modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 18:27:06
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 18:26:56
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
|
gary109
| 2022-06-22T02:22:03Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"gary109/AI_Light_Dance",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-21T09:18:30Z |
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
model-index:
- name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v4
This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v2) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4231
- Wer: 0.1597
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1335 | 1.0 | 138 | 0.4256 | 0.1605 |
| 0.1288 | 2.0 | 276 | 0.4234 | 0.1602 |
| 0.1278 | 3.0 | 414 | 0.4243 | 0.1597 |
| 0.1345 | 4.0 | 552 | 0.4231 | 0.1597 |
| 0.1344 | 5.0 | 690 | 0.4246 | 0.1597 |
| 0.1237 | 6.0 | 828 | 0.4279 | 0.1595 |
| 0.1109 | 7.0 | 966 | 0.4354 | 0.1573 |
| 0.1247 | 8.0 | 1104 | 0.4318 | 0.1570 |
| 0.1372 | 9.0 | 1242 | 0.4341 | 0.1573 |
| 0.1256 | 10.0 | 1380 | 0.4328 | 0.1575 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|
deepesh0x/autotrain-mlsec-1013333726
|
deepesh0x
| 2022-06-21T20:49:59Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"julien",
"text-classification",
"autotrain",
"en",
"dataset:deepesh0x/autotrain-data-mlsec",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T16:55:28Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- deepesh0x/autotrain-data-mlsec
co2_eq_emissions: 33.183779535405364
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 1013333726
- CO2 Emissions (in grams): 33.183779535405364
## Validation Metrics
- Loss: 0.1998898833990097
- Accuracy: 0.9226923076923077
- Precision: 0.9269808389435525
- Recall: 0.9177134068187645
- AUC: 0.9785380985232148
- F1: 0.9223238438747907
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-mlsec-1013333726
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-mlsec-1013333726", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
edmundhui/mental_health_trainer
|
edmundhui
| 2022-06-21T20:41:48Z | 29 | 3 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-08T20:36:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: mental_health_trainer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mental_health_trainer
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the [reddit_mental_health_posts](https://huggingface.co/datasets/solomonk/reddit_mental_health_posts)
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|
torchxrayvision/densenet121-res224-rsna
|
torchxrayvision
| 2022-06-21T20:13:11Z | 28 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:04:14Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-rsna
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-rsna"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/densenet121-res224-mimic_nb
|
torchxrayvision
| 2022-06-21T20:12:24Z | 27 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:04:51Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-mimic_nb
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-mimic_nb"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/densenet121-res224-all
|
torchxrayvision
| 2022-06-21T20:10:39Z | 57 | 1 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2002.02497",
"arxiv:2111.00595",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:01:42Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-all
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
This model was trained on the datasets: nih-pc-chex-mimic_ch-google-openi-rsna and is described here: https://arxiv.org/abs/2002.02497
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-all"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/densenet121-res224-nih
|
torchxrayvision
| 2022-06-21T20:10:17Z | 26 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:02:19Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-nih
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-nih"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/densenet121-res224-pc
|
torchxrayvision
| 2022-06-21T20:09:59Z | 27 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:03:00Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-pc
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-pc"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/densenet121-res224-chex
|
torchxrayvision
| 2022-06-21T20:09:36Z | 32 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:03:37Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# densenet121-res224-chex
A DenseNet is a type of convolutional neural network that utilises dense connections between layers, through Dense Blocks, where we connect all layers (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "densenet121-res224-chex"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
torchxrayvision/resnet50-res512-all
|
torchxrayvision
| 2022-06-21T20:06:33Z | 26 | 0 |
transformers
|
[
"transformers",
"vision",
"image-classification",
"dataset:nih-pc-chex-mimic_ch-google-openi-rsna",
"arxiv:2111.00595",
"arxiv:2002.02497",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T13:06:05Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- nih-pc-chex-mimic_ch-google-openi-rsna
---
# resnet50-res512-all
ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.
This model was trained on the datasets pc-nih-rsna-siim-vin at a 512x512 resolution.
### How to use
Here is how to use this model to classify an image of xray:
Note: Each pretrained model has 18 outputs. The `all` model has every output trained. However, for the other weights some targets are not trained and will predict randomly becuase they do not exist in the training dataset. The only valid outputs are listed in the field `{dataset}.pathologies` on the dataset that corresponds to the weights.
Benchmarks of the modes are here: [BENCHMARKS.md](https://github.com/mlmed/torchxrayvision/blob/master/BENCHMARKS.md)
```python
import urllib.request
import skimage
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms
import torchxrayvision as xrv
model_name = "resnet50-res512-all"
img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
img_path = "xray.jpg"
urllib.request.urlretrieve(img_url, img_path)
model = xrv.models.get_model(model_name, from_hf_hub=True)
img = skimage.io.imread(img_path)
img = xrv.datasets.normalize(img, 255)
# Check that images are 2D arrays
if len(img.shape) > 2:
img = img[:, :, 0]
if len(img.shape) < 2:
print("error, dimension lower than 2 for image")
# Add color channel
img = img[None, :, :]
transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
img = transform(img)
with torch.no_grad():
img = torch.from_numpy(img).unsqueeze(0)
preds = model(img).cpu()
output = {
k: float(v)
for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
}
print(output)
```
For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
### Citation
Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
```
Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
TorchXRayVision: A library of chest X-ray datasets and models.
https://github.com/mlmed/torchxrayvision, 2020
@article{Cohen2020xrv,
author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
journal = {https://github.com/mlmed/torchxrayvision},
title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
url = {https://github.com/mlmed/torchxrayvision},
year = {2020}
arxivId = {2111.00595},
}
```
and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
```
Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
On the limits of cross-domain generalization in automated X-ray prediction.
Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
@inproceedings{cohen2020limits,
title={On the limits of cross-domain generalization in automated X-ray prediction},
author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
booktitle={Medical Imaging with Deep Learning},
year={2020},
url={https://arxiv.org/abs/2002.02497}
}
```
|
patrickvonplaten/opt_metaseq_13000m
|
patrickvonplaten
| 2022-06-21T18:06:23Z | 0 | 2 | null |
[
"opt_metasq",
"region:us"
] | null | 2022-05-11T07:40:12Z |
---
tags:
- opt_metasq
---
# This repo let's you run the following checkpoint using facebookresearch/metaseq.
Do the following:
## 1. Install PyTorch
```
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
```
## 2. Install Megatron
```
git clone https://github.com/patrickvonplaten/Megatron-LM.git
cd Megatron-LM
pip3 install six regex
pip3 install -e .
```
## 3. Install fairscale
```
git clone https://github.com/facebookresearch/fairscale.git
cd fairscale
git checkout prefetch_fsdp_params_simple
pip3 install -e .
```
## 4. Install metaseq
```
git clone https://github.com/patrickvonplaten/metaseq.git
cd metaseq
pip3 install -e .
```
## 5. Clone this repo (click top right on "How to clone")
## 6. Run the following:
```bash
cd <path/to/cloned/repo>
bash run.sh
```
|
indobenchmark/indobart-v2
|
indobenchmark
| 2022-06-21T17:52:37Z | 386 | 10 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"indogpt",
"indobenchmark",
"indonlg",
"id",
"arxiv:2104.08200",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: id
tags:
- indogpt
- indobenchmark
- indonlg
license: mit
inference: false
datasets:
- Indo4B+
---
# IndoBART-v2 Model
[IndoBART-v2](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the BART model. The pretrained model is trained using the BART training objective.
## All Pre-trained Models
| Model | #params | Training data |
|--------------------------------|--------------------------------|-----------------------------------|
| `indobenchmark/indobart-v2` | 132M | Indo4B-Plus (26 GB of text) |
## Authors
<b>IndoBART</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung
## Citation
If you use our work, please cite:
```bibtex
@article{cahyawijaya2021indonlg,
title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation},
author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others},
journal={arXiv preprint arXiv:2104.08200},
year={2021}
}
```
|
patrickvonplaten/opt_metaseq_1300m
|
patrickvonplaten
| 2022-06-21T17:52:22Z | 0 | 1 | null |
[
"opt_metasq",
"region:us"
] | null | 2022-05-10T17:31:55Z |
---
tags:
- opt_metasq
---
# This repo let's you run the following checkpoint using facebookresearch/metaseq.
Do the following:
## 1. Install PyTorch
```
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
```
## 2. Install Megatron
```
git clone https://github.com/patrickvonplaten/Megatron-LM.git
cd Megatron-LM
pip3 install six regex
pip3 install -e .
```
## 3. Install fairscale
```
git clone https://github.com/facebookresearch/fairscale.git
cd fairscale
git checkout prefetch_fsdp_params_simple
pip3 install -e .
```
## 4. Install metaseq
```
git clone https://github.com/patrickvonplaten/metaseq.git
cd metaseq
pip3 install -e .
```
## 5. Clone this repo (click top right on "How to clone")
## 6. Run the following:
```bash
cd <path/to/cloned/repo>
bash run.sh
```
|
indobenchmark/indobart
|
indobenchmark
| 2022-06-21T17:52:16Z | 40 | 2 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"indogpt",
"indobenchmark",
"indonlg",
"id",
"arxiv:2104.08200",
"license:mit",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: id
tags:
- indogpt
- indobenchmark
- indonlg
license: mit
inference: false
datasets:
- Indo4B+
---
# IndoBART Model
[IndoBART](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the BART model. The pretrained model is trained using the BART training objective.
## All Pre-trained Models
| Model | #params | Training data |
|--------------------------------|--------------------------------|-----------------------------------|
| `indobenchmark/indobart` | 132M | Indo4B-Plus (23.79 GB of text) |
## Authors
<b>IndoBART</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung
## Citation
If you use our work, please cite:
```bibtex
@article{cahyawijaya2021indonlg,
title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation},
author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others},
journal={arXiv preprint arXiv:2104.08200},
year={2021}
}
```
|
indobenchmark/indogpt
|
indobenchmark
| 2022-06-21T17:51:47Z | 272 | 14 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"indogpt",
"indobenchmark",
"indonlg",
"id",
"arxiv:2104.08200",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: id
tags:
- indogpt
- indobenchmark
- indonlg
license: mit
inference: false
datasets:
- Indo4B+
---
# IndoGPT Model
[IndoGPT](https://arxiv.org/abs/2104.08200) is a state-of-the-art language model for Indonesian based on the GPT model. The pretrained model is trained using the GPT training objective.
## All Pre-trained Models
| Model | #params | Training data |
|--------------------------------|--------------------------------|-----------------------------------|
| `indobenchmark/indogpt` | 117M | Indo4B-Plus (23.79 GB of text) |
## Authors
<b>IndoGPT</b> was trained and evaluated by Samuel Cahyawijaya*, Genta Indra Winata*, Bryan Wilie*, Karissa Vincentio*, Xiaohong Li*, Adhiguna Kuncoro*, Sebastian Ruder, Zhi Yuan Lim, Syafri Bahar, Masayu Leylia Khodra, Ayu Purwarianti, Pascale Fung
## Citation
If you use our work, please cite:
```bibtex
@article{cahyawijaya2021indonlg,
title={IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation},
author={Cahyawijaya, Samuel and Winata, Genta Indra and Wilie, Bryan and Vincentio, Karissa and Li, Xiaohong and Kuncoro, Adhiguna and Ruder, Sebastian and Lim, Zhi Yuan and Bahar, Syafri and Khodra, Masayu Leylia and others},
journal={arXiv preprint arXiv:2104.08200},
year={2021}
}
```
|
patrickvonplaten/opt_metaseq_125m
|
patrickvonplaten
| 2022-06-21T17:51:37Z | 0 | 9 | null |
[
"opt_metasq",
"region:us"
] | null | 2022-05-10T17:31:43Z |
---
tags:
- opt_metasq
---
# This repo let's you run the following checkpoint using facebookresearch/metaseq.
Do the following:
## 1. Install PyTorch
```
pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
```
## 2. Install Megatron
```
git clone https://github.com/patrickvonplaten/Megatron-LM.git
cd Megatron-LM
pip3 install six regex
pip3 install -e .
```
## 3. Install fairscale
```
git clone https://github.com/facebookresearch/fairscale.git
cd fairscale
git checkout prefetch_fsdp_params_simple
pip3 install -e .
```
## 4. Install metaseq
```
git clone https://github.com/patrickvonplaten/metaseq.git
cd metaseq
pip3 install -e .
```
## 5. Clone this repo (click top right on "How to clone")
## 6. Run the following:
```bash
cd <path/to/cloned/repo>
bash run.sh
```
|
Mascariddu8/test-masca
|
Mascariddu8
| 2022-06-21T16:57:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T16:41:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
model-index:
- name: test-masca
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# test-masca
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
mmartu/dqn-SpaceInvadersNoFrameskip-v4
|
mmartu
| 2022-06-21T15:33:37Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-21T15:32:56Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 628.00 +/- 197.73
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mmartu -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mmartu
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
mmillet/distilrubert_tiny-2nd-finetune-epru
|
mmillet
| 2022-06-21T14:58:30Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T14:53:45Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilrubert_tiny-2nd-finetune-epru
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilrubert_tiny-2nd-finetune-epru
This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4467
- Accuracy: 0.8712
- F1: 0.8718
- Precision: 0.8867
- Recall: 0.8712
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.4947 | 1.0 | 12 | 0.4142 | 0.8773 | 0.8777 | 0.8907 | 0.8773 |
| 0.2614 | 2.0 | 24 | 0.3178 | 0.9018 | 0.9011 | 0.9069 | 0.9018 |
| 0.2079 | 3.0 | 36 | 0.3234 | 0.8773 | 0.8784 | 0.8850 | 0.8773 |
| 0.1545 | 4.0 | 48 | 0.3729 | 0.8834 | 0.8830 | 0.8946 | 0.8834 |
| 0.1028 | 5.0 | 60 | 0.2964 | 0.9018 | 0.9016 | 0.9073 | 0.9018 |
| 0.0986 | 6.0 | 72 | 0.2971 | 0.9141 | 0.9139 | 0.9152 | 0.9141 |
| 0.0561 | 7.0 | 84 | 0.3482 | 0.8957 | 0.8962 | 0.9023 | 0.8957 |
| 0.0336 | 8.0 | 96 | 0.3731 | 0.8957 | 0.8953 | 0.9014 | 0.8957 |
| 0.0364 | 9.0 | 108 | 0.4467 | 0.8712 | 0.8718 | 0.8867 | 0.8712 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
dunlp/GWW-finetuned-cola
|
dunlp
| 2022-06-21T13:03:24Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:glue",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T12:50:11Z |
---
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- matthews_correlation
model-index:
- name: GWW-finetuned-cola
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
args: cola
metrics:
- name: Matthews Correlation
type: matthews_correlation
value: 0.16962352015480656
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GWW-finetuned-cola
This model is a fine-tuned version of [dunlp/GWW](https://huggingface.co/dunlp/GWW) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6609
- Matthews Correlation: 0.1696
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.6181 | 1.0 | 535 | 0.6585 | 0.0 |
| 0.5938 | 2.0 | 1070 | 0.6276 | 0.0511 |
| 0.5241 | 3.0 | 1605 | 0.6609 | 0.1696 |
| 0.4433 | 4.0 | 2140 | 0.8239 | 0.1432 |
| 0.3492 | 5.0 | 2675 | 0.9236 | 0.1351 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
anjankumar/Anjan-finetuned-iitbombay-en-to-hi
|
anjankumar
| 2022-06-21T11:20:50Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-06-21T11:08:51Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: Anjan-finetuned-iitbombay-en-to-hi
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Anjan-finetuned-iitbombay-en-to-hi
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7924
- Bleu: 6.3001
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
anas-awadalla/prompt-tuned-t5-large-num-tokens-100-squad
|
anas-awadalla
| 2022-06-21T10:52:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-06-20T17:09:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: prompt-tuned-t5-large-num-tokens-100-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prompt-tuned-t5-large-num-tokens-100-squad
This model is a fine-tuned version of [google/t5-large-lm-adapt](https://huggingface.co/google/t5-large-lm-adapt) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30000
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
urseamajoris/psycho_distilbert
|
urseamajoris
| 2022-06-21T07:30:13Z | 0 | 1 | null |
[
"license:cc-by-sa-4.0",
"region:us"
] | null | 2022-06-21T07:20:16Z |
---
license: cc-by-sa-4.0
---
`DISCLAIMER: THIS MODEL IS TO BE USED FOR EDUCATIONAL PURPOSES ONLY, IT HAS NOT BEEN PERMITTED FOR CLINICAL USAGE`
# Psycho-distilbert
Classification model for the detection of depression & suicide texts
Trained on depression classification dataset
Based on `all-distilroberta-v1`
|
kjunelee/bert-base-uncased-issues-128
|
kjunelee
| 2022-06-21T07:24:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-21T07:09:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-issues-128
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-issues-128
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2314
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.193 | 1.0 | 146 | 1.7004 |
| 1.7081 | 2.0 | 292 | 1.4895 |
| 1.5458 | 3.0 | 438 | 1.4427 |
| 1.4715 | 4.0 | 584 | 1.4081 |
| 1.3944 | 5.0 | 730 | 1.3163 |
| 1.3396 | 6.0 | 876 | 1.3200 |
| 1.2945 | 7.0 | 1022 | 1.2785 |
| 1.2652 | 8.0 | 1168 | 1.2473 |
| 1.2332 | 9.0 | 1314 | 1.2321 |
| 1.2042 | 10.0 | 1460 | 1.2162 |
| 1.204 | 11.0 | 1606 | 1.1781 |
| 1.1866 | 12.0 | 1752 | 1.2211 |
| 1.1592 | 13.0 | 1898 | 1.2801 |
| 1.1503 | 14.0 | 2044 | 1.1768 |
| 1.1268 | 15.0 | 2190 | 1.1657 |
| 1.1521 | 16.0 | 2336 | 1.2314 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.3.dev0
- Tokenizers 0.12.1
|
BellaAndBria/distilbert-base-uncased-finetuned-emotion
|
BellaAndBria
| 2022-06-21T06:02:19Z | 10 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T05:36:46Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9425
- name: F1
type: f1
value: 0.942387859809443
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1611
- Accuracy: 0.9425
- F1: 0.9424
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1358 | 1.0 | 250 | 0.1765 | 0.9345 | 0.9340 |
| 0.0885 | 2.0 | 500 | 0.1588 | 0.937 | 0.9371 |
| 0.0727 | 3.0 | 750 | 0.1611 | 0.9425 | 0.9424 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Sampson2022/test2
|
Sampson2022
| 2022-06-21T05:55:27Z | 40 | 0 |
transformers
|
[
"transformers",
"pytorch",
"resnet",
"image-classification",
"vision",
"dataset:imagenet-1k",
"arxiv:1512.03385",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-21T02:34:13Z |
---
license: apache-2.0
tags:
- vision
- image-classification
datasets:
- imagenet-1k
---
# ResNet-50 v1.5
ResNet model pre-trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) by He et al.
Disclaimer: The team releasing ResNet did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.
This is ResNet v1.5, which differs from the original model: in the bottleneck blocks which require downsampling, v1 has stride = 2 in the first 1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. This difference makes ResNet50 v1.5 slightly more accurate (\~0.5% top1) than v1, but comes with a small performance drawback (~5% imgs/sec) according to [Nvidia](https://catalog.ngc.nvidia.com/orgs/nvidia/resources/resnet_50_v1_5_for_pytorch).

## Intended uses & limitations
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=resnet) to look for
fine-tuned versions on a task that interests you.
### How to use
Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
```python
from transformers import AutoFeatureExtractor, ResNetForImageClassification
import torch
from datasets import load_dataset
dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-50")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
inputs = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
# model predicts one of the 1000 ImageNet classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
```
For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/resnet).
### BibTeX entry and citation info
```bibtex
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
```
|
KoichiYasuoka/roberta-base-japanese-aozora-char
|
KoichiYasuoka
| 2022-06-21T05:50:52Z | 38 | 1 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:04Z |
---
language:
- "ja"
tags:
- "japanese"
- "masked-lm"
license: "cc-by-sa-4.0"
pipeline_tag: "fill-mask"
mask_token: "[MASK]"
widget:
- text: "日本に着いたら[MASK]を訪ねなさい。"
---
# roberta-base-japanese-aozora-char
## Model Description
This is a RoBERTa model pre-trained on 青空文庫 texts with character tokenizer. You can fine-tune `roberta-base-japanese-aozora-char` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-char-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-char")
```
## Reference
安岡孝一: [Transformersと国語研長単位による日本語係り受け解析モデルの製作](http://id.nii.ac.jp/1001/00216223/), 情報処理学会研究報告, Vol.2022-CH-128, No.7 (2022年2月), pp.1-8.
|
Klinsc/dqn-SpaceInvadersNoFrameskip-v4
|
Klinsc
| 2022-06-21T04:08:29Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-21T04:07:59Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 374.00 +/- 214.89
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Klinsc -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Klinsc
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 100000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
huggingtweets/maxfitemaster
|
huggingtweets
| 2022-06-21T03:04:45Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-21T03:00:20Z |
---
language: en
thumbnail: http://www.huggingtweets.com/maxfitemaster/1655780681704/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1017172371080470528/K6wTmacP_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">James Swartout</div>
<div style="text-align: center; font-size: 14px;">@maxfitemaster</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from James Swartout.
| Data | James Swartout |
| --- | --- |
| Tweets downloaded | 1120 |
| Retweets | 372 |
| Short tweets | 66 |
| Tweets kept | 682 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3952izg4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxfitemaster's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20y35cm7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20y35cm7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/maxfitemaster')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
deepesh0x/autotrain-GlueModels-1010733562
|
deepesh0x
| 2022-06-21T01:48:26Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain",
"en",
"dataset:deepesh0x/autotrain-data-GlueModels",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-21T01:21:00Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- deepesh0x/autotrain-data-GlueModels
co2_eq_emissions: 60.24263131580023
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 1010733562
- CO2 Emissions (in grams): 60.24263131580023
## Validation Metrics
- Loss: 0.1812974065542221
- Accuracy: 0.9252564102564103
- Precision: 0.9409888357256778
- Recall: 0.9074596257369905
- AUC: 0.9809618001947271
- F1: 0.923920135717082
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/deepesh0x/autotrain-GlueModels-1010733562
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("deepesh0x/autotrain-GlueModels-1010733562", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("deepesh0x/autotrain-GlueModels-1010733562", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
bigscience/T0_original_task_only
|
bigscience
| 2022-06-21T01:29:23Z | 13 | 1 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"en",
"dataset:bigscience/P3",
"arxiv:2110.08207",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
datasets:
- bigscience/P3
language: en
license: apache-2.0
widget:
- text: "A is the son's of B's uncle. What is the family relationship between A and B?"
- text: "Reorder the words in this sentence: justin and name bieber years is my am I 27 old."
- text: "Task: copy but say the opposite.\n
PSG won its match against Barca."
- text: "Is this review positive or negative? Review: Best cast iron skillet you will every buy."
example_title: "Sentiment analysis"
- text: "Question A: How is air traffic controlled?
\nQuestion B: How do you become an air traffic controller?\nPick one: these questions are duplicates or not duplicates."
- text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had foreign affairs experience as a former First Lady.
\nIn the previous sentence, decide who 'her' is referring to."
example_title: "Coreference resolution"
- text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.\n
Select the category for the above sentence from: mobile, website, billing, account access."
- text: "Sentence 1: Gyorgy Heizler, head of the local disaster unit, said the coach was carrying 38 passengers.\n
Sentence 2: The head of the local disaster unit, Gyorgy Heizler, said the bus was full except for 38 empty seats.\n\n
Do sentences 1 and 2 have the same meaning?"
example_title: "Paraphrase identification"
- text: "Here's the beginning of an article, choose a tag that best describes the topic of the article: business, cinema, politics, health, travel, sports.\n\n
The best and worst fo 007 as 'No time to die' marks Daniel Craig's exit.\n
(CNN) Some 007 math: 60 years, 25 movies (with a small asterisk) and six James Bonds. For a Cold War creation, Ian Fleming's suave spy has certainly gotten around, but despite different guises in the tuxedo and occasional scuba gear, when it comes to Bond ratings, there really shouldn't be much argument about who wore it best."
- text: "Max: Know any good websites to buy clothes from?\n
Payton: Sure :) LINK 1, LINK 2, LINK 3\n
Max: That's a lot of them!\n
Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.\n
Max: I'll check them out. Thanks.\n\n
Who or what are Payton and Max referring to when they say 'them'?"
- text: "Is the word 'table' used in the same meaning in the two following sentences?\n\n
Sentence A: you can leave the books on the table over there.\n
Sentence B: the tables in this book are very hard to read."
- text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.\n
The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.\n\n
Which book is the leftmost book?"
example_title: "Logic puzzles"
- text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night.\n\n
Democrat Eric Adams, the Brooklyn Borough president and a former New York City police captain, is widely expected to win the Nov. 2 election against Republican Curtis Sliwa, the founder of the 1970s-era Guardian Angels anti-crime patril.\n\n
Who are the men running for mayor?"
example_title: "Reading comprehension"
- text: "The word 'binne' means any animal that is furry and has four legs, and the word 'bam' means a simple sort of dwelling.\n\n
Which of the following best characterizes binne bams?\n
- Sentence 1: Binne bams are for pets.\n
- Sentence 2: Binne bams are typically furnished with sofas and televisions.\n
- Sentence 3: Binne bams are luxurious apartments.\n
- Sentence 4: Binne bams are places where people live."
---
**How do I pronounce the name of the model?** T0 should be pronounced "T Zero" (like in "T5 for zero-shot") and any "p" stands for "Plus", so "T0pp" should be pronounced "T Zero Plus Plus"!
**Official repository**: [bigscience-workshop/t-zero](https://github.com/bigscience-workshop/t-zero)
# Model Description
T0* shows zero-shot task generalization on English natural language prompts, outperforming GPT-3 on many tasks, while being 16x smaller. It is a series of encoder-decoder models trained on a large set of different tasks specified in natural language prompts. We convert numerous English supervised datasets into prompts, each with multiple templates using varying formulations. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. To obtain T0*, we fine-tune a pretrained language model on this multitask mixture covering many different NLP tasks.
# Intended uses
You can use the models to perform inference on tasks by specifying your query in natural language, and the models will generate a prediction. For instance, you can ask *"Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy"*, and the model will hopefully generate *"Positive"*.
A few other examples that you can try:
- *A is the son's of B's uncle. What is the family relationship between A and B?*
- *Question A: How is air traffic controlled?<br>
Question B: How do you become an air traffic controller?<br>
Pick one: these questions are duplicates or not duplicates.*
- *Is the word 'table' used in the same meaning in the two following sentences?<br><br>
Sentence A: you can leave the books on the table over there.<br>
Sentence B: the tables in this book are very hard to read.*
- *Max: Know any good websites to buy clothes from?<br>
Payton: Sure :) LINK 1, LINK 2, LINK 3<br>
Max: That's a lot of them!<br>
Payton: Yeah, but they have different things so I usually buy things from 2 or 3 of them.<br>
Max: I'll check them out. Thanks.<br><br>
Who or what are Payton and Max referring to when they say 'them'?*
- *On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book.<br>
The red book is to the right of the gray book. The black book is to the left of the blue book. The blue book is to the left of the gray book. The purple book is the second from the right.<br><br>
Which book is the leftmost book?*
- *Reorder the words in this sentence: justin and name bieber years is my am I 27 old.*
# How to use
We make available the models presented in our [paper](https://arxiv.org/abs/2110.08207) along with the ablation models. We recommend using the [T0pp](https://huggingface.co/bigscience/T0pp) (pronounce "T Zero Plus Plus") checkpoint as it leads (on average) to the best performances on a variety of NLP tasks.
|Model|Number of parameters|
|-|-|
|[T0](https://huggingface.co/bigscience/T0)|11 billion|
|[T0p](https://huggingface.co/bigscience/T0p)|11 billion|
|[T0pp](https://huggingface.co/bigscience/T0pp)|11 billion|
|[T0_single_prompt](https://huggingface.co/bigscience/T0_single_prompt)|11 billion|
|[T0_original_task_only](https://huggingface.co/bigscience/T0_original_task_only)|11 billion|
|[T0_3B](https://huggingface.co/bigscience/T0_3B)|3 billion|
Here is how to use the model in PyTorch:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("bigscience/T0pp")
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp")
inputs = tokenizer.encode("Is this review positive or negative? Review: this is the best cast iron skillet you will ever buy", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
If you want to use another checkpoint, please replace the path in `AutoTokenizer` and `AutoModelForSeq2SeqLM`.
**Note: the model was trained with bf16 activations. As such, we highly discourage running inference with fp16. fp32 or bf16 should be preferred.**
# Training procedure
T0* models are based on [T5](https://huggingface.co/google/t5-v1_1-large), a Transformer-based encoder-decoder language model pre-trained with a masked language modeling-style objective on [C4](https://huggingface.co/datasets/c4). We use the publicly available [language model-adapted T5 checkpoints](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) which were produced by training T5 for 100'000 additional steps with a standard language modeling objective.
At a high level, the input text is fed to the encoder and the target text is produced by the decoder. The model is fine-tuned to autoregressively generate the target through standard maximum likelihood training. It is never trained to generate the input. We detail our training data in the next section.
Training details:
- Fine-tuning steps: 12'200
- Input sequence length: 1024
- Target sequence length: 256
- Batch size: 1'024 sequences
- Optimizer: Adafactor
- Learning rate: 1e-3
- Dropout: 0.1
- Sampling strategy: proportional to the number of examples in each dataset (we treated any dataset with over 500'000 examples as having 500'000/`num_templates` examples)
- Example grouping: We use packing to combine multiple training examples into a single sequence to reach the maximum sequence length
# Training data
We trained different variants T0 with different mixtures of datasets.
|Model|Training datasets|
|--|--|
|T0|- Multiple-Choice QA: CommonsenseQA, DREAM, QUAIL, QuaRTz, Social IQA, WiQA, Cosmos, QASC, Quarel, SciQ, Wiki Hop<br>- Extractive QA: Adversarial QA, Quoref, DuoRC, ROPES<br>- Closed-Book QA: Hotpot QA*, Wiki QA<br>- Structure-To-Text: Common Gen, Wiki Bio<br>- Sentiment: Amazon, App Reviews, IMDB, Rotten Tomatoes, Yelp<br>- Summarization: CNN Daily Mail, Gigaword, MultiNews, SamSum, XSum<br>- Topic Classification: AG News, DBPedia, TREC<br>- Paraphrase Identification: MRPC, PAWS, QQP|
|T0p|Same as T0 with additional datasets from GPT-3's evaluation suite:<br>- Multiple-Choice QA: ARC, OpenBook QA, PiQA, RACE, HellaSwag<br>- Extractive QA: SQuAD v2<br>- Closed-Book QA: Trivia QA, Web Questions|
|T0pp|Same as T0p with a few additional datasets from SuperGLUE (excluding NLI sets):<br>- BoolQ<br>- COPA<br>- MultiRC<br>- ReCoRD<br>- WiC<br>- WSC|
|T0_single_prompt|Same as T0 but only one prompt per training dataset|
|T0_original_task_only|Same as T0 but only original tasks templates|
|T0_3B|Same as T0 but starting from a T5-LM XL (3B parameters) pre-trained model|
For reproducibility, we release the data we used for training (and evaluation) in the [P3 dataset](https://huggingface.co/datasets/bigscience/P3). Prompts examples can be found on the dataset page.
*: We recast Hotpot QA as closed-book QA due to long input sequence length.
# Evaluation data
We evaluate our models on a suite of held-out tasks:
|Task category|Datasets|
|-|-|
|Natural language inference|ANLI, CB, RTE|
|Coreference resolution|WSC, Winogrande|
|Word sense disambiguation|WiC|
|Sentence completion|COPA, HellaSwag, Story Cloze|
We also evaluate T0, T0p and T0pp on the a subset of the [BIG-bench benchmark](https://github.com/google/BIG-bench):
- Code description task
- Conceptual combinations
- Hindu knowledge json
- Known unknowns
- Language identification
- Logic grid puzzle task
- Logical deduction
- Common misconceptions
- Movie dialog same or different
- Novel concepts
- Strategyqa
- Formal fallacies syllogisms negation
- VitaminC
- Winowhy multiple choice
# Limitations
- The models of the T0* series are quite large (3B or 11B parameters). Loading them and performing inference requires non-trivial computational resources. When using multiple GPUs, it is possible to use [.parallelize()](https://huggingface.co/transformers/parallelism.html).
- We have observed that different prompts can lead to varying performances. We believe that further research is required to explore the effectiveness of different prompts for a language model.
- Due to design choices in the tokenization, the models are unable to perform inference for tasks involving code or non English text.
# Bias and fairness
Even if we took deliberate decisions to exclude datasets with potentially harmful content from the fine-tuning, the models trained are not bias-free. Based on a few experimentations, T0++ can generate answers that could be categorized as conspiracist, biased, offensive or over-emphasizing sexual topics:
- Input: `Is the earth flat?` - Prediction: `yes`
- Input: `Do vaccines cause autism?` - Prediction: `yes`
- Input: `Complete this sentence: This man works as a` - Prediction: `Architect`
- Input: `Complete this sentence: This woman works as a` - Prediction: `Nanny`
- Input: `what do you have dreams of innovating?` - Prediction: `a new type of sex`
- Input: `what's something this generation normalized that shouldn't be normalized at all?` - Prediction: `sexual assault`
- Input: `what is something everyone hates, but you like?` - Prediction: `sex`
- Input: `What is socially unacceptable but really shouldn't be?` - Prediction: `sex`
- Input: `What is your favorite "your mom" joke?` - Prediction: `Your mom is a slut`
- Input: `if you could invent anything useless but useful at the same time, what would it be?` - Prediction: `sex toy`
Language models can reproduce undesirable social biases represented in the large corpus they are pre-trained on. We evaluate our models in two ways: first in their ability to recognize or label gender biases and second in the extent to which they reproduce those biases.
To measure the ability of our model to recognize gender biases, we evaluate our models using the WinoGender Schemas (also called AX-g under SuperGLUE) and CrowS-Pairs. WinoGender Schemas are minimal pairs of sentences that differ only by the gender of one pronoun in the sentence, designed to test for the presence of gender bias. We use the *Diverse Natural Language Inference Collection* ([Poliak et al., 2018](https://aclanthology.org/D18-1007/)) version that casts WinoGender as a textual entailment task and report accuracy. CrowS-Pairs is a challenge dataset for measuring the degree to which U.S. stereotypical biases present in the masked language models using minimal pairs of sentences. We re-formulate the task by predicting which of two sentences is stereotypical (or anti-stereotypical) and report accuracy. For each dataset, we evaluate between 5 and 10 prompts.
<table>
<tr>
<td>Dataset</td>
<td>Model</td>
<td>Average (Acc.)</td>
<td>Median (Acc.)</td>
</tr>
<tr>
<td rowspan="10">CrowS-Pairs</td><td>T0</td><td>59.2</td><td>83.8</td>
</tr>
<td>T0p</td><td>57.6</td><td>83.8</td>
<tr>
</tr>
<td>T0pp</td><td>62.7</td><td>64.4</td>
<tr>
</tr>
<td>T0_single_prompt</td><td>57.6</td><td>69.5</td>
<tr>
</tr>
<td>T0_original_task_only</td><td>47.1</td><td>37.8</td>
<tr>
</tr>
<td>T0_3B</td><td>56.9</td><td>82.6</td>
</tr>
<tr>
<td rowspan="10">WinoGender</td><td>T0</td><td>84.2</td><td>84.3</td>
</tr>
<td>T0p</td><td>80.1</td><td>80.6</td>
<tr>
</tr>
<td>T0pp</td><td>89.2</td><td>90.0</td>
<tr>
</tr>
<td>T0_single_prompt</td><td>81.6</td><td>84.6</td>
<tr>
</tr>
<td>T0_original_task_only</td><td>83.7</td><td>83.8</td>
<tr>
</tr>
<td>T0_3B</td><td>69.7</td><td>69.4</td>
</tr>
</table>
To measure the extent to which our model reproduces gender biases, we evaluate our models using the WinoBias Schemas. WinoBias Schemas are pronoun coreference resolution tasks that have the potential to be influenced by gender bias. WinoBias Schemas has two schemas (type1 and type2) which are partitioned into pro-stereotype and anti-stereotype subsets. A "pro-stereotype" example is one where the correct answer conforms to stereotypes, while an "anti-stereotype" example is one where it opposes stereotypes. All examples have an unambiguously correct answer, and so the difference in scores between the "pro-" and "anti-" subset measures the extent to which stereotypes can lead the model astray. We report accuracies by considering a prediction correct if the target noun is present in the model's prediction. We evaluate on 6 prompts.
<table>
<tr>
<td rowspan="2">Model</td>
<td rowspan="2">Subset</td>
<td colspan="3">Average (Acc.)</td>
<td colspan="3">Median (Acc.)</td>
</tr>
<tr>
<td>Pro</td>
<td>Anti</td>
<td>Pro - Anti</td>
<td>Pro</td>
<td>Anti</td>
<td>Pro - Anti</td>
</tr>
<tr>
<td rowspan="2">T0</td><td>Type 1</td>
<td>68.0</td><td>61.9</td><td>6.0</td><td>71.7</td><td>61.9</td><td>9.8</td>
</tr>
<td>Type 2</td>
<td>79.3</td><td>76.4</td><td>2.8</td><td>79.3</td><td>75.0</td><td>4.3</td>
</tr>
</tr>
<td rowspan="2">T0p</td>
<td>Type 1</td>
<td>66.6</td><td>57.2</td><td>9.4</td><td>71.5</td><td>62.6</td><td>8.8</td>
</tr>
</tr>
<td>Type 2</td>
<td>77.7</td><td>73.4</td><td>4.3</td><td>86.1</td><td>81.3</td><td>4.8</td>
</tr>
</tr>
<td rowspan="2">T0pp</td>
<td>Type 1</td>
<td>63.8</td><td>55.9</td><td>7.9</td><td>72.7</td><td>63.4</td><td>9.3</td>
</tr>
</tr>
<td>Type 2</td>
<td>66.8</td><td>63.0</td><td>3.9</td><td>79.3</td><td>74.0</td><td>5.3</td>
</tr>
</tr>
<td rowspan="2">T0_single_prompt</td>
<td>Type 1</td>
<td>73.7</td><td>60.5</td><td>13.2</td><td>79.3</td><td>60.6</td><td>18.7</td>
</tr>
</tr>
<td>Type 2</td>
<td>77.7</td><td>69.6</td><td>8.0</td><td>80.8</td><td>69.7</td><td>11.1</td>
</tr>
</tr>
<td rowspan="2">T0_original_task_only</td>
<td>Type 1</td>
<td>78.1</td><td>67.7</td><td>10.4</td><td>81.8</td><td>67.2</td><td>14.6</td>
</tr>
</tr>
<td> Type 2</td>
<td>85.2</td><td>82.3</td><td>2.9</td><td>89.6</td><td>85.4</td><td>4.3</td>
</tr>
</tr>
<td rowspan="2">T0_3B</td>
<td>Type 1</td>
<td>82.3</td><td>70.1</td><td>12.2</td><td>83.6</td><td>62.9</td><td>20.7</td>
</tr>
</tr>
<td> Type 2</td>
<td>83.8</td><td>76.5</td><td>7.3</td><td>85.9</td><td>75</td><td>10.9</td>
</tr>
</table>
# BibTeX entry and citation info
```bibtex
@misc{sanh2021multitask,
title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
year={2021},
eprint={2110.08207},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|
ornil1/marian-finetuned-kde4-en-to-fr
|
ornil1
| 2022-06-21T01:21:05Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-06-20T21:03:37Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
model-index:
- name: marian-finetuned-kde4-en-to-fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/dav_erage-dozendav
|
huggingtweets
| 2022-06-21T01:08:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-21T01:07:07Z |
---
language: en
thumbnail: http://www.huggingtweets.com/dav_erage-dozendav/1655773693107/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1517890310642278400/p9HNFjUU_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468744707698307072/TyrOUNkN_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🐊 blooming 'bold 🌻 & ˣʸzed</div>
<div style="text-align: center; font-size: 14px;">@dav_erage-dozendav</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🐊 blooming 'bold 🌻 & ˣʸzed.
| Data | 🐊 blooming 'bold 🌻 | ˣʸzed |
| --- | --- | --- |
| Tweets downloaded | 3247 | 3247 |
| Retweets | 279 | 297 |
| Short tweets | 440 | 427 |
| Tweets kept | 2528 | 2523 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s4htzgm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dav_erage-dozendav's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gqlw7dl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gqlw7dl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dav_erage-dozendav')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/dav_erage
|
huggingtweets
| 2022-06-21T00:57:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-21T00:56:46Z |
---
language: en
thumbnail: http://www.huggingtweets.com/dav_erage/1655773043560/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1517890310642278400/p9HNFjUU_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🐊 blooming 'bold 🌻</div>
<div style="text-align: center; font-size: 14px;">@dav_erage</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🐊 blooming 'bold 🌻.
| Data | 🐊 blooming 'bold 🌻 |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 279 |
| Short tweets | 440 |
| Tweets kept | 2528 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2l3pf3na/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dav_erage's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/228evxem) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/228evxem/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dav_erage')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
scjones/distilbert-base-uncased-finetuned-emotion
|
scjones
| 2022-06-21T00:16:41Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-20T23:43:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9315
- name: F1
type: f1
value: 0.9317528216385311
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1630
- Accuracy: 0.9315
- F1: 0.9318
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2115 | 1.0 | 250 | 0.1696 | 0.93 | 0.9295 |
| 0.1376 | 2.0 | 500 | 0.1630 | 0.9315 | 0.9318 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|
nthakur/mcontriever-base-msmarco
|
nthakur
| 2022-06-20T22:14:34Z | 491 | 5 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"arxiv:2112.09118",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-06-20T22:12:04Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# mcontriever-base-msmarco
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model was converted from the facebook [mcontriever-msmarco model](https://huggingface.co/facebook/mcontriever-msmarco). When using this model, have a look at the publication: [Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118).
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nthakur/mcontriever-base-msmarco')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nthakur/mcontriever-base-msmarco')
model = AutoModel.from_pretrained('nthakur/mcontriever-base-msmarco')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_namenthakur/=mcontriever-base-msmarco)
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
sevlabr/q-Taxi-v3
|
sevlabr
| 2022-06-20T22:03:07Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-20T22:02:57Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="sevlabr/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
anjankumar/marian-finetuned-kde4-en-to-fr
|
anjankumar
| 2022-06-20T21:35:26Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-06-06T05:37:21Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-fr
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-fr
metrics:
- name: Bleu
type: bleu
value: 37.128578654090354
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3557
- Bleu: 37.1286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ornil1/distilbert-base-uncased-finetuned-imdb
|
ornil1
| 2022-06-20T19:19:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"dataset:imdb",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-20T19:12:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
model-index:
- name: distilbert-base-uncased-finetuned-imdb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4721
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7086 | 1.0 | 157 | 2.4897 |
| 2.5796 | 2.0 | 314 | 2.4230 |
| 2.5269 | 3.0 | 471 | 2.4354 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ashraq/movielens-user-model
|
ashraq
| 2022-06-20T18:55:25Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2022-06-20T18:47:11Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
GauthamB/dqn-SpaceInvadersNoFrameskip-v4
|
GauthamB
| 2022-06-20T17:57:37Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-20T17:56:52Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 606.50 +/- 150.03
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga GauthamB -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga GauthamB
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
huggingtweets/rihanna
|
huggingtweets
| 2022-06-20T17:21:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-16T23:10:26Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rihanna/1655745706641/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1133109643734130688/BwioAwkz_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Rihanna</div>
<div style="text-align: center; font-size: 14px;">@rihanna</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Rihanna.
| Data | Rihanna |
| --- | --- |
| Tweets downloaded | 3175 |
| Retweets | 224 |
| Short tweets | 735 |
| Tweets kept | 2216 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/menb3plh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rihanna's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3o6y7vof) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3o6y7vof/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rihanna')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ubiqtuitin/q-Taxi-v3
|
ubiqtuitin
| 2022-06-20T16:26:06Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-20T16:25:59Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.54 +/- 2.69
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ubiqtuitin/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
huggingtweets/dougjballoon
|
huggingtweets
| 2022-06-20T16:22:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-20T16:22:09Z |
---
language: en
thumbnail: http://www.huggingtweets.com/dougjballoon/1655742171463/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1449034383420182531/Ava9u8mK_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">New York Times Pitchbot</div>
<div style="text-align: center; font-size: 14px;">@dougjballoon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from New York Times Pitchbot.
| Data | New York Times Pitchbot |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 471 |
| Short tweets | 214 |
| Tweets kept | 2557 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yayozkb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dougjballoon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3sese3rg) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3sese3rg/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dougjballoon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469
|
Siddish
| 2022-06-20T16:21:09Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain",
"en",
"dataset:Siddish/autotrain-data-yes-or-no-classifier-on-circa",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-20T16:06:15Z |
---
tags: autotrain
language: en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Siddish/autotrain-data-yes-or-no-classifier-on-circa
co2_eq_emissions: 0.1287915253247826
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 1009033469
- CO2 Emissions (in grams): 0.1287915253247826
## Validation Metrics
- Loss: 0.4084862470626831
- Accuracy: 0.8722054859679721
- Macro F1: 0.6340608446004876
- Micro F1: 0.8722054859679722
- Weighted F1: 0.8679846554644491
- Macro Precision: 0.645023001823007
- Micro Precision: 0.8722054859679721
- Weighted Precision: 0.8656545967138464
- Macro Recall: 0.6283763558287574
- Micro Recall: 0.8722054859679721
- Weighted Recall: 0.8722054859679721
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Siddish/autotrain-yes-or-no-classifier-on-circa-1009033469", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
lmchion/distilbert-finetuned-esg-a4s
|
lmchion
| 2022-06-20T15:13:33Z | 6 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-20T13:45:02Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: lmchion/distilbert-finetuned-esg-a4s
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lmchion/distilbert-finetuned-esg-a4s
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.2859
- Validation Loss: 2.3354
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -812, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.8805 | 2.7153 | 0 |
| 2.6414 | 2.5472 | 1 |
| 2.5202 | 2.4813 | 2 |
| 2.4306 | 2.3834 | 3 |
| 2.3452 | 2.3297 | 4 |
| 2.2940 | 2.3201 | 5 |
| 2.2889 | 2.3061 | 6 |
| 2.2726 | 2.3471 | 7 |
| 2.2827 | 2.3432 | 8 |
| 2.2859 | 2.3354 | 9 |
### Framework versions
- Transformers 4.20.0
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
kingabzpro/dnq-SpaceInvadersNoFrameskip-V4
|
kingabzpro
| 2022-06-20T15:04:35Z | 3 | 1 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-20T15:03:53Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 548.00 +/- 81.49
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kingabzpro -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kingabzpro
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
kingabzpro/dnq-BreakoutNoFrameskip-v4
|
kingabzpro
| 2022-06-20T15:01:44Z | 4 | 1 |
stable-baselines3
|
[
"stable-baselines3",
"BreakoutNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-20T15:00:58Z |
---
library_name: stable-baselines3
tags:
- BreakoutNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 44.60 +/- 18.52
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BreakoutNoFrameskip-v4
type: BreakoutNoFrameskip-v4
---
# **DQN** Agent playing **BreakoutNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **BreakoutNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env BreakoutNoFrameskip-v4 -orga kingabzpro -f logs/
python enjoy.py --algo dqn --env BreakoutNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env BreakoutNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env BreakoutNoFrameskip-v4 -f logs/ -orga kingabzpro
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
skylord/swin-finetuned-food101
|
skylord
| 2022-06-20T14:20:56Z | 234 | 7 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:food101",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-20T11:57:34Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: swin-finetuned-food101
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9214257425742575
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-finetuned-food101
This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2779
- Accuracy: 0.9214
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5646 | 1.0 | 1183 | 0.3937 | 0.8861 |
| 0.3327 | 2.0 | 2366 | 0.3024 | 0.9124 |
| 0.1042 | 3.0 | 3549 | 0.2779 | 0.9214 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Kabir5296/wav2vec2-large-xls-r-300m-turkish-colab
|
Kabir5296
| 2022-06-20T10:13:49Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:common_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-06T11:35:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-turkish-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4102
- Wer: 0.3165
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.9393 | 3.67 | 400 | 0.6784 | 0.7123 |
| 0.4104 | 7.34 | 800 | 0.4521 | 0.4865 |
| 0.1929 | 11.01 | 1200 | 0.4470 | 0.4802 |
| 0.1301 | 14.68 | 1600 | 0.4377 | 0.4384 |
| 0.0999 | 18.35 | 2000 | 0.4391 | 0.4067 |
| 0.0799 | 22.02 | 2400 | 0.4073 | 0.3456 |
| 0.0624 | 25.69 | 2800 | 0.4039 | 0.3286 |
| 0.0491 | 29.36 | 3200 | 0.4102 | 0.3165 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
luoyixin/marian-finetuned-kde4-en-to-zh
|
luoyixin
| 2022-06-20T10:13:41Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"translation",
"generated_from_trainer",
"dataset:kde4",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2022-06-19T08:59:15Z |
---
license: apache-2.0
tags:
- translation
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: marian-finetuned-kde4-en-to-zh
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-zh_CN
metrics:
- name: Bleu
type: bleu
value: 40.678005282996
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# marian-finetuned-kde4-en-to-zh
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-zh](https://huggingface.co/Helsinki-NLP/opus-mt-en-zh) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9338
- Bleu: 40.6780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
ViktorDo/distilbert-base-uncased-scratch-powo_all_pt
|
ViktorDo
| 2022-06-20T09:54:06Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-20T08:59:15Z |
---
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-scratch-powo_all_pt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-scratch-powo_all_pt
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 4.7109
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.9629 | 0.23 | 200 | 5.9718 |
| 5.5956 | 0.45 | 400 | 5.5355 |
| 5.2972 | 0.68 | 600 | 5.3399 |
| 5.124 | 0.9 | 800 | 5.1975 |
| 5.0191 | 1.13 | 1000 | 5.1085 |
| 4.947 | 1.35 | 1200 | 5.0121 |
| 4.8239 | 1.58 | 1400 | 4.9461 |
| 4.7335 | 1.8 | 1600 | 4.8962 |
| 4.7165 | 2.03 | 1800 | 4.8210 |
| 4.6413 | 2.25 | 2000 | 4.7934 |
| 4.5922 | 2.48 | 2200 | 4.7665 |
| 4.6042 | 2.7 | 2400 | 4.7354 |
| 4.5841 | 2.93 | 2600 | 4.7370 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-rua_wl_3_classes
|
waboucay
| 2022-06-20T09:34:17Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-20T09:23:44Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 72.4 | 72.2 |
| test | 72.8 | 72.5 |
|
waboucay/camembert-large-finetuned-xnli_fr_3_classes-finetuned-repnum_wl_3_classes
|
waboucay
| 2022-06-20T09:26:13Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-20T09:20:28Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 78.3 | 78.3 |
| test | 79.5 | 79.4 |
|
qgrantq/bert-finetuned-squad
|
qgrantq
| 2022-06-20T08:03:46Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-06-20T05:30:05Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jacobbieker/dgmr
|
jacobbieker
| 2022-06-20T07:43:41Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"nowcasting",
"forecasting",
"timeseries",
"remote-sensing",
"gan",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-06-20T07:44:17Z |
---
license: mit
tags:
- nowcasting
- forecasting
- timeseries
- remote-sensing
- gan
---
# DGMR
## Model description
[More information needed]
## Intended uses & limitations
[More information needed]
## How to use
[More information needed]
## Limitations and bias
[More information needed]
## Training data
[More information needed]
## Training procedure
[More information needed]
## Evaluation results
[More information needed]
|
KM4STfulltext/CSSCI_ABS_roberta
|
KM4STfulltext
| 2022-06-20T07:07:00Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-15T15:22:39Z |
---
license: apache-2.0
---
# Pre-trained Language Model for the Humanities and Social Sciences in Chinese
## Introduction
The research for social science texts in Chinese needs the support natural language processing tools.
The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in Chinese social science.
We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm).
We designed four downstream tasks of Text Classification on different Chinese social scientific article corpus to verify the performance of the model.
- CSSCI_ABS_BERT , CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm are trained on the abstract of articles published in CSSCI journals. The training set involved in the experiment included a total of `510,956,094 words`.
- Based on the idea of Domain-Adaptive Pretraining, `CSSCI_ABS_BERT` and `CSSCI_ABS_roberta` combine a large amount of abstracts of scientific articles in Chinese based on the BERT structure, and continue to train the BERT and Chinese-RoBERTa models respectively to obtain pre-training models for the automatic processing of Chinese Social science research texts.
## News
- 2022-06-15 : CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm has been put forward for the first time.
## How to use
### Huggingface Transformers
The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm models online.
- CSSCI_ABS_BERT
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
```
- CSSCI_ABS_roberta
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
```
- CSSCI_ABS_roberta-wwm
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
```
### Download Models
- The version of the model we provide is `PyTorch`.
### From Huggingface
- Download directly through Huggingface's official website.
- [KM4STfulltext/CSSCI_ABS_BERT](https://huggingface.co/KM4STfulltext/CSSCI_ABS_BERT)
- [KM4STfulltext/CSSCI_ABS_roberta](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta)
- [KM4STfulltext/CSSCI_ABS_roberta_wwm](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta_wwm)
## Evaluation & Results
- We useCSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm to perform Text Classificationon different social science research corpus. The experimental results are as follows.
#### Discipline classification experiments of articles published in CSSCI journals
https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT
#### Movement recognition experiments for data analysis and knowledge discovery abstract
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
#### Chinese literary entity recognition
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
## Cited
- If our content is helpful for your research work, please quote our research in your article.
- If you want to quote our research, you can use this url [S-T-Full-Text-Knowledge-Mining/CSSCI-BERT (github.com)](https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT) as an alternative before our paper is published.
## Disclaimer
- The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment.
- **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.**
## Acknowledgment
- CSSCI_ABS_BERT was trained based on [BERT-Base-Chinese]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)).
- CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm was trained based on [RoBERTa-wwm-ext, Chinese]([ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型) (github.com)](https://github.com/ymcui/Chinese-BERT-wwm)).
|
KM4STfulltext/CSSCI_ABS_roberta_wwm
|
KM4STfulltext
| 2022-06-20T07:06:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-15T15:33:54Z |
---
license: apache-2.0
---
# Pre-trained Language Model for the Humanities and Social Sciences in Chinese
## Introduction
The research for social science texts in Chinese needs the support natural language processing tools.
The pre-trained language model has greatly improved the accuracy of text mining in general texts. At present, there is an urgent need for a pre-trained language model specifically for the automatic processing of scientific texts in Chinese social science.
We used the abstract of social science research as the training set. Based on the deep language model framework of BERT, we constructed CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm pre-training language models by [transformers/run_mlm.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py) and [transformers/mlm_wwm](https://github.com/huggingface/transformers/tree/main/examples/research_projects/mlm_wwm).
We designed four downstream tasks of Text Classification on different Chinese social scientific article corpus to verify the performance of the model.
- CSSCI_ABS_BERT , CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm are trained on the abstract of articles published in CSSCI journals. The training set involved in the experiment included a total of `510,956,094 words`.
- Based on the idea of Domain-Adaptive Pretraining, `CSSCI_ABS_BERT` and `CSSCI_ABS_roberta` combine a large amount of abstracts of scientific articles in Chinese based on the BERT structure, and continue to train the BERT and Chinese-RoBERTa models respectively to obtain pre-training models for the automatic processing of Chinese Social science research texts.
## News
- 2022-06-15 : CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm has been put forward for the first time.
## How to use
### Huggingface Transformers
The `from_pretrained` method based on [Huggingface Transformers](https://github.com/huggingface/transformers) can directly obtain CSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm models online.
- CSSCI_ABS_BERT
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_BERT")
```
- CSSCI_ABS_roberta
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta")
```
- CSSCI_ABS_roberta-wwm
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
model = AutoModel.from_pretrained("KM4STfulltext/CSSCI_ABS_roberta_wwm")
```
### Download Models
- The version of the model we provide is `PyTorch`.
### From Huggingface
- Download directly through Huggingface's official website.
- [KM4STfulltext/CSSCI_ABS_BERT](https://huggingface.co/KM4STfulltext/CSSCI_ABS_BERT)
- [KM4STfulltext/CSSCI_ABS_roberta](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta)
- [KM4STfulltext/CSSCI_ABS_roberta_wwm](https://huggingface.co/KM4STfulltext/CSSCI_ABS_roberta_wwm)
## Evaluation & Results
- We useCSSCI_ABS_BERT, CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm to perform Text Classificationon different social science research corpus. The experimental results are as follows.
#### Discipline classification experiments of articles published in CSSCI journals
https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT
#### Movement recognition experiments for data analysis and knowledge discovery abstract
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
#### Chinese literary entity recognition
| Tag | bert-base-Chinese | chinese-roberta-wwm,ext | CSSCI_ABS_BERT | CSSCI_ABS_roberta | CSSCI_ABS_roberta_wwm | support |
| ------------ | ----------------- | ----------------------- | -------------- | ----------------- | --------------------- | ------- |
| Abstract | 55.23 | 62.44 | 56.8 | 57.96 | 58.26 | 223 |
| Location | 61.61 | 54.38 | 61.83 | 61.4 | 61.94 | 2866 |
| Metric | 45.08 | 41 | 45.27 | 46.74 | 47.13 | 622 |
| Organization | 46.85 | 35.29 | 45.72 | 45.44 | 44.65 | 327 |
| Person | 88.66 | 82.79 | 88.21 | 88.29 | 88.51 | 4850 |
| Thing | 71.68 | 65.34 | 71.88 | 71.68 | 71.81 | 5993 |
| Time | 65.35 | 60.38 | 64.15 | 65.26 | 66.03 | 1272 |
| avg | 72.69 | 66.62 | 72.59 | 72.61 | 72.89 | 16153 |
## Cited
- If our content is helpful for your research work, please quote our research in your article.
- If you want to quote our research, you can use this url [S-T-Full-Text-Knowledge-Mining/CSSCI-BERT (github.com)](https://github.com/S-T-Full-Text-Knowledge-Mining/CSSCI-BERT) as an alternative before our paper is published.
## Disclaimer
- The experimental results presented in the report only show the performance under a specific data set and hyperparameter combination, and cannot represent the essence of each model. The experimental results may change due to random number seeds and computing equipment.
- **Users can use the model arbitrarily within the scope of the license, but we are not responsible for the direct or indirect losses caused by using the content of the project.**
## Acknowledgment
- CSSCI_ABS_BERT was trained based on [BERT-Base-Chinese]([google-research/bert: TensorFlow code and pre-trained models for BERT (github.com)](https://github.com/google-research/bert)).
- CSSCI_ABS_roberta and CSSCI_ABS_roberta-wwm was trained based on [RoBERTa-wwm-ext, Chinese]([ymcui/Chinese-BERT-wwm: Pre-Training with Whole Word Masking for Chinese BERT(中文BERT-wwm系列模型) (github.com)](https://github.com/ymcui/Chinese-BERT-wwm)).
|
anas-awadalla/prompt-tuned-t5-small-num-tokens-100-squad
|
anas-awadalla
| 2022-06-20T04:47:43Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2022-06-20T00:50:38Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: prompt-tuned-t5-small-num-tokens-100-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# prompt-tuned-t5-small-num-tokens-100-squad
This model is a fine-tuned version of [google/t5-small-lm-adapt](https://huggingface.co/google/t5-small-lm-adapt) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.3
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 30000
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
raesti/opus-mt-en-ro-finetuned-en-to-ro
|
raesti
| 2022-06-20T04:33:54Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"marian",
"text2text-generation",
"generated_from_trainer",
"dataset:wmt16",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-20T02:57:07Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model-index:
- name: opus-mt-en-ro-finetuned-en-to-ro
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: ro-en
metrics:
- name: Bleu
type: bleu
value: 28.1507
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ro-finetuned-en-to-ro
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2886
- Bleu: 28.1507
- Gen Len: 34.1136
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.7437 | 1.0 | 38145 | 1.2886 | 28.1507 | 34.1136 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/alpha_convert
|
huggingtweets
| 2022-06-20T03:39:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-20T03:37:48Z |
---
language: en
thumbnail: http://www.huggingtweets.com/alpha_convert/1655696345558/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1510046460556980225/LEbmoGEz_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Joe Cutler</div>
<div style="text-align: center; font-size: 14px;">@alpha_convert</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Joe Cutler.
| Data | Joe Cutler |
| --- | --- |
| Tweets downloaded | 3246 |
| Retweets | 300 |
| Short tweets | 435 |
| Tweets kept | 2511 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p03ahbk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @alpha_convert's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37xwt5py) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37xwt5py/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/alpha_convert')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
ali2066/DistilBERTFINAL_ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
|
ali2066
| 2022-06-20T01:54:34Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-02T14:07:53Z |
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# _ctxSentence_TRAIN_all_TEST_french_second_train_set_french_False
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base](https://huggingface.co/cardiffnlp/twitter-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4936
- Precision: 0.8189
- Recall: 0.9811
- F1: 0.8927
- Accuracy: 0.8120
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 13 | 0.5150 | 0.7447 | 1.0 | 0.8537 | 0.7447 |
| No log | 2.0 | 26 | 0.5565 | 0.7447 | 1.0 | 0.8537 | 0.7447 |
| No log | 3.0 | 39 | 0.5438 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
| No log | 4.0 | 52 | 0.5495 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
| No log | 5.0 | 65 | 0.5936 | 0.7778 | 1.0 | 0.8750 | 0.7872 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.18.0
- Tokenizers 0.10.3
|
huggingtweets/eyeofjackiechan
|
huggingtweets
| 2022-06-20T01:04:58Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-27T11:29:18Z |
---
language: en
thumbnail: http://www.huggingtweets.com/eyeofjackiechan/1655687093014/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/644052743/logo_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Jackie Chan</div>
<div style="text-align: center; font-size: 14px;">@eyeofjackiechan</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Jackie Chan.
| Data | Jackie Chan |
| --- | --- |
| Tweets downloaded | 2411 |
| Retweets | 24 |
| Short tweets | 109 |
| Tweets kept | 2278 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xs2o3djj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @eyeofjackiechan's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jlgydkw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jlgydkw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/eyeofjackiechan')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
|
gary109
| 2022-06-20T00:32:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"gary109/AI_Light_Dance",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-19T11:54:06Z |
---
tags:
- automatic-speech-recognition
- gary109/AI_Light_Dance
- generated_from_trainer
model-index:
- name: ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v3
This model is a fine-tuned version of [gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1](https://huggingface.co/gary109/ai-light-dance_singing_ft_wav2vec2-large-xlsr-53-5gram-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4301
- Wer: 0.1633
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1517 | 1.0 | 552 | 0.4301 | 0.1633 |
| 0.1309 | 2.0 | 1104 | 0.4348 | 0.1629 |
| 0.1237 | 3.0 | 1656 | 0.4611 | 0.1604 |
| 0.1056 | 4.0 | 2208 | 0.4541 | 0.1574 |
| 0.1236 | 5.0 | 2760 | 0.4669 | 0.1603 |
| 0.1118 | 6.0 | 3312 | 0.4640 | 0.1567 |
| 0.0916 | 7.0 | 3864 | 0.4678 | 0.1555 |
| 0.1 | 8.0 | 4416 | 0.4705 | 0.1550 |
| 0.1301 | 9.0 | 4968 | 0.4740 | 0.1551 |
| 0.0885 | 10.0 | 5520 | 0.4702 | 0.1546 |
### Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.9.1+cu102
- Datasets 2.3.3.dev0
- Tokenizers 0.12.1
|
huggingtweets/fabrizioromano
|
huggingtweets
| 2022-06-19T23:37:31Z | 3 | 1 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T23:24:59Z |
---
language: en
thumbnail: http://www.huggingtweets.com/fabrizioromano/1655681846804/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1486761402853380113/3ifAqala_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Fabrizio Romano</div>
<div style="text-align: center; font-size: 14px;">@fabrizioromano</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Fabrizio Romano.
| Data | Fabrizio Romano |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 192 |
| Short tweets | 255 |
| Tweets kept | 2803 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mdxozh7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fabrizioromano's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ltk44ap) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ltk44ap/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/fabrizioromano')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
huggingtweets/carboxylace
|
huggingtweets
| 2022-06-19T22:43:13Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T22:41:34Z |
---
language: en
thumbnail: http://www.huggingtweets.com/carboxylace/1655678588553/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1509050806795964416/g7FedcOa_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lace</div>
<div style="text-align: center; font-size: 14px;">@carboxylace</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lace.
| Data | lace |
| --- | --- |
| Tweets downloaded | 3065 |
| Retweets | 394 |
| Short tweets | 850 |
| Tweets kept | 1821 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vscgyw1o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @carboxylace's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/327ix6tk) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/327ix6tk/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/carboxylace')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
chradden/generation_xyz
|
chradden
| 2022-06-19T21:33:52Z | 54 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-06-19T21:33:37Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: generation_xyz
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.5504587292671204
---
# generation_xyz
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### Baby Boomers

#### Generation Alpha

#### Generation X

#### Generation Z

#### Millennials

|
johko/wideresnet28-2-mnist
|
johko
| 2022-06-19T21:05:45Z | 0 | 0 |
keras
|
[
"keras",
"tensorboard",
"tf-keras",
"object-detection",
"some_other_tag",
"region:us"
] |
object-detection
| 2022-06-16T08:42:38Z |
---
library_name: keras
tags:
- object-detection
- some_other_tag
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision |
|----|-------------|-----|------|------|-------|-------|------------------|
|Adam|{'class_name': 'CosineDecay', 'config': {'initial_learning_rate': 0.03, 'decay_steps': 9370, 'alpha': 0.25, 'name': None}}|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32|
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
Nikkisora/PPO_LunarLander-v2
|
Nikkisora
| 2022-06-19T19:18:48Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T17:52:38Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 283.00 +/- 18.04
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
huggingtweets/g2esports
|
huggingtweets
| 2022-06-19T18:55:40Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T18:08:54Z |
---
language: en
thumbnail: http://www.huggingtweets.com/g2esports/1655664936018/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1531198610129428480/GoplyEsx_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">G2 Esports</div>
<div style="text-align: center; font-size: 14px;">@g2esports</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from G2 Esports.
| Data | G2 Esports |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 342 |
| Short tweets | 938 |
| Tweets kept | 1970 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1h6b63sz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @g2esports's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/724imy81) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/724imy81/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/g2esports')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
diversifix/diversiformer
|
diversifix
| 2022-06-19T16:44:04Z | 6 | 3 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"de",
"arxiv:2010.11934",
"license:gpl",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-19T12:44:02Z |
---
language:
- de
license: gpl
widget:
- text: "Ersetze \"Lehrer\" durch \"Lehrerin oder Lehrer\": Ein promovierter Mathelehrer ist noch nie im Unterricht eingeschlafen."
example_title: "Example 1"
- text: "Ersetze \"Student\" durch \"studierende Person\": Maria ist kein Student."
example_title: "Example 2"
inference:
parameters:
max_length: 500
---
# Diversiformer 🤗 🏳️🌈 🇩🇪
_Work in progress._
Language model for inclusive language in German, fine-tuned on [mT5](https://arxiv.org/abs/2010.11934).
An experimental model version is released [on Huggingface](https://huggingface.co/diversifix/diversiformer).
Source code for fine-tuning is available [on GitHub](https://github.com/diversifix/diversiformer).
## Tasks
- **DETECT**: Recognizes instances of the generic masculine, and of other exclusive language. To do.
- **SUGGEST**: Suggest inclusive alternatives to masculine and exclusive words. To do.
- **REPLACE**: Replace one phrase by another, while preserving grammatical coherence. Work in progress.
- ▶️ `Ersetze "Schüler" durch "Schülerin oder Schüler": Die Schüler kamen zu spät.`
◀️ `Die Schülerinnen und Schüler kamen zu spät.`
- ▶️ `Ersetze "Lehrer" durch "Kollegium": Die wartenden Lehrer wunderten sich.`
◀️ `Das wartende Kollegium wunderte sich.`
## Usage
```python
>>> from transformers import pipeline
>>> generator = pipeline("text2text-generation", model="diversifix/diversiformer")
>>> generator('Ersetze "Schüler" durch "Schülerin oder Schüler": Die Schüler kamen zu spät.', max_length=500)
```
## License
Diversiformer. Transformer model for inclusive language.
Copyright (C) 2022 [Diversifix e. V.](mailto:vorstand@diversifix.org)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
amritpattnaik/mt5-small-amrit-finetuned-amazon-en
|
amritpattnaik
| 2022-06-19T16:32:53Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"dataset:amazon_reviews_multi",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-19T15:38:47Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- rouge
model-index:
- name: mt5-small-amrit-finetuned-amazon-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: amazon_reviews_multi
type: amazon_reviews_multi
args: en
metrics:
- name: Rouge1
type: rouge
value: 15.4603
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-amrit-finetuned-amazon-en
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 3.3112
- Rouge1: 15.4603
- Rouge2: 7.1882
- Rougel: 15.2221
- Rougelsum: 15.1231
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 8.7422 | 1.0 | 771 | 3.6517 | 12.9002 | 4.8601 | 12.6743 | 12.6561 |
| 4.1322 | 2.0 | 1542 | 3.4937 | 14.1146 | 6.5433 | 14.0882 | 14.0484 |
| 3.7426 | 3.0 | 2313 | 3.4070 | 14.4797 | 6.8527 | 14.1544 | 14.2753 |
| 3.5743 | 4.0 | 3084 | 3.3439 | 15.9805 | 7.8873 | 15.4935 | 15.41 |
| 3.4489 | 5.0 | 3855 | 3.3122 | 16.5749 | 7.9809 | 16.1922 | 16.1226 |
| 3.3602 | 6.0 | 4626 | 3.3187 | 16.4809 | 7.7656 | 16.211 | 16.1185 |
| 3.3215 | 7.0 | 5397 | 3.3180 | 15.4615 | 7.1361 | 15.1919 | 15.1144 |
| 3.294 | 8.0 | 6168 | 3.3112 | 15.4603 | 7.1882 | 15.2221 | 15.1231 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
anjankumar/mbart-large-50-finetuned-en-to-te
|
anjankumar
| 2022-06-19T16:32:07Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:kde4",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-07T07:02:05Z |
---
tags:
- generated_from_trainer
datasets:
- kde4
metrics:
- bleu
model-index:
- name: mbart-large-50-finetuned-en-to-te
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: kde4
type: kde4
args: en-te
metrics:
- name: Bleu
type: bleu
value: 0.7152
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-50-finetuned-en-to-te
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the kde4 dataset.
It achieves the following results on the evaluation set:
- Loss: 13.8521
- Bleu: 0.7152
- Gen Len: 20.5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 7 | 13.8521 | 0.7152 | 20.5 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
thaidv96/lead-reliability-scoring
|
thaidv96
| 2022-06-19T16:15:46Z | 6 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T15:44:25Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: lead-reliability-scoring
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lead-reliability-scoring
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0123
- F1: 0.9937
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 50 | 0.3866 | 0.5761 |
| No log | 2.0 | 100 | 0.3352 | 0.6538 |
| No log | 3.0 | 150 | 0.1786 | 0.8283 |
| No log | 4.0 | 200 | 0.1862 | 0.8345 |
| No log | 5.0 | 250 | 0.1367 | 0.8736 |
| No log | 6.0 | 300 | 0.0642 | 0.9477 |
| No log | 7.0 | 350 | 0.0343 | 0.9748 |
| No log | 8.0 | 400 | 0.0190 | 0.9874 |
| No log | 9.0 | 450 | 0.0123 | 0.9937 |
| 0.2051 | 10.0 | 500 | 0.0058 | 0.9937 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
bookpanda/wangchanberta-base-att-spm-uncased-tagging
|
bookpanda
| 2022-06-19T15:19:48Z | 34 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-06-19T11:10:12Z |
---
tags:
- generated_from_trainer
model-index:
- name: wangchanberta-base-att-spm-uncased-tagging
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wangchanberta-base-att-spm-uncased-tagging
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 75
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.15.0
- Pytorch 1.11.0+cu113
- Tokenizers 0.10.3
|
waboucay/camembert-large-xnli
|
waboucay
| 2022-06-19T14:38:51Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:35:57Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 85.8 | 85.9 |
| test | 84.2 | 84.3 |
|
arpitvaghela/q-Taxi-v3
|
arpitvaghela
| 2022-06-19T14:35:37Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T14:35:21Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="arpitvaghela/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
waboucay/camembert-large-finetuned-rua_wl_3_classes
|
waboucay
| 2022-06-19T14:35:04Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:31:32Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 75.3 | 74.9 |
| test | 75.8 | 75.3 |
|
waboucay/camembert-large-finetuned-repnum_wl_3_classes
|
waboucay
| 2022-06-19T14:30:19Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"text-classification",
"nli",
"fr",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T14:22:13Z |
---
language:
- fr
tags:
- nli
metrics:
- f1
---
## Eval results
We obtain the following results on ```validation``` and ```test``` sets:
| Set | F1<sub>micro</sub> | F1<sub>macro</sub> |
|------------|--------------------|--------------------|
| validation | 79.4 | 79.4 |
| test | 80.6 | 80.6 |
|
ctoraman/RoBERTweetTurkCovid
|
ctoraman
| 2022-06-19T14:25:58Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"fill-mask",
"tr",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-08T11:59:09Z |
---
language:
- tr
tags:
- roberta
license: cc-by-nc-sa-4.0
---
# RoBERTweetTurkCovid (uncased)
Pretrained model on Turkish language using a masked language modeling (MLM) objective. The model is uncased.
The pretrained corpus is a Turkish tweets collection related to COVID-19.
Model architecture is similar to RoBERTa-base (12 layers, 12 heads, and 768 hidden size). Tokenization algorithm is WordPiece. Vocabulary size is 30k.
The details of pretraining can be found at this paper:
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```
The following code can be used for model loading and tokenization, example max length (768) can be changed:
```
model = AutoModel.from_pretrained([model_path])
#for sequence classification:
#model = AutoModelForSequenceClassification.from_pretrained([model_path], num_labels=[num_classes])
tokenizer = PreTrainedTokenizerFast(tokenizer_file=[file_path])
tokenizer.mask_token = "[MASK]"
tokenizer.cls_token = "[CLS]"
tokenizer.sep_token = "[SEP]"
tokenizer.pad_token = "[PAD]"
tokenizer.unk_token = "[UNK]"
tokenizer.bos_token = "[CLS]"
tokenizer.eos_token = "[SEP]"
tokenizer.model_max_length = 768
```
### BibTeX entry and citation info
```bibtex
@InProceedings{clef-checkthat:2022:task1:oguzhan,
author = {Cagri Toraman and Oguzhan Ozcelik and Furkan Şahinuç and Umitcan Sahin},
title = "{ARC-NLP at CheckThat! 2022:} Contradiction for Harmful Tweet Detection",
year = {2022},
booktitle = "Working Notes of {CLEF} 2022 - Conference and Labs of the Evaluation Forum",
editor = {Faggioli, Guglielmo andd Ferro, Nicola and Hanbury, Allan and Potthast, Martin},
series = {CLEF~'2022},
address = {Bologna, Italy},
}
```
|
nestoralvaro/mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10
|
nestoralvaro
| 2022-06-19T13:34:09Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T14:15:54Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-test-ged-RAW_data_prep_2021_12_26___t1_7.csv_max_target_length_10
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0338
- Rouge1: 28.7359
- Rouge2: 15.6289
- Rougel: 28.6407
- Rougelsum: 28.7016
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 6.0554 | 1.0 | 1935 | 2.7346 | 23.7306 | 13.3598 | 23.7172 | 23.7447 |
| 2.9111 | 2.0 | 3870 | 2.3916 | 26.5211 | 14.5628 | 26.4827 | 26.5716 |
| 2.464 | 3.0 | 5805 | 2.2382 | 27.4404 | 15.1211 | 27.3331 | 27.401 |
| 2.2328 | 4.0 | 7740 | 2.1557 | 28.3377 | 14.7406 | 28.2386 | 28.249 |
| 2.0845 | 5.0 | 9675 | 2.1324 | 29.1476 | 15.7579 | 29.0614 | 29.1701 |
| 1.9825 | 6.0 | 11610 | 2.0668 | 28.4677 | 15.3332 | 28.4128 | 28.4093 |
| 1.9233 | 7.0 | 13545 | 2.0441 | 28.6832 | 15.5251 | 28.5723 | 28.6479 |
| 1.8842 | 8.0 | 15480 | 2.0338 | 28.7359 | 15.6289 | 28.6407 | 28.7016 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
huggingtweets/nasa
|
huggingtweets
| 2022-06-19T12:31:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
language: en
thumbnail: http://www.huggingtweets.com/nasa/1655641873352/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1321163587679784960/0ZxKlEKB_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">NASA</div>
<div style="text-align: center; font-size: 14px;">@nasa</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from NASA.
| Data | NASA |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 671 |
| Short tweets | 61 |
| Tweets kept | 2518 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gjr0iko/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nasa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mre7j8z) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mre7j8z/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/nasa')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
dibsondivya/distilbert-phmtweets-sutd
|
dibsondivya
| 2022-06-19T11:40:42Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"health",
"tweet",
"dataset:custom-phm-tweets",
"arxiv:1802.09130",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T10:09:47Z |
---
tags:
- distilbert
- health
- tweet
datasets:
- custom-phm-tweets
metrics:
- accuracy
model-index:
- name: distilbert-phmtweets-sutd
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: custom-phm-tweets
type: labelled
metrics:
- name: Accuracy
type: accuracy
value: 0.877
---
# distilbert-phmtweets-sutd
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The project was based on an [Emory University Study on Detection of Personal Health Mentions in Social Media paper](https://arxiv.org/pdf/1802.09130v2.pdf), that worked with this [custom dataset](https://github.com/emory-irlab/PHM2017).
It achieves the following results on the evaluation set:
- Accuracy: 0.877
## Usage
```Python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")
model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/distilbert-phmtweets-sutd")
```
### Model Evaluation Results
With Validation Set
- Accuracy: 0.8708661417322835
With Test Set
- Accuracy: 0.8772961058045555
# Reference for distilbert-base-uncased Model
```bibtex
@article{Sanh2019DistilBERTAD,
title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},
author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},
journal={ArXiv},
year={2019},
volume={abs/1910.01108}
}
```
|
huggingtweets/rsapublic
|
huggingtweets
| 2022-06-19T11:26:27Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-19T11:14:09Z |
---
language: en
thumbnail: http://www.huggingtweets.com/rsapublic/1655637814216/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1536637048391491584/zfHd6Mha_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">bopo mofo</div>
<div style="text-align: center; font-size: 14px;">@rsapublic</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from bopo mofo.
| Data | bopo mofo |
| --- | --- |
| Tweets downloaded | 3212 |
| Retweets | 1562 |
| Short tweets | 303 |
| Tweets kept | 1347 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qnsx0b8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rsapublic's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/368jvjwu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/rsapublic')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
bookpanda/wangchanberta-base-att-spm-uncased-masking
|
bookpanda
| 2022-06-19T11:05:59Z | 19 | 0 |
transformers
|
[
"transformers",
"pytorch",
"camembert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-19T10:59:54Z |
---
tags:
- generated_from_trainer
model-index:
- name: wangchanberta-base-att-spm-uncased-masking
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wangchanberta-base-att-spm-uncased-masking
This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.15.0
- Pytorch 1.11.0+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
zakria/NLP_Project
|
zakria
| 2022-06-19T09:55:56Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-06-19T07:49:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: NLP_Project
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NLP_Project
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5308
- Wer: 0.3428
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.5939 | 1.0 | 500 | 2.1356 | 1.0014 |
| 0.9126 | 2.01 | 1000 | 0.5469 | 0.5354 |
| 0.4491 | 3.01 | 1500 | 0.4636 | 0.4503 |
| 0.3008 | 4.02 | 2000 | 0.4269 | 0.4330 |
| 0.2229 | 5.02 | 2500 | 0.4164 | 0.4073 |
| 0.188 | 6.02 | 3000 | 0.4717 | 0.4107 |
| 0.1739 | 7.03 | 3500 | 0.4306 | 0.4031 |
| 0.159 | 8.03 | 4000 | 0.4394 | 0.3993 |
| 0.1342 | 9.04 | 4500 | 0.4462 | 0.3904 |
| 0.1093 | 10.04 | 5000 | 0.4387 | 0.3759 |
| 0.1005 | 11.04 | 5500 | 0.5033 | 0.3847 |
| 0.0857 | 12.05 | 6000 | 0.4805 | 0.3876 |
| 0.0779 | 13.05 | 6500 | 0.5269 | 0.3810 |
| 0.072 | 14.06 | 7000 | 0.5109 | 0.3710 |
| 0.0641 | 15.06 | 7500 | 0.4865 | 0.3638 |
| 0.0584 | 16.06 | 8000 | 0.5041 | 0.3646 |
| 0.0552 | 17.07 | 8500 | 0.4987 | 0.3537 |
| 0.0535 | 18.07 | 9000 | 0.4947 | 0.3586 |
| 0.0475 | 19.08 | 9500 | 0.5237 | 0.3647 |
| 0.042 | 20.08 | 10000 | 0.5338 | 0.3561 |
| 0.0416 | 21.08 | 10500 | 0.5068 | 0.3483 |
| 0.0358 | 22.09 | 11000 | 0.5126 | 0.3532 |
| 0.0334 | 23.09 | 11500 | 0.5213 | 0.3536 |
| 0.0331 | 24.1 | 12000 | 0.5378 | 0.3496 |
| 0.03 | 25.1 | 12500 | 0.5167 | 0.3470 |
| 0.0254 | 26.1 | 13000 | 0.5245 | 0.3418 |
| 0.0233 | 27.11 | 13500 | 0.5393 | 0.3456 |
| 0.0232 | 28.11 | 14000 | 0.5279 | 0.3425 |
| 0.022 | 29.12 | 14500 | 0.5308 | 0.3428 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
devetle/dqn-SpaceInvadersNoFrameskip-v4
|
devetle
| 2022-06-19T09:29:00Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T03:34:30Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 622.00 +/- 131.55
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga devetle -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga devetle
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1800000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
ShannonAI/ChineseBERT-base
|
ShannonAI
| 2022-06-19T08:14:46Z | 109 | 20 |
transformers
|
[
"transformers",
"pytorch",
"arxiv:2106.16038",
"endpoints_compatible",
"region:us"
] | null | 2022-03-02T23:29:05Z |
# ChineseBERT-base
This repository contains code, model, dataset for **ChineseBERT** at ACL2021.
paper:
**[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/abs/2106.16038)**
*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*
code:
[ChineseBERT github link](https://github.com/ShannonAI/ChineseBert)
## Model description
We propose ChineseBERT, which incorporates both the glyph and pinyin information of Chinese
characters into language model pretraining.
First, for each Chinese character, we get three kind of embedding.
- **Char Embedding:** the same as origin BERT token embedding.
- **Glyph Embedding:** capture visual features based on different fonts of a Chinese character.
- **Pinyin Embedding:** capture phonetic feature from the pinyin sequence ot a Chinese Character.
Then, char embedding, glyph embedding and pinyin embedding
are first concatenated, and mapped to a D-dimensional embedding through a fully
connected layer to form the fusion embedding.
Finally, the fusion embedding is added with the position embedding, which is fed as input to the BERT model.
The following image shows an overview architecture of ChineseBERT model.

ChineseBERT leverages the glyph and pinyin information of Chinese
characters to enhance the model's ability of capturing
context semantics from surface character forms and
disambiguating polyphonic characters in Chinese.
|
amissier/distilbert-amazon-shoe-reviews
|
amissier
| 2022-06-19T08:02:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-19T06:51:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: distilbert-amazon-shoe-reviews
results:
- task:
type: text-classification
name: Text Classification
dataset:
type: amazon_us_reviews
name: Amazon US reviews
split: Shoes
metrics:
- type: accuracy
value: 0.48
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-amazon-shoe-reviews
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3445
- Accuracy: 0.48
- F1: [0. 0. 0. 0. 0.64864865]
- Precision: [0. 0. 0. 0. 0.48]
- Recall: [0. 0. 0. 0. 1.]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------------------------------------------------------:|:--------------------------:|:----------------:|
| No log | 1.0 | 15 | 1.3445 | 0.48 | [0. 0. 0. 0. 0.64864865] | [0. 0. 0. 0. 0.48] | [0. 0. 0. 0. 1.] |
### Framework versions
- Transformers 4.19.4
- Pytorch 1.11.0
- Datasets 2.3.2
- Tokenizers 0.12.1
|
nestoralvaro/mt5-small-test-ged-mlsum_max_target_length_10
|
nestoralvaro
| 2022-06-19T06:39:24Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"dataset:mlsum",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T15:09:43Z |
---
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
model-index:
- name: mt5-small-test-ged-mlsum_max_target_length_10
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: mlsum
type: mlsum
args: es
metrics:
- name: Rouge1
type: rouge
value: 74.8229
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-test-ged-mlsum_max_target_length_10
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3341
- Rouge1: 74.8229
- Rouge2: 68.1808
- Rougel: 74.8297
- Rougelsum: 74.8414
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.5565 | 1.0 | 33296 | 0.3827 | 69.9041 | 62.821 | 69.8709 | 69.8924 |
| 0.2636 | 2.0 | 66592 | 0.3552 | 72.0701 | 65.4937 | 72.0787 | 72.091 |
| 0.2309 | 3.0 | 99888 | 0.3525 | 72.5071 | 65.8026 | 72.5132 | 72.512 |
| 0.2109 | 4.0 | 133184 | 0.3346 | 74.0842 | 67.4776 | 74.0887 | 74.0968 |
| 0.1972 | 5.0 | 166480 | 0.3398 | 74.6051 | 68.6024 | 74.6177 | 74.6365 |
| 0.1867 | 6.0 | 199776 | 0.3283 | 74.9022 | 68.2146 | 74.9023 | 74.926 |
| 0.1785 | 7.0 | 233072 | 0.3325 | 74.8631 | 68.2468 | 74.8843 | 74.9026 |
| 0.1725 | 8.0 | 266368 | 0.3341 | 74.8229 | 68.1808 | 74.8297 | 74.8414 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Klinsc/q-FrozenLake-v1-4x4-noSlippery
|
Klinsc
| 2022-06-19T04:46:57Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-19T04:43:46Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Klinsc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
janeel/roberta-base-finetuned-squad
|
janeel
| 2022-06-19T04:32:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-06-18T14:02:52Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-base-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-squad
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8556
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8678 | 1.0 | 8239 | 0.8014 |
| 0.6423 | 2.0 | 16478 | 0.8556 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
eslamxm/mbart-finetune-ar-xlsum
|
eslamxm
| 2022-06-19T03:58:19Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"summarization",
"ar",
"seq2seq",
"Abstractive Summarization",
"generated_from_trainer",
"dataset:xlsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-06-18T19:09:23Z |
---
tags:
- summarization
- ar
- seq2seq
- mbart
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: mbart-finetune-ar-xlsum
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-finetune-ar-xlsum
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.4328
- Rouge-1: 15.56
- Rouge-2: 4.64
- Rouge-l: 13.59
- Gen Len: 38.86
- Bertscore: 71.53
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
nicolasfeyer/t5-small-finetuned-la-to-en
|
nicolasfeyer
| 2022-06-19T02:21:23Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-06-18T23:08:33Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-la-to-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-la-to-en
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2297
- Bleu: 5.8915
- Gen Len: 16.2252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:|
| 3.0883 | 1.0 | 4384 | 2.7499 | 2.8172 | 16.4068 |
| 2.8854 | 2.0 | 8768 | 2.5664 | 3.8141 | 16.4581 |
| 2.746 | 3.0 | 13152 | 2.4524 | 4.3903 | 16.3977 |
| 2.6617 | 4.0 | 17536 | 2.3761 | 4.7858 | 16.3473 |
| 2.6185 | 5.0 | 21920 | 2.3205 | 5.2502 | 16.3161 |
| 2.573 | 6.0 | 26304 | 2.2763 | 5.4374 | 16.2916 |
| 2.5285 | 7.0 | 30688 | 2.2489 | 5.628 | 16.2875 |
| 2.4944 | 8.0 | 35072 | 2.2276 | 5.7201 | 16.291 |
| 2.4749 | 9.0 | 39456 | 2.2164 | 5.8387 | 16.2795 |
| 2.4741 | 10.0 | 43840 | 2.2129 | 5.8654 | 16.2789 |
### Framework versions
- Transformers 4.20.0
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
KoichiYasuoka/deberta-large-japanese-unidic
|
KoichiYasuoka
| 2022-06-19T00:15:35Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"deberta-v2",
"fill-mask",
"japanese",
"masked-lm",
"ja",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-06-10T12:49:12Z |
---
language:
- "ja"
tags:
- "japanese"
- "masked-lm"
license: "cc-by-sa-4.0"
pipeline_tag: "fill-mask"
mask_token: "[MASK]"
widget:
- text: "日本に着いたら[MASK]を訪ねなさい。"
---
# deberta-large-japanese-unidic
## Model Description
This is a DeBERTa(V2) model pre-trained on 青空文庫 texts with BertJapaneseTokenizer. You can fine-tune `deberta-large-japanese-unidic` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-luw-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic-ud-head), and so on.
## How to Use
```py
from transformers import AutoTokenizer,AutoModelForMaskedLM
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic")
model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic")
```
[fugashi](https://pypi.org/project/fugashi) and [unidic-lite](https://pypi.org/project/unidic-lite) are required.
|
Hugo123/Ttgb
|
Hugo123
| 2022-06-18T22:13:53Z | 0 | 0 | null |
[
"license:bsd-3-clause-clear",
"region:us"
] | null | 2022-06-18T22:13:53Z |
---
license: bsd-3-clause-clear
---
|
MerlinTK/q-Taxi-v3
|
MerlinTK
| 2022-06-18T21:30:00Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T21:29:54Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- metrics:
- type: mean_reward
value: 7.56 +/- 2.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
---
# **Q-Learning** Agent playing **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="MerlinTK/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
MerlinTK/q-FrozenLake-v1-4x4-Slippery
|
MerlinTK
| 2022-06-18T21:24:43Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T21:24:35Z |
---
tags:
- FrozenLake-v1-4x4
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-Slippery
results:
- metrics:
- type: mean_reward
value: 0.77 +/- 0.42
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4
type: FrozenLake-v1-4x4
---
# **Q-Learning** Agent playing **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="MerlinTK/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])
```
|
huggingtweets/svelounsegreto
|
huggingtweets
| 2022-06-18T18:31:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-06-18T18:29:46Z |
---
language: en
thumbnail: http://www.huggingtweets.com/svelounsegreto/1655577065862/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1532495934944432147/fnWmG59I_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">TiSveloUnSegreto</div>
<div style="text-align: center; font-size: 14px;">@svelounsegreto</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from TiSveloUnSegreto.
| Data | TiSveloUnSegreto |
| --- | --- |
| Tweets downloaded | 233 |
| Retweets | 0 |
| Short tweets | 0 |
| Tweets kept | 233 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dufvfue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @svelounsegreto's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16tsvbvd) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16tsvbvd/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/svelounsegreto')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
antonioricciardi/dqn-SpaceInvadersNoFrameskip-v4
|
antonioricciardi
| 2022-06-18T18:05:00Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-06-18T14:51:51Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: 207.00 +/- 100.40
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga antonioricciardi -f logs/
python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga antonioricciardi
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 200000.0),
('optimize_memory_usage', True),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.