modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
tezign/BERT-LSTM-based-ABSA
tezign
2022-07-20T10:14:35Z
32
3
transformers
[ "transformers", "pytorch", "BertABSAForSequenceClassification", "text-classification", "aspect-term-sentiment-analysis", "ATSA", "custom_code", "en", "dataset:semeval2014", "arxiv:2002.04815", "autotrain_compatible", "region:us" ]
text-classification
2022-06-28T07:02:53Z
--- language: en tags: - aspect-term-sentiment-analysis - pytorch - ATSA datasets: - semeval2014 widget: - text: "[CLS] The appearance is very nice, but the battery life is poor. [SEP] appearance [SEP] " --- # Note `Aspect term sentiment analysis` BERT LSTM based baseline, based on https://github.com/avinashsai/BERT-Aspect *BERT LSTM* implementation.The model trained on SemEval2014-Task 4 laptop and restaurant datasets. Our Github repo: https://github.com/tezignlab/BERT-LSTM-based-ABSA Code for the paper "Utilizing BERT Intermediate Layers for Aspect Based Sentiment Analysis and Natural Language Inference" https://arxiv.org/pdf/2002.04815.pdf. # Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline MODEL = "tezign/BERT-LSTM-based-ABSA" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForSequenceClassification.from_pretrained(MODEL, trust_remote_code=True) classifier = TextClassificationPipeline(model=model, tokenizer=tokenizer) result = classifier([ {"text": "The appearance is very nice, but the battery life is poor", "text_pair": "appearance"}, {"text": "The appearance is very nice, but the battery life is poor", "text_pair": "battery"} ], function_to_apply="softmax") print(result) """ print result >> [{'label': 'positive', 'score': 0.9129462838172913}, {'label': 'negative', 'score': 0.8834680914878845}] """ ```
jamie613/mt5_correct_puntuation
jamie613
2022-07-20T10:00:44Z
9
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-14T01:43:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: mt5_correct_puntuation_v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5_correct_puntuation 本模型使用中文維基百科語料微調 [google/mt5-base](https://huggingface.co/google/mt5-base)預訓練模型之中文標點符號訂正器。目前之準確率為 0.794。 This is a [google/mt5-base](https://huggingface.co/google/mt5-base) model trained on Mandarin Wikipedia corpus and finetuned for Mandarin punctuation correction. Currently the accuracy is 0.794. ## Datasets 模型使用中文維基百科公開資料微調。將取得的文本以「。」或「,」切分為不超過100字的句子。因為逗號和句號數量壓倒性地多,為盡量平衡資料集,僅保留包含冒號、分號、驚嘆號、問號的句子,作為正確句。將正確句之「,。:;、!?」隨機以「,。:;、!?」,製作為不正確句。訓練用句子共有291,112句。 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Manishkalra/discourse_classification
Manishkalra
2022-07-20T09:48:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T11:13:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: discourse_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # discourse_classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7639 - Accuracy: 0.6649 - F1: 0.6649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7565 | 1.0 | 1839 | 0.7589 | 0.6635 | 0.6635 | | 0.6693 | 2.0 | 3678 | 0.7639 | 0.6649 | 0.6649 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilbert_oscarth_0080
bigmorning
2022-07-20T09:29:02Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-20T09:28:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_oscarth_0080 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0080 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1236 - Validation Loss: 1.0821 - Epoch: 79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | | 1.2818 | 1.2236 | 40 | | 1.2751 | 1.2168 | 41 | | 1.2691 | 1.2126 | 42 | | 1.2644 | 1.2044 | 43 | | 1.2583 | 1.2008 | 44 | | 1.2529 | 1.1962 | 45 | | 1.2473 | 1.1919 | 46 | | 1.2416 | 1.1857 | 47 | | 1.2365 | 1.1812 | 48 | | 1.2318 | 1.1765 | 49 | | 1.2273 | 1.1738 | 50 | | 1.2224 | 1.1672 | 51 | | 1.2177 | 1.1673 | 52 | | 1.2132 | 1.1595 | 53 | | 1.2084 | 1.1564 | 54 | | 1.2033 | 1.1518 | 55 | | 1.1993 | 1.1481 | 56 | | 1.1966 | 1.1445 | 57 | | 1.1924 | 1.1412 | 58 | | 1.1876 | 1.1378 | 59 | | 1.1834 | 1.1340 | 60 | | 1.1806 | 1.1329 | 61 | | 1.1783 | 1.1289 | 62 | | 1.1739 | 1.1251 | 63 | | 1.1705 | 1.1223 | 64 | | 1.1669 | 1.1192 | 65 | | 1.1628 | 1.1172 | 66 | | 1.1599 | 1.1140 | 67 | | 1.1570 | 1.1084 | 68 | | 1.1526 | 1.1081 | 69 | | 1.1496 | 1.1043 | 70 | | 1.1463 | 1.0999 | 71 | | 1.1438 | 1.1006 | 72 | | 1.1397 | 1.0964 | 73 | | 1.1378 | 1.0918 | 74 | | 1.1347 | 1.0917 | 75 | | 1.1319 | 1.0889 | 76 | | 1.1296 | 1.0855 | 77 | | 1.1271 | 1.0848 | 78 | | 1.1236 | 1.0821 | 79 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
tokeron/alephbert-finetuned-metaphor-detection
tokeron
2022-07-20T09:21:13Z
13
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "he", "dataset:Piyutim", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-20T07:06:57Z
--- license: afl-3.0 language: - he tags: - token-classification datasets: - Piyutim model: - onlplab/alephbert-base metrics: - f1 widget: - text: "נשבר לי הגב" example_title: "Broken back" - text: "ש לו לב זהב" example_title: "Golden heart" --- This is a token-classification model. This model is AlephBert fine-tuned on detecting metaphors from Hebrew Piyutim model-index: - name: tokeron/alephbert-finetuned-metaphor-detection results: [] # model This model fine-tunes onlplab/alephbert-base model on Piyutim dataset. ### About Us Created by Michael Toker in collaboration with Yonatan Belinkov, Benny Kornfeld, Oren Mishali, and Ophir Münz-Manor. For more cooperation, please contact email: tok@campus.technion.ac.il
jaeyeon/korean-aihub-learning-2
jaeyeon
2022-07-20T08:31:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-20T07:38:03Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: korean-aihub-learning-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean-aihub-learning-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9945 - Wer: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.99 | 35 | 46.3840 | 1.0 | | No log | 1.99 | 70 | 26.0949 | 1.0 | | 37.1581 | 2.99 | 105 | 19.0168 | 1.0 | | 37.1581 | 3.99 | 140 | 13.3294 | 1.0 | | 37.1581 | 4.99 | 175 | 7.9410 | 1.0 | | 12.5054 | 5.99 | 210 | 5.0323 | 1.0 | | 12.5054 | 6.99 | 245 | 4.6242 | 1.0 | | 12.5054 | 7.99 | 280 | 4.6206 | 1.0 | | 4.8394 | 8.99 | 315 | 4.5820 | 1.0 | | 4.8394 | 9.99 | 350 | 4.5629 | 1.0 | | 4.8394 | 10.99 | 385 | 4.5385 | 1.0 | | 4.6489 | 11.99 | 420 | 4.5627 | 1.0 | | 4.6489 | 12.99 | 455 | 4.5276 | 1.0 | | 4.6489 | 13.99 | 490 | 4.5292 | 1.0 | | 4.5654 | 14.99 | 525 | 4.5179 | 1.0 | | 4.5654 | 15.99 | 560 | 4.4928 | 1.0 | | 4.5654 | 16.99 | 595 | 4.4791 | 1.0 | | 4.521 | 17.99 | 630 | 4.4649 | 1.0 | | 4.521 | 18.99 | 665 | 4.4588 | 1.0 | | 4.3529 | 19.99 | 700 | 4.3632 | 1.0 | | 4.3529 | 20.99 | 735 | 4.2990 | 1.0 | | 4.3529 | 21.99 | 770 | 4.2326 | 0.9988 | | 4.1301 | 22.99 | 805 | 4.0843 | 1.0 | | 4.1301 | 23.99 | 840 | 3.9784 | 0.9975 | | 4.1301 | 24.99 | 875 | 3.7876 | 1.0 | | 3.7047 | 25.99 | 910 | 3.6109 | 0.9988 | | 3.7047 | 26.99 | 945 | 3.4049 | 0.9828 | | 3.7047 | 27.99 | 980 | 3.1913 | 0.9606 | | 3.006 | 28.99 | 1015 | 3.0567 | 0.9508 | | 3.006 | 29.99 | 1050 | 2.9945 | 0.9533 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
knkarthick/bart-large-xsum-samsum
knkarthick
2022-07-20T08:29:15Z
49
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "seq2seq", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: "Hannah: Hey, do you have Betty's number?\nAmanda: Lemme check\nAmanda: Sorry,\ \ can't find it.\nAmanda: Ask Larry\nAmanda: He called her last time we were at\ \ the park together\nHannah: I don't know him well\nAmanda: Don't be shy, he's\ \ very nice\nHannah: If you say so..\nHannah: I'd rather you texted him\nAmanda:\ \ Just text him \U0001F642\nHannah: Urgh.. Alright\nHannah: Bye\nAmanda: Bye bye\n" model-index: - name: bart-large-xsum-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 54.3921 - name: Validation ROUGE-2 type: rouge-2 value: 29.8078 - name: Validation ROUGE-L type: rouge-l value: 45.1543 - name: Test ROUGE-1 type: rouge-1 value: 53.3059 - name: Test ROUGE-2 type: rouge-2 value: 28.355 - name: Test ROUGE-L type: rouge-l value: 44.0953 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: train metrics: - name: ROUGE-1 type: rouge value: 46.2492 verified: true - name: ROUGE-2 type: rouge value: 21.346 verified: true - name: ROUGE-L type: rouge value: 37.2787 verified: true - name: ROUGE-LSUM type: rouge value: 42.1317 verified: true - name: loss type: loss value: 1.6859958171844482 verified: true - name: gen_len type: gen_len value: 23.7103 verified: true --- ## `bart-large-xsum-samsum` This model was obtained by fine-tuning `facebook/bart-large-xsum` on [Samsum](https://huggingface.co/datasets/samsum) dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="knkarthick/bart-large-xsum-samsum") conversation = '''Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye ''' summarizer(conversation) ```
knkarthick/meeting-summary-samsum
knkarthick
2022-07-20T08:28:58Z
43
8
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "seq2seq", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: | Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye model-index: - name: bart-large-xsum-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization" type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 54.3921 - name: Validation ROUGE-2 type: rouge-2 value: 29.8078 - name: Validation ROUGE-L type: rouge-l value: 45.1543 - name: Test ROUGE-1 type: rouge-1 value: 53.3059 - name: Test ROUGE-2 type: rouge-2 value: 28.355 - name: Test ROUGE-L type: rouge-l value: 44.0953 --- ## `bart-large-xsum-samsum` This model was obtained by fine-tuning `facebook/bart-large-xsum` on [Samsum](https://huggingface.co/datasets/samsum) dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="knkarthick/bart-large-xsum-samsum") conversation = '''Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye ''' summarizer(conversation) ```
lqdisme/distilbert-base-uncased-finetuned-squad
lqdisme
2022-07-20T08:03:52Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-20T04:25:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
FAICAM/distilbert-base-uncased-finetuned-cola
FAICAM
2022-07-20T07:54:29Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-20T07:47:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: FAICAM/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FAICAM/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1871 - Validation Loss: 0.4889 - Train Matthews Correlation: 0.5644 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5111 | 0.5099 | 0.4325 | 0 | | 0.3227 | 0.4561 | 0.5453 | 1 | | 0.1871 | 0.4889 | 0.5644 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
wenkai-li/distilbert-base-uncased-finetuned-wikiandmark_epoch20
wenkai-li
2022-07-20T07:33:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-20T02:43:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-wikiandmark_epoch20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wikiandmark_epoch20 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 - Accuracy: 0.9944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0224 | 1.0 | 1859 | 0.0277 | 0.9919 | | 0.0103 | 2.0 | 3718 | 0.0298 | 0.9925 | | 0.0047 | 3.0 | 5577 | 0.0429 | 0.9924 | | 0.0038 | 4.0 | 7436 | 0.0569 | 0.9922 | | 0.0019 | 5.0 | 9295 | 0.0554 | 0.9936 | | 0.0028 | 6.0 | 11154 | 0.0575 | 0.9928 | | 0.002 | 7.0 | 13013 | 0.0544 | 0.9926 | | 0.0017 | 8.0 | 14872 | 0.0553 | 0.9935 | | 0.001 | 9.0 | 16731 | 0.0498 | 0.9924 | | 0.0001 | 10.0 | 18590 | 0.0398 | 0.9934 | | 0.0 | 11.0 | 20449 | 0.0617 | 0.9935 | | 0.0002 | 12.0 | 22308 | 0.0561 | 0.9944 | | 0.0002 | 13.0 | 24167 | 0.0755 | 0.9934 | | 0.0 | 14.0 | 26026 | 0.0592 | 0.9941 | | 0.0 | 15.0 | 27885 | 0.0572 | 0.9939 | | 0.0 | 16.0 | 29744 | 0.0563 | 0.9941 | | 0.0 | 17.0 | 31603 | 0.0587 | 0.9936 | | 0.0005 | 18.0 | 33462 | 0.0673 | 0.9937 | | 0.0 | 19.0 | 35321 | 0.0651 | 0.9933 | | 0.0 | 20.0 | 37180 | 0.0683 | 0.9936 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilbert_oscarth_0060
bigmorning
2022-07-20T05:21:20Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-20T05:20:36Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_oscarth_0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0060 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1876 - Validation Loss: 1.1378 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | | 1.2818 | 1.2236 | 40 | | 1.2751 | 1.2168 | 41 | | 1.2691 | 1.2126 | 42 | | 1.2644 | 1.2044 | 43 | | 1.2583 | 1.2008 | 44 | | 1.2529 | 1.1962 | 45 | | 1.2473 | 1.1919 | 46 | | 1.2416 | 1.1857 | 47 | | 1.2365 | 1.1812 | 48 | | 1.2318 | 1.1765 | 49 | | 1.2273 | 1.1738 | 50 | | 1.2224 | 1.1672 | 51 | | 1.2177 | 1.1673 | 52 | | 1.2132 | 1.1595 | 53 | | 1.2084 | 1.1564 | 54 | | 1.2033 | 1.1518 | 55 | | 1.1993 | 1.1481 | 56 | | 1.1966 | 1.1445 | 57 | | 1.1924 | 1.1412 | 58 | | 1.1876 | 1.1378 | 59 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilgpt_oscarth_0040
bigmorning
2022-07-20T03:34:29Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-20T03:34:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt_oscarth_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_oscarth_0040 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0004 - Validation Loss: 2.8864 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6021 | 4.5759 | 0 | | 4.4536 | 4.1235 | 1 | | 4.1386 | 3.9013 | 2 | | 3.9546 | 3.7563 | 3 | | 3.8255 | 3.6477 | 4 | | 3.7271 | 3.5617 | 5 | | 3.6488 | 3.4936 | 6 | | 3.5844 | 3.4379 | 7 | | 3.5301 | 3.3891 | 8 | | 3.4833 | 3.3448 | 9 | | 3.4427 | 3.3098 | 10 | | 3.4068 | 3.2750 | 11 | | 3.3749 | 3.2425 | 12 | | 3.3462 | 3.2211 | 13 | | 3.3202 | 3.1941 | 14 | | 3.2964 | 3.1720 | 15 | | 3.2749 | 3.1512 | 16 | | 3.2548 | 3.1322 | 17 | | 3.2363 | 3.1141 | 18 | | 3.2188 | 3.0982 | 19 | | 3.2025 | 3.0818 | 20 | | 3.1871 | 3.0678 | 21 | | 3.1724 | 3.0533 | 22 | | 3.1583 | 3.0376 | 23 | | 3.1446 | 3.0256 | 24 | | 3.1318 | 3.0122 | 25 | | 3.1195 | 3.0016 | 26 | | 3.1079 | 2.9901 | 27 | | 3.0968 | 2.9826 | 28 | | 3.0863 | 2.9711 | 29 | | 3.0761 | 2.9593 | 30 | | 3.0665 | 2.9514 | 31 | | 3.0572 | 2.9432 | 32 | | 3.0483 | 2.9347 | 33 | | 3.0396 | 2.9250 | 34 | | 3.0313 | 2.9160 | 35 | | 3.0232 | 2.9095 | 36 | | 3.0153 | 2.9028 | 37 | | 3.0078 | 2.8949 | 38 | | 3.0004 | 2.8864 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Siyong/MT_RN_LM
Siyong
2022-07-20T03:25:42Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-20T01:38:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 - Wer: 0.6375 - Cer: 0.3170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.0564 | 2.36 | 2000 | 2.3456 | 0.9628 | 0.5549 | | 0.5071 | 4.73 | 4000 | 2.0652 | 0.9071 | 0.5115 | | 0.3952 | 7.09 | 6000 | 2.3649 | 0.9108 | 0.4628 | | 0.3367 | 9.46 | 8000 | 1.7615 | 0.8253 | 0.4348 | | 0.2765 | 11.82 | 10000 | 1.6151 | 0.7937 | 0.4087 | | 0.2493 | 14.18 | 12000 | 1.4976 | 0.7881 | 0.3905 | | 0.2318 | 16.55 | 14000 | 1.6731 | 0.8160 | 0.3925 | | 0.2074 | 18.91 | 16000 | 1.5822 | 0.7658 | 0.3913 | | 0.1825 | 21.28 | 18000 | 1.5442 | 0.7361 | 0.3704 | | 0.1824 | 23.64 | 20000 | 1.5988 | 0.7621 | 0.3711 | | 0.1699 | 26.0 | 22000 | 1.4261 | 0.7119 | 0.3490 | | 0.158 | 28.37 | 24000 | 1.7482 | 0.7658 | 0.3648 | | 0.1385 | 30.73 | 26000 | 1.4103 | 0.6784 | 0.3348 | | 0.1199 | 33.1 | 28000 | 1.5214 | 0.6636 | 0.3273 | | 0.116 | 35.46 | 30000 | 1.4288 | 0.7212 | 0.3486 | | 0.1071 | 37.83 | 32000 | 1.5344 | 0.7138 | 0.3411 | | 0.1007 | 40.19 | 34000 | 1.4501 | 0.6691 | 0.3237 | | 0.0943 | 42.55 | 36000 | 1.5367 | 0.6859 | 0.3265 | | 0.0844 | 44.92 | 38000 | 1.5321 | 0.6599 | 0.3273 | | 0.0762 | 47.28 | 40000 | 1.6721 | 0.6264 | 0.3142 | | 0.0778 | 49.65 | 42000 | 1.6666 | 0.6375 | 0.3170 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1
Willaim/Bl00m
Willaim
2022-07-20T02:53:53Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-07-20T02:32:19Z
--- license: bigscience-bloom-rail-1.0 --- import requests API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Can you please let us know more details about your ", })
commanderstrife/bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner
commanderstrife
2022-07-20T02:51:04Z
17
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:bc2gm_corpus", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-20T02:00:12Z
--- license: mit tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7853881278538812 - name: Recall type: recall value: 0.8158102766798419 - name: F1 type: f1 value: 0.8003101977510663 - name: Accuracy type: accuracy value: 0.9758965601366187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Precision: 0.7854 - Recall: 0.8158 - F1: 0.8003 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0981 | 1.0 | 782 | 0.0712 | 0.7228 | 0.7948 | 0.7571 | 0.9724 | | 0.0509 | 2.0 | 1564 | 0.0687 | 0.7472 | 0.8199 | 0.7818 | 0.9746 | | 0.0121 | 3.0 | 2346 | 0.0740 | 0.7725 | 0.8011 | 0.7866 | 0.9747 | | 0.0001 | 4.0 | 3128 | 0.1009 | 0.7618 | 0.8251 | 0.7922 | 0.9741 | | 0.0042 | 5.0 | 3910 | 0.1106 | 0.7757 | 0.8185 | 0.7965 | 0.9754 | | 0.0015 | 6.0 | 4692 | 0.1182 | 0.7812 | 0.8111 | 0.7958 | 0.9758 | | 0.0001 | 7.0 | 5474 | 0.1283 | 0.7693 | 0.8275 | 0.7973 | 0.9753 | | 0.0072 | 8.0 | 6256 | 0.1376 | 0.7863 | 0.8158 | 0.8008 | 0.9762 | | 0.0045 | 9.0 | 7038 | 0.1468 | 0.7856 | 0.8180 | 0.8015 | 0.9761 | | 0.0 | 10.0 | 7820 | 0.1505 | 0.7854 | 0.8158 | 0.8003 | 0.9759 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
luomingshuang/icefall_asr_tedlium3_transducer_stateless
luomingshuang
2022-07-20T02:44:48Z
0
0
null
[ "region:us" ]
null
2022-03-03T02:56:02Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/233 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604. # Pre-trained Transducer-Stateless models for the TEDLium3 dataset with icefall. The model was trained on full [TEDLium3](https://www.openslr.org/51) with the scripts in [icefall](https://github.com/k2-fsa/icefall). ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tedlium3/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer_stateless/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir transducer_stateless/exp \ --max-duration 300 ``` ## Evaluation results The decoding results (WER%) on TEDLium3 (dev and test) are listed below, we got this result by averaging models from epoch 19 to 29. The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 7.19 | 6.70 | --epoch 29, --avg 11, --max-duration 100 | | beam search (beam size 4) | 7.02 | 6.36 | --epoch 29, --avg 11, --max-duration 100 | | modified beam search (beam size 4) | 6.91 | 6.33 | --epoch 29, --avg 11, --max-duration 100 |
luomingshuang/icefall_asr_tedlium3_pruned_transducer_stateless
luomingshuang
2022-07-20T01:56:54Z
0
0
null
[ "region:us" ]
null
2022-03-21T03:45:41Z
<<<<<<< HEAD Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/261 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604. # Pre-trained Transducer-Stateless models for the TEDLium3 dataset with icefall. The model was trained on full [TEDLium3](https://www.openslr.org/51) with the scripts in [icefall](https://github.com/k2-fsa/icefall). ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tedlium3/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" ./pruned_transducer_stateless/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir pruned_transducer_stateless/exp \ --max-duration 300 ``` ## Evaluation results The decoding results (WER%) on TEDLium3 (dev and test) are listed below, we got this result by averaging models from epoch 17 to 29. The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 7.27 | 6.69 | --epoch 29, --avg 13, --max-duration 100 | | beam search (beam size 4) | 6.70 | 6.04 | --epoch 29, --avg 13, --max-duration 100 | | modified beam search (beam size 4) | 6.77 | 6.14 | --epoch 29, --avg 13, --max-duration 100 |
bigmorning/distilbert_oscarth_0040
bigmorning
2022-07-20T01:27:25Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-20T01:27:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_oscarth_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0040 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2890 - Validation Loss: 1.2296 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
steven123/Check_Aligned_Teeth
steven123
2022-07-20T00:59:05Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-20T00:58:54Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Check_Aligned_Teeth results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9473684430122375 --- # Check_Aligned_Teeth Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Aligned Teeth ![Aligned Teeth](images/Aligned_Teeth.jpg) #### Crooked Teeth ![Crooked Teeth](images/Crooked_Teeth.jpg)
frgfm/cspdarknet53
frgfm
2022-07-20T00:57:40Z
30
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1911.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # CSP-Darknet-53 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/darknet53
frgfm
2022-07-20T00:57:28Z
67
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1804.02767", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # Darknet-53 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-53 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLOv3.pdf). ## Model description The core idea of the author is to increase the depth of the Darknet-19 architecture, and adding shortcut connections to ease the gradient propagation. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/darknet53").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1804-02767, author = {Joseph Redmon and Ali Farhadi}, title = {YOLOv3: An Incremental Improvement}, journal = {CoRR}, volume = {abs/1804.02767}, year = {2018}, url = {http://arxiv.org/abs/1804.02767}, eprinttype = {arXiv}, eprint = {1804.02767}, timestamp = {Mon, 13 Aug 2018 16:48:24 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-02767.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/darknet19
frgfm
2022-07-20T00:57:15Z
35
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1612.08242", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # Darknet-19 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The Darknet-19 architecture was introduced in [this paper](https://pjreddie.com/media/files/papers/YOLO9000.pdf). ## Model description The core idea of the author is to combine high throughput of a highway net with performance gains using better activations (Leaky ReLU) and batch normalization. This architecture is used as a backbone for YOLOv2. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/darknet19").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/RedmonF16, author = {Joseph Redmon and Ali Farhadi}, title = {{YOLO9000:} Better, Faster, Stronger}, journal = {CoRR}, volume = {abs/1612.08242}, year = {2016}, url = {http://arxiv.org/abs/1612.08242}, eprinttype = {arXiv}, eprint = {1612.08242}, timestamp = {Mon, 13 Aug 2018 16:48:25 +0200}, biburl = {https://dblp.org/rec/journals/corr/RedmonF16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/resnet34
frgfm
2022-07-20T00:57:04Z
47
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ResNet-34 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/repvgg_a2
frgfm
2022-07-20T00:56:20Z
34
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # RepVGG-A2 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a2").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/repvgg_a1
frgfm
2022-07-20T00:56:06Z
35
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # RepVGG-A1 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a1").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/rexnet1_5x
frgfm
2022-07-20T00:54:55Z
63
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.5x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
jonaskoenig/topic_classification_03
jonaskoenig
2022-07-19T20:57:39Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T19:33:22Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: topic_classification_03 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # topic_classification_03 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0459 - Train Sparse Categorical Accuracy: 0.6535 - Validation Loss: 1.1181 - Validation Sparse Categorical Accuracy: 0.6354 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 1.2710 | 0.5838 | 1.1683 | 0.6156 | 0 | | 1.1546 | 0.6193 | 1.1376 | 0.6259 | 1 | | 1.1163 | 0.6314 | 1.1247 | 0.6292 | 2 | | 1.0888 | 0.6400 | 1.1253 | 0.6323 | 3 | | 1.0662 | 0.6473 | 1.1182 | 0.6344 | 4 | | 1.0459 | 0.6535 | 1.1181 | 0.6354 | 5 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
t-bank-ai/ruDialoGPT-small
t-bank-ai
2022-07-19T20:27:35Z
1,187
5
transformers
[ "transformers", "pytorch", "gpt2", "conversational", "text-generation", "ru", "arxiv:2001.09977", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:24:39Z
--- license: mit pipeline_tag: text-generation widget: - text: "@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@" example_title: "how r u" - text: "@@ПЕРВЫЙ@@ что ты делал на выходных? @@ВТОРОЙ@@" example_title: "wyd" language: - ru tags: - conversational --- This generation model is based on [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2). It's trained on large corpus of dialog data and can be used for buildning generative conversational agents The model was trained with context size 3 On a private validation set we calculated metrics introduced in [this paper](https://arxiv.org/pdf/2001.09977.pdf): - Sensibleness: Crowdsourcers were asked whether model's response makes sense given the context - Specificity: Crowdsourcers were asked whether model's response is specific for given context, in other words we don't want our model to give general and boring responses - SSA which is the average of two metrics above (Sensibleness Specificity Average) | | sensibleness | specificity | SSA | |:----------------------------------------------------|---------------:|--------------:|------:| | [tinkoff-ai/ruDialoGPT-small](https://huggingface.co/tinkoff-ai/ruDialoGPT-small) | 0.64 | 0.5 | 0.57 | | [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) | 0.78 | 0.69 | 0.735 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-small') model = AutoModelWithLMHead.from_pretrained('tinkoff-ai/ruDialoGPT-small') inputs = tokenizer('@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@', return_tensors='pt') generated_token_ids = model.generate( **inputs, top_k=10, top_p=0.95, num_beams=3, num_return_sequences=3, do_sample=True, no_repeat_ngram_size=2, temperature=1.2, repetition_penalty=1.2, length_penalty=1.0, eos_token_id=50257, max_new_tokens=40 ) context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids] context_with_response ```
huggingtweets/angelinacho-stillconor-touchofray
huggingtweets
2022-07-19T19:52:38Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-02T19:59:55Z
--- language: en thumbnail: http://www.huggingtweets.com/angelinacho-stillconor-touchofray/1658260354212/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/859423506592808961/VurGQ0Hk_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1485398297984389121/DmUfFheN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1375088662589939717/nd6wgtKM_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">✨ nacho // 조혜미 ✨ & conor & ray</div> <div style="text-align: center; font-size: 14px;">@angelinacho-stillconor-touchofray</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ✨ nacho // 조혜미 ✨ & conor & ray. | Data | ✨ nacho // 조혜미 ✨ | conor | ray | | --- | --- | --- | --- | | Tweets downloaded | 3210 | 3250 | 3208 | | Retweets | 575 | 100 | 1737 | | Short tweets | 307 | 443 | 246 | | Tweets kept | 2328 | 2707 | 1225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q995qld/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @angelinacho-stillconor-touchofray's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37ez663h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37ez663h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/angelinacho-stillconor-touchofray') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
jonaskoenig/topic_classification_02
jonaskoenig
2022-07-19T19:24:21Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T14:37:24Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: jonaskoenig/topic_classification_02 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # jonaskoenig/topic_classification_02 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0189 - Train Binary Crossentropy: 0.3299 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Crossentropy | Epoch | |:----------:|:-------------------------:|:-----:| | 0.0250 | 0.4229 | 0 | | 0.0214 | 0.3684 | 1 | | 0.0204 | 0.3530 | 2 | | 0.0198 | 0.3433 | 3 | | 0.0193 | 0.3359 | 4 | | 0.0189 | 0.3299 | 5 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
rapid3/gpt2-wikitext2
rapid3
2022-07-19T19:15:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-19T18:29:03Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.5578 | 1.0 | 2249 | 6.4697 | | 6.1907 | 2.0 | 4498 | 6.1998 | | 6.0152 | 3.0 | 6747 | 6.1100 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kamangir/image-classifier
kamangir
2022-07-19T18:45:03Z
0
0
tf-keras
[ "tf-keras", "license:cc", "region:us" ]
null
2022-07-12T19:36:45Z
--- license: cc --- # Image Classifier `image-classifier` is an extendable TensorFlow image classifier w/ a Bash cli and Hugging Face integration - to see the list of `image-classifier` commands complete [installation](#Installation) and type in: ``` image_classifier ? ``` ## Installation To install `image-classifier` first [install and configure awesome-bash-cli](https://github.com/kamangir/awesome-bash-cli) then run: ``` abcli huggingface clone image-classifier ``` To see the list of `image-classifier` saved models type in ``` image_classifier list ``` You should see the following items: 1. [fashion-mnist](#fashion-mnist) 1. intel-image-classifier 🚧 1. vegetable-classifier 🚧 ## fashion-mnist ![image](./saved_model/fashion-mnist/image_classifier/prediction/00000.jpg) `fashion-mnist` is an `image-classifier` trained on [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist). To retrain `fashion-mnist` type in: ``` abcli select fashion_mnist train abcli upload image_classifier list . browser=1,model=object ``` You should now see the structure of the network (left) and the [content of the model](https://github.com/kamangir/browser) (right). | ![image](./abcli/assets/fashion_mnist_list.png) | ![image](./abcli/assets/fashion_mnist_browsed.png) | |---|---| You can save this model under a new name by typing in: ``` fashion_mnist save new_name_1 ``` / END
Evelyn18/roberta-base-spanish-squades-modelo-robertav1
Evelyn18
2022-07-19T18:29:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T18:53:50Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-modelo-robertav1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo-robertav1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8825 | | No log | 2.0 | 12 | 1.7787 | | No log | 3.0 | 18 | 2.0521 | | No log | 4.0 | 24 | 2.2991 | | No log | 5.0 | 30 | 2.4029 | | No log | 6.0 | 36 | 2.4358 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
himal/swin-tiny-patch4-window7-224-finetuned-eurosat
himal
2022-07-19T17:44:49Z
71
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-19T17:17:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9755555555555555 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0738 - Accuracy: 0.9756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2469 | 1.0 | 190 | 0.1173 | 0.9622 | | 0.1471 | 2.0 | 380 | 0.0806 | 0.9748 | | 0.1588 | 3.0 | 570 | 0.0738 | 0.9756 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
sam34738/xlm-kabita
sam34738
2022-07-19T17:36:42Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T17:15:52Z
--- tags: - generated_from_trainer model-index: - name: xlm-kabita results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-kabita This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-emotion](https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.0929 | 1.0 | 460 | 0.5814 | | 0.4287 | 2.0 | 920 | 0.4984 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
bigmorning/oscarth_54321
bigmorning
2022-07-19T16:15:29Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-19T15:49:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: oscarth_54321 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # oscarth_54321 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5784 - Validation Loss: 4.5266 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6206 | 4.5583 | 0 | | 4.5784 | 4.5266 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/bert-base-portuguese-cased_harem-selective-lowC-CRF-first-ner
jordyvl
2022-07-19T15:32:43Z
1
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "generated_from_trainer", "dataset:harem", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-07-19T15:10:34Z
--- license: mit tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased_harem-selective-lowC-CRF-first-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_harem-selective-lowC-CRF-first-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.0687 - Precision: 0.8030 - Recall: 0.8933 - F1: 0.8457 - Accuracy: 0.9748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0646 | 1.0 | 2517 | 0.0924 | 0.7822 | 0.8876 | 0.8316 | 0.9670 | | 0.0263 | 2.0 | 5034 | 0.0644 | 0.7598 | 0.8708 | 0.8115 | 0.9685 | | 0.0234 | 3.0 | 7551 | 0.0687 | 0.8030 | 0.8933 | 0.8457 | 0.9748 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
scottykwok/wav2vec2-large-xlsr-cantonese
scottykwok
2022-07-19T15:22:01Z
43
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "zh", "dataset:common_voice", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: zh tags: - automatic-speech-recognition license: cc-by-sa-4.0 datasets: - common_voice metrics: - cer --- # Wav2vec2-large-xlsr-cantonese This model was based on [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53), finetuned using Common Voice/zh-HK/6.1.0. The training code is similar to [user ctl](https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese), except that the number of training epochs was 80 (doubled) and fp16_backend is apex. The model was trained using a single RTX 3090 and docker image is nvidia/cuda:11.1-cudnn8-devel. CER is 15.11% when evaluate against common voice zh-HK test set. # Result (CER) 15.11% # Source Code See this GitHub Repo [cantonese-selfish-project](https://github.com/scottykwok/cantonese-selfish-project/) and [demo video](https://youtu.be/k_9RQ-ilGEc). # Usage ```python import soundfile as sf import torch from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # load pretrained model processor = Wav2Vec2Processor.from_pretrained("scottykwok/wav2vec2-large-xlsr-cantonese") model = Wav2Vec2ForCTC.from_pretrained("scottykwok/wav2vec2-large-xlsr-cantonese") # load audio - must be 16kHz mono audio_input, sample_rate = sf.read('audio.wav') # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0]) print("-" *20) print("Transcription:\n", transcription.lower()) print("-" *20) ```
jordyvl/bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner
jordyvl
2022-07-19T15:08:00Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:harem", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-19T14:51:42Z
--- license: mit tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem args: selective metrics: - name: Precision type: precision value: 0.8 - name: Recall type: recall value: 0.8764044943820225 - name: F1 type: f1 value: 0.8364611260053619 - name: Accuracy type: accuracy value: 0.9764089121887287 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_harem-selective-lowC-sm-first-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.1160 - Precision: 0.8 - Recall: 0.8764 - F1: 0.8365 - Accuracy: 0.9764 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.055 | 1.0 | 2517 | 0.0934 | 0.81 | 0.9101 | 0.8571 | 0.9699 | | 0.0236 | 2.0 | 5034 | 0.0883 | 0.8307 | 0.8820 | 0.8556 | 0.9751 | | 0.0129 | 3.0 | 7551 | 0.1160 | 0.8 | 0.8764 | 0.8365 | 0.9764 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Rocketknight1/gpt2-finetuned-wikitext2
Rocketknight1
2022-07-19T14:02:31Z
4
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: Rocketknight1/gpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/gpt2-finetuned-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.3062 - Validation Loss: 6.7676 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.3062 | 6.7676 | 0 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
Eleven/bart-large-mnli-finetuned-emotion
Eleven
2022-07-19T13:17:53Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T19:19:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-mnli-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-mnli-finetuned-emotion This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
saadob12/t5_C2T_autochart
saadob12
2022-07-19T13:03:11Z
18
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2108.06897", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-08T15:50:39Z
# Training Data **Autochart:** Zhu, J., Ran, J., Lee, R. K. W., Choo, K., & Li, Z. (2021). AutoChart: A Dataset for Chart-to-Text Generation Task. arXiv preprint arXiv:2108.06897. **Gitlab Link for the data**: https://gitlab.com/bottle_shop/snlg/chart/autochart Train split for this model: Train 8000, Validation 1297, Test 1296 # Example use: Append ```C2T: ``` before every input to the model ``` tokenizer = AutoTokenizer.from_pretrained(saadob12/t5_C2T_autochart) model = AutoModelForSeq2SeqLM.from_pretrained(saadob12/t5_C2T_autochart) data = 'Trade statistics of Qatar with developing economies in North Africa bar_chart Year-Trade with economies of Middle East & North Africa(%)(Merchandise exports,Merchandise imports) x-y1-y2 values 2000 0.591869968616745 3.59339030672154 , 2001 0.53415012207203 3.25371165779341 , 2002 3.07769793440318 1.672796364224 , 2003 0.6932513078579471 1.62522475477827 , 2004 1.17635914189321 1.80540331396412' prefix = 'C2T: ' tokens = tokenizer.encode(prefix + data, truncation=True, padding='max_length', return_tensors='pt') generated = model.generate(tokens, num_beams=4, max_length=256) tgt_text = tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) summary = str(tgt_text).strip('[]""') #Summary: This barchart shows the number of trade statistics of qatar with developing economies in north africa from 2000 through 2004. The unit of measurement in this graph is Trade with economies of Middle East & North Africa(%) as shown on the y-axis. The first group data denotes the change of Merchandise exports. There is a go up and down trend of the number. The peak of the number is found in 2002 and the lowest number is found in 2001. The changes in the number may be related to the conuntry's national policies. The second group data denotes the change of Merchandise imports. There is a go up and down trend of the number. The number in 2000 being the peak, and the lowest number is found in 2003. The changes in the number may be related to the conuntry's national policies. ``` # Limitations You can use the model to generate summaries of data files. Works well for general statistics like the following: | Year | Children born per woman | |:---:|:---:| | 2018 | 1.14 | | 2017 | 1.45 | | 2016 | 1.49 | | 2015 | 1.54 | | 2014 | 1.6 | | 2013 | 1.65 | May or may not generate an **okay** summary at best for the following kind of data: | Model | BLEU score | BLEURT| |:---:|:---:|:---:| | t5-small | 25.4 | -0.11 | | t5-base | 28.2 | 0.12 | | t5-large | 35.4 | 0.34 | # Citation Kindly cite my work. Thank you. ``` @misc{obaid ul islam_2022, title={saadob12/t5_C2T_autochart Hugging Face}, url={https://huggingface.co/saadob12/t5_C2T_autochart}, journal={Huggingface.co}, author={Obaid ul Islam, Saad}, year={2022} } ```
kabelomalapane/En-Nso_update
kabelomalapane
2022-07-19T12:44:05Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-19T12:12:14Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: En-Nso_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # En-Nso_update This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-nso](https://huggingface.co/Helsinki-NLP/opus-mt-en-nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8782 - Bleu: 31.2967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | No log | 1.0 | 4 | 7.2950 | 0.0088 | | No log | 2.0 | 8 | 5.9614 | 0.6848 | | No log | 3.0 | 12 | 5.0695 | 4.9050 | | No log | 4.0 | 16 | 4.5523 | 9.1757 | | No log | 5.0 | 20 | 4.2355 | 10.4744 | | No log | 6.0 | 24 | 4.0106 | 14.6163 | | No log | 7.0 | 28 | 3.8427 | 15.8379 | | No log | 8.0 | 32 | 3.7264 | 15.6158 | | No log | 9.0 | 36 | 3.6338 | 16.3562 | | No log | 10.0 | 40 | 3.5555 | 21.1011 | | No log | 11.0 | 44 | 3.4839 | 21.5754 | | No log | 12.0 | 48 | 3.4180 | 22.7155 | | No log | 13.0 | 52 | 3.3620 | 23.1592 | | No log | 14.0 | 56 | 3.3115 | 24.3886 | | No log | 15.0 | 60 | 3.2676 | 24.1278 | | No log | 16.0 | 64 | 3.2285 | 24.2245 | | No log | 17.0 | 68 | 3.1974 | 23.9716 | | No log | 18.0 | 72 | 3.1695 | 24.2395 | | No log | 19.0 | 76 | 3.1441 | 23.3442 | | No log | 20.0 | 80 | 3.1235 | 21.3332 | | No log | 21.0 | 84 | 3.1029 | 21.8410 | | No log | 22.0 | 88 | 3.0849 | 22.4065 | | No log | 23.0 | 92 | 3.0666 | 22.3016 | | No log | 24.0 | 96 | 3.0534 | 22.9616 | | No log | 25.0 | 100 | 3.0423 | 23.3971 | | No log | 26.0 | 104 | 3.0306 | 23.5443 | | No log | 27.0 | 108 | 3.0183 | 23.3348 | | No log | 28.0 | 112 | 3.0051 | 23.4077 | | No log | 29.0 | 116 | 2.9947 | 24.1791 | | No log | 30.0 | 120 | 2.9855 | 24.1265 | | No log | 31.0 | 124 | 2.9777 | 23.9860 | | No log | 32.0 | 128 | 2.9691 | 24.7301 | | No log | 33.0 | 132 | 2.9597 | 25.1896 | | No log | 34.0 | 136 | 2.9521 | 24.5893 | | No log | 35.0 | 140 | 2.9457 | 24.5229 | | No log | 36.0 | 144 | 2.9409 | 24.6232 | | No log | 37.0 | 148 | 2.9354 | 24.2830 | | No log | 38.0 | 152 | 2.9322 | 26.1404 | | No log | 39.0 | 156 | 2.9306 | 25.9425 | | No log | 40.0 | 160 | 2.9288 | 30.5432 | | No log | 41.0 | 164 | 2.9261 | 29.4635 | | No log | 42.0 | 168 | 2.9215 | 28.4787 | | No log | 43.0 | 172 | 2.9182 | 28.9082 | | No log | 44.0 | 176 | 2.9151 | 29.3171 | | No log | 45.0 | 180 | 2.9132 | 28.3602 | | No log | 46.0 | 184 | 2.9126 | 28.9583 | | No log | 47.0 | 188 | 2.9104 | 26.0269 | | No log | 48.0 | 192 | 2.9086 | 29.6904 | | No log | 49.0 | 196 | 2.9052 | 29.2881 | | No log | 50.0 | 200 | 2.9020 | 29.6063 | | No log | 51.0 | 204 | 2.8994 | 29.5224 | | No log | 52.0 | 208 | 2.8960 | 29.3913 | | No log | 53.0 | 212 | 2.8930 | 30.5451 | | No log | 54.0 | 216 | 2.8889 | 32.1862 | | No log | 55.0 | 220 | 2.8869 | 31.9423 | | No log | 56.0 | 224 | 2.8859 | 30.7244 | | No log | 57.0 | 228 | 2.8846 | 30.8172 | | No log | 58.0 | 232 | 2.8837 | 30.5376 | | No log | 59.0 | 236 | 2.8826 | 31.1454 | | No log | 60.0 | 240 | 2.8813 | 30.9049 | | No log | 61.0 | 244 | 2.8802 | 30.6363 | | No log | 62.0 | 248 | 2.8802 | 31.3739 | | No log | 63.0 | 252 | 2.8799 | 30.9776 | | No log | 64.0 | 256 | 2.8793 | 29.8283 | | No log | 65.0 | 260 | 2.8795 | 29.6912 | | No log | 66.0 | 264 | 2.8804 | 29.7654 | | No log | 67.0 | 268 | 2.8810 | 29.1586 | | No log | 68.0 | 272 | 2.8822 | 28.8888 | | No log | 69.0 | 276 | 2.8819 | 29.7222 | | No log | 70.0 | 280 | 2.8810 | 29.9932 | | No log | 71.0 | 284 | 2.8811 | 30.2492 | | No log | 72.0 | 288 | 2.8802 | 29.9644 | | No log | 73.0 | 292 | 2.8791 | 30.3378 | | No log | 74.0 | 296 | 2.8790 | 29.8055 | | No log | 75.0 | 300 | 2.8794 | 29.0100 | | No log | 76.0 | 304 | 2.8795 | 30.7968 | | No log | 77.0 | 308 | 2.8790 | 31.5414 | | No log | 78.0 | 312 | 2.8783 | 31.5060 | | No log | 79.0 | 316 | 2.8775 | 31.4376 | | No log | 80.0 | 320 | 2.8766 | 31.6005 | | No log | 81.0 | 324 | 2.8767 | 31.3697 | | No log | 82.0 | 328 | 2.8769 | 31.6108 | | No log | 83.0 | 332 | 2.8770 | 31.4214 | | No log | 84.0 | 336 | 2.8772 | 31.6039 | | No log | 85.0 | 340 | 2.8776 | 32.0254 | | No log | 86.0 | 344 | 2.8779 | 31.4024 | | No log | 87.0 | 348 | 2.8783 | 32.0279 | | No log | 88.0 | 352 | 2.8786 | 31.8914 | | No log | 89.0 | 356 | 2.8788 | 31.6500 | | No log | 90.0 | 360 | 2.8791 | 31.7698 | | No log | 91.0 | 364 | 2.8793 | 31.6137 | | No log | 92.0 | 368 | 2.8793 | 31.8244 | | No log | 93.0 | 372 | 2.8790 | 31.5626 | | No log | 94.0 | 376 | 2.8786 | 31.3743 | | No log | 95.0 | 380 | 2.8785 | 31.4160 | | No log | 96.0 | 384 | 2.8784 | 31.6682 | | No log | 97.0 | 388 | 2.8782 | 31.8335 | | No log | 98.0 | 392 | 2.8782 | 31.7143 | | No log | 99.0 | 396 | 2.8782 | 31.7143 | | No log | 100.0 | 400 | 2.8782 | 31.7143 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
spacestar1705/testpyramidsrnd
spacestar1705
2022-07-19T12:20:07Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-19T12:20:02Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: spacestar1705/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2
luomingshuang
2022-07-19T11:56:33Z
0
0
null
[ "region:us" ]
null
2022-05-16T08:24:41Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/355 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604. # Pre-trained Transducer-Stateless2 models for the Aidatatang_200zh dataset with icefall. The model was trained on full [Aidatatang_200zh](https://www.openslr.org/62) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/aidatatang_200zh/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1" ./pruned_transducer_stateless2/train.py \ --world-size 2 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 250 ``` ## Evaluation results The decoding results (WER%) on Aidatatang_200zh(dev and test) are listed below, we got this result by averaging models from epoch 11 to 29. The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 5.53 | 6.59 | --epoch 29, --avg 19, --max-duration 100 | | modified beam search (beam size 4) | 5.28 | 6.32 | --epoch 29, --avg 19, --max-duration 100 | | fast beam search (set as default) | 5.29 | 6.33 | --epoch 29, --avg 19, --max-duration 1500|
kabelomalapane/Nso-En_update
kabelomalapane
2022-07-19T11:40:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-19T11:31:18Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: Nso-En_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Nso-En_update This model is a fine-tuned version of [kabelomalapane/En-Nso](https://huggingface.co/kabelomalapane/En-Nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9219 - Bleu: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:----:| | No log | 1.0 | 108 | 2.0785 | 0.0 | | No log | 2.0 | 216 | 1.9015 | 0.0 | | No log | 3.0 | 324 | 1.8730 | 0.0 | | No log | 4.0 | 432 | 1.8626 | 0.0 | | 2.1461 | 5.0 | 540 | 1.8743 | 0.0 | | 2.1461 | 6.0 | 648 | 1.8903 | 0.0 | | 2.1461 | 7.0 | 756 | 1.9018 | 0.0 | | 2.1461 | 8.0 | 864 | 1.9236 | 0.0 | | 2.1461 | 9.0 | 972 | 1.9210 | 0.0 | | 1.2781 | 10.0 | 1080 | 1.9219 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384
robingeibel
2022-07-19T10:13:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "reformer", "fill-mask", "generated_from_trainer", "dataset:wikipedia", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T15:11:09Z
--- tags: - generated_from_trainer datasets: - wikipedia model-index: - name: reformer-finetuned-big_patent-wikipedia-arxiv-16384 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reformer-finetuned-big_patent-wikipedia-arxiv-16384 This model is a fine-tuned version of [robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384](https://huggingface.co/robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384) on the wikipedia dataset. It achieves the following results on the evaluation set: - Loss: 6.5256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 8.0368 | 1.0 | 3785 | 6.7392 | | 6.7992 | 2.0 | 7570 | 6.5576 | | 6.6926 | 3.0 | 11355 | 6.5256 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Malanga/finetuning-sentiment-model-3000-samples
Malanga
2022-07-19T09:49:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T09:30:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3104 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Tomas23/twitter-roberta-base-mar2022-finetuned-emotion
Tomas23
2022-07-19T09:48:08Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:tweet_eval", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T08:54:06Z
--- tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - f1 model-index: - name: twitter-roberta-base-mar2022-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval args: emotion metrics: - name: Accuracy type: accuracy value: 0.8191414496833216 - name: F1 type: f1 value: 0.8170974933422602 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-mar2022-finetuned-emotion This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-mar2022](https://huggingface.co/cardiffnlp/twitter-roberta-base-mar2022) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.5146 - Accuracy: 0.8191 - F1: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8945 | 1.0 | 102 | 0.5831 | 0.7995 | 0.7887 | | 0.5176 | 2.0 | 204 | 0.5266 | 0.8235 | 0.8200 | ### Framework versions - Transformers 4.19.3 - Pytorch 1.11.0+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
sketchai/sketch-gnn
sketchai
2022-07-19T09:46:36Z
0
0
null
[ "tensorboard", "license:lgpl-3.0", "region:us" ]
null
2022-06-17T08:30:03Z
--- license: lgpl-3.0 --- - `v00_5pc_given` refers to a model trained with 0 to 10% given constraints - `v00_80pc_given` refers to a model trained with 70 to 90% given constraints
spacestar1705/dqn-SpaceInvadersNoFrameskip-v4
spacestar1705
2022-07-19T09:41:56Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-19T09:41:17Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 508.50 +/- 105.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga spacestar1705 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga spacestar1705 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 100), ('train_freq', 4), ('normalize', False)]) ```
AliMMZ/q-Taxi-v3
AliMMZ
2022-07-19T08:20:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-19T08:00:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AliMMZ/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
hirohiroz/wav2vec2-base-timit-demo-google-colab-tryjpn
hirohiroz
2022-07-19T08:16:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-14T03:11:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-tryjpn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-tryjpn This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1527 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 48.3474 | 6.67 | 100 | 68.0887 | 1.0 | | 7.601 | 13.33 | 200 | 8.3667 | 1.0 | | 4.9107 | 20.0 | 300 | 5.6991 | 1.0 | | 4.379 | 26.67 | 400 | 5.1527 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-256
Kayvane
2022-07-19T06:29:12Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T05:06:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-256 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8234544620559604 - name: F1 type: f1 value: 0.8176243580045963 - name: Recall type: recall value: 0.8234544620559604 - name: Precision type: precision value: 0.8171438106054644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5453 - Accuracy: 0.8235 - F1: 0.8176 - Recall: 0.8235 - Precision: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.097565552226687e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 256 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6691 | 0.61 | 1500 | 0.6475 | 0.7962 | 0.7818 | 0.7962 | 0.7875 | | 0.5361 | 1.22 | 3000 | 0.5794 | 0.8161 | 0.8080 | 0.8161 | 0.8112 | | 0.4659 | 1.83 | 4500 | 0.5453 | 0.8235 | 0.8176 | 0.8235 | 0.8171 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jonaskoenig/topic_classification_01
jonaskoenig
2022-07-19T06:15:47Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T17:58:13Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: topic_classification_01 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # topic_classification_01 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0306 - Train Binary Crossentropy: 0.5578 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Crossentropy | Epoch | |:----------:|:-------------------------:|:-----:| | 0.0397 | 0.7274 | 0 | | 0.0352 | 0.6392 | 1 | | 0.0339 | 0.6142 | 2 | | 0.0330 | 0.5989 | 3 | | 0.0324 | 0.5882 | 4 | | 0.0319 | 0.5799 | 5 | | 0.0315 | 0.5730 | 6 | | 0.0312 | 0.5672 | 7 | | 0.0309 | 0.5623 | 8 | | 0.0306 | 0.5578 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
dafraile/Clini-dialog-sum-BART
dafraile
2022-07-19T05:12:30Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-13T03:49:10Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: tst-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9975 - Rouge1: 56.239 - Rouge2: 28.9873 - Rougel: 38.5242 - Rougelsum: 53.7902 - Gen Len: 105.2973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.4 - Tokenizers 0.11.6
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1
gary109
2022-07-19T03:23:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T00:35:14Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5459 - Wer: 0.2463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.3909 | 1.0 | 2309 | 0.5615 | 0.2459 | | 0.4094 | 2.0 | 4618 | 0.5654 | 0.2439 | | 0.326 | 3.0 | 6927 | 0.5568 | 0.2470 | | 0.4577 | 4.0 | 9236 | 0.5795 | 0.2474 | | 0.3628 | 5.0 | 11545 | 0.5459 | 0.2463 | | 0.3135 | 6.0 | 13854 | 0.5582 | 0.2473 | | 0.5058 | 7.0 | 16163 | 0.5677 | 0.2439 | | 0.3188 | 8.0 | 18472 | 0.5646 | 0.2445 | | 0.3589 | 9.0 | 20781 | 0.5626 | 0.2479 | | 0.4021 | 10.0 | 23090 | 0.5722 | 0.2452 | | 0.4362 | 11.0 | 25399 | 0.5659 | 0.2431 | | 0.3215 | 12.0 | 27708 | 0.5658 | 0.2445 | | 0.3646 | 13.0 | 30017 | 0.5785 | 0.2459 | | 0.3757 | 14.0 | 32326 | 0.5757 | 0.2418 | | 0.3311 | 15.0 | 34635 | 0.5672 | 0.2455 | | 0.3709 | 16.0 | 36944 | 0.5669 | 0.2434 | | 0.3342 | 17.0 | 39253 | 0.5610 | 0.2455 | | 0.3236 | 18.0 | 41562 | 0.5652 | 0.2436 | | 0.3566 | 19.0 | 43871 | 0.5773 | 0.2407 | | 0.2912 | 20.0 | 46180 | 0.5764 | 0.2453 | | 0.3652 | 21.0 | 48489 | 0.5732 | 0.2423 | | 0.3785 | 22.0 | 50798 | 0.5696 | 0.2423 | | 0.3968 | 23.0 | 53107 | 0.5690 | 0.2429 | | 0.2968 | 24.0 | 55416 | 0.5800 | 0.2427 | | 0.428 | 25.0 | 57725 | 0.5704 | 0.2441 | | 0.383 | 26.0 | 60034 | 0.5739 | 0.2450 | | 0.3694 | 27.0 | 62343 | 0.5791 | 0.2437 | | 0.3449 | 28.0 | 64652 | 0.5780 | 0.2451 | | 0.3008 | 29.0 | 66961 | 0.5749 | 0.2418 | | 0.3939 | 30.0 | 69270 | 0.5737 | 0.2424 | | 0.3451 | 31.0 | 71579 | 0.5805 | 0.2402 | | 0.3513 | 32.0 | 73888 | 0.5670 | 0.2379 | | 0.3866 | 33.0 | 76197 | 0.5706 | 0.2389 | | 0.3831 | 34.0 | 78506 | 0.5635 | 0.2401 | | 0.3641 | 35.0 | 80815 | 0.5708 | 0.2405 | | 0.3345 | 36.0 | 83124 | 0.5699 | 0.2405 | | 0.2902 | 37.0 | 85433 | 0.5711 | 0.2373 | | 0.2868 | 38.0 | 87742 | 0.5713 | 0.2389 | | 0.3232 | 39.0 | 90051 | 0.5702 | 0.2392 | | 0.3277 | 40.0 | 92360 | 0.5658 | 0.2393 | | 0.3234 | 41.0 | 94669 | 0.5732 | 0.2412 | | 0.3625 | 42.0 | 96978 | 0.5740 | 0.2396 | | 0.4075 | 43.0 | 99287 | 0.5733 | 0.2389 | | 0.3473 | 44.0 | 101596 | 0.5735 | 0.2394 | | 0.3157 | 45.0 | 103905 | 0.5721 | 0.2391 | | 0.3866 | 46.0 | 106214 | 0.5715 | 0.2381 | | 0.4062 | 47.0 | 108523 | 0.5711 | 0.2380 | | 0.3871 | 48.0 | 110832 | 0.5716 | 0.2380 | | 0.2924 | 49.0 | 113141 | 0.5723 | 0.2374 | | 0.3655 | 50.0 | 115450 | 0.5709 | 0.2379 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
shivaniNK8/t5-small-finetuned-cnn-news
shivaniNK8
2022-07-19T02:37:27Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-07-19T01:48:34Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.7231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.8412 - Rouge1: 24.7231 - Rouge2: 12.292 - Rougel: 20.5347 - Rougelsum: 23.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00056 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0318 | 1.0 | 718 | 1.8028 | 24.5415 | 12.0907 | 20.5343 | 23.3386 | | 1.8307 | 2.0 | 1436 | 1.8028 | 24.0965 | 11.6367 | 20.2078 | 22.8138 | | 1.6881 | 3.0 | 2154 | 1.8136 | 25.0822 | 12.6509 | 20.9523 | 23.8303 | | 1.5778 | 4.0 | 2872 | 1.8269 | 24.4271 | 11.8443 | 20.2281 | 23.0941 | | 1.501 | 5.0 | 3590 | 1.8412 | 24.7231 | 12.292 | 20.5347 | 23.4668 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KaliYuga/rpgitem
KaliYuga
2022-07-19T02:33:01Z
0
1
null
[ "license:cc-by-4.0", "region:us" ]
null
2022-07-12T07:31:28Z
--- license: cc-by-4.0 --- CURRENTLY UNRELEASED!! FINAL VERSION MY VARY. This model is really only supposed to be for my [patreon patrons](https://www.patreon.com/kaliyuga_ai). I ask that, unless you *truly* can't afford to pay $5 to access this model, you not use it without being a patron. Regardless, you must give attribution if you use this model in any product/app/game, etc
huggingtweets/yashar
huggingtweets
2022-07-19T02:12:11Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-19T01:50:50Z
--- language: en thumbnail: http://www.huggingtweets.com/yashar/1658196662556/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475314622332764161/tzLI4Zeb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Yashar Ali 🐘</div> <div style="text-align: center; font-size: 14px;">@yashar</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Yashar Ali 🐘. | Data | Yashar Ali 🐘 | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 1355 | | Short tweets | 332 | | Tweets kept | 1543 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n7cco99/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @yashar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ms5g8tc6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ms5g8tc6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/yashar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
helpmefindaname/mini-sequence-tagger-conll03
helpmefindaname
2022-07-19T00:53:03Z
4
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "region:us" ]
token-classification
2022-07-14T23:30:10Z
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 widget: - text: "George Washington went to Washington" --- This is a very small model I use for testing my [ner eval dashboard](https://github.com/helpmefindaname/ner-eval-dashboard) F1-Score: **48,73** (CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on huggingface minimal testing embeddings --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("helpmefindaname/mini-sequence-tagger-conll03") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following command was used to train this model: where `examples\ner\run_ner.py` refers to [this script](https://github.com/flairNLP/flair/blob/master/examples/ner/run_ner.py) ``` python examples\ner\run_ner.py --model_name_or_path hf-internal-testing/tiny-random-bert --dataset_name CONLL_03 --learning_rate 0.002 --mini_batch_chunk_size 1024 --batch_size 64 --num_epochs 100 ``` ---
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-1024
Kayvane
2022-07-19T00:52:23Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T17:43:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-1024 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8279904184292339 - name: F1 type: f1 value: 0.8236604095677945 - name: Recall type: recall value: 0.8279904184292339 - name: Precision type: precision value: 0.8235526237070518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wandb-week-3-complaints-classifier-1024 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Accuracy: 0.8280 - F1: 0.8237 - Recall: 0.8280 - Precision: 0.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.027176214786854e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7756 | 0.61 | 1500 | 0.7411 | 0.7647 | 0.7375 | 0.7647 | 0.7606 | | 0.5804 | 1.22 | 3000 | 0.6140 | 0.8088 | 0.8052 | 0.8088 | 0.8077 | | 0.5008 | 1.83 | 4500 | 0.5351 | 0.8280 | 0.8237 | 0.8280 | 0.8236 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/bert-base-portuguese-cased_harem-selective-sm-first-ner
jordyvl
2022-07-18T22:12:54Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:harem", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T21:25:04Z
--- license: mit tags: - generated_from_trainer datasets: - harem metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-portuguese-cased_harem-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: harem type: harem args: selective metrics: - name: Precision type: precision value: 0.7455830388692579 - name: Recall type: recall value: 0.8053435114503816 - name: F1 type: f1 value: 0.7743119266055045 - name: Accuracy type: accuracy value: 0.964875491480996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-portuguese-cased_harem-sm-first-ner This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. It achieves the following results on the evaluation set: - Loss: 0.1952 - Precision: 0.7456 - Recall: 0.8053 - F1: 0.7743 - Accuracy: 0.9649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1049 | 1.0 | 2517 | 0.1955 | 0.6601 | 0.7710 | 0.7113 | 0.9499 | | 0.0622 | 2.0 | 5034 | 0.2097 | 0.7314 | 0.7901 | 0.7596 | 0.9554 | | 0.0318 | 3.0 | 7551 | 0.1952 | 0.7456 | 0.8053 | 0.7743 | 0.9649 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.2.2 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-512
Kayvane
2022-07-18T21:55:04Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T20:33:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-512 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.6745323887671373 - name: F1 type: f1 value: 0.6355967633316707 - name: Recall type: recall value: 0.6745323887671373 - name: Precision type: precision value: 0.6122130681567332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-512 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 1.0839 - Accuracy: 0.6745 - F1: 0.6356 - Recall: 0.6745 - Precision: 0.6122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0007879237562376572 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 512 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 1.2707 | 0.61 | 1500 | 1.3009 | 0.6381 | 0.5848 | 0.6381 | 0.5503 | | 1.1348 | 1.22 | 3000 | 1.1510 | 0.6610 | 0.6178 | 0.6610 | 0.5909 | | 1.0649 | 1.83 | 4500 | 1.0839 | 0.6745 | 0.6356 | 0.6745 | 0.6122 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
NimaBoscarino/efficientformer-l3-300
NimaBoscarino
2022-07-18T20:44:05Z
2
0
timm
[ "timm", "coreml", "onnx", "mobile", "vison", "image-classification", "en", "dataset:imagenet-1k", "arxiv:2206.01191", "license:apache-2.0", "region:us" ]
image-classification
2022-07-18T20:31:10Z
--- language: - en license: apache-2.0 library_name: timm tags: - mobile - vison - image-classification datasets: - imagenet-1k metrics: - accuracy --- # EfficientFormer-L3 ## Table of Contents - [EfficientFormer-L3](#-model_id--defaultmymodelname-true) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [How to Get Started with the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out-of-scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) <model_details> ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> EfficientFormer-L3, developed by [Snap Research](https://github.com/snap-research), is one of three EfficientFormer models. The EfficientFormer models were released as part of an effort to prove that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance. This checkpoint of EfficientFormer-L3 was trained for 300 epochs. - Developed by: Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren - Language(s): English - License: This model is licensed under the apache-2.0 license - Resources for more information: - [Research Paper](https://arxiv.org/abs/2206.01191) - [GitHub Repo](https://github.com/snap-research/EfficientFormer/) </model_details> <how_to_start> ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` </how_to_start> <uses> ## Uses #### Direct Use This model can be used for image classification and semantic segmentation. On mobile devices (the model was tested on iPhone 12), the CoreML checkpoints will perform these tasks with low latency. <Limitations_and_Biases> ## Limitations and Biases Though most designs in EfficientFormer are general-purposed, e.g., dimension- consistent design and 4D block with CONV-BN fusion, the actual speed of EfficientFormer may vary on other platforms. For instance, if GeLU is not well supported while HardSwish is efficiently implemented on specific hardware and compiler, the operator may need to be modified accordingly. The proposed latency-driven slimming is simple and fast. However, better results may be achieved if search cost is not a concern and an enumeration-based brute search is performed. Since the model was trained on Imagenet-1K, the [biases embedded in that dataset](https://huggingface.co/datasets/imagenet-1k#considerations-for-using-the-data) will be reflected in the EfficientFormer models. </Limitations_and_Biases> <Training> ## Training #### Training Data This model was trained on ImageNet-1K. See the [data card](https://huggingface.co/datasets/imagenet-1k) for additional information. #### Training Procedure * Parameters: 31.3 M * GMACs: 3.9 * Train. Epochs: 300 Trained on a cluster with NVIDIA A100 and V100 GPUs. </Training> <Eval_Results> ## Evaluation Results Top-1 Accuracy: 82.4% on ImageNet 10K Latency: 3.0 ms </Eval_Results> <Cite> ## Citation Information ```bibtex @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } ``` </Cite>
NimaBoscarino/efficientformer-l1-1000
NimaBoscarino
2022-07-18T20:14:47Z
4
0
timm
[ "timm", "pytorch", "mobile", "vison", "image-classification", "en", "dataset:imagenet-1k", "arxiv:2206.01191", "license:apache-2.0", "region:us" ]
image-classification
2022-07-14T08:16:26Z
--- language: - en license: apache-2.0 library_name: timm tags: - mobile - vison - image-classification datasets: - imagenet-1k metrics: - accuracy --- # EfficientFormer-L1 ## Table of Contents - [EfficientFormer-L1](#-model_id--defaultmymodelname-true) - [Table of Contents](#table-of-contents) - [Model Details](#model-details) - [How to Get Started with the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Direct Use](#direct-use) - [Downstream Use](#downstream-use) - [Misuse and Out-of-scope Use](#misuse-and-out-of-scope-use) - [Limitations and Biases](#limitations-and-biases) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation Results](#evaluation-results) - [Environmental Impact](#environmental-impact) - [Citation Information](#citation-information) <model_details> ## Model Details <!-- Give an overview of your model, the relevant research paper, who trained it, etc. --> EfficientFormer-L1, developed by [Snap Research](https://github.com/snap-research), is one of three EfficientFormer models. The EfficientFormer models were released as part of an effort to prove that properly designed transformers can reach extremely low latency on mobile devices while maintaining high performance. This checkpoint of EfficientFormer-L1 was trained for 1000 epochs. - Developed by: Yanyu Li, Geng Yuan, Yang Wen, Eric Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren - Language(s): English - License: This model is licensed under the apache-2.0 license - Resources for more information: - [Research Paper](https://arxiv.org/abs/2206.01191) - [GitHub Repo](https://github.com/snap-research/EfficientFormer/) </model_details> <how_to_start> ## How to Get Started with the Model Use the code below to get started with the model. ```python # A nice code snippet here that describes how to use the model... ``` </how_to_start> <uses> ## Uses #### Direct Use This model can be used for image classification and semantic segmentation. On mobile devices (the model was tested on iPhone 12), the CoreML checkpoints will perform these tasks with low latency. <Limitations_and_Biases> ## Limitations and Biases Though most designs in EfficientFormer are general-purposed, e.g., dimension- consistent design and 4D block with CONV-BN fusion, the actual speed of EfficientFormer may vary on other platforms. For instance, if GeLU is not well supported while HardSwish is efficiently implemented on specific hardware and compiler, the operator may need to be modified accordingly. The proposed latency-driven slimming is simple and fast. However, better results may be achieved if search cost is not a concern and an enumeration-based brute search is performed. Since the model was trained on Imagenet-1K, the [biases embedded in that dataset](https://huggingface.co/datasets/imagenet-1k#considerations-for-using-the-data) will be reflected in the EfficientFormer models. </Limitations_and_Biases> <Training> ## Training #### Training Data This model was trained on ImageNet-1K. See the [data card](https://huggingface.co/datasets/imagenet-1k) for additional information. #### Training Procedure * Parameters: 12.3 M * GMACs: 1.3 * Train. Epochs: 1000 Trained on a cluster with NVIDIA A100 and V100 GPUs. </Training> <Eval_Results> ## Evaluation Results Top-1 Accuracy: 80.2% on ImageNet 10K </Eval_Results> <Cite> ## Citation Information ```bibtex @article{li2022efficientformer, title={EfficientFormer: Vision Transformers at MobileNet Speed}, author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Eric and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian}, journal={arXiv preprint arXiv:2206.01191}, year={2022} } ``` </Cite>
domenicrosati/opus-mt-en-es-scielo
domenicrosati
2022-07-18T20:09:57Z
34
2
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:scielo", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-15T15:25:52Z
--- tags: - translation - generated_from_trainer datasets: - scielo metrics: - bleu model-index: - name: opus-mt-en-es-scielo results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: scielo type: scielo args: en-es metrics: - name: Bleu type: bleu value: 41.53733801247958 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-es-scielo This model is a fine-tuned version of [domenicrosati/opus-mt-en-es-scielo](https://huggingface.co/domenicrosati/opus-mt-en-es-scielo) on the scielo dataset. It achieves the following results on the evaluation set: - Loss: 1.2189 - Bleu: 41.5373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 1.0943 | 1.0 | 10001 | 1.2189 | 41.5373 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
elliotthwang/mt5-small-finetuned-tradition-zh
elliotthwang
2022-07-18T16:44:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-29T13:09:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-tradition-zh results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 5.7806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-tradition-zh This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.9218 - Rouge1: 5.7806 - Rouge2: 1.266 - Rougel: 5.761 - Rougelsum: 5.7833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 4.542 | 1.0 | 2336 | 3.1979 | 4.8334 | 1.025 | 4.8142 | 4.8326 | | 3.7542 | 2.0 | 4672 | 3.0662 | 5.2155 | 1.0978 | 5.2025 | 5.2158 | | 3.5706 | 3.0 | 7008 | 3.0070 | 5.5471 | 1.3397 | 5.5386 | 5.5391 | | 3.4668 | 4.0 | 9344 | 2.9537 | 5.5865 | 1.1558 | 5.5816 | 5.5964 | | 3.4082 | 5.0 | 11680 | 2.9391 | 5.8061 | 1.3462 | 5.7944 | 5.812 | | 3.375 | 6.0 | 14016 | 2.9218 | 5.7806 | 1.266 | 5.761 | 5.7833 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
silviacamplani/distilbert-uncase-finetuned-ai-ner
silviacamplani
2022-07-18T15:56:55Z
8
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-08T09:55:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-uncase-finetuned-ai-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-uncase-finetuned-ai-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5704 - Validation Loss: 2.5380 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2918 | 3.0479 | 0 | | 2.8526 | 2.6902 | 1 | | 2.5704 | 2.5380 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
Kayvane
2022-07-18T15:32:30Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T08:15:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
OATML-Markslab/Tranception_Large
OATML-Markslab
2022-07-18T15:25:35Z
10
6
transformers
[ "transformers", "pytorch", "tranception", "fill-mask", "arxiv:2205.13760", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T08:54:44Z
# Tranception model This Hugging Face Hub repo contains the model checkpoint for the Tranception model as described in our paper ["Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval"](https://arxiv.org/abs/2205.13760). The official GitHub repository can be accessed [here](https://github.com/OATML-Markslab/Tranception). This project is a joint collaboration between the [Marks lab](https://www.deboramarkslab.com/) and the [OATML group](https://oatml.cs.ox.ac.uk/). ## Abstract The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks. ## License This project is available under the MIT license. ## Reference If you use Tranception or other files provided through our GitHub repository, please cite the following paper: ``` Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J., Gomez, A., Marks, D.S., Gal, Y. (2022). Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval. ICML. ``` ## Links Pre-print: https://arxiv.org/abs/2205.13760 GitHub: https://github.com/OATML-Markslab/Tranception
andreaschandra/pegasus-samsum
andreaschandra
2022-07-18T14:47:25Z
5
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-18T13:58:11Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bndgyawali/switch-transformer
bndgyawali
2022-07-18T14:27:14Z
0
0
keras
[ "keras", "tensorboard", "tf-keras", "switch-transformer", "region:us" ]
null
2022-06-13T18:58:21Z
--- library_name: keras tags: - switch-transformer --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|0.0010000000474974513|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Lurunchik/nf-cats
Lurunchik
2022-07-18T14:16:02Z
18
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "custom_code", "en", "license:mit", "region:us" ]
text-classification
2022-07-13T12:15:59Z
--- language: - en license: mit tags: - text-classification inference: false widget: - text: "Why do we need an NFQA taxonomy?" --- # Non Factoid Question Category classification in English ## NFQA model Repository: [https://github.com/Lurunchik/NF-CATS](https://github.com/Lurunchik/NF-CATS) Model trained with NFQA dataset. Base model is [roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2), a RoBERTa-based model for the task of Question Answering, fine-tuned using the SQuAD2.0 dataset. Uses `NOT-A-QUESTION`, `FACTOID`, `DEBATE`, `EVIDENCE-BASED`, `INSTRUCTION`, `REASON`, `EXPERIENCE`, `COMPARISON` labels. ## How to use NFQA cat with HuggingFace ##### Load NFQA cat and its tokenizer: ```python from transformers import AutoTokenizer from nfqa_model import RobertaNFQAClassification nfqa_model = RobertaNFQAClassification.from_pretrained("Lurunchik/nf-cats") nfqa_tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") ``` ##### Make prediction using helper function: ```python def get_nfqa_category_prediction(text): output = nfqa_model(**nfqa_tokenizer(text, return_tensors="pt")) index = output.logits.argmax() return nfqa_model.config.id2label[int(index)] get_nfqa_category_prediction('how to assign category?') # result #'INSTRUCTION' ``` ## Demo You can test the model via [hugginface space](https://huggingface.co/spaces/Lurunchik/nf-cats). [![demo.png](demo.png)](https://huggingface.co/spaces/Lurunchik/nf-cats) ## Citation If you use `NFQA-cats` in your work, please cite [this paper](https://dl.acm.org/doi/10.1145/3477495.3531926) ``` @misc{bolotova2022nfcats, author = {Bolotova, Valeriia and Blinov, Vladislav and Scholer, Falk and Croft, W. Bruce and Sanderson, Mark}, title = {A Non-Factoid Question-Answering Taxonomy}, year = {2022}, isbn = {9781450387323}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3477495.3531926}, doi = {10.1145/3477495.3531926}, booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval}, pages = {1196–1207}, numpages = {12}, keywords = {question taxonomy, non-factoid question-answering, editorial study, dataset analysis}, location = {Madrid, Spain}, series = {SIGIR '22} } ``` Enjoy! 🤗
svenstahlmann/finetuned-distilbert-needmining
svenstahlmann
2022-07-18T13:15:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "needmining", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T12:50:37Z
--- language: en tags: - distilbert - needmining license: apache-2.0 metric: - f1 --- # Finetuned-Distilbert-needmining (uncased) This model is a finetuned version of the [Distilbert base model](https://huggingface.co/distilbert-base-uncased). It was trained to predict need-containing sentences from amazon product reviews. ## Model description This mode is part of ongoing research, after the publication of the research more information will be added. ## Intended uses & limitations You can use this model to identify sentences that contain customer needs in user-generated content. This can act as a filtering process to remove uninformative content for market research. ### How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="svenstahlmann/finetuned-distilbert-needmining") >>> classifier("the plasic feels super cheap.") [{'label': 'contains need', 'score': 0.9397542476654053}] ``` ### Limitations and bias We are not aware of any bias in the training data. ## Training data The training was done on a dataset of 6400 sentences. The sentences were taken from product reviews off amazon and coded if they express customer needs. ## Training procedure For the training, we used [Population Based Training (PBT)](https://www.deepmind.com/blog/population-based-training-of-neural-networks) and optimized for f1 score on a validation set of 1600 sentences. ### Preprocessing The preprocessing follows the [Distilbert base model](https://huggingface.co/distilbert-base-uncased). ### Pretraining The model was trained on a titan RTX for 1 hour. ## Evaluation results Results on the validation set: | F1 | |:----:| | 76.0 | ### BibTeX entry and citation info coming soon
MMVos/distilbert-base-uncased-finetuned-squad
MMVos
2022-07-18T12:16:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T09:52:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1814 | 1.0 | 8235 | 1.2488 | | 0.9078 | 2.0 | 16470 | 1.3127 | | 0.7439 | 3.0 | 24705 | 1.4214 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pritoms/opt-350m-finetuned-stack
pritoms
2022-07-18T11:14:18Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-18T10:53:56Z
--- license: other tags: - generated_from_trainer model-index: - name: opt-350m-finetuned-stack results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-finetuned-stack This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
julmarti/ppo-LunarLander-v2
julmarti
2022-07-18T11:06:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-18T11:06:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 246.73 +/- 23.48 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dpovedano/distilbert-base-uncased-finetuned-ner
dpovedano
2022-07-18T10:13:45Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T10:05:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dpovedano/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpovedano/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0285 - Validation Loss: 0.0612 - Train Precision: 0.9222 - Train Recall: 0.9358 - Train F1: 0.9289 - Train Accuracy: 0.9834 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0289 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 0 | | 0.0284 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 1 | | 0.0285 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
fumakurata/distilbert-base-uncased-finetuned-emotion
fumakurata
2022-07-18T10:12:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T07:22:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.834 - name: F1 type: f1 value: 0.8171742650957551 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5401 - Accuracy: 0.834 - F1: 0.8172 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 192 - eval_batch_size: 192 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 84 | 0.7993 | 0.74 | 0.6827 | | No log | 2.0 | 168 | 0.5401 | 0.834 | 0.8172 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
TestZee/t5-small-finetuned-kaggle-data-t5-v2.0
TestZee
2022-07-18T09:43:21Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-18T09:03:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TestZee/t5-small-finetuned-kaggle-data-t5-v2.0 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TestZee/t5-small-finetuned-kaggle-data-t5-v2.0 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8648 - Validation Loss: 1.7172 - Train Rouge1: 24.1639 - Train Rouge2: 13.1314 - Train Rougel: 20.8170 - Train Rougelsum: 22.3549 - Train Gen Len: 19.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 2.1107 | 1.8251 | 23.3472 | 12.6240 | 20.0726 | 21.6297 | 19.0 | 0 | | 1.9759 | 1.7755 | 23.8048 | 13.0368 | 20.4876 | 22.1022 | 19.0 | 1 | | 1.9275 | 1.7466 | 23.9713 | 13.1351 | 20.5833 | 22.1610 | 19.0 | 2 | | 1.8931 | 1.7291 | 24.0628 | 13.1243 | 20.7427 | 22.2890 | 19.0 | 3 | | 1.8648 | 1.7172 | 24.1639 | 13.1314 | 20.8170 | 22.3549 | 19.0 | 4 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Livingwithmachines/bert_1875_1890
Livingwithmachines
2022-07-18T09:37:54Z
76
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T09:35:12Z
# Neural Language Models for Nineteenth-Century English: bert_1875_1890 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1875-1890 and comprised of ~1.3 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
Livingwithmachines/bert_1850_1875
Livingwithmachines
2022-07-18T09:33:56Z
27
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T09:31:40Z
# Neural Language Models for Nineteenth-Century English: bert_1850_1875 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1850-1875 and comprised of ~1.3 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
rsuwaileh/IDRISI-LMR-HD-TB-partition
rsuwaileh
2022-07-18T09:17:11Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:32:05Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (only the training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
rsuwaileh/IDRISI-LMR-HD-TL
rsuwaileh
2022-07-18T09:16:29Z
5
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:30:24Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training, development, and test data are used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-less LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
rsuwaileh/IDRISI-LMR-HD-TL-partition
rsuwaileh
2022-07-18T09:16:12Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:30:51Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-less LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
aatmasidha/distilbert-base-uncased-newsmodelclassification
aatmasidha
2022-07-18T09:04:59Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-12T09:10:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-newsmodelclassification results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.928 - name: F1 type: f1 value: 0.9278415074713384 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-newsmodelclassification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2177 - Accuracy: 0.928 - F1: 0.9278 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8104 | 1.0 | 250 | 0.3057 | 0.9105 | 0.9084 | | 0.2506 | 2.0 | 500 | 0.2177 | 0.928 | 0.9278 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Prafuld3/distilbert-base-uncased-finetuned-emotion
Prafuld3
2022-07-18T08:17:49Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T07:29:28Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.923 - name: F1 type: f1 value: 0.9232089605669606 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2185 - Accuracy: 0.923 - F1: 0.9232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8274 | 1.0 | 250 | 0.3172 | 0.907 | 0.9036 | | 0.2501 | 2.0 | 500 | 0.2185 | 0.923 | 0.9232 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
MadridMaverick/phobert-base-finetuned-imdb
MadridMaverick
2022-07-18T04:04:21Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T03:55:03Z
--- tags: - generated_from_trainer model-index: - name: phobert-base-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-base-finetuned-imdb This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2510 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7146 | 1.0 | 2500 | 1.4245 | | 1.3821 | 2.0 | 5000 | 1.2666 | | 1.3308 | 3.0 | 7500 | 1.2564 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
namwoo/distilbert-base-uncased-finetuned-ner
namwoo
2022-07-18T00:38:09Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T00:35:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: namwoo/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # namwoo/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0339 - Validation Loss: 0.0623 - Train Precision: 0.9239 - Train Recall: 0.9335 - Train F1: 0.9287 - Train Accuracy: 0.9829 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1982 | 0.0715 | 0.9040 | 0.9218 | 0.9128 | 0.9799 | 0 | | 0.0537 | 0.0618 | 0.9202 | 0.9305 | 0.9254 | 0.9827 | 1 | | 0.0339 | 0.0623 | 0.9239 | 0.9335 | 0.9287 | 0.9829 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
pyronear/mobilenet_v3_large
pyronear
2022-07-17T23:48:57Z
23
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1905.02244", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T20:31:41Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # MobileNet V3 - Large model Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf). ## Model description The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/mobilenet_v3_large").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, eprinttype = {arXiv}, eprint = {1905.02244}, timestamp = {Thu, 27 May 2021 16:20:51 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
pyronear/mobilenet_v3_small
pyronear
2022-07-17T23:48:39Z
29
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1905.02244", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-13T23:53:41Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # MobileNet V3 - Small model Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf). ## Model description The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/mobilenet_v3_small").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, eprinttype = {arXiv}, eprint = {1905.02244}, timestamp = {Thu, 27 May 2021 16:20:51 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
pyronear/resnet34
pyronear
2022-07-17T23:48:22Z
25
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T21:07:12Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ResNet-34 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
csalcedo/ppo-LunarLander-v2
csalcedo
2022-07-17T17:54:22Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-16T20:58:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 241.17 +/- 21.24 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese
Edresson
2022-07-17T17:43:02Z
20
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 20.39 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using the Common Voice 7.0 and TTS-Portuguese Corpus. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese
Edresson
2022-07-17T17:39:10Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 33.96 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian
Edresson
2022-07-17T17:37:45Z
20
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "Russian-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - Russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 19.46 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese
Edresson
2022-07-17T17:37:08Z
9
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-17T17:18:45Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 63.90 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset (TTS-Portuguese Corpus). # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
meln1k/Reinforce-Pixelcopter-PLE-v0
meln1k
2022-07-17T16:16:38Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-17T14:59:41Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - metrics: - type: mean_reward value: 9.60 +/- 8.33 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5