modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
huggingtweets/g__j
huggingtweets
2022-06-28T13:36:16Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-28T13:36:09Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/959389610978742273/jfOMGQ1B_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Greg Jackson</div> <div style="text-align: center; font-size: 14px;">@g__j</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Greg Jackson. | Data | Greg Jackson | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 187 | | Short tweets | 179 | | Tweets kept | 2884 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2sl53oes/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @g__j's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/stwh74do) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/stwh74do/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/g__j') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
choonlee/TEST2ppo-LunarLander-v2
choonlee
2022-06-28T13:12:23Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T13:11:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 179.80 +/- 62.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
twieland/MIX3_ja-en_helsinki
twieland
2022-06-28T11:46:58Z
113
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-22T00:54:09Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: MIX3_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MIX3_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 2.8699 | 0.01 | 5000 | 2.3465 | | 2.6168 | 0.02 | 10000 | 2.2205 | | 2.5083 | 0.03 | 15000 | 2.2382 | | 2.4359 | 0.04 | 20000 | 2.1670 | | 2.3821 | 0.06 | 25000 | 2.1122 | | 2.3358 | 0.07 | 30000 | 2.0902 | | 2.3045 | 0.08 | 35000 | 2.0461 | | 2.2782 | 0.09 | 40000 | 2.0290 | | 2.2481 | 0.1 | 45000 | 1.9910 | | 2.2267 | 0.11 | 50000 | 2.0059 | | 2.2056 | 0.12 | 55000 | 1.9858 | | 2.1903 | 0.13 | 60000 | 1.9725 | | 2.173 | 0.15 | 65000 | 1.9797 | | 2.154 | 0.16 | 70000 | 1.9654 | | 2.1429 | 0.17 | 75000 | 1.9567 | | 2.1304 | 0.18 | 80000 | 1.9348 | | 2.1232 | 0.19 | 85000 | 1.9361 | | 2.116 | 0.2 | 90000 | 1.9277 | | 2.1016 | 0.21 | 95000 | 1.9193 | | 2.0984 | 0.22 | 100000 | 1.9064 | | 2.0797 | 0.24 | 105000 | 1.9177 | | 2.0767 | 0.25 | 110000 | 1.8975 | | 2.0642 | 0.26 | 115000 | 1.8782 | | 2.0595 | 0.27 | 120000 | 1.9012 | | 2.0533 | 0.28 | 125000 | 1.8977 | | 2.044 | 0.29 | 130000 | 1.8984 | | 2.0374 | 0.3 | 135000 | 1.9221 | | 2.0305 | 0.31 | 140000 | 1.9243 | | 2.02 | 0.32 | 145000 | 1.8773 | | 2.0195 | 0.34 | 150000 | 1.8676 | | 2.0151 | 0.35 | 155000 | 1.8637 | | 2.0065 | 0.36 | 160000 | 1.8556 | | 2.0037 | 0.37 | 165000 | 1.8399 | | 1.9963 | 0.38 | 170000 | 1.8452 | | 1.9878 | 0.39 | 175000 | 1.8644 | | 1.9871 | 0.4 | 180000 | 1.8576 | | 1.9779 | 0.41 | 185000 | 1.8509 | | 1.9721 | 0.43 | 190000 | 1.8405 | | 1.9724 | 0.44 | 195000 | 1.8594 | | 1.9685 | 0.45 | 200000 | 1.8540 | | 1.9634 | 0.46 | 205000 | 1.8694 | | 1.9583 | 0.47 | 210000 | 1.8591 | | 1.9557 | 0.48 | 215000 | 1.8539 | | 1.9494 | 0.49 | 220000 | 1.8673 | | 1.9484 | 0.5 | 225000 | 1.8021 | | 1.9395 | 0.52 | 230000 | 1.8309 | | 1.9384 | 0.53 | 235000 | 1.7933 | | 1.937 | 0.54 | 240000 | 1.8199 | | 1.9315 | 0.55 | 245000 | 1.8065 | | 1.9276 | 0.56 | 250000 | 1.7857 | | 1.9248 | 0.57 | 255000 | 1.8207 | | 1.9195 | 0.58 | 260000 | 1.7898 | | 1.9187 | 0.59 | 265000 | 1.8097 | | 1.9138 | 0.6 | 270000 | 1.7909 | | 1.9094 | 0.62 | 275000 | 1.7995 | | 1.9098 | 0.63 | 280000 | 1.8165 | | 1.9038 | 0.64 | 285000 | 1.8132 | | 1.9034 | 0.65 | 290000 | 1.7951 | | 1.899 | 0.66 | 295000 | 1.7880 | | 1.8965 | 0.67 | 300000 | 1.7953 | | 1.8941 | 0.68 | 305000 | 1.7986 | | 1.8919 | 0.69 | 310000 | 1.7964 | | 1.8875 | 0.71 | 315000 | 1.8041 | | 1.884 | 0.72 | 320000 | 1.7764 | | 1.8798 | 0.73 | 325000 | 1.8019 | | 1.8801 | 0.74 | 330000 | 1.7790 | | 1.8809 | 0.75 | 335000 | 1.7849 | | 1.8736 | 0.76 | 340000 | 1.7800 | | 1.8727 | 0.77 | 345000 | 1.7900 | | 1.8722 | 0.78 | 350000 | 1.7727 | | 1.8699 | 0.8 | 355000 | 1.7597 | | 1.8672 | 0.81 | 360000 | 1.7824 | | 1.8638 | 0.82 | 365000 | 1.7674 | | 1.8609 | 0.83 | 370000 | 1.7715 | | 1.8584 | 0.84 | 375000 | 1.7694 | | 1.8568 | 0.85 | 380000 | 1.7776 | | 1.8523 | 0.86 | 385000 | 1.7697 | | 1.8584 | 0.87 | 390000 | 1.7436 | | 1.8474 | 0.88 | 395000 | 1.7644 | | 1.8492 | 0.9 | 400000 | 1.7732 | | 1.8465 | 0.91 | 405000 | 1.7611 | | 1.846 | 0.92 | 410000 | 1.7717 | | 1.8431 | 0.93 | 415000 | 1.7514 | | 1.8402 | 0.94 | 420000 | 1.7353 | | 1.8398 | 0.95 | 425000 | 1.7720 | | 1.8314 | 0.96 | 430000 | 1.7728 | | 1.8322 | 0.97 | 435000 | 1.7491 | | 1.8284 | 0.99 | 440000 | 1.7561 | | 1.8301 | 1.0 | 445000 | 1.7499 | | 1.8182 | 1.01 | 450000 | 1.7514 | | 1.8111 | 1.02 | 455000 | 1.7596 | | 1.8116 | 1.03 | 460000 | 1.7455 | | 1.8098 | 1.04 | 465000 | 1.7495 | | 1.809 | 1.05 | 470000 | 1.7446 | | 1.8088 | 1.06 | 475000 | 1.7290 | | 1.8127 | 1.08 | 480000 | 1.7453 | | 1.8051 | 1.09 | 485000 | 1.7495 | | 1.8026 | 1.1 | 490000 | 1.7453 | | 1.8028 | 1.11 | 495000 | 1.7615 | | 1.8046 | 1.12 | 500000 | 1.7491 | | 1.8052 | 1.13 | 505000 | 1.7280 | | 1.7997 | 1.14 | 510000 | 1.7482 | | 1.7976 | 1.15 | 515000 | 1.7368 | | 1.7981 | 1.16 | 520000 | 1.7354 | | 1.7949 | 1.18 | 525000 | 1.7076 | | 1.7943 | 1.19 | 530000 | 1.7020 | | 1.7911 | 1.2 | 535000 | 1.7121 | | 1.7909 | 1.21 | 540000 | 1.7170 | | 1.7926 | 1.22 | 545000 | 1.7310 | | 1.7856 | 1.23 | 550000 | 1.7218 | | 1.7875 | 1.24 | 555000 | 1.7362 | | 1.7801 | 1.25 | 560000 | 1.7484 | | 1.7854 | 1.27 | 565000 | 1.7466 | | 1.7799 | 1.28 | 570000 | 1.7248 | | 1.7823 | 1.29 | 575000 | 1.7355 | | 1.7765 | 1.3 | 580000 | 1.7188 | | 1.7779 | 1.31 | 585000 | 1.6993 | | 1.7751 | 1.32 | 590000 | 1.7154 | | 1.7762 | 1.33 | 595000 | 1.7348 | | 1.7725 | 1.34 | 600000 | 1.7272 | | 1.7701 | 1.36 | 605000 | 1.7157 | | 1.7644 | 1.37 | 610000 | 1.7161 | | 1.7707 | 1.38 | 615000 | 1.6961 | | 1.764 | 1.39 | 620000 | 1.6930 | | 1.7639 | 1.4 | 625000 | 1.6927 | | 1.7654 | 1.41 | 630000 | 1.6989 | | 1.7623 | 1.42 | 635000 | 1.6892 | | 1.7598 | 1.43 | 640000 | 1.6911 | | 1.7575 | 1.44 | 645000 | 1.7199 | | 1.7574 | 1.46 | 650000 | 1.6992 | | 1.7526 | 1.47 | 655000 | 1.6981 | | 1.7556 | 1.48 | 660000 | 1.6860 | | 1.7558 | 1.49 | 665000 | 1.7099 | | 1.7539 | 1.5 | 670000 | 1.6950 | | 1.7454 | 1.51 | 675000 | 1.6999 | | 1.748 | 1.52 | 680000 | 1.6871 | | 1.7476 | 1.53 | 685000 | 1.6884 | | 1.7493 | 1.55 | 690000 | 1.6984 | | 1.745 | 1.56 | 695000 | 1.6999 | | 1.7397 | 1.57 | 700000 | 1.7036 | | 1.7429 | 1.58 | 705000 | 1.7223 | | 1.7367 | 1.59 | 710000 | 1.7111 | | 1.7403 | 1.6 | 715000 | 1.6691 | | 1.7361 | 1.61 | 720000 | 1.6693 | | 1.737 | 1.62 | 725000 | 1.6884 | | 1.7347 | 1.63 | 730000 | 1.6641 | | 1.7323 | 1.65 | 735000 | 1.6628 | | 1.7329 | 1.66 | 740000 | 1.6759 | | 1.7292 | 1.67 | 745000 | 1.6654 | | 1.7275 | 1.68 | 750000 | 1.6738 | | 1.7266 | 1.69 | 755000 | 1.6792 | | 1.7259 | 1.7 | 760000 | 1.6752 | | 1.7231 | 1.71 | 765000 | 1.6641 | | 1.7238 | 1.72 | 770000 | 1.6676 | | 1.7223 | 1.74 | 775000 | 1.6563 | | 1.722 | 1.75 | 780000 | 1.6541 | | 1.7195 | 1.76 | 785000 | 1.6560 | | 1.7171 | 1.77 | 790000 | 1.6786 | | 1.7187 | 1.78 | 795000 | 1.6434 | | 1.7186 | 1.79 | 800000 | 1.6538 | | 1.7115 | 1.8 | 805000 | 1.6535 | | 1.7119 | 1.81 | 810000 | 1.6738 | | 1.7106 | 1.83 | 815000 | 1.6597 | | 1.7088 | 1.84 | 820000 | 1.6486 | | 1.7079 | 1.85 | 825000 | 1.6576 | | 1.7062 | 1.86 | 830000 | 1.6676 | | 1.7084 | 1.87 | 835000 | 1.6449 | | 1.7059 | 1.88 | 840000 | 1.6515 | | 1.7057 | 1.89 | 845000 | 1.6609 | | 1.7021 | 1.9 | 850000 | 1.6482 | | 1.7005 | 1.91 | 855000 | 1.6653 | | 1.6988 | 1.93 | 860000 | 1.6801 | | 1.6964 | 1.94 | 865000 | 1.6830 | | 1.6954 | 1.95 | 870000 | 1.6589 | | 1.693 | 1.96 | 875000 | 1.6553 | | 1.689 | 1.97 | 880000 | 1.6554 | | 1.69 | 1.98 | 885000 | 1.6424 | | 1.6893 | 1.99 | 890000 | 1.6628 | | 1.6772 | 2.0 | 895000 | 1.6709 | | 1.6703 | 2.02 | 900000 | 1.6627 | | 1.6726 | 2.03 | 905000 | 1.6612 | | 1.669 | 2.04 | 910000 | 1.6595 | | 1.6696 | 2.05 | 915000 | 1.6427 | | 1.6672 | 2.06 | 920000 | 1.6497 | | 1.669 | 2.07 | 925000 | 1.6288 | | 1.6675 | 2.08 | 930000 | 1.6443 | | 1.6685 | 2.09 | 935000 | 1.6316 | | 1.6671 | 2.11 | 940000 | 1.6451 | | 1.6673 | 2.12 | 945000 | 1.6313 | | 1.6649 | 2.13 | 950000 | 1.6363 | | 1.6655 | 2.14 | 955000 | 1.6440 | | 1.6637 | 2.15 | 960000 | 1.6238 | | 1.6632 | 2.16 | 965000 | 1.6226 | | 1.6599 | 2.17 | 970000 | 1.6171 | | 1.6602 | 2.18 | 975000 | 1.6466 | | 1.658 | 2.19 | 980000 | 1.6341 | | 1.6571 | 2.21 | 985000 | 1.6500 | | 1.6572 | 2.22 | 990000 | 1.6225 | | 1.6572 | 2.23 | 995000 | 1.6296 | | 1.6552 | 2.24 | 1000000 | 1.6437 | | 1.6548 | 2.25 | 1005000 | 1.6162 | | 1.6552 | 2.26 | 1010000 | 1.6223 | | 1.6544 | 2.27 | 1015000 | 1.6355 | | 1.6464 | 2.28 | 1020000 | 1.6250 | | 1.652 | 2.3 | 1025000 | 1.6217 | | 1.6481 | 2.31 | 1030000 | 1.6079 | | 1.6466 | 2.32 | 1035000 | 1.6110 | | 1.6462 | 2.33 | 1040000 | 1.6210 | | 1.6448 | 2.34 | 1045000 | 1.5993 | | 1.6461 | 2.35 | 1050000 | 1.6096 | | 1.6396 | 2.36 | 1055000 | 1.6137 | | 1.644 | 2.37 | 1060000 | 1.6189 | | 1.6396 | 2.39 | 1065000 | 1.6211 | | 1.639 | 2.4 | 1070000 | 1.6149 | | 1.6358 | 2.41 | 1075000 | 1.6144 | | 1.6356 | 2.42 | 1080000 | 1.6018 | | 1.6364 | 2.43 | 1085000 | 1.5999 | | 1.6352 | 2.44 | 1090000 | 1.6095 | | 1.634 | 2.45 | 1095000 | 1.6114 | | 1.6279 | 2.46 | 1100000 | 1.6156 | | 1.6272 | 2.47 | 1105000 | 1.6124 | | 1.6319 | 2.49 | 1110000 | 1.6046 | | 1.6276 | 2.5 | 1115000 | 1.6152 | | 1.6285 | 2.51 | 1120000 | 1.6129 | | 1.6242 | 2.52 | 1125000 | 1.5984 | | 1.6261 | 2.53 | 1130000 | 1.6116 | | 1.623 | 2.54 | 1135000 | 1.6061 | | 1.6203 | 2.55 | 1140000 | 1.6182 | | 1.62 | 2.56 | 1145000 | 1.5887 | | 1.6177 | 2.58 | 1150000 | 1.5731 | | 1.6172 | 2.59 | 1155000 | 1.5990 | | 1.6179 | 2.6 | 1160000 | 1.5965 | | 1.6206 | 2.61 | 1165000 | 1.6000 | | 1.6156 | 2.62 | 1170000 | 1.5873 | | 1.6124 | 2.63 | 1175000 | 1.5899 | | 1.613 | 2.64 | 1180000 | 1.5910 | | 1.6134 | 2.65 | 1185000 | 1.6017 | | 1.609 | 2.67 | 1190000 | 1.5822 | | 1.6084 | 2.68 | 1195000 | 1.5906 | | 1.6101 | 2.69 | 1200000 | 1.6218 | | 1.6077 | 2.7 | 1205000 | 1.6149 | | 1.6057 | 2.71 | 1210000 | 1.5994 | | 1.6018 | 2.72 | 1215000 | 1.5839 | | 1.6049 | 2.73 | 1220000 | 1.5864 | | 1.6012 | 2.74 | 1225000 | 1.5994 | | 1.6013 | 2.75 | 1230000 | 1.5821 | | 1.5957 | 2.77 | 1235000 | 1.5964 | | 1.5971 | 2.78 | 1240000 | 1.5897 | | 1.5967 | 2.79 | 1245000 | 1.5774 | | 1.5927 | 2.8 | 1250000 | 1.5861 | | 1.5954 | 2.81 | 1255000 | 1.5789 | | 1.5937 | 2.82 | 1260000 | 1.5739 | | 1.5895 | 2.83 | 1265000 | 1.5701 | | 1.5912 | 2.84 | 1270000 | 1.5622 | | 1.5922 | 2.86 | 1275000 | 1.5730 | | 1.5883 | 2.87 | 1280000 | 1.5775 | | 1.5864 | 2.88 | 1285000 | 1.5726 | | 1.5837 | 2.89 | 1290000 | 1.5679 | | 1.5824 | 2.9 | 1295000 | 1.5683 | | 1.5817 | 2.91 | 1300000 | 1.5508 | | 1.5778 | 2.92 | 1305000 | 1.5620 | | 1.5822 | 2.93 | 1310000 | 1.5556 | | 1.5783 | 2.95 | 1315000 | 1.5693 | | 1.5751 | 2.96 | 1320000 | 1.5781 | | 1.5716 | 2.97 | 1325000 | 1.5655 | | 1.5765 | 2.98 | 1330000 | 1.5528 | | 1.5728 | 2.99 | 1335000 | 1.5748 | | 1.5672 | 3.0 | 1340000 | 1.5597 | | 1.5467 | 3.01 | 1345000 | 1.5461 | | 1.547 | 3.02 | 1350000 | 1.5516 | | 1.5462 | 3.03 | 1355000 | 1.5519 | | 1.5464 | 3.05 | 1360000 | 1.5593 | | 1.5457 | 3.06 | 1365000 | 1.5576 | | 1.5441 | 3.07 | 1370000 | 1.5653 | | 1.544 | 3.08 | 1375000 | 1.5662 | | 1.5467 | 3.09 | 1380000 | 1.5611 | | 1.5439 | 3.1 | 1385000 | 1.5635 | | 1.5449 | 3.11 | 1390000 | 1.5467 | | 1.5417 | 3.12 | 1395000 | 1.5495 | | 1.5428 | 3.14 | 1400000 | 1.5552 | | 1.5432 | 3.15 | 1405000 | 1.5347 | | 1.5401 | 3.16 | 1410000 | 1.5394 | | 1.5391 | 3.17 | 1415000 | 1.5497 | | 1.539 | 3.18 | 1420000 | 1.5431 | | 1.5368 | 3.19 | 1425000 | 1.5479 | | 1.5365 | 3.2 | 1430000 | 1.5513 | | 1.5327 | 3.21 | 1435000 | 1.5467 | | 1.5337 | 3.23 | 1440000 | 1.5477 | | 1.5317 | 3.24 | 1445000 | 1.5398 | | 1.5315 | 3.25 | 1450000 | 1.5481 | | 1.532 | 3.26 | 1455000 | 1.5385 | | 1.5312 | 3.27 | 1460000 | 1.5520 | | 1.5328 | 3.28 | 1465000 | 1.5423 | | 1.5288 | 3.29 | 1470000 | 1.5489 | | 1.5271 | 3.3 | 1475000 | 1.5395 | | 1.5273 | 3.31 | 1480000 | 1.5335 | | 1.5235 | 3.33 | 1485000 | 1.5381 | | 1.5224 | 3.34 | 1490000 | 1.5289 | | 1.5206 | 3.35 | 1495000 | 1.5331 | | 1.5189 | 3.36 | 1500000 | 1.5343 | | 1.5152 | 3.37 | 1505000 | 1.5246 | | 1.5225 | 3.38 | 1510000 | 1.5280 | | 1.5168 | 3.39 | 1515000 | 1.5315 | | 1.5161 | 3.4 | 1520000 | 1.5284 | | 1.5111 | 3.42 | 1525000 | 1.5278 | | 1.5154 | 3.43 | 1530000 | 1.5148 | | 1.515 | 3.44 | 1535000 | 1.5286 | | 1.5117 | 3.45 | 1540000 | 1.5291 | | 1.5099 | 3.46 | 1545000 | 1.5320 | | 1.5097 | 3.47 | 1550000 | 1.5323 | | 1.5075 | 3.48 | 1555000 | 1.5157 | | 1.5059 | 3.49 | 1560000 | 1.5214 | | 1.5011 | 3.51 | 1565000 | 1.5199 | | 1.5074 | 3.52 | 1570000 | 1.5114 | | 1.5033 | 3.53 | 1575000 | 1.5145 | | 1.5009 | 3.54 | 1580000 | 1.5184 | | 1.4994 | 3.55 | 1585000 | 1.5125 | | 1.5041 | 3.56 | 1590000 | 1.5048 | | 1.5002 | 3.57 | 1595000 | 1.5156 | | 1.4967 | 3.58 | 1600000 | 1.5176 | | 1.4923 | 3.59 | 1605000 | 1.5128 | | 1.495 | 3.61 | 1610000 | 1.5188 | | 1.4929 | 3.62 | 1615000 | 1.5149 | | 1.4921 | 3.63 | 1620000 | 1.5097 | | 1.4916 | 3.64 | 1625000 | 1.5161 | | 1.4852 | 3.65 | 1630000 | 1.5134 | | 1.4881 | 3.66 | 1635000 | 1.5101 | | 1.4873 | 3.67 | 1640000 | 1.5027 | | 1.4911 | 3.68 | 1645000 | 1.4968 | | 1.488 | 3.7 | 1650000 | 1.4962 | | 1.4842 | 3.71 | 1655000 | 1.5030 | | 1.4829 | 3.72 | 1660000 | 1.5041 | | 1.4816 | 3.73 | 1665000 | 1.5076 | | 1.479 | 3.74 | 1670000 | 1.5029 | | 1.4768 | 3.75 | 1675000 | 1.5053 | | 1.4769 | 3.76 | 1680000 | 1.5026 | | 1.4781 | 3.77 | 1685000 | 1.5016 | | 1.4781 | 3.79 | 1690000 | 1.5034 | | 1.4777 | 3.8 | 1695000 | 1.4976 | | 1.4736 | 3.81 | 1700000 | 1.5002 | | 1.4715 | 3.82 | 1705000 | 1.4995 | | 1.4716 | 3.83 | 1710000 | 1.4996 | | 1.4648 | 3.84 | 1715000 | 1.4952 | | 1.4711 | 3.85 | 1720000 | 1.4934 | | 1.4682 | 3.86 | 1725000 | 1.4965 | | 1.4659 | 3.87 | 1730000 | 1.4932 | | 1.4689 | 3.89 | 1735000 | 1.4920 | | 1.4656 | 3.9 | 1740000 | 1.4910 | | 1.4666 | 3.91 | 1745000 | 1.4893 | | 1.4611 | 3.92 | 1750000 | 1.4888 | | 1.4623 | 3.93 | 1755000 | 1.4898 | | 1.4637 | 3.94 | 1760000 | 1.4909 | | 1.4585 | 3.95 | 1765000 | 1.4858 | | 1.4586 | 3.96 | 1770000 | 1.4847 | | 1.4579 | 3.98 | 1775000 | 1.4841 | | 1.458 | 3.99 | 1780000 | 1.4840 | | 1.4572 | 4.0 | 1785000 | 1.4832 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
facebook/regnet-y-032
facebook
2022-06-28T11:39:30Z
68
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:35:16Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
facebook/regnet-y-016
facebook
2022-06-28T11:38:42Z
64
0
transformers
[ "transformers", "pytorch", "tf", "regnet", "image-classification", "vision", "dataset:imagenet-1k", "arxiv:2003.13678", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-18T15:34:34Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # RegNet RegNet model trained on imagenet-1k. It was introduced in the paper [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) and first released in [this repository](https://github.com/facebookresearch/pycls). Disclaimer: The team releasing RegNet did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/regnet_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=regnet) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python >>> from transformers import AutoFeatureExtractor, RegNetForImageClassification >>> import torch >>> from datasets import load_dataset >>> dataset = load_dataset("huggingface/cats-image") >>> image = dataset["test"]["image"][0] >>> feature_extractor = AutoFeatureExtractor.from_pretrained("zuppif/regnet-y-040") >>> model = RegNetForImageClassification.from_pretrained("zuppif/regnet-y-040") >>> inputs = feature_extractor(image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) 'tabby, tabby cat' ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/regnet).
AIDA-UPM/BERTuit-base
AIDA-UPM
2022-06-28T11:13:39Z
6
0
transformers
[ "transformers", "tf", "roberta", "online social networks", "twitter", "spanish", "fill-mask", "es", "arxiv:2204.03465", "license:apache-2.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-28T09:55:34Z
--- pipeline_tag: fill-mask tags: - online social networks - twitter - spanish language: es license: apache-2.0 widget: - text: "Las <mask> causan hipoxia." example_title: "Mask filling" --- Model BERTuit as presented in the [BERTuit: Understanding Spanish language in Twitter through a native transformer](https://arxiv.org/abs/2204.03465) article. Before tokenization replace user tags and urls with "\<usr\>" and "\<url\>" respectively. Tokenize text with base class RoBERTaTokenizer.
fusing/glide-base
fusing
2022-06-28T10:27:26Z
0
2
null
[ "arxiv:2112.10741", "license:apache-2.0", "region:us" ]
null
2022-06-07T12:52:41Z
--- license: apache-2.0 --- GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models **Paper**: [GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models](https://arxiv.org/abs/2112.10741) **Abstract**: *Diffusion models have recently been shown to generate high-quality synthetic images, especially when paired with a guidance technique to trade off diversity for fidelity. We explore diffusion models for the problem of text-conditional image synthesis and compare two different guidance strategies: CLIP guidance and classifier-free guidance. We find that the latter is preferred by human evaluators for both photorealism and caption similarity, and often produces photorealistic samples. Samples from a 3.5 billion parameter text-conditional diffusion model using classifier-free guidance are favored by human evaluators to those from DALL-E, even when the latter uses expensive CLIP reranking. Additionally, we find that our models can be fine-tuned to perform image inpainting, enabling powerful text-driven image editing.* ## Usage ```python # !pip install diffusers import torch from diffusers import DiffusionPipeline import PIL.Image model_id = "fusing/glide-base" # load model and scheduler pipeline = DiffusionPipeline.from_pretrained(model_id) # run inference (text-conditioned denoising + upscaling) img = pipeline("a crayon drawing of a corgi") # process image to PIL img = img.squeeze(0) img = ((img + 1)*127.5).round().clamp(0, 255).to(torch.uint8).cpu().numpy() image_pil = PIL.Image.fromarray(img) # save image image_pil.save("test.png") ``` ## Samples 1. ![sample_1](https://huggingface.co/datasets/anton-l/images/resolve/main/glide1.png) 2. ![sample_2](https://huggingface.co/datasets/anton-l/images/resolve/main/glide2.png) 3. ![sample_3](https://huggingface.co/datasets/anton-l/images/resolve/main/glide3.png)
rtorrero/my-first-model
rtorrero
2022-06-28T08:44:52Z
0
0
null
[ "region:us" ]
null
2022-06-28T07:41:49Z
This is just me playing around with Hugging Face :-)
AdiKompella/q-FrozenLake-v1-4x4-Slippery
AdiKompella
2022-06-28T05:46:27Z
0
0
null
[ "FrozenLake-v1-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T05:46:20Z
--- tags: - FrozenLake-v1-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-Slippery results: - metrics: - type: mean_reward value: 0.47 +/- 0.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4 type: FrozenLake-v1-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="AdiKompella/q-FrozenLake-v1-4x4-Slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
egumasa/roberta-base-finetuned-academic
egumasa
2022-06-28T05:06:29Z
7
4
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "dataset:elsevier-oa-cc-by", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-27T07:06:21Z
--- license: mit tags: - generated_from_trainer datasets: - elsevier-oa-cc-by model-index: - name: roberta-base-finetuned-academic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-academic This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the elsevier-oa-cc-by dataset. It achieves the following results on the evaluation set: - Loss: 2.1158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.1903 | 0.25 | 1025 | 2.0998 | | 2.1752 | 0.5 | 2050 | 2.1186 | | 2.1864 | 0.75 | 3075 | 2.1073 | | 2.1874 | 1.0 | 4100 | 2.1177 | | 2.1669 | 1.25 | 5125 | 2.1091 | | 2.1859 | 1.5 | 6150 | 2.1212 | | 2.1783 | 1.75 | 7175 | 2.1096 | | 2.1734 | 2.0 | 8200 | 2.0998 | | 2.1712 | 2.25 | 9225 | 2.0972 | | 2.1812 | 2.5 | 10250 | 2.1051 | | 2.1811 | 2.75 | 11275 | 2.1150 | | 2.1826 | 3.0 | 12300 | 2.1097 | | 2.172 | 3.25 | 13325 | 2.1115 | | 2.1745 | 3.5 | 14350 | 2.1098 | | 2.1758 | 3.75 | 15375 | 2.1101 | | 2.1834 | 4.0 | 16400 | 2.1232 | | 2.1836 | 4.25 | 17425 | 2.1052 | | 2.1791 | 4.5 | 18450 | 2.1186 | | 2.172 | 4.75 | 19475 | 2.1039 | | 2.1797 | 5.0 | 20500 | 2.1015 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
vebie91/dqn-SpaceInvadersNoFrameskip-v4-1.2
vebie91
2022-06-28T04:33:56Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:33:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 563.00 +/- 159.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 6), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Nabby/PPO-LunarLander-v2
Nabby
2022-06-28T04:21:46Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:21:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 276.91 +/- 22.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
mastak128/unit1
mastak128
2022-06-28T04:20:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T04:19:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 182.30 +/- 78.62 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
chandrasutrisnotjhong/marian-finetuned-kde4-en-to-fr
chandrasutrisnotjhong
2022-06-28T04:10:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-22T02:01:51Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.83242564204547 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8560 - Bleu: 52.8324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jackieliu930/bart-large-cnn-samsum
jackieliu930
2022-06-28T03:46:12Z
15
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "sagemaker", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - sagemaker - bart - summarization license: apache-2.0 datasets: - samsum model-index: - name: bart-large-cnn-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROGUE-1 type: rogue-1 value: 42.621 - name: Validation ROGUE-2 type: rogue-2 value: 21.9825 - name: Validation ROGUE-L type: rogue-l value: 33.034 - name: Test ROGUE-1 type: rogue-1 value: 41.3174 - name: Test ROGUE-2 type: rogue-2 value: 20.8716 - name: Test ROGUE-L type: rogue-l value: 32.1337 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: test metrics: - name: ROUGE-1 type: rouge value: 40.8911 verified: true - name: ROUGE-2 type: rouge value: 20.3551 verified: true - name: ROUGE-L type: rouge value: 31.2696 verified: true - name: ROUGE-LSUM type: rouge value: 37.9313 verified: true - name: loss type: loss value: 1.4995627403259277 verified: true - name: gen_len type: gen_len value: 60.2247 verified: true widget: - text: "Jeff: Can I train a \U0001F917 Transformers model on Amazon SageMaker? \n\ Philipp: Sure you can use the new Hugging Face Deep Learning Container. \nJeff:\ \ ok.\nJeff: and how can I get started? \nJeff: where can I find documentation?\ \ \nPhilipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face " --- ## `bart-large-cnn-samsum` This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container. For more information look at: - [🤗 Transformers Documentation: Amazon SageMaker](https://huggingface.co/transformers/sagemaker.html) - [Example Notebooks](https://github.com/huggingface/notebooks/tree/master/sagemaker) - [Amazon SageMaker documentation for Hugging Face](https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html) - [Python SDK SageMaker documentation for Hugging Face](https://sagemaker.readthedocs.io/en/stable/frameworks/huggingface/index.html) - [Deep Learning Container](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#huggingface-training-containers) ## Hyperparameters { "dataset_name": "samsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "learning_rate": 5e-05, "model_name_or_path": "facebook/bart-large-cnn", "num_train_epochs": 3, "output_dir": "/opt/ml/model", "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_job_name": "huggingface-pytorch-training-2021-09-08-06-40-19-182", "sagemaker_program": "run_summarization.py", "sagemaker_region": "us-west-2", "sagemaker_submit_directory": "s3://sagemaker-us-west-2-847380964353/huggingface-pytorch-training-2021-09-08-06-40-19-182/source/sourcedir.tar.gz", "seed": 7 } ## Usage from transformers import pipeline summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum") conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? Philipp: Sure you can use the new Hugging Face Deep Learning Container. Jeff: ok. Jeff: and how can I get started? Jeff: where can I find documentation? Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face ''' nlp(conversation) ## Results | key | value | | --- | ----- | | eval_rouge1 | 42.059 | | eval_rouge2 | 21.5509 | | eval_rougeL | 32.4083 | | eval_rougeLsum | 39.0015 | | test_rouge1 | 40.8656 | | test_rouge2 | 20.3517 | | test_rougeL | 31.2268 | | test_rougeLsum | 37.9301 |
jcmc/dqn-SpaceInvadersNoFrameskip-v4
jcmc
2022-06-28T03:41:05Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-28T03:40:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 416.50 +/- 122.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcmc -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcmc ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
lingchensanwen/distilbert-base-uncased-finetuned-squad
lingchensanwen
2022-06-28T02:57:31Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-27T00:42:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 46 | 0.4284 | | No log | 2.0 | 92 | 0.0573 | | No log | 3.0 | 138 | 0.0337 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.2.2 - Tokenizers 0.12.1
KaliYuga/spritesheetdiffusion
KaliYuga
2022-06-28T00:52:09Z
0
4
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-06-23T01:10:50Z
--- license: cc-by-4.0 --- This model is really only supposed to be for my [patreon patrons](https://www.patreon.com/kaliyuga_ai). I ask that, unless you *truly* can't afford to pay $5 to access this model, you not use it without being a patron. Regardless, you must give attribution if you use this model in any product/app/game, etc
Abdelmageed95/distilgpt2-finetuned-wikitext2
Abdelmageed95
2022-06-27T22:58:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T22:27:02Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7602 | 1.0 | 2334 | 3.6669 | | 3.653 | 2.0 | 4668 | 3.6472 | | 3.6006 | 3.0 | 7002 | 3.6421 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
matteopilotto/vit-base-patch16-224-in21k-snacks
matteopilotto
2022-06-27T22:19:35Z
65
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "dataset:Matthijs/snacks", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-14T16:23:18Z
--- datasets: - Matthijs/snacks model-index: - name: matteopilotto/vit-base-patch16-224-in21k-snacks results: - task: type: image-classification name: Image Classification dataset: name: Matthijs/snacks type: Matthijs/snacks config: default split: test metrics: - name: Accuracy type: accuracy value: 0.8928571428571429 verified: true - name: Precision Macro type: precision value: 0.8990033704680036 verified: true - name: Precision Micro type: precision value: 0.8928571428571429 verified: true - name: Precision Weighted type: precision value: 0.8972398709051788 verified: true - name: Recall Macro type: recall value: 0.8914608843537415 verified: true - name: Recall Micro type: recall value: 0.8928571428571429 verified: true - name: Recall Weighted type: recall value: 0.8928571428571429 verified: true - name: F1 Macro type: f1 value: 0.892544821273258 verified: true - name: F1 Micro type: f1 value: 0.8928571428571429 verified: true - name: F1 Weighted type: f1 value: 0.8924168605019522 verified: true - name: loss type: loss value: 0.479541540145874 verified: true --- # Vision Transformer fine-tuned on `Matthijs/snacks` dataset Vision Transformer (ViT) model pre-trained on ImageNet-21k and fine-tuned on [**Matthijs/snacks**](https://huggingface.co/datasets/Matthijs/snacks) for 5 epochs using various data augmentation transformations from `torchvision`. The model achieves a **94.97%** and **94.43%** accuracy on the validation and test set, respectively. ## Data augmentation pipeline The code block below shows the various transformations applied during pre-processing to augment the original dataset. The augmented images where generated on-the-fly with the `set_transform` method. ```python from transformers import ViTFeatureExtractor from torchvision.transforms import ( Compose, Normalize, Resize, RandomResizedCrop, RandomHorizontalFlip, RandomAdjustSharpness, ToTensor ) checkpoint = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(checkpoint) # transformations on the training set train_aug_transforms = Compose([ RandomResizedCrop(size=feature_extractor.size), RandomHorizontalFlip(p=0.5), RandomAdjustSharpness(sharpness_factor=5, p=0.5), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) # transformations on the validation/test set valid_aug_transforms = Compose([ Resize(size=(feature_extractor.size, feature_extractor.size)), ToTensor(), Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std), ]) ```
Dizzykong/charles-dickens
Dizzykong
2022-06-27T21:13:14Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T19:27:02Z
--- tags: - generated_from_trainer model-index: - name: charles-dickens results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # charles-dickens This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune
SEBIS
2022-06-27T20:56:39Z
34
5
transformers
[ "transformers", "pytorch", "tf", "jax", "t5", "feature-extraction", "summarization", "arxiv:2104.02443", "arxiv:1910.09700", "arxiv:2105.09680", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- tags: - summarization widget: - text: "you are given an array of numbers a and a number b , compute the difference of elements in a and b" --- # CodeTrans model for program synthesis ## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) ## Model Details - **Model Description:** This CodeTrans model is based on the `t5-small` model. It has its own SentencePiece vocabulary model. It used transfer-learning pre-training on 7 unsupervised datasets in the software development domain. It is then fine-tuned on the program synthesis task for the lisp inspired DSL code. - **Developed by:** [Ahmed Elnaggar](https://www.linkedin.com/in/prof-ahmed-elnaggar/),[Wei Ding](https://www.linkedin.com/in/wei-ding-92561270/) - **Model Type:** Summarization - **Language(s):** English - **License:** Unknown - **Resources for more information:** - [Research Paper](https://arxiv.org/pdf/2104.02443.pdf) - [GitHub Repo](https://github.com/agemagician/CodeTrans) ## How to Get Started With the Model Here is how to use this model to generate lisp inspired DSL code using Transformers SummarizationPipeline: ```python from transformers import AutoTokenizer, AutoModelWithLMHead, SummarizationPipeline pipeline = SummarizationPipeline( model=AutoModelWithLMHead.from_pretrained("SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune"), tokenizer=AutoTokenizer.from_pretrained("SEBIS/code_trans_t5_small_program_synthese_transfer_learning_finetune", skip_special_tokens=True), device=0 ) tokenized_code = "you are given an array of numbers a and a number b , compute the difference of elements in a and b" pipeline([tokenized_code]) ``` Run this example in [colab notebook](https://github.com/agemagician/CodeTrans/blob/main/prediction/multitask/transfer%20learning%20fine-tuning/small_model.ipynb). ## Training data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) ## Uses #### Direct Use The model could be used to generate lisp inspired DSL code given the human language description tasks. ## Risks, Limitations and Biases As detailed in this model’s [publication](https://arxiv.org/pdf/2104.02443.pdf), this model makes use of the data-set [One Billion Word Language Model Benchmark corpus](https://www.researchgate.net/publication/259239818_One_Billion_Word_Benchmark_for_Measuring_Progress_in_Statistical_Language_Modeling) in order to gather the self-supervised English data samples. Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). As such, it should be noted that language models that are pretrained from text corpus such as the One Billion Word Word Language Model Benchmark corpus have been further explored (e.g by [Ngo, Helen & Araújo et al(2021)](https://www.researchgate.net/publication/355582954_No_News_is_Good_News_A_Critique_of_the_One_Billion_Word_Benchmark) reports that the One Billion Word Word Language Model Benchmark corpus > “generate text in the linguistic style of news, without any grounding in the real world. In addition to potential harms from models which are inadvertently optimized for generating fake news.” The aforementioned publication continues to warn that the One Billion Word Word Language Model Benchmark corpus > contains sentences which contain words commonly found on blocklists. While these sentences may have plausibly been used in expository contexts within the article, the destructive sentence-level preprocessing and shuffling applied to lm1b [One Billion Word Word Language Model Benchmark corpus] removes all long-range structure from the text and makes it infeasible to track the context and intent of individual examples. [Ngo, Helen & Araújo et al(2021)](https://www.researchgate.net/publication/355582954_No_News_is_Good_News_A_Critique_of_the_One_Billion_Word_Benchmark) ## Training #### Training Data The supervised training tasks datasets can be downloaded on [Link](https://www.dropbox.com/sh/488bq2of10r4wvw/AACs5CGIQuwtsD7j_Ls_JAORa/finetuning_dataset?dl=0&subfolder_nav_tracking=1) The authors provide additionally notes about the vocabulary used, in the [associated paper](https://arxiv.org/pdf/2104.02443.pdf): > We used the SentencePiece model (Kudo, 2018) to construct the vocabulary for this research, as well as to decode and encode the input/output. ## Training procedure #### Preprocessing ##### Transfer-learning Pretraining The model was trained on a single TPU Pod V3-8 for 500,000 steps in total, using sequence length 512 (batch size 4096). It has a total of approximately 220M parameters and was trained using the encoder-decoder architecture. The optimizer used is AdaFactor with inverse square root learning rate schedule for pre-training. ###### Fine-tuning This model was then fine-tuned on a single TPU Pod V2-8 for 5,000 steps in total, using sequence length 512 (batch size 256), using only the dataset only containing lisp inspired DSL data. ## Evaluation #### Results For the code documentation tasks, different models achieves the following results on different programming languages (in BLEU score): Test results : | Language / Model | LISP | | -------------------- | :------------: | | CodeTrans-ST-Small | 89.43 | | CodeTrans-ST-Base | 89.65 | | CodeTrans-TF-Small | 90.30 | | CodeTrans-TF-Base | 90.24 | | CodeTrans-TF-Large | 90.21 | | CodeTrans-MT-Small | 82.88 | | CodeTrans-MT-Base | 86.99 | | CodeTrans-MT-Large | 90.27 | | CodeTrans-MT-TF-Small | **90.31** | | CodeTrans-MT-TF-Base | 90.30 | | CodeTrans-MT-TF-Large | 90.17 | | State of the art | 85.80 | ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). We present the hardware type based on the [associated paper](https://arxiv.org/pdf/2105.09680.pdf). - **Hardware Type:** Nvidia RTX 8000 GPUs - **Hours used:** Unknown - **Cloud Provider:** GCC TPU v2-8 and v3-8. - **Compute Region:** Unknown - **Carbon Emitted:** Unknown ## Citation Information ```bibtex @misc{elnaggar2021codetrans, title={CodeTrans: Towards Cracking the Language of Silicon's Code Through Self-Supervised Deep Learning and High Performance Computing}, author={Ahmed Elnaggar and Wei Ding and Llion Jones and Tom Gibbs and Tamas Feher and Christoph Angerer and Silvia Severini and Florian Matthes and Burkhard Rost}, year={2021}, eprint={2104.02443}, archivePrefix={arXiv}, primaryClass={cs.SE} } ```
BeardedJohn/bert-finetuned-ner-ubb-conll
BeardedJohn
2022-06-27T16:24:46Z
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T12:42:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: BeardedJohn/bert-finetuned-ner-ubb-conll results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # BeardedJohn/bert-finetuned-ner-ubb-conll This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0351 - Validation Loss: 0.0581 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1317, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2302 | 0.0731 | 0 | | 0.0556 | 0.0593 | 1 | | 0.0351 | 0.0581 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
microsoft/deberta-xlarge-mnli
microsoft
2022-06-27T15:47:33Z
504,931
16
transformers
[ "transformers", "pytorch", "tf", "deberta", "text-classification", "deberta-v1", "deberta-mnli", "en", "arxiv:2006.03654", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en tags: - deberta-v1 - deberta-mnli tasks: mnli thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit widget: - text: "[CLS] I love you. [SEP] I like you. [SEP]" --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This the DeBERTa xlarge model(750M) fine-tuned with mnli task. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
jcastanyo/dqn-SpaceInvadersNoFrameskip-v4
jcastanyo
2022-06-27T15:43:15Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T15:42:39Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 644.00 +/- 281.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jcastanyo -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jcastanyo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
begmannen/ju
begmannen
2022-06-27T15:15:07Z
0
0
null
[ "license:bsd-3-clause-clear", "region:us" ]
null
2022-06-27T15:15:06Z
--- license: bsd-3-clause-clear ---
Adapting/comfort_congratulations_neutral-classifier
Adapting
2022-06-27T14:24:27Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T18:55:41Z
# Adapting/comfort_congratulations_neutral-classifier code used to train this model: https://colab.research.google.com/drive/1BHc8UMuT0sRyA_M24Acits5oHwUmjsFm?usp=sharing dataset: https://huggingface.co/datasets/Adapting/empathetic_dialogues_v2 LABEL_0: neutral LABEL_1: congratulating LABEL_2: comforting
BukaByaka/opus-mt-ru-en-finetuned-ru-to-en
BukaByaka
2022-06-27T14:05:53Z
43
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T14:26:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: opus-mt-ru-en-finetuned-ru-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ru-en metrics: - name: Bleu type: bleu value: 30.4049 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ru-en-finetuned-ru-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-en](https://huggingface.co/Helsinki-NLP/opus-mt-ru-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4092 - Bleu: 30.4049 - Gen Len: 26.3911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| | 2.2606 | 1.0 | 94761 | 1.4092 | 30.4049 | 26.3911 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0.post202 - Datasets 2.3.2 - Tokenizers 0.12.1
kktoto/tiny_focal_alpah
kktoto
2022-06-27T13:47:19Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T01:31:29Z
--- tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tiny_focal_alpah results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny_focal_alpah This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0492 - Precision: 0.6951 - Recall: 0.6796 - F1: 0.6873 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0588 | 1.0 | 5561 | 0.0548 | 0.6801 | 0.6235 | 0.6506 | 0.9453 | | 0.054 | 2.0 | 11122 | 0.0521 | 0.6850 | 0.6478 | 0.6659 | 0.9476 | | 0.0525 | 3.0 | 16683 | 0.0509 | 0.6834 | 0.6676 | 0.6754 | 0.9486 | | 0.0492 | 4.0 | 22244 | 0.0503 | 0.6829 | 0.6754 | 0.6791 | 0.9491 | | 0.0482 | 5.0 | 27805 | 0.0500 | 0.6917 | 0.6727 | 0.6820 | 0.9501 | | 0.0471 | 6.0 | 33366 | 0.0491 | 0.7085 | 0.6546 | 0.6805 | 0.9510 | | 0.0459 | 7.0 | 38927 | 0.0486 | 0.6964 | 0.6746 | 0.6853 | 0.9510 | | 0.0448 | 8.0 | 44488 | 0.0495 | 0.6922 | 0.6813 | 0.6867 | 0.9509 | | 0.044 | 9.0 | 50049 | 0.0491 | 0.6961 | 0.6755 | 0.6857 | 0.9511 | | 0.0433 | 10.0 | 55610 | 0.0492 | 0.6951 | 0.6796 | 0.6873 | 0.9512 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4
gary109
2022-06-27T13:34:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-26T14:19:49Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v4 This model is a fine-tuned version of [gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3](https://huggingface.co/gary109/ai-light-dance_stepmania_ft_wav2vec2-large-xlsr-53-v3) on the GARY109/AI_LIGHT_DANCE - ONSET-STEPMANIA2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0298 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.9218 | 1.0 | 188 | 1.0718 | 0.6958 | | 0.9194 | 2.0 | 376 | 1.0354 | 0.6937 | | 0.9077 | 3.0 | 564 | 1.0365 | 0.6730 | | 0.8956 | 4.0 | 752 | 1.0497 | 0.6727 | | 0.877 | 5.0 | 940 | 1.0299 | 0.6694 | | 0.8736 | 6.0 | 1128 | 1.0298 | 0.6642 | | 0.8769 | 7.0 | 1316 | 1.0348 | 0.6584 | | 0.8571 | 8.0 | 1504 | 1.0689 | 0.6602 | | 0.8573 | 9.0 | 1692 | 1.0559 | 0.6549 | | 0.8458 | 10.0 | 1880 | 1.0706 | 0.6588 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
gopalkalpande/t5-small-finetuned-bbc-news-summarization
gopalkalpande
2022-06-27T13:15:58Z
5
1
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T13:12:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gopalkalpande/t5-small-finetuned-bbc-news-summarization results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gopalkalpande/t5-small-finetuned-bbc-news-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7637 - Validation Loss: 0.3528 - Train Rouge1: 19.4783 - Train Rouge2: 13.2994 - Train Rougel: 17.4791 - Train Rougelsum: 17.6204 - Train Gen Len: 19.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 4e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.7637 | 0.3528 | 19.4783 | 13.2994 | 17.4791 | 17.6204 | 19.0 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Davlan/naija-twitter-sentiment-afriberta-large
Davlan
2022-06-27T11:50:40Z
69
3
transformers
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "arxiv:2201.08277", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - hau - ibo - pcm - yor - multilingual --- # naija-twitter-sentiment-afriberta-large ## Model description **naija-twitter-sentiment-afriberta-large** is the first multilingual twitter **sentiment classification** model for four (4) Nigerian languages (Hausa, Igbo, Nigerian Pidgin, and Yorùbá) based on a fine-tuned castorini/afriberta_large large model. It achieves the **state-of-the-art performance** for the twitter sentiment classification task trained on the [NaijaSenti corpus](https://github.com/hausanlp/NaijaSenti). The model has been trained to classify tweets into 3 sentiment classes: negative, neutral and positive Specifically, this model is a *xlm-roberta-large* model that was fine-tuned on an aggregation of 4 Nigerian language datasets obtained from [NaijaSenti](https://github.com/hausanlp/NaijaSenti) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers for Sentiment Classification. ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax MODEL = "Davlan/naija-twitter-sentiment-afriberta-large" tokenizer = AutoTokenizer.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) text = "I like you" encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) id2label = {0:"positive", 1:"neutral", 2:"negative"} ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` #### Limitations and bias This model is limited by its training dataset and domain i.e Twitter. This may not generalize well for all use cases in different domains. ## Training procedure This model was trained on a single Nvidia RTX 2080 GPU with recommended hyperparameters from the [original NaijaSenti paper](https://arxiv.org/abs/2201.08277). ## Eval results on Test set (F-score), average over 5 runs. language|F1-score -|- hau |81.2 ibo |80.8 pcm |74.5 yor |80.4 ### BibTeX entry and citation info ``` @inproceedings{Muhammad2022NaijaSentiAN, title={NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis}, author={Shamsuddeen Hassan Muhammad and David Ifeoluwa Adelani and Sebastian Ruder and Ibrahim Said Ahmad and Idris Abdulmumin and Bello Shehu Bello and Monojit Choudhury and Chris C. Emezue and Saheed Salahudeen Abdullahi and Anuoluwapo Aremu and Alipio Jeorge and Pavel B. Brazdil}, year={2022} } ```
abhishek/convnext-tiny-finetuned-dogfood
abhishek
2022-06-27T11:01:31Z
59
1
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "generated_from_trainer", "dataset:imagefolder", "dataset:lewtun/dog_food", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T09:36:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder - lewtun/dog_food metrics: - accuracy model-index: - name: convnext-tiny-finetuned-dogfood results: - task: name: Image Classification type: image-classification dataset: name: lewtun/dog_food type: lewtun/dog_food args: lewtun--dog_food metrics: - name: Accuracy type: accuracy value: 0.7253333333333334 - task: type: image-classification name: Image Classification dataset: name: lewtun/dog_food type: lewtun/dog_food config: lewtun--dog_food split: test metrics: - name: Accuracy type: accuracy value: 0.6866666666666666 verified: true - name: Precision Macro type: precision value: 0.7181484576740136 verified: true - name: Precision Micro type: precision value: 0.6866666666666666 verified: true - name: Precision Weighted type: precision value: 0.7235392474854474 verified: true - name: Recall Macro type: recall value: 0.7006250320552644 verified: true - name: Recall Micro type: recall value: 0.6866666666666666 verified: true - name: Recall Weighted type: recall value: 0.6866666666666666 verified: true - name: F1 Macro type: f1 value: 0.6690027379410202 verified: true - name: F1 Micro type: f1 value: 0.6866666666666666 verified: true - name: F1 Weighted type: f1 value: 0.6647526870157503 verified: true - name: loss type: loss value: 0.9549381732940674 verified: true - name: matthews_correlation type: matthews_correlation value: 0.5737269361889515 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-finetuned-dogfood This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the lewtun/dog_food dataset. It achieves the following results on the evaluation set: - Loss: 0.9277 - Accuracy: 0.7253 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0681 | 1.0 | 16 | 0.9125 | 0.7422 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Davlan/distilbert-base-multilingual-cased-masakhaner
Davlan
2022-06-27T10:57:26Z
27
2
transformers
[ "transformers", "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
Hugging Face's logo --- language: - ha - ig - rw - lg - luo - pcm - sw - wo - yo - multilingual datasets: - masakhaner --- # bert-base-multilingual-cased-masakhaner ## Model description **distilbert-base-multilingual-cased-masakhaner** is the first **Named Entity Recognition** model for 9 African languages (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) based on a fine-tuned BERT base model. It has been trained to recognize four types of entities: dates & times (DATE), location (LOC), organizations (ORG), and person (PER). Specifically, this model is a *distilbert-base-multilingual-cased* model that was fine-tuned on an aggregation of African language datasets obtained from Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") model = AutoModelForTokenClassification.from_pretrained("Davlan/distilbert-base-multilingual-cased-masakhaner") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Emir of Kano turban Zhang wey don spend 18 years for Nigeria" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on 9 African NER datasets (Hausa, Igbo, Kinyarwanda, Luganda, Nigerian Pidgin, Swahilu, Wolof, and Yorùbá) Masakhane [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset The training dataset distinguishes between the beginning and continuation of an entity so that if there are back-to-back entities of the same type, the model can output where the second entity begins. As in the dataset, each token will be classified as one of the following classes: Abbreviation|Description -|- O|Outside of a named entity B-DATE |Beginning of a DATE entity right after another DATE entity I-DATE |DATE entity B-PER |Beginning of a person’s name right after another person’s name I-PER |Person’s name B-ORG |Beginning of an organisation right after another organisation I-ORG |Organisation B-LOC |Beginning of a location right after another location I-LOC |Location ## Training procedure This model was trained on a single NVIDIA V100 GPU with recommended hyperparameters from the [original MasakhaNER paper](https://arxiv.org/abs/2103.11811) which trained & evaluated the model on MasakhaNER corpus. ## Eval results on Test set (F-score) language|F1-score -|- hau |88.88 ibo |84.87 kin |74.19 lug |78.43 luo |73.32 pcm |87.98 swa |86.20 wol |64.67 yor |78.10 ### BibTeX entry and citation info ``` @article{adelani21tacl, title = {Masakha{NER}: Named Entity Recognition for African Languages}, author = {David Ifeoluwa Adelani and Jade Abbott and Graham Neubig and Daniel D'souza and Julia Kreutzer and Constantine Lignos and Chester Palen-Michel and Happy Buzaaba and Shruti Rijhwani and Sebastian Ruder and Stephen Mayhew and Israel Abebe Azime and Shamsuddeen Muhammad and Chris Chinenye Emezue and Joyce Nakatumba-Nabende and Perez Ogayo and Anuoluwapo Aremu and Catherine Gitau and Derguene Mbaye and Jesujoba Alabi and Seid Muhie Yimam and Tajuddeen Gwadabe and Ignatius Ezeani and Rubungo Andre Niyongabo and Jonathan Mukiibi and Verrah Otiende and Iroro Orife and Davis David and Samba Ngom and Tosin Adewumi and Paul Rayson and Mofetoluwa Adeyemi and Gerald Muriuki and Emmanuel Anebi and Chiamaka Chukwuneke and Nkiruka Odu and Eric Peter Wairagala and Samuel Oyerinde and Clemencia Siro and Tobius Saul Bateesa and Temilola Oloyede and Yvonne Wambui and Victor Akinode and Deborah Nabagereka and Maurice Katusiime and Ayodele Awokoya and Mouhamadane MBOUP and Dibora Gebreyohannes and Henok Tilaye and Kelechi Nwaike and Degaga Wolde and Abdoulaye Faye and Blessing Sibanda and Orevaoghene Ahia and Bonaventure F. P. Dossou and Kelechi Ogueji and Thierno Ibrahima DIOP and Abdoulaye Diallo and Adewale Akinfaderin and Tendai Marengereke and Salomey Osei}, journal = {Transactions of the Association for Computational Linguistics (TACL)}, month = {}, url = {https://arxiv.org/abs/2103.11811}, year = {2021} } ```
Davlan/bert-base-multilingual-cased-finetuned-hausa
Davlan
2022-06-27T10:56:44Z
108
1
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
Hugging Face's logo --- language: ha datasets: --- # bert-base-multilingual-cased-finetuned-hausa ## Model description **bert-base-multilingual-cased-finetuned-hausa** is a **Hausa BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Hausa language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Hausa corpus. ## Intended uses & limitations #### How to use You can use this model with Transformers *pipeline* for masked token prediction. ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa') >>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci") [{'sequence': '[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.9762618541717529, 'token': 22045, 'token_str': 'Nigeria'}, {'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, 'token': 25444, 'token_str': 'Ka'}, {'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, 'token': 117, 'token_str': ','}, {'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, 'token': 28682, 'token_str': 'Ghana'}, {'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, 'token': 11717, 'token_str': '##mu'}] ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/) ## Training procedure This model was trained on a single NVIDIA V100 GPU ## Eval results on Test set (F-score, average over 5 runs) Dataset| mBERT F1 | ha_bert F1 -|-|- [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.65 | 91.31 [VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | 84.76 | 90.98 ### BibTeX entry and citation info By David Adelani ``` ```
JeremiahZ/reproduce-unsup-roberta-base-avg
JeremiahZ
2022-06-27T10:19:27Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "generated_from_trainer", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T08:09:54Z
--- language: - en license: mit tags: - generated_from_trainer model-index: - name: reproduce-unsup-roberta-base-avg results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reproduce-unsup-roberta-base-avg This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 512 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
MaryaAI/opus-mt-ar-en-finetunedTanzil-v7-ar-to-en
MaryaAI
2022-06-27T10:10:12Z
4
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-04-05T06:04:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: opus-mt-ar-en-finetunedTanzil-v7-ar-to-en results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-ar-en-finetunedTanzil-v7-ar-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ar-en](https://huggingface.co/Helsinki-NLP/opus-mt-ar-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1919 - Validation Loss: 0.5047 - Train Rouge1: 49.6877 - Train Rouge2: 25.9574 - Train Rougel: 45.2590 - Train Rougelsum: 45.7464 - Train Gen Len: 85.57 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.1959 | 0.5105 | 48.2182 | 23.4978 | 44.1127 | 44.6422 | 87.45 | 0 | | 0.1950 | 0.5114 | 49.5777 | 25.1663 | 45.7183 | 46.0930 | 86.72 | 1 | | 0.1937 | 0.5074 | 49.1793 | 24.1899 | 45.3374 | 45.5902 | 84.805 | 2 | | 0.1929 | 0.5075 | 49.1553 | 24.8199 | 44.7342 | 45.1392 | 87.495 | 3 | | 0.1919 | 0.5047 | 49.6877 | 25.9574 | 45.2590 | 45.7464 | 85.57 | 4 | ### Framework versions - Transformers 4.17.0.dev0 - TensorFlow 2.7.0 - Datasets 1.18.4.dev0 - Tokenizers 0.10.3
Laure996/bert-finetuned-ner
Laure996
2022-06-27T10:00:55Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-27T09:31:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9329136988570482 - name: Recall type: recall value: 0.9478290138000673 - name: F1 type: f1 value: 0.9403122130394858 - name: Accuracy type: accuracy value: 0.9855477718255137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0663 - Precision: 0.9329 - Recall: 0.9478 - F1: 0.9403 - Accuracy: 0.9855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0837 | 1.0 | 1756 | 0.0656 | 0.9151 | 0.9392 | 0.9270 | 0.9834 | | 0.0388 | 2.0 | 3512 | 0.0619 | 0.9249 | 0.9475 | 0.9361 | 0.9855 | | 0.0198 | 3.0 | 5268 | 0.0663 | 0.9329 | 0.9478 | 0.9403 | 0.9855 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
YuanWellspring/wav2vec2-nsc-final_1-google-colab
YuanWellspring
2022-06-27T09:21:32Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T07:57:07Z
--- tags: - generated_from_trainer model-index: - name: wav2vec2-nsc-final_1-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-nsc-final_1-google-colab This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.10.3
facebook/convnext-xlarge-224-22k-1k
facebook
2022-06-27T08:55:36Z
279
2
transformers
[ "transformers", "pytorch", "tf", "convnext", "image-classification", "vision", "dataset:imagenet-21k", "dataset:imagenet-1k", "arxiv:2201.03545", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - vision - image-classification datasets: - imagenet-21k - imagenet-1k widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # ConvNeXT (xlarge-sized model) ConvNeXT model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-xlarge-224-22k-1k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-xlarge-224-22k-1k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 1000 ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
hustvl/yolos-small-dwr
hustvl
2022-06-27T08:38:00Z
11
4
transformers
[ "transformers", "pytorch", "yolos", "object-detection", "vision", "dataset:coco", "arxiv:2106.00666", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2022-04-26T10:15:57Z
--- license: apache-2.0 tags: - object-detection - vision datasets: - coco widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg example_title: Savanna - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg example_title: Football Match - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg example_title: Airport --- # YOLOS (small-sized, fast model scaling) model YOLOS model fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). Disclaimer: The team releasing YOLOS did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model. ## Intended uses & limitations You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=hustvl/yolos) to look for all available YOLOS models. ### How to use Here is how to use this model: ```python from transformers import YolosFeatureExtractor, YolosForObjectDetection from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) feature_extractor = YolosFeatureExtractor.from_pretrained('hustvl/yolos-small-dwr') model = YolosForObjectDetection.from_pretrained('hustvl/yolos-small-dwr') inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes ``` Currently, both the feature extractor and model support PyTorch. ## Training data The YOLOS model was pre-trained on [ImageNet-1k](https://huggingface.co/datasets/imagenet2012) and fine-tuned on [COCO 2017 object detection](https://cocodataset.org/#download), a dataset consisting of 118k/5k annotated images for training/validation respectively. ### Training The model was pre-trained for 300 epochs on ImageNet-1k and fine-tuned for 150 epochs on COCO. ## Evaluation results This model achieves an AP (average precision) of **37.6** on COCO 2017 validation. For more details regarding evaluation results, we refer to table 1 of the original paper. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-00666, author = {Yuxin Fang and Bencheng Liao and Xinggang Wang and Jiemin Fang and Jiyang Qi and Rui Wu and Jianwei Niu and Wenyu Liu}, title = {You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection}, journal = {CoRR}, volume = {abs/2106.00666}, year = {2021}, url = {https://arxiv.org/abs/2106.00666}, eprinttype = {arXiv}, eprint = {2106.00666}, timestamp = {Fri, 29 Apr 2022 19:49:16 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-00666.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
TheRensselaerIDEA/gpt2-large-covid-tweet-response
TheRensselaerIDEA
2022-06-27T07:26:54Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T19:56:35Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [COVID-19 public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (3.36 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. Also see: our [Vaccine public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-vaccine-tweet-response). **Data input format:** <span style="color:red"><|message|></span>public health message<span style="color:red"><|author|></span>public health Twitter handle<span style="color:red"><|response|></span> Example: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from transformers.trainer_utils import set_seed import torch tokenizer = AutoTokenizer.from_pretrained("TheRensselaerIDEA/gpt2-large-covid-tweet-response") model = AutoModelForCausalLM.from_pretrained("TheRensselaerIDEA/gpt2-large-covid-tweet-response") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) set_seed(33) message = "Is your child worried about #COVID19? Learn the facts so you can answer your children’s questions." author = "CDCgov" num_responses = 2 author_token, message_token, response_token = tokenizer.additional_special_tokens input_str = f"{message_token}{message}{author_token}{author}{response_token}" inputs = tokenizer(input_str, return_tensors="pt").to(device) responses_ids = model.generate(**inputs, max_new_tokens=100, pad_token_id=tokenizer.pad_token_id, do_sample=True, top_p=0.95, temperature=1.5, num_beams=3, early_stopping=True, num_return_sequences=num_responses) responses = [tokenizer.decode(r[inputs.input_ids.shape[-1]:], skip_special_tokens=True) for r in responses_ids] for i, resp in enumerate(responses): print(f"Response {i}: {resp}\n") ``` Output: ``` Response 0: @CDCgov I'm not worried. I don't know who needs to hear this, but I have a feeling I know who will be listening. It is not the virus. It is the media. I know you and CDC have been lying for months now, but the media will keep pushing this lie. Response 1: #WashYourHands to help #StopTheSpread of #COVID19 and other diseases. Learn more about hand washing: #HandWashing ```
gopalkalpande/t5-small-finetuned-xsum
gopalkalpande
2022-06-27T06:29:10Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-27T06:26:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: gopalkalpande/t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gopalkalpande/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0422 - Validation Loss: 0.4407 - Train Rouge1: 19.5311 - Train Rouge2: 14.2402 - Train Rougel: 17.9781 - Train Rougelsum: 18.1546 - Train Gen Len: 19.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 1.0422 | 0.4407 | 19.5311 | 14.2402 | 17.9781 | 18.1546 | 19.0 | 0 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
vebie91/dqn-SpaceInvadersNoFrameskip-v4
vebie91
2022-06-27T05:49:36Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T02:29:12Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 784.00 +/- 298.23 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 3000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
robingeibel/longformer-large-finetuned-big_patent
robingeibel
2022-06-27T05:04:39Z
5
0
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-21T07:29:34Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-large-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-large-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-large-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-large-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1706 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 79030, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.1706 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jcmc/q-Taxi-v3
jcmc
2022-06-27T04:21:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T04:21:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.46 +/- 2.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jcmc/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
TheRensselaerIDEA/gpt2-large-vaccine-tweet-response
TheRensselaerIDEA
2022-06-27T03:22:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "arxiv:2204.04353", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-27T03:03:38Z
--- license: mit --- Base model: [gpt2-large](https://huggingface.co/gpt2-large) Fine-tuned to generate responses on a dataset of [Vaccine public health tweets](https://github.com/TheRensselaerIDEA/generative-response-modeling). For more information about the dataset, task and training, see [our paper](https://arxiv.org/abs/2204.04353). This checkpoint corresponds to the lowest validation perplexity (2.82 at 2 epochs) seen during training. See Training metrics for Tensorboard logs. For input format and usage examples, see our [COVID-19 public health tweet response model](https://huggingface.co/TheRensselaerIDEA/gpt2-large-covid-tweet-response).
neweasterns/wav2vec2-base-timit-demo-google-colab
neweasterns
2022-06-27T02:49:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-27T00:01:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Wer: 0.3388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5597 | 1.0 | 500 | 2.3415 | 0.9991 | | 0.9759 | 2.01 | 1000 | 0.5556 | 0.5382 | | 0.4587 | 3.01 | 1500 | 0.7690 | 0.4781 | | 0.3156 | 4.02 | 2000 | 0.7994 | 0.4412 | | 0.2272 | 5.02 | 2500 | 0.8948 | 0.4120 | | 0.1921 | 6.02 | 3000 | 0.7065 | 0.3940 | | 0.1618 | 7.03 | 3500 | 0.4333 | 0.3855 | | 0.1483 | 8.03 | 4000 | 0.4232 | 0.3872 | | 0.156 | 9.04 | 4500 | 0.4172 | 0.3749 | | 0.1138 | 10.04 | 5000 | 0.4084 | 0.3758 | | 0.1045 | 11.04 | 5500 | 0.4665 | 0.3623 | | 0.0908 | 12.05 | 6000 | 0.4416 | 0.3684 | | 0.0788 | 13.05 | 6500 | 0.4801 | 0.3659 | | 0.0773 | 14.06 | 7000 | 0.4560 | 0.3583 | | 0.0684 | 15.06 | 7500 | 0.4878 | 0.3610 | | 0.0645 | 16.06 | 8000 | 0.4635 | 0.3567 | | 0.0577 | 17.07 | 8500 | 0.5245 | 0.3548 | | 0.0547 | 18.07 | 9000 | 0.5265 | 0.3639 | | 0.0466 | 19.08 | 9500 | 0.5161 | 0.3546 | | 0.0432 | 20.08 | 10000 | 0.5263 | 0.3558 | | 0.0414 | 21.08 | 10500 | 0.4874 | 0.3500 | | 0.0365 | 22.09 | 11000 | 0.5266 | 0.3472 | | 0.0321 | 23.09 | 11500 | 0.5422 | 0.3458 | | 0.0325 | 24.1 | 12000 | 0.5201 | 0.3428 | | 0.0262 | 25.1 | 12500 | 0.5208 | 0.3398 | | 0.0249 | 26.1 | 13000 | 0.5034 | 0.3429 | | 0.0262 | 27.11 | 13500 | 0.5055 | 0.3396 | | 0.0248 | 28.11 | 14000 | 0.5164 | 0.3404 | | 0.0222 | 29.12 | 14500 | 0.5206 | 0.3388 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
ra-XOr/Unity-Pyramids
ra-XOr
2022-06-27T02:36:12Z
33
1
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-27T02:16:39Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: ra-XOr/Unity-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
RUCAIBox/mvp-story
RUCAIBox
2022-06-27T02:28:15Z
9
3
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:55:25Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MVP-story The MVP-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-story is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled story generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['I think it would be a good idea to have uniform dress codes for all public schools. It would make it easier for students to dress appropriately.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-question-generation
RUCAIBox
2022-06-27T02:28:10Z
7
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:54:39Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Example1" - text: "Generate the question based on the answer: Arthur 's Magazine [X_SEP] Arthur 's Magazine ( 1844–1846 ) was an American literary periodical published in Philadelphia in the 19th century . First for Women is a woman 's magazine published by Bauer Media Group in the USA ." example_title: "Example2" --- # MVP-question-generation The MVP-question-generation model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-question-generation is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled question generation datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-question-generation is specially designed for question generation tasks, such as SQuAD and CoQA. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-question-generation") >>> inputs = tokenizer( ... "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing .", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['A bolo punch and a hook are both punches used in what sport?'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp-data-to-text
RUCAIBox
2022-06-27T02:27:50Z
38
4
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T11:53:26Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Example1" - text: "Describe the following data: First Clearing | LOCATION | On NYS 52 1 Mi. Youngsville [SEP] On NYS 52 1 Mi. Youngsville | CITY_OR_TOWN | Callicoon, New York" example_title: "Example2" --- # MVP-data-to-text The MVP-data-to-text model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP-data-to-text is a prompt-based model that MVP is further equipped with prompts pre-trained using labeled data-to-text datasets. It is a variant (MVP+S) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a Transformer encoder-decoder architecture with layer-wise prompts. MVP-data-to-text is specially designed for data-to-text generation tasks, such as KG-to-text generation (WebNLG, DART), table-to-text generation (WikiBio, ToTTo) and MR-to-text generation (E2E). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp-data-to-text") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Iron Man is a fictional superhero appearing in American comic books published by Marvel Comics.'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mvp
RUCAIBox
2022-06-27T02:27:44Z
4,763
7
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-29T08:21:56Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization - conversational pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Summarization" - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Dialog" - text: "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man" example_title: "Data-to-text" - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Story Generation" - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Question Answering" - text: "Generate the question based on the answer: boxing [X_SEP] A bolo punch is a punch used in martial arts . A hook is a punch in boxing ." example_title: "Question Generaion" --- # MVP The MVP model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MVP is supervised pre-trained using a mixture of labeled datasets. It follows a standard Transformer encoder-decoder architecture. MVP is specially designed for natural language generation and can be adapted to a wide range of generation tasks, including but not limited to summarization, data-to-text generation, open-ended dialogue system, story generation, question answering, question generation, task-oriented dialogue system, commonsense generation, paraphrase generation, text style transfer, and text simplification. Our model can also be adapted to natural language understanding tasks such as sequence classification and (extractive) question answering. ## Examples For summarization: ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Why You Shouldn't Quit Your Job"] ``` For data-to-text generation: ```python >>> from transformers import MvpTokenizerFast, MvpForConditionalGeneration >>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp") >>> inputs = tokenizer( ... "Describe the following data: Iron Man | instance of | Superhero [SEP] Stan Lee | creator | Iron Man", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Stan Lee created the character of Iron Man, a fictional superhero appearing in American comic'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-summarization
RUCAIBox
2022-06-27T02:27:34Z
2
0
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "summarization", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:01:19Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - summarization pipeline_tag: text2text-generation widget: - text: "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons." example_title: "Example1" - text: "Summarize: Jorge Alfaro drove in two runs, Aaron Nola pitched seven innings of two-hit ball and the Philadelphia Phillies beat the Los Angeles Dodgers 2-1 Thursday, spoiling Clayton Kershaw's first start in almost a month. Hitting out of the No. 8 spot in the ..." example_title: "Example2" --- # MTL-summarization The MTL-summarization model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-summarization is supervised pre-trained using a mixture of labeled summarization datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-summarization is specially designed for summarization tasks, such as new summarization (CNN/DailyMail, XSum) and dialog summarization (SAMSum). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-summarization") >>> inputs = tokenizer( ... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["Don't do it if these are your reasons"] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-story
RUCAIBox
2022-06-27T02:27:29Z
1
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:10Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Given the story title: I think all public schools should have a uniform dress code." example_title: "Example1" - text: "Given the story title: My girlfriend and I decided to move to a new state. We packed everything in our cars and drove there." example_title: "Example2" --- # MTL-story The MTL-story model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-story is supervised pre-trained using a mixture of labeled story generation datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-story is specially designed for story generation tasks, such as ROCStories and WritingPrompts. ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-story") >>> inputs = tokenizer( ... "Given the story title: I think all public schools should have a uniform dress code.", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs, max_length=1024) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ["I don't know about you, but I don't think it would be a good idea to have a uniform dress code in public schools. I think it's a waste of time and money. If you're going to have uniform dress codes, you need to make sure that the uniforms are appropriate for the school and that the students are comfortable in them. If they're not comfortable, then they shouldn't be allowed to wear them."] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-question-answering
RUCAIBox
2022-06-27T02:27:20Z
29
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:00:27Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation pipeline_tag: text2text-generation widget: - text: "Answer the following question: From which country did Angola achieve independence in 1975?" example_title: "Example1" - text: "Answer the following question: what is ce certified [X_SEP] The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EC directives. Officially, CE is an abbreviation of Conformite Conformité, europeenne Européenne Meaning. european conformity" example_title: "Example2" --- # MTL-question-answering The MTL-question-answering model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-question-answering is supervised pre-trained using a mixture of labeled question answering datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-question-answering is specially designed for question answering tasks, such as reading comprehension (SQuAD), conversational question answering (CoQA) and closed-book question-answering (Natural Questions). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-question-answering") >>> inputs = tokenizer( ... "Answer the following question: From which country did Angola achieve independence in 1975?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Portugal'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
RUCAIBox/mtl-open-dialog
RUCAIBox
2022-06-27T02:27:15Z
3
1
transformers
[ "transformers", "pytorch", "mvp", "text-generation", "text2text-generation", "conversational", "en", "arxiv:2206.12131", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-02T12:02:35Z
--- license: apache-2.0 language: - en tags: - text-generation - text2text-generation - conversational pipeline_tag: text2text-generation widget: - text: "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?" example_title: "Example1" - text: "Given the dialog: i used to scare for darkness [X_SEP] it feels like hitting to blank wall when i see the darkness [SEP] Oh ya? I don't really see how [SEP] dont you feel so.. its a wonder [SEP] I do actually hit blank walls a lot of times but i get by" example_title: "Example2" --- # MTL-open-dialog The MTL-open-dialog model was proposed in [**MVP: Multi-task Supervised Pre-training for Natural Language Generation**](https://arxiv.org/abs/2206.12131) by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen. The detailed information and instructions can be found [https://github.com/RUCAIBox/MVP](https://github.com/RUCAIBox/MVP). ## Model Description MTL-open-dialog is supervised pre-trained using a mixture of labeled open dialogue system datasets. It is a variant (Single) of our main [MVP](https://huggingface.co/RUCAIBox/mvp) model. It follows a standard Transformer encoder-decoder architecture. MTL-open-dialog is specially designed for open dialogue system (conversation) tasks, such as chitchat (PersonaChat, DailyDialog), knowledge grounded conversation (Topical-Chat, Wizard of Wikipedia) and visual dialog (DSTC7-AVSD). ## Example ```python >>> from transformers import MvpTokenizer, MvpForConditionalGeneration >>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp") >>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mtl-open-dialog") >>> inputs = tokenizer( ... "Given the dialog: do you like dance? [SEP] Yes I do. Did you know Bruce Lee was a cha cha dancer?", ... return_tensors="pt", ... ) >>> generated_ids = model.generate(**inputs) >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True) ['Yes he won the Hong Kong Cha Cha championship in 1958'] ``` ## Related Models **MVP**: [https://huggingface.co/RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp). **Prompt-based models**: - MVP-multi-task: [https://huggingface.co/RUCAIBox/mvp-multi-task](https://huggingface.co/RUCAIBox/mvp-multi-task). - MVP-summarization: [https://huggingface.co/RUCAIBox/mvp-summarization](https://huggingface.co/RUCAIBox/mvp-summarization). - MVP-open-dialog: [https://huggingface.co/RUCAIBox/mvp-open-dialog](https://huggingface.co/RUCAIBox/mvp-open-dialog). - MVP-data-to-text: [https://huggingface.co/RUCAIBox/mvp-data-to-text](https://huggingface.co/RUCAIBox/mvp-data-to-text). - MVP-story: [https://huggingface.co/RUCAIBox/mvp-story](https://huggingface.co/RUCAIBox/mvp-story). - MVP-question-answering: [https://huggingface.co/RUCAIBox/mvp-question-answering](https://huggingface.co/RUCAIBox/mvp-question-answering). - MVP-question-generation: [https://huggingface.co/RUCAIBox/mvp-question-generation](https://huggingface.co/RUCAIBox/mvp-question-generation). - MVP-task-dialog: [https://huggingface.co/RUCAIBox/mvp-task-dialog](https://huggingface.co/RUCAIBox/mvp-task-dialog). **Multi-task models**: - MTL-summarization: [https://huggingface.co/RUCAIBox/mtl-summarization](https://huggingface.co/RUCAIBox/mtl-summarization). - MTL-open-dialog: [https://huggingface.co/RUCAIBox/mtl-open-dialog](https://huggingface.co/RUCAIBox/mtl-open-dialog). - MTL-data-to-text: [https://huggingface.co/RUCAIBox/mtl-data-to-text](https://huggingface.co/RUCAIBox/mtl-data-to-text). - MTL-story: [https://huggingface.co/RUCAIBox/mtl-story](https://huggingface.co/RUCAIBox/mtl-story). - MTL-question-answering: [https://huggingface.co/RUCAIBox/mtl-question-answering](https://huggingface.co/RUCAIBox/mtl-question-answering). - MTL-question-generation: [https://huggingface.co/RUCAIBox/mtl-question-generation](https://huggingface.co/RUCAIBox/mtl-question-generation). - MTL-task-dialog: [https://huggingface.co/RUCAIBox/mtl-task-dialog](https://huggingface.co/RUCAIBox/mtl-task-dialog). ## Citation ```bibtex @article{tang2022mvp, title={MVP: Multi-task Supervised Pre-training for Natural Language Generation}, author={Tang, Tianyi and Li, Junyi and Zhao, Wayne Xin and Wen, Ji-Rong}, journal={arXiv preprint arXiv:2206.12131}, year={2022}, url={https://arxiv.org/abs/2206.12131}, } ```
luomingshuang/icefall_asr_tal-csasr_pruned_transducer_stateless5
luomingshuang
2022-06-27T01:54:36Z
0
3
null
[ "tensorboard", "region:us" ]
null
2022-06-23T04:14:43Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/428 # Pre-trained Transducer-Stateless5 models for the TAL_CSASR dataset with icefall. The model was trained on the far data of [TAL_CSASR](https://ai.100tal.com/dataset) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tal_csasr/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5" ./pruned_transducer_stateless5/train.py \ --world-size 6 \ --num-epochs 30 \ --start-epoch 1 \ --exp-dir pruned_transducer_stateless5/exp \ --lang-dir data/lang_char \ --max-duration 90 ``` ## Evaluation results The decoding results (CER%) on TAL_CSASR(dev and test) are listed below: |decoding-method | epoch(iter) | avg | dev | test | |--|--|--|--|--| |greedy_search | 30 | 24 | 7.49 | 7.58| |modified_beam_search | 30 | 24 | 7.33 | 7.38| |fast_beam_search | 30 | 24 | 7.32 | 7.42| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 7.39| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 7.22| |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 7.27| |greedy_search | 348000 | 30 | 7.46 | 7.54| |modified_beam_search | 348000 | 30 | 7.24 | 7.36| |fast_beam_search | 348000 | 30 | 7.25 | 7.39 | The results (CER(%) and WER(%)) for Chinese CER and English WER respectivly (zh: Chinese, en: English): |decoding-method | epoch(iter) | avg | dev | dev_zh | dev_en | test | test_zh | test_en | |--|--|--|--|--|--|--|--|--| |greedy_search(use-averaged-model=True) | 30 | 24 | 7.30 | 6.48 | 19.19 |7.39| 6.66 | 19.13| |modified_beam_search(use-averaged-model=True) | 30 | 24 | 7.15 | 6.35 | 18.95 | 7.22| 6.50 | 18.70 | |fast_beam_search(use-averaged-model=True) | 30 | 24 | 7.18 | 6.39| 18.90 | 7.27| 6.55 | 18.77|
tjscollins/atari-dqn
tjscollins
2022-06-27T01:45:40Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T01:44:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 565.50 +/- 141.39 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga tjscollins -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga tjscollins ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Corianas/ppo-QbertNoFrameskip-v4_4
Corianas
2022-06-27T01:07:03Z
3
0
stable-baselines3
[ "stable-baselines3", "QbertNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-27T01:05:46Z
--- library_name: stable-baselines3 tags: - QbertNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 19340.00 +/- 862.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: QbertNoFrameskip-v4 type: QbertNoFrameskip-v4 --- # **PPO** Agent playing **QbertNoFrameskip-v4** This is a trained model of a **PPO** agent playing **QbertNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env QbertNoFrameskip-v4 -orga Corianas -f logs/ python enjoy.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env QbertNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env QbertNoFrameskip-v4 -f logs/ -orga Corianas ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
sudo-s/exper_batch_32_e8
sudo-s
2022-06-26T23:45:06Z
52
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T22:48:05Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_32_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_32_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3520 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.3787 | 0.31 | 100 | 3.3100 | 0.3566 | | 2.3975 | 0.62 | 200 | 2.3196 | 0.5717 | | 1.5578 | 0.94 | 300 | 1.6764 | 0.6461 | | 1.0291 | 1.25 | 400 | 1.1713 | 0.7463 | | 0.8185 | 1.56 | 500 | 0.9292 | 0.7953 | | 0.6181 | 1.88 | 600 | 0.7732 | 0.8169 | | 0.3873 | 2.19 | 700 | 0.6877 | 0.8277 | | 0.2979 | 2.5 | 800 | 0.6250 | 0.8404 | | 0.2967 | 2.81 | 900 | 0.6151 | 0.8365 | | 0.1874 | 3.12 | 1000 | 0.5401 | 0.8608 | | 0.2232 | 3.44 | 1100 | 0.5032 | 0.8712 | | 0.1109 | 3.75 | 1200 | 0.4635 | 0.8774 | | 0.0539 | 4.06 | 1300 | 0.4495 | 0.8843 | | 0.0668 | 4.38 | 1400 | 0.4273 | 0.8951 | | 0.0567 | 4.69 | 1500 | 0.4427 | 0.8867 | | 0.0285 | 5.0 | 1600 | 0.4092 | 0.8955 | | 0.0473 | 5.31 | 1700 | 0.3720 | 0.9071 | | 0.0225 | 5.62 | 1800 | 0.3691 | 0.9063 | | 0.0196 | 5.94 | 1900 | 0.3775 | 0.9048 | | 0.0173 | 6.25 | 2000 | 0.3641 | 0.9040 | | 0.0092 | 6.56 | 2100 | 0.3551 | 0.9090 | | 0.008 | 6.88 | 2200 | 0.3591 | 0.9125 | | 0.0072 | 7.19 | 2300 | 0.3542 | 0.9121 | | 0.007 | 7.5 | 2400 | 0.3532 | 0.9106 | | 0.007 | 7.81 | 2500 | 0.3520 | 0.9113 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
kaisuke/finetuning-sentiment-model-3000-samples
kaisuke
2022-06-26T21:39:32Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-26T21:27:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8695652173913044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Accuracy: 0.87 - F1: 0.8696 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KayKozaronek/xlm-roberta-base-finetuned-panx-de
KayKozaronek
2022-06-26T20:13:36Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-23T10:13:29Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 - task: type: token-classification name: Token Classification dataset: name: xtreme type: xtreme config: PAN-X.de split: test metrics: - name: Accuracy type: accuracy value: 0.899981559318585 verified: true - name: Precision type: precision value: 0.9009035072102546 verified: true - name: Recall type: recall value: 0.9206610317249744 verified: true - name: F1 type: f1 value: 0.9106751198809252 verified: true - name: loss type: loss value: 0.3754884600639343 verified: true --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sinhprous/dqn-SpaceInvadersNoFrameskip-v4
sinhprous
2022-06-26T19:51:15Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-22T18:19:11Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 925.00 +/- 356.35 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga sinhprous -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga sinhprous ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sanjay-m1/grammar-corrector-v2
sanjay-m1
2022-06-26T19:10:37Z
5
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T19:00:10Z
**This model is part of the Gramformer library** please refer to https://github.com/PrithivirajDamodaran/Gramformer/
sudo-s/exper_batch_8_e8
sudo-s
2022-06-26T18:24:00Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T15:35:19Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_8_e8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_8_e8 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.4608 - Accuracy: 0.9052 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 4.2202 | 0.08 | 100 | 4.1245 | 0.1237 | | 3.467 | 0.16 | 200 | 3.5622 | 0.2143 | | 3.3469 | 0.23 | 300 | 3.1688 | 0.2675 | | 2.8086 | 0.31 | 400 | 2.8965 | 0.3034 | | 2.6291 | 0.39 | 500 | 2.5858 | 0.4025 | | 2.2382 | 0.47 | 600 | 2.2908 | 0.4133 | | 1.9259 | 0.55 | 700 | 2.2007 | 0.4676 | | 1.8088 | 0.63 | 800 | 2.0419 | 0.4742 | | 1.9462 | 0.7 | 900 | 1.6793 | 0.5578 | | 1.5392 | 0.78 | 1000 | 1.5460 | 0.6079 | | 1.561 | 0.86 | 1100 | 1.5793 | 0.5690 | | 1.2135 | 0.94 | 1200 | 1.4663 | 0.5929 | | 1.0725 | 1.02 | 1300 | 1.2974 | 0.6534 | | 0.8696 | 1.1 | 1400 | 1.2406 | 0.6569 | | 0.8758 | 1.17 | 1500 | 1.2127 | 0.6623 | | 1.1737 | 1.25 | 1600 | 1.2243 | 0.6550 | | 0.8242 | 1.33 | 1700 | 1.1371 | 0.6735 | | 1.0141 | 1.41 | 1800 | 1.0536 | 0.7024 | | 0.9855 | 1.49 | 1900 | 0.9885 | 0.7205 | | 0.805 | 1.57 | 2000 | 0.9048 | 0.7479 | | 0.7207 | 1.64 | 2100 | 0.8842 | 0.7490 | | 0.7101 | 1.72 | 2200 | 0.8954 | 0.7436 | | 0.5946 | 1.8 | 2300 | 0.9174 | 0.7386 | | 0.6937 | 1.88 | 2400 | 0.7818 | 0.7760 | | 0.5593 | 1.96 | 2500 | 0.7449 | 0.7934 | | 0.4139 | 2.04 | 2600 | 0.7787 | 0.7830 | | 0.2929 | 2.11 | 2700 | 0.7122 | 0.7945 | | 0.4159 | 2.19 | 2800 | 0.7446 | 0.7907 | | 0.4079 | 2.27 | 2900 | 0.7354 | 0.7938 | | 0.516 | 2.35 | 3000 | 0.7499 | 0.8007 | | 0.2728 | 2.43 | 3100 | 0.6851 | 0.8061 | | 0.4159 | 2.51 | 3200 | 0.7258 | 0.7999 | | 0.3396 | 2.58 | 3300 | 0.7455 | 0.7972 | | 0.1918 | 2.66 | 3400 | 0.6793 | 0.8119 | | 0.1228 | 2.74 | 3500 | 0.6696 | 0.8134 | | 0.2671 | 2.82 | 3600 | 0.6306 | 0.8285 | | 0.4986 | 2.9 | 3700 | 0.6111 | 0.8296 | | 0.3699 | 2.98 | 3800 | 0.5600 | 0.8508 | | 0.0444 | 3.05 | 3900 | 0.6021 | 0.8331 | | 0.1489 | 3.13 | 4000 | 0.5599 | 0.8516 | | 0.15 | 3.21 | 4100 | 0.6377 | 0.8365 | | 0.2535 | 3.29 | 4200 | 0.5752 | 0.8543 | | 0.2679 | 3.37 | 4300 | 0.5677 | 0.8608 | | 0.0989 | 3.45 | 4400 | 0.6325 | 0.8396 | | 0.0825 | 3.52 | 4500 | 0.5979 | 0.8524 | | 0.0427 | 3.6 | 4600 | 0.5903 | 0.8516 | | 0.1806 | 3.68 | 4700 | 0.5323 | 0.8628 | | 0.2672 | 3.76 | 4800 | 0.5688 | 0.8604 | | 0.2674 | 3.84 | 4900 | 0.5369 | 0.8635 | | 0.2185 | 3.92 | 5000 | 0.4743 | 0.8820 | | 0.2195 | 3.99 | 5100 | 0.5340 | 0.8709 | | 0.0049 | 4.07 | 5200 | 0.5883 | 0.8608 | | 0.0204 | 4.15 | 5300 | 0.6102 | 0.8539 | | 0.0652 | 4.23 | 5400 | 0.5659 | 0.8670 | | 0.028 | 4.31 | 5500 | 0.4916 | 0.8840 | | 0.0423 | 4.39 | 5600 | 0.5706 | 0.8736 | | 0.0087 | 4.46 | 5700 | 0.5653 | 0.8697 | | 0.0964 | 4.54 | 5800 | 0.5423 | 0.8755 | | 0.0841 | 4.62 | 5900 | 0.5160 | 0.8743 | | 0.0945 | 4.7 | 6000 | 0.5532 | 0.8697 | | 0.0311 | 4.78 | 6100 | 0.4947 | 0.8867 | | 0.0423 | 4.86 | 6200 | 0.5063 | 0.8843 | | 0.1348 | 4.93 | 6300 | 0.5619 | 0.8743 | | 0.049 | 5.01 | 6400 | 0.5800 | 0.8732 | | 0.0053 | 5.09 | 6500 | 0.5499 | 0.8770 | | 0.0234 | 5.17 | 6600 | 0.5102 | 0.8874 | | 0.0192 | 5.25 | 6700 | 0.5447 | 0.8836 | | 0.0029 | 5.32 | 6800 | 0.4787 | 0.8936 | | 0.0249 | 5.4 | 6900 | 0.5232 | 0.8870 | | 0.0671 | 5.48 | 7000 | 0.4766 | 0.8975 | | 0.0056 | 5.56 | 7100 | 0.5136 | 0.8894 | | 0.003 | 5.64 | 7200 | 0.5085 | 0.8882 | | 0.0015 | 5.72 | 7300 | 0.4832 | 0.8971 | | 0.0014 | 5.79 | 7400 | 0.4648 | 0.8998 | | 0.0065 | 5.87 | 7500 | 0.4739 | 0.8978 | | 0.0011 | 5.95 | 7600 | 0.5349 | 0.8867 | | 0.0021 | 6.03 | 7700 | 0.5460 | 0.8847 | | 0.0012 | 6.11 | 7800 | 0.5309 | 0.8890 | | 0.0011 | 6.19 | 7900 | 0.4852 | 0.8998 | | 0.0093 | 6.26 | 8000 | 0.4751 | 0.8998 | | 0.003 | 6.34 | 8100 | 0.4934 | 0.8963 | | 0.0027 | 6.42 | 8200 | 0.4882 | 0.9029 | | 0.0009 | 6.5 | 8300 | 0.4806 | 0.9021 | | 0.0009 | 6.58 | 8400 | 0.4974 | 0.9029 | | 0.0009 | 6.66 | 8500 | 0.4748 | 0.9075 | | 0.0008 | 6.73 | 8600 | 0.4723 | 0.9094 | | 0.001 | 6.81 | 8700 | 0.4692 | 0.9098 | | 0.0007 | 6.89 | 8800 | 0.4726 | 0.9075 | | 0.0011 | 6.97 | 8900 | 0.4686 | 0.9067 | | 0.0006 | 7.05 | 9000 | 0.4653 | 0.9056 | | 0.0006 | 7.13 | 9100 | 0.4755 | 0.9029 | | 0.0007 | 7.2 | 9200 | 0.4633 | 0.9036 | | 0.0067 | 7.28 | 9300 | 0.4611 | 0.9036 | | 0.0007 | 7.36 | 9400 | 0.4608 | 0.9052 | | 0.0007 | 7.44 | 9500 | 0.4623 | 0.9044 | | 0.0005 | 7.52 | 9600 | 0.4621 | 0.9056 | | 0.0005 | 7.6 | 9700 | 0.4615 | 0.9056 | | 0.0005 | 7.67 | 9800 | 0.4612 | 0.9059 | | 0.0005 | 7.75 | 9900 | 0.4626 | 0.9075 | | 0.0004 | 7.83 | 10000 | 0.4626 | 0.9075 | | 0.0005 | 7.91 | 10100 | 0.4626 | 0.9075 | | 0.0006 | 7.99 | 10200 | 0.4626 | 0.9079 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
ryanblak/PPO-CarRacing-v0
ryanblak
2022-06-26T18:23:33Z
4
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T18:21:51Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 38.16 +/- 93.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
p123/autotrain-my-sum-1040935781
p123
2022-06-26T18:02:45Z
5
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "zh", "dataset:p123/autotrain-data-my-sum", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-26T15:19:08Z
--- tags: autotrain language: zh widget: - text: "I love AutoTrain 🤗" datasets: - p123/autotrain-data-my-sum co2_eq_emissions: 326.52733725745725 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1040935781 - CO2 Emissions (in grams): 326.52733725745725 ## Validation Metrics - Loss: 1.9157543182373047 - Rouge1: 0.4843 - Rouge2: 0.0 - RougeL: 0.4843 - RougeLsum: 0.4843 - Gen Len: 10.9718 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/p123/autotrain-my-sum-1040935781 ```
prahlad/rotten_model
prahlad
2022-06-26T16:52:37Z
3
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T23:46:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: prahlad/rotten_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # prahlad/rotten_model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on rotten_tomatoes movie review dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4876 - Train Accuracy: 0.7620 - Validation Loss: 0.5001 - Validation Accuracy: 0.7842 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 12795, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4876 | 0.7620 | 0.5001 | 0.7842 | 0 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
ivanlau/ppo-mlppolicy-LunarLander-v2
ivanlau
2022-06-26T16:39:24Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T16:38:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 0.39 +/- 42.53 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sudo-s/exper_batch_8_e4
sudo-s
2022-06-26T15:33:41Z
53
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-26T14:18:20Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: exper_batch_8_e4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # exper_batch_8_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3353 - Accuracy: 0.9183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Apex, opt level O1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2251 | 0.08 | 100 | 4.1508 | 0.1203 | | 3.4942 | 0.16 | 200 | 3.5566 | 0.2082 | | 3.2871 | 0.23 | 300 | 3.0942 | 0.3092 | | 2.7273 | 0.31 | 400 | 2.8338 | 0.3308 | | 2.4984 | 0.39 | 500 | 2.4860 | 0.4341 | | 2.3423 | 0.47 | 600 | 2.2201 | 0.4796 | | 1.8785 | 0.55 | 700 | 2.1890 | 0.4653 | | 1.8012 | 0.63 | 800 | 1.9901 | 0.4865 | | 1.7236 | 0.7 | 900 | 1.6821 | 0.5736 | | 1.4949 | 0.78 | 1000 | 1.5422 | 0.6083 | | 1.5573 | 0.86 | 1100 | 1.5436 | 0.6110 | | 1.3241 | 0.94 | 1200 | 1.4077 | 0.6207 | | 1.0773 | 1.02 | 1300 | 1.1417 | 0.6916 | | 0.7935 | 1.1 | 1400 | 1.1194 | 0.6931 | | 0.7677 | 1.17 | 1500 | 1.0727 | 0.7167 | | 0.9468 | 1.25 | 1600 | 1.0707 | 0.7136 | | 0.7563 | 1.33 | 1700 | 0.9427 | 0.7390 | | 0.8471 | 1.41 | 1800 | 0.8906 | 0.7571 | | 0.9998 | 1.49 | 1900 | 0.8098 | 0.7845 | | 0.6039 | 1.57 | 2000 | 0.7244 | 0.8034 | | 0.7052 | 1.64 | 2100 | 0.7881 | 0.7953 | | 0.6753 | 1.72 | 2200 | 0.7458 | 0.7926 | | 0.3758 | 1.8 | 2300 | 0.6987 | 0.8022 | | 0.4985 | 1.88 | 2400 | 0.6286 | 0.8265 | | 0.4122 | 1.96 | 2500 | 0.5949 | 0.8358 | | 0.1286 | 2.04 | 2600 | 0.5691 | 0.8385 | | 0.1989 | 2.11 | 2700 | 0.5535 | 0.8389 | | 0.3304 | 2.19 | 2800 | 0.5261 | 0.8520 | | 0.3415 | 2.27 | 2900 | 0.5504 | 0.8477 | | 0.4066 | 2.35 | 3000 | 0.5418 | 0.8497 | | 0.1208 | 2.43 | 3100 | 0.5156 | 0.8612 | | 0.1668 | 2.51 | 3200 | 0.5655 | 0.8539 | | 0.0727 | 2.58 | 3300 | 0.4971 | 0.8658 | | 0.0929 | 2.66 | 3400 | 0.4962 | 0.8635 | | 0.0678 | 2.74 | 3500 | 0.4903 | 0.8670 | | 0.1212 | 2.82 | 3600 | 0.4357 | 0.8867 | | 0.1579 | 2.9 | 3700 | 0.4642 | 0.8739 | | 0.2625 | 2.98 | 3800 | 0.3994 | 0.8951 | | 0.024 | 3.05 | 3900 | 0.3953 | 0.8971 | | 0.0696 | 3.13 | 4000 | 0.3883 | 0.9056 | | 0.0169 | 3.21 | 4100 | 0.3755 | 0.9086 | | 0.023 | 3.29 | 4200 | 0.3685 | 0.9109 | | 0.0337 | 3.37 | 4300 | 0.3623 | 0.9109 | | 0.0123 | 3.45 | 4400 | 0.3647 | 0.9067 | | 0.0159 | 3.52 | 4500 | 0.3630 | 0.9082 | | 0.0154 | 3.6 | 4600 | 0.3522 | 0.9094 | | 0.0112 | 3.68 | 4700 | 0.3439 | 0.9163 | | 0.0219 | 3.76 | 4800 | 0.3404 | 0.9194 | | 0.0183 | 3.84 | 4900 | 0.3371 | 0.9183 | | 0.0103 | 3.92 | 5000 | 0.3362 | 0.9183 | | 0.0357 | 3.99 | 5100 | 0.3353 | 0.9183 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.5.1 - Datasets 2.3.2 - Tokenizers 0.12.1
l3cube-pune/marathi-albert-v2
l3cube-pune
2022-06-26T15:13:43Z
7
1
transformers
[ "transformers", "pytorch", "albert", "fill-mask", "mr", "dataset:L3Cube-MahaCorpus", "arxiv:2202.01159", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-04T17:42:49Z
--- license: cc-by-4.0 language: mr datasets: - L3Cube-MahaCorpus --- ## MahaAlBERT MahaAlBERT is a Marathi AlBERT model trained on L3Cube-MahaCorpus and other publicly available Marathi monolingual datasets. [dataset link] (https://github.com/l3cube-pune/MarathiNLP) More details on the dataset, models, and baseline results can be found in our [paper] (https://arxiv.org/abs/2202.01159) ``` @InProceedings{joshi:2022:WILDRE6, author = {Joshi, Raviraj}, title = {L3Cube-MahaCorpus and MahaBERT: Marathi Monolingual Corpus, Marathi BERT Language Models, and Resources}, booktitle = {Proceedings of The WILDRE-6 Workshop within the 13th Language Resources and Evaluation Conference}, month = {June}, year = {2022}, address = {Marseille, France}, publisher = {European Language Resources Association}, pages = {97--101} } ```
allegro/herbert-large-cased
allegro
2022-06-26T14:18:54Z
1,073
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "feature-extraction", "herbert", "pl", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: pl tags: - herbert license: cc-by-4.0 --- # HerBERT **[HerBERT](https://en.wikipedia.org/wiki/Zbigniew_Herbert)** is a BERT-based Language Model trained on Polish corpora using Masked Language Modelling (MLM) and Sentence Structural Objective (SSO) with dynamic masking of whole words. For more details, please refer to: [HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish](https://www.aclweb.org/anthology/2021.bsnlp-1.1/). Model training and experiments were conducted with [transformers](https://github.com/huggingface/transformers) in version 2.9. ## Corpus HerBERT was trained on six different corpora available for Polish language: | Corpus | Tokens | Documents | | :------ | ------: | ------: | | [CCNet Middle](https://github.com/facebookresearch/cc_net) | 3243M | 7.9M | | [CCNet Head](https://github.com/facebookresearch/cc_net) | 2641M | 7.0M | | [National Corpus of Polish](http://nkjp.pl/index.php?page=14&lang=1)| 1357M | 3.9M | | [Open Subtitles](http://opus.nlpl.eu/OpenSubtitles-v2018.php) | 1056M | 1.1M | [Wikipedia](https://dumps.wikimedia.org/) | 260M | 1.4M | | [Wolne Lektury](https://wolnelektury.pl/) | 41M | 5.5k | ## Tokenizer The training dataset was tokenized into subwords using a character level byte-pair encoding (``CharBPETokenizer``) with a vocabulary size of 50k tokens. The tokenizer itself was trained with a [tokenizers](https://github.com/huggingface/tokenizers) library. We kindly encourage you to use the ``Fast`` version of the tokenizer, namely ``HerbertTokenizerFast``. ## Usage Example code: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("allegro/herbert-large-cased") model = AutoModel.from_pretrained("allegro/herbert-large-cased") output = model( **tokenizer.batch_encode_plus( [ ( "A potem szedł środkiem drogi w kurzawie, bo zamiatał nogami, ślepy dziad prowadzony przez tłustego kundla na sznurku.", "A potem leciał od lasu chłopak z butelką, ale ten ujrzawszy księdza przy drodze okrążył go z dala i biegł na przełaj pól do karczmy." ) ], padding='longest', add_special_tokens=True, return_tensors='pt' ) ) ``` ## License CC BY 4.0 ## Citation If you use this model, please cite the following paper: ``` @inproceedings{mroczkowski-etal-2021-herbert, title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish", author = "Mroczkowski, Robert and Rybak, Piotr and Wr{\'o}blewska, Alina and Gawlik, Ireneusz", booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing", month = apr, year = "2021", address = "Kiyv, Ukraine", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1", pages = "1--10", } ``` ## Authors The model was trained by [**Machine Learning Research Team at Allegro**](https://ml.allegro.tech/) and [**Linguistic Engineering Group at Institute of Computer Science, Polish Academy of Sciences**](http://zil.ipipan.waw.pl/). You can contact us at: <a href="mailto:klejbenchmark@allegro.pl">klejbenchmark@allegro.pl</a>
Nikkisora/q-FrozenLake-v1-4x4-noSlippery
Nikkisora
2022-06-26T13:58:56Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T13:58:48Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Nikkisora/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
sumedh/pretrained-word-embeddings
sumedh
2022-06-26T13:43:27Z
0
1
keras
[ "keras", "tensorboard", "tf-keras", "multiclass-classification", "newsgroup", "en", "dataset:newsgroup", "region:us" ]
null
2022-06-26T03:04:29Z
--- library_name: keras language: en datasets: newsgroup tags: - multiclass-classification - newsgroup --- ## Model description Text classification on the Newsgroup20 dataset using pre-trained [GloVe](https://nlp.stanford.edu/projects/glove/) word embeddings. This repo contains the model [to this Keras example using pre-trained word embeddings](https://keras.io/examples/nlp/pretrained_word_embeddings/). Full credits to : [fchollet](https://twitter.com/fchollet) Model reproduced by : [Sumedh](https://huggingface.co/sumedh) ## Training and evaluation data Newsgroup20 dataset, a set of 20,000 message board messages belonging to 20 different topic categories ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | rho | momentum | epsilon | centered | training_precision | |----|-------------|-----|---|--------|-------|--------|------------------| |RMSprop|0.0010000000474974513|0.0|0.8999999761581421|0.0|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
FreelancerFel/dqn-SpaceInvadersNoFrameskip-v4
FreelancerFel
2022-06-26T11:39:32Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T11:38:55Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 692.50 +/- 193.97 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FreelancerFel -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FreelancerFel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
FreelancerFel/dqn_SpaceInvader
FreelancerFel
2022-06-26T11:35:59Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T11:35:21Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 692.50 +/- 193.97 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga FreelancerFel -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga FreelancerFel ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
shafin/distilbert-similarity-b32-3
shafin
2022-06-26T11:24:03Z
4
1
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-06-26T11:23:53Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # shafin/distilbert-similarity-b32-3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 3 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('shafin/distilbert-similarity-b32-3') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=shafin/distilbert-similarity-b32-3) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 56250 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 5000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 256, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Dense({'in_features': 256, 'out_features': 32, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (4): Dense({'in_features': 32, 'out_features': 3, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
onlplab/alephbert-base
onlplab
2022-06-26T09:32:47Z
65,559
17
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "language model", "he", "dataset:oscar", "dataset:wikipedia", "dataset:twitter", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - he tags: - language model license: apache-2.0 datasets: - oscar - wikipedia - twitter --- # AlephBERT ## Hebrew Language Model State-of-the-art language model for Hebrew. Based on Google's BERT architecture [(Devlin et al. 2018)](https://arxiv.org/abs/1810.04805). #### How to use ```python from transformers import BertModel, BertTokenizerFast alephbert_tokenizer = BertTokenizerFast.from_pretrained('onlplab/alephbert-base') alephbert = BertModel.from_pretrained('onlplab/alephbert-base') # if not finetuning - disable dropout alephbert.eval() ``` ## Training data 1. OSCAR [(Ortiz, 2019)](https://oscar-corpus.com/) Hebrew section (10 GB text, 20 million sentences). 2. Hebrew dump of [Wikipedia](https://dumps.wikimedia.org/hewiki/latest/) (650 MB text, 3 million sentences). 3. Hebrew Tweets collected from the Twitter sample stream (7 GB text, 70 million sentences). ## Training procedure Trained on a DGX machine (8 V100 GPUs) using the standard huggingface training procedure. Since the larger part of our training data is based on tweets we decided to start by optimizing using Masked Language Model loss only. To optimize training time we split the data into 4 sections based on max number of tokens: 1. num tokens < 32 (70M sentences) 2. 32 <= num tokens < 64 (12M sentences) 3. 64 <= num tokens < 128 (10M sentences) 4. 128 <= num tokens < 512 (1.5M sentences) Each section was first trained for 5 epochs with an initial learning rate set to 1e-4. Then each section was trained for another 5 epochs with an initial learning rate set to 1e-5, for a total of 10 epochs. Total training time was 8 days.
romainlhardy/roberta-large-finetuned-ner
romainlhardy
2022-06-26T09:20:58Z
122
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-26T08:07:48Z
--- license: mit tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-large-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9476811355009077 - name: Recall type: recall value: 0.9663412992258499 - name: F1 type: f1 value: 0.9569202566452795 - name: Accuracy type: accuracy value: 0.990656929827253 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-finetuned-ner This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0495 - Precision: 0.9477 - Recall: 0.9663 - F1: 0.9569 - Accuracy: 0.9907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.078 | 1.0 | 1756 | 0.0577 | 0.9246 | 0.9536 | 0.9389 | 0.9865 | | 0.0382 | 2.0 | 3512 | 0.0528 | 0.9414 | 0.9620 | 0.9516 | 0.9890 | | 0.021 | 3.0 | 5268 | 0.0495 | 0.9477 | 0.9663 | 0.9569 | 0.9907 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
TextCortex/product_description_generator
TextCortex
2022-06-26T09:20:16Z
26
1
transformers
[ "transformers", "gpt_neo", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-26T08:55:26Z
--- license: mit --- ## TextCortex AI - Product Description Generator - Electronics Model This is one of our legacy models that was used for generating product descriptions for Electronic products. Because of the inference times, we trained this model on a very small version of the GPT-NEO with 125M parameters. Due to its small size, we had to train a model for each product category for our users.\ We will be releasing other trained models on other categories soon. ### How to Prompt: Just give your product name and add 'Product Description:' at the end of it to generate product descriptions.\ Here is an example prompt:\ `Product name: USB Dongle for video capture Product Description:` ### TextCortex API If you want to generate product descriptions programatically, you can check out our API, hemingwAI at this link: https://textcortex.com/documentation/api
vebie91/dqn-SpaceInvadersNoFrameskip-v4-v1.1
vebie91
2022-06-26T08:48:25Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-26T08:47:44Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 650.00 +/- 154.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga vebie91 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga vebie91 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 2000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
kidzy/distilbert-base-uncased-finetuned-emotion
kidzy
2022-06-26T08:19:59Z
7
1
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-23T13:17:25Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246037761691881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2240 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8521 | 1.0 | 250 | 0.3285 | 0.904 | 0.9017 | | 0.2546 | 2.0 | 500 | 0.2240 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ashhyun/distilbert-base-uncased-finetuned-squad
ashhyun
2022-06-26T06:25:36Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-26T05:20:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1563 - eval_runtime: 141.535 - eval_samples_per_second: 76.193 - eval_steps_per_second: 4.762 - epoch: 1.0 - step: 5533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
hyan97/distilbert-base-uncased-finetuned-squad
hyan97
2022-06-26T05:55:35Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-26T03:31:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2094 | 1.0 | 8235 | 1.2174 | | 0.9515 | 2.0 | 16470 | 1.1923 | | 0.7687 | 3.0 | 24705 | 1.3517 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
romainlhardy/bert-finetuned-ner
romainlhardy
2022-06-26T04:50:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-26T00:21:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9292895994725564 - name: Recall type: recall value: 0.9488387748232918 - name: F1 type: f1 value: 0.9389624448330418 - name: Accuracy type: accuracy value: 0.9863572143403779 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0602 - Precision: 0.9293 - Recall: 0.9488 - F1: 0.9390 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0827 | 1.0 | 1756 | 0.0639 | 0.9167 | 0.9359 | 0.9262 | 0.9828 | | 0.0413 | 2.0 | 3512 | 0.0565 | 0.9262 | 0.9465 | 0.9362 | 0.9859 | | 0.0188 | 3.0 | 5268 | 0.0602 | 0.9293 | 0.9488 | 0.9390 | 0.9864 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
danielcfho/MLAgents-Pyramids
danielcfho
2022-06-26T02:13:30Z
15
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-26T02:11:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: danielcfho/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
anas-awadalla/opt-125m-squad
anas-awadalla
2022-06-25T23:56:38Z
65
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-19T23:01:14Z
A facebook/opt-125m model trained on SQUAD for extractive question answering. To use the model format input in the following manner: "(Context Text)\nQuestion:(Question Text)\nAnswer:"
robertodtg/wav2vec2-large-xls-r-300m-pt-colab
robertodtg
2022-06-25T21:25:10Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_9_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-24T11:52:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_9_0 model-index: - name: wav2vec2-large-xls-r-300m-pt-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-pt-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_9_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2975 - Wer: 0.1736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 5.179 | 0.49 | 400 | 1.4554 | 0.9349 | | 0.7545 | 0.98 | 800 | 0.5594 | 0.5174 | | 0.4485 | 1.47 | 1200 | 0.3964 | 0.3749 | | 0.4118 | 1.96 | 1600 | 0.3547 | 0.3172 | | 0.3282 | 2.45 | 2000 | 0.3372 | 0.3061 | | 0.3199 | 2.94 | 2400 | 0.3466 | 0.2910 | | 0.2847 | 3.44 | 2800 | 0.3651 | 0.3310 | | 0.2713 | 3.93 | 3200 | 0.3509 | 0.3016 | | 0.2414 | 4.42 | 3600 | 0.3451 | 0.2908 | | 0.2473 | 4.91 | 4000 | 0.3253 | 0.2747 | | 0.2168 | 5.4 | 4400 | 0.3243 | 0.2680 | | 0.219 | 5.89 | 4800 | 0.3067 | 0.2540 | | 0.196 | 6.38 | 5200 | 0.3268 | 0.2824 | | 0.1934 | 6.87 | 5600 | 0.3252 | 0.2736 | | 0.1808 | 7.36 | 6000 | 0.3422 | 0.2737 | | 0.177 | 7.85 | 6400 | 0.3292 | 0.2707 | | 0.1626 | 8.34 | 6800 | 0.3089 | 0.2524 | | 0.1605 | 8.83 | 7200 | 0.3062 | 0.2471 | | 0.1505 | 9.32 | 7600 | 0.3229 | 0.2474 | | 0.1491 | 9.82 | 8000 | 0.3098 | 0.2491 | | 0.1433 | 10.31 | 8400 | 0.3449 | 0.2681 | | 0.1431 | 10.8 | 8800 | 0.3439 | 0.2532 | | 0.1349 | 11.29 | 9200 | 0.3112 | 0.2413 | | 0.1236 | 11.78 | 9600 | 0.3248 | 0.2378 | | 0.1253 | 12.27 | 10000 | 0.3393 | 0.2394 | | 0.1195 | 12.76 | 10400 | 0.3050 | 0.2336 | | 0.1194 | 13.25 | 10800 | 0.3494 | 0.2550 | | 0.1125 | 13.74 | 11200 | 0.3332 | 0.2395 | | 0.1063 | 14.23 | 11600 | 0.3134 | 0.2365 | | 0.1044 | 14.72 | 12000 | 0.3101 | 0.2303 | | 0.0999 | 15.21 | 12400 | 0.3162 | 0.2248 | | 0.0986 | 15.71 | 12800 | 0.3183 | 0.2260 | | 0.0958 | 16.2 | 13200 | 0.3300 | 0.2279 | | 0.0907 | 16.69 | 13600 | 0.3136 | 0.2260 | | 0.0875 | 17.18 | 14000 | 0.3492 | 0.2203 | | 0.0823 | 17.67 | 14400 | 0.3214 | 0.2259 | | 0.0839 | 18.16 | 14800 | 0.3194 | 0.2145 | | 0.0783 | 18.65 | 15200 | 0.3122 | 0.2180 | | 0.0789 | 19.14 | 15600 | 0.3158 | 0.2127 | | 0.0732 | 19.63 | 16000 | 0.3076 | 0.2109 | | 0.0715 | 20.12 | 16400 | 0.3216 | 0.2150 | | 0.0649 | 20.61 | 16800 | 0.2958 | 0.2051 | | 0.0647 | 21.1 | 17200 | 0.3022 | 0.2014 | | 0.0649 | 21.59 | 17600 | 0.3045 | 0.2033 | | 0.0621 | 22.09 | 18000 | 0.3194 | 0.2035 | | 0.0561 | 22.58 | 18400 | 0.3197 | 0.2022 | | 0.0582 | 23.07 | 18800 | 0.3109 | 0.1978 | | 0.0533 | 23.56 | 19200 | 0.3121 | 0.1932 | | 0.0515 | 24.05 | 19600 | 0.3125 | 0.1939 | | 0.0484 | 24.54 | 20000 | 0.3081 | 0.1908 | | 0.0485 | 25.03 | 20400 | 0.3042 | 0.1896 | | 0.0444 | 25.52 | 20800 | 0.3038 | 0.1886 | | 0.0426 | 26.01 | 21200 | 0.2985 | 0.1868 | | 0.0415 | 26.5 | 21600 | 0.3066 | 0.1858 | | 0.0398 | 26.99 | 22000 | 0.3117 | 0.1828 | | 0.0397 | 27.48 | 22400 | 0.2980 | 0.1795 | | 0.0394 | 27.97 | 22800 | 0.2950 | 0.1791 | | 0.0364 | 28.47 | 23200 | 0.3025 | 0.1773 | | 0.0365 | 28.96 | 23600 | 0.3022 | 0.1747 | | 0.0376 | 29.45 | 24000 | 0.2978 | 0.1738 | | 0.0344 | 29.94 | 24400 | 0.2975 | 0.1736 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
cambridgeltl/simctg_writingprompts
cambridgeltl
2022-06-25T19:21:26Z
7
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:1805.04833", "arxiv:2202.06417", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-06T20:07:36Z
This model provides a GPT-2 language model trained with SimCTG on the WritingPrompts benchmark [(Fan et al., 2018)](https://arxiv.org/abs/1805.04833) based on our paper [_A Contrastive Framework for Neural Text Generation_](https://arxiv.org/abs/2202.06417). We provide a detailed tutorial on how to apply SimCTG and Contrastive Search in our [project repo](https://github.com/yxuansu/SimCTG#4-huggingface-style-tutorials-back-to-top). In the following, we illustrate a brief tutorial on how to use our approach to perform text generation. ## 1. Installation of SimCTG: ```yaml pip install simctg --upgrade ``` ## 2. Initialize SimCTG Model: ```python import torch # load SimCTG language model from simctg.simctggpt import SimCTGGPT model_name = r'cambridgeltl/simctg_writingprompts' model = SimCTGGPT(model_name) model.eval() tokenizer = model.tokenizer ``` ## 3. Prepare the Text Prefix: ```python prefix_text = r"[ WP ] A kid doodling in a math class accidentally creates the world 's first functional magic circle in centuries . <|endoftext|>" print ('Prefix is: {}'.format(prefix_text)) tokens = tokenizer.tokenize(prefix_text) input_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = torch.LongTensor(input_ids).view(1,-1) ``` ## 4. Generate Text with Contrastive Search: ```python beam_width, alpha, decoding_len = 5, 0.6, 200 output = model.fast_contrastive_search(input_ids=input_ids, beam_width=beam_width, alpha=alpha, decoding_len=decoding_len) print("Output:\n" + 100 * '-') print(tokenizer.decode(output)) ''' Prefix is: [ WP ] A kid doodling in a math class accidentally creates the world 's first functional magic circle in centuries . <|endoftext|> Output: ---------------------------------------------------------------------------------------------------- [ WP ] A kid doodling in a math class accidentally creates the world's first functional magic circle in centuries. <|endoftext|> I looked at the circle, it wasn't there. I couldn't see it, and my eyes were watering from the rain that had fallen over the school, the wind howling through the windows and making a wispy noise as it passed through the air. `` What is it? '' I asked, trying to find the source of the noise. `` It's a circle, '' the teacher said in a voice that sounded like it was from an old TV show or something like that. `` You can't make it out of there. '' I looked around the room, there was no one there. It was as if I was in a dream, but no one seemed to notice me. Then I saw a flash of light, and the circle appeared in front of me. I turned around to see what was going on, I had never seen anything like it before in my life. I ran up to the teacher and asked, `` Are you sure this is real? ''' ``` For more details of our work, please refer to our main [project repo](https://github.com/yxuansu/SimCTG). ## 5. Citation: If you find our paper and resources useful, please kindly leave a star and cite our paper. Thanks! ```bibtex @article{su2022contrastive, title={A Contrastive Framework for Neural Text Generation}, author={Su, Yixuan and Lan, Tian and Wang, Yan and Yogatama, Dani and Kong, Lingpeng and Collier, Nigel}, journal={arXiv preprint arXiv:2202.06417}, year={2022} } ```
SusBioRes-UBC/dqn-SpaceInvadersNoFrameskip-v4
SusBioRes-UBC
2022-06-25T19:10:42Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T19:10:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 241.50 +/- 137.02 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SusBioRes-UBC -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SusBioRes-UBC ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sumedh/lstm-seq2seq
sumedh
2022-06-25T17:06:30Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "seq2seq", "translation", "en", "fr", "license:apache-2.0", "region:us" ]
translation
2022-06-21T20:21:20Z
--- library_name: keras license: apache-2.0 tags: - seq2seq - translation language: - en - fr --- ## Keras Implementation of Character-level recurrent sequence-to-sequence model This repo contains the model and the notebook [to this Keras example on Character-level recurrent sequence-to-sequence model](https://keras.io/examples/nlp/lstm_seq2seq/). Full credits to : [fchollet](https://twitter.com/fchollet) Model reproduced by : [Sumedh](https://huggingface.co/sumedh) ## Intended uses & limitations This model implements a basic character-level recurrent sequence-to-sequence network for translating short English sentences into short French sentences, character-by-character. Note that it is fairly unusual to do character-level machine translation, as word-level models are more common in this domain. It works best on text of length <= 15 characters. ## Training and evaluation data English to French translation data from https://www.manythings.org/anki/ ## Training procedure - We start with input sequences from a domain (e.g. English sentences) and corresponding target sequences from another domain (e.g. French sentences). - An encoder LSTM turns input sequences to 2 state vectors (we keep the last LSTM state and discard the outputs). - A decoder LSTM is trained to turn the target sequences into the same sequence but offset by one timestep in the future, a training process called "teacher forcing" in this context. It uses as initial state the state vectors from the encoder. Effectively, the decoder learns to generate targets[t+1...] given targets[...t], conditioned on the input sequence. - In inference mode, when we want to decode unknown input sequences, we: - Encode the input sequence into state vectors - Start with a target sequence of size 1 (just the start-of-sequence character) - Feed the state vectors and 1-char target sequence to the decoder to produce predictions for the next character - Sample the next character using these predictions (we simply use argmax). - Append the sampled character to the target sequence - Repeat until we generate the end-of-sequence character or we hit the character limit. ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | rho | momentum | epsilon | centered | training_precision | |----|-------------|-----|---|--------|-------|--------|------------------| |RMSprop|0.0010000000474974513|0.0|0.8999999761581421|0.0|1e-07|False|float32| ```python batch_size = 64 # Batch size for training. epochs = 100 # Number of epochs to train for. latent_dim = 256 # Latent dimensionality of the encoding space. num_samples = 10000 # Number of samples to train on. ``` ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
patrickvonplaten/opt_metaseq_6700m
patrickvonplaten
2022-06-25T15:56:09Z
8
0
transformers
[ "transformers", "opt", "feature-extraction", "opt_metasq", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-10T17:32:24Z
--- tags: - opt_metasq --- # This repo let's you run the following checkpoint using facebookresearch/metaseq. Do the following: ## 1. Install PyTorch ``` pip3 install torch==1.10.1+cu113 torchvision==0.11.2+cu113 torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html ``` ## 2. Install Megatron ``` git clone https://github.com/patrickvonplaten/Megatron-LM.git cd Megatron-LM pip3 install six regex pip3 install -e . ``` ## 3. Install fairscale ``` git clone https://github.com/facebookresearch/fairscale.git cd fairscale git checkout prefetch_fsdp_params_simple pip3 install -e . ``` ## 4. Install metaseq ``` git clone https://github.com/patrickvonplaten/metaseq.git cd metaseq pip3 install -e . ``` ## 5. Clone this repo (click top right on "How to clone") ## 6. Run the following: ```bash cd <path/to/cloned/repo> bash run.sh ```
domenicrosati/deberta-v3-large-finetuned-DAGPap22
domenicrosati
2022-06-25T15:42:46Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-25T02:26:36Z
--- license: mit tags: - text-classification - generated_from_trainer model-index: - name: deberta-v3-large-finetuned-DAGPap22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-DAGPap22 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 20 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
bousejin/xlm-roberta-base-finetuned-panx-de-fr
bousejin
2022-06-25T15:06:04Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-25T05:23:24Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - F1: 0.8579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2878 | 1.0 | 715 | 0.1840 | 0.8247 | | 0.1456 | 2.0 | 1430 | 0.1596 | 0.8473 | | 0.0925 | 3.0 | 2145 | 0.1631 | 0.8579 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
NikitaErmolaev/dqn-SpaceInvadersNoFrameskip-v4
NikitaErmolaev
2022-06-25T12:19:51Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-25T12:19:14Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 598.00 +/- 147.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NikitaErmolaev -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NikitaErmolaev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
KoboldAI/fairseq-dense-2.7B-Nerys
KoboldAI
2022-06-25T11:23:23Z
153
10
transformers
[ "transformers", "pytorch", "xglm", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T13:40:07Z
--- language: en license: mit --- # Fairseq-dense 2.7B - Nerys ## Model Description Fairseq-dense 2.7B-Nerys is a finetune created using Fairseq's MoE dense model. ## Training data The training data contains around 2500 ebooks in various genres (the "Pike" dataset), a CYOA dataset called "CYS" and 50 Asian "Light Novels" (the "Manga-v1" dataset). Most parts of the dataset have been prepended using the following text: `[Genre: <genre1>, <genre2>]` ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='KoboldAI/fairseq-dense-2.7B-Nerys') >>> generator("Welcome Captain Janeway, I apologize for the delay.", do_sample=True, min_length=50) [{'generated_text': 'Welcome Captain Janeway, I apologize for the delay."\nIt's all right," Janeway said. "I'm certain that you're doing your best to keep me informed of what\'s going on."'}] ``` ### Limitations and Biases Based on known problems with NLP technology, potential relevant factors include bias (gender, profession, race and religion). ### BibTeX entry and citation info ``` Artetxe et al. (2021): Efficient Large Scale Language Modeling with Mixtures of Experts ```
ubermenchh/ppo-LunarLander-v2
ubermenchh
2022-06-25T09:38:19Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-21T19:29:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 117.65 +/- 104.03 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
QuickSilver007/MLAgents-Pyramids
QuickSilver007
2022-06-25T09:30:46Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-06-25T09:30:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: QuickSilver007/MLAgents-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
gdario/distilbert-base-uncased-finetuned-emotion
gdario
2022-06-25T09:24:49Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-06T08:25:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.8955 - name: F1 type: f1 value: 0.8918003951340884 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3662 - Accuracy: 0.8955 - F1: 0.8918 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 125 | 0.5675 | 0.8265 | 0.8067 | | 0.7565 | 2.0 | 250 | 0.3662 | 0.8955 | 0.8918 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3