modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 18:26:50
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 18:26:48
card
stringlengths
11
1.01M
masakhane/byt5_en_yor_news
masakhane
2022-09-24T15:06:09Z
108
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:13:58Z
--- language: - en - yor license: afl-3.0 ---
masakhane/mt5_yor_en_news
masakhane
2022-09-24T15:06:08Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:14:35Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_en_yor_news
masakhane
2022-09-24T15:06:05Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:19:30Z
--- language: - en - yor license: afl-3.0 ---
masakhane/m2m100_418M_en_yor_rel_news_ft
masakhane
2022-09-24T15:06:03Z
102
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:20:48Z
--- language: - en - yor license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel_news_ft
masakhane
2022-09-24T15:06:03Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:21:05Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel_ft
masakhane
2022-09-24T15:06:02Z
104
1
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:21:44Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_yor_en_rel
masakhane
2022-09-24T15:06:02Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "yor", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:22:03Z
--- language: - yor - en license: afl-3.0 ---
masakhane/m2m100_418M_en_yor_rel
masakhane
2022-09-24T15:06:01Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "yor", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T12:22:17Z
--- language: - en - yor license: afl-3.0 ---
masakhane/afrimt5_en_swa_news
masakhane
2022-09-24T15:06:01Z
104
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T09:01:16Z
--- language: - en - swa license: afl-3.0 ---
masakhane/afrimbart_swa_en_news
masakhane
2022-09-24T15:06:00Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:09:23Z
--- language: - swa - en license: afl-3.0 ---
masakhane/afribyt5_en_swa_news
masakhane
2022-09-24T15:05:59Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:18Z
--- language: - en - swa license: afl-3.0 ---
masakhane/afribyt5_swa_en_news
masakhane
2022-09-24T15:05:58Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:03Z
--- language: - swa - en license: afl-3.0 ---
masakhane/byt5_swa_en_news
masakhane
2022-09-24T15:05:58Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:57Z
--- language: - swa - en license: afl-3.0 ---
masakhane/byt5_en_swa_news
masakhane
2022-09-24T15:05:57Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:10:38Z
--- language: - en - swa license: afl-3.0 ---
masakhane/mt5_swa_en_news
masakhane
2022-09-24T15:05:56Z
116
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:11:18Z
--- language: - swa - en license: afl-3.0 ---
masakhane/mbart50_swa_en_news
masakhane
2022-09-24T15:05:55Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:16Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_news
masakhane
2022-09-24T15:05:55Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:36Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_news
masakhane
2022-09-24T15:05:54Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:13:30Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_news
masakhane
2022-09-24T15:05:53Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:12:54Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_news_ft
masakhane
2022-09-24T15:05:53Z
109
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:13:52Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel_ft
masakhane
2022-09-24T15:05:52Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:29Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel_news_ft
masakhane
2022-09-24T15:05:51Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:14:10Z
--- language: - swa - en license: afl-3.0 ---
masakhane/m2m100_418M_en_swa_rel
masakhane
2022-09-24T15:05:50Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "swa", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:15:23Z
--- language: - en - swa license: afl-3.0 ---
masakhane/m2m100_418M_swa_en_rel
masakhane
2022-09-24T15:05:50Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "swa", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T10:15:07Z
--- language: - swa - en license: afl-3.0 ---
masakhane/afrimt5_tsn_en_news
masakhane
2022-09-24T15:05:49Z
105
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:49:06Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/mt5_en_tsn_news
masakhane
2022-09-24T15:05:45Z
98
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:59:24Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/mt5_tsn_en_news
masakhane
2022-09-24T15:05:44Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T13:59:09Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/mbart50_tsn_en_news
masakhane
2022-09-24T15:05:44Z
114
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:02:58Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_news
masakhane
2022-09-24T15:05:43Z
106
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:20:25Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_rel_news
masakhane
2022-09-24T15:05:42Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:23:28Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_rel_news_ft
masakhane
2022-09-24T15:05:41Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:33:32Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_rel_news_ft
masakhane
2022-09-24T15:05:41Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:33:05Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_en_tsn_rel_ft
masakhane
2022-09-24T15:05:40Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "tsn", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:32:08Z
--- language: - en - tsn license: afl-3.0 ---
masakhane/m2m100_418M_tsn_en_rel
masakhane
2022-09-24T15:05:39Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "tsn", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-10T14:38:31Z
--- language: - tsn - en license: afl-3.0 ---
masakhane/afrimt5_en_twi_news
masakhane
2022-09-24T15:05:38Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:50:40Z
--- language: - en - twi license: afl-3.0 ---
masakhane/afrimt5_twi_en_news
masakhane
2022-09-24T15:05:37Z
113
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:50:58Z
--- language: - twi - en license: afl-3.0 ---
masakhane/byt5_en_twi_news
masakhane
2022-09-24T15:05:35Z
109
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:29Z
--- language: - en - twi license: afl-3.0 ---
masakhane/byt5_twi_en_news
masakhane
2022-09-24T15:05:34Z
110
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:12Z
--- language: - twi - en license: afl-3.0 ---
masakhane/mt5_twi_en_news
masakhane
2022-09-24T15:05:33Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:05:43Z
--- language: - twi - en license: afl-3.0 ---
masakhane/mt5_en_twi_news
masakhane
2022-09-24T15:05:32Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:00Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_news
masakhane
2022-09-24T15:05:30Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:10:15Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_en_twi_rel_news_ft
masakhane
2022-09-24T15:05:29Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "twi", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:12:51Z
--- language: - en - twi license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel_ft
masakhane
2022-09-24T15:05:27Z
103
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:15:02Z
--- language: - twi - en license: afl-3.0 ---
masakhane/m2m100_418M_twi_en_rel
masakhane
2022-09-24T15:05:26Z
107
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "twi", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:17:38Z
--- language: - twi - en license: afl-3.0 ---
masakhane/afrimt5_en_zul_news
masakhane
2022-09-24T15:05:24Z
84
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:52:03Z
--- language: - en - zul license: afl-3.0 ---
masakhane/afribyt5_en_zul_news
masakhane
2022-09-24T15:05:21Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:57:13Z
--- language: - en - zul license: afl-3.0 ---
masakhane/afribyt5_zul_en_news
masakhane
2022-09-24T15:05:21Z
106
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T08:57:29Z
--- language: - zul - en license: afl-3.0 ---
masakhane/byt5_en_zul_news
masakhane
2022-09-24T15:05:20Z
105
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:02:52Z
--- language: - en - zul license: afl-3.0 ---
masakhane/mbart50_zul_en_news
masakhane
2022-09-24T15:05:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:09Z
--- language: - zul - en license: afl-3.0 ---
masakhane/mbart50_en_zul_news
masakhane
2022-09-24T15:05:18Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:04:24Z
--- language: - en - zul license: afl-3.0 ---
masakhane/mt5_en_zul_news
masakhane
2022-09-24T15:05:17Z
108
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:06:39Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_news
masakhane
2022-09-24T15:05:16Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:07:50Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news
masakhane
2022-09-24T15:05:16Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:23Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel_news
masakhane
2022-09-24T15:05:15Z
112
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:09:44Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_news_ft
masakhane
2022-09-24T15:05:14Z
108
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:13:58Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel_ft
masakhane
2022-09-24T15:05:14Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:15:18Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel_ft
masakhane
2022-09-24T15:05:13Z
104
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:15:36Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_zul_en_rel
masakhane
2022-09-24T15:05:12Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "zul", "en", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:18:45Z
--- language: - zul - en license: afl-3.0 ---
masakhane/m2m100_418M_en_zul_rel
masakhane
2022-09-24T15:05:12Z
105
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "zul", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-11T09:18:27Z
--- language: - en - zul license: afl-3.0 ---
masakhane/m2m100_418M_en_amh_rel
masakhane
2022-09-24T15:05:10Z
112
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "amh", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:14Z
--- language: - en - amh license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_amh_en_rel
masakhane
2022-09-24T15:05:10Z
118
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "amh", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:05:47Z
--- language: - amh - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_kin_en_rel
masakhane
2022-09-24T15:05:09Z
111
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "kin", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:06:42Z
--- language: - kin - en license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_kin_rel
masakhane
2022-09-24T15:05:09Z
113
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "kin", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:07:12Z
--- language: - en - kin license: cc-by-nc-4.0 ---
masakhane/m2m100_418M_en_sna_rel
masakhane
2022-09-24T15:05:07Z
110
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "en", "sna", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:08:45Z
--- language: - en - sna license: cc-by-nc-4.0 ---
CShorten/CORD-19-Title-Abstracts
CShorten
2022-09-24T14:43:13Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-11T19:30:32Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity dataset_tag: cord19 --- # CShorten/CORD-19-Title-Abstracts This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('CShorten/CORD-19-Title-Abstracts') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=CShorten/CORD-19-Title-Abstracts) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 5001 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rosamondthalken/t5-small-sci-names
rosamondthalken
2022-09-24T14:39:00Z
166
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-16T17:44:50Z
# t5-base-sci-names Biodiversity literature is dedicated to the identification, documentation, and categorization of plants, fungi, animals, and other living organisms. Correctly extracting the name of an organism within these documents involves finding the entire scientific name–including the genus, specific epithet, and author name. Extracting these names allows biologists to access documents about a species more comprehensively, and to track an organism’s history of documentation, which includes biological changes and changes in how scientists describe them. **t5-small-sci-names** uses advances in text-to-text generation to generate scientific names and authors from biodiversity literature. This model was trained on hand-labeled biodiversity texts, including labeled information about a mentioned organism's genus (abbreviated and expanded), specific epithet, and author. This model was trained to output 0-N scientific names with specific prefixes (e.g. "genus = " or "epithet = ") and performs best with anywhere from 20-120 words. You can also use the model in this tutorial for [scientific names generation](https://colab.research.google.com/drive/1GEpnCaMJYiPIhuZiDJ1X1pZsGtGSm8Ds?usp=sharing). *Note that this model is still a work in progress. Any feedback is welcome.*
pere/pk-nb-t5x
pere
2022-09-24T14:38:59Z
0
2
null
[ "region:us" ]
null
2022-04-01T06:33:23Z
Just a placeholder for a future model
sd-concepts-library/repeat
sd-concepts-library
2022-09-24T14:17:05Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-24T14:16:59Z
--- license: mit --- ### REPEAT on Stable Diffusion This is the `<repeat>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<repeat> 0](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/3.jpeg) ![<repeat> 1](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/1.jpeg) ![<repeat> 2](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/0.jpeg) ![<repeat> 3](https://huggingface.co/sd-concepts-library/repeat/resolve/main/concept_images/2.jpeg)
gokuls/BERT-tiny-emotion-intent
gokuls
2022-09-24T14:11:28Z
268
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T14:01:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: BERT-tiny-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.91 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-tiny-emotion-intent This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3620 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | | 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | | 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | | 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | | 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | | 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | | 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | | 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | | 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | | 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | | 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | | 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | | 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | | 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | | 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/osaka-jyo
sd-concepts-library
2022-09-24T13:47:07Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-24T13:47:03Z
--- license: mit --- ### osaka jyo on Stable Diffusion This is the `<osaka-jyo>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<osaka-jyo> 0](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/3.jpeg) ![<osaka-jyo> 1](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/1.jpeg) ![<osaka-jyo> 2](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/0.jpeg) ![<osaka-jyo> 3](https://huggingface.co/sd-concepts-library/osaka-jyo/resolve/main/concept_images/2.jpeg)
gokuls/distilroberta-emotion-intent
gokuls
2022-09-24T13:36:17Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T13:26:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: distilroberta-emotion-intent results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9435 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-emotion-intent This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1496 - Accuracy: 0.9435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4501 | 1.0 | 1000 | 0.2432 | 0.924 | | 0.1947 | 2.0 | 2000 | 0.1646 | 0.934 | | 0.1497 | 3.0 | 3000 | 0.1382 | 0.9405 | | 0.1316 | 4.0 | 4000 | 0.1496 | 0.9435 | | 0.1145 | 5.0 | 5000 | 0.1684 | 0.9385 | | 0.1 | 6.0 | 6000 | 0.2342 | 0.943 | | 0.0828 | 7.0 | 7000 | 0.2807 | 0.939 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
din0s/t5-small-finetuned-en-to-it
din0s
2022-09-24T13:08:27Z
104
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:ccmatrix", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-24T12:08:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - ccmatrix metrics: - bleu model-index: - name: t5-small-finetuned-en-to-it results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: ccmatrix type: ccmatrix config: en-it split: train[3000:15000] args: en-it metrics: - name: Bleu type: bleu value: 7.3298 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-it This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the ccmatrix dataset. It achieves the following results on the evaluation set: - Loss: 2.2698 - Bleu: 7.3298 - Gen Len: 62.3753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 125 | 3.0010 | 2.7294 | 56.4513 | | No log | 2.0 | 250 | 2.8999 | 2.3228 | 81.4993 | | No log | 3.0 | 375 | 2.8281 | 2.3065 | 92.3353 | | 3.3202 | 4.0 | 500 | 2.7722 | 2.5982 | 91.8093 | | 3.3202 | 5.0 | 625 | 2.7254 | 2.9279 | 89.0907 | | 3.3202 | 6.0 | 750 | 2.6839 | 3.0747 | 89.2827 | | 3.3202 | 7.0 | 875 | 2.6470 | 3.207 | 87.948 | | 3.0355 | 8.0 | 1000 | 2.6132 | 3.355 | 85.2487 | | 3.0355 | 9.0 | 1125 | 2.5835 | 3.8401 | 80.578 | | 3.0355 | 10.0 | 1250 | 2.5552 | 4.2905 | 75.818 | | 3.0355 | 11.0 | 1375 | 2.5323 | 4.3866 | 75.2433 | | 2.8903 | 12.0 | 1500 | 2.5079 | 4.5687 | 74.906 | | 2.8903 | 13.0 | 1625 | 2.4881 | 4.7844 | 71.5773 | | 2.8903 | 14.0 | 1750 | 2.4668 | 4.876 | 71.68 | | 2.8903 | 15.0 | 1875 | 2.4485 | 5.1292 | 70.118 | | 2.7891 | 16.0 | 2000 | 2.4322 | 5.3297 | 68.894 | | 2.7891 | 17.0 | 2125 | 2.4161 | 5.555 | 68.2293 | | 2.7891 | 18.0 | 2250 | 2.4010 | 5.7113 | 67.2907 | | 2.7891 | 19.0 | 2375 | 2.3892 | 5.9105 | 66.6287 | | 2.713 | 20.0 | 2500 | 2.3756 | 6.0057 | 66.112 | | 2.713 | 21.0 | 2625 | 2.3643 | 6.3118 | 64.6193 | | 2.713 | 22.0 | 2750 | 2.3533 | 6.476 | 64.31 | | 2.713 | 23.0 | 2875 | 2.3432 | 6.7102 | 63.5467 | | 2.6584 | 24.0 | 3000 | 2.3342 | 6.7604 | 63.6567 | | 2.6584 | 25.0 | 3125 | 2.3253 | 6.8418 | 63.6573 | | 2.6584 | 26.0 | 3250 | 2.3180 | 6.9165 | 63.5893 | | 2.6584 | 27.0 | 3375 | 2.3120 | 7.0217 | 63.1033 | | 2.616 | 28.0 | 3500 | 2.3056 | 6.9148 | 63.598 | | 2.616 | 29.0 | 3625 | 2.2987 | 6.9961 | 63.6267 | | 2.616 | 30.0 | 3750 | 2.2935 | 7.2238 | 62.8373 | | 2.616 | 31.0 | 3875 | 2.2892 | 7.1906 | 62.7793 | | 2.587 | 32.0 | 4000 | 2.2849 | 7.2052 | 63.126 | | 2.587 | 33.0 | 4125 | 2.2815 | 7.3272 | 62.526 | | 2.587 | 34.0 | 4250 | 2.2782 | 7.3603 | 62.4313 | | 2.587 | 35.0 | 4375 | 2.2756 | 7.3072 | 62.6307 | | 2.5673 | 36.0 | 4500 | 2.2737 | 7.3586 | 62.1633 | | 2.5673 | 37.0 | 4625 | 2.2718 | 7.3485 | 62.358 | | 2.5673 | 38.0 | 4750 | 2.2707 | 7.3406 | 62.298 | | 2.5673 | 39.0 | 4875 | 2.2700 | 7.3233 | 62.42 | | 2.5591 | 40.0 | 5000 | 2.2698 | 7.3298 | 62.3753 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1 - Datasets 2.5.1 - Tokenizers 0.11.0
RebekkaB/san_2409_1325
RebekkaB
2022-09-24T12:13:11Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-24T11:50:57Z
--- tags: - generated_from_trainer metrics: - f1 model-index: - name: san_2409_1325 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # san_2409_1325 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0992 - F1: 0.7727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.91 | 5 | 1.9727 | 0.1939 | | No log | 1.91 | 10 | 1.5642 | 0.3535 | | No log | 2.91 | 15 | 1.2698 | 0.6818 | | No log | 3.91 | 20 | 1.3642 | 0.6429 | | No log | 4.91 | 25 | 1.3411 | 0.6818 | | No log | 5.91 | 30 | 1.2627 | 0.6818 | | No log | 6.91 | 35 | 1.1269 | 0.7727 | | No log | 7.91 | 40 | 1.0719 | 0.7727 | | No log | 8.91 | 45 | 1.0567 | 0.7727 | | No log | 9.91 | 50 | 1.1256 | 0.7727 | | No log | 10.91 | 55 | 0.7085 | 0.7727 | | No log | 11.91 | 60 | 0.9290 | 0.7727 | | No log | 12.91 | 65 | 1.0355 | 0.7727 | | No log | 13.91 | 70 | 1.0866 | 0.7727 | | No log | 14.91 | 75 | 1.0992 | 0.7727 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/dr-strange
sd-concepts-library
2022-09-24T12:11:20Z
0
28
null
[ "license:mit", "region:us" ]
null
2022-09-24T12:11:16Z
--- license: mit --- ### <dr-strange> on Stable Diffusion This is the `<dr-strange>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dr-strange> 0](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/3.jpeg) ![<dr-strange> 1](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/1.jpeg) ![<dr-strange> 2](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/0.jpeg) ![<dr-strange> 3](https://huggingface.co/sd-concepts-library/dr-strange/resolve/main/concept_images/2.jpeg)
ckiplab/gpt2-tiny-chinese
ckiplab
2022-09-24T11:53:54Z
133
5
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "lm-head", "zh", "license:gpl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T11:49:21Z
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - lm-head - gpt2 - zh license: gpl-3.0 --- # CKIP GPT2 Tiny Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/gpt2-tiny-chinese') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
sd-concepts-library/conway-pirate
sd-concepts-library
2022-09-24T10:44:50Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-24T10:44:44Z
--- license: mit --- ### Conway Pirate on Stable Diffusion This is the `<conway>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<conway> 0](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/3.jpeg) ![<conway> 1](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/1.jpeg) ![<conway> 2](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/4.jpeg) ![<conway> 3](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/0.jpeg) ![<conway> 4](https://huggingface.co/sd-concepts-library/conway-pirate/resolve/main/concept_images/2.jpeg)
sd-concepts-library/yesdelete
sd-concepts-library
2022-09-24T09:46:05Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-24T09:46:01Z
--- license: mit --- ### yesdelete on Stable Diffusion This is the `<yesdelete>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<yesdelete> 0](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/3.jpeg) ![<yesdelete> 1](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/1.jpeg) ![<yesdelete> 2](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/0.jpeg) ![<yesdelete> 3](https://huggingface.co/sd-concepts-library/yesdelete/resolve/main/concept_images/2.jpeg)
sd-concepts-library/coop-himmelblau
sd-concepts-library
2022-09-24T09:06:36Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-24T09:06:32Z
--- license: mit --- ### coop himmelblau on Stable Diffusion This is the `<coop himmelblau>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<coop himmelblau> 0](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/3.jpeg) ![<coop himmelblau> 1](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/1.jpeg) ![<coop himmelblau> 2](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/4.jpeg) ![<coop himmelblau> 3](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/5.jpeg) ![<coop himmelblau> 4](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/0.jpeg) ![<coop himmelblau> 5](https://huggingface.co/sd-concepts-library/coop-himmelblau/resolve/main/concept_images/2.jpeg)
aniketface/DialoGPT-product
aniketface
2022-09-24T09:05:12Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "convAI", "conversational", "facebook", "en", "dataset:blended_skill_talk", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T08:41:37Z
--- language: - en thumbnail: tags: - convAI - conversational - facebook license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity ---
mlyuya/ddpm-butterflies-128
mlyuya
2022-09-24T09:02:29Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-24T07:27:49Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mlyuya/ddpm-butterflies-128/tensorboard?#scalars)
huggingtweets/it_airmass
huggingtweets
2022-09-24T06:49:38Z
111
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-24T06:49:12Z
--- language: en thumbnail: http://www.huggingtweets.com/it_airmass/1664002173554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529248676647944193/-N1UKgKg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Airmass</div> <div style="text-align: center; font-size: 14px;">@it_airmass</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Airmass. | Data | Airmass | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 126 | | Short tweets | 370 | | Tweets kept | 2753 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f99nys0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @it_airmass's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nvbqf9p2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/it_airmass') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ckiplab/bert-base-chinese-qa
ckiplab
2022-09-24T05:25:07Z
162
7
transformers
[ "transformers", "pytorch", "bert", "question-answering", "zh", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-09-24T05:17:36Z
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - question-answering - bert - zh license: gpl-3.0 --- # CKIP BERT Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-qa') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
duyduong9htv/electra-qa-3-finetuned-viet-qa
duyduong9htv
2022-09-24T03:34:33Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-09-23T18:40:06Z
--- tags: - generated_from_trainer model-index: - name: electra-qa-3-finetuned-viet-qa results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-qa-3-finetuned-viet-qa This model is a fine-tuned version of [NlpHUST/electra-base-vn](https://huggingface.co/NlpHUST/electra-base-vn) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 1.5498 - eval_runtime: 98.1124 - eval_samples_per_second: 58.474 - eval_steps_per_second: 4.882 - epoch: 4.0 - step: 7648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
masakhane/m2m100_418M_xho_en_rel
masakhane
2022-09-24T00:22:27Z
112
0
transformers
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "xho", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-25T22:09:49Z
--- language: - xho - en license: cc-by-nc-4.0 ---
carbon225/canine-s-wordseg-en
carbon225
2022-09-23T23:42:11Z
98
1
transformers
[ "transformers", "pytorch", "canine", "token-classification", "en", "license:cc0-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-22T03:58:10Z
--- license: cc0-1.0 language: en widget: - text: "thismodelcanperformwordsegmentation" - text: "sometimesitdoesntworkquitewell" - text: "expertsexchange" ---
HumanCompatibleAI/ppo-AsteroidsNoFrameskip-v4
HumanCompatibleAI
2022-09-23T22:37:49Z
4
0
stable-baselines3
[ "stable-baselines3", "AsteroidsNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-23T22:35:00Z
--- library_name: stable-baselines3 tags: - AsteroidsNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1666.00 +/- 472.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AsteroidsNoFrameskip-v4 type: AsteroidsNoFrameskip-v4 --- # **PPO** Agent playing **AsteroidsNoFrameskip-v4** This is a trained model of a **PPO** agent playing **AsteroidsNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo ppo --env AsteroidsNoFrameskip-v4 -orga HumanCompatibleAI -f logs/ python enjoy.py --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo ppo --env AsteroidsNoFrameskip-v4 -f logs/ -orga HumanCompatibleAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 256), ('clip_range', 'lin_0.1'), ('ent_coef', 0.01), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('frame_stack', 4), ('learning_rate', 'lin_2.5e-4'), ('n_envs', 8), ('n_epochs', 4), ('n_steps', 128), ('n_timesteps', 10000000.0), ('policy', 'CnnPolicy'), ('vf_coef', 0.5), ('normalize', False)]) ```
philschmid/openai-whisper-endpoint
philschmid
2022-09-23T21:26:56Z
0
11
generic
[ "generic", "audio", "automatic-speech-recognition", "endpoints-template", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-23T20:27:44Z
--- license: mit tags: - audio - automatic-speech-recognition - endpoints-template library_name: generic inference: false --- # OpenAI [Whisper](https://github.com/openai/whisper) Inference Endpoint example > Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification. For more information about the model, license and limitations check the original repository at [openai/whisper](https://github.com/openai/whisper). --- This repository implements a custom `handler` task for `automatic-speech-recognition` for 🤗 Inference Endpoints using OpenAIs new Whisper model. The code for the customized pipeline is in the [pipeline.py](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/handler.py). There is also a [notebook](https://huggingface.co/philschmid/openai-whisper-endpoint/blob/main/create_handler.ipynb) included, on how to create the `handler.py` ### Request The endpoint expects a binary audio file. Below is a cURL example and a Python example using the `requests` library. **curl** ```bash # load audio file wget https://cdn-media.huggingface.co/speech_samples/sample1.flac # run request curl --request POST \ --url https://{ENDPOINT}/ \ --header 'Content-Type: audio/x-flac' \ --header 'Authorization: Bearer {HF_TOKEN}' \ --data-binary '@sample1.flac' ``` **Python** ```python import json from typing import List import requests as r import base64 import mimetypes ENDPOINT_URL="" HF_TOKEN="" def predict(path_to_audio:str=None): # read audio file with open(path_to_audio, "rb") as i: b = i.read() # get mimetype content_type= mimetypes.guess_type(path_to_audio)[0] headers= { "Authorization": f"Bearer {HF_TOKEN}", "Content-Type": content_type } response = r.post(ENDPOINT_URL, headers=headers, data=b) return response.json() prediction = predict(path_to_audio="sample1.flac") prediction ``` expected output ```json {"text": " going along slushy country roads and speaking to damp audiences in draughty school rooms day after day for a fortnight. He'll have to put in an appearance at some place of worship on Sunday morning, and he can come to us immediately afterwards."} ```
ericntay/stbl_clinical_bert_ft_rs5
ericntay
2022-09-23T20:39:56Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-23T20:21:55Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs5 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0936 - F1: 0.9268 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2723 | 1.0 | 101 | 0.0875 | 0.8479 | | 0.066 | 2.0 | 202 | 0.0688 | 0.9002 | | 0.0328 | 3.0 | 303 | 0.0668 | 0.9070 | | 0.0179 | 4.0 | 404 | 0.0689 | 0.9129 | | 0.0098 | 5.0 | 505 | 0.0790 | 0.9147 | | 0.0069 | 6.0 | 606 | 0.0805 | 0.9205 | | 0.0033 | 7.0 | 707 | 0.0835 | 0.9268 | | 0.0022 | 8.0 | 808 | 0.0904 | 0.9262 | | 0.0021 | 9.0 | 909 | 0.0882 | 0.9263 | | 0.0015 | 10.0 | 1010 | 0.0933 | 0.9289 | | 0.0009 | 11.0 | 1111 | 0.0921 | 0.9311 | | 0.0009 | 12.0 | 1212 | 0.0936 | 0.9268 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
ericntay/stbl_clinical_bert_ft_rs4
ericntay
2022-09-23T20:07:43Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-23T19:50:09Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: stbl_clinical_bert_ft_rs4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stbl_clinical_bert_ft_rs4 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1088 - F1: 0.9076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2994 | 1.0 | 101 | 0.0977 | 0.8416 | | 0.0639 | 2.0 | 202 | 0.0846 | 0.8689 | | 0.0318 | 3.0 | 303 | 0.0781 | 0.8879 | | 0.0173 | 4.0 | 404 | 0.0770 | 0.8934 | | 0.0099 | 5.0 | 505 | 0.0905 | 0.9021 | | 0.005 | 6.0 | 606 | 0.0963 | 0.9020 | | 0.0031 | 7.0 | 707 | 0.1024 | 0.9095 | | 0.002 | 8.0 | 808 | 0.1063 | 0.9057 | | 0.0017 | 9.0 | 909 | 0.1072 | 0.9076 | | 0.0014 | 10.0 | 1010 | 0.1103 | 0.9089 | | 0.0013 | 11.0 | 1111 | 0.1093 | 0.9087 | | 0.0008 | 12.0 | 1212 | 0.1088 | 0.9076 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
sd-concepts-library/carlitos-el-mago
sd-concepts-library
2022-09-23T19:18:17Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-23T19:18:04Z
--- license: mit --- ### carlitos el mago on Stable Diffusion This is the `<carloscarbonell>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<carloscarbonell> 0](https://huggingface.co/sd-concepts-library/carlitos-el-mago/resolve/main/concept_images/2.jpeg) ![<carloscarbonell> 1](https://huggingface.co/sd-concepts-library/carlitos-el-mago/resolve/main/concept_images/0.jpeg) ![<carloscarbonell> 2](https://huggingface.co/sd-concepts-library/carlitos-el-mago/resolve/main/concept_images/1.jpeg) ![<carloscarbonell> 3](https://huggingface.co/sd-concepts-library/carlitos-el-mago/resolve/main/concept_images/3.jpeg)
g30rv17ys/ddpm-geeve-drusen-1000-200ep
g30rv17ys
2022-09-23T19:12:36Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:39:11Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-drusen-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-drusen-1000-200ep/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-cnv-1000-200ep
g30rv17ys
2022-09-23T19:10:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:29:54Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-cnv-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-cnv-1000-200ep/tensorboard?#scalars)
g30rv17ys/ddpm-geeve-dme-1000-200ep
g30rv17ys
2022-09-23T19:09:23Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:34:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-dme-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-dme-1000-200ep/tensorboard?#scalars)
gokuls/distilbert-base-Massive-intent
gokuls
2022-09-23T19:02:42Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T18:50:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: distilbert-base-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8947368421052632 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-Massive-intent This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.7693 - Accuracy: 0.8947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4555 | 1.0 | 720 | 0.5983 | 0.8426 | | 0.407 | 2.0 | 1440 | 0.4702 | 0.8775 | | 0.2095 | 3.0 | 2160 | 0.5319 | 0.8834 | | 0.1172 | 4.0 | 2880 | 0.5902 | 0.8810 | | 0.0683 | 5.0 | 3600 | 0.6555 | 0.8810 | | 0.042 | 6.0 | 4320 | 0.6989 | 0.8879 | | 0.0253 | 7.0 | 5040 | 0.6963 | 0.8928 | | 0.0208 | 8.0 | 5760 | 0.7313 | 0.8908 | | 0.0119 | 9.0 | 6480 | 0.7683 | 0.8923 | | 0.0093 | 10.0 | 7200 | 0.7693 | 0.8947 | | 0.0071 | 11.0 | 7920 | 0.7873 | 0.8923 | | 0.0047 | 12.0 | 8640 | 0.8275 | 0.8893 | | 0.003 | 13.0 | 9360 | 0.8312 | 0.8928 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
tszocinski/bart-base-squad-question-generation
tszocinski
2022-09-23T18:43:43Z
75
0
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T19:36:46Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: tszocinski/bart-base-squad-question-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # tszocinski/bart-base-squad-question-generation This model is a fine-tuned version of [tszocinski/bart-base-squad-question-generation](https://huggingface.co/tszocinski/bart-base-squad-question-generation) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.5656 - Validation Loss: 11.1958 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'RMSprop', 'config': {'name': 'RMSprop', 'learning_rate': 0.001, 'decay': 0.0, 'rho': 0.9, 'momentum': 0.0, 'epsilon': 1e-07, 'centered': False}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 6.5656 | 11.1958 | 0 | ### Framework versions - Transformers 4.22.1 - TensorFlow 2.8.2 - Datasets 2.5.1 - Tokenizers 0.12.1
g30rv17ys/ddpm-geeve-normal-1000-200ep
g30rv17ys
2022-09-23T18:24:23Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:imagefolder", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-23T15:24:37Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: imagefolder metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-geeve-normal-1000-200ep ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `imagefolder` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/geevegeorge/ddpm-geeve-normal-1000-200ep/tensorboard?#scalars)
nkkodelacruz/distilbert-base-uncased-finetuned-cola
nkkodelacruz
2022-09-23T16:17:52Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T09:07:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5595884617444483 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7903 - Matthews Correlation: 0.5596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5224 | 1.0 | 535 | 0.5373 | 0.3974 | | 0.3503 | 2.0 | 1070 | 0.5142 | 0.4942 | | 0.2328 | 3.0 | 1605 | 0.5449 | 0.5449 | | 0.1775 | 4.0 | 2140 | 0.7457 | 0.5487 | | 0.1235 | 5.0 | 2675 | 0.7903 | 0.5596 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
gokuls/distilroberta-base-Massive-intent
gokuls
2022-09-23T15:34:27Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:massive", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-23T15:23:33Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: distilroberta-base-Massive-intent results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.8937530742744713 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-Massive-intent This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.6618 - Accuracy: 0.8938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.41 | 1.0 | 720 | 0.6742 | 0.8288 | | 0.4978 | 2.0 | 1440 | 0.5150 | 0.8751 | | 0.3009 | 3.0 | 2160 | 0.5705 | 0.8790 | | 0.1953 | 4.0 | 2880 | 0.5887 | 0.8795 | | 0.127 | 5.0 | 3600 | 0.6123 | 0.8810 | | 0.0914 | 6.0 | 4320 | 0.6575 | 0.8834 | | 0.0583 | 7.0 | 5040 | 0.6618 | 0.8938 | | 0.0355 | 8.0 | 5760 | 0.7591 | 0.8864 | | 0.0259 | 9.0 | 6480 | 0.8087 | 0.8780 | | 0.02 | 10.0 | 7200 | 0.7964 | 0.8888 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
minminzi/t5-small-finetuned-eli5
minminzi
2022-09-23T15:24:12Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:eli5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-22T19:21:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - eli5 metrics: - rouge model-index: - name: t5-small-finetuned-eli5 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: eli5 type: eli5 config: LFQA_reddit split: train_eli5 args: LFQA_reddit metrics: - name: Rouge1 type: rouge value: 13.044 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-eli5 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the eli5 dataset. It achieves the following results on the evaluation set: - Loss: 3.6813 - Rouge1: 13.044 - Rouge2: 1.9483 - Rougel: 10.5237 - Rougelsum: 11.8549 - Gen Len: 18.997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 3.8881 | 1.0 | 17040 | 3.6813 | 13.044 | 1.9483 | 10.5237 | 11.8549 | 18.997 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
Eulering/moonlight-night
Eulering
2022-09-23T14:47:20Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2022-09-23T14:47:20Z
--- license: bigscience-openrail-m ---