, substantial quality loss |
Generated importance matrix file: [DeepSeek-Coder-V2-Lite-Instruct.imatrix.dat](https://huggingface.co/CISCai/DeepSeek-Coder-V2-Lite-Instruct-SOTA-GGUF/blob/main/DeepSeek-Coder-V2-Lite-Instruct.imatrix.dat)
**Note**: the above RAM figures assume no GPU offloading with 4K context. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [fb76ec3](https://github.com/ggerganov/llama.cpp/commit/fb76ec31a9914b7761c1727303ab30380fd4f05c) or later.
```shell
./llama-cli -ngl 28 -m DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf --color -c 131072 --temp 0 --repeat-penalty 1.1 -p "User: {prompt}\n\nAssistant:"
```
Change `-ngl 28` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 131072` to the desired sequence length.
If you are low on V/RAM try quantizing the K-cache with `-ctk q8_0` or even `-ctk q4_0` for big memory savings (depending on context size).
There is a similar option for V-cache (`-ctv`), however that requires Flash Attention [which is not working yet with this model](https://github.com/ggerganov/llama.cpp/issues/7343).
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) module.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Prebuilt wheel with basic CPU support
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cpu
# Prebuilt wheel with NVidia CUDA acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu121 (or cu122 etc.)
# Prebuilt wheel with Metal GPU acceleration
pip install llama-cpp-python --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/metal
# Build base version with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUDA=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# Or with Vulkan acceleration
CMAKE_ARGS="-DLLAMA_VULKAN=on" pip install llama-cpp-python
# Or with Kompute acceleration
CMAKE_ARGS="-DLLAMA_KOMPUTE=on" pip install llama-cpp-python
# Or with SYCL acceleration
CMAKE_ARGS="-DLLAMA_SYCL=on -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_CUDA=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Chat Completion API
llm = Llama(model_path="./DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf", n_gpu_layers=28, n_ctx=131072)
print(llm.create_chat_completion(
repeat_penalty = 1.1,
messages = [
{
"role": "user",
"content": "Pick a LeetCode challenge and solve it in Python."
}
]
))
```
#### Simple llama-cpp-python example fill-in-middle code
```python
from llama_cpp import Llama
# Completion API
prompt = "def add("
suffix = "\n return sum\n\n"
llm = Llama(model_path="./DeepSeek-Coder-V2-Lite-Instruct.IQ4_NL.gguf", n_gpu_layers=28, n_ctx=131072)
output = llm.create_completion(
temperature = 0.0,
repeat_penalty = 1.0,
prompt = prompt,
suffix = suffix
)
# Models sometimes repeat suffix in response, attempt to filter that
response = output["choices"][0]["text"]
response_stripped = response.rstrip()
unwanted_response_suffix = suffix.rstrip()
unwanted_response_length = len(unwanted_response_suffix)
filtered = False
if unwanted_response_suffix and response_stripped[-unwanted_response_length:] == unwanted_response_suffix:
response = response_stripped[:-unwanted_response_length]
filtered = True
print(f"Fill-in-Middle completion{' (filtered)' if filtered else ''}:\n\n{prompt}\033[32m{response}\033[{'33' if filtered else '0'}m{suffix}\033[0m")
```
<!-- README_GGUF.md-how-to-run end -->
<!-- original-model-card start -->
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->
<div align="center">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<p align="center">
<a href="#4-api-platform">API Platform</a> |
<a href="#5-how-to-run-locally">How to Use</a> |
<a href="#6-license">License</a> |
</p>
<p align="center">
<a href="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/paper.pdf"><b>Paper Link</b>👁️</a>
</p>
# DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
## 1. Introduction
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from DeepSeek-Coder-V2-Base with 6 trillion tokens sourced from a high-quality and multi-source corpus. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-Coder-V2-Base, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K.
<p align="center">
<img width="100%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/performance.png?raw=true">
</p>
In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks. The list of supported programming languages can be found in the paper.
## 2. Model Downloads
We release the DeepSeek-Coder-V2 with 16B and 236B parameters based on the [DeepSeekMoE](https://arxiv.org/pdf/2401.06066) framework, which has actived parameters of only 2.4B and 21B , including base and instruct models, to the public.
<div align="center">
| **Model** | **#Total Params** | **#Active Params** | **Context Length** | **Download** |
| :-----------------------------: | :---------------: | :----------------: | :----------------: | :----------------------------------------------------------: |
| DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Base) |
| DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) |
| DeepSeek-Coder-V2-Base | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Base) |
| DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct) |
</div>
## 3. Chat Website
You can chat with the DeepSeek-Coder-V2 on DeepSeek's official website: [coder.deepseek.com](https://coder.deepseek.com/sign_in)
## 4. API Platform
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
<p align="center">
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/figures/model_price.jpg?raw=true">
</p>
## 5. How to run locally
**Here, we provide some examples of how to use DeepSeek-Coder-V2-Lite model. If you want to utilize DeepSeek-Coder-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
### Inference with Huggingface's Transformers
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
#### Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
#### Code Insertion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
<|fim▁hole|>
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
```
#### Chat Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
An example of chat template is as belows:
```bash
<|begin▁of▁sentence|>User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
```
You can also add an optional system message:
```bash
<|begin▁of▁sentence|>{system_message}
User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
```
### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you?"}],
[{"role": "user", "content": "write a quick sort algorithm in python."}],
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
## 6. License
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-CODE). The use of DeepSeek-Coder-V2 Base/Instruct models is subject to [the Model License](https://github.com/deepseek-ai/DeepSeek-Coder-V2/blob/main/LICENSE-MODEL). DeepSeek-Coder-V2 series (including Base and Instruct) supports commercial use.
## 7. Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
|
mnemic/ChocolateWetStyle-SD1.5-LoRA
|
mnemic
| 2024-06-17T22:55:08Z | 0 | 0 | null |
[
"base_model:runwayml/stable-diffusion-v1-5",
"base_model:finetune:runwayml/stable-diffusion-v1-5",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T15:38:43Z |
---
license: gpl-3.0
base_model: runwayml/stable-diffusion-v1-5
trained_words: ChocolateWetStyle
---
# ChocolateWetStyle - SD1.5 - LoRA
[CivitAI Page](https://civitai.com/models/67132)
## Trigger Words
```ChocolateWetStyle```

Put chocolate on almost anything.
|
Soughing/Qwen_scratch_base-checkpoint-1000
|
Soughing
| 2024-06-17T22:53:08Z | 150 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T22:46:12Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
amy011872/LawToken-0.5B-a2
|
amy011872
| 2024-06-17T22:52:51Z | 10 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"trl",
"sft",
"generated_from_trainer",
"conversational",
"dataset:generator",
"base_model:Qwen/Qwen2-0.5B",
"base_model:finetune:Qwen/Qwen2-0.5B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-06-17T16:20:20Z |
---
license: apache-2.0
base_model: Qwen/Qwen2-0.5B
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
model-index:
- name: LawToken-0.5B-a2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# LawToken-0.5B-a2
This model is a fine-tuned version of [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8634
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.03
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.14 | 0.14 | 10000 | 1.1605 |
| 1.0485 | 0.28 | 20000 | 1.0663 |
| 1.0592 | 0.42 | 30000 | 1.0069 |
| 0.9293 | 0.56 | 40000 | 0.9609 |
| 0.8503 | 0.71 | 50000 | 0.9210 |
| 0.9322 | 0.85 | 60000 | 0.8858 |
| 0.8238 | 0.99 | 70000 | 0.8634 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.3.0a0+ebedce2
- Datasets 2.19.1
- Tokenizers 0.15.2
|
mnemic/WhiteboxStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:47:36Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:32:36Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: WhiteboxStyle
---
# WhiteboxStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/402937)
## Trigger Words
```WhiteboxStyle```

A level design support model.
|
mnemic/TransformersStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:47:32Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:32:05Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: TransformersStyle
---
# TransformersStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/402931)
## Trigger Words
```TransformersStyle```

Transform everything a transformer using transformers!
|
mnemic/FluffyStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:47:22Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:30:30Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: FluffyStyle
---
# FluffyStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/402870)
## Trigger Words
```FluffyStyle```

Fluffy, furry, fuzzy soft and cuddly things!
|
mnemic/DavyJonesLockerStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:59Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:27:30Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: DavyJonesLockerStyle
---
# DavyJonesLockerStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/401224)
## Trigger Words
```DavyJonesLockerStyle```

Adds a bit of underwater musky smell to all your images.
|
mnemic/ChristmasWintery-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:46Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:25:38Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: ChristmasWintery
---
# ChristmasWintery - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/400528)
## Trigger Words
```ChristmasWintery```

Snowing Christmas style.
|
mnemic/ChocolateWetStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:38Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:24:39Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: ChocolateWetStyle
---
# ChocolateWetStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/400474)
## Trigger Words
```ChocolateWetStyle```

Put chocolate on almost anything.
|
mnemic/CheeseOnTopStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:35Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:24:12Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: CheeseOnTopStyle
---
# CheeseOnTopStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/400451)
## Trigger Words
```CheeseOnTopStyle```

Puts color-prompted melted goop on things.
|
mnemic/CarnageStyle-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:28Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:23:15Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: CarnageStyle
---
# CarnageStyle - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/400382)
## Trigger Words
```CarnageStyle```

Some kind of Carnage style. It's not as strong as the SD1.5 version.
|
mnemic/BatmanCore-PDXL-LoRA
|
mnemic
| 2024-06-17T22:46:13Z | 0 | 0 | null |
[
"base_model:AstraliteHeart/pony-diffusion-v6",
"base_model:finetune:AstraliteHeart/pony-diffusion-v6",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:21:22Z |
---
license: gpl-3.0
base_model: AstraliteHeart/pony-diffusion-v6
trained_words: BatmanCore
---
# BatmanCore - PDXL - LoRA
[CivitAI Page](https://civitai.com/models/398974)
## Trigger Words
```BatmanCore```

It's Batman! It puts spikes and wings on things and black armor on people.
|
mnemic/WaffleStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:55Z | 0 | 1 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:18:49Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: WaffleStyle
---
# WaffleStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347152)
## Trigger Words
```WaffleStyle```

Adds a lot of square grids to things.
|
mnemic/TransformersStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:51Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:18:22Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: TransformersStyle
---
# TransformersStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349158)
## Trigger Words
```TransformersStyle```

Transform things into a transformer using transformers!
|
mnemic/SwedishDessertsXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:47Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:17:54Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: ApplePie, Butterscotch, CheeseCake, ChocolateBall, CinnamonRoll, DaimCake, MarengueCake, PrincessCake, RhubarbPie, RiceAlaMalta, RosehipSoup, SaffronBun, Spettekaka, StrawberryCake
---
# SwedishDessertsXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349098)
## Trigger Words
```ApplePie, Butterscotch, CheeseCake, ChocolateBall, CinnamonRoll, DaimCake, MarengueCake, PrincessCake, RhubarbPie, RiceAlaMalta, RosehipSoup, SaffronBun, Spettekaka, StrawberryCake```

Enjoy some Swedish desserts.
|
mnemic/SpyWorld50sXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:40Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:16:54Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: SpyWorld50s
---
# SpyWorld50sXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347788)
## Trigger Words
```SpyWorld50s```

Is that a camera or are you just happy to see me?
|
mnemic/P14n03l3g4nt3b0n3XL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:28Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:15:23Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: P14n03l3g4nt3b0n3
---
# P14n03l3g4nt3b0n3XL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/349112)
## Trigger Words
```P14n03l3g4nt3b0n3```

A beautiful ebony and ivory style.
|
mnemic/NESStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:19Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:14:17Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: NESStyle
---
# NESStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347769)
## Trigger Words
```NESStyle```

What if everything was as beautiful as a NES?
|
mnemic/MinionStyleXL-SDXL-LoRA
|
mnemic
| 2024-06-17T22:45:10Z | 0 | 0 | null |
[
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0",
"license:gpl-3.0",
"region:us"
] | null | 2024-06-17T16:13:14Z |
---
license: gpl-3.0
base_model: stabilityai/stable-diffusion-xl-base-1.0
trained_words: MinionStyle
---
# MinionStyleXL - SDXL - LoRA
[CivitAI Page](https://civitai.com/models/347778)
## Trigger Words
```MinionStyle```

Anything can be a minion!
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.