modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-11 12:33:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
555 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-11 12:33:10
card
stringlengths
11
1.01M
ad019el/tamasheq-99-final
ad019el
2023-08-26T13:34:11Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:ad019el/ar_data", "dataset:heisenberg1337/tamasheq_data", "base_model:ad019el/tamasheq-99-final", "base_model:finetune:ad019el/tamasheq-99-final", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T13:24:37Z
--- base_model: ad019el/tamasheq-99-final datasets: - ad019el/ar_data - heisenberg1337/tamasheq_data metrics: - cer - wer tags: - generated_from_trainer --- model-index: - name: tamasheq-99-final results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamasheq-99-final This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-arabic) on the None dataset. It achieves the following results on the evaluation set: - Cer: 16.2959 - Wer: 55.5334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 ### Training results |step |tamasheq_wer|arabic_wer|tamasheq_cer|arabic_cer| |------------|------------|----------|------------|----------| |Before train|104.985 |23.1305 |67.4458 |7.30972 | |step 300 |99.5513 |23.0544 |49.7078 |7.1043 | |step 600 |95.1147 |22.5267 |41.4515 |6.0098 | |step 900 |93.5194 |21.0404 |38.0867 |5.52939 | |step 1200 |92.5723 |20.6224 |37.0877 |5.39751 | |step 1500 |92.3009 |20.9238 |36.9915 |5.6718 | |step 1800 |92.0738 |21.2699 |36.3713 |6.08877 | |step 2100 |88.7338 |21.9693 |33.3648 |5.9156 | |step 2400 |87.1884 |21.1333 |31.8379 |5.52939 | |step 2700 |88.299 |21.0705 |31.4599 |5.5078 | |step 3000 |87.7866 |21.5021 |30.9039 |6.29239 | |step 3300 |84.2971 |21.666 |29.7455 |5.97212 | |step 3600 |83.8983 |21.5732 |28.6145 |6.04748 | |step 3900 |81.8544 |22.1087 |27.9359 |5.99096 | |step 4200 |82.9741 |23.392 |27.4288 |6.4013 | |step 4500 |83.8485 |24.2452 |27.0575 |6.79164 | |step 4800 |81.6052 |22.666 |26.6918 |6.09457 | |step 5100 |77.9661 |22.4803 |25.1084 |6.0098 | |step 5400 |77.2183 |21.83 |24.656 |5.9156 | |step 5700 |76.672 |22.1078 |24.2606 |6.0802 | |step 6000 |76.2712 |22.7589 |23.9236 |6.41485 | |step 6300 |75.7228 |23.8737 |23.7135 |6.78222 | |step 6600 |71.2363 |23.177 |22.196 |6.39601 | |step 6900 |69.8405 |22.7125 |21.574 |6.21703 | |step 7200 |72.9452 |23.6679 |21.0775 |6.6918 | |step 7500 |75.9222 |24.7097 |20.8999 |7.17784 | |step 7800 |67.4975 |23.1305 |20.6786 |6.65034 | |step 8100 |65.2542 |23.1305 |19.7361 |6.49962 | |step 8400 |61.7149 |22.3874 |18.426 |6.12283 | |step 8700 |63.8046 |23.6679 |18.2166 |6.2679 | |step 9000 |64.7059 |24.1059 |17.9952 |6.66918 | |step 9300 |67.5474 |24.7097 |17.6078 |7.16843 | |step 9600 |57.1286 |23.3163 |17.2385 |6.66918 | |step 9900 |58.2752 |22.8054 |17.1065 |6.4431 | |step 10200 |57.7767 |24.2917 |16.848 |6.68802 | |step 10500 |55.2841 |25.1277 |16.5033 |7.12133 | |step 10800 |52.5424 |23.8272 |15.9566 |6.80106 | |step 11100 |55.5334 |24.6168 |16.2959 |6.94235 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
honzatoegel/Llama-2-7b-chat-hf-gramma-check-de-en
honzatoegel
2023-08-26T13:32:53Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-17T14:07:24Z
--- library_name: peft --- ## Model 'quality' As you can see from the example bellow the model is almost correctly respecting the learned format, but the grammatical correction explanations are wrong, it lack sense of correct German gramma. ### Input '### User: Check the gramma of the following sentence and list all error and relevant corrections. Sentence:Mir es geht gut, danke#### AI:Correct version of the sentence: ### Output "Mir geht es gut, danke.": Repairs: - Instead of "es geht" it should be "geht" - the verb "gehen" is in the third person singular. - Instead of "Mir es" it should be "Mir geht" - the verb "gehen" is in the third person singular.#### End of the list of corrections. ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
zarakiquemparte/zarafusionex-1.1-l2-7b-GGML
zarakiquemparte
2023-08-26T13:31:39Z
0
0
null
[ "llama2", "license:other", "region:us" ]
null
2023-08-25T00:19:49Z
--- license: other tags: - llama2 --- Quantized GGML of [Zarafusionex 1.1 L2 7b](https://huggingface.co/zarakiquemparte/zarafusionex-1.1-l2-7b) If you need other quantized models use @TheBloke: - [GGML](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGML) - [GGUF](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GPTQ)
zarakiquemparte/zarafusionex-1.1-l2-7b
zarakiquemparte
2023-08-26T13:30:28Z
1,477
7
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-25T00:19:12Z
--- license: other tags: - llama2 --- # Model Card: Zarafusionex 1.1 L2 7b This model uses [Nous Hermes Llama2 7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) (53%) as a base with [Stable Beluga 7b](https://huggingface.co/stabilityai/StableBeluga-7B) (47%) and the result of this merge was merged with [LimaRP LLama2 7B Lora version of the day 07/23/2023](https://huggingface.co/lemonilia/limarp-llama2). This merge of models(hermes and stable beluga) was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/merge-cli.py) This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py) Quantized Model by @TheBloke: - [GGML](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGML) - [GGUF](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GPTQ) Merge illustration: ![illustration](zarafusionex-merge-illustration.png) ## Usage: Since this is a merge between Nous Hermes, Stable Beluga and LimaRP, the following instruction formats should work: Alpaca 2: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` LimaRP instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations This model is not intended for supplying factual information or advice in any form ## Training Details This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details.
Andrei-Alex/Fine-Tune-Adapters
Andrei-Alex
2023-08-26T13:20:37Z
13
0
transformers
[ "transformers", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:quantized:meta-llama/Llama-2-7b-chat-hf", "autotrain_compatible", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2023-08-22T13:26:47Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: Fine-Tune-Adapters results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Fine-Tune-Adapters This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 100 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
nabos/falcon-7b-finetune
nabos
2023-08-26T13:17:51Z
0
0
null
[ "generated_from_trainer", "base_model:ybelkada/falcon-7b-sharded-bf16", "base_model:finetune:ybelkada/falcon-7b-sharded-bf16", "region:us" ]
null
2023-08-26T12:22:29Z
--- base_model: ybelkada/falcon-7b-sharded-bf16 tags: - generated_from_trainer model-index: - name: falcon-7b-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # falcon-7b-finetune This model is a fine-tuned version of [ybelkada/falcon-7b-sharded-bf16](https://huggingface.co/ybelkada/falcon-7b-sharded-bf16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 320 ### Training results ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Onno/hotels_classifier
Onno
2023-08-26T13:13:07Z
64
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-14T15:11:47Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: Onno/hotels_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Onno/hotels_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4492 - Validation Loss: 0.5853 - Train Accuracy: 0.6548 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 5025, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.6757 | 0.6910 | 0.5119 | 0 | | 0.6569 | 0.6739 | 0.5357 | 1 | | 0.6395 | 0.6663 | 0.5357 | 2 | | 0.6161 | 0.6465 | 0.6071 | 3 | | 0.5919 | 0.6299 | 0.6548 | 4 | | 0.5801 | 0.6173 | 0.6429 | 5 | | 0.5518 | 0.6039 | 0.6310 | 6 | | 0.5414 | 0.6205 | 0.6905 | 7 | | 0.5181 | 0.6138 | 0.6548 | 8 | | 0.4902 | 0.6300 | 0.6667 | 9 | | 0.4824 | 0.6672 | 0.6667 | 10 | | 0.4493 | 0.6038 | 0.6071 | 11 | | 0.4287 | 0.6329 | 0.6667 | 12 | | 0.4668 | 0.6371 | 0.6548 | 13 | | 0.4492 | 0.5853 | 0.6548 | 14 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ad019el/tamasheq-99-new-data
ad019el
2023-08-26T12:52:36Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:ad019el/tamasheq-99-final", "base_model:finetune:ad019el/tamasheq-99-final", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T02:00:01Z
--- base_model: ad019el/tamasheq-99-final tags: - generated_from_trainer metrics: - wer model-index: - name: tamasheq-99-new-data results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tamasheq-99-new-data This model is a fine-tuned version of [ad019el/tamasheq-99-final](https://huggingface.co/ad019el/tamasheq-99-final) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4502 - Wer: 0.5910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.4543 | 9.8 | 500 | 0.8448 | 0.7354 | | 0.3588 | 19.61 | 1000 | 0.4527 | 0.6020 | | 0.2012 | 29.41 | 1500 | 0.4490 | 0.5950 | | 0.1739 | 39.22 | 2000 | 0.4547 | 0.5950 | | 0.1634 | 49.02 | 2500 | 0.4502 | 0.5910 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1258-99
dt-and-vanilla-ardt
2023-08-26T12:50:17Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T11:59:38Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1258-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1258-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
FredericProtat/ppo-PyramidsTraining
FredericProtat
2023-08-26T12:49:50Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-23T13:16:16Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: FredericProtat/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
DigitalUmuganda/quantized_finetuned_edu_en_kin
DigitalUmuganda
2023-08-26T12:29:40Z
2
0
transformers
[ "transformers", "translation", "education", "rw", "en", "license:cc", "endpoints_compatible", "region:us" ]
translation
2023-08-25T10:50:21Z
--- license: cc language: - rw - en metrics: - bleu pipeline_tag: translation tags: - translation - education ---
lighttransport/japanese-scoring-model
lighttransport
2023-08-26T12:22:00Z
0
1
null
[ "scoring", "ja", "license:odc-by", "region:us" ]
null
2023-08-09T09:46:09Z
--- language: - ja tags: - scoring license: odc-by --- ## 日本語品質スコアリングモデル 現在は KenLM モデルのみ提供されています. ## KenLM model - kenlm_model-wiki-nfkc-char.bin Wikipedia データセットに対して, NFKC 正規化を行い, 文字単位で train したもの. - kenlm_model-wiki-nfkc-wakachi.bin Wikipedia データセットに対して, NFKC 正規化を行い, Fugashi で分かち書きして train したもの. 9 GB ほどあります. ### 利用例 文字単位の場合. 必要に応じて `unicodedata.normalize` などで入力文章を NFKC 正規化ください. ```py import kenlm import os MODEL_BIN='kenlm_model-wiki-nfkc-char.bin' if __name__ == '__main__': if not os.path.exists(MODEL_BIN): raise Exception("model file not found: {}".format(MODEL_BIN)) model = kenlm.LanguageModel(MODEL_BIN) for txt in [ "脱字が存在する文章です。", "脱字が存在する文章す。", '東京はッ晴れ。', '東京は元気です。', '吾輩は猫である。 名前はまだない。', '吾輩は猫である。 名前はまだな。', '東京は晴れ', '東京は晴れ。' ]: sentence = " ".join(txt.strip()) prob = model.score(sentence, bos=True, eos=True) perplexity = model.perplexity(sentence) print(perplexity, prob, txt) ``` ``` 43.35517516360913 -21.281532287597656 脱字が存在する文章です。 97.87160125641132 -23.887880325317383 脱字が存在する文章す。 436.3376833313477 -21.118581771850586 東京はッ晴れ。 28.211570751481222 -13.053845405578613 東京は元気です。 10.25990652099858 -17.189437866210938 吾輩は猫である。 名前はまだない。 18.742658903324944 -20.365299224853516 吾輩は猫である。 名前はまだな。 1707.9430028946922 -19.394840240478516 東京は晴れ 62.91522904283418 -12.591290473937988 東京は晴れ。 ``` 分かち書きする場合. 分かち書き処理には, SudachiPy など利用でもよいでしょう. 必要に応じて `unicodedata.normalize` などで入力文章を NFKC 正規化ください. ```py import kenlm import os from fugashi import Tagger MODEL_BIN='kenlm_model-wiki-nfkc-wakachi.bin' tagger = Tagger('-Owakati') if __name__ == '__main__': if not os.path.exists(MODEL_BIN): raise Exception("model file not found: {}".format(MODEL_BIN)) model = kenlm.LanguageModel(MODEL_BIN) # 句点ごとの文に対してスコア計算が理想である for txt in [ "脱字が存在する文章です。", "脱字が存在する文章す。", '東京はッ晴れ。', '東京は元気です。', '吾輩は猫である。 名前はまだない。', '吾輩は猫である。 名前はまだな。', '東京は晴れ', '東京は晴れ。' ]: sentence = tagger.parse(txt.strip()) prob = model.score(sentence, bos=True, eos=True) perplexity = model.perplexity(sentence) print(perplexity, prob, txt) ``` ``` 799.5157517342569 -23.22261619567871 脱字が存在する文章です。 1427.360337285063 -25.236268997192383 脱字が存在する文章す。 3103.9820393600435 -20.951515197753906 東京はッ晴れ。 186.32902872137998 -13.621683120727539 東京は元気です。 25.350235809904472 -16.8477840423584 吾輩は猫である。 名前はまだない。 113.43313945517427 -24.656879425048828 吾輩は猫である。 名前はまだな。 17985.3170652363 -17.019672393798828 東京は晴れ 354.6946680891273 -12.749273300170898 東京は晴れ。 ``` ## License odc-by
kejolong/newol
kejolong
2023-08-26T12:19:24Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T12:08:13Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_char_cv12_pad_lob100_low__0090
bigmorning
2023-08-26T12:09:58Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T12:09:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low__0090 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low__0090 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Train Accuracy: 0.1115 - Train Wermet: 3.3972 - Validation Loss: 0.5582 - Validation Accuracy: 0.0640 - Validation Wermet: 8.5953 - Epoch: 89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.3330 | 0.0999 | 1.7359 | 0.3779 | 0.0615 | 4.7471 | 0 | | 0.3093 | 0.1007 | 2.0563 | 0.3652 | 0.0618 | 7.2181 | 1 | | 0.2869 | 0.1015 | 2.0654 | 0.3539 | 0.0620 | 8.6857 | 2 | | 0.2672 | 0.1022 | 2.1925 | 0.3443 | 0.0623 | 8.0906 | 3 | | 0.2488 | 0.1028 | 2.3286 | 0.3305 | 0.0626 | 9.1756 | 4 | | 0.2316 | 0.1034 | 2.4212 | 0.3300 | 0.0626 | 8.1427 | 5 | | 0.2163 | 0.1039 | 2.5012 | 0.3183 | 0.0629 | 8.3043 | 6 | | 0.2018 | 0.1045 | 2.7267 | 0.3109 | 0.0631 | 9.5329 | 7 | | 0.1878 | 0.1050 | 2.7034 | 0.3053 | 0.0632 | 7.9014 | 8 | | 0.1749 | 0.1054 | 2.8719 | 0.3063 | 0.0632 | 9.0257 | 9 | | 0.1628 | 0.1058 | 2.8764 | 0.3033 | 0.0634 | 9.1336 | 10 | | 0.1510 | 0.1063 | 2.8441 | 0.3046 | 0.0634 | 8.6064 | 11 | | 0.1391 | 0.1067 | 2.9377 | 0.3030 | 0.0635 | 9.1326 | 12 | | 0.1280 | 0.1071 | 2.9433 | 0.3025 | 0.0636 | 9.4533 | 13 | | 0.1182 | 0.1075 | 3.1399 | 0.3076 | 0.0636 | 9.9836 | 14 | | 0.1086 | 0.1078 | 3.2411 | 0.3096 | 0.0636 | 8.8470 | 15 | | 0.0983 | 0.1082 | 3.2622 | 0.3125 | 0.0636 | 9.1506 | 16 | | 0.0889 | 0.1086 | 3.3368 | 0.3184 | 0.0636 | 8.9635 | 17 | | 0.0803 | 0.1089 | 3.2742 | 0.3204 | 0.0637 | 9.3550 | 18 | | 0.0720 | 0.1092 | 3.4052 | 0.3258 | 0.0637 | 10.1082 | 19 | | 0.0637 | 0.1096 | 3.4287 | 0.3342 | 0.0637 | 10.3977 | 20 | | 0.0566 | 0.1098 | 3.4708 | 0.3411 | 0.0636 | 10.6479 | 21 | | 0.0498 | 0.1101 | 3.4462 | 0.3463 | 0.0637 | 10.1602 | 22 | | 0.0429 | 0.1104 | 3.4056 | 0.3588 | 0.0636 | 9.7172 | 23 | | 0.0374 | 0.1106 | 3.4477 | 0.3656 | 0.0636 | 9.4476 | 24 | | 0.0325 | 0.1108 | 3.4474 | 0.3712 | 0.0637 | 9.6926 | 25 | | 0.0279 | 0.1109 | 3.4263 | 0.3836 | 0.0636 | 10.0768 | 26 | | 0.0233 | 0.1111 | 3.4779 | 0.3873 | 0.0637 | 9.8123 | 27 | | 0.0196 | 0.1112 | 3.5329 | 0.4015 | 0.0636 | 10.0477 | 28 | | 0.0160 | 0.1113 | 3.5049 | 0.4097 | 0.0636 | 10.4027 | 29 | | 0.0139 | 0.1114 | 3.6185 | 0.4201 | 0.0636 | 10.9904 | 30 | | 0.0112 | 0.1114 | 3.5812 | 0.4300 | 0.0636 | 10.4501 | 31 | | 0.0096 | 0.1115 | 3.7493 | 0.4409 | 0.0636 | 10.3964 | 32 | | 0.0089 | 0.1115 | 3.6912 | 0.4499 | 0.0636 | 10.8345 | 33 | | 0.0082 | 0.1115 | 3.7577 | 0.4583 | 0.0636 | 10.2883 | 34 | | 0.0090 | 0.1114 | 3.8468 | 0.4755 | 0.0635 | 11.8086 | 35 | | 0.0168 | 0.1111 | 3.6340 | 0.4592 | 0.0636 | 10.6373 | 36 | | 0.0072 | 0.1115 | 3.8163 | 0.4644 | 0.0637 | 10.2448 | 37 | | 0.0040 | 0.1115 | 3.8376 | 0.4728 | 0.0637 | 10.9074 | 38 | | 0.0029 | 0.1115 | 3.8274 | 0.4814 | 0.0637 | 10.5440 | 39 | | 0.0025 | 0.1115 | 3.8022 | 0.4891 | 0.0637 | 10.8606 | 40 | | 0.0021 | 0.1115 | 3.8940 | 0.4937 | 0.0637 | 10.9388 | 41 | | 0.0018 | 0.1115 | 3.8026 | 0.5030 | 0.0637 | 10.6511 | 42 | | 0.0014 | 0.1115 | 3.8260 | 0.5092 | 0.0637 | 10.5743 | 43 | | 0.0173 | 0.1110 | 3.6223 | 0.5066 | 0.0635 | 9.9370 | 44 | | 0.0073 | 0.1114 | 3.6868 | 0.4972 | 0.0637 | 10.6775 | 45 | | 0.0027 | 0.1115 | 3.6742 | 0.5025 | 0.0638 | 10.3476 | 46 | | 0.0016 | 0.1115 | 3.7677 | 0.5078 | 0.0638 | 10.2277 | 47 | | 0.0013 | 0.1115 | 3.7721 | 0.5131 | 0.0638 | 10.4473 | 48 | | 0.0011 | 0.1115 | 3.8394 | 0.5189 | 0.0638 | 10.4344 | 49 | | 0.0009 | 0.1116 | 3.8666 | 0.5245 | 0.0638 | 10.4933 | 50 | | 0.0008 | 0.1116 | 3.8432 | 0.5307 | 0.0638 | 10.5118 | 51 | | 0.0008 | 0.1115 | 3.8808 | 0.5391 | 0.0637 | 10.7086 | 52 | | 0.0207 | 0.1108 | 3.8324 | 0.5204 | 0.0636 | 9.3724 | 53 | | 0.0074 | 0.1113 | 3.4605 | 0.5254 | 0.0637 | 10.1335 | 54 | | 0.0023 | 0.1115 | 3.6304 | 0.5164 | 0.0639 | 10.2554 | 55 | | 0.0012 | 0.1115 | 3.7309 | 0.5202 | 0.0639 | 10.3892 | 56 | | 0.0009 | 0.1115 | 3.6945 | 0.5260 | 0.0639 | 10.0808 | 57 | | 0.0007 | 0.1116 | 3.6804 | 0.5308 | 0.0639 | 10.2385 | 58 | | 0.0006 | 0.1116 | 3.6696 | 0.5350 | 0.0639 | 10.1248 | 59 | | 0.0005 | 0.1116 | 3.7425 | 0.5394 | 0.0639 | 10.1711 | 60 | | 0.0005 | 0.1116 | 3.7317 | 0.5442 | 0.0639 | 10.1407 | 61 | | 0.0004 | 0.1116 | 3.7010 | 0.5490 | 0.0639 | 10.0544 | 62 | | 0.0004 | 0.1116 | 3.6921 | 0.5546 | 0.0639 | 10.1746 | 63 | | 0.0003 | 0.1116 | 3.7494 | 0.5598 | 0.0639 | 10.0562 | 64 | | 0.0025 | 0.1115 | 3.6924 | 0.6395 | 0.0628 | 8.8622 | 65 | | 0.0189 | 0.1109 | 3.7101 | 0.5363 | 0.0638 | 11.1245 | 66 | | 0.0035 | 0.1115 | 3.6989 | 0.5347 | 0.0639 | 11.3329 | 67 | | 0.0012 | 0.1115 | 3.6723 | 0.5407 | 0.0639 | 11.2559 | 68 | | 0.0007 | 0.1115 | 3.6834 | 0.5429 | 0.0639 | 11.0248 | 69 | | 0.0006 | 0.1115 | 3.6848 | 0.5459 | 0.0639 | 10.8372 | 70 | | 0.0005 | 0.1115 | 3.6407 | 0.5501 | 0.0639 | 10.9252 | 71 | | 0.0005 | 0.1115 | 3.7172 | 0.5565 | 0.0639 | 10.6965 | 72 | | 0.0123 | 0.1112 | 3.5604 | 0.5734 | 0.0635 | 10.3309 | 73 | | 0.0075 | 0.1113 | 3.5938 | 0.5416 | 0.0639 | 10.3651 | 74 | | 0.0015 | 0.1115 | 3.4921 | 0.5406 | 0.0640 | 10.1754 | 75 | | 0.0007 | 0.1115 | 3.4911 | 0.5445 | 0.0640 | 10.0699 | 76 | | 0.0004 | 0.1116 | 3.4728 | 0.5477 | 0.0640 | 10.1247 | 77 | | 0.0004 | 0.1116 | 3.4452 | 0.5517 | 0.0640 | 9.6791 | 78 | | 0.0003 | 0.1116 | 3.4331 | 0.5558 | 0.0640 | 9.7928 | 79 | | 0.0003 | 0.1116 | 3.4313 | 0.5595 | 0.0640 | 9.6406 | 80 | | 0.0003 | 0.1116 | 3.4541 | 0.5627 | 0.0640 | 9.7750 | 81 | | 0.0002 | 0.1116 | 3.4371 | 0.5666 | 0.0640 | 9.5143 | 82 | | 0.0002 | 0.1116 | 3.4361 | 0.5705 | 0.0640 | 9.8916 | 83 | | 0.0002 | 0.1116 | 3.4777 | 0.5732 | 0.0640 | 9.6047 | 84 | | 0.0153 | 0.1110 | 3.6428 | 0.5509 | 0.0638 | 8.4998 | 85 | | 0.0038 | 0.1115 | 3.4999 | 0.5538 | 0.0639 | 9.5196 | 86 | | 0.0015 | 0.1115 | 3.5174 | 0.5506 | 0.0640 | 9.0468 | 87 | | 0.0006 | 0.1115 | 3.5053 | 0.5561 | 0.0640 | 8.6693 | 88 | | 0.0004 | 0.1115 | 3.3972 | 0.5582 | 0.0640 | 8.5953 | 89 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
JoyboyXoXo/Taxi-V3
JoyboyXoXo
2023-08-26T12:09:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T12:09:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.54 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="JoyboyXoXo/Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Dmitriy/whisper-small-hi
Dmitriy
2023-08-26T12:03:07Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-01T12:55:33Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
dt-and-vanilla-ardt/ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1206-66
dt-and-vanilla-ardt
2023-08-26T11:57:56Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T11:07:43Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1206-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-arrl_sgld_train_walker2d_high-2608_1206-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ajohe/vit-base-patch16-224-in21k-finetuned-lora-food101
Ajohe
2023-08-26T11:57:12Z
0
0
null
[ "tensorboard", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "region:us" ]
null
2023-08-26T11:45:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0403 - Accuracy: 0.9937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5326 | 0.99 | 44 | 0.1454 | 0.9716 | | 0.4211 | 2.0 | 89 | 0.0694 | 0.9811 | | 0.3062 | 2.99 | 133 | 0.0403 | 0.9937 | | 0.2785 | 4.0 | 178 | 0.0374 | 0.9937 | | 0.206 | 4.94 | 220 | 0.0336 | 0.9937 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.13.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
LawChat-tw/llama2-SFT
LawChat-tw
2023-08-26T11:54:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T11:53:34Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
LawChat-tw/llama2-PT
LawChat-tw
2023-08-26T11:53:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T11:50:59Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.5.0
bigmorning/whisper_char_cv12_pad_lob100_low__0080
bigmorning
2023-08-26T11:43:37Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T11:43:29Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low__0080 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low__0080 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0003 - Train Accuracy: 0.1116 - Train Wermet: 3.4331 - Validation Loss: 0.5558 - Validation Accuracy: 0.0640 - Validation Wermet: 9.7928 - Epoch: 79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.3330 | 0.0999 | 1.7359 | 0.3779 | 0.0615 | 4.7471 | 0 | | 0.3093 | 0.1007 | 2.0563 | 0.3652 | 0.0618 | 7.2181 | 1 | | 0.2869 | 0.1015 | 2.0654 | 0.3539 | 0.0620 | 8.6857 | 2 | | 0.2672 | 0.1022 | 2.1925 | 0.3443 | 0.0623 | 8.0906 | 3 | | 0.2488 | 0.1028 | 2.3286 | 0.3305 | 0.0626 | 9.1756 | 4 | | 0.2316 | 0.1034 | 2.4212 | 0.3300 | 0.0626 | 8.1427 | 5 | | 0.2163 | 0.1039 | 2.5012 | 0.3183 | 0.0629 | 8.3043 | 6 | | 0.2018 | 0.1045 | 2.7267 | 0.3109 | 0.0631 | 9.5329 | 7 | | 0.1878 | 0.1050 | 2.7034 | 0.3053 | 0.0632 | 7.9014 | 8 | | 0.1749 | 0.1054 | 2.8719 | 0.3063 | 0.0632 | 9.0257 | 9 | | 0.1628 | 0.1058 | 2.8764 | 0.3033 | 0.0634 | 9.1336 | 10 | | 0.1510 | 0.1063 | 2.8441 | 0.3046 | 0.0634 | 8.6064 | 11 | | 0.1391 | 0.1067 | 2.9377 | 0.3030 | 0.0635 | 9.1326 | 12 | | 0.1280 | 0.1071 | 2.9433 | 0.3025 | 0.0636 | 9.4533 | 13 | | 0.1182 | 0.1075 | 3.1399 | 0.3076 | 0.0636 | 9.9836 | 14 | | 0.1086 | 0.1078 | 3.2411 | 0.3096 | 0.0636 | 8.8470 | 15 | | 0.0983 | 0.1082 | 3.2622 | 0.3125 | 0.0636 | 9.1506 | 16 | | 0.0889 | 0.1086 | 3.3368 | 0.3184 | 0.0636 | 8.9635 | 17 | | 0.0803 | 0.1089 | 3.2742 | 0.3204 | 0.0637 | 9.3550 | 18 | | 0.0720 | 0.1092 | 3.4052 | 0.3258 | 0.0637 | 10.1082 | 19 | | 0.0637 | 0.1096 | 3.4287 | 0.3342 | 0.0637 | 10.3977 | 20 | | 0.0566 | 0.1098 | 3.4708 | 0.3411 | 0.0636 | 10.6479 | 21 | | 0.0498 | 0.1101 | 3.4462 | 0.3463 | 0.0637 | 10.1602 | 22 | | 0.0429 | 0.1104 | 3.4056 | 0.3588 | 0.0636 | 9.7172 | 23 | | 0.0374 | 0.1106 | 3.4477 | 0.3656 | 0.0636 | 9.4476 | 24 | | 0.0325 | 0.1108 | 3.4474 | 0.3712 | 0.0637 | 9.6926 | 25 | | 0.0279 | 0.1109 | 3.4263 | 0.3836 | 0.0636 | 10.0768 | 26 | | 0.0233 | 0.1111 | 3.4779 | 0.3873 | 0.0637 | 9.8123 | 27 | | 0.0196 | 0.1112 | 3.5329 | 0.4015 | 0.0636 | 10.0477 | 28 | | 0.0160 | 0.1113 | 3.5049 | 0.4097 | 0.0636 | 10.4027 | 29 | | 0.0139 | 0.1114 | 3.6185 | 0.4201 | 0.0636 | 10.9904 | 30 | | 0.0112 | 0.1114 | 3.5812 | 0.4300 | 0.0636 | 10.4501 | 31 | | 0.0096 | 0.1115 | 3.7493 | 0.4409 | 0.0636 | 10.3964 | 32 | | 0.0089 | 0.1115 | 3.6912 | 0.4499 | 0.0636 | 10.8345 | 33 | | 0.0082 | 0.1115 | 3.7577 | 0.4583 | 0.0636 | 10.2883 | 34 | | 0.0090 | 0.1114 | 3.8468 | 0.4755 | 0.0635 | 11.8086 | 35 | | 0.0168 | 0.1111 | 3.6340 | 0.4592 | 0.0636 | 10.6373 | 36 | | 0.0072 | 0.1115 | 3.8163 | 0.4644 | 0.0637 | 10.2448 | 37 | | 0.0040 | 0.1115 | 3.8376 | 0.4728 | 0.0637 | 10.9074 | 38 | | 0.0029 | 0.1115 | 3.8274 | 0.4814 | 0.0637 | 10.5440 | 39 | | 0.0025 | 0.1115 | 3.8022 | 0.4891 | 0.0637 | 10.8606 | 40 | | 0.0021 | 0.1115 | 3.8940 | 0.4937 | 0.0637 | 10.9388 | 41 | | 0.0018 | 0.1115 | 3.8026 | 0.5030 | 0.0637 | 10.6511 | 42 | | 0.0014 | 0.1115 | 3.8260 | 0.5092 | 0.0637 | 10.5743 | 43 | | 0.0173 | 0.1110 | 3.6223 | 0.5066 | 0.0635 | 9.9370 | 44 | | 0.0073 | 0.1114 | 3.6868 | 0.4972 | 0.0637 | 10.6775 | 45 | | 0.0027 | 0.1115 | 3.6742 | 0.5025 | 0.0638 | 10.3476 | 46 | | 0.0016 | 0.1115 | 3.7677 | 0.5078 | 0.0638 | 10.2277 | 47 | | 0.0013 | 0.1115 | 3.7721 | 0.5131 | 0.0638 | 10.4473 | 48 | | 0.0011 | 0.1115 | 3.8394 | 0.5189 | 0.0638 | 10.4344 | 49 | | 0.0009 | 0.1116 | 3.8666 | 0.5245 | 0.0638 | 10.4933 | 50 | | 0.0008 | 0.1116 | 3.8432 | 0.5307 | 0.0638 | 10.5118 | 51 | | 0.0008 | 0.1115 | 3.8808 | 0.5391 | 0.0637 | 10.7086 | 52 | | 0.0207 | 0.1108 | 3.8324 | 0.5204 | 0.0636 | 9.3724 | 53 | | 0.0074 | 0.1113 | 3.4605 | 0.5254 | 0.0637 | 10.1335 | 54 | | 0.0023 | 0.1115 | 3.6304 | 0.5164 | 0.0639 | 10.2554 | 55 | | 0.0012 | 0.1115 | 3.7309 | 0.5202 | 0.0639 | 10.3892 | 56 | | 0.0009 | 0.1115 | 3.6945 | 0.5260 | 0.0639 | 10.0808 | 57 | | 0.0007 | 0.1116 | 3.6804 | 0.5308 | 0.0639 | 10.2385 | 58 | | 0.0006 | 0.1116 | 3.6696 | 0.5350 | 0.0639 | 10.1248 | 59 | | 0.0005 | 0.1116 | 3.7425 | 0.5394 | 0.0639 | 10.1711 | 60 | | 0.0005 | 0.1116 | 3.7317 | 0.5442 | 0.0639 | 10.1407 | 61 | | 0.0004 | 0.1116 | 3.7010 | 0.5490 | 0.0639 | 10.0544 | 62 | | 0.0004 | 0.1116 | 3.6921 | 0.5546 | 0.0639 | 10.1746 | 63 | | 0.0003 | 0.1116 | 3.7494 | 0.5598 | 0.0639 | 10.0562 | 64 | | 0.0025 | 0.1115 | 3.6924 | 0.6395 | 0.0628 | 8.8622 | 65 | | 0.0189 | 0.1109 | 3.7101 | 0.5363 | 0.0638 | 11.1245 | 66 | | 0.0035 | 0.1115 | 3.6989 | 0.5347 | 0.0639 | 11.3329 | 67 | | 0.0012 | 0.1115 | 3.6723 | 0.5407 | 0.0639 | 11.2559 | 68 | | 0.0007 | 0.1115 | 3.6834 | 0.5429 | 0.0639 | 11.0248 | 69 | | 0.0006 | 0.1115 | 3.6848 | 0.5459 | 0.0639 | 10.8372 | 70 | | 0.0005 | 0.1115 | 3.6407 | 0.5501 | 0.0639 | 10.9252 | 71 | | 0.0005 | 0.1115 | 3.7172 | 0.5565 | 0.0639 | 10.6965 | 72 | | 0.0123 | 0.1112 | 3.5604 | 0.5734 | 0.0635 | 10.3309 | 73 | | 0.0075 | 0.1113 | 3.5938 | 0.5416 | 0.0639 | 10.3651 | 74 | | 0.0015 | 0.1115 | 3.4921 | 0.5406 | 0.0640 | 10.1754 | 75 | | 0.0007 | 0.1115 | 3.4911 | 0.5445 | 0.0640 | 10.0699 | 76 | | 0.0004 | 0.1116 | 3.4728 | 0.5477 | 0.0640 | 10.1247 | 77 | | 0.0004 | 0.1116 | 3.4452 | 0.5517 | 0.0640 | 9.6791 | 78 | | 0.0003 | 0.1116 | 3.4331 | 0.5558 | 0.0640 | 9.7928 | 79 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
aigrils2/beautifulv6-32fp-with-ema
aigrils2
2023-08-26T11:30:29Z
18
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-13T02:55:39Z
--- license: openrail pipeline_tag: text-to-image --- Attempt to convert with ema Give a like if it's convenient
bigmorning/whisper_char_cv12_pad_lob100_low__0075
bigmorning
2023-08-26T11:30:26Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T11:30:18Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low__0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low__0075 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0075 - Train Accuracy: 0.1113 - Train Wermet: 3.5938 - Validation Loss: 0.5416 - Validation Accuracy: 0.0639 - Validation Wermet: 10.3651 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.3330 | 0.0999 | 1.7359 | 0.3779 | 0.0615 | 4.7471 | 0 | | 0.3093 | 0.1007 | 2.0563 | 0.3652 | 0.0618 | 7.2181 | 1 | | 0.2869 | 0.1015 | 2.0654 | 0.3539 | 0.0620 | 8.6857 | 2 | | 0.2672 | 0.1022 | 2.1925 | 0.3443 | 0.0623 | 8.0906 | 3 | | 0.2488 | 0.1028 | 2.3286 | 0.3305 | 0.0626 | 9.1756 | 4 | | 0.2316 | 0.1034 | 2.4212 | 0.3300 | 0.0626 | 8.1427 | 5 | | 0.2163 | 0.1039 | 2.5012 | 0.3183 | 0.0629 | 8.3043 | 6 | | 0.2018 | 0.1045 | 2.7267 | 0.3109 | 0.0631 | 9.5329 | 7 | | 0.1878 | 0.1050 | 2.7034 | 0.3053 | 0.0632 | 7.9014 | 8 | | 0.1749 | 0.1054 | 2.8719 | 0.3063 | 0.0632 | 9.0257 | 9 | | 0.1628 | 0.1058 | 2.8764 | 0.3033 | 0.0634 | 9.1336 | 10 | | 0.1510 | 0.1063 | 2.8441 | 0.3046 | 0.0634 | 8.6064 | 11 | | 0.1391 | 0.1067 | 2.9377 | 0.3030 | 0.0635 | 9.1326 | 12 | | 0.1280 | 0.1071 | 2.9433 | 0.3025 | 0.0636 | 9.4533 | 13 | | 0.1182 | 0.1075 | 3.1399 | 0.3076 | 0.0636 | 9.9836 | 14 | | 0.1086 | 0.1078 | 3.2411 | 0.3096 | 0.0636 | 8.8470 | 15 | | 0.0983 | 0.1082 | 3.2622 | 0.3125 | 0.0636 | 9.1506 | 16 | | 0.0889 | 0.1086 | 3.3368 | 0.3184 | 0.0636 | 8.9635 | 17 | | 0.0803 | 0.1089 | 3.2742 | 0.3204 | 0.0637 | 9.3550 | 18 | | 0.0720 | 0.1092 | 3.4052 | 0.3258 | 0.0637 | 10.1082 | 19 | | 0.0637 | 0.1096 | 3.4287 | 0.3342 | 0.0637 | 10.3977 | 20 | | 0.0566 | 0.1098 | 3.4708 | 0.3411 | 0.0636 | 10.6479 | 21 | | 0.0498 | 0.1101 | 3.4462 | 0.3463 | 0.0637 | 10.1602 | 22 | | 0.0429 | 0.1104 | 3.4056 | 0.3588 | 0.0636 | 9.7172 | 23 | | 0.0374 | 0.1106 | 3.4477 | 0.3656 | 0.0636 | 9.4476 | 24 | | 0.0325 | 0.1108 | 3.4474 | 0.3712 | 0.0637 | 9.6926 | 25 | | 0.0279 | 0.1109 | 3.4263 | 0.3836 | 0.0636 | 10.0768 | 26 | | 0.0233 | 0.1111 | 3.4779 | 0.3873 | 0.0637 | 9.8123 | 27 | | 0.0196 | 0.1112 | 3.5329 | 0.4015 | 0.0636 | 10.0477 | 28 | | 0.0160 | 0.1113 | 3.5049 | 0.4097 | 0.0636 | 10.4027 | 29 | | 0.0139 | 0.1114 | 3.6185 | 0.4201 | 0.0636 | 10.9904 | 30 | | 0.0112 | 0.1114 | 3.5812 | 0.4300 | 0.0636 | 10.4501 | 31 | | 0.0096 | 0.1115 | 3.7493 | 0.4409 | 0.0636 | 10.3964 | 32 | | 0.0089 | 0.1115 | 3.6912 | 0.4499 | 0.0636 | 10.8345 | 33 | | 0.0082 | 0.1115 | 3.7577 | 0.4583 | 0.0636 | 10.2883 | 34 | | 0.0090 | 0.1114 | 3.8468 | 0.4755 | 0.0635 | 11.8086 | 35 | | 0.0168 | 0.1111 | 3.6340 | 0.4592 | 0.0636 | 10.6373 | 36 | | 0.0072 | 0.1115 | 3.8163 | 0.4644 | 0.0637 | 10.2448 | 37 | | 0.0040 | 0.1115 | 3.8376 | 0.4728 | 0.0637 | 10.9074 | 38 | | 0.0029 | 0.1115 | 3.8274 | 0.4814 | 0.0637 | 10.5440 | 39 | | 0.0025 | 0.1115 | 3.8022 | 0.4891 | 0.0637 | 10.8606 | 40 | | 0.0021 | 0.1115 | 3.8940 | 0.4937 | 0.0637 | 10.9388 | 41 | | 0.0018 | 0.1115 | 3.8026 | 0.5030 | 0.0637 | 10.6511 | 42 | | 0.0014 | 0.1115 | 3.8260 | 0.5092 | 0.0637 | 10.5743 | 43 | | 0.0173 | 0.1110 | 3.6223 | 0.5066 | 0.0635 | 9.9370 | 44 | | 0.0073 | 0.1114 | 3.6868 | 0.4972 | 0.0637 | 10.6775 | 45 | | 0.0027 | 0.1115 | 3.6742 | 0.5025 | 0.0638 | 10.3476 | 46 | | 0.0016 | 0.1115 | 3.7677 | 0.5078 | 0.0638 | 10.2277 | 47 | | 0.0013 | 0.1115 | 3.7721 | 0.5131 | 0.0638 | 10.4473 | 48 | | 0.0011 | 0.1115 | 3.8394 | 0.5189 | 0.0638 | 10.4344 | 49 | | 0.0009 | 0.1116 | 3.8666 | 0.5245 | 0.0638 | 10.4933 | 50 | | 0.0008 | 0.1116 | 3.8432 | 0.5307 | 0.0638 | 10.5118 | 51 | | 0.0008 | 0.1115 | 3.8808 | 0.5391 | 0.0637 | 10.7086 | 52 | | 0.0207 | 0.1108 | 3.8324 | 0.5204 | 0.0636 | 9.3724 | 53 | | 0.0074 | 0.1113 | 3.4605 | 0.5254 | 0.0637 | 10.1335 | 54 | | 0.0023 | 0.1115 | 3.6304 | 0.5164 | 0.0639 | 10.2554 | 55 | | 0.0012 | 0.1115 | 3.7309 | 0.5202 | 0.0639 | 10.3892 | 56 | | 0.0009 | 0.1115 | 3.6945 | 0.5260 | 0.0639 | 10.0808 | 57 | | 0.0007 | 0.1116 | 3.6804 | 0.5308 | 0.0639 | 10.2385 | 58 | | 0.0006 | 0.1116 | 3.6696 | 0.5350 | 0.0639 | 10.1248 | 59 | | 0.0005 | 0.1116 | 3.7425 | 0.5394 | 0.0639 | 10.1711 | 60 | | 0.0005 | 0.1116 | 3.7317 | 0.5442 | 0.0639 | 10.1407 | 61 | | 0.0004 | 0.1116 | 3.7010 | 0.5490 | 0.0639 | 10.0544 | 62 | | 0.0004 | 0.1116 | 3.6921 | 0.5546 | 0.0639 | 10.1746 | 63 | | 0.0003 | 0.1116 | 3.7494 | 0.5598 | 0.0639 | 10.0562 | 64 | | 0.0025 | 0.1115 | 3.6924 | 0.6395 | 0.0628 | 8.8622 | 65 | | 0.0189 | 0.1109 | 3.7101 | 0.5363 | 0.0638 | 11.1245 | 66 | | 0.0035 | 0.1115 | 3.6989 | 0.5347 | 0.0639 | 11.3329 | 67 | | 0.0012 | 0.1115 | 3.6723 | 0.5407 | 0.0639 | 11.2559 | 68 | | 0.0007 | 0.1115 | 3.6834 | 0.5429 | 0.0639 | 11.0248 | 69 | | 0.0006 | 0.1115 | 3.6848 | 0.5459 | 0.0639 | 10.8372 | 70 | | 0.0005 | 0.1115 | 3.6407 | 0.5501 | 0.0639 | 10.9252 | 71 | | 0.0005 | 0.1115 | 3.7172 | 0.5565 | 0.0639 | 10.6965 | 72 | | 0.0123 | 0.1112 | 3.5604 | 0.5734 | 0.0635 | 10.3309 | 73 | | 0.0075 | 0.1113 | 3.5938 | 0.5416 | 0.0639 | 10.3651 | 74 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
elftsdmr/malware-url-detect
elftsdmr
2023-08-26T11:09:23Z
202
5
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-10T11:37:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: MALWARE-URL-DETECT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MALWARE-URL-DETECT With this model, it detects harmful links created to harm people such as phishing in Turkey. Classifies url addresses as malware and benign. Type the domain name of the url address in the text field for classification in API: Like this: "huggingface.com" To test the model, visit [USOM](https://www.usom.gov.tr/adres). Harmful links used in Turkey are shared up-to-date on this site. This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2122 - Accuracy: 0.945 - Precision: 0.9611 - Recall: 0.9287 - F1: 0.9446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 63 | 0.2153 | 0.921 | 0.9953 | 0.8475 | 0.9155 | | No log | 2.0 | 126 | 0.1927 | 0.946 | 0.9669 | 0.9248 | 0.9453 | | No log | 3.0 | 189 | 0.2122 | 0.945 | 0.9611 | 0.9287 | 0.9446 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
rishabh063/lora-trained-xl-pkt
rishabh063
2023-08-26T10:53:28Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-26T08:16:42Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of pktpkt person tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - rishabh063/lora-trained-xl-pkt These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of pktpkt person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
badokorach/bert-finetuned-squad-88
badokorach
2023-08-26T10:39:44Z
61
0
transformers
[ "transformers", "tf", "distilbert", "question-answering", "generated_from_keras_callback", "base_model:EricPeter/distilbert-base-cased-distilled-squad", "base_model:finetune:EricPeter/distilbert-base-cased-distilled-squad", "endpoints_compatible", "region:us" ]
question-answering
2023-08-25T23:40:54Z
--- base_model: EricPeter/distilbert-base-cased-distilled-squad tags: - generated_from_keras_callback model-index: - name: badokorach/bert-finetuned-squad-88 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # badokorach/bert-finetuned-squad-88 This model is a fine-tuned version of [EricPeter/distilbert-base-cased-distilled-squad](https://huggingface.co/EricPeter/distilbert-base-cased-distilled-squad) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.7812 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 570, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.03} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 2.6118 | 0 | | 1.9671 | 1 | | 1.8982 | 2 | | 1.7812 | 3 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
zarakiquemparte/zarablend-1.1-l2-7b
zarakiquemparte
2023-08-26T10:30:54Z
1,478
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "llama2", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-26T02:51:59Z
--- license: other tags: - llama2 --- # Model Card: Zarablend 1.1 L2 7b This model uses [Nous Hermes Llama2 7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) (66%) as a base with [Airoboros L2 7B GPT4 2.0](https://huggingface.co/jondurbin/airoboros-l2-7b-gpt4-2.0) (34%) and the result of this merge was merged with [LimaRP LLama2 7B Lora version of the day 07/23/2023](https://huggingface.co/lemonilia/limarp-llama2). This merge of models(hermes and airoboros) was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/merge-cli.py) This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py) Merge illustration: ![illustration](zarablend-merge-illustration.png) ## Usage: Since this is a merge between Nous Hermes, Airoboros and LimaRP, the following instruction formats should work: Alpaca 2: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` LimaRP instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations This model is not intended for supplying factual information or advice in any form ## Training Details This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details.
archimedix/sdxl-archi06
archimedix
2023-08-26T10:17:55Z
2
1
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-26T10:17:53Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of Archimedix tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
Yorai/yolos-tiny_finetuned_cppe-5
Yorai
2023-08-26T10:17:19Z
187
0
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:hustvl/yolos-tiny", "base_model:finetune:hustvl/yolos-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-26T09:41:34Z
--- license: apache-2.0 base_model: hustvl/yolos-tiny tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: yolos-tiny_finetuned_cppe-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # yolos-tiny_finetuned_cppe-5 This model is a fine-tuned version of [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dkqjrm/20230826174342
dkqjrm
2023-08-26T10:16:21Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T08:44:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826174342' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826174342 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4913 - Accuracy: 0.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6276 | 0.57 | | No log | 2.0 | 50 | 0.6136 | 0.63 | | No log | 3.0 | 75 | 0.6774 | 0.66 | | No log | 4.0 | 100 | 0.5964 | 0.64 | | No log | 5.0 | 125 | 0.5316 | 0.62 | | No log | 6.0 | 150 | 0.5231 | 0.62 | | No log | 7.0 | 175 | 0.5156 | 0.63 | | No log | 8.0 | 200 | 0.6216 | 0.64 | | No log | 9.0 | 225 | 0.5013 | 0.71 | | No log | 10.0 | 250 | 0.5734 | 0.7 | | No log | 11.0 | 275 | 0.4683 | 0.66 | | No log | 12.0 | 300 | 0.5333 | 0.73 | | No log | 13.0 | 325 | 0.6740 | 0.69 | | No log | 14.0 | 350 | 0.5185 | 0.71 | | No log | 15.0 | 375 | 0.5031 | 0.71 | | No log | 16.0 | 400 | 0.5398 | 0.71 | | No log | 17.0 | 425 | 0.5246 | 0.73 | | No log | 18.0 | 450 | 0.7414 | 0.69 | | No log | 19.0 | 475 | 0.6817 | 0.72 | | 0.7352 | 20.0 | 500 | 0.6656 | 0.71 | | 0.7352 | 21.0 | 525 | 0.5839 | 0.76 | | 0.7352 | 22.0 | 550 | 0.6626 | 0.76 | | 0.7352 | 23.0 | 575 | 0.5017 | 0.75 | | 0.7352 | 24.0 | 600 | 0.5168 | 0.74 | | 0.7352 | 25.0 | 625 | 0.5912 | 0.78 | | 0.7352 | 26.0 | 650 | 0.5596 | 0.77 | | 0.7352 | 27.0 | 675 | 0.4884 | 0.77 | | 0.7352 | 28.0 | 700 | 0.4738 | 0.73 | | 0.7352 | 29.0 | 725 | 0.5052 | 0.76 | | 0.7352 | 30.0 | 750 | 0.6163 | 0.74 | | 0.7352 | 31.0 | 775 | 0.5824 | 0.74 | | 0.7352 | 32.0 | 800 | 0.4995 | 0.72 | | 0.7352 | 33.0 | 825 | 0.4936 | 0.71 | | 0.7352 | 34.0 | 850 | 0.5464 | 0.72 | | 0.7352 | 35.0 | 875 | 0.5164 | 0.74 | | 0.7352 | 36.0 | 900 | 0.5088 | 0.75 | | 0.7352 | 37.0 | 925 | 0.5991 | 0.75 | | 0.7352 | 38.0 | 950 | 0.4963 | 0.73 | | 0.7352 | 39.0 | 975 | 0.5086 | 0.72 | | 0.411 | 40.0 | 1000 | 0.5203 | 0.73 | | 0.411 | 41.0 | 1025 | 0.5844 | 0.74 | | 0.411 | 42.0 | 1050 | 0.5285 | 0.74 | | 0.411 | 43.0 | 1075 | 0.5553 | 0.74 | | 0.411 | 44.0 | 1100 | 0.5588 | 0.71 | | 0.411 | 45.0 | 1125 | 0.5392 | 0.72 | | 0.411 | 46.0 | 1150 | 0.5494 | 0.72 | | 0.411 | 47.0 | 1175 | 0.4982 | 0.76 | | 0.411 | 48.0 | 1200 | 0.5374 | 0.72 | | 0.411 | 49.0 | 1225 | 0.5730 | 0.73 | | 0.411 | 50.0 | 1250 | 0.5149 | 0.72 | | 0.411 | 51.0 | 1275 | 0.4949 | 0.72 | | 0.411 | 52.0 | 1300 | 0.5295 | 0.73 | | 0.411 | 53.0 | 1325 | 0.5223 | 0.72 | | 0.411 | 54.0 | 1350 | 0.5617 | 0.71 | | 0.411 | 55.0 | 1375 | 0.5373 | 0.72 | | 0.411 | 56.0 | 1400 | 0.4857 | 0.73 | | 0.411 | 57.0 | 1425 | 0.4954 | 0.72 | | 0.411 | 58.0 | 1450 | 0.5024 | 0.72 | | 0.411 | 59.0 | 1475 | 0.4971 | 0.74 | | 0.318 | 60.0 | 1500 | 0.5265 | 0.73 | | 0.318 | 61.0 | 1525 | 0.4967 | 0.71 | | 0.318 | 62.0 | 1550 | 0.4972 | 0.73 | | 0.318 | 63.0 | 1575 | 0.4908 | 0.72 | | 0.318 | 64.0 | 1600 | 0.5056 | 0.74 | | 0.318 | 65.0 | 1625 | 0.5231 | 0.74 | | 0.318 | 66.0 | 1650 | 0.4737 | 0.75 | | 0.318 | 67.0 | 1675 | 0.5016 | 0.72 | | 0.318 | 68.0 | 1700 | 0.4988 | 0.73 | | 0.318 | 69.0 | 1725 | 0.5276 | 0.74 | | 0.318 | 70.0 | 1750 | 0.4912 | 0.73 | | 0.318 | 71.0 | 1775 | 0.4865 | 0.72 | | 0.318 | 72.0 | 1800 | 0.4754 | 0.73 | | 0.318 | 73.0 | 1825 | 0.4922 | 0.73 | | 0.318 | 74.0 | 1850 | 0.4884 | 0.74 | | 0.318 | 75.0 | 1875 | 0.4868 | 0.73 | | 0.318 | 76.0 | 1900 | 0.4872 | 0.73 | | 0.318 | 77.0 | 1925 | 0.4848 | 0.72 | | 0.318 | 78.0 | 1950 | 0.4923 | 0.72 | | 0.318 | 79.0 | 1975 | 0.4888 | 0.73 | | 0.287 | 80.0 | 2000 | 0.4913 | 0.72 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230826173415
dkqjrm
2023-08-26T10:15:51Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T08:34:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826173415' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826173415 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4136 - Accuracy: 0.71 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6183 | 0.53 | | No log | 2.0 | 50 | 0.4189 | 0.62 | | No log | 3.0 | 75 | 0.4351 | 0.6 | | No log | 4.0 | 100 | 0.4181 | 0.6 | | No log | 5.0 | 125 | 0.4105 | 0.62 | | No log | 6.0 | 150 | 0.4140 | 0.63 | | No log | 7.0 | 175 | 0.4052 | 0.66 | | No log | 8.0 | 200 | 0.4322 | 0.66 | | No log | 9.0 | 225 | 0.4364 | 0.41 | | No log | 10.0 | 250 | 0.4247 | 0.55 | | No log | 11.0 | 275 | 0.4261 | 0.53 | | No log | 12.0 | 300 | 0.4176 | 0.6 | | No log | 13.0 | 325 | 0.4108 | 0.58 | | No log | 14.0 | 350 | 0.4305 | 0.51 | | No log | 15.0 | 375 | 0.4064 | 0.61 | | No log | 16.0 | 400 | 0.4032 | 0.59 | | No log | 17.0 | 425 | 0.4098 | 0.63 | | No log | 18.0 | 450 | 0.4132 | 0.61 | | No log | 19.0 | 475 | 0.3925 | 0.65 | | 0.7171 | 20.0 | 500 | 0.3957 | 0.69 | | 0.7171 | 21.0 | 525 | 0.4292 | 0.64 | | 0.7171 | 22.0 | 550 | 0.4025 | 0.63 | | 0.7171 | 23.0 | 575 | 0.3997 | 0.69 | | 0.7171 | 24.0 | 600 | 0.4115 | 0.62 | | 0.7171 | 25.0 | 625 | 0.4044 | 0.67 | | 0.7171 | 26.0 | 650 | 0.4098 | 0.69 | | 0.7171 | 27.0 | 675 | 0.4051 | 0.65 | | 0.7171 | 28.0 | 700 | 0.4244 | 0.72 | | 0.7171 | 29.0 | 725 | 0.4032 | 0.64 | | 0.7171 | 30.0 | 750 | 0.4136 | 0.7 | | 0.7171 | 31.0 | 775 | 0.3993 | 0.68 | | 0.7171 | 32.0 | 800 | 0.4170 | 0.72 | | 0.7171 | 33.0 | 825 | 0.4038 | 0.71 | | 0.7171 | 34.0 | 850 | 0.4251 | 0.72 | | 0.7171 | 35.0 | 875 | 0.4079 | 0.66 | | 0.7171 | 36.0 | 900 | 0.4119 | 0.71 | | 0.7171 | 37.0 | 925 | 0.4075 | 0.67 | | 0.7171 | 38.0 | 950 | 0.4406 | 0.73 | | 0.7171 | 39.0 | 975 | 0.4081 | 0.72 | | 0.4731 | 40.0 | 1000 | 0.4191 | 0.67 | | 0.4731 | 41.0 | 1025 | 0.4217 | 0.68 | | 0.4731 | 42.0 | 1050 | 0.3983 | 0.73 | | 0.4731 | 43.0 | 1075 | 0.4092 | 0.66 | | 0.4731 | 44.0 | 1100 | 0.4248 | 0.69 | | 0.4731 | 45.0 | 1125 | 0.4218 | 0.68 | | 0.4731 | 46.0 | 1150 | 0.4371 | 0.7 | | 0.4731 | 47.0 | 1175 | 0.4099 | 0.69 | | 0.4731 | 48.0 | 1200 | 0.4300 | 0.69 | | 0.4731 | 49.0 | 1225 | 0.4094 | 0.72 | | 0.4731 | 50.0 | 1250 | 0.4206 | 0.71 | | 0.4731 | 51.0 | 1275 | 0.4241 | 0.72 | | 0.4731 | 52.0 | 1300 | 0.4253 | 0.66 | | 0.4731 | 53.0 | 1325 | 0.4117 | 0.66 | | 0.4731 | 54.0 | 1350 | 0.4174 | 0.67 | | 0.4731 | 55.0 | 1375 | 0.4131 | 0.67 | | 0.4731 | 56.0 | 1400 | 0.4231 | 0.67 | | 0.4731 | 57.0 | 1425 | 0.4059 | 0.7 | | 0.4731 | 58.0 | 1450 | 0.4168 | 0.72 | | 0.4731 | 59.0 | 1475 | 0.4236 | 0.68 | | 0.4204 | 60.0 | 1500 | 0.4001 | 0.68 | | 0.4204 | 61.0 | 1525 | 0.4158 | 0.71 | | 0.4204 | 62.0 | 1550 | 0.4303 | 0.68 | | 0.4204 | 63.0 | 1575 | 0.4155 | 0.65 | | 0.4204 | 64.0 | 1600 | 0.4195 | 0.66 | | 0.4204 | 65.0 | 1625 | 0.4315 | 0.67 | | 0.4204 | 66.0 | 1650 | 0.4240 | 0.71 | | 0.4204 | 67.0 | 1675 | 0.4191 | 0.68 | | 0.4204 | 68.0 | 1700 | 0.4214 | 0.71 | | 0.4204 | 69.0 | 1725 | 0.4170 | 0.71 | | 0.4204 | 70.0 | 1750 | 0.4158 | 0.68 | | 0.4204 | 71.0 | 1775 | 0.4230 | 0.69 | | 0.4204 | 72.0 | 1800 | 0.4106 | 0.69 | | 0.4204 | 73.0 | 1825 | 0.4255 | 0.68 | | 0.4204 | 74.0 | 1850 | 0.4223 | 0.67 | | 0.4204 | 75.0 | 1875 | 0.4124 | 0.7 | | 0.4204 | 76.0 | 1900 | 0.4114 | 0.7 | | 0.4204 | 77.0 | 1925 | 0.4115 | 0.71 | | 0.4204 | 78.0 | 1950 | 0.4136 | 0.71 | | 0.4204 | 79.0 | 1975 | 0.4150 | 0.71 | | 0.3939 | 80.0 | 2000 | 0.4136 | 0.71 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
TenAI/stable-diffusion-webui
TenAI
2023-08-26T10:11:37Z
0
4
null
[ "arxiv:2211.06679", "region:us" ]
null
2023-08-25T10:34:29Z
# Stable Diffusion web UI A browser interface based on Gradio library for Stable Diffusion. ![](screenshot.png) ## Features [Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features): - Original txt2img and img2img modes - One click install and run script (but you still must install python and git) - Outpainting - Inpainting - Color Sketch - Prompt Matrix - Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - a man in a `((tuxedo))` - will pay more attention to tuxedo - a man in a `(tuxedo:1.21)` - alternative syntax - select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user) - Loopback, run img2img processing multiple times - X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them - use multiple embeddings with different numbers of vectors per token - works with half precision floating point numbers - train embeddings on 8GB (also reports of 6GB working) - Extras tab with: - GFPGAN, neural network that fixes faces - CodeFormer, face restoration tool as an alternative to GFPGAN - RealESRGAN, neural network upscaler - ESRGAN, neural network upscaler with a lot of third party models - SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers - LDSR, Latent diffusion super resolution upscaling - Resizing aspect ratio options - Sampling method selection - Adjust sampler eta values (noise multiplier) - More advanced noise setting options - Interrupt processing at any time - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Live prompt token length validation - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - drag and drop an image/text-parameters to promptbox - Read Generation Parameters Button, loads parameters in promptbox to UI - Settings page - Running arbitrary python code from UI (must run with `--allow-code` to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences - Seed resizing, a way to generate same image but at slightly different resolution - CLIP interrogator, a button that tries to guess prompt from an image - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Batch Processing, process a group of files using img2img - Img2img Alternative, reverse Euler method of cross attention control - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Reloading checkpoints on the fly - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` - No token limit for prompts (original stable diffusion lets you use up to 75 tokens) - DeepDanbooru integration, creates danbooru style tags for anime prompts - [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args) - via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI - Generate forever option - Training tab - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip - Hypernetworks - Loras (same as Hypernetworks but more pretty) - A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt - Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions - [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions - Now without any bad letters! - Load checkpoints in safetensors format - Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 - Now with a license! - Reorder elements in the UI from settings screen ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Alternatively, use online services (like Google Colab): - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services) ### Installation on Windows 10/11 with NVidia-GPUs using release package 1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract it's contents. 2. Run `update.bat`. 3. Run `run.bat`. > For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) ### Automatic Installation on Windows 1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH". 2. Install [git](https://git-scm.com/download/win). 3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`. 4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user. ### Automatic Installation on Linux 1. Install the dependencies: ```bash # Debian-based: sudo apt install wget git python3 python3-venv # Red Hat-based: sudo dnf install wget git python3 # Arch-based: sudo pacman -S wget git python3 ``` 2. Navigate to the directory you would like the webui to be installed and execute the following command: ```bash bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh) ``` 3. Run `webui.sh`. 4. Check `webui-user.sh` for options. ### Installation on Apple Silicon Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon). ## Contributing Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) ## Documentation The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). ## Credits Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file. - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - k-diffusion - https://github.com/crowsonkb/k-diffusion.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git - CodeFormer - https://github.com/sczhou/CodeFormer - ESRGAN - https://github.com/xinntao/ESRGAN - SwinIR - https://github.com/JingyunLiang/SwinIR - Swin2SR - https://github.com/mv-lab/swin2sr - LDSR - https://github.com/Hafiidz/latent-diffusion - MiDaS - https://github.com/isl-org/MiDaS - Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion) - Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention) - Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas). - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch - xformers - https://github.com/facebookresearch/xformers - DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru - Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6) - Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix - Security advice - RyotaK - UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC - TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - (You)
dkqjrm/20230826172956
dkqjrm
2023-08-26T09:56:28Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T08:30:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826172956' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826172956 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1602 - Accuracy: 0.54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.2150 | 0.6 | | No log | 2.0 | 50 | 0.1887 | 0.59 | | No log | 3.0 | 75 | 0.1839 | 0.58 | | No log | 4.0 | 100 | 0.1657 | 0.45 | | No log | 5.0 | 125 | 0.1619 | 0.58 | | No log | 6.0 | 150 | 0.1615 | 0.52 | | No log | 7.0 | 175 | 0.1579 | 0.57 | | No log | 8.0 | 200 | 0.1583 | 0.62 | | No log | 9.0 | 225 | 0.1615 | 0.52 | | No log | 10.0 | 250 | 0.1586 | 0.64 | | No log | 11.0 | 275 | 0.1599 | 0.63 | | No log | 12.0 | 300 | 0.1615 | 0.5 | | No log | 13.0 | 325 | 0.1588 | 0.55 | | No log | 14.0 | 350 | 0.1611 | 0.44 | | No log | 15.0 | 375 | 0.1587 | 0.54 | | No log | 16.0 | 400 | 0.1585 | 0.6 | | No log | 17.0 | 425 | 0.1574 | 0.54 | | No log | 18.0 | 450 | 0.1599 | 0.51 | | No log | 19.0 | 475 | 0.1580 | 0.56 | | 0.6147 | 20.0 | 500 | 0.1593 | 0.51 | | 0.6147 | 21.0 | 525 | 0.1612 | 0.39 | | 0.6147 | 22.0 | 550 | 0.1588 | 0.57 | | 0.6147 | 23.0 | 575 | 0.1583 | 0.6 | | 0.6147 | 24.0 | 600 | 0.1588 | 0.61 | | 0.6147 | 25.0 | 625 | 0.1585 | 0.55 | | 0.6147 | 26.0 | 650 | 0.1582 | 0.52 | | 0.6147 | 27.0 | 675 | 0.1625 | 0.48 | | 0.6147 | 28.0 | 700 | 0.1617 | 0.48 | | 0.6147 | 29.0 | 725 | 0.1607 | 0.57 | | 0.6147 | 30.0 | 750 | 0.1589 | 0.55 | | 0.6147 | 31.0 | 775 | 0.1584 | 0.58 | | 0.6147 | 32.0 | 800 | 0.1593 | 0.57 | | 0.6147 | 33.0 | 825 | 0.1608 | 0.49 | | 0.6147 | 34.0 | 850 | 0.1605 | 0.5 | | 0.6147 | 35.0 | 875 | 0.1601 | 0.54 | | 0.6147 | 36.0 | 900 | 0.1590 | 0.54 | | 0.6147 | 37.0 | 925 | 0.1651 | 0.45 | | 0.6147 | 38.0 | 950 | 0.1613 | 0.44 | | 0.6147 | 39.0 | 975 | 0.1630 | 0.5 | | 0.5279 | 40.0 | 1000 | 0.1598 | 0.48 | | 0.5279 | 41.0 | 1025 | 0.1605 | 0.52 | | 0.5279 | 42.0 | 1050 | 0.1598 | 0.46 | | 0.5279 | 43.0 | 1075 | 0.1599 | 0.51 | | 0.5279 | 44.0 | 1100 | 0.1611 | 0.5 | | 0.5279 | 45.0 | 1125 | 0.1611 | 0.49 | | 0.5279 | 46.0 | 1150 | 0.1602 | 0.56 | | 0.5279 | 47.0 | 1175 | 0.1596 | 0.5 | | 0.5279 | 48.0 | 1200 | 0.1605 | 0.59 | | 0.5279 | 49.0 | 1225 | 0.1593 | 0.53 | | 0.5279 | 50.0 | 1250 | 0.1584 | 0.51 | | 0.5279 | 51.0 | 1275 | 0.1592 | 0.52 | | 0.5279 | 52.0 | 1300 | 0.1588 | 0.49 | | 0.5279 | 53.0 | 1325 | 0.1610 | 0.55 | | 0.5279 | 54.0 | 1350 | 0.1591 | 0.53 | | 0.5279 | 55.0 | 1375 | 0.1585 | 0.49 | | 0.5279 | 56.0 | 1400 | 0.1591 | 0.46 | | 0.5279 | 57.0 | 1425 | 0.1584 | 0.44 | | 0.5279 | 58.0 | 1450 | 0.1612 | 0.47 | | 0.5279 | 59.0 | 1475 | 0.1626 | 0.43 | | 0.4515 | 60.0 | 1500 | 0.1607 | 0.46 | | 0.4515 | 61.0 | 1525 | 0.1599 | 0.49 | | 0.4515 | 62.0 | 1550 | 0.1590 | 0.49 | | 0.4515 | 63.0 | 1575 | 0.1601 | 0.54 | | 0.4515 | 64.0 | 1600 | 0.1606 | 0.49 | | 0.4515 | 65.0 | 1625 | 0.1592 | 0.5 | | 0.4515 | 66.0 | 1650 | 0.1605 | 0.52 | | 0.4515 | 67.0 | 1675 | 0.1605 | 0.51 | | 0.4515 | 68.0 | 1700 | 0.1603 | 0.54 | | 0.4515 | 69.0 | 1725 | 0.1603 | 0.55 | | 0.4515 | 70.0 | 1750 | 0.1604 | 0.56 | | 0.4515 | 71.0 | 1775 | 0.1615 | 0.54 | | 0.4515 | 72.0 | 1800 | 0.1593 | 0.5 | | 0.4515 | 73.0 | 1825 | 0.1601 | 0.54 | | 0.4515 | 74.0 | 1850 | 0.1603 | 0.57 | | 0.4515 | 75.0 | 1875 | 0.1596 | 0.51 | | 0.4515 | 76.0 | 1900 | 0.1608 | 0.54 | | 0.4515 | 77.0 | 1925 | 0.1603 | 0.56 | | 0.4515 | 78.0 | 1950 | 0.1600 | 0.55 | | 0.4515 | 79.0 | 1975 | 0.1602 | 0.55 | | 0.4114 | 80.0 | 2000 | 0.1602 | 0.54 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_char_cv12_pad_lob100_low__0030
bigmorning
2023-08-26T09:32:10Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T09:32:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low__0030 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low__0030 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0160 - Train Accuracy: 0.1113 - Train Wermet: 3.5049 - Validation Loss: 0.4097 - Validation Accuracy: 0.0636 - Validation Wermet: 10.4027 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.3330 | 0.0999 | 1.7359 | 0.3779 | 0.0615 | 4.7471 | 0 | | 0.3093 | 0.1007 | 2.0563 | 0.3652 | 0.0618 | 7.2181 | 1 | | 0.2869 | 0.1015 | 2.0654 | 0.3539 | 0.0620 | 8.6857 | 2 | | 0.2672 | 0.1022 | 2.1925 | 0.3443 | 0.0623 | 8.0906 | 3 | | 0.2488 | 0.1028 | 2.3286 | 0.3305 | 0.0626 | 9.1756 | 4 | | 0.2316 | 0.1034 | 2.4212 | 0.3300 | 0.0626 | 8.1427 | 5 | | 0.2163 | 0.1039 | 2.5012 | 0.3183 | 0.0629 | 8.3043 | 6 | | 0.2018 | 0.1045 | 2.7267 | 0.3109 | 0.0631 | 9.5329 | 7 | | 0.1878 | 0.1050 | 2.7034 | 0.3053 | 0.0632 | 7.9014 | 8 | | 0.1749 | 0.1054 | 2.8719 | 0.3063 | 0.0632 | 9.0257 | 9 | | 0.1628 | 0.1058 | 2.8764 | 0.3033 | 0.0634 | 9.1336 | 10 | | 0.1510 | 0.1063 | 2.8441 | 0.3046 | 0.0634 | 8.6064 | 11 | | 0.1391 | 0.1067 | 2.9377 | 0.3030 | 0.0635 | 9.1326 | 12 | | 0.1280 | 0.1071 | 2.9433 | 0.3025 | 0.0636 | 9.4533 | 13 | | 0.1182 | 0.1075 | 3.1399 | 0.3076 | 0.0636 | 9.9836 | 14 | | 0.1086 | 0.1078 | 3.2411 | 0.3096 | 0.0636 | 8.8470 | 15 | | 0.0983 | 0.1082 | 3.2622 | 0.3125 | 0.0636 | 9.1506 | 16 | | 0.0889 | 0.1086 | 3.3368 | 0.3184 | 0.0636 | 8.9635 | 17 | | 0.0803 | 0.1089 | 3.2742 | 0.3204 | 0.0637 | 9.3550 | 18 | | 0.0720 | 0.1092 | 3.4052 | 0.3258 | 0.0637 | 10.1082 | 19 | | 0.0637 | 0.1096 | 3.4287 | 0.3342 | 0.0637 | 10.3977 | 20 | | 0.0566 | 0.1098 | 3.4708 | 0.3411 | 0.0636 | 10.6479 | 21 | | 0.0498 | 0.1101 | 3.4462 | 0.3463 | 0.0637 | 10.1602 | 22 | | 0.0429 | 0.1104 | 3.4056 | 0.3588 | 0.0636 | 9.7172 | 23 | | 0.0374 | 0.1106 | 3.4477 | 0.3656 | 0.0636 | 9.4476 | 24 | | 0.0325 | 0.1108 | 3.4474 | 0.3712 | 0.0637 | 9.6926 | 25 | | 0.0279 | 0.1109 | 3.4263 | 0.3836 | 0.0636 | 10.0768 | 26 | | 0.0233 | 0.1111 | 3.4779 | 0.3873 | 0.0637 | 9.8123 | 27 | | 0.0196 | 0.1112 | 3.5329 | 0.4015 | 0.0636 | 10.0477 | 28 | | 0.0160 | 0.1113 | 3.5049 | 0.4097 | 0.0636 | 10.4027 | 29 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-arrl_train_walker2d_high-2608_0832-66
dt-and-vanilla-ardt
2023-08-26T08:51:32Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T07:34:14Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-arrl_train_walker2d_high-2608_0832-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-arrl_train_walker2d_high-2608_0832-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dilums/ppo-LunarLander-v2
dilums
2023-08-26T08:44:12Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T08:43:47Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.81 +/- 19.32 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dkqjrm/20230826161117
dkqjrm
2023-08-26T08:43:30Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T07:11:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826161117' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826161117 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5294 - Accuracy: 0.67 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6448 | 0.4 | | No log | 2.0 | 50 | 0.7950 | 0.65 | | No log | 3.0 | 75 | 0.6181 | 0.54 | | No log | 4.0 | 100 | 0.5601 | 0.6 | | No log | 5.0 | 125 | 0.5816 | 0.42 | | No log | 6.0 | 150 | 0.5957 | 0.43 | | No log | 7.0 | 175 | 0.5331 | 0.61 | | No log | 8.0 | 200 | 0.5507 | 0.61 | | No log | 9.0 | 225 | 0.5438 | 0.62 | | No log | 10.0 | 250 | 0.5455 | 0.65 | | No log | 11.0 | 275 | 0.5141 | 0.65 | | No log | 12.0 | 300 | 0.5019 | 0.71 | | No log | 13.0 | 325 | 0.6824 | 0.7 | | No log | 14.0 | 350 | 0.5735 | 0.73 | | No log | 15.0 | 375 | 0.5578 | 0.69 | | No log | 16.0 | 400 | 0.5607 | 0.72 | | No log | 17.0 | 425 | 0.5974 | 0.71 | | No log | 18.0 | 450 | 0.8102 | 0.71 | | No log | 19.0 | 475 | 0.6757 | 0.73 | | 0.7598 | 20.0 | 500 | 0.5266 | 0.74 | | 0.7598 | 21.0 | 525 | 0.6271 | 0.69 | | 0.7598 | 22.0 | 550 | 0.6341 | 0.7 | | 0.7598 | 23.0 | 575 | 0.6874 | 0.7 | | 0.7598 | 24.0 | 600 | 0.5264 | 0.72 | | 0.7598 | 25.0 | 625 | 0.5148 | 0.73 | | 0.7598 | 26.0 | 650 | 0.5760 | 0.77 | | 0.7598 | 27.0 | 675 | 0.6581 | 0.71 | | 0.7598 | 28.0 | 700 | 0.6479 | 0.71 | | 0.7598 | 29.0 | 725 | 0.6960 | 0.69 | | 0.7598 | 30.0 | 750 | 0.6919 | 0.7 | | 0.7598 | 31.0 | 775 | 0.6421 | 0.68 | | 0.7598 | 32.0 | 800 | 0.5681 | 0.68 | | 0.7598 | 33.0 | 825 | 0.5631 | 0.68 | | 0.7598 | 34.0 | 850 | 0.5676 | 0.66 | | 0.7598 | 35.0 | 875 | 0.5389 | 0.68 | | 0.7598 | 36.0 | 900 | 0.6267 | 0.68 | | 0.7598 | 37.0 | 925 | 0.6107 | 0.65 | | 0.7598 | 38.0 | 950 | 0.5359 | 0.66 | | 0.7598 | 39.0 | 975 | 0.5741 | 0.67 | | 0.4266 | 40.0 | 1000 | 0.5928 | 0.69 | | 0.4266 | 41.0 | 1025 | 0.5307 | 0.68 | | 0.4266 | 42.0 | 1050 | 0.5909 | 0.66 | | 0.4266 | 43.0 | 1075 | 0.5733 | 0.66 | | 0.4266 | 44.0 | 1100 | 0.5561 | 0.66 | | 0.4266 | 45.0 | 1125 | 0.5600 | 0.69 | | 0.4266 | 46.0 | 1150 | 0.5228 | 0.66 | | 0.4266 | 47.0 | 1175 | 0.5383 | 0.7 | | 0.4266 | 48.0 | 1200 | 0.5643 | 0.69 | | 0.4266 | 49.0 | 1225 | 0.5493 | 0.7 | | 0.4266 | 50.0 | 1250 | 0.5576 | 0.7 | | 0.4266 | 51.0 | 1275 | 0.5543 | 0.68 | | 0.4266 | 52.0 | 1300 | 0.5615 | 0.69 | | 0.4266 | 53.0 | 1325 | 0.5358 | 0.67 | | 0.4266 | 54.0 | 1350 | 0.5405 | 0.69 | | 0.4266 | 55.0 | 1375 | 0.5327 | 0.69 | | 0.4266 | 56.0 | 1400 | 0.5645 | 0.67 | | 0.4266 | 57.0 | 1425 | 0.5240 | 0.67 | | 0.4266 | 58.0 | 1450 | 0.5402 | 0.67 | | 0.4266 | 59.0 | 1475 | 0.5495 | 0.68 | | 0.3249 | 60.0 | 1500 | 0.5624 | 0.66 | | 0.3249 | 61.0 | 1525 | 0.5513 | 0.67 | | 0.3249 | 62.0 | 1550 | 0.5537 | 0.68 | | 0.3249 | 63.0 | 1575 | 0.5444 | 0.68 | | 0.3249 | 64.0 | 1600 | 0.5553 | 0.68 | | 0.3249 | 65.0 | 1625 | 0.5221 | 0.68 | | 0.3249 | 66.0 | 1650 | 0.5136 | 0.68 | | 0.3249 | 67.0 | 1675 | 0.5231 | 0.69 | | 0.3249 | 68.0 | 1700 | 0.5305 | 0.69 | | 0.3249 | 69.0 | 1725 | 0.5278 | 0.68 | | 0.3249 | 70.0 | 1750 | 0.5440 | 0.66 | | 0.3249 | 71.0 | 1775 | 0.5411 | 0.67 | | 0.3249 | 72.0 | 1800 | 0.5346 | 0.69 | | 0.3249 | 73.0 | 1825 | 0.5241 | 0.67 | | 0.3249 | 74.0 | 1850 | 0.5425 | 0.67 | | 0.3249 | 75.0 | 1875 | 0.5213 | 0.67 | | 0.3249 | 76.0 | 1900 | 0.5405 | 0.66 | | 0.3249 | 77.0 | 1925 | 0.5251 | 0.67 | | 0.3249 | 78.0 | 1950 | 0.5300 | 0.67 | | 0.3249 | 79.0 | 1975 | 0.5285 | 0.67 | | 0.2946 | 80.0 | 2000 | 0.5294 | 0.67 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230826161128
dkqjrm
2023-08-26T08:42:15Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T07:11:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826161128' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826161128 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2753 - Accuracy: 0.71 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.3969 | 0.6 | | No log | 2.0 | 50 | 0.4709 | 0.5 | | No log | 3.0 | 75 | 0.3341 | 0.42 | | No log | 4.0 | 100 | 0.3011 | 0.54 | | No log | 5.0 | 125 | 0.3119 | 0.36 | | No log | 6.0 | 150 | 0.3297 | 0.37 | | No log | 7.0 | 175 | 0.2928 | 0.53 | | No log | 8.0 | 200 | 0.3079 | 0.63 | | No log | 9.0 | 225 | 0.2875 | 0.61 | | No log | 10.0 | 250 | 0.2906 | 0.54 | | No log | 11.0 | 275 | 0.2904 | 0.62 | | No log | 12.0 | 300 | 0.2946 | 0.52 | | No log | 13.0 | 325 | 0.2942 | 0.51 | | No log | 14.0 | 350 | 0.2935 | 0.56 | | No log | 15.0 | 375 | 0.2913 | 0.58 | | No log | 16.0 | 400 | 0.2886 | 0.6 | | No log | 17.0 | 425 | 0.2900 | 0.6 | | No log | 18.0 | 450 | 0.2874 | 0.59 | | No log | 19.0 | 475 | 0.2910 | 0.6 | | 0.6674 | 20.0 | 500 | 0.2931 | 0.47 | | 0.6674 | 21.0 | 525 | 0.2909 | 0.51 | | 0.6674 | 22.0 | 550 | 0.2855 | 0.62 | | 0.6674 | 23.0 | 575 | 0.2881 | 0.61 | | 0.6674 | 24.0 | 600 | 0.2878 | 0.6 | | 0.6674 | 25.0 | 625 | 0.2874 | 0.57 | | 0.6674 | 26.0 | 650 | 0.2857 | 0.54 | | 0.6674 | 27.0 | 675 | 0.2871 | 0.6 | | 0.6674 | 28.0 | 700 | 0.2864 | 0.59 | | 0.6674 | 29.0 | 725 | 0.2862 | 0.62 | | 0.6674 | 30.0 | 750 | 0.2866 | 0.58 | | 0.6674 | 31.0 | 775 | 0.2837 | 0.63 | | 0.6674 | 32.0 | 800 | 0.2859 | 0.58 | | 0.6674 | 33.0 | 825 | 0.2841 | 0.59 | | 0.6674 | 34.0 | 850 | 0.2878 | 0.62 | | 0.6674 | 35.0 | 875 | 0.2889 | 0.61 | | 0.6674 | 36.0 | 900 | 0.2830 | 0.59 | | 0.6674 | 37.0 | 925 | 0.2824 | 0.59 | | 0.6674 | 38.0 | 950 | 0.2801 | 0.63 | | 0.6674 | 39.0 | 975 | 0.2931 | 0.65 | | 0.5477 | 40.0 | 1000 | 0.2788 | 0.64 | | 0.5477 | 41.0 | 1025 | 0.2892 | 0.63 | | 0.5477 | 42.0 | 1050 | 0.2937 | 0.58 | | 0.5477 | 43.0 | 1075 | 0.2886 | 0.66 | | 0.5477 | 44.0 | 1100 | 0.2842 | 0.62 | | 0.5477 | 45.0 | 1125 | 0.2857 | 0.6 | | 0.5477 | 46.0 | 1150 | 0.2834 | 0.62 | | 0.5477 | 47.0 | 1175 | 0.2824 | 0.56 | | 0.5477 | 48.0 | 1200 | 0.2866 | 0.65 | | 0.5477 | 49.0 | 1225 | 0.2801 | 0.63 | | 0.5477 | 50.0 | 1250 | 0.2851 | 0.62 | | 0.5477 | 51.0 | 1275 | 0.2829 | 0.6 | | 0.5477 | 52.0 | 1300 | 0.2900 | 0.59 | | 0.5477 | 53.0 | 1325 | 0.2782 | 0.59 | | 0.5477 | 54.0 | 1350 | 0.2793 | 0.59 | | 0.5477 | 55.0 | 1375 | 0.2809 | 0.6 | | 0.5477 | 56.0 | 1400 | 0.2815 | 0.64 | | 0.5477 | 57.0 | 1425 | 0.2798 | 0.68 | | 0.5477 | 58.0 | 1450 | 0.2831 | 0.67 | | 0.5477 | 59.0 | 1475 | 0.2795 | 0.66 | | 0.4601 | 60.0 | 1500 | 0.2747 | 0.68 | | 0.4601 | 61.0 | 1525 | 0.2725 | 0.73 | | 0.4601 | 62.0 | 1550 | 0.2840 | 0.66 | | 0.4601 | 63.0 | 1575 | 0.2739 | 0.67 | | 0.4601 | 64.0 | 1600 | 0.2796 | 0.69 | | 0.4601 | 65.0 | 1625 | 0.2782 | 0.65 | | 0.4601 | 66.0 | 1650 | 0.2757 | 0.7 | | 0.4601 | 67.0 | 1675 | 0.2759 | 0.69 | | 0.4601 | 68.0 | 1700 | 0.2779 | 0.67 | | 0.4601 | 69.0 | 1725 | 0.2822 | 0.67 | | 0.4601 | 70.0 | 1750 | 0.2813 | 0.65 | | 0.4601 | 71.0 | 1775 | 0.2818 | 0.68 | | 0.4601 | 72.0 | 1800 | 0.2865 | 0.69 | | 0.4601 | 73.0 | 1825 | 0.2770 | 0.71 | | 0.4601 | 74.0 | 1850 | 0.2822 | 0.69 | | 0.4601 | 75.0 | 1875 | 0.2783 | 0.71 | | 0.4601 | 76.0 | 1900 | 0.2764 | 0.71 | | 0.4601 | 77.0 | 1925 | 0.2772 | 0.69 | | 0.4601 | 78.0 | 1950 | 0.2759 | 0.7 | | 0.4601 | 79.0 | 1975 | 0.2751 | 0.72 | | 0.4329 | 80.0 | 2000 | 0.2753 | 0.71 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_char_cv12_pad_lob100_low__0010
bigmorning
2023-08-26T08:39:44Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T08:39:36Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_char_cv12_pad_lob100_low__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_char_cv12_pad_lob100_low__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1749 - Train Accuracy: 0.1054 - Train Wermet: 2.8719 - Validation Loss: 0.3063 - Validation Accuracy: 0.0632 - Validation Wermet: 9.0257 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.3330 | 0.0999 | 1.7359 | 0.3779 | 0.0615 | 4.7471 | 0 | | 0.3093 | 0.1007 | 2.0563 | 0.3652 | 0.0618 | 7.2181 | 1 | | 0.2869 | 0.1015 | 2.0654 | 0.3539 | 0.0620 | 8.6857 | 2 | | 0.2672 | 0.1022 | 2.1925 | 0.3443 | 0.0623 | 8.0906 | 3 | | 0.2488 | 0.1028 | 2.3286 | 0.3305 | 0.0626 | 9.1756 | 4 | | 0.2316 | 0.1034 | 2.4212 | 0.3300 | 0.0626 | 8.1427 | 5 | | 0.2163 | 0.1039 | 2.5012 | 0.3183 | 0.0629 | 8.3043 | 6 | | 0.2018 | 0.1045 | 2.7267 | 0.3109 | 0.0631 | 9.5329 | 7 | | 0.1878 | 0.1050 | 2.7034 | 0.3053 | 0.0632 | 7.9014 | 8 | | 0.1749 | 0.1054 | 2.8719 | 0.3063 | 0.0632 | 9.0257 | 9 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
quoctrungle/llama2-qlora-finetunined-openassistant-guanaco
quoctrungle
2023-08-26T08:37:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T08:37:37Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
dkqjrm/20230826161130
dkqjrm
2023-08-26T08:29:42Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T07:11:48Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826161130' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826161130 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.1582 - Accuracy: 0.39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6392 | 0.43 | | No log | 2.0 | 50 | 0.1729 | 0.41 | | No log | 3.0 | 75 | 0.1658 | 0.61 | | No log | 4.0 | 100 | 0.1579 | 0.57 | | No log | 5.0 | 125 | 0.1678 | 0.4 | | No log | 6.0 | 150 | 0.1583 | 0.55 | | No log | 7.0 | 175 | 0.1650 | 0.6 | | No log | 8.0 | 200 | 0.1643 | 0.62 | | No log | 9.0 | 225 | 0.1594 | 0.48 | | No log | 10.0 | 250 | 0.1572 | 0.61 | | No log | 11.0 | 275 | 0.1660 | 0.4 | | No log | 12.0 | 300 | 0.1570 | 0.63 | | No log | 13.0 | 325 | 0.1589 | 0.51 | | No log | 14.0 | 350 | 0.1581 | 0.42 | | No log | 15.0 | 375 | 0.1582 | 0.5 | | No log | 16.0 | 400 | 0.1576 | 0.53 | | No log | 17.0 | 425 | 0.1580 | 0.52 | | No log | 18.0 | 450 | 0.1581 | 0.55 | | No log | 19.0 | 475 | 0.1583 | 0.45 | | 0.621 | 20.0 | 500 | 0.1606 | 0.52 | | 0.621 | 21.0 | 525 | 0.1583 | 0.52 | | 0.621 | 22.0 | 550 | 0.1573 | 0.49 | | 0.621 | 23.0 | 575 | 0.1582 | 0.43 | | 0.621 | 24.0 | 600 | 0.1581 | 0.53 | | 0.621 | 25.0 | 625 | 0.1582 | 0.49 | | 0.621 | 26.0 | 650 | 0.1582 | 0.5 | | 0.621 | 27.0 | 675 | 0.1583 | 0.53 | | 0.621 | 28.0 | 700 | 0.1586 | 0.47 | | 0.621 | 29.0 | 725 | 0.1585 | 0.48 | | 0.621 | 30.0 | 750 | 0.1584 | 0.46 | | 0.621 | 31.0 | 775 | 0.1582 | 0.55 | | 0.621 | 32.0 | 800 | 0.1582 | 0.53 | | 0.621 | 33.0 | 825 | 0.1583 | 0.51 | | 0.621 | 34.0 | 850 | 0.1585 | 0.39 | | 0.621 | 35.0 | 875 | 0.1582 | 0.69 | | 0.621 | 36.0 | 900 | 0.1583 | 0.48 | | 0.621 | 37.0 | 925 | 0.1582 | 0.61 | | 0.621 | 38.0 | 950 | 0.1580 | 0.63 | | 0.621 | 39.0 | 975 | 0.1581 | 0.47 | | 0.4969 | 40.0 | 1000 | 0.1582 | 0.49 | | 0.4969 | 41.0 | 1025 | 0.1583 | 0.49 | | 0.4969 | 42.0 | 1050 | 0.1583 | 0.47 | | 0.4969 | 43.0 | 1075 | 0.1581 | 0.52 | | 0.4969 | 44.0 | 1100 | 0.1584 | 0.47 | | 0.4969 | 45.0 | 1125 | 0.1584 | 0.35 | | 0.4969 | 46.0 | 1150 | 0.1582 | 0.56 | | 0.4969 | 47.0 | 1175 | 0.1582 | 0.54 | | 0.4969 | 48.0 | 1200 | 0.1582 | 0.53 | | 0.4969 | 49.0 | 1225 | 0.1582 | 0.56 | | 0.4969 | 50.0 | 1250 | 0.1582 | 0.54 | | 0.4969 | 51.0 | 1275 | 0.1582 | 0.57 | | 0.4969 | 52.0 | 1300 | 0.1582 | 0.52 | | 0.4969 | 53.0 | 1325 | 0.1581 | 0.59 | | 0.4969 | 54.0 | 1350 | 0.1582 | 0.55 | | 0.4969 | 55.0 | 1375 | 0.1585 | 0.41 | | 0.4969 | 56.0 | 1400 | 0.1584 | 0.45 | | 0.4969 | 57.0 | 1425 | 0.1583 | 0.54 | | 0.4969 | 58.0 | 1450 | 0.1583 | 0.41 | | 0.4969 | 59.0 | 1475 | 0.1583 | 0.42 | | 0.4428 | 60.0 | 1500 | 0.1583 | 0.4 | | 0.4428 | 61.0 | 1525 | 0.1583 | 0.59 | | 0.4428 | 62.0 | 1550 | 0.1582 | 0.65 | | 0.4428 | 63.0 | 1575 | 0.1581 | 0.64 | | 0.4428 | 64.0 | 1600 | 0.1581 | 0.59 | | 0.4428 | 65.0 | 1625 | 0.1583 | 0.42 | | 0.4428 | 66.0 | 1650 | 0.1582 | 0.5 | | 0.4428 | 67.0 | 1675 | 0.1583 | 0.43 | | 0.4428 | 68.0 | 1700 | 0.1584 | 0.39 | | 0.4428 | 69.0 | 1725 | 0.1583 | 0.5 | | 0.4428 | 70.0 | 1750 | 0.1583 | 0.49 | | 0.4428 | 71.0 | 1775 | 0.1583 | 0.48 | | 0.4428 | 72.0 | 1800 | 0.1584 | 0.29 | | 0.4428 | 73.0 | 1825 | 0.1583 | 0.4 | | 0.4428 | 74.0 | 1850 | 0.1582 | 0.59 | | 0.4428 | 75.0 | 1875 | 0.1582 | 0.59 | | 0.4428 | 76.0 | 1900 | 0.1582 | 0.53 | | 0.4428 | 77.0 | 1925 | 0.1583 | 0.33 | | 0.4428 | 78.0 | 1950 | 0.1583 | 0.35 | | 0.4428 | 79.0 | 1975 | 0.1583 | 0.36 | | 0.4082 | 80.0 | 2000 | 0.1582 | 0.39 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bedus-creation/eng-limbu-model-001
bedus-creation
2023-08-26T08:24:12Z
63
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-26T08:02:40Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_keras_callback model-index: - name: bedus-creation/eng-limbu-model-001 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # bedus-creation/eng-limbu-model-001 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5808 - Validation Loss: 0.4900 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.7083 | 0.5906 | 0 | | 0.6328 | 0.5323 | 1 | | 0.5808 | 0.4900 | 2 | ### Framework versions - Transformers 4.32.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
rishabh063/lora-trained-xl-monkey2
rishabh063
2023-08-26T08:14:03Z
1
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-26T07:33:58Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of snksnk Monkey tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - rishabh063/lora-trained-xl-monkey2 These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of snksnk Monkey using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
rks33/bert-finetuned-squad
rks33
2023-08-26T08:11:57Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-25T17:05:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jlpan/starcoder-js2py-snippet2
jlpan
2023-08-26T07:33:30Z
0
0
null
[ "generated_from_trainer", "base_model:bigcode/starcoder", "base_model:finetune:bigcode/starcoder", "license:bigcode-openrail-m", "region:us" ]
null
2023-08-26T06:09:31Z
--- license: bigcode-openrail-m base_model: bigcode/starcoder tags: - generated_from_trainer model-index: - name: starcoder-js2py-snippet2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # starcoder-js2py-snippet2 This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.2152 | 0.17 | 25 | 0.2018 | | 0.2156 | 0.33 | 50 | 0.1978 | | 0.2093 | 0.5 | 75 | 0.1960 | | 0.2013 | 0.67 | 100 | 0.1954 | | 0.1836 | 1.02 | 125 | 0.1949 | | 0.2036 | 1.19 | 150 | 0.1941 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
chunwoolee0/mt5_small_wmt16_de_en
chunwoolee0
2023-08-26T07:33:15Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-23T15:30:29Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - wmt16 metrics: - rouge - sacrebleu model-index: - name: mt5_small_wmt16_de_en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 config: de-en split: validation args: de-en metrics: - name: Rouge1 type: rouge value: 0.3666 - name: Sacrebleu type: sacrebleu value: 6.4622 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_small_wmt16_de_en This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 2.4612 - Rouge1: 0.3666 - Rouge2: 0.147 - Rougel: 0.3362 - Sacrebleu: 6.4622 ## Model description Multilingual T5 (mT5) is a massively multilingual pretrained text-to-text transformer model, trained following a similar recipe as T5. ## Intended uses & limitations This is tried to be familiarized with the mt5 model in order to use it for the translation of English to Korean. ## Training and evaluation data This work was done as an exercise for English-Korean translation, so I trained by selecting only very small part of a very large original dataset. Therefore, the quality is not expected to be very good. 이 일은 영어 한국어 번역을 위한 연습으로 한 것이기 때문에 매우 큰 원 dataset에서 아주 작은 크기만의 글뭉치만 선택을 해서 훈련을 했다. 따라서 질은 그리 좋지 않을 것으로 예상된다. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.3059 | 1.6 | 500 | 2.5597 | 0.3398 | 0.1261 | 0.3068 | 5.5524 | | 2.4093 | 3.2 | 1000 | 2.4996 | 0.3609 | 0.144 | 0.3304 | 6.2002 | | 2.2322 | 4.8 | 1500 | 2.4612 | 0.3666 | 0.147 | 0.3362 | 6.4622 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dt-and-vanilla-ardt/ardt-vanilla-arrl_train_walker2d_high-2608_0712-33
dt-and-vanilla-ardt
2023-08-26T07:32:30Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T06:14:29Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-arrl_train_walker2d_high-2608_0712-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-arrl_train_walker2d_high-2608_0712-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
GrantW65/q-taxi-v3
GrantW65
2023-08-26T07:20:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T07:20:52Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="GrantW65/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
geekedits/absoluterealityimpainting
geekedits
2023-08-26T07:17:15Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-26T06:54:13Z
--- license: bigscience-openrail-m ---
Andyrasika/donut-base-sroie
Andyrasika
2023-08-26T06:55:46Z
46
1
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:darentang/sroie", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-26T05:14:52Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - darentang/sroie model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description Donut 🍩, Document understanding transformer, is a new method of document understanding that utilizes an OCR-free end-to-end Transformer model. Donut does not require off-the-shelf OCR engines/APIs, yet it shows state-of-the-art performances on various visual document understanding tasks, such as visual document classification or information extraction (a.k.a. document parsing). ## Intended uses & limitations Basic Donut model ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
chunwoolee0/mt5_small_kde4_en_ko
chunwoolee0
2023-08-26T06:13:46Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "dataset:kde4", "base_model:google/mt5-small", "base_model:finetune:google/mt5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-24T07:06:08Z
--- license: apache-2.0 base_model: google/mt5-small tags: - generated_from_trainer datasets: - kde4 metrics: - rouge - sacrebleu model-index: - name: mt5_small_kde4_en_ko results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-ko split: train args: en-ko metrics: - name: Rouge1 type: rouge value: 0.0832 - name: Sacrebleu type: sacrebleu value: 3.3559 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_small_kde4_en_ko This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 3.1644 - Rouge1: 0.0832 - Rouge2: 0.0195 - Rougel: 0.0826 - Sacrebleu: 3.3559 ## Model description This model tries to achieve translation from English to Korean using google's mt5 multilingual model. ## Intended uses & limitations Translation from English to Korean ## Usage You can use this model directly with a pipeline for translation language modeling: ```python >>> from transformers import pipeline >>> translator = pipeline('translation', model='chunwoolee0/ke_t5_base_bongsoo_en_ko') >>> translator("Let us go for a walk after lunch.") [{'translation_text': '오류를 방문하십시오.'}] The translation fails completely. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Sacrebleu | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 15.8735 | 0.46 | 500 | 6.5322 | 0.0101 | 0.0004 | 0.0102 | 0.464 | | 7.183 | 0.93 | 1000 | 4.2298 | 0.0203 | 0.0012 | 0.02 | 0.6102 | | 5.4447 | 1.39 | 1500 | 3.5600 | 0.0399 | 0.005 | 0.0396 | 1.5798 | | 4.8372 | 1.85 | 2000 | 3.3343 | 0.0537 | 0.0088 | 0.0533 | 3.0115 | | 4.5579 | 2.32 | 2500 | 3.2131 | 0.0732 | 0.016 | 0.0729 | 3.3743 | | 4.4532 | 2.78 | 3000 | 3.1644 | 0.0832 | 0.0195 | 0.0826 | 3.3559 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jlpan/starcoder-js2py-snippet1
jlpan
2023-08-26T06:00:15Z
3
0
peft
[ "peft", "generated_from_trainer", "base_model:bigcode/starcoder", "base_model:adapter:bigcode/starcoder", "license:bigcode-openrail-m", "region:us" ]
null
2023-08-26T02:55:19Z
--- license: bigcode-openrail-m base_model: bigcode/starcoder tags: - generated_from_trainer model-index: - name: starcoder-js2py-snippet1 results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # starcoder-js2py-snippet1 This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3304 | 0.17 | 25 | 0.5020 | | 0.3296 | 0.33 | 50 | 0.2289 | | 0.2341 | 0.5 | 75 | 0.2134 | | 0.2193 | 0.67 | 100 | 0.2088 | | 0.1989 | 1.02 | 125 | 0.2066 | | 0.2187 | 1.19 | 150 | 0.2059 | ### Framework versions - PEFT 0.5.0.dev0 - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
matgu23/rlst
matgu23
2023-08-26T05:52:56Z
0
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-26T05:47:59Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### rlst Dreambooth model trained by matgu23 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
dkqjrm/20230826130711
dkqjrm
2023-08-26T05:26:14Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T04:07:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826130711' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826130711 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2867 - Accuracy: 0.62 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.2952 | 0.64 | | No log | 2.0 | 50 | 0.2895 | 0.57 | | No log | 3.0 | 75 | 0.2922 | 0.61 | | No log | 4.0 | 100 | 0.2938 | 0.64 | | No log | 5.0 | 125 | 0.2885 | 0.63 | | No log | 6.0 | 150 | 0.2945 | 0.48 | | No log | 7.0 | 175 | 0.2860 | 0.67 | | No log | 8.0 | 200 | 0.2888 | 0.66 | | No log | 9.0 | 225 | 0.2894 | 0.51 | | No log | 10.0 | 250 | 0.2903 | 0.56 | | No log | 11.0 | 275 | 0.2868 | 0.66 | | No log | 12.0 | 300 | 0.2880 | 0.66 | | No log | 13.0 | 325 | 0.2947 | 0.54 | | No log | 14.0 | 350 | 0.2957 | 0.64 | | No log | 15.0 | 375 | 0.2877 | 0.66 | | No log | 16.0 | 400 | 0.2865 | 0.68 | | No log | 17.0 | 425 | 0.2850 | 0.69 | | No log | 18.0 | 450 | 0.2846 | 0.66 | | No log | 19.0 | 475 | 0.2911 | 0.59 | | 0.4684 | 20.0 | 500 | 0.2961 | 0.64 | | 0.4684 | 21.0 | 525 | 0.2872 | 0.63 | | 0.4684 | 22.0 | 550 | 0.2880 | 0.64 | | 0.4684 | 23.0 | 575 | 0.2951 | 0.51 | | 0.4684 | 24.0 | 600 | 0.2897 | 0.64 | | 0.4684 | 25.0 | 625 | 0.2884 | 0.64 | | 0.4684 | 26.0 | 650 | 0.2895 | 0.64 | | 0.4684 | 27.0 | 675 | 0.2872 | 0.61 | | 0.4684 | 28.0 | 700 | 0.2890 | 0.64 | | 0.4684 | 29.0 | 725 | 0.2887 | 0.66 | | 0.4684 | 30.0 | 750 | 0.2886 | 0.63 | | 0.4684 | 31.0 | 775 | 0.2875 | 0.6 | | 0.4684 | 32.0 | 800 | 0.2882 | 0.65 | | 0.4684 | 33.0 | 825 | 0.2886 | 0.58 | | 0.4684 | 34.0 | 850 | 0.2970 | 0.64 | | 0.4684 | 35.0 | 875 | 0.2875 | 0.59 | | 0.4684 | 36.0 | 900 | 0.2888 | 0.63 | | 0.4684 | 37.0 | 925 | 0.2868 | 0.63 | | 0.4684 | 38.0 | 950 | 0.2863 | 0.64 | | 0.4684 | 39.0 | 975 | 0.2911 | 0.63 | | 0.4634 | 40.0 | 1000 | 0.2867 | 0.63 | | 0.4634 | 41.0 | 1025 | 0.2936 | 0.54 | | 0.4634 | 42.0 | 1050 | 0.2965 | 0.6 | | 0.4634 | 43.0 | 1075 | 0.2872 | 0.62 | | 0.4634 | 44.0 | 1100 | 0.2862 | 0.65 | | 0.4634 | 45.0 | 1125 | 0.2871 | 0.65 | | 0.4634 | 46.0 | 1150 | 0.2914 | 0.63 | | 0.4634 | 47.0 | 1175 | 0.2925 | 0.64 | | 0.4634 | 48.0 | 1200 | 0.2883 | 0.64 | | 0.4634 | 49.0 | 1225 | 0.2896 | 0.65 | | 0.4634 | 50.0 | 1250 | 0.2866 | 0.64 | | 0.4634 | 51.0 | 1275 | 0.2857 | 0.64 | | 0.4634 | 52.0 | 1300 | 0.2892 | 0.64 | | 0.4634 | 53.0 | 1325 | 0.2861 | 0.65 | | 0.4634 | 54.0 | 1350 | 0.2861 | 0.63 | | 0.4634 | 55.0 | 1375 | 0.2872 | 0.65 | | 0.4634 | 56.0 | 1400 | 0.2861 | 0.64 | | 0.4634 | 57.0 | 1425 | 0.2865 | 0.65 | | 0.4634 | 58.0 | 1450 | 0.2880 | 0.63 | | 0.4634 | 59.0 | 1475 | 0.2898 | 0.63 | | 0.4583 | 60.0 | 1500 | 0.2900 | 0.63 | | 0.4583 | 61.0 | 1525 | 0.2896 | 0.64 | | 0.4583 | 62.0 | 1550 | 0.2886 | 0.63 | | 0.4583 | 63.0 | 1575 | 0.2888 | 0.63 | | 0.4583 | 64.0 | 1600 | 0.2891 | 0.64 | | 0.4583 | 65.0 | 1625 | 0.2874 | 0.63 | | 0.4583 | 66.0 | 1650 | 0.2875 | 0.62 | | 0.4583 | 67.0 | 1675 | 0.2882 | 0.62 | | 0.4583 | 68.0 | 1700 | 0.2863 | 0.62 | | 0.4583 | 69.0 | 1725 | 0.2867 | 0.63 | | 0.4583 | 70.0 | 1750 | 0.2865 | 0.64 | | 0.4583 | 71.0 | 1775 | 0.2863 | 0.64 | | 0.4583 | 72.0 | 1800 | 0.2862 | 0.64 | | 0.4583 | 73.0 | 1825 | 0.2864 | 0.64 | | 0.4583 | 74.0 | 1850 | 0.2862 | 0.64 | | 0.4583 | 75.0 | 1875 | 0.2866 | 0.64 | | 0.4583 | 76.0 | 1900 | 0.2868 | 0.63 | | 0.4583 | 77.0 | 1925 | 0.2866 | 0.63 | | 0.4583 | 78.0 | 1950 | 0.2867 | 0.63 | | 0.4583 | 79.0 | 1975 | 0.2867 | 0.62 | | 0.4597 | 80.0 | 2000 | 0.2867 | 0.62 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
leiniscool/minarealvoice
leiniscool
2023-08-26T05:18:10Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-08-26T05:16:00Z
--- license: bigscience-openrail-m ---
MStarn/q-FrozenLake-v1-4x4-noSlippery
MStarn
2023-08-26T05:14:36Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T04:46:44Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MStarn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
kldsnflewf/llama2-7b-qlora-finetunined-openassistant-guanaco
kldsnflewf
2023-08-26T05:09:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-24T19:32:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0
dkqjrm/20230826123019
dkqjrm
2023-08-26T05:01:06Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T03:30:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826123019' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826123019 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5900 - Accuracy: 0.65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6011 | 0.66 | | No log | 2.0 | 50 | 0.5991 | 0.65 | | No log | 3.0 | 75 | 0.5983 | 0.65 | | No log | 4.0 | 100 | 0.6063 | 0.65 | | No log | 5.0 | 125 | 0.5973 | 0.65 | | No log | 6.0 | 150 | 0.6049 | 0.65 | | No log | 7.0 | 175 | 0.6031 | 0.65 | | No log | 8.0 | 200 | 0.6001 | 0.65 | | No log | 9.0 | 225 | 0.5969 | 0.64 | | No log | 10.0 | 250 | 0.6007 | 0.65 | | No log | 11.0 | 275 | 0.6016 | 0.65 | | No log | 12.0 | 300 | 0.5992 | 0.65 | | No log | 13.0 | 325 | 0.5968 | 0.65 | | No log | 14.0 | 350 | 0.5968 | 0.65 | | No log | 15.0 | 375 | 0.6000 | 0.65 | | No log | 16.0 | 400 | 0.6000 | 0.65 | | No log | 17.0 | 425 | 0.5883 | 0.66 | | No log | 18.0 | 450 | 0.5920 | 0.65 | | No log | 19.0 | 475 | 0.6035 | 0.62 | | 0.6519 | 20.0 | 500 | 0.6075 | 0.64 | | 0.6519 | 21.0 | 525 | 0.5919 | 0.65 | | 0.6519 | 22.0 | 550 | 0.5951 | 0.63 | | 0.6519 | 23.0 | 575 | 0.6037 | 0.61 | | 0.6519 | 24.0 | 600 | 0.6058 | 0.62 | | 0.6519 | 25.0 | 625 | 0.5944 | 0.65 | | 0.6519 | 26.0 | 650 | 0.5938 | 0.65 | | 0.6519 | 27.0 | 675 | 0.5909 | 0.66 | | 0.6519 | 28.0 | 700 | 0.5914 | 0.65 | | 0.6519 | 29.0 | 725 | 0.5902 | 0.66 | | 0.6519 | 30.0 | 750 | 0.5906 | 0.66 | | 0.6519 | 31.0 | 775 | 0.5936 | 0.65 | | 0.6519 | 32.0 | 800 | 0.5960 | 0.66 | | 0.6519 | 33.0 | 825 | 0.5953 | 0.65 | | 0.6519 | 34.0 | 850 | 0.5970 | 0.65 | | 0.6519 | 35.0 | 875 | 0.5937 | 0.65 | | 0.6519 | 36.0 | 900 | 0.5954 | 0.64 | | 0.6519 | 37.0 | 925 | 0.5993 | 0.63 | | 0.6519 | 38.0 | 950 | 0.5905 | 0.65 | | 0.6519 | 39.0 | 975 | 0.5898 | 0.65 | | 0.6395 | 40.0 | 1000 | 0.5947 | 0.65 | | 0.6395 | 41.0 | 1025 | 0.5966 | 0.64 | | 0.6395 | 42.0 | 1050 | 0.5953 | 0.65 | | 0.6395 | 43.0 | 1075 | 0.5968 | 0.64 | | 0.6395 | 44.0 | 1100 | 0.5934 | 0.65 | | 0.6395 | 45.0 | 1125 | 0.5948 | 0.66 | | 0.6395 | 46.0 | 1150 | 0.5958 | 0.65 | | 0.6395 | 47.0 | 1175 | 0.5928 | 0.65 | | 0.6395 | 48.0 | 1200 | 0.5922 | 0.65 | | 0.6395 | 49.0 | 1225 | 0.5929 | 0.65 | | 0.6395 | 50.0 | 1250 | 0.5967 | 0.64 | | 0.6395 | 51.0 | 1275 | 0.5908 | 0.65 | | 0.6395 | 52.0 | 1300 | 0.5930 | 0.66 | | 0.6395 | 53.0 | 1325 | 0.5910 | 0.65 | | 0.6395 | 54.0 | 1350 | 0.5931 | 0.65 | | 0.6395 | 55.0 | 1375 | 0.5900 | 0.66 | | 0.6395 | 56.0 | 1400 | 0.5925 | 0.65 | | 0.6395 | 57.0 | 1425 | 0.5938 | 0.66 | | 0.6395 | 58.0 | 1450 | 0.5963 | 0.65 | | 0.6395 | 59.0 | 1475 | 0.5955 | 0.64 | | 0.6331 | 60.0 | 1500 | 0.5935 | 0.65 | | 0.6331 | 61.0 | 1525 | 0.5937 | 0.66 | | 0.6331 | 62.0 | 1550 | 0.5924 | 0.65 | | 0.6331 | 63.0 | 1575 | 0.5909 | 0.65 | | 0.6331 | 64.0 | 1600 | 0.5891 | 0.65 | | 0.6331 | 65.0 | 1625 | 0.5881 | 0.65 | | 0.6331 | 66.0 | 1650 | 0.5884 | 0.65 | | 0.6331 | 67.0 | 1675 | 0.5893 | 0.65 | | 0.6331 | 68.0 | 1700 | 0.5900 | 0.65 | | 0.6331 | 69.0 | 1725 | 0.5908 | 0.65 | | 0.6331 | 70.0 | 1750 | 0.5912 | 0.65 | | 0.6331 | 71.0 | 1775 | 0.5914 | 0.65 | | 0.6331 | 72.0 | 1800 | 0.5901 | 0.65 | | 0.6331 | 73.0 | 1825 | 0.5898 | 0.65 | | 0.6331 | 74.0 | 1850 | 0.5896 | 0.65 | | 0.6331 | 75.0 | 1875 | 0.5905 | 0.65 | | 0.6331 | 76.0 | 1900 | 0.5901 | 0.65 | | 0.6331 | 77.0 | 1925 | 0.5901 | 0.65 | | 0.6331 | 78.0 | 1950 | 0.5900 | 0.65 | | 0.6331 | 79.0 | 1975 | 0.5900 | 0.65 | | 0.6276 | 80.0 | 2000 | 0.5900 | 0.65 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
mangostin2010/KangLuda
mangostin2010
2023-08-26T04:49:14Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-26T04:49:07Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
TFMUNIR/distilbert-base-uncased-finetuned-emotion-movies-186k
TFMUNIR
2023-08-26T04:42:52Z
106
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T22:00:46Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion-movies-186k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion-movies-186k This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on a 186k movie reviews/emotions self-collected dataset from 1150 movies from TMDB. It achieves the following results on the evaluation set: - Loss: 0.3572 - Accuracy: 0.8635 - F1: 0.8637 ## Model description The model classifies into the following emotions: - 'LABEL_0': 'sadness' - 'LABEL_1': 'joy' - 'LABEL_2': 'love' - 'LABEL_3': 'anger' - 'LABEL_4': 'fear' - 'LABEL_5': 'surprise' ## Intended uses & limitations Academic ## Training and evaluation data The model was trained with a dataset (186k rows) of movies reviews/emotions from 1150 movies from TMDB, taking 20% for testing. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.4956 | 1.0 | 5828 | 0.3770 | 0.8531 | 0.8513 | | 0.3035 | 2.0 | 11656 | 0.3572 | 0.8635 | 0.8637 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gruber/e5-small-v2-ggml
gruber
2023-08-26T04:41:34Z
0
0
null
[ "bert", "mteb", "bert.cpp", "ggml", "sentence-similarity", "en", "arxiv:2212.03533", "license:mit", "region:us" ]
sentence-similarity
2023-08-26T03:01:48Z
--- license: mit language: - en pipeline_tag: sentence-similarity tags: - bert - mteb - bert.cpp - ggml --- # Model details This repository contains the files used on [intfloat/e5-small-v2](https://huggingface.co/intfloat/e5-small-v2) converted to **GGML** to be used on the [bert.cpp backend](https://github.com/skeskinen/bert.cpp). > - [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). > - Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 > - This model has 12 layers and the embedding size is 384. --- ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
dkqjrm/20230826121217
dkqjrm
2023-08-26T04:30:51Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T03:12:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826121217' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826121217 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4150 - Accuracy: 0.63 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.4146 | 0.66 | | No log | 2.0 | 50 | 0.4116 | 0.66 | | No log | 3.0 | 75 | 0.4139 | 0.66 | | No log | 4.0 | 100 | 0.4170 | 0.64 | | No log | 5.0 | 125 | 0.4182 | 0.65 | | No log | 6.0 | 150 | 0.4208 | 0.57 | | No log | 7.0 | 175 | 0.4115 | 0.66 | | No log | 8.0 | 200 | 0.4157 | 0.66 | | No log | 9.0 | 225 | 0.4229 | 0.64 | | No log | 10.0 | 250 | 0.4205 | 0.65 | | No log | 11.0 | 275 | 0.4178 | 0.64 | | No log | 12.0 | 300 | 0.4131 | 0.67 | | No log | 13.0 | 325 | 0.4146 | 0.65 | | No log | 14.0 | 350 | 0.4202 | 0.63 | | No log | 15.0 | 375 | 0.4331 | 0.62 | | No log | 16.0 | 400 | 0.4120 | 0.66 | | No log | 17.0 | 425 | 0.4144 | 0.63 | | No log | 18.0 | 450 | 0.4182 | 0.64 | | No log | 19.0 | 475 | 0.4184 | 0.59 | | 0.5392 | 20.0 | 500 | 0.4161 | 0.65 | | 0.5392 | 21.0 | 525 | 0.4185 | 0.64 | | 0.5392 | 22.0 | 550 | 0.4187 | 0.59 | | 0.5392 | 23.0 | 575 | 0.4186 | 0.62 | | 0.5392 | 24.0 | 600 | 0.4159 | 0.65 | | 0.5392 | 25.0 | 625 | 0.4152 | 0.64 | | 0.5392 | 26.0 | 650 | 0.4151 | 0.62 | | 0.5392 | 27.0 | 675 | 0.4136 | 0.63 | | 0.5392 | 28.0 | 700 | 0.4190 | 0.65 | | 0.5392 | 29.0 | 725 | 0.4225 | 0.61 | | 0.5392 | 30.0 | 750 | 0.4209 | 0.57 | | 0.5392 | 31.0 | 775 | 0.4167 | 0.63 | | 0.5392 | 32.0 | 800 | 0.4153 | 0.62 | | 0.5392 | 33.0 | 825 | 0.4236 | 0.6 | | 0.5392 | 34.0 | 850 | 0.4191 | 0.58 | | 0.5392 | 35.0 | 875 | 0.4160 | 0.61 | | 0.5392 | 36.0 | 900 | 0.4163 | 0.62 | | 0.5392 | 37.0 | 925 | 0.4193 | 0.59 | | 0.5392 | 38.0 | 950 | 0.4208 | 0.62 | | 0.5392 | 39.0 | 975 | 0.4163 | 0.6 | | 0.5359 | 40.0 | 1000 | 0.4159 | 0.6 | | 0.5359 | 41.0 | 1025 | 0.4146 | 0.62 | | 0.5359 | 42.0 | 1050 | 0.4158 | 0.6 | | 0.5359 | 43.0 | 1075 | 0.4211 | 0.59 | | 0.5359 | 44.0 | 1100 | 0.4203 | 0.59 | | 0.5359 | 45.0 | 1125 | 0.4217 | 0.57 | | 0.5359 | 46.0 | 1150 | 0.4183 | 0.6 | | 0.5359 | 47.0 | 1175 | 0.4138 | 0.63 | | 0.5359 | 48.0 | 1200 | 0.4124 | 0.63 | | 0.5359 | 49.0 | 1225 | 0.4140 | 0.63 | | 0.5359 | 50.0 | 1250 | 0.4118 | 0.64 | | 0.5359 | 51.0 | 1275 | 0.4137 | 0.62 | | 0.5359 | 52.0 | 1300 | 0.4113 | 0.63 | | 0.5359 | 53.0 | 1325 | 0.4112 | 0.62 | | 0.5359 | 54.0 | 1350 | 0.4140 | 0.63 | | 0.5359 | 55.0 | 1375 | 0.4129 | 0.64 | | 0.5359 | 56.0 | 1400 | 0.4151 | 0.64 | | 0.5359 | 57.0 | 1425 | 0.4155 | 0.63 | | 0.5359 | 58.0 | 1450 | 0.4140 | 0.63 | | 0.5359 | 59.0 | 1475 | 0.4145 | 0.64 | | 0.5347 | 60.0 | 1500 | 0.4158 | 0.63 | | 0.5347 | 61.0 | 1525 | 0.4148 | 0.62 | | 0.5347 | 62.0 | 1550 | 0.4147 | 0.6 | | 0.5347 | 63.0 | 1575 | 0.4153 | 0.64 | | 0.5347 | 64.0 | 1600 | 0.4156 | 0.63 | | 0.5347 | 65.0 | 1625 | 0.4152 | 0.64 | | 0.5347 | 66.0 | 1650 | 0.4146 | 0.64 | | 0.5347 | 67.0 | 1675 | 0.4151 | 0.64 | | 0.5347 | 68.0 | 1700 | 0.4145 | 0.61 | | 0.5347 | 69.0 | 1725 | 0.4153 | 0.61 | | 0.5347 | 70.0 | 1750 | 0.4147 | 0.64 | | 0.5347 | 71.0 | 1775 | 0.4146 | 0.64 | | 0.5347 | 72.0 | 1800 | 0.4134 | 0.62 | | 0.5347 | 73.0 | 1825 | 0.4140 | 0.63 | | 0.5347 | 74.0 | 1850 | 0.4141 | 0.64 | | 0.5347 | 75.0 | 1875 | 0.4151 | 0.63 | | 0.5347 | 76.0 | 1900 | 0.4150 | 0.62 | | 0.5347 | 77.0 | 1925 | 0.4148 | 0.61 | | 0.5347 | 78.0 | 1950 | 0.4149 | 0.62 | | 0.5347 | 79.0 | 1975 | 0.4150 | 0.63 | | 0.5285 | 80.0 | 2000 | 0.4150 | 0.63 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Yorai/detr-resnet-50_finetuned_cppe5
Yorai
2023-08-26T04:28:16Z
190
0
transformers
[ "transformers", "pytorch", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-08-26T03:26:39Z
--- license: apache-2.0 base_model: facebook/detr-resnet-50 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
tranvancuong2597/q-FrozenLake-v1-4x4-noSlippery
tranvancuong2597
2023-08-26T04:27:00Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-26T04:26:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tranvancuong2597/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AIBunCho/japanese-novel-gpt-j-6b
AIBunCho
2023-08-26T04:20:51Z
78
36
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "ja", "dataset:cc100", "license:openrail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-11T00:52:32Z
--- license: openrail datasets: - cc100 language: - ja pipeline_tag: text-generation --- # AIBunCho/japanese-novel-gpt-j-6b [AI BunCho](https://bun-cho.work/)で利用しているモデルです。2021年に作った小説用言語モデルです。 ## Model Details GPT-J-6BをTPUで2週間日本語tokenizerを用いて日本語データで事前学習し、その後2週間小説データで転移学習したものです。 ## Uses Google colabのT4 High-RAMで動作確認しています。 ``` pip install transformers sentencepiece accelerate ``` ```python from transformers import GPTJForCausalLM, AlbertTokenizer import torch tokenizer = AlbertTokenizer.from_pretrained('AIBunCho/japanese-novel-gpt-j-6b', keep_accents=True, remove_space=False) model = GPTJForCausalLM.from_pretrained("AIBunCho/japanese-novel-gpt-j-6b", torch_dtype=torch.float16, low_cpu_mem_usage=True) model.half() model.eval() if torch.cuda.is_available(): model = model.to("cuda") prompt = """ わたくしといふ現象は """.strip() input_ids = tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt" ).cuda() # this is for reproducibility. # feel free to change to get different result seed = 27 torch.manual_seed(seed) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=32, temperature=0.6, top_p=0.9, repetition_penalty=1.2, do_sample=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) """わたくしといふ現象は、その因果律を断ち切ることができるのです。""" ``` ## Bias, Risks, and Limitations The pre-training dataset may have contained offensive or inappropriate content even after applying data cleansing filters which can be reflected in the model generated text. We recommend users exercise reasonable caution when using these models in production systems. Do not use the model for any applications that may cause harm or distress to individuals or groups. ### Training Data cc100の日本語データ Wikipedia その他webデータ ## Author X(旧Twitter): [@OsoneHiroyuki](https://twitter.com/OsoneHiroyuki) ## Acknowledgements [Google TPU research cloud](https://sites.research.google/trc/about/)の支援を受けて学習を行いました。 ## Appendix 2023/08/26追記 AIBunCho/japanese-novel-gpt-j-6bの1000DLを記念してAI BunChoプランの50%オフクーポンを配布しています 【HF1000DL】を入力するとどのプランでも50%オフになります
dt-and-vanilla-ardt/ardt-vanilla-combo_train_walker2d_v2-2608_0328-66
dt-and-vanilla-ardt
2023-08-26T04:19:44Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T02:29:56Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-combo_train_walker2d_v2-2608_0328-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-combo_train_walker2d_v2-2608_0328-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230826114726
dkqjrm
2023-08-26T04:06:58Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T02:47:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826114726' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826114726 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2883 - Accuracy: 0.59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.2910 | 0.6 | | No log | 2.0 | 50 | 0.2911 | 0.64 | | No log | 3.0 | 75 | 0.2875 | 0.65 | | No log | 4.0 | 100 | 0.2909 | 0.62 | | No log | 5.0 | 125 | 0.2935 | 0.62 | | No log | 6.0 | 150 | 0.2977 | 0.58 | | No log | 7.0 | 175 | 0.2854 | 0.65 | | No log | 8.0 | 200 | 0.2900 | 0.65 | | No log | 9.0 | 225 | 0.2985 | 0.53 | | No log | 10.0 | 250 | 0.2906 | 0.64 | | No log | 11.0 | 275 | 0.2979 | 0.63 | | No log | 12.0 | 300 | 0.2891 | 0.63 | | No log | 13.0 | 325 | 0.2885 | 0.63 | | No log | 14.0 | 350 | 0.2904 | 0.64 | | No log | 15.0 | 375 | 0.3056 | 0.58 | | No log | 16.0 | 400 | 0.2860 | 0.65 | | No log | 17.0 | 425 | 0.2887 | 0.62 | | No log | 18.0 | 450 | 0.2968 | 0.59 | | No log | 19.0 | 475 | 0.2927 | 0.51 | | 0.4646 | 20.0 | 500 | 0.2887 | 0.59 | | 0.4646 | 21.0 | 525 | 0.2917 | 0.62 | | 0.4646 | 22.0 | 550 | 0.2940 | 0.53 | | 0.4646 | 23.0 | 575 | 0.2914 | 0.58 | | 0.4646 | 24.0 | 600 | 0.2875 | 0.61 | | 0.4646 | 25.0 | 625 | 0.2928 | 0.63 | | 0.4646 | 26.0 | 650 | 0.2887 | 0.57 | | 0.4646 | 27.0 | 675 | 0.2871 | 0.58 | | 0.4646 | 28.0 | 700 | 0.2925 | 0.64 | | 0.4646 | 29.0 | 725 | 0.2963 | 0.6 | | 0.4646 | 30.0 | 750 | 0.2922 | 0.56 | | 0.4646 | 31.0 | 775 | 0.2902 | 0.59 | | 0.4646 | 32.0 | 800 | 0.2885 | 0.59 | | 0.4646 | 33.0 | 825 | 0.2940 | 0.57 | | 0.4646 | 34.0 | 850 | 0.2912 | 0.53 | | 0.4646 | 35.0 | 875 | 0.2879 | 0.59 | | 0.4646 | 36.0 | 900 | 0.2880 | 0.59 | | 0.4646 | 37.0 | 925 | 0.2945 | 0.47 | | 0.4646 | 38.0 | 950 | 0.2918 | 0.6 | | 0.4646 | 39.0 | 975 | 0.2887 | 0.58 | | 0.4656 | 40.0 | 1000 | 0.2874 | 0.59 | | 0.4656 | 41.0 | 1025 | 0.2898 | 0.56 | | 0.4656 | 42.0 | 1050 | 0.2897 | 0.59 | | 0.4656 | 43.0 | 1075 | 0.2924 | 0.5 | | 0.4656 | 44.0 | 1100 | 0.2898 | 0.58 | | 0.4656 | 45.0 | 1125 | 0.2921 | 0.58 | | 0.4656 | 46.0 | 1150 | 0.2895 | 0.56 | | 0.4656 | 47.0 | 1175 | 0.2862 | 0.59 | | 0.4656 | 48.0 | 1200 | 0.2869 | 0.57 | | 0.4656 | 49.0 | 1225 | 0.2855 | 0.61 | | 0.4656 | 50.0 | 1250 | 0.2859 | 0.59 | | 0.4656 | 51.0 | 1275 | 0.2899 | 0.58 | | 0.4656 | 52.0 | 1300 | 0.2851 | 0.59 | | 0.4656 | 53.0 | 1325 | 0.2852 | 0.61 | | 0.4656 | 54.0 | 1350 | 0.2887 | 0.6 | | 0.4656 | 55.0 | 1375 | 0.2870 | 0.59 | | 0.4656 | 56.0 | 1400 | 0.2895 | 0.63 | | 0.4656 | 57.0 | 1425 | 0.2893 | 0.62 | | 0.4656 | 58.0 | 1450 | 0.2891 | 0.63 | | 0.4656 | 59.0 | 1475 | 0.2890 | 0.62 | | 0.4637 | 60.0 | 1500 | 0.2890 | 0.62 | | 0.4637 | 61.0 | 1525 | 0.2883 | 0.59 | | 0.4637 | 62.0 | 1550 | 0.2882 | 0.58 | | 0.4637 | 63.0 | 1575 | 0.2883 | 0.63 | | 0.4637 | 64.0 | 1600 | 0.2884 | 0.59 | | 0.4637 | 65.0 | 1625 | 0.2876 | 0.63 | | 0.4637 | 66.0 | 1650 | 0.2871 | 0.62 | | 0.4637 | 67.0 | 1675 | 0.2879 | 0.6 | | 0.4637 | 68.0 | 1700 | 0.2879 | 0.58 | | 0.4637 | 69.0 | 1725 | 0.2877 | 0.59 | | 0.4637 | 70.0 | 1750 | 0.2871 | 0.6 | | 0.4637 | 71.0 | 1775 | 0.2875 | 0.6 | | 0.4637 | 72.0 | 1800 | 0.2870 | 0.59 | | 0.4637 | 73.0 | 1825 | 0.2875 | 0.59 | | 0.4637 | 74.0 | 1850 | 0.2879 | 0.59 | | 0.4637 | 75.0 | 1875 | 0.2887 | 0.59 | | 0.4637 | 76.0 | 1900 | 0.2883 | 0.59 | | 0.4637 | 77.0 | 1925 | 0.2882 | 0.58 | | 0.4637 | 78.0 | 1950 | 0.2883 | 0.59 | | 0.4637 | 79.0 | 1975 | 0.2884 | 0.59 | | 0.4587 | 80.0 | 2000 | 0.2883 | 0.59 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230826105641
dkqjrm
2023-08-26T03:30:05Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T01:56:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826105641' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826105641 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6024 - Accuracy: 0.64 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6078 | 0.65 | | No log | 2.0 | 50 | 0.5963 | 0.66 | | No log | 3.0 | 75 | 0.6125 | 0.65 | | No log | 4.0 | 100 | 0.6042 | 0.66 | | No log | 5.0 | 125 | 0.6065 | 0.66 | | No log | 6.0 | 150 | 0.6020 | 0.65 | | No log | 7.0 | 175 | 0.5987 | 0.65 | | No log | 8.0 | 200 | 0.6016 | 0.66 | | No log | 9.0 | 225 | 0.6066 | 0.66 | | No log | 10.0 | 250 | 0.6112 | 0.66 | | No log | 11.0 | 275 | 0.6085 | 0.66 | | No log | 12.0 | 300 | 0.5976 | 0.66 | | No log | 13.0 | 325 | 0.6074 | 0.66 | | No log | 14.0 | 350 | 0.6060 | 0.65 | | No log | 15.0 | 375 | 0.6254 | 0.65 | | No log | 16.0 | 400 | 0.6031 | 0.66 | | No log | 17.0 | 425 | 0.6011 | 0.67 | | No log | 18.0 | 450 | 0.6063 | 0.66 | | No log | 19.0 | 475 | 0.6031 | 0.65 | | 0.6484 | 20.0 | 500 | 0.6013 | 0.65 | | 0.6484 | 21.0 | 525 | 0.6041 | 0.65 | | 0.6484 | 22.0 | 550 | 0.6037 | 0.65 | | 0.6484 | 23.0 | 575 | 0.6046 | 0.65 | | 0.6484 | 24.0 | 600 | 0.6072 | 0.66 | | 0.6484 | 25.0 | 625 | 0.5980 | 0.66 | | 0.6484 | 26.0 | 650 | 0.6039 | 0.64 | | 0.6484 | 27.0 | 675 | 0.6025 | 0.65 | | 0.6484 | 28.0 | 700 | 0.6062 | 0.65 | | 0.6484 | 29.0 | 725 | 0.6056 | 0.64 | | 0.6484 | 30.0 | 750 | 0.6091 | 0.61 | | 0.6484 | 31.0 | 775 | 0.6037 | 0.65 | | 0.6484 | 32.0 | 800 | 0.6037 | 0.63 | | 0.6484 | 33.0 | 825 | 0.6175 | 0.64 | | 0.6484 | 34.0 | 850 | 0.6089 | 0.62 | | 0.6484 | 35.0 | 875 | 0.6076 | 0.64 | | 0.6484 | 36.0 | 900 | 0.6073 | 0.64 | | 0.6484 | 37.0 | 925 | 0.6059 | 0.64 | | 0.6484 | 38.0 | 950 | 0.6109 | 0.63 | | 0.6484 | 39.0 | 975 | 0.6090 | 0.64 | | 0.6362 | 40.0 | 1000 | 0.6080 | 0.64 | | 0.6362 | 41.0 | 1025 | 0.5994 | 0.64 | | 0.6362 | 42.0 | 1050 | 0.6034 | 0.64 | | 0.6362 | 43.0 | 1075 | 0.6113 | 0.6 | | 0.6362 | 44.0 | 1100 | 0.6131 | 0.64 | | 0.6362 | 45.0 | 1125 | 0.6150 | 0.61 | | 0.6362 | 46.0 | 1150 | 0.6115 | 0.63 | | 0.6362 | 47.0 | 1175 | 0.6055 | 0.64 | | 0.6362 | 48.0 | 1200 | 0.6033 | 0.64 | | 0.6362 | 49.0 | 1225 | 0.6047 | 0.64 | | 0.6362 | 50.0 | 1250 | 0.6037 | 0.64 | | 0.6362 | 51.0 | 1275 | 0.6010 | 0.63 | | 0.6362 | 52.0 | 1300 | 0.5988 | 0.64 | | 0.6362 | 53.0 | 1325 | 0.5991 | 0.64 | | 0.6362 | 54.0 | 1350 | 0.6019 | 0.64 | | 0.6362 | 55.0 | 1375 | 0.6002 | 0.64 | | 0.6362 | 56.0 | 1400 | 0.6006 | 0.64 | | 0.6362 | 57.0 | 1425 | 0.5992 | 0.63 | | 0.6362 | 58.0 | 1450 | 0.5992 | 0.63 | | 0.6362 | 59.0 | 1475 | 0.5992 | 0.64 | | 0.6341 | 60.0 | 1500 | 0.6026 | 0.64 | | 0.6341 | 61.0 | 1525 | 0.6022 | 0.64 | | 0.6341 | 62.0 | 1550 | 0.6026 | 0.64 | | 0.6341 | 63.0 | 1575 | 0.6036 | 0.64 | | 0.6341 | 64.0 | 1600 | 0.6039 | 0.64 | | 0.6341 | 65.0 | 1625 | 0.6041 | 0.64 | | 0.6341 | 66.0 | 1650 | 0.6034 | 0.64 | | 0.6341 | 67.0 | 1675 | 0.6049 | 0.64 | | 0.6341 | 68.0 | 1700 | 0.6027 | 0.64 | | 0.6341 | 69.0 | 1725 | 0.6057 | 0.64 | | 0.6341 | 70.0 | 1750 | 0.6056 | 0.64 | | 0.6341 | 71.0 | 1775 | 0.6048 | 0.64 | | 0.6341 | 72.0 | 1800 | 0.6019 | 0.64 | | 0.6341 | 73.0 | 1825 | 0.6021 | 0.64 | | 0.6341 | 74.0 | 1850 | 0.6018 | 0.64 | | 0.6341 | 75.0 | 1875 | 0.6027 | 0.64 | | 0.6341 | 76.0 | 1900 | 0.6025 | 0.64 | | 0.6341 | 77.0 | 1925 | 0.6021 | 0.64 | | 0.6341 | 78.0 | 1950 | 0.6023 | 0.64 | | 0.6341 | 79.0 | 1975 | 0.6024 | 0.64 | | 0.626 | 80.0 | 2000 | 0.6024 | 0.64 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dave-does-data/utsa_dpo_llama2
dave-does-data
2023-08-26T03:25:38Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:25:31Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
sw882882/llama2-7b-molora8-openplatypus-6
sw882882
2023-08-26T03:25:21Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:16:28Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
sw882882/llama2-7b-molora8-openplatypus-7
sw882882
2023-08-26T03:24:58Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:16:33Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
sw882882/llama2-7b-molora8-openplatypus-4
sw882882
2023-08-26T03:24:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:16:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
sw882882/llama2-7b-molora8-openplatypus-1
sw882882
2023-08-26T03:22:03Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:15:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
sw882882/llama2-7b-molora8-openplatypus-0
sw882882
2023-08-26T03:21:41Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:15:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
nikinetrahutama/afx-ai-llama-chat-model-14-1
nikinetrahutama
2023-08-26T03:12:50Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T03:12:44Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
danwein8/Hackathon-Art
danwein8
2023-08-26T03:04:35Z
0
0
null
[ "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "dreambooth-hackathon", "wildcard", "text-to-image", "dataset:BirdL/NGA_Art", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-25T16:32:22Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - dreambooth-hackathon - wildcard - text-to-image datasets: BirdL/NGA_Art inference: true --- # Hackathon Art Model Card TL;DR:Hackathon Art is a Dreambooth model trained from public domain images from the National Art Gallery. The token is sks. # Model Pretraining This model is trained on top [Stable Diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) # Data The data for H-A is located on [this page](https://huggingface.co/datasets/BirdL/NGA_Art) and was scraped from [Wikimedia Commons]. This dataset is 500 images in size. The dataset page goes into more detail.
dkqjrm/20230826100309
dkqjrm
2023-08-26T02:47:14Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T01:03:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826100309' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826100309 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2920 - Accuracy: 0.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.3608 | 0.44 | | No log | 2.0 | 50 | 0.2890 | 0.57 | | No log | 3.0 | 75 | 0.2961 | 0.58 | | No log | 4.0 | 100 | 0.2865 | 0.65 | | No log | 5.0 | 125 | 0.2901 | 0.58 | | No log | 6.0 | 150 | 0.2933 | 0.46 | | No log | 7.0 | 175 | 0.3291 | 0.64 | | No log | 8.0 | 200 | 0.2864 | 0.62 | | No log | 9.0 | 225 | 0.2979 | 0.42 | | No log | 10.0 | 250 | 0.3035 | 0.63 | | No log | 11.0 | 275 | 0.2902 | 0.59 | | No log | 12.0 | 300 | 0.2917 | 0.5 | | No log | 13.0 | 325 | 0.2935 | 0.44 | | No log | 14.0 | 350 | 0.3057 | 0.44 | | No log | 15.0 | 375 | 0.2980 | 0.45 | | No log | 16.0 | 400 | 0.2947 | 0.47 | | No log | 17.0 | 425 | 0.2945 | 0.5 | | No log | 18.0 | 450 | 0.2924 | 0.49 | | No log | 19.0 | 475 | 0.2922 | 0.55 | | 1.1902 | 20.0 | 500 | 0.2923 | 0.45 | | 1.1902 | 21.0 | 525 | 0.2864 | 0.55 | | 1.1902 | 22.0 | 550 | 0.2925 | 0.42 | | 1.1902 | 23.0 | 575 | 0.2910 | 0.58 | | 1.1902 | 24.0 | 600 | 0.2895 | 0.58 | | 1.1902 | 25.0 | 625 | 0.2918 | 0.62 | | 1.1902 | 26.0 | 650 | 0.2921 | 0.42 | | 1.1902 | 27.0 | 675 | 0.2918 | 0.58 | | 1.1902 | 28.0 | 700 | 0.2910 | 0.6 | | 1.1902 | 29.0 | 725 | 0.2919 | 0.57 | | 1.1902 | 30.0 | 750 | 0.2920 | 0.48 | | 1.1902 | 31.0 | 775 | 0.2922 | 0.41 | | 1.1902 | 32.0 | 800 | 0.2920 | 0.53 | | 1.1902 | 33.0 | 825 | 0.2920 | 0.51 | | 1.1902 | 34.0 | 850 | 0.2919 | 0.54 | | 1.1902 | 35.0 | 875 | 0.2920 | 0.52 | | 1.1902 | 36.0 | 900 | 0.2921 | 0.39 | | 1.1902 | 37.0 | 925 | 0.2920 | 0.53 | | 1.1902 | 38.0 | 950 | 0.2920 | 0.49 | | 1.1902 | 39.0 | 975 | 0.2922 | 0.4 | | 0.8276 | 40.0 | 1000 | 0.2919 | 0.58 | | 0.8276 | 41.0 | 1025 | 0.2918 | 0.62 | | 0.8276 | 42.0 | 1050 | 0.2918 | 0.61 | | 0.8276 | 43.0 | 1075 | 0.2922 | 0.42 | | 0.8276 | 44.0 | 1100 | 0.2921 | 0.43 | | 0.8276 | 45.0 | 1125 | 0.2920 | 0.42 | | 0.8276 | 46.0 | 1150 | 0.2920 | 0.42 | | 0.8276 | 47.0 | 1175 | 0.2920 | 0.35 | | 0.8276 | 48.0 | 1200 | 0.2920 | 0.54 | | 0.8276 | 49.0 | 1225 | 0.2920 | 0.6 | | 0.8276 | 50.0 | 1250 | 0.2920 | 0.52 | | 0.8276 | 51.0 | 1275 | 0.2920 | 0.37 | | 0.8276 | 52.0 | 1300 | 0.2920 | 0.45 | | 0.8276 | 53.0 | 1325 | 0.2920 | 0.44 | | 0.8276 | 54.0 | 1350 | 0.2920 | 0.59 | | 0.8276 | 55.0 | 1375 | 0.2920 | 0.44 | | 0.8276 | 56.0 | 1400 | 0.2920 | 0.58 | | 0.8276 | 57.0 | 1425 | 0.2920 | 0.57 | | 0.8276 | 58.0 | 1450 | 0.2920 | 0.46 | | 0.8276 | 59.0 | 1475 | 0.2920 | 0.42 | | 0.6389 | 60.0 | 1500 | 0.2920 | 0.37 | | 0.6389 | 61.0 | 1525 | 0.2919 | 0.6 | | 0.6389 | 62.0 | 1550 | 0.2919 | 0.6 | | 0.6389 | 63.0 | 1575 | 0.2920 | 0.55 | | 0.6389 | 64.0 | 1600 | 0.2920 | 0.52 | | 0.6389 | 65.0 | 1625 | 0.2920 | 0.5 | | 0.6389 | 66.0 | 1650 | 0.2920 | 0.36 | | 0.6389 | 67.0 | 1675 | 0.2920 | 0.58 | | 0.6389 | 68.0 | 1700 | 0.2920 | 0.38 | | 0.6389 | 69.0 | 1725 | 0.2920 | 0.58 | | 0.6389 | 70.0 | 1750 | 0.2920 | 0.53 | | 0.6389 | 71.0 | 1775 | 0.2920 | 0.37 | | 0.6389 | 72.0 | 1800 | 0.2920 | 0.39 | | 0.6389 | 73.0 | 1825 | 0.2920 | 0.36 | | 0.6389 | 74.0 | 1850 | 0.2920 | 0.43 | | 0.6389 | 75.0 | 1875 | 0.2920 | 0.38 | | 0.6389 | 76.0 | 1900 | 0.2920 | 0.43 | | 0.6389 | 77.0 | 1925 | 0.2920 | 0.37 | | 0.6389 | 78.0 | 1950 | 0.2920 | 0.37 | | 0.6389 | 79.0 | 1975 | 0.2920 | 0.38 | | 0.5225 | 80.0 | 2000 | 0.2920 | 0.4 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
heegyu/llama-small-randomweights
heegyu
2023-08-26T02:46:53Z
172
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "facebook", "meta", "llama-2", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-26T02:42:55Z
--- extra_gated_heading: Access Llama 2 on Hugging Face extra_gated_description: >- This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_prompt: >- **Your Hugging Face account email address MUST match the email you provide on the Meta website, or your request will not be approved.** extra_gated_button_content: Submit extra_gated_fields: I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website: checkbox language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 --- This is 82M parameters llama model of random weights. This model can be use for proof of concept. <br/> Tokenizer is copy of meta-llama/Llama-2-7b ``` # Use a pipeline as a high-level helper from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer import numpy as np config = LlamaConfig(vocab_size=32000, hidden_size=768, intermediate_size=768*4, num_hidden_layers=4, num_attention_heads=8) tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b") model = LlamaForCausalLM(config).half() model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print(params / 1024 / 1024) # 82.881591796875 hub_id = "heegyu/llama-small-randomweights" tokenizer.push_to_hub(hub_id) model.push_to_hub(hub_id) ```
ashwincv0112/Masters_Course_Application_Email_AI_avp
ashwincv0112
2023-08-26T02:44:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-26T02:44:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
dkqjrm/20230826100510
dkqjrm
2023-08-26T02:44:21Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T01:05:27Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826100510' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826100510 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5641 - Accuracy: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.7263 | 0.4 | | No log | 2.0 | 50 | 0.6115 | 0.6 | | No log | 3.0 | 75 | 0.5427 | 0.62 | | No log | 4.0 | 100 | 0.5319 | 0.61 | | No log | 5.0 | 125 | 0.5818 | 0.55 | | No log | 6.0 | 150 | 0.5093 | 0.68 | | No log | 7.0 | 175 | 0.7841 | 0.63 | | No log | 8.0 | 200 | 0.7629 | 0.68 | | No log | 9.0 | 225 | 0.5874 | 0.69 | | No log | 10.0 | 250 | 0.5228 | 0.71 | | No log | 11.0 | 275 | 0.8439 | 0.74 | | No log | 12.0 | 300 | 0.8243 | 0.71 | | No log | 13.0 | 325 | 0.5670 | 0.65 | | No log | 14.0 | 350 | 0.5601 | 0.61 | | No log | 15.0 | 375 | 0.6452 | 0.64 | | No log | 16.0 | 400 | 0.5239 | 0.69 | | No log | 17.0 | 425 | 0.7315 | 0.66 | | No log | 18.0 | 450 | 0.6651 | 0.67 | | No log | 19.0 | 475 | 0.9040 | 0.72 | | 1.3727 | 20.0 | 500 | 0.5786 | 0.73 | | 1.3727 | 21.0 | 525 | 0.7333 | 0.69 | | 1.3727 | 22.0 | 550 | 0.7584 | 0.7 | | 1.3727 | 23.0 | 575 | 0.9901 | 0.71 | | 1.3727 | 24.0 | 600 | 0.5711 | 0.7 | | 1.3727 | 25.0 | 625 | 0.5870 | 0.67 | | 1.3727 | 26.0 | 650 | 0.5832 | 0.7 | | 1.3727 | 27.0 | 675 | 0.9777 | 0.72 | | 1.3727 | 28.0 | 700 | 0.6448 | 0.71 | | 1.3727 | 29.0 | 725 | 0.8739 | 0.71 | | 1.3727 | 30.0 | 750 | 0.6710 | 0.68 | | 1.3727 | 31.0 | 775 | 0.5919 | 0.71 | | 1.3727 | 32.0 | 800 | 0.7616 | 0.7 | | 1.3727 | 33.0 | 825 | 0.5837 | 0.72 | | 1.3727 | 34.0 | 850 | 1.0103 | 0.74 | | 1.3727 | 35.0 | 875 | 0.7008 | 0.73 | | 1.3727 | 36.0 | 900 | 1.0161 | 0.72 | | 1.3727 | 37.0 | 925 | 0.6911 | 0.75 | | 1.3727 | 38.0 | 950 | 0.6451 | 0.75 | | 1.3727 | 39.0 | 975 | 0.7190 | 0.74 | | 0.7534 | 40.0 | 1000 | 0.5164 | 0.74 | | 0.7534 | 41.0 | 1025 | 0.4995 | 0.72 | | 0.7534 | 42.0 | 1050 | 0.5840 | 0.75 | | 0.7534 | 43.0 | 1075 | 0.7395 | 0.75 | | 0.7534 | 44.0 | 1100 | 0.6374 | 0.72 | | 0.7534 | 45.0 | 1125 | 0.7467 | 0.73 | | 0.7534 | 46.0 | 1150 | 0.6876 | 0.74 | | 0.7534 | 47.0 | 1175 | 0.5959 | 0.74 | | 0.7534 | 48.0 | 1200 | 0.5625 | 0.74 | | 0.7534 | 49.0 | 1225 | 0.6837 | 0.75 | | 0.7534 | 50.0 | 1250 | 0.6766 | 0.76 | | 0.7534 | 51.0 | 1275 | 0.6266 | 0.75 | | 0.7534 | 52.0 | 1300 | 0.6642 | 0.74 | | 0.7534 | 53.0 | 1325 | 0.6202 | 0.74 | | 0.7534 | 54.0 | 1350 | 0.6398 | 0.75 | | 0.7534 | 55.0 | 1375 | 0.6689 | 0.75 | | 0.7534 | 56.0 | 1400 | 0.6629 | 0.76 | | 0.7534 | 57.0 | 1425 | 0.5903 | 0.76 | | 0.7534 | 58.0 | 1450 | 0.6133 | 0.77 | | 0.7534 | 59.0 | 1475 | 0.6885 | 0.76 | | 0.4477 | 60.0 | 1500 | 0.5950 | 0.76 | | 0.4477 | 61.0 | 1525 | 0.5715 | 0.75 | | 0.4477 | 62.0 | 1550 | 0.6111 | 0.76 | | 0.4477 | 63.0 | 1575 | 0.6023 | 0.76 | | 0.4477 | 64.0 | 1600 | 0.5793 | 0.76 | | 0.4477 | 65.0 | 1625 | 0.5727 | 0.74 | | 0.4477 | 66.0 | 1650 | 0.5606 | 0.76 | | 0.4477 | 67.0 | 1675 | 0.5970 | 0.76 | | 0.4477 | 68.0 | 1700 | 0.5602 | 0.76 | | 0.4477 | 69.0 | 1725 | 0.5781 | 0.75 | | 0.4477 | 70.0 | 1750 | 0.6142 | 0.76 | | 0.4477 | 71.0 | 1775 | 0.5758 | 0.76 | | 0.4477 | 72.0 | 1800 | 0.5650 | 0.75 | | 0.4477 | 73.0 | 1825 | 0.5823 | 0.76 | | 0.4477 | 74.0 | 1850 | 0.5547 | 0.76 | | 0.4477 | 75.0 | 1875 | 0.5637 | 0.76 | | 0.4477 | 76.0 | 1900 | 0.5806 | 0.76 | | 0.4477 | 77.0 | 1925 | 0.5602 | 0.76 | | 0.4477 | 78.0 | 1950 | 0.5708 | 0.76 | | 0.4477 | 79.0 | 1975 | 0.5624 | 0.76 | | 0.3287 | 80.0 | 2000 | 0.5641 | 0.76 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LarryAIDraw/Rukia_bankai
LarryAIDraw
2023-08-26T02:40:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:34:32Z
--- license: creativeml-openrail-m --- https://civitai.com/models/133874/rukia-kuchiki-bleach-bankai
LarryAIDraw/YuisisKnightC1_17
LarryAIDraw
2023-08-26T02:39:14Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:30:30Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134129/character-yuisismulticostumevers-granblue-fantasy
LarryAIDraw/akbreeze-8
LarryAIDraw
2023-08-26T02:38:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:31:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134173/breeze-arknights
dt-and-vanilla-ardt/ardt-vanilla-combo_train_walker2d_v2-2608_0132-33
dt-and-vanilla-ardt
2023-08-26T02:28:09Z
33
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-08-26T00:34:33Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-combo_train_walker2d_v2-2608_0132-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-combo_train_walker2d_v2-2608_0132-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LarryAIDraw/ChenxingSnowbreakV1_0
LarryAIDraw
2023-08-26T02:25:40Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:14:17Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134591/chenxing-or-snowbreak-or
LarryAIDraw/Olivier
LarryAIDraw
2023-08-26T02:24:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:12:48Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134524/olivier-the-eminence-in-shadow
LarryAIDraw/luna_kindred_m8
LarryAIDraw
2023-08-26T02:24:13Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:11:45Z
--- license: creativeml-openrail-m --- https://civitai.com/models/28297/luna-kindred-or-honkai-impact-3rd
LarryAIDraw/clemenceau_d8_v2_e6
LarryAIDraw
2023-08-26T02:23:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-26T02:10:25Z
--- license: creativeml-openrail-m --- https://civitai.com/models/134714/clemenceau-or-or-azur-lane-lora
dkqjrm/20230826093525
dkqjrm
2023-08-26T01:56:30Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-26T00:35:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826093525' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826093525 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6263 - Accuracy: 0.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.8357 | 0.4 | | No log | 2.0 | 50 | 0.6364 | 0.62 | | No log | 3.0 | 75 | 0.7513 | 0.62 | | No log | 4.0 | 100 | 0.5950 | 0.6 | | No log | 5.0 | 125 | 0.6111 | 0.49 | | No log | 6.0 | 150 | 0.7314 | 0.59 | | No log | 7.0 | 175 | 0.6188 | 0.67 | | No log | 8.0 | 200 | 1.2028 | 0.58 | | No log | 9.0 | 225 | 0.6303 | 0.71 | | No log | 10.0 | 250 | 0.8705 | 0.65 | | No log | 11.0 | 275 | 0.5481 | 0.68 | | No log | 12.0 | 300 | 0.8700 | 0.7 | | No log | 13.0 | 325 | 0.7616 | 0.62 | | No log | 14.0 | 350 | 0.7385 | 0.71 | | No log | 15.0 | 375 | 0.8501 | 0.55 | | No log | 16.0 | 400 | 0.6954 | 0.49 | | No log | 17.0 | 425 | 0.6255 | 0.55 | | No log | 18.0 | 450 | 0.6264 | 0.38 | | No log | 19.0 | 475 | 0.6275 | 0.42 | | 1.5048 | 20.0 | 500 | 0.6259 | 0.61 | | 1.5048 | 21.0 | 525 | 0.6270 | 0.42 | | 1.5048 | 22.0 | 550 | 0.6275 | 0.42 | | 1.5048 | 23.0 | 575 | 0.6249 | 0.59 | | 1.5048 | 24.0 | 600 | 0.6269 | 0.4 | | 1.5048 | 25.0 | 625 | 0.6254 | 0.57 | | 1.5048 | 26.0 | 650 | 0.6265 | 0.45 | | 1.5048 | 27.0 | 675 | 0.6262 | 0.62 | | 1.5048 | 28.0 | 700 | 0.6247 | 0.54 | | 1.5048 | 29.0 | 725 | 0.6241 | 0.59 | | 1.5048 | 30.0 | 750 | 0.6247 | 0.56 | | 1.5048 | 31.0 | 775 | 0.6262 | 0.5 | | 1.5048 | 32.0 | 800 | 0.6261 | 0.6 | | 1.5048 | 33.0 | 825 | 0.6261 | 0.55 | | 1.5048 | 34.0 | 850 | 0.6264 | 0.44 | | 1.5048 | 35.0 | 875 | 0.6266 | 0.43 | | 1.5048 | 36.0 | 900 | 0.6265 | 0.44 | | 1.5048 | 37.0 | 925 | 0.6262 | 0.47 | | 1.5048 | 38.0 | 950 | 0.6264 | 0.48 | | 1.5048 | 39.0 | 975 | 0.6264 | 0.43 | | 1.2203 | 40.0 | 1000 | 0.6262 | 0.63 | | 1.2203 | 41.0 | 1025 | 0.6263 | 0.53 | | 1.2203 | 42.0 | 1050 | 0.6262 | 0.59 | | 1.2203 | 43.0 | 1075 | 0.6265 | 0.38 | | 1.2203 | 44.0 | 1100 | 0.6262 | 0.61 | | 1.2203 | 45.0 | 1125 | 0.6262 | 0.64 | | 1.2203 | 46.0 | 1150 | 0.6263 | 0.5 | | 1.2203 | 47.0 | 1175 | 0.6262 | 0.6 | | 1.2203 | 48.0 | 1200 | 0.6263 | 0.55 | | 1.2203 | 49.0 | 1225 | 0.6265 | 0.39 | | 1.2203 | 50.0 | 1250 | 0.6262 | 0.62 | | 1.2203 | 51.0 | 1275 | 0.6262 | 0.51 | | 1.2203 | 52.0 | 1300 | 0.6261 | 0.57 | | 1.2203 | 53.0 | 1325 | 0.6262 | 0.58 | | 1.2203 | 54.0 | 1350 | 0.6261 | 0.58 | | 1.2203 | 55.0 | 1375 | 0.6260 | 0.61 | | 1.2203 | 56.0 | 1400 | 0.6261 | 0.64 | | 1.2203 | 57.0 | 1425 | 0.6263 | 0.41 | | 1.2203 | 58.0 | 1450 | 0.6264 | 0.41 | | 1.2203 | 59.0 | 1475 | 0.6263 | 0.45 | | 0.9516 | 60.0 | 1500 | 0.6263 | 0.54 | | 0.9516 | 61.0 | 1525 | 0.6263 | 0.47 | | 0.9516 | 62.0 | 1550 | 0.6261 | 0.61 | | 0.9516 | 63.0 | 1575 | 0.6263 | 0.59 | | 0.9516 | 64.0 | 1600 | 0.6261 | 0.63 | | 0.9516 | 65.0 | 1625 | 0.6263 | 0.5 | | 0.9516 | 66.0 | 1650 | 0.6265 | 0.39 | | 0.9516 | 67.0 | 1675 | 0.6262 | 0.59 | | 0.9516 | 68.0 | 1700 | 0.6264 | 0.38 | | 0.9516 | 69.0 | 1725 | 0.6262 | 0.59 | | 0.9516 | 70.0 | 1750 | 0.6263 | 0.51 | | 0.9516 | 71.0 | 1775 | 0.6261 | 0.6 | | 0.9516 | 72.0 | 1800 | 0.6263 | 0.4 | | 0.9516 | 73.0 | 1825 | 0.6262 | 0.6 | | 0.9516 | 74.0 | 1850 | 0.6263 | 0.48 | | 0.9516 | 75.0 | 1875 | 0.6262 | 0.62 | | 0.9516 | 76.0 | 1900 | 0.6263 | 0.44 | | 0.9516 | 77.0 | 1925 | 0.6263 | 0.43 | | 0.9516 | 78.0 | 1950 | 0.6263 | 0.45 | | 0.9516 | 79.0 | 1975 | 0.6263 | 0.42 | | 0.7734 | 80.0 | 2000 | 0.6263 | 0.44 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ad019el/m2m100_418M-finetuned-tq-to-ar-1-2
ad019el
2023-08-26T01:18:14Z
13
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-23T11:43:00Z
--- base_model: ad019el/m2m100_418M-finetuned-tq-to-ar-only-clean-data tags: - generated_from_trainer metrics: - bleu model-index: - name: m2m100_418M-finetuned-tq-to-ar-1-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-finetuned-tq-to-ar-1-2 This model is a fine-tuned version of [ad019el/m2m100_418M-finetuned-tq-to-ar-only-clean-data](https://huggingface.co/ad019el/m2m100_418M-finetuned-tq-to-ar-only-clean-data) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3123 - Bleu: 3.2398 - Gen Len: 39.2562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 2.3145 | 0.68 | 500 | 2.2961 | 3.5196 | 39.7015 | | 2.2469 | 1.36 | 1000 | 2.2789 | 3.1373 | 42.5945 | | 2.1915 | 2.05 | 1500 | 2.3092 | 3.3981 | 41.4192 | | 2.1358 | 2.73 | 2000 | 2.3077 | 3.2268 | 41.8321 | | 2.0879 | 3.41 | 2500 | 2.3123 | 3.2398 | 39.2562 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
dkqjrm/20230826083404
dkqjrm
2023-08-26T01:04:57Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-25T23:34:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826083404' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826083404 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5588 - Accuracy: 0.56 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.6769 | 0.61 | | No log | 2.0 | 50 | 0.5349 | 0.59 | | No log | 3.0 | 75 | 0.6615 | 0.58 | | No log | 4.0 | 100 | 0.6596 | 0.64 | | No log | 5.0 | 125 | 0.5523 | 0.71 | | No log | 6.0 | 150 | 0.8447 | 0.67 | | No log | 7.0 | 175 | 0.7506 | 0.66 | | No log | 8.0 | 200 | 0.8463 | 0.68 | | No log | 9.0 | 225 | 0.9064 | 0.56 | | No log | 10.0 | 250 | 0.5533 | 0.58 | | No log | 11.0 | 275 | 0.5701 | 0.41 | | No log | 12.0 | 300 | 0.5593 | 0.51 | | No log | 13.0 | 325 | 0.5599 | 0.52 | | No log | 14.0 | 350 | 0.5619 | 0.37 | | No log | 15.0 | 375 | 0.5591 | 0.56 | | No log | 16.0 | 400 | 0.5569 | 0.55 | | No log | 17.0 | 425 | 0.5511 | 0.56 | | No log | 18.0 | 450 | 0.5599 | 0.52 | | No log | 19.0 | 475 | 0.5561 | 0.59 | | 1.4827 | 20.0 | 500 | 0.5577 | 0.57 | | 1.4827 | 21.0 | 525 | 0.5537 | 0.58 | | 1.4827 | 22.0 | 550 | 0.5616 | 0.43 | | 1.4827 | 23.0 | 575 | 0.5607 | 0.34 | | 1.4827 | 24.0 | 600 | 0.5616 | 0.39 | | 1.4827 | 25.0 | 625 | 0.5597 | 0.56 | | 1.4827 | 26.0 | 650 | 0.5623 | 0.41 | | 1.4827 | 27.0 | 675 | 0.5612 | 0.43 | | 1.4827 | 28.0 | 700 | 0.5573 | 0.57 | | 1.4827 | 29.0 | 725 | 0.5631 | 0.42 | | 1.4827 | 30.0 | 750 | 0.5594 | 0.51 | | 1.4827 | 31.0 | 775 | 0.5593 | 0.56 | | 1.4827 | 32.0 | 800 | 0.5646 | 0.43 | | 1.4827 | 33.0 | 825 | 0.5664 | 0.44 | | 1.4827 | 34.0 | 850 | 0.5597 | 0.56 | | 1.4827 | 35.0 | 875 | 0.5629 | 0.41 | | 1.4827 | 36.0 | 900 | 0.5610 | 0.43 | | 1.4827 | 37.0 | 925 | 0.5572 | 0.58 | | 1.4827 | 38.0 | 950 | 0.5592 | 0.6 | | 1.4827 | 39.0 | 975 | 0.5553 | 0.59 | | 1.1505 | 40.0 | 1000 | 0.5597 | 0.58 | | 1.1505 | 41.0 | 1025 | 0.5570 | 0.62 | | 1.1505 | 42.0 | 1050 | 0.5582 | 0.6 | | 1.1505 | 43.0 | 1075 | 0.5601 | 0.46 | | 1.1505 | 44.0 | 1100 | 0.5598 | 0.55 | | 1.1505 | 45.0 | 1125 | 0.5574 | 0.59 | | 1.1505 | 46.0 | 1150 | 0.5591 | 0.52 | | 1.1505 | 47.0 | 1175 | 0.5601 | 0.5 | | 1.1505 | 48.0 | 1200 | 0.5593 | 0.56 | | 1.1505 | 49.0 | 1225 | 0.5600 | 0.48 | | 1.1505 | 50.0 | 1250 | 0.5620 | 0.39 | | 1.1505 | 51.0 | 1275 | 0.5598 | 0.51 | | 1.1505 | 52.0 | 1300 | 0.5616 | 0.39 | | 1.1505 | 53.0 | 1325 | 0.5601 | 0.43 | | 1.1505 | 54.0 | 1350 | 0.5617 | 0.4 | | 1.1505 | 55.0 | 1375 | 0.5619 | 0.41 | | 1.1505 | 56.0 | 1400 | 0.5625 | 0.39 | | 1.1505 | 57.0 | 1425 | 0.5591 | 0.56 | | 1.1505 | 58.0 | 1450 | 0.5588 | 0.59 | | 1.1505 | 59.0 | 1475 | 0.5580 | 0.59 | | 0.9071 | 60.0 | 1500 | 0.5584 | 0.62 | | 0.9071 | 61.0 | 1525 | 0.5590 | 0.58 | | 0.9071 | 62.0 | 1550 | 0.5585 | 0.57 | | 0.9071 | 63.0 | 1575 | 0.5586 | 0.59 | | 0.9071 | 64.0 | 1600 | 0.5589 | 0.57 | | 0.9071 | 65.0 | 1625 | 0.5587 | 0.59 | | 0.9071 | 66.0 | 1650 | 0.5588 | 0.61 | | 0.9071 | 67.0 | 1675 | 0.5592 | 0.57 | | 0.9071 | 68.0 | 1700 | 0.5579 | 0.58 | | 0.9071 | 69.0 | 1725 | 0.5586 | 0.56 | | 0.9071 | 70.0 | 1750 | 0.5590 | 0.57 | | 0.9071 | 71.0 | 1775 | 0.5590 | 0.57 | | 0.9071 | 72.0 | 1800 | 0.5590 | 0.59 | | 0.9071 | 73.0 | 1825 | 0.5591 | 0.56 | | 0.9071 | 74.0 | 1850 | 0.5586 | 0.56 | | 0.9071 | 75.0 | 1875 | 0.5590 | 0.56 | | 0.9071 | 76.0 | 1900 | 0.5592 | 0.57 | | 0.9071 | 77.0 | 1925 | 0.5587 | 0.53 | | 0.9071 | 78.0 | 1950 | 0.5588 | 0.56 | | 0.9071 | 79.0 | 1975 | 0.5589 | 0.58 | | 0.7248 | 80.0 | 2000 | 0.5588 | 0.56 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_cv12_pad_lob100_low__0190
bigmorning
2023-08-26T00:43:58Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T00:43:50Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_cv12_pad_lob100_low__0190 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_cv12_pad_lob100_low__0190 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Train Accuracy: 0.0362 - Train Wermet: 0.0035 - Validation Loss: 0.7719 - Validation Accuracy: 0.0237 - Validation Wermet: 0.2214 - Epoch: 189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 | | 4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 | | 4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 | | 4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 | | 3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 | | 3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 | | 3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 | | 3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 | | 3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 | | 3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 | | 3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 | | 3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 | | 3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 | | 3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 | | 3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 | | 3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 | | 2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 | | 2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 | | 2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 | | 2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 | | 2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 | | 2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 | | 1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 | | 1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 | | 1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 | | 1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 | | 0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 | | 0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 | | 0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 | | 0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 | | 0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 | | 0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 | | 0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 | | 0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 | | 0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 | | 0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 | | 0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 | | 0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 | | 0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 | | 0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 | | 0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 | | 0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 | | 0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 | | 0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 | | 0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 | | 0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 | | 0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 | | 0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 | | 0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 | | 0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 | | 0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 | | 0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 | | 0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 | | 0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 | | 0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 | | 0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 | | 0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 | | 0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 | | 0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 | | 0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 | | 0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 | | 0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 | | 0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 | | 0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 | | 0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 | | 0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 | | 0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 | | 0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 | | 0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 | | 0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 | | 0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 | | 0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 | | 0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 | | 0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 | | 0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 | | 0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 | | 0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 | | 0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 | | 0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 | | 0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 | | 0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 | | 0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 | | 0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 | | 0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 | | 0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 | | 0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 | | 0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 | | 0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 | | 0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 | | 0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 | | 0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 | | 0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 | | 0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 | | 0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 | | 0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 | | 0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 | | 0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 | | 0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 | | 0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 | | 0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 | | 0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 | | 0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 | | 0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 | | 0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 | | 0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 | | 0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 | | 0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 | | 0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 | | 0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 | | 0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 | | 0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 | | 0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 | | 0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 | | 0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 | | 0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 | | 0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 | | 0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 | | 0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 | | 0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 | | 0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 | | 0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 | | 0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 | | 0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 | | 0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 | | 0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 | | 0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 | | 0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 | | 0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 | | 0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 | | 0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 | | 0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 | | 0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 | | 0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 | | 0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 | | 0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 | | 0.0001 | 0.0362 | 0.0012 | 0.7350 | 0.0236 | 0.2236 | 135 | | 0.0001 | 0.0362 | 0.0012 | 0.7386 | 0.0236 | 0.2240 | 136 | | 0.0001 | 0.0362 | 0.0012 | 0.7422 | 0.0236 | 0.2231 | 137 | | 0.0001 | 0.0362 | 0.0013 | 0.7445 | 0.0236 | 0.2236 | 138 | | 0.0001 | 0.0362 | 0.0012 | 0.7500 | 0.0236 | 0.2243 | 139 | | 0.0112 | 0.0361 | 0.0117 | 0.7391 | 0.0235 | 0.2370 | 140 | | 0.0036 | 0.0362 | 0.0041 | 0.7201 | 0.0236 | 0.2277 | 141 | | 0.0011 | 0.0362 | 0.0032 | 0.7210 | 0.0236 | 0.2243 | 142 | | 0.0006 | 0.0362 | 0.0030 | 0.7199 | 0.0236 | 0.2269 | 143 | | 0.0003 | 0.0362 | 0.0019 | 0.7231 | 0.0236 | 0.2254 | 144 | | 0.0002 | 0.0362 | 0.0021 | 0.7179 | 0.0236 | 0.2228 | 145 | | 0.0002 | 0.0362 | 0.0020 | 0.7236 | 0.0236 | 0.2234 | 146 | | 0.0002 | 0.0362 | 0.0021 | 0.7271 | 0.0236 | 0.2254 | 147 | | 0.0002 | 0.0362 | 0.0022 | 0.7250 | 0.0236 | 0.2233 | 148 | | 0.0001 | 0.0362 | 0.0021 | 0.7255 | 0.0236 | 0.2230 | 149 | | 0.0001 | 0.0362 | 0.0020 | 0.7263 | 0.0236 | 0.2228 | 150 | | 0.0001 | 0.0362 | 0.0021 | 0.7278 | 0.0236 | 0.2226 | 151 | | 0.0001 | 0.0362 | 0.0021 | 0.7289 | 0.0237 | 0.2220 | 152 | | 0.0001 | 0.0362 | 0.0020 | 0.7301 | 0.0237 | 0.2214 | 153 | | 0.0001 | 0.0362 | 0.0020 | 0.7307 | 0.0237 | 0.2216 | 154 | | 0.0001 | 0.0362 | 0.0020 | 0.7329 | 0.0237 | 0.2217 | 155 | | 0.0001 | 0.0362 | 0.0020 | 0.7339 | 0.0237 | 0.2211 | 156 | | 0.0001 | 0.0362 | 0.0020 | 0.7354 | 0.0237 | 0.2210 | 157 | | 0.0001 | 0.0362 | 0.0020 | 0.7374 | 0.0237 | 0.2207 | 158 | | 0.0001 | 0.0362 | 0.0020 | 0.7394 | 0.0237 | 0.2211 | 159 | | 0.0001 | 0.0362 | 0.0020 | 0.7406 | 0.0237 | 0.2212 | 160 | | 0.0001 | 0.0362 | 0.0021 | 0.7422 | 0.0237 | 0.2213 | 161 | | 0.0001 | 0.0362 | 0.0020 | 0.7446 | 0.0237 | 0.2207 | 162 | | 0.0001 | 0.0362 | 0.0020 | 0.7471 | 0.0237 | 0.2209 | 163 | | 0.0000 | 0.0362 | 0.0020 | 0.7502 | 0.0237 | 0.2206 | 164 | | 0.0000 | 0.0362 | 0.0021 | 0.7518 | 0.0237 | 0.2210 | 165 | | 0.0000 | 0.0362 | 0.0021 | 0.7533 | 0.0237 | 0.2207 | 166 | | 0.0000 | 0.0362 | 0.0021 | 0.7566 | 0.0237 | 0.2204 | 167 | | 0.0000 | 0.0362 | 0.0021 | 0.7590 | 0.0237 | 0.2203 | 168 | | 0.0000 | 0.0362 | 0.0022 | 0.7617 | 0.0237 | 0.2208 | 169 | | 0.0000 | 0.0362 | 0.0022 | 0.7644 | 0.0237 | 0.2207 | 170 | | 0.0000 | 0.0362 | 0.0022 | 0.7685 | 0.0237 | 0.2206 | 171 | | 0.0000 | 0.0362 | 0.0022 | 0.7710 | 0.0237 | 0.2203 | 172 | | 0.0000 | 0.0362 | 0.0022 | 0.7757 | 0.0236 | 0.2212 | 173 | | 0.0000 | 0.0362 | 0.0023 | 0.7803 | 0.0236 | 0.2214 | 174 | | 0.0000 | 0.0362 | 0.0024 | 0.7834 | 0.0236 | 0.2210 | 175 | | 0.0000 | 0.0362 | 0.0024 | 0.7863 | 0.0237 | 0.2209 | 176 | | 0.0000 | 0.0362 | 0.0024 | 0.7909 | 0.0236 | 0.2214 | 177 | | 0.0000 | 0.0362 | 0.0024 | 0.7940 | 0.0237 | 0.2208 | 178 | | 0.0000 | 0.0362 | 0.0025 | 0.7999 | 0.0236 | 0.2214 | 179 | | 0.0000 | 0.0362 | 0.0025 | 0.8032 | 0.0236 | 0.2212 | 180 | | 0.0000 | 0.0362 | 0.0025 | 0.8074 | 0.0236 | 0.2215 | 181 | | 0.0000 | 0.0362 | 0.0027 | 0.8113 | 0.0236 | 0.2211 | 182 | | 0.0000 | 0.0362 | 0.0027 | 0.8145 | 0.0236 | 0.2217 | 183 | | 0.0000 | 0.0362 | 0.0028 | 0.8198 | 0.0236 | 0.2216 | 184 | | 0.0080 | 0.0362 | 0.0076 | 0.8088 | 0.0235 | 0.2315 | 185 | | 0.0063 | 0.0362 | 0.0071 | 0.8072 | 0.0235 | 0.2340 | 186 | | 0.0022 | 0.0362 | 0.0032 | 0.7840 | 0.0236 | 0.2280 | 187 | | 0.0007 | 0.0362 | 0.0029 | 0.7713 | 0.0236 | 0.2271 | 188 | | 0.0004 | 0.0362 | 0.0035 | 0.7719 | 0.0237 | 0.2214 | 189 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dkqjrm/20230826073557
dkqjrm
2023-08-26T00:20:36Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-25T22:36:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826073557' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826073557 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4014 - Accuracy: 0.72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.4958 | 0.46 | | No log | 2.0 | 50 | 0.5956 | 0.54 | | No log | 3.0 | 75 | 0.5377 | 0.45 | | No log | 4.0 | 100 | 0.4202 | 0.61 | | No log | 5.0 | 125 | 0.4367 | 0.44 | | No log | 6.0 | 150 | 0.4370 | 0.51 | | No log | 7.0 | 175 | 0.4207 | 0.66 | | No log | 8.0 | 200 | 0.4423 | 0.58 | | No log | 9.0 | 225 | 0.4107 | 0.61 | | No log | 10.0 | 250 | 0.4332 | 0.64 | | No log | 11.0 | 275 | 0.4055 | 0.6 | | No log | 12.0 | 300 | 0.4376 | 0.63 | | No log | 13.0 | 325 | 0.4062 | 0.57 | | No log | 14.0 | 350 | 0.4000 | 0.61 | | No log | 15.0 | 375 | 0.4052 | 0.63 | | No log | 16.0 | 400 | 0.3961 | 0.68 | | No log | 17.0 | 425 | 0.3976 | 0.67 | | No log | 18.0 | 450 | 0.4186 | 0.65 | | No log | 19.0 | 475 | 0.4304 | 0.63 | | 0.731 | 20.0 | 500 | 0.4358 | 0.69 | | 0.731 | 21.0 | 525 | 0.4135 | 0.68 | | 0.731 | 22.0 | 550 | 0.4180 | 0.68 | | 0.731 | 23.0 | 575 | 0.4627 | 0.66 | | 0.731 | 24.0 | 600 | 0.4150 | 0.65 | | 0.731 | 25.0 | 625 | 0.4005 | 0.67 | | 0.731 | 26.0 | 650 | 0.4123 | 0.7 | | 0.731 | 27.0 | 675 | 0.4342 | 0.69 | | 0.731 | 28.0 | 700 | 0.4551 | 0.67 | | 0.731 | 29.0 | 725 | 0.4222 | 0.69 | | 0.731 | 30.0 | 750 | 0.4226 | 0.71 | | 0.731 | 31.0 | 775 | 0.4702 | 0.69 | | 0.731 | 32.0 | 800 | 0.4100 | 0.7 | | 0.731 | 33.0 | 825 | 0.4318 | 0.69 | | 0.731 | 34.0 | 850 | 0.4447 | 0.71 | | 0.731 | 35.0 | 875 | 0.3881 | 0.72 | | 0.731 | 36.0 | 900 | 0.4234 | 0.69 | | 0.731 | 37.0 | 925 | 0.4869 | 0.69 | | 0.731 | 38.0 | 950 | 0.4352 | 0.71 | | 0.731 | 39.0 | 975 | 0.4465 | 0.71 | | 0.5086 | 40.0 | 1000 | 0.4135 | 0.7 | | 0.5086 | 41.0 | 1025 | 0.4061 | 0.7 | | 0.5086 | 42.0 | 1050 | 0.4437 | 0.72 | | 0.5086 | 43.0 | 1075 | 0.4461 | 0.72 | | 0.5086 | 44.0 | 1100 | 0.4144 | 0.69 | | 0.5086 | 45.0 | 1125 | 0.3973 | 0.71 | | 0.5086 | 46.0 | 1150 | 0.4511 | 0.73 | | 0.5086 | 47.0 | 1175 | 0.4273 | 0.71 | | 0.5086 | 48.0 | 1200 | 0.4100 | 0.71 | | 0.5086 | 49.0 | 1225 | 0.4209 | 0.72 | | 0.5086 | 50.0 | 1250 | 0.4191 | 0.74 | | 0.5086 | 51.0 | 1275 | 0.4023 | 0.74 | | 0.5086 | 52.0 | 1300 | 0.4038 | 0.72 | | 0.5086 | 53.0 | 1325 | 0.4148 | 0.73 | | 0.5086 | 54.0 | 1350 | 0.4263 | 0.72 | | 0.5086 | 55.0 | 1375 | 0.4331 | 0.73 | | 0.5086 | 56.0 | 1400 | 0.4373 | 0.71 | | 0.5086 | 57.0 | 1425 | 0.4081 | 0.72 | | 0.5086 | 58.0 | 1450 | 0.4078 | 0.71 | | 0.5086 | 59.0 | 1475 | 0.4250 | 0.72 | | 0.4268 | 60.0 | 1500 | 0.4224 | 0.7 | | 0.4268 | 61.0 | 1525 | 0.4255 | 0.7 | | 0.4268 | 62.0 | 1550 | 0.4114 | 0.72 | | 0.4268 | 63.0 | 1575 | 0.4266 | 0.72 | | 0.4268 | 64.0 | 1600 | 0.4097 | 0.72 | | 0.4268 | 65.0 | 1625 | 0.4053 | 0.72 | | 0.4268 | 66.0 | 1650 | 0.4051 | 0.71 | | 0.4268 | 67.0 | 1675 | 0.4135 | 0.73 | | 0.4268 | 68.0 | 1700 | 0.3959 | 0.74 | | 0.4268 | 69.0 | 1725 | 0.4162 | 0.72 | | 0.4268 | 70.0 | 1750 | 0.4061 | 0.73 | | 0.4268 | 71.0 | 1775 | 0.4016 | 0.71 | | 0.4268 | 72.0 | 1800 | 0.4194 | 0.71 | | 0.4268 | 73.0 | 1825 | 0.4098 | 0.72 | | 0.4268 | 74.0 | 1850 | 0.4179 | 0.71 | | 0.4268 | 75.0 | 1875 | 0.4105 | 0.71 | | 0.4268 | 76.0 | 1900 | 0.4140 | 0.72 | | 0.4268 | 77.0 | 1925 | 0.4081 | 0.73 | | 0.4268 | 78.0 | 1950 | 0.4044 | 0.73 | | 0.4268 | 79.0 | 1975 | 0.3996 | 0.72 | | 0.3915 | 80.0 | 2000 | 0.4014 | 0.72 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_cv12_pad_lob100_low__0180
bigmorning
2023-08-26T00:17:43Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T00:17:35Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_cv12_pad_lob100_low__0180 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_cv12_pad_lob100_low__0180 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0362 - Train Wermet: 0.0025 - Validation Loss: 0.7999 - Validation Accuracy: 0.0236 - Validation Wermet: 0.2214 - Epoch: 179 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 | | 4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 | | 4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 | | 4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 | | 3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 | | 3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 | | 3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 | | 3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 | | 3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 | | 3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 | | 3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 | | 3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 | | 3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 | | 3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 | | 3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 | | 3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 | | 2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 | | 2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 | | 2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 | | 2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 | | 2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 | | 2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 | | 1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 | | 1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 | | 1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 | | 1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 | | 0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 | | 0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 | | 0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 | | 0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 | | 0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 | | 0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 | | 0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 | | 0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 | | 0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 | | 0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 | | 0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 | | 0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 | | 0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 | | 0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 | | 0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 | | 0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 | | 0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 | | 0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 | | 0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 | | 0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 | | 0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 | | 0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 | | 0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 | | 0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 | | 0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 | | 0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 | | 0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 | | 0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 | | 0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 | | 0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 | | 0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 | | 0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 | | 0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 | | 0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 | | 0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 | | 0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 | | 0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 | | 0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 | | 0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 | | 0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 | | 0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 | | 0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 | | 0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 | | 0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 | | 0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 | | 0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 | | 0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 | | 0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 | | 0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 | | 0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 | | 0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 | | 0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 | | 0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 | | 0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 | | 0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 | | 0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 | | 0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 | | 0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 | | 0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 | | 0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 | | 0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 | | 0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 | | 0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 | | 0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 | | 0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 | | 0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 | | 0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 | | 0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 | | 0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 | | 0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 | | 0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 | | 0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 | | 0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 | | 0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 | | 0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 | | 0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 | | 0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 | | 0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 | | 0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 | | 0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 | | 0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 | | 0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 | | 0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 | | 0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 | | 0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 | | 0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 | | 0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 | | 0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 | | 0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 | | 0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 | | 0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 | | 0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 | | 0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 | | 0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 | | 0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 | | 0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 | | 0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 | | 0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 | | 0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 | | 0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 | | 0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 | | 0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 | | 0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 | | 0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 | | 0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 | | 0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 | | 0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 | | 0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 | | 0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 | | 0.0001 | 0.0362 | 0.0012 | 0.7350 | 0.0236 | 0.2236 | 135 | | 0.0001 | 0.0362 | 0.0012 | 0.7386 | 0.0236 | 0.2240 | 136 | | 0.0001 | 0.0362 | 0.0012 | 0.7422 | 0.0236 | 0.2231 | 137 | | 0.0001 | 0.0362 | 0.0013 | 0.7445 | 0.0236 | 0.2236 | 138 | | 0.0001 | 0.0362 | 0.0012 | 0.7500 | 0.0236 | 0.2243 | 139 | | 0.0112 | 0.0361 | 0.0117 | 0.7391 | 0.0235 | 0.2370 | 140 | | 0.0036 | 0.0362 | 0.0041 | 0.7201 | 0.0236 | 0.2277 | 141 | | 0.0011 | 0.0362 | 0.0032 | 0.7210 | 0.0236 | 0.2243 | 142 | | 0.0006 | 0.0362 | 0.0030 | 0.7199 | 0.0236 | 0.2269 | 143 | | 0.0003 | 0.0362 | 0.0019 | 0.7231 | 0.0236 | 0.2254 | 144 | | 0.0002 | 0.0362 | 0.0021 | 0.7179 | 0.0236 | 0.2228 | 145 | | 0.0002 | 0.0362 | 0.0020 | 0.7236 | 0.0236 | 0.2234 | 146 | | 0.0002 | 0.0362 | 0.0021 | 0.7271 | 0.0236 | 0.2254 | 147 | | 0.0002 | 0.0362 | 0.0022 | 0.7250 | 0.0236 | 0.2233 | 148 | | 0.0001 | 0.0362 | 0.0021 | 0.7255 | 0.0236 | 0.2230 | 149 | | 0.0001 | 0.0362 | 0.0020 | 0.7263 | 0.0236 | 0.2228 | 150 | | 0.0001 | 0.0362 | 0.0021 | 0.7278 | 0.0236 | 0.2226 | 151 | | 0.0001 | 0.0362 | 0.0021 | 0.7289 | 0.0237 | 0.2220 | 152 | | 0.0001 | 0.0362 | 0.0020 | 0.7301 | 0.0237 | 0.2214 | 153 | | 0.0001 | 0.0362 | 0.0020 | 0.7307 | 0.0237 | 0.2216 | 154 | | 0.0001 | 0.0362 | 0.0020 | 0.7329 | 0.0237 | 0.2217 | 155 | | 0.0001 | 0.0362 | 0.0020 | 0.7339 | 0.0237 | 0.2211 | 156 | | 0.0001 | 0.0362 | 0.0020 | 0.7354 | 0.0237 | 0.2210 | 157 | | 0.0001 | 0.0362 | 0.0020 | 0.7374 | 0.0237 | 0.2207 | 158 | | 0.0001 | 0.0362 | 0.0020 | 0.7394 | 0.0237 | 0.2211 | 159 | | 0.0001 | 0.0362 | 0.0020 | 0.7406 | 0.0237 | 0.2212 | 160 | | 0.0001 | 0.0362 | 0.0021 | 0.7422 | 0.0237 | 0.2213 | 161 | | 0.0001 | 0.0362 | 0.0020 | 0.7446 | 0.0237 | 0.2207 | 162 | | 0.0001 | 0.0362 | 0.0020 | 0.7471 | 0.0237 | 0.2209 | 163 | | 0.0000 | 0.0362 | 0.0020 | 0.7502 | 0.0237 | 0.2206 | 164 | | 0.0000 | 0.0362 | 0.0021 | 0.7518 | 0.0237 | 0.2210 | 165 | | 0.0000 | 0.0362 | 0.0021 | 0.7533 | 0.0237 | 0.2207 | 166 | | 0.0000 | 0.0362 | 0.0021 | 0.7566 | 0.0237 | 0.2204 | 167 | | 0.0000 | 0.0362 | 0.0021 | 0.7590 | 0.0237 | 0.2203 | 168 | | 0.0000 | 0.0362 | 0.0022 | 0.7617 | 0.0237 | 0.2208 | 169 | | 0.0000 | 0.0362 | 0.0022 | 0.7644 | 0.0237 | 0.2207 | 170 | | 0.0000 | 0.0362 | 0.0022 | 0.7685 | 0.0237 | 0.2206 | 171 | | 0.0000 | 0.0362 | 0.0022 | 0.7710 | 0.0237 | 0.2203 | 172 | | 0.0000 | 0.0362 | 0.0022 | 0.7757 | 0.0236 | 0.2212 | 173 | | 0.0000 | 0.0362 | 0.0023 | 0.7803 | 0.0236 | 0.2214 | 174 | | 0.0000 | 0.0362 | 0.0024 | 0.7834 | 0.0236 | 0.2210 | 175 | | 0.0000 | 0.0362 | 0.0024 | 0.7863 | 0.0237 | 0.2209 | 176 | | 0.0000 | 0.0362 | 0.0024 | 0.7909 | 0.0236 | 0.2214 | 177 | | 0.0000 | 0.0362 | 0.0024 | 0.7940 | 0.0237 | 0.2208 | 178 | | 0.0000 | 0.0362 | 0.0025 | 0.7999 | 0.0236 | 0.2214 | 179 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_syl_cv12_pad_lob100_low__0175
bigmorning
2023-08-26T00:04:34Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-26T00:04:27Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_cv12_pad_lob100_low__0175 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_cv12_pad_lob100_low__0175 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0362 - Train Wermet: 0.0023 - Validation Loss: 0.7803 - Validation Accuracy: 0.0236 - Validation Wermet: 0.2214 - Epoch: 174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 | | 4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 | | 4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 | | 4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 | | 3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 | | 3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 | | 3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 | | 3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 | | 3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 | | 3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 | | 3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 | | 3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 | | 3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 | | 3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 | | 3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 | | 3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 | | 2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 | | 2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 | | 2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 | | 2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 | | 2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 | | 2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 | | 1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 | | 1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 | | 1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 | | 1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 | | 0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 | | 0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 | | 0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 | | 0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 | | 0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 | | 0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 | | 0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 | | 0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 | | 0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 | | 0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 | | 0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 | | 0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 | | 0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 | | 0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 | | 0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 | | 0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 | | 0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 | | 0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 | | 0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 | | 0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 | | 0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 | | 0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 | | 0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 | | 0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 | | 0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 | | 0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 | | 0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 | | 0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 | | 0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 | | 0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 | | 0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 | | 0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 | | 0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 | | 0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 | | 0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 | | 0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 | | 0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 | | 0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 | | 0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 | | 0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 | | 0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 | | 0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 | | 0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 | | 0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 | | 0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 | | 0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 | | 0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 | | 0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 | | 0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 | | 0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 | | 0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 | | 0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 | | 0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 | | 0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 | | 0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 | | 0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 | | 0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 | | 0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 | | 0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 | | 0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 | | 0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 | | 0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 | | 0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 | | 0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 | | 0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 | | 0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 | | 0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 | | 0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 | | 0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 | | 0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 | | 0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 | | 0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 | | 0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 | | 0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 | | 0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 | | 0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 | | 0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 | | 0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 | | 0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 | | 0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 | | 0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 | | 0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 | | 0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 | | 0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 | | 0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 | | 0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 | | 0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 | | 0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 | | 0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 | | 0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 | | 0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 | | 0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 | | 0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 | | 0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 | | 0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 | | 0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 | | 0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 | | 0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 | | 0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 | | 0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 | | 0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 | | 0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 | | 0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 | | 0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 | | 0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 | | 0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 | | 0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 | | 0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 | | 0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 | | 0.0001 | 0.0362 | 0.0012 | 0.7350 | 0.0236 | 0.2236 | 135 | | 0.0001 | 0.0362 | 0.0012 | 0.7386 | 0.0236 | 0.2240 | 136 | | 0.0001 | 0.0362 | 0.0012 | 0.7422 | 0.0236 | 0.2231 | 137 | | 0.0001 | 0.0362 | 0.0013 | 0.7445 | 0.0236 | 0.2236 | 138 | | 0.0001 | 0.0362 | 0.0012 | 0.7500 | 0.0236 | 0.2243 | 139 | | 0.0112 | 0.0361 | 0.0117 | 0.7391 | 0.0235 | 0.2370 | 140 | | 0.0036 | 0.0362 | 0.0041 | 0.7201 | 0.0236 | 0.2277 | 141 | | 0.0011 | 0.0362 | 0.0032 | 0.7210 | 0.0236 | 0.2243 | 142 | | 0.0006 | 0.0362 | 0.0030 | 0.7199 | 0.0236 | 0.2269 | 143 | | 0.0003 | 0.0362 | 0.0019 | 0.7231 | 0.0236 | 0.2254 | 144 | | 0.0002 | 0.0362 | 0.0021 | 0.7179 | 0.0236 | 0.2228 | 145 | | 0.0002 | 0.0362 | 0.0020 | 0.7236 | 0.0236 | 0.2234 | 146 | | 0.0002 | 0.0362 | 0.0021 | 0.7271 | 0.0236 | 0.2254 | 147 | | 0.0002 | 0.0362 | 0.0022 | 0.7250 | 0.0236 | 0.2233 | 148 | | 0.0001 | 0.0362 | 0.0021 | 0.7255 | 0.0236 | 0.2230 | 149 | | 0.0001 | 0.0362 | 0.0020 | 0.7263 | 0.0236 | 0.2228 | 150 | | 0.0001 | 0.0362 | 0.0021 | 0.7278 | 0.0236 | 0.2226 | 151 | | 0.0001 | 0.0362 | 0.0021 | 0.7289 | 0.0237 | 0.2220 | 152 | | 0.0001 | 0.0362 | 0.0020 | 0.7301 | 0.0237 | 0.2214 | 153 | | 0.0001 | 0.0362 | 0.0020 | 0.7307 | 0.0237 | 0.2216 | 154 | | 0.0001 | 0.0362 | 0.0020 | 0.7329 | 0.0237 | 0.2217 | 155 | | 0.0001 | 0.0362 | 0.0020 | 0.7339 | 0.0237 | 0.2211 | 156 | | 0.0001 | 0.0362 | 0.0020 | 0.7354 | 0.0237 | 0.2210 | 157 | | 0.0001 | 0.0362 | 0.0020 | 0.7374 | 0.0237 | 0.2207 | 158 | | 0.0001 | 0.0362 | 0.0020 | 0.7394 | 0.0237 | 0.2211 | 159 | | 0.0001 | 0.0362 | 0.0020 | 0.7406 | 0.0237 | 0.2212 | 160 | | 0.0001 | 0.0362 | 0.0021 | 0.7422 | 0.0237 | 0.2213 | 161 | | 0.0001 | 0.0362 | 0.0020 | 0.7446 | 0.0237 | 0.2207 | 162 | | 0.0001 | 0.0362 | 0.0020 | 0.7471 | 0.0237 | 0.2209 | 163 | | 0.0000 | 0.0362 | 0.0020 | 0.7502 | 0.0237 | 0.2206 | 164 | | 0.0000 | 0.0362 | 0.0021 | 0.7518 | 0.0237 | 0.2210 | 165 | | 0.0000 | 0.0362 | 0.0021 | 0.7533 | 0.0237 | 0.2207 | 166 | | 0.0000 | 0.0362 | 0.0021 | 0.7566 | 0.0237 | 0.2204 | 167 | | 0.0000 | 0.0362 | 0.0021 | 0.7590 | 0.0237 | 0.2203 | 168 | | 0.0000 | 0.0362 | 0.0022 | 0.7617 | 0.0237 | 0.2208 | 169 | | 0.0000 | 0.0362 | 0.0022 | 0.7644 | 0.0237 | 0.2207 | 170 | | 0.0000 | 0.0362 | 0.0022 | 0.7685 | 0.0237 | 0.2206 | 171 | | 0.0000 | 0.0362 | 0.0022 | 0.7710 | 0.0237 | 0.2203 | 172 | | 0.0000 | 0.0362 | 0.0022 | 0.7757 | 0.0236 | 0.2212 | 173 | | 0.0000 | 0.0362 | 0.0023 | 0.7803 | 0.0236 | 0.2214 | 174 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
jondurbin/airoboros-l2-70b-2.1-peft
jondurbin
2023-08-26T00:00:35Z
0
0
null
[ "region:us" ]
null
2023-08-25T21:57:37Z
Peft model for https://hf.co/jondurbin/airoboros-l2-70b-2.1
debadas/ronaldo_longer
debadas
2023-08-25T23:50:26Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-25T23:42:11Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 instance_prompt: a photo of sks man tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - debadas/ronaldo_longer These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were trained on a photo of sks man using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False.
bigmorning/whisper_syl_cv12_pad_lob100_low__0165
bigmorning
2023-08-25T23:38:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-25T23:38:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_syl_cv12_pad_lob100_low__0165 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_syl_cv12_pad_lob100_low__0165 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0362 - Train Wermet: 0.0020 - Validation Loss: 0.7502 - Validation Accuracy: 0.0237 - Validation Wermet: 0.2206 - Epoch: 164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 5.2930 | 0.0113 | 2.0658 | 3.9415 | 0.0117 | 0.9401 | 0 | | 4.6215 | 0.0121 | 0.8917 | 3.7803 | 0.0120 | 0.9294 | 1 | | 4.4086 | 0.0128 | 0.8403 | 3.6070 | 0.0124 | 0.9223 | 2 | | 4.1842 | 0.0135 | 0.8337 | 3.4291 | 0.0128 | 0.8867 | 3 | | 3.9981 | 0.0141 | 0.8182 | 3.3251 | 0.0131 | 0.8750 | 4 | | 3.8531 | 0.0145 | 0.8058 | 3.2385 | 0.0133 | 0.8699 | 5 | | 3.7345 | 0.0149 | 0.7925 | 3.1751 | 0.0134 | 0.8665 | 6 | | 3.6307 | 0.0152 | 0.7851 | 3.1031 | 0.0136 | 0.8507 | 7 | | 3.5437 | 0.0155 | 0.7717 | 3.0752 | 0.0138 | 0.8286 | 8 | | 3.4649 | 0.0157 | 0.7651 | 3.0334 | 0.0139 | 0.8417 | 9 | | 3.3926 | 0.0159 | 0.7531 | 3.0022 | 0.0139 | 0.8413 | 10 | | 3.3262 | 0.0162 | 0.7462 | 2.9669 | 0.0140 | 0.8264 | 11 | | 3.2625 | 0.0164 | 0.7367 | 2.9342 | 0.0141 | 0.8520 | 12 | | 3.1979 | 0.0166 | 0.7231 | 2.9046 | 0.0144 | 0.8196 | 13 | | 3.1319 | 0.0169 | 0.7133 | 2.8607 | 0.0145 | 0.8026 | 14 | | 3.0616 | 0.0172 | 0.7007 | 2.8165 | 0.0146 | 0.7788 | 15 | | 2.9792 | 0.0176 | 0.6816 | 2.7552 | 0.0149 | 0.7643 | 16 | | 2.8905 | 0.0180 | 0.6641 | 2.6788 | 0.0151 | 0.7473 | 17 | | 2.7749 | 0.0186 | 0.6424 | 2.5824 | 0.0155 | 0.7241 | 18 | | 2.6263 | 0.0193 | 0.6159 | 2.4206 | 0.0161 | 0.7047 | 19 | | 2.4352 | 0.0203 | 0.5829 | 2.2230 | 0.0168 | 0.6500 | 20 | | 2.1941 | 0.0216 | 0.5411 | 2.0349 | 0.0175 | 0.5980 | 21 | | 1.9184 | 0.0231 | 0.4922 | 1.7850 | 0.0184 | 0.5659 | 22 | | 1.6174 | 0.0249 | 0.4371 | 1.5664 | 0.0192 | 0.5081 | 23 | | 1.3542 | 0.0265 | 0.3851 | 1.3992 | 0.0199 | 0.4690 | 24 | | 1.1499 | 0.0278 | 0.3408 | 1.2512 | 0.0205 | 0.4299 | 25 | | 0.9878 | 0.0288 | 0.3029 | 1.1479 | 0.0209 | 0.4013 | 26 | | 0.8600 | 0.0297 | 0.2735 | 1.0527 | 0.0213 | 0.3755 | 27 | | 0.7516 | 0.0305 | 0.2441 | 0.9803 | 0.0216 | 0.3570 | 28 | | 0.6626 | 0.0311 | 0.2197 | 0.9314 | 0.0219 | 0.3416 | 29 | | 0.5863 | 0.0316 | 0.1993 | 0.8730 | 0.0221 | 0.3238 | 30 | | 0.5187 | 0.0321 | 0.1775 | 0.8357 | 0.0223 | 0.3136 | 31 | | 0.4608 | 0.0326 | 0.1610 | 0.8059 | 0.0224 | 0.3033 | 32 | | 0.4087 | 0.0330 | 0.1467 | 0.7746 | 0.0226 | 0.2949 | 33 | | 0.3642 | 0.0334 | 0.1298 | 0.7476 | 0.0227 | 0.2847 | 34 | | 0.3221 | 0.0337 | 0.1168 | 0.7330 | 0.0228 | 0.2802 | 35 | | 0.2837 | 0.0340 | 0.1030 | 0.7093 | 0.0229 | 0.2728 | 36 | | 0.2509 | 0.0343 | 0.0882 | 0.6941 | 0.0229 | 0.2687 | 37 | | 0.2209 | 0.0346 | 0.0747 | 0.6892 | 0.0230 | 0.2656 | 38 | | 0.1934 | 0.0349 | 0.0670 | 0.6824 | 0.0230 | 0.2630 | 39 | | 0.1688 | 0.0351 | 0.0542 | 0.6773 | 0.0230 | 0.2625 | 40 | | 0.1469 | 0.0353 | 0.0429 | 0.6700 | 0.0231 | 0.2633 | 41 | | 0.1268 | 0.0355 | 0.0365 | 0.6680 | 0.0231 | 0.2578 | 42 | | 0.1086 | 0.0357 | 0.0284 | 0.6643 | 0.0231 | 0.2540 | 43 | | 0.0920 | 0.0358 | 0.0221 | 0.6645 | 0.0231 | 0.2530 | 44 | | 0.0783 | 0.0359 | 0.0169 | 0.6621 | 0.0232 | 0.2540 | 45 | | 0.0667 | 0.0360 | 0.0121 | 0.6714 | 0.0232 | 0.2532 | 46 | | 0.0563 | 0.0361 | 0.0094 | 0.6604 | 0.0232 | 0.2503 | 47 | | 0.0477 | 0.0361 | 0.0072 | 0.6620 | 0.0232 | 0.2489 | 48 | | 0.0397 | 0.0362 | 0.0055 | 0.6611 | 0.0232 | 0.2502 | 49 | | 0.0330 | 0.0362 | 0.0045 | 0.6686 | 0.0232 | 0.2496 | 50 | | 0.0283 | 0.0362 | 0.0033 | 0.6705 | 0.0232 | 0.2503 | 51 | | 0.0242 | 0.0362 | 0.0034 | 0.6686 | 0.0232 | 0.2486 | 52 | | 0.0212 | 0.0362 | 0.0031 | 0.6686 | 0.0232 | 0.2493 | 53 | | 0.0197 | 0.0362 | 0.0028 | 0.6688 | 0.0232 | 0.2530 | 54 | | 0.0226 | 0.0362 | 0.0041 | 0.6598 | 0.0233 | 0.2451 | 55 | | 0.0158 | 0.0362 | 0.0024 | 0.6605 | 0.0233 | 0.2428 | 56 | | 0.0115 | 0.0362 | 0.0018 | 0.6648 | 0.0233 | 0.2435 | 57 | | 0.0094 | 0.0362 | 0.0017 | 0.6672 | 0.0233 | 0.2446 | 58 | | 0.0081 | 0.0362 | 0.0018 | 0.6731 | 0.0233 | 0.2439 | 59 | | 0.0071 | 0.0362 | 0.0017 | 0.6762 | 0.0233 | 0.2429 | 60 | | 0.0062 | 0.0362 | 0.0017 | 0.6794 | 0.0233 | 0.2426 | 61 | | 0.0055 | 0.0362 | 0.0017 | 0.6825 | 0.0233 | 0.2429 | 62 | | 0.0048 | 0.0362 | 0.0017 | 0.6895 | 0.0233 | 0.2450 | 63 | | 0.0042 | 0.0362 | 0.0019 | 0.6914 | 0.0233 | 0.2424 | 64 | | 0.0037 | 0.0362 | 0.0018 | 0.6938 | 0.0233 | 0.2423 | 65 | | 0.0224 | 0.0361 | 0.0080 | 0.6695 | 0.0234 | 0.2409 | 66 | | 0.0127 | 0.0362 | 0.0037 | 0.6685 | 0.0234 | 0.2383 | 67 | | 0.0065 | 0.0362 | 0.0017 | 0.6714 | 0.0234 | 0.2359 | 68 | | 0.0045 | 0.0362 | 0.0017 | 0.6645 | 0.0234 | 0.2347 | 69 | | 0.0034 | 0.0362 | 0.0016 | 0.6671 | 0.0234 | 0.2353 | 70 | | 0.0028 | 0.0362 | 0.0014 | 0.6715 | 0.0234 | 0.2354 | 71 | | 0.0024 | 0.0362 | 0.0014 | 0.6745 | 0.0234 | 0.2358 | 72 | | 0.0022 | 0.0362 | 0.0014 | 0.6778 | 0.0234 | 0.2356 | 73 | | 0.0020 | 0.0362 | 0.0013 | 0.6797 | 0.0234 | 0.2357 | 74 | | 0.0018 | 0.0362 | 0.0014 | 0.6833 | 0.0234 | 0.2355 | 75 | | 0.0016 | 0.0362 | 0.0013 | 0.6885 | 0.0234 | 0.2363 | 76 | | 0.0068 | 0.0362 | 0.0035 | 0.7270 | 0.0232 | 0.2500 | 77 | | 0.0131 | 0.0362 | 0.0076 | 0.6965 | 0.0234 | 0.2397 | 78 | | 0.0054 | 0.0362 | 0.0088 | 0.6764 | 0.0235 | 0.2339 | 79 | | 0.0029 | 0.0362 | 0.0041 | 0.6806 | 0.0235 | 0.2334 | 80 | | 0.0019 | 0.0362 | 0.0039 | 0.6723 | 0.0235 | 0.2316 | 81 | | 0.0016 | 0.0362 | 0.0028 | 0.6765 | 0.0235 | 0.2315 | 82 | | 0.0014 | 0.0362 | 0.0025 | 0.6786 | 0.0235 | 0.2306 | 83 | | 0.0013 | 0.0362 | 0.0023 | 0.6805 | 0.0235 | 0.2304 | 84 | | 0.0012 | 0.0362 | 0.0022 | 0.6830 | 0.0235 | 0.2301 | 85 | | 0.0011 | 0.0362 | 0.0022 | 0.6881 | 0.0235 | 0.2308 | 86 | | 0.0010 | 0.0362 | 0.0022 | 0.6875 | 0.0235 | 0.2303 | 87 | | 0.0009 | 0.0362 | 0.0022 | 0.6909 | 0.0235 | 0.2307 | 88 | | 0.0008 | 0.0362 | 0.0020 | 0.6934 | 0.0235 | 0.2299 | 89 | | 0.0007 | 0.0362 | 0.0022 | 0.6968 | 0.0235 | 0.2307 | 90 | | 0.0007 | 0.0362 | 0.0020 | 0.7005 | 0.0235 | 0.2300 | 91 | | 0.0006 | 0.0362 | 0.0021 | 0.7040 | 0.0235 | 0.2307 | 92 | | 0.0006 | 0.0362 | 0.0020 | 0.7086 | 0.0235 | 0.2309 | 93 | | 0.0005 | 0.0362 | 0.0020 | 0.7116 | 0.0235 | 0.2318 | 94 | | 0.0005 | 0.0362 | 0.0018 | 0.7151 | 0.0235 | 0.2305 | 95 | | 0.0111 | 0.0362 | 0.2014 | 0.7185 | 0.0234 | 0.2861 | 96 | | 0.0069 | 0.0362 | 0.0051 | 0.7036 | 0.0235 | 0.2337 | 97 | | 0.0028 | 0.0362 | 0.0015 | 0.6946 | 0.0235 | 0.2324 | 98 | | 0.0023 | 0.0362 | 0.0018 | 0.6937 | 0.0235 | 0.2295 | 99 | | 0.0017 | 0.0362 | 0.0013 | 0.6886 | 0.0235 | 0.2283 | 100 | | 0.0010 | 0.0362 | 0.0008 | 0.6891 | 0.0236 | 0.2274 | 101 | | 0.0009 | 0.0362 | 0.0013 | 0.6901 | 0.0236 | 0.2275 | 102 | | 0.0008 | 0.0362 | 0.0015 | 0.6922 | 0.0236 | 0.2273 | 103 | | 0.0006 | 0.0362 | 0.0015 | 0.6923 | 0.0236 | 0.2274 | 104 | | 0.0008 | 0.0362 | 0.0014 | 0.6996 | 0.0235 | 0.2288 | 105 | | 0.0006 | 0.0362 | 0.0014 | 0.6967 | 0.0236 | 0.2266 | 106 | | 0.0005 | 0.0362 | 0.0013 | 0.6988 | 0.0236 | 0.2260 | 107 | | 0.0004 | 0.0362 | 0.0027 | 0.7008 | 0.0236 | 0.2278 | 108 | | 0.0004 | 0.0362 | 0.0017 | 0.7034 | 0.0236 | 0.2261 | 109 | | 0.0004 | 0.0362 | 0.0018 | 0.7036 | 0.0236 | 0.2265 | 110 | | 0.0004 | 0.0362 | 0.0015 | 0.7090 | 0.0236 | 0.2255 | 111 | | 0.0112 | 0.0362 | 0.0059 | 0.7014 | 0.0235 | 0.2271 | 112 | | 0.0034 | 0.0362 | 0.0023 | 0.6869 | 0.0236 | 0.2252 | 113 | | 0.0015 | 0.0362 | 0.0015 | 0.6863 | 0.0236 | 0.2234 | 114 | | 0.0008 | 0.0362 | 0.0010 | 0.6893 | 0.0236 | 0.2227 | 115 | | 0.0006 | 0.0362 | 0.0011 | 0.6911 | 0.0236 | 0.2232 | 116 | | 0.0005 | 0.0362 | 0.0009 | 0.6923 | 0.0236 | 0.2227 | 117 | | 0.0004 | 0.0362 | 0.0009 | 0.6938 | 0.0236 | 0.2225 | 118 | | 0.0004 | 0.0362 | 0.0010 | 0.6958 | 0.0236 | 0.2226 | 119 | | 0.0003 | 0.0362 | 0.0010 | 0.6966 | 0.0236 | 0.2226 | 120 | | 0.0003 | 0.0362 | 0.0010 | 0.6983 | 0.0236 | 0.2230 | 121 | | 0.0003 | 0.0362 | 0.0010 | 0.7005 | 0.0236 | 0.2229 | 122 | | 0.0003 | 0.0362 | 0.0010 | 0.7022 | 0.0236 | 0.2233 | 123 | | 0.0002 | 0.0362 | 0.0010 | 0.7041 | 0.0236 | 0.2226 | 124 | | 0.0002 | 0.0362 | 0.0011 | 0.7065 | 0.0236 | 0.2228 | 125 | | 0.0002 | 0.0362 | 0.0011 | 0.7081 | 0.0236 | 0.2227 | 126 | | 0.0002 | 0.0362 | 0.0011 | 0.7101 | 0.0236 | 0.2224 | 127 | | 0.0002 | 0.0362 | 0.0011 | 0.7130 | 0.0236 | 0.2224 | 128 | | 0.0002 | 0.0362 | 0.0011 | 0.7157 | 0.0236 | 0.2229 | 129 | | 0.0002 | 0.0362 | 0.0011 | 0.7183 | 0.0236 | 0.2225 | 130 | | 0.0001 | 0.0362 | 0.0011 | 0.7212 | 0.0236 | 0.2230 | 131 | | 0.0001 | 0.0362 | 0.0012 | 0.7250 | 0.0236 | 0.2230 | 132 | | 0.0001 | 0.0362 | 0.0012 | 0.7268 | 0.0236 | 0.2229 | 133 | | 0.0001 | 0.0362 | 0.0011 | 0.7303 | 0.0236 | 0.2229 | 134 | | 0.0001 | 0.0362 | 0.0012 | 0.7350 | 0.0236 | 0.2236 | 135 | | 0.0001 | 0.0362 | 0.0012 | 0.7386 | 0.0236 | 0.2240 | 136 | | 0.0001 | 0.0362 | 0.0012 | 0.7422 | 0.0236 | 0.2231 | 137 | | 0.0001 | 0.0362 | 0.0013 | 0.7445 | 0.0236 | 0.2236 | 138 | | 0.0001 | 0.0362 | 0.0012 | 0.7500 | 0.0236 | 0.2243 | 139 | | 0.0112 | 0.0361 | 0.0117 | 0.7391 | 0.0235 | 0.2370 | 140 | | 0.0036 | 0.0362 | 0.0041 | 0.7201 | 0.0236 | 0.2277 | 141 | | 0.0011 | 0.0362 | 0.0032 | 0.7210 | 0.0236 | 0.2243 | 142 | | 0.0006 | 0.0362 | 0.0030 | 0.7199 | 0.0236 | 0.2269 | 143 | | 0.0003 | 0.0362 | 0.0019 | 0.7231 | 0.0236 | 0.2254 | 144 | | 0.0002 | 0.0362 | 0.0021 | 0.7179 | 0.0236 | 0.2228 | 145 | | 0.0002 | 0.0362 | 0.0020 | 0.7236 | 0.0236 | 0.2234 | 146 | | 0.0002 | 0.0362 | 0.0021 | 0.7271 | 0.0236 | 0.2254 | 147 | | 0.0002 | 0.0362 | 0.0022 | 0.7250 | 0.0236 | 0.2233 | 148 | | 0.0001 | 0.0362 | 0.0021 | 0.7255 | 0.0236 | 0.2230 | 149 | | 0.0001 | 0.0362 | 0.0020 | 0.7263 | 0.0236 | 0.2228 | 150 | | 0.0001 | 0.0362 | 0.0021 | 0.7278 | 0.0236 | 0.2226 | 151 | | 0.0001 | 0.0362 | 0.0021 | 0.7289 | 0.0237 | 0.2220 | 152 | | 0.0001 | 0.0362 | 0.0020 | 0.7301 | 0.0237 | 0.2214 | 153 | | 0.0001 | 0.0362 | 0.0020 | 0.7307 | 0.0237 | 0.2216 | 154 | | 0.0001 | 0.0362 | 0.0020 | 0.7329 | 0.0237 | 0.2217 | 155 | | 0.0001 | 0.0362 | 0.0020 | 0.7339 | 0.0237 | 0.2211 | 156 | | 0.0001 | 0.0362 | 0.0020 | 0.7354 | 0.0237 | 0.2210 | 157 | | 0.0001 | 0.0362 | 0.0020 | 0.7374 | 0.0237 | 0.2207 | 158 | | 0.0001 | 0.0362 | 0.0020 | 0.7394 | 0.0237 | 0.2211 | 159 | | 0.0001 | 0.0362 | 0.0020 | 0.7406 | 0.0237 | 0.2212 | 160 | | 0.0001 | 0.0362 | 0.0021 | 0.7422 | 0.0237 | 0.2213 | 161 | | 0.0001 | 0.0362 | 0.0020 | 0.7446 | 0.0237 | 0.2207 | 162 | | 0.0001 | 0.0362 | 0.0020 | 0.7471 | 0.0237 | 0.2209 | 163 | | 0.0000 | 0.0362 | 0.0020 | 0.7502 | 0.0237 | 0.2206 | 164 | ### Framework versions - Transformers 4.33.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dkqjrm/20230826064921
dkqjrm
2023-08-25T23:31:50Z
62
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-25T21:49:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826064921' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826064921 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2753 - Accuracy: 0.71 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.3969 | 0.6 | | No log | 2.0 | 50 | 0.4709 | 0.5 | | No log | 3.0 | 75 | 0.3341 | 0.42 | | No log | 4.0 | 100 | 0.3011 | 0.54 | | No log | 5.0 | 125 | 0.3119 | 0.36 | | No log | 6.0 | 150 | 0.3297 | 0.37 | | No log | 7.0 | 175 | 0.2928 | 0.53 | | No log | 8.0 | 200 | 0.3079 | 0.63 | | No log | 9.0 | 225 | 0.2875 | 0.61 | | No log | 10.0 | 250 | 0.2906 | 0.54 | | No log | 11.0 | 275 | 0.2904 | 0.62 | | No log | 12.0 | 300 | 0.2946 | 0.52 | | No log | 13.0 | 325 | 0.2942 | 0.51 | | No log | 14.0 | 350 | 0.2935 | 0.56 | | No log | 15.0 | 375 | 0.2913 | 0.58 | | No log | 16.0 | 400 | 0.2886 | 0.6 | | No log | 17.0 | 425 | 0.2900 | 0.6 | | No log | 18.0 | 450 | 0.2874 | 0.59 | | No log | 19.0 | 475 | 0.2910 | 0.6 | | 0.6674 | 20.0 | 500 | 0.2931 | 0.47 | | 0.6674 | 21.0 | 525 | 0.2909 | 0.51 | | 0.6674 | 22.0 | 550 | 0.2855 | 0.62 | | 0.6674 | 23.0 | 575 | 0.2881 | 0.61 | | 0.6674 | 24.0 | 600 | 0.2878 | 0.6 | | 0.6674 | 25.0 | 625 | 0.2874 | 0.57 | | 0.6674 | 26.0 | 650 | 0.2857 | 0.54 | | 0.6674 | 27.0 | 675 | 0.2871 | 0.6 | | 0.6674 | 28.0 | 700 | 0.2864 | 0.59 | | 0.6674 | 29.0 | 725 | 0.2862 | 0.62 | | 0.6674 | 30.0 | 750 | 0.2866 | 0.58 | | 0.6674 | 31.0 | 775 | 0.2837 | 0.63 | | 0.6674 | 32.0 | 800 | 0.2859 | 0.58 | | 0.6674 | 33.0 | 825 | 0.2841 | 0.59 | | 0.6674 | 34.0 | 850 | 0.2878 | 0.62 | | 0.6674 | 35.0 | 875 | 0.2889 | 0.61 | | 0.6674 | 36.0 | 900 | 0.2830 | 0.59 | | 0.6674 | 37.0 | 925 | 0.2824 | 0.59 | | 0.6674 | 38.0 | 950 | 0.2801 | 0.63 | | 0.6674 | 39.0 | 975 | 0.2931 | 0.65 | | 0.5477 | 40.0 | 1000 | 0.2788 | 0.64 | | 0.5477 | 41.0 | 1025 | 0.2892 | 0.63 | | 0.5477 | 42.0 | 1050 | 0.2937 | 0.58 | | 0.5477 | 43.0 | 1075 | 0.2886 | 0.66 | | 0.5477 | 44.0 | 1100 | 0.2842 | 0.62 | | 0.5477 | 45.0 | 1125 | 0.2857 | 0.6 | | 0.5477 | 46.0 | 1150 | 0.2834 | 0.62 | | 0.5477 | 47.0 | 1175 | 0.2824 | 0.56 | | 0.5477 | 48.0 | 1200 | 0.2866 | 0.65 | | 0.5477 | 49.0 | 1225 | 0.2801 | 0.63 | | 0.5477 | 50.0 | 1250 | 0.2851 | 0.62 | | 0.5477 | 51.0 | 1275 | 0.2829 | 0.6 | | 0.5477 | 52.0 | 1300 | 0.2900 | 0.59 | | 0.5477 | 53.0 | 1325 | 0.2782 | 0.59 | | 0.5477 | 54.0 | 1350 | 0.2793 | 0.59 | | 0.5477 | 55.0 | 1375 | 0.2809 | 0.6 | | 0.5477 | 56.0 | 1400 | 0.2815 | 0.64 | | 0.5477 | 57.0 | 1425 | 0.2798 | 0.68 | | 0.5477 | 58.0 | 1450 | 0.2831 | 0.67 | | 0.5477 | 59.0 | 1475 | 0.2795 | 0.66 | | 0.4601 | 60.0 | 1500 | 0.2747 | 0.68 | | 0.4601 | 61.0 | 1525 | 0.2725 | 0.73 | | 0.4601 | 62.0 | 1550 | 0.2840 | 0.66 | | 0.4601 | 63.0 | 1575 | 0.2739 | 0.67 | | 0.4601 | 64.0 | 1600 | 0.2796 | 0.69 | | 0.4601 | 65.0 | 1625 | 0.2782 | 0.65 | | 0.4601 | 66.0 | 1650 | 0.2757 | 0.7 | | 0.4601 | 67.0 | 1675 | 0.2759 | 0.69 | | 0.4601 | 68.0 | 1700 | 0.2779 | 0.67 | | 0.4601 | 69.0 | 1725 | 0.2822 | 0.67 | | 0.4601 | 70.0 | 1750 | 0.2813 | 0.65 | | 0.4601 | 71.0 | 1775 | 0.2818 | 0.68 | | 0.4601 | 72.0 | 1800 | 0.2865 | 0.69 | | 0.4601 | 73.0 | 1825 | 0.2770 | 0.71 | | 0.4601 | 74.0 | 1850 | 0.2822 | 0.69 | | 0.4601 | 75.0 | 1875 | 0.2783 | 0.71 | | 0.4601 | 76.0 | 1900 | 0.2764 | 0.71 | | 0.4601 | 77.0 | 1925 | 0.2772 | 0.69 | | 0.4601 | 78.0 | 1950 | 0.2759 | 0.7 | | 0.4601 | 79.0 | 1975 | 0.2751 | 0.72 | | 0.4329 | 80.0 | 2000 | 0.2753 | 0.71 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dkqjrm/20230826065621
dkqjrm
2023-08-25T23:18:21Z
61
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:super_glue", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2023-08-25T21:56:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - super_glue metrics: - accuracy model-index: - name: '20230826065621' results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 20230826065621 This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6391 - Accuracy: 0.67 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.02 - train_batch_size: 16 - eval_batch_size: 8 - seed: 11 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 80.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 25 | 0.9872 | 0.34 | | No log | 2.0 | 50 | 0.8547 | 0.59 | | No log | 3.0 | 75 | 0.6062 | 0.64 | | No log | 4.0 | 100 | 0.6097 | 0.61 | | No log | 5.0 | 125 | 0.6064 | 0.62 | | No log | 6.0 | 150 | 0.5974 | 0.63 | | No log | 7.0 | 175 | 0.5723 | 0.66 | | No log | 8.0 | 200 | 0.6179 | 0.63 | | No log | 9.0 | 225 | 0.5842 | 0.62 | | No log | 10.0 | 250 | 0.6117 | 0.68 | | No log | 11.0 | 275 | 0.5444 | 0.64 | | No log | 12.0 | 300 | 0.7898 | 0.68 | | No log | 13.0 | 325 | 0.6851 | 0.68 | | No log | 14.0 | 350 | 0.7716 | 0.69 | | No log | 15.0 | 375 | 0.6750 | 0.71 | | No log | 16.0 | 400 | 0.7645 | 0.7 | | No log | 17.0 | 425 | 0.7338 | 0.7 | | No log | 18.0 | 450 | 0.8156 | 0.66 | | No log | 19.0 | 475 | 0.7524 | 0.68 | | 0.7431 | 20.0 | 500 | 0.8516 | 0.65 | | 0.7431 | 21.0 | 525 | 0.8224 | 0.65 | | 0.7431 | 22.0 | 550 | 1.0607 | 0.67 | | 0.7431 | 23.0 | 575 | 0.8977 | 0.66 | | 0.7431 | 24.0 | 600 | 0.7860 | 0.66 | | 0.7431 | 25.0 | 625 | 0.7285 | 0.66 | | 0.7431 | 26.0 | 650 | 0.7097 | 0.64 | | 0.7431 | 27.0 | 675 | 0.7292 | 0.64 | | 0.7431 | 28.0 | 700 | 0.7131 | 0.65 | | 0.7431 | 29.0 | 725 | 0.8039 | 0.65 | | 0.7431 | 30.0 | 750 | 0.7988 | 0.65 | | 0.7431 | 31.0 | 775 | 0.7809 | 0.64 | | 0.7431 | 32.0 | 800 | 0.7544 | 0.64 | | 0.7431 | 33.0 | 825 | 0.7492 | 0.62 | | 0.7431 | 34.0 | 850 | 0.8206 | 0.64 | | 0.7431 | 35.0 | 875 | 0.6409 | 0.66 | | 0.7431 | 36.0 | 900 | 0.7144 | 0.63 | | 0.7431 | 37.0 | 925 | 0.7414 | 0.63 | | 0.7431 | 38.0 | 950 | 0.7423 | 0.65 | | 0.7431 | 39.0 | 975 | 0.7766 | 0.65 | | 0.3363 | 40.0 | 1000 | 0.7182 | 0.67 | | 0.3363 | 41.0 | 1025 | 0.7375 | 0.67 | | 0.3363 | 42.0 | 1050 | 0.7236 | 0.67 | | 0.3363 | 43.0 | 1075 | 0.7218 | 0.66 | | 0.3363 | 44.0 | 1100 | 0.7324 | 0.67 | | 0.3363 | 45.0 | 1125 | 0.7291 | 0.67 | | 0.3363 | 46.0 | 1150 | 0.6803 | 0.67 | | 0.3363 | 47.0 | 1175 | 0.6637 | 0.67 | | 0.3363 | 48.0 | 1200 | 0.7064 | 0.65 | | 0.3363 | 49.0 | 1225 | 0.6534 | 0.65 | | 0.3363 | 50.0 | 1250 | 0.7230 | 0.67 | | 0.3363 | 51.0 | 1275 | 0.7338 | 0.65 | | 0.3363 | 52.0 | 1300 | 0.6495 | 0.62 | | 0.3363 | 53.0 | 1325 | 0.6540 | 0.63 | | 0.3363 | 54.0 | 1350 | 0.6994 | 0.62 | | 0.3363 | 55.0 | 1375 | 0.7040 | 0.63 | | 0.3363 | 56.0 | 1400 | 0.6775 | 0.63 | | 0.3363 | 57.0 | 1425 | 0.6425 | 0.65 | | 0.3363 | 58.0 | 1450 | 0.6424 | 0.66 | | 0.3363 | 59.0 | 1475 | 0.6782 | 0.66 | | 0.2375 | 60.0 | 1500 | 0.6770 | 0.68 | | 0.2375 | 61.0 | 1525 | 0.7029 | 0.68 | | 0.2375 | 62.0 | 1550 | 0.6824 | 0.68 | | 0.2375 | 63.0 | 1575 | 0.6847 | 0.68 | | 0.2375 | 64.0 | 1600 | 0.6767 | 0.68 | | 0.2375 | 65.0 | 1625 | 0.6362 | 0.67 | | 0.2375 | 66.0 | 1650 | 0.6292 | 0.67 | | 0.2375 | 67.0 | 1675 | 0.6470 | 0.67 | | 0.2375 | 68.0 | 1700 | 0.6661 | 0.67 | | 0.2375 | 69.0 | 1725 | 0.6305 | 0.67 | | 0.2375 | 70.0 | 1750 | 0.6492 | 0.67 | | 0.2375 | 71.0 | 1775 | 0.6525 | 0.67 | | 0.2375 | 72.0 | 1800 | 0.6339 | 0.67 | | 0.2375 | 73.0 | 1825 | 0.6621 | 0.67 | | 0.2375 | 74.0 | 1850 | 0.6562 | 0.67 | | 0.2375 | 75.0 | 1875 | 0.6397 | 0.67 | | 0.2375 | 76.0 | 1900 | 0.6496 | 0.67 | | 0.2375 | 77.0 | 1925 | 0.6402 | 0.67 | | 0.2375 | 78.0 | 1950 | 0.6382 | 0.67 | | 0.2375 | 79.0 | 1975 | 0.6407 | 0.67 | | 0.2102 | 80.0 | 2000 | 0.6391 | 0.67 | ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3