modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 06:27:36
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
527 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 06:27:12
card
stringlengths
11
1.01M
AIYIYA/my_tt
AIYIYA
2023-09-11T14:42:38Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-11T14:04:56Z
--- tags: - generated_from_keras_callback model-index: - name: AIYIYA/my_tt results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AIYIYA/my_tt This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0110 - Validation Loss: 1.1941 - Train Accuracy: 0.5185 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 20, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.8538 | 1.2004 | 0.5185 | 0 | | 1.0820 | 1.1683 | 0.5185 | 1 | | 1.0110 | 1.1941 | 0.5185 | 2 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
pplantinga/whisper-small-sw
pplantinga
2023-09-11T14:42:28Z
80
3
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "sw", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-12-14T15:33:20Z
--- language: - sw license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Swahili results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 sw type: mozilla-foundation/common_voice_11_0 config: sw split: test args: sw metrics: - type: wer value: 27.62114587994997 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Swahili This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 sw dataset. It achieves the following results on the evaluation set: - Loss: 0.5597 - Wer: 27.6211 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
jasoneden/bloom560m-squad-helloworld
jasoneden
2023-09-11T14:42:14Z
86
8
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "question-answering", "generated_from_trainer", "dataset:squad_v2", "base_model:bigscience/bloom-560m", "base_model:finetune:bigscience/bloom-560m", "license:bigscience-bloom-rail-1.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2022-10-25T18:46:33Z
--- license: bigscience-bloom-rail-1.0 tags: - generated_from_trainer datasets: - squad_v2 base_model: bigscience/bloom-560m model-index: - name: debug_bloom_squad results: [] --- <!-- This model card has mostly been generated automatically according to the information the Trainer had access to. I've added some additional context. --> # POC - BLOOM for QuestionAnswering, tuned on squad_v2 This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the squad_v2 dataset. It is intended for a proof of concept, and perhaps to serve as a starting point for others trying to do the same thing. Ongoing discussion surrounding this effort: https://huggingface.co/bigscience/bloom/discussions/46#633c57b2ccce04161f82e6c2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 6 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
jncraton/LaMini-GPT-124M-ct2-int8
jncraton
2023-09-11T14:38:27Z
563
0
transformers
[ "transformers", "text-generation", "en", "arxiv:2304.14402", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2023-06-24T22:21:05Z
--- language: - en license: cc-by-nc-4.0 pipeline_tag: text-generation widget: - text: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: how can I become more healthy? ### Response:' example_title: example base_model: gpt2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> # LaMini-GPT-124M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. <table> <thead> <tr> <th>Base model</th> <th colspan="4">LaMini-LM series (#parameters)</th> </tr> </thead> <tbody> <tr> <td>T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> <td></td> </tr> <tr> <td>Flan-T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> <td></td> </tr> <tr> <td>Cerebras-GPT</td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> </tr> <tr> <td>GPT-2</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> <td></td> </tr> <tr> <td>GPT-Neo</td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> <td></td> <td></td> </tr> <tr> <td>GPT-J</td> <td colspan="4">coming soon</td> </tr> <tr> <td>LLaMA</td> <td colspan="4">coming soon</td> </tr> </tbody> </table> ## Use ### Intended use We recommend using the model to respond to human instructions written in natural language. Since this decoder-only model is fine-tuned with wrapper text, we suggest using the same wrapper text to achieve the best performance. See the example on the right or the code below. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text-generation', model = checkpoint) instruction = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' input_prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> </p> We initialize with [gpt2](https://huggingface.co/gpt2) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 124M. ### Training Hyperparameters ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```
Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc
Jzuluaga
2023-09-11T14:30:11Z
96
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en-atc", "en", "generated_from_trainer", "dataset:Jzuluaga/uwb_atcc", "arxiv:2203.16822", "arxiv:2211.04054", "base_model:facebook/wav2vec2-large-960h-lv60-self", "base_model:finetune:facebook/wav2vec2-large-960h-lv60-self", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-30T07:59:57Z
--- language: en license: apache-2.0 tags: - audio - automatic-speech-recognition - en-atc - en - generated_from_trainer datasets: - Jzuluaga/uwb_atcc metrics: - wer base_model: facebook/wav2vec2-large-960h-lv60-self model-index: - name: wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: UWB-ATCC dataset (Air Traffic Control Communications) type: Jzuluaga/uwb_atcc config: test split: test metrics: - type: wer value: 17.2 name: TEST WER verified: false - type: wer value: 13.72 name: TEST WER (+LM) verified: false - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: ATCOSIM corpus (Air Traffic Control Communications) type: Jzuluaga/atcosim_corpus config: test split: test metrics: - type: wer value: 15.31 name: TEST WER verified: false - type: wer value: 11.88 name: TEST WER (+LM) verified: false --- # wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). <a href="https://colab.research.google.com/github/idiap/w2v2-air-traffic/blob/main/src/eval_xlsr_atc_model.ipynb"> <img alt="GitHub" src="https://colab.research.google.com/assets/colab-badge.svg\"> </a> <a href="https://github.com/idiap/w2v2-air-traffic"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\"> </a> It achieves the following results on the evaluation set: - Loss: 0.7287 - Wer: 0.1756 Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset. Code — GitHub repository: https://github.com/idiap/w2v2-air-traffic ## Usage You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb ## Intended uses & limitations This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice. ## Training and evaluation data See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model. - We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0 - However, do not worry, we have prepared the database in `Datasets format`. Here, [UWB-ATCC corpus on HuggingFace](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). You can scroll and check the train/test partitions, and even listen to some audios. - If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/uwb_atcc/blob/main/atc_data_loader.py). - ## Writing your own inference script If you use language model, you need to install the KenLM bindings with: ```bash conda activate your_environment pip install https://github.com/kpu/kenlm/archive/master.zip ``` The snippet of code: ```python from datasets import load_dataset, load_metric, Audio import torch from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM import torchaudio.functional as F USE_LM = False DATASET_ID = "Jzuluaga/uwb_atcc" MODEL_ID = "Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc" # 1. Load the dataset # we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly uwb_atcc_corpus_test = load_dataset(DATASET_ID, "test", split="test") # 2. Load the model model = AutoModelForCTC.from_pretrained(MODEL_ID) # 3. Load the processors, we offer support with LM, which should yield better resutls if USE_LM: processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID) else: processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) # 4. Format the test sample sample = next(iter(uwb_atcc_corpus_test)) file_sampling_rate = sample['audio']['sampling_rate'] # resample if neccessary if file_sampling_rate != 16000: resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy() else: resampled_audio = torch.tensor(sample["audio"]["array"]).numpy() input_values = processor(resampled_audio, return_tensors="pt").input_values # 5. Run the forward pass in the model with torch.no_grad(): logits = model(input_values).logits # get the transcription with processor if USE_LM: transcription = processor.batch_decode(logits.numpy()).text else: pred_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(pred_ids) # print the output print(transcription) ``` # Cite us If you use this code for your research, please cite our paper with: ``` @article{zuluaga2022how, title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022bertraffic, title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022atco2, title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others}, journal={arXiv preprint arXiv:2211.04054}, year={2022} } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.06 | 500 | 2.9016 | 0.9995 | | 2.877 | 2.12 | 1000 | 0.9812 | 0.3485 | | 2.877 | 3.18 | 1500 | 0.7842 | 0.2732 | | 0.7834 | 4.25 | 2000 | 0.6962 | 0.2192 | | 0.7834 | 5.31 | 2500 | 0.6527 | 0.2042 | | 0.6084 | 6.37 | 3000 | 0.6220 | 0.1972 | | 0.6084 | 7.43 | 3500 | 0.6442 | 0.1934 | | 0.5147 | 8.49 | 4000 | 0.6793 | 0.1950 | | 0.5147 | 9.55 | 4500 | 0.6432 | 0.1920 | | 0.4566 | 10.62 | 5000 | 0.6605 | 0.1853 | | 0.4566 | 11.68 | 5500 | 0.6393 | 0.1866 | | 0.4155 | 12.74 | 6000 | 0.6918 | 0.1803 | | 0.4155 | 13.8 | 6500 | 0.6514 | 0.1791 | | 0.372 | 14.86 | 7000 | 0.7010 | 0.1851 | | 0.372 | 15.92 | 7500 | 0.6824 | 0.1786 | | 0.3368 | 16.99 | 8000 | 0.6895 | 0.1780 | | 0.3368 | 18.05 | 8500 | 0.7150 | 0.1759 | | 0.3244 | 19.11 | 9000 | 0.7141 | 0.1759 | | 0.3244 | 20.17 | 9500 | 0.7225 | 0.1756 | | 0.2981 | 21.23 | 10000 | 0.7287 | 0.1756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
MaxKazak/ruBert-base-russian-emotion-detection
MaxKazak
2023-09-11T14:27:43Z
13,789
4
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "sentiment", "emotion-classification", "multilabel", "multiclass", "ru", "dataset:Djacon/ru_goemotions", "base_model:ai-forever/ruBert-base", "base_model:finetune:ai-forever/ruBert-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-28T15:25:35Z
--- language: - ru license: apache-2.0 tags: - sentiment - emotion-classification - multilabel - multiclass datasets: - Djacon/ru_goemotions metrics: - accuracy widget: - text: Очень рад тебя видеть! - text: Как дела? - text: Мне немного отвратно это делать - text: Я испытал мурашки от страха - text: Нет ничего радостного в этих горьких новостях - text: Ого, неожидал тебя здесь увидеть! - text: Фу ну и мерзость - text: Мне неприятно общение с тобой base_model: ai-forever/ruBert-base model-index: - name: ruBert-base-russian-emotions-classifier-goEmotions results: - task: type: multilabel-text-classification name: Multilabel Text Classification dataset: name: ru_goemotions type: Djacon/ru_goemotions args: ru metrics: - type: roc_auc value: 92% name: multilabel ROC AUC --- # ruBert-base-russian-emotions-classifier-goEmotions This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on [Djacon/ru_goemotions](https://huggingface.co/datasets/Djacon/ru_goemotions). It achieves the following results on the evaluation set (2nd epoch): - Loss: 0.2088 - AUC: 0.9240 The quality of the predicted probabilities on the test dataset is the following: | label | joy | interest | surpise | sadness | anger | disgust | fear | guilt | neutral | average | |----------|--------|----------|---------|---------|--------|---------|--------|--------|---------|---------| | AUC | 0.9369 | 0.9213 | 0.9325 | 0.8791 | 0.8374 | 0.9041 | 0.9470 | 0.9758 | 0.8518 | 0.9095 | | F1-micro | 0.9528 | 0.9157 | 0.9697 | 0.9284 | 0.8690 | 0.9658 | 0.9851 | 0.9875 | 0.7654 | 0.9266 | | F1-macro | 0.8369 | 0.7922 | 0.7561 | 0.7392 | 0.7351 | 0.7356 | 0.8176 | 0.8247 | 0.7650 | 0.7781 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | AUC | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1755 | 1.0 | 1685 | 0.1717 | 0.9220 | | 0.1391 | 2.0 | 3370 | 0.1757 | 0.9240 | | 0.0899 | 3.0 | 5055 | 0.2088 | 0.9106 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0
AbdelKarim95/Reinforce-0
AbdelKarim95
2023-09-11T14:23:47Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T13:04:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 445.40 +/- 73.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
PoungPoung/fen_chess
PoungPoung
2023-09-11T14:17:01Z
127
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-06T11:55:41Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: fen_chess results: [] widget: - text: "rnbqkbnr/pppppppp/8/8/4P3/8/PPPP1PPP/RNBQKBNR b KQkq e3 0 1" --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fen_chess This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
sanjeevnara/stablethumbs-dreambooth-multiconcept
sanjeevnara
2023-09-11T14:15:09Z
33
0
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-10T22:48:48Z
--- license: apache-2.0 language: - en library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion --- Stable Diffusion v1.5 trained using Dreambooth approach to generate 'thumbs-up' style images. Also trained to generate professional Soccer player Vinicius Jr.'s face. <be> Prompt Guide: - For a thumbs up style, add 'with a thumbs up' or 'thumbs up gesture' to your prompt e.g. `'photo of Messi with a thumbs up gesture, high quality'.` - For Vinicius Jr, add the rare token 'xjy' e.g. `'photo of xjy with a thumbs up gesture, high quality'`. Uses Diffusers library / StableDiffusionPipeline.
baebee/Starlight-13b-QLORA
baebee
2023-09-11T14:14:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T14:14:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
Bolakubus/distilhubert-finetuned-gtzan
Bolakubus
2023-09-11T14:07:58Z
161
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-06T15:52:56Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6073 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9996 | 1.0 | 113 | 1.7954 | 0.57 | | 1.3157 | 2.0 | 226 | 1.2129 | 0.67 | | 0.9375 | 3.0 | 339 | 0.9223 | 0.76 | | 0.817 | 4.0 | 452 | 0.8372 | 0.73 | | 0.5425 | 5.0 | 565 | 0.7206 | 0.74 | | 0.4381 | 6.0 | 678 | 0.6317 | 0.78 | | 0.5359 | 7.0 | 791 | 0.5468 | 0.84 | | 0.2037 | 8.0 | 904 | 0.5492 | 0.84 | | 0.3028 | 9.0 | 1017 | 0.5550 | 0.8 | | 0.1674 | 10.0 | 1130 | 0.6073 | 0.84 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
checkiejan/flan-t5-prefix-25-7-2
checkiejan
2023-09-11T13:58:54Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T13:58:50Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
bigmorning/whisper_4_with_init_sun_syl_wd_0__0090
bigmorning
2023-09-11T13:49:34Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T13:49:26Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0090 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0090 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0943 - Train Accuracy: 0.0356 - Train Wermet: 0.0118 - Train Wermet Syl: 0.0159 - Validation Loss: 1.2876 - Validation Accuracy: 0.0208 - Validation Wermet: 0.3252 - Validation Wermet Syl: 0.2884 - Epoch: 89 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | | 0.7684 | 0.0292 | 0.2020 | 0.2029 | 1.1879 | 0.0202 | 0.3553 | 0.3215 | 45 | | 0.7262 | 0.0295 | 0.1938 | 0.1947 | 1.2263 | 0.0200 | 0.3537 | 0.3177 | 46 | | 0.7286 | 0.0295 | 0.1876 | 0.1898 | 1.1772 | 0.0203 | 0.3485 | 0.3135 | 47 | | 0.6807 | 0.0300 | 0.1775 | 0.1797 | 1.1761 | 0.0203 | 0.3490 | 0.3155 | 48 | | 0.6609 | 0.0301 | 0.1713 | 0.1742 | 1.1853 | 0.0203 | 0.3484 | 0.3153 | 49 | | 0.6062 | 0.0306 | 0.1615 | 0.1653 | 1.1660 | 0.0204 | 0.3432 | 0.3090 | 50 | | 0.5755 | 0.0309 | 0.1547 | 0.1584 | 1.1698 | 0.0204 | 0.3428 | 0.3089 | 51 | | 0.5600 | 0.0310 | 0.1482 | 0.1524 | 1.1667 | 0.0204 | 0.3398 | 0.3058 | 52 | | 0.5715 | 0.0308 | 0.1449 | 0.1496 | 1.1614 | 0.0205 | 0.3381 | 0.3036 | 53 | | 0.5247 | 0.0313 | 0.1358 | 0.1411 | 1.1639 | 0.0205 | 0.3359 | 0.3025 | 54 | | 0.5085 | 0.0315 | 0.1301 | 0.1358 | 1.2420 | 0.0202 | 0.3412 | 0.3064 | 55 | | 0.4827 | 0.0317 | 0.1239 | 0.1295 | 1.1677 | 0.0205 | 0.3349 | 0.3009 | 56 | | 0.4848 | 0.0317 | 0.1207 | 0.1280 | 1.1653 | 0.0205 | 0.3326 | 0.2991 | 57 | | 0.4323 | 0.0322 | 0.1109 | 0.1185 | 1.1602 | 0.0206 | 0.3299 | 0.2953 | 58 | | 0.4183 | 0.0323 | 0.1057 | 0.1133 | 1.1622 | 0.0206 | 0.3307 | 0.2962 | 59 | | 0.4329 | 0.0322 | 0.1028 | 0.1100 | 1.1714 | 0.0206 | 0.3300 | 0.2950 | 60 | | 0.3962 | 0.0326 | 0.0964 | 0.1045 | 1.1726 | 0.0206 | 0.3311 | 0.2967 | 61 | | 0.3642 | 0.0329 | 0.0898 | 0.0973 | 1.1699 | 0.0206 | 0.3289 | 0.2936 | 62 | | 0.3786 | 0.0327 | 0.0884 | 0.0963 | 1.1734 | 0.0206 | 0.3279 | 0.2929 | 63 | | 0.3698 | 0.0328 | 0.0842 | 0.0925 | 1.1728 | 0.0207 | 0.3282 | 0.2932 | 64 | | 0.3219 | 0.0333 | 0.0765 | 0.0850 | 1.1830 | 0.0207 | 0.3258 | 0.2907 | 65 | | 0.3035 | 0.0335 | 0.0725 | 0.0811 | 1.1840 | 0.0207 | 0.3261 | 0.2904 | 66 | | 0.3522 | 0.0330 | 0.0745 | 0.0826 | 1.2107 | 0.0206 | 0.3299 | 0.2955 | 67 | | 0.3001 | 0.0335 | 0.0663 | 0.0749 | 1.1810 | 0.0207 | 0.3264 | 0.2909 | 68 | | 0.2729 | 0.0338 | 0.0595 | 0.0677 | 1.1911 | 0.0207 | 0.3247 | 0.2886 | 69 | | 0.2696 | 0.0338 | 0.0572 | 0.0654 | 1.1950 | 0.0207 | 0.3260 | 0.2905 | 70 | | 0.2840 | 0.0337 | 0.0563 | 0.0648 | 1.2094 | 0.0207 | 0.3250 | 0.2887 | 71 | | 0.2319 | 0.0342 | 0.0484 | 0.0569 | 1.2107 | 0.0207 | 0.3250 | 0.2878 | 72 | | 0.2371 | 0.0342 | 0.0464 | 0.0541 | 1.2059 | 0.0207 | 0.3240 | 0.2880 | 73 | | 0.2666 | 0.0338 | 0.0486 | 0.0575 | 1.2036 | 0.0207 | 0.3241 | 0.2887 | 74 | | 0.2443 | 0.0340 | 0.0442 | 0.0522 | 1.2106 | 0.0207 | 0.3241 | 0.2877 | 75 | | 0.2118 | 0.0344 | 0.0380 | 0.0456 | 1.2172 | 0.0207 | 0.3240 | 0.2871 | 76 | | 0.1997 | 0.0346 | 0.0354 | 0.0428 | 1.2247 | 0.0208 | 0.3219 | 0.2852 | 77 | | 0.2461 | 0.0341 | 0.0386 | 0.0466 | 1.2257 | 0.0207 | 0.3240 | 0.2874 | 78 | | 0.2367 | 0.0342 | 0.0364 | 0.0431 | 1.2173 | 0.0208 | 0.3234 | 0.2870 | 79 | | 0.1857 | 0.0347 | 0.0294 | 0.0365 | 1.2287 | 0.0208 | 0.3244 | 0.2876 | 80 | | 0.1504 | 0.0351 | 0.0244 | 0.0314 | 1.2425 | 0.0207 | 0.3238 | 0.2871 | 81 | | 0.1438 | 0.0352 | 0.0227 | 0.0287 | 1.2495 | 0.0208 | 0.3222 | 0.2861 | 82 | | 0.1545 | 0.0350 | 0.0232 | 0.0288 | 1.2612 | 0.0207 | 0.3257 | 0.2898 | 83 | | 0.2122 | 0.0345 | 0.0284 | 0.0346 | 1.2518 | 0.0208 | 0.3241 | 0.2884 | 84 | | 0.1685 | 0.0349 | 0.0222 | 0.0278 | 1.2466 | 0.0208 | 0.3231 | 0.2868 | 85 | | 0.1371 | 0.0352 | 0.0181 | 0.0236 | 1.2606 | 0.0208 | 0.3239 | 0.2869 | 86 | | 0.1357 | 0.0352 | 0.0171 | 0.0216 | 1.2675 | 0.0208 | 0.3240 | 0.2874 | 87 | | 0.1022 | 0.0356 | 0.0132 | 0.0172 | 1.2887 | 0.0208 | 0.3233 | 0.2875 | 88 | | 0.0943 | 0.0356 | 0.0118 | 0.0159 | 1.2876 | 0.0208 | 0.3252 | 0.2884 | 89 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
RickyIG/image_classification
RickyIG
2023-09-11T13:48:48Z
215
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T13:39:57Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 - Accuracy: 0.886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7254 | 0.99 | 62 | 2.5418 | 0.819 | | 1.8131 | 2.0 | 125 | 1.8025 | 0.852 | | 1.5991 | 2.98 | 186 | 1.6367 | 0.889 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
facebook/mbart-large-en-ro
facebook
2023-09-11T13:45:59Z
11,496
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "mbart", "translation", "en", "ro", "license:mit", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation language: - en - ro license: mit --- ### mbart-large-en-ro This is mbart-large-cc25, finetuned on wmt_en_ro. It scores BLEU 28.1 without post processing and BLEU 38 with postprocessing. Instructions in `romanian_postprocessing.md` Original Code: https://github.com/pytorch/fairseq/tree/master/examples/mbart Docs: https://huggingface.co/transformers/master/model_doc/mbart.html Finetuning Code: examples/seq2seq/finetune.py (as of Aug 20, 2020)
flyswot/test2
flyswot
2023-09-11T13:45:47Z
265
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:flyswot/convnext-tiny-224_flyswot", "base_model:finetune:flyswot/convnext-tiny-224_flyswot", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T10:46:33Z
--- tags: - generated_from_trainer base_model: flyswot/convnext-tiny-224_flyswot model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [flyswot/convnext-tiny-224_flyswot](https://huggingface.co/flyswot/convnext-tiny-224_flyswot) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.1 | 23 | 0.1128 | 0.9787 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
davanstrien/convnext_flyswot
davanstrien
2023-09-11T13:44:59Z
248
0
transformers
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "base_model:finetune:facebook/convnext-base-224-22k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - f1 base_model: facebook/convnext-base-224-22k model-index: - name: convnext_flyswot results: - task: type: image-classification name: Image Classification dataset: name: image_folder type: image_folder args: default metrics: - type: f1 value: 0.959245529738118 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_flyswot This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - F1: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 0.6833 | 0.7484 | | No log | 2.0 | 104 | 0.3666 | 0.8750 | | No log | 3.0 | 156 | 0.2090 | 0.9321 | | No log | 4.0 | 208 | 0.1478 | 0.9449 | | No log | 5.0 | 260 | 0.1002 | 0.9518 | | No log | 6.0 | 312 | 0.1053 | 0.9506 | | No log | 7.0 | 364 | 0.1182 | 0.9616 | | No log | 8.0 | 416 | 0.1102 | 0.9592 | | No log | 9.0 | 468 | 0.1262 | 0.9616 | | 0.203 | 10.0 | 520 | 0.1286 | 0.9616 | | 0.203 | 11.0 | 572 | 0.1355 | 0.9592 | | 0.203 | 12.0 | 624 | 0.1299 | 0.9592 | | 0.203 | 13.0 | 676 | 0.1154 | 0.9592 | | 0.203 | 14.0 | 728 | 0.1385 | 0.9580 | | 0.203 | 15.0 | 780 | 0.1330 | 0.9592 | | 0.203 | 16.0 | 832 | 0.1390 | 0.9592 | | 0.203 | 17.0 | 884 | 0.1386 | 0.9592 | | 0.203 | 18.0 | 936 | 0.1390 | 0.9592 | | 0.203 | 19.0 | 988 | 0.1409 | 0.9592 | | 0.0006 | 20.0 | 1040 | 0.1411 | 0.9592 | | 0.0006 | 21.0 | 1092 | 0.1413 | 0.9592 | | 0.0006 | 22.0 | 1144 | 0.1415 | 0.9592 | | 0.0006 | 23.0 | 1196 | 0.1426 | 0.9592 | | 0.0006 | 24.0 | 1248 | 0.1435 | 0.9592 | | 0.0006 | 25.0 | 1300 | 0.1438 | 0.9592 | | 0.0006 | 26.0 | 1352 | 0.1434 | 0.9592 | | 0.0006 | 27.0 | 1404 | 0.1437 | 0.9592 | | 0.0006 | 28.0 | 1456 | 0.1441 | 0.9592 | | 0.0002 | 29.0 | 1508 | 0.1440 | 0.9592 | | 0.0002 | 30.0 | 1560 | 0.1441 | 0.9592 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
davanstrien/detr-resnet-50_fine_tuned_trade_dir
davanstrien
2023-09-11T13:44:46Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2022-12-07T16:09:19Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/detr-resnet-50 model-index: - name: detr-resnet-50_fine_tuned_trade_dir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_fine_tuned_trade_dir This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
davanstrien/conditional-detr-resnet-50_fine_tuned_beyond_words
davanstrien
2023-09-11T13:44:42Z
134
0
transformers
[ "transformers", "pytorch", "tensorboard", "conditional_detr", "object-detection", "generated_from_trainer", "dataset:biglam/loc_beyond_words", "base_model:microsoft/conditional-detr-resnet-50", "base_model:finetune:microsoft/conditional-detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-03-01T12:42:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - biglam/loc_beyond_words base_model: microsoft/conditional-detr-resnet-50 model-index: - name: conditional-detr-resnet-50_fine_tuned_beyond_words results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conditional-detr-resnet-50_fine_tuned_beyond_words This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on the loc_beyond_words dataset. It achieves the following results on the evaluation set: - Loss: 0.5892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.674 | 0.28 | 100 | 1.7571 | | 1.4721 | 0.56 | 200 | 1.2737 | | 1.2557 | 0.84 | 300 | 1.1037 | | 1.0781 | 1.12 | 400 | 1.0184 | | 1.0353 | 1.4 | 500 | 0.9988 | | 1.0324 | 1.69 | 600 | 0.9951 | | 0.9131 | 1.97 | 700 | 0.9224 | | 0.8724 | 2.25 | 800 | 0.9692 | | 0.8129 | 2.53 | 900 | 0.8670 | | 0.9 | 2.81 | 1000 | 0.8326 | | 0.7993 | 3.09 | 1100 | 0.7875 | | 0.7907 | 3.37 | 1200 | 0.7517 | | 0.8424 | 3.65 | 1300 | 0.9088 | | 0.7808 | 3.93 | 1400 | 0.8506 | | 0.7469 | 4.21 | 1500 | 0.7928 | | 0.7582 | 4.49 | 1600 | 0.7228 | | 0.7546 | 4.78 | 1700 | 0.7588 | | 0.7842 | 5.06 | 1800 | 0.7726 | | 0.775 | 5.34 | 1900 | 0.7676 | | 0.7263 | 5.62 | 2000 | 0.7164 | | 0.7209 | 5.9 | 2100 | 0.7061 | | 0.7259 | 6.18 | 2200 | 0.7579 | | 0.7701 | 6.46 | 2300 | 0.8184 | | 0.7391 | 6.74 | 2400 | 0.6684 | | 0.6834 | 7.02 | 2500 | 0.7042 | | 0.7098 | 7.3 | 2600 | 0.7166 | | 0.7498 | 7.58 | 2700 | 0.6752 | | 0.7056 | 7.87 | 2800 | 0.7064 | | 0.7004 | 8.15 | 2900 | 0.7090 | | 0.6964 | 8.43 | 3000 | 0.7318 | | 0.682 | 8.71 | 3100 | 0.7216 | | 0.7309 | 8.99 | 3200 | 0.6545 | | 0.6576 | 9.27 | 3300 | 0.6478 | | 0.7014 | 9.55 | 3400 | 0.6814 | | 0.673 | 9.83 | 3500 | 0.6783 | | 0.6455 | 10.11 | 3600 | 0.7248 | | 0.7041 | 10.39 | 3700 | 0.7729 | | 0.6664 | 10.67 | 3800 | 0.6746 | | 0.6161 | 10.96 | 3900 | 0.6414 | | 0.6975 | 11.24 | 4000 | 0.6637 | | 0.6751 | 11.52 | 4100 | 0.6570 | | 0.6092 | 11.8 | 4200 | 0.6691 | | 0.6593 | 12.08 | 4300 | 0.6276 | | 0.6449 | 12.36 | 4400 | 0.6388 | | 0.6136 | 12.64 | 4500 | 0.6711 | | 0.6521 | 12.92 | 4600 | 0.6768 | | 0.6162 | 13.2 | 4700 | 0.6427 | | 0.7083 | 13.48 | 4800 | 0.6492 | | 0.6407 | 13.76 | 4900 | 0.6213 | | 0.6371 | 14.04 | 5000 | 0.6674 | | 0.626 | 14.33 | 5100 | 0.6185 | | 0.6442 | 14.61 | 5200 | 0.7180 | | 0.5981 | 14.89 | 5300 | 0.6441 | | 0.629 | 15.17 | 5400 | 0.6262 | | 0.625 | 15.45 | 5500 | 0.6397 | | 0.6123 | 15.73 | 5600 | 0.6440 | | 0.6084 | 16.01 | 5700 | 0.6493 | | 0.6021 | 16.29 | 5800 | 0.6263 | | 0.6502 | 16.57 | 5900 | 0.6254 | | 0.6339 | 16.85 | 6000 | 0.7043 | | 0.5925 | 17.13 | 6100 | 0.8014 | | 0.6453 | 17.42 | 6200 | 0.6385 | | 0.6143 | 17.7 | 6300 | 0.6033 | | 0.6057 | 17.98 | 6400 | 0.6881 | | 0.6386 | 18.26 | 6500 | 0.6366 | | 0.5839 | 18.54 | 6600 | 0.6563 | | 0.6013 | 18.82 | 6700 | 0.5982 | | 0.5999 | 19.1 | 6800 | 0.6064 | | 0.6023 | 19.38 | 6900 | 0.5795 | | 0.5593 | 19.66 | 7000 | 0.6538 | | 0.6375 | 19.94 | 7100 | 0.6991 | | 0.6073 | 20.22 | 7200 | 0.7117 | | 0.596 | 20.51 | 7300 | 0.6034 | | 0.5987 | 20.79 | 7400 | 0.6489 | | 0.5922 | 21.07 | 7500 | 0.6216 | | 0.589 | 21.35 | 7600 | 0.6257 | | 0.6047 | 21.63 | 7700 | 0.6415 | | 0.5775 | 21.91 | 7800 | 0.6159 | | 0.588 | 22.19 | 7900 | 0.6095 | | 0.5844 | 22.47 | 8000 | 0.6373 | | 0.5964 | 22.75 | 8100 | 0.6022 | | 0.5987 | 23.03 | 8200 | 0.6050 | | 0.5605 | 23.31 | 8300 | 0.6083 | | 0.5835 | 23.6 | 8400 | 0.7823 | | 0.5816 | 23.88 | 8500 | 0.6417 | | 0.5757 | 24.16 | 8600 | 0.6324 | | 0.5997 | 24.44 | 8700 | 0.6046 | | 0.5674 | 24.72 | 8800 | 0.6558 | | 0.5703 | 25.0 | 8900 | 0.5819 | | 0.5766 | 25.28 | 9000 | 0.6116 | | 0.5548 | 25.56 | 9100 | 0.5877 | | 0.564 | 25.84 | 9200 | 0.5672 | | 0.548 | 26.12 | 9300 | 0.6073 | | 0.5436 | 26.4 | 9400 | 0.5739 | | 0.6006 | 26.69 | 9500 | 0.6101 | | 0.5519 | 26.97 | 9600 | 0.5869 | | 0.5432 | 27.25 | 9700 | 0.5721 | | 0.5597 | 27.53 | 9800 | 0.5807 | | 0.5254 | 27.81 | 9900 | 0.5849 | | 0.5366 | 28.09 | 10000 | 0.5831 | | 0.5654 | 28.37 | 10100 | 0.5993 | | 0.57 | 28.65 | 10200 | 0.5892 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
davanstrien/convnext-tiny-224-wikiart
davanstrien
2023-09-11T13:44:37Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "convnext", "image-classification", "vision", "generated_from_trainer", "dataset:wiki_art", "base_model:facebook/convnext-tiny-224", "base_model:finetune:facebook/convnext-tiny-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-21T12:54:11Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - wiki_art metrics: - accuracy base_model: facebook/convnext-tiny-224 model-index: - name: convnext-tiny-224-wikiart results: - task: type: image-classification name: Image Classification dataset: name: huggan/wikiart type: wiki_art config: default split: train args: default metrics: - type: accuracy value: 0.7140050748956372 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-wikiart This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the huggan/wikiart dataset. It achieves the following results on the evaluation set: - Loss: 0.8022 - Accuracy: 0.7140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9779 | 1.0 | 8654 | 0.9191 | 0.6743 | | 0.9959 | 2.0 | 17308 | 0.8523 | 0.6941 | | 1.0344 | 3.0 | 25962 | 0.8277 | 0.7023 | | 0.8853 | 4.0 | 34616 | 0.8126 | 0.7100 | | 0.9557 | 5.0 | 43270 | 0.8022 | 0.7140 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
davanstrien/vit-manuscripts
davanstrien
2023-09-11T13:44:14Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit_mae", "pretraining", "masked-auto-encoding", "generated_from_trainer", "base_model:facebook/vit-mae-base", "base_model:finetune:facebook/vit-mae-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - masked-auto-encoding - generated_from_trainer base_model: facebook/vit-mae-base model-index: - name: vit-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-manuscripts This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset. It achieves the following results on the evaluation set: - Loss: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5303 | 1.0 | 34 | 0.5134 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
davanstrien/iiif_manuscript_vit
davanstrien
2023-09-11T13:44:01Z
251
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 base_model: google/vit-base-patch16-224-in21k model-index: - name: iiif_manuscript_vit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iiif_manuscript_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - F1: 0.5996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 | | 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 | | 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 | | 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 | | 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 | | 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 | | 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 | | 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 | | 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 | | 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
davanstrien/cultural_heritage_metadata_accuracy_mnli
davanstrien
2023-09-11T13:43:22Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:biglam/cultural_heritage_metadata_accuracy", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-14T12:09:32Z
--- license: mit tags: - generated_from_trainer datasets: - biglam/cultural_heritage_metadata_accuracy base_model: xlm-roberta-base model-index: - name: cultural_heritage_metadata_accuracy_mnli results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cultural_heritage_metadata_accuracy_mnli This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the cultural_heritage_metadata_accuracy dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
davanstrien/convnext-small-224-leicester_binary
davanstrien
2023-09-11T13:43:10Z
189
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "vision", "generated_from_trainer", "base_model:facebook/convnext-small-224", "base_model:finetune:facebook/convnext-small-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-06T16:56:52Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer metrics: - f1 base_model: facebook/convnext-small-224 model-index: - name: convnext-small-224-leicester_binary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-small-224-leicester_binary This model is a fine-tuned version of [facebook/convnext-small-224](https://huggingface.co/facebook/convnext-small-224) on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - F1: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 7 | 0.5143 | 0.8608 | | 0.5872 | 2.0 | 14 | 0.4215 | 0.8608 | | 0.3903 | 3.0 | 21 | 0.4127 | 0.8608 | | 0.3903 | 4.0 | 28 | 0.3605 | 0.8608 | | 0.3163 | 5.0 | 35 | 0.3152 | 0.8608 | | 0.2942 | 6.0 | 42 | 0.2942 | 0.8608 | | 0.2942 | 7.0 | 49 | 0.2669 | 0.8608 | | 0.2755 | 8.0 | 56 | 0.2316 | 0.8608 | | 0.2281 | 9.0 | 63 | 0.2104 | 0.8608 | | 0.2076 | 10.0 | 70 | 0.1938 | 0.8608 | | 0.2076 | 11.0 | 77 | 0.1803 | 0.8608 | | 0.1832 | 12.0 | 84 | 0.1704 | 0.8608 | | 0.1758 | 13.0 | 91 | 0.1650 | 0.8608 | | 0.1758 | 14.0 | 98 | 0.1714 | 0.8608 | | 0.167 | 15.0 | 105 | 0.1575 | 0.8608 | | 0.1519 | 16.0 | 112 | 0.1549 | 0.8608 | | 0.1519 | 17.0 | 119 | 0.1705 | 0.8608 | | 0.1422 | 18.0 | 126 | 0.1478 | 0.8608 | | 0.1444 | 19.0 | 133 | 0.1437 | 0.8608 | | 0.1396 | 20.0 | 140 | 0.1398 | 0.8608 | | 0.1396 | 21.0 | 147 | 0.1351 | 0.8608 | | 0.1293 | 22.0 | 154 | 0.1370 | 0.8987 | | 0.1361 | 23.0 | 161 | 0.1335 | 0.8987 | | 0.1361 | 24.0 | 168 | 0.1311 | 0.9367 | | 0.1246 | 25.0 | 175 | 0.1289 | 0.9620 | | 0.1211 | 26.0 | 182 | 0.1283 | 0.9620 | | 0.1211 | 27.0 | 189 | 0.1294 | 0.9620 | | 0.1182 | 28.0 | 196 | 0.1306 | 0.9620 | | 0.1172 | 29.0 | 203 | 0.1312 | 0.9620 | | 0.1102 | 30.0 | 210 | 0.1318 | 0.9620 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
HiTZ/A2T_RoBERTa_SMFA_ACE-arg
HiTZ
2023-09-11T13:35:52Z
114
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "zero-shot-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "arxiv:2104.14690", "arxiv:2203.13602", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-05-02T09:38:07Z
--- pipeline_tag: zero-shot-classification datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever --- # A2T Entailment model **Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers). Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format. For more information please, take a look to the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library or the following published papers: - [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/) - [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]() ## About the model The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Cite If you use this model, consider citing the following publications: ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", doi = "10.18653/v1/2021.emnlp-main.92", pages = "1199--1212", } ```
ixa-ehu/roberta-eus-cc100-base-cased
ixa-ehu
2023-09-11T13:33:41Z
112
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "basque", "eu", "arxiv:2203.08111", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-16T09:47:37Z
--- language: eu license: cc-by-nc-4.0 tags: - basque - roberta --- # Roberta-eus cc100 base cased This is a RoBERTa model for Basque model presented in [Does corpus quality really matter for low-resource languages?](https://arxiv.org/abs/2203.08111). There are several models for Basque using the RoBERTa architecture, using different corpora: - roberta-eus-euscrawl-base-cased: Basque RoBERTa model trained on Euscrawl, a corpus created using tailored crawling from Basque sites. EusCrawl contains 12,528k documents and 423M tokens. - roberta-eus-euscrawl-large-cased: RoBERTa large trained on EusCrawl. - roberta-eus-mC4-base-cased: Basque RoBERTa model trained on the Basque portion of mc4 dataset. - roberta-eus-CC100-base-cased: Basque RoBERTa model trained on Basque portion of cc100 dataset. The models have been tested on five different downstream tasks for Basque: Topic classification, Sentiment analysis, Stance detection, Named Entity Recognition (NER), and Question Answering (refer to the [paper](https://arxiv.org/abs/2203.08111) for more details). See summary of results below: | Model | Topic class. | Sentiment | Stance det. | NER | QA | Average | |----------------------------------|--------------|-----------|-------------|----------|----------|----------| | roberta-eus-euscrawl-base-cased | 76.2 | 77.7 | 57.4 | 86.8 | 34.6 | 66.5 | | roberta-eus-euscrawl-large-cased | **77.6** | 78.8 | 62.9 | **87.2** | **38.3** | **69.0** | | roberta-eus-mC4-base-cased | 75.3 | **80.4** | 59.1 | 86.0 | 35.2 | 67.2 | | roberta-eus-CC100-base-cased | 76.2 | 78.8 | **63.4** | 85.2 | 35.8 | 67.9 | If you use any of these models, please cite the following paper: ``` @misc{artetxe2022euscrawl, title={Does corpus quality really matter for low-resource languages?}, author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa}, year={2022}, eprint={2203.08111}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kensvin/audio_classification
kensvin
2023-09-11T13:31:00Z
162
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-11T13:27:41Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07079646017699115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # audio_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6513 - Accuracy: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6439 | 0.0531 | | No log | 1.87 | 7 | 2.6446 | 0.0708 | | 2.6349 | 2.93 | 11 | 2.6484 | 0.0885 | | 2.6349 | 4.0 | 15 | 2.6497 | 0.0885 | | 2.6349 | 4.8 | 18 | 2.6509 | 0.0796 | | 2.6233 | 5.87 | 22 | 2.6513 | 0.0708 | | 2.6233 | 6.93 | 26 | 2.6515 | 0.0708 | | 2.612 | 8.0 | 30 | 2.6513 | 0.0708 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
sanchit-gandhi/whisper-small-dv
sanchit-gandhi
2023-09-11T13:25:29Z
210
1
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-06-27T14:43:10Z
--- language: - dv license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Dv - Sanchit Gandhi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - type: wer value: 14.066140417985187 name: Wer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.1727 - Wer Ortho: 63.8972 - Wer: 14.0661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.136 | 1.63 | 500 | 0.1727 | 63.8972 | 14.0661 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1.dev0 - Tokenizers 0.13.3
sanchit-gandhi/whisper-medium-fleurs-lang-id
sanchit-gandhi
2023-09-11T13:25:16Z
128,294
14
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "audio-classification", "generated_from_trainer", "dataset:xtreme_s", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-02-23T13:37:22Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - xtreme_s metrics: - accuracy base_model: openai/whisper-medium model-index: - name: whisper-medium-fleurs-lang-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium FLEURS Language Identification This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [FLEURS subset](https://huggingface.co/datasets/google/xtreme_s#language-identification---fleurs-langid) of the [google/xtreme_s](https://huggingface.co/google/xtreme_s) dataset. It achieves the following results on the evaluation set: - Loss: 0.8413 - Accuracy: 0.8805 To reproduce this run, execute the command in [`run.sh`](https://huggingface.co/sanchit-gandhi/whisper-medium-fleurs-lang-id/blob/main/run.sh). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 0 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0152 | 1.0 | 8494 | 0.9087 | 0.8431 | | 0.0003 | 2.0 | 16988 | 1.0059 | 0.8460 | | 0.0 | 3.0 | 25482 | 0.8413 | 0.8805 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
kakao-enterprise/vits-vctk
kakao-enterprise
2023-09-11T13:24:11Z
1,906
12
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "text-to-speech", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-08-31T10:35:47Z
--- license: mit tags: - vits pipeline_tag: text-to-speech --- # VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech VITS is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. This repository contains the weights for the official VITS checkpoint trained on the [VCTK](https://huggingface.co/datasets/vctk) dataset. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. There are two variants of the VITS model: one is trained on the [LJ Speech](https://huggingface.co/datasets/lj_speech) dataset, and the other is trained on the [VCTK](https://huggingface.co/datasets/vctk) dataset. LJ Speech dataset consists of 13,100 short audio clips of a single speaker with a total length of approximately 24 hours. The VCTK dataset consists of approximately 44,000 short audio clips uttered by 109 native English speakers with various accents. The total length of the audio clips is approximately 44 hours. | Checkpoint | Train Hours | Speakers | |------------|-------------|----------| | [vits-ljs](https://huggingface.co/kakao-enterprise/vits-ljs) | 24 | 1 | | [vits-vctk](https://huggingface.co/kakao-enterprise/vits-vctk) | 44 | 109 | ## Usage VITS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("kakao-enterprise/vits-vctk") tokenizer = AutoTokenizer.from_pretrained("kakao-enterprise/vits-vctk") text = "Hey, it's Hugging Face on the phone" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Jaehyeon Kim et al. from Kakao Enterprise. If you use the model, consider citing the VITS paper: ``` @inproceedings{kim2021conditional, title={"Conditional Variational Autoencoder with Adversarial Learning for End-to-end Text-to-speech"}, author={Kim, Jaehyeon and Kong, Jungil and Son, Juhee}, booktitle={International Conference on Machine Learning}, pages={5530--5540}, year={2021}, organization={PMLR} } ``` ## License The model is licensed as [**MIT**](https://github.com/jaywalnut310/vits/blob/main/LICENSE).
nickmuchi/distilroberta-finetuned-financial-text-classification
nickmuchi
2023-09-11T13:23:38Z
1,773
15
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "financial-sentiment-analysis", "sentiment-analysis", "sentence_50agree", "generated_from_trainer", "sentiment", "finance", "en", "dataset:financial_phrasebank", "dataset:Kaggle_Self_label", "dataset:nickmuchi/financial-classification", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 tags: - financial-sentiment-analysis - sentiment-analysis - sentence_50agree - generated_from_trainer - sentiment - finance datasets: - financial_phrasebank - Kaggle_Self_label - nickmuchi/financial-classification metrics: - f1 widget: - text: The USD rallied by 10% last night example_title: Bullish Sentiment - text: Covid-19 cases have been increasing over the past few months impacting earnings for global firms example_title: Bearish Sentiment - text: the USD has been trending lower example_title: Mildly Bearish Sentiment base_model: distilroberta-base model-index: - name: distilroberta-finetuned-finclass results: - task: type: text-classification name: Text Classification dataset: name: financial_phrasebank type: finance args: sentence_50agree metrics: - type: F1 value: 0.8835 name: F1 - type: accuracy value: 0.89 name: accuracy --- # distilroberta-finetuned-financial-text-classification This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the sentence_50Agree [financial-phrasebank + Kaggle Dataset](https://huggingface.co/datasets/nickmuchi/financial-classification), a dataset consisting of 4840 Financial News categorised by sentiment (negative, neutral, positive). The Kaggle dataset includes Covid-19 sentiment data and can be found here: [sentiment-classification-selflabel-dataset](https://www.kaggle.com/percyzheng/sentiment-classification-selflabel-dataset). It achieves the following results on the evaluation set: - Loss: 0.4463 - F1: 0.8835 ## Model description Model determines the financial sentiment of given text. Given the unbalanced distribution of the class labels, the weights were adjusted to pay attention to the less sampled labels which should increase overall performance. The Covid dataset was added in order to enrich the model, given most models have not been trained on the impact of Covid-19 on earnings or markets. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7309 | 1.0 | 72 | 0.3671 | 0.8441 | | 0.3757 | 2.0 | 144 | 0.3199 | 0.8709 | | 0.3054 | 3.0 | 216 | 0.3096 | 0.8678 | | 0.2229 | 4.0 | 288 | 0.3776 | 0.8390 | | 0.1744 | 5.0 | 360 | 0.3678 | 0.8723 | | 0.1436 | 6.0 | 432 | 0.3728 | 0.8758 | | 0.1044 | 7.0 | 504 | 0.4116 | 0.8744 | | 0.0931 | 8.0 | 576 | 0.4148 | 0.8761 | | 0.0683 | 9.0 | 648 | 0.4423 | 0.8837 | | 0.0611 | 10.0 | 720 | 0.4463 | 0.8835 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
AGudden/xlm-roberta-base-finetuned-marc
AGudden
2023-09-11T13:19:17Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:dutch_social", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-03T23:30:08Z
--- license: mit tags: - generated_from_trainer datasets: - dutch_social base_model: xlm-roberta-base model-index: - name: xlm-roberta-base-finetuned-marc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the dutch_social dataset. It achieves the following results on the evaluation set: - Loss: 0.1992 - Mae: 0.0532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.2824 | 1.0 | 10176 | 0.2370 | 0.0748 | | 0.1809 | 2.0 | 20352 | 0.1992 | 0.0532 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
kensvin/image_classification
kensvin
2023-09-11T13:18:05Z
192
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T13:08:35Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.911 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.5938 - Accuracy: 0.911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7307 | 0.99 | 62 | 2.5306 | 0.833 | | 1.8698 | 2.0 | 125 | 1.7637 | 0.903 | | 1.5629 | 2.98 | 186 | 1.5856 | 0.915 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
nielsr/swin-tiny-patch4-window7-224-finetuned-cifar10
nielsr
2023-09-11T13:16:37Z
221
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:microsoft/swin-tiny-patch4-window7-224", "base_model:finetune:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-11T11:59:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy base_model: microsoft/swin-tiny-patch4-window7-224 model-index: - name: swin-tiny-patch4-window7-224-finetuned-cifar10 results: - task: type: image-classification name: Image Classification dataset: name: image_folder type: image_folder args: default metrics: - type: accuracy value: 0.9788888888888889 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-cifar10 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0690 - Accuracy: 0.9789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2446 | 1.0 | 190 | 0.1128 | 0.9659 | | 0.1722 | 2.0 | 380 | 0.1034 | 0.9663 | | 0.1355 | 3.0 | 570 | 0.0690 | 0.9789 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6
Enyonam/roberta-base-Roberta-Model
Enyonam
2023-09-11T13:16:26Z
17
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-base", "base_model:finetune:FacebookAI/roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-30T23:47:50Z
--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: roberta-base-Roberta-Model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-Roberta-Model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8450 - F1: 0.6468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.916 | 0.5 | 500 | 0.8835 | 0.6218 | | 0.8783 | 1.0 | 1000 | 0.8467 | 0.6531 | | 0.8769 | 1.5 | 1500 | 0.8581 | 0.6487 | | 0.8499 | 2.01 | 2000 | 0.8651 | 0.6488 | | 0.8734 | 2.51 | 2500 | 0.8908 | 0.6409 | | 0.8597 | 3.01 | 3000 | 0.8923 | 0.6409 | | 0.8987 | 3.51 | 3500 | 0.8999 | 0.6215 | | 0.879 | 4.01 | 4000 | 0.9219 | 0.6220 | | 0.8892 | 4.51 | 4500 | 0.8936 | 0.6220 | | 0.8926 | 5.02 | 5000 | 0.8914 | 0.6226 | | 0.975 | 5.52 | 5500 | 0.8984 | 0.6405 | | 0.9387 | 6.02 | 6000 | 1.1061 | 0.2347 | | 0.9446 | 6.52 | 6500 | 0.8879 | 0.6436 | | 0.879 | 7.02 | 7000 | 0.9053 | 0.6216 | | 0.8657 | 7.52 | 7500 | 0.8552 | 0.6446 | | 0.8396 | 8.02 | 8000 | 0.8535 | 0.6475 | | 0.8264 | 8.53 | 8500 | 0.8476 | 0.6519 | | 0.8555 | 9.03 | 9000 | 0.8450 | 0.6468 | | 0.851 | 9.53 | 9500 | 0.8807 | 0.6404 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ldos/text_shortening_model_v28
ldos
2023-09-11T13:11:04Z
111
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T12:48:28Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v28 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v28 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9239 - Rouge1: 0.4821 - Rouge2: 0.2554 - Rougel: 0.4273 - Rougelsum: 0.4271 - Bert precision: 0.8753 - Bert recall: 0.8686 - Average word count: 8.1231 - Max word count: 14 - Min word count: 4 - Average token count: 12.4805 - % shortened texts with length > 12: 2.7027 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 2.1941 | 1.0 | 37 | 1.6111 | 0.5035 | 0.2708 | 0.4544 | 0.4553 | 0.8744 | 0.8772 | 9.2643 | 18 | 3 | 13.5826 | 12.9129 | | 1.4552 | 2.0 | 74 | 1.5748 | 0.4724 | 0.2457 | 0.4313 | 0.4313 | 0.8737 | 0.8635 | 8.009 | 17 | 3 | 12.024 | 6.006 | | 1.096 | 3.0 | 111 | 1.5283 | 0.5016 | 0.282 | 0.4515 | 0.4519 | 0.8774 | 0.8757 | 8.7748 | 16 | 4 | 13.0811 | 7.2072 | | 0.8801 | 4.0 | 148 | 1.5903 | 0.4848 | 0.2549 | 0.4372 | 0.4375 | 0.88 | 0.8713 | 8.3544 | 16 | 4 | 12.6607 | 6.9069 | | 0.7226 | 5.0 | 185 | 1.6953 | 0.4557 | 0.2378 | 0.408 | 0.4086 | 0.8752 | 0.8603 | 7.3904 | 13 | 1 | 11.6697 | 0.9009 | | 0.6003 | 6.0 | 222 | 1.8416 | 0.4935 | 0.2616 | 0.4327 | 0.4339 | 0.8758 | 0.8712 | 8.5736 | 17 | 3 | 12.8498 | 8.7087 | | 0.4852 | 7.0 | 259 | 1.8375 | 0.4662 | 0.2428 | 0.4147 | 0.4161 | 0.8703 | 0.8653 | 8.3904 | 16 | 2 | 12.7147 | 7.5075 | | 0.4469 | 8.0 | 296 | 1.9116 | 0.4617 | 0.2433 | 0.41 | 0.4117 | 0.8724 | 0.8649 | 8.0781 | 17 | 2 | 12.5495 | 2.7027 | | 0.4025 | 9.0 | 333 | 1.9871 | 0.4716 | 0.2443 | 0.4161 | 0.4164 | 0.8691 | 0.8662 | 9.006 | 19 | 4 | 13.4204 | 15.3153 | | 0.3568 | 10.0 | 370 | 2.0547 | 0.4864 | 0.2649 | 0.4377 | 0.4377 | 0.8742 | 0.8724 | 8.6396 | 16 | 3 | 13.1381 | 7.8078 | | 0.3071 | 11.0 | 407 | 2.1554 | 0.4582 | 0.2388 | 0.405 | 0.4053 | 0.8712 | 0.8595 | 7.7087 | 14 | 4 | 12.033 | 2.1021 | | 0.2794 | 12.0 | 444 | 2.1352 | 0.4768 | 0.2567 | 0.4341 | 0.4344 | 0.8757 | 0.8705 | 8.4655 | 16 | 4 | 12.8949 | 8.1081 | | 0.2627 | 13.0 | 481 | 2.1300 | 0.4703 | 0.2518 | 0.4227 | 0.4227 | 0.876 | 0.8674 | 8.015 | 17 | 3 | 12.2342 | 4.5045 | | 0.2251 | 14.0 | 518 | 2.2319 | 0.4887 | 0.2623 | 0.4335 | 0.4336 | 0.8757 | 0.8704 | 8.3544 | 15 | 4 | 12.7357 | 5.7057 | | 0.217 | 15.0 | 555 | 2.2311 | 0.4709 | 0.2523 | 0.4196 | 0.4196 | 0.8739 | 0.8683 | 8.2613 | 17 | 4 | 12.6276 | 5.4054 | | 0.2097 | 16.0 | 592 | 2.2460 | 0.471 | 0.2463 | 0.4137 | 0.4147 | 0.8732 | 0.8649 | 8.1682 | 15 | 3 | 12.4384 | 4.5045 | | 0.1841 | 17.0 | 629 | 2.3917 | 0.4564 | 0.229 | 0.4072 | 0.4076 | 0.8709 | 0.8663 | 8.3934 | 16 | 3 | 12.7027 | 5.4054 | | 0.176 | 18.0 | 666 | 2.3731 | 0.4644 | 0.2408 | 0.4093 | 0.4103 | 0.87 | 0.8633 | 8.1712 | 16 | 4 | 12.5495 | 4.5045 | | 0.1531 | 19.0 | 703 | 2.3836 | 0.4925 | 0.2727 | 0.439 | 0.439 | 0.879 | 0.8711 | 8.1111 | 16 | 3 | 12.2703 | 3.9039 | | 0.1599 | 20.0 | 740 | 2.3611 | 0.4731 | 0.2575 | 0.4199 | 0.4202 | 0.8743 | 0.8669 | 8.1141 | 16 | 3 | 12.5315 | 4.8048 | | 0.1469 | 21.0 | 777 | 2.4164 | 0.4774 | 0.2515 | 0.4295 | 0.4302 | 0.876 | 0.8709 | 8.3754 | 15 | 3 | 12.8348 | 6.3063 | | 0.1449 | 22.0 | 814 | 2.4769 | 0.4702 | 0.2461 | 0.4205 | 0.421 | 0.874 | 0.8688 | 8.4054 | 16 | 4 | 12.7508 | 7.8078 | | 0.1417 | 23.0 | 851 | 2.5470 | 0.4669 | 0.2438 | 0.4163 | 0.4163 | 0.8733 | 0.8649 | 7.9339 | 14 | 3 | 12.1922 | 2.7027 | | 0.1255 | 24.0 | 888 | 2.5590 | 0.4642 | 0.2379 | 0.4127 | 0.4136 | 0.8736 | 0.8621 | 7.6517 | 14 | 4 | 11.7057 | 2.1021 | | 0.1281 | 25.0 | 925 | 2.4347 | 0.4707 | 0.2571 | 0.4227 | 0.4233 | 0.8734 | 0.8675 | 8.2492 | 15 | 3 | 12.6937 | 4.5045 | | 0.1399 | 26.0 | 962 | 2.5391 | 0.4649 | 0.2454 | 0.4132 | 0.414 | 0.8703 | 0.8684 | 8.6547 | 17 | 4 | 13.1982 | 8.4084 | | 0.1279 | 27.0 | 999 | 2.5712 | 0.4723 | 0.2526 | 0.4208 | 0.4207 | 0.8729 | 0.8682 | 8.3393 | 17 | 4 | 12.6547 | 6.3063 | | 0.1224 | 28.0 | 1036 | 2.5410 | 0.466 | 0.2485 | 0.4159 | 0.4156 | 0.8743 | 0.8663 | 7.955 | 15 | 3 | 12.2643 | 3.3033 | | 0.1095 | 29.0 | 1073 | 2.6742 | 0.4647 | 0.2382 | 0.4094 | 0.4098 | 0.873 | 0.8641 | 8.033 | 16 | 4 | 12.3243 | 5.1051 | | 0.1202 | 30.0 | 1110 | 2.5533 | 0.4748 | 0.2495 | 0.4225 | 0.4234 | 0.8757 | 0.8676 | 8.1562 | 16 | 4 | 12.4204 | 4.8048 | | 0.1236 | 31.0 | 1147 | 2.5441 | 0.4709 | 0.2444 | 0.418 | 0.4187 | 0.87 | 0.8659 | 8.4144 | 17 | 4 | 12.8228 | 5.7057 | | 0.1074 | 32.0 | 1184 | 2.6271 | 0.4845 | 0.2619 | 0.4291 | 0.4301 | 0.8758 | 0.8684 | 8.1502 | 15 | 3 | 12.4985 | 4.5045 | | 0.0939 | 33.0 | 1221 | 2.6391 | 0.4806 | 0.2549 | 0.4251 | 0.4261 | 0.8722 | 0.869 | 8.6486 | 16 | 3 | 13.1592 | 7.8078 | | 0.0976 | 34.0 | 1258 | 2.6159 | 0.4798 | 0.2582 | 0.4264 | 0.4268 | 0.8738 | 0.8701 | 8.6096 | 17 | 3 | 13.0931 | 8.4084 | | 0.1042 | 35.0 | 1295 | 2.6224 | 0.4849 | 0.2557 | 0.428 | 0.4284 | 0.876 | 0.8705 | 8.2673 | 16 | 3 | 12.6757 | 4.5045 | | 0.094 | 36.0 | 1332 | 2.5925 | 0.4742 | 0.2542 | 0.4289 | 0.4296 | 0.8754 | 0.8683 | 8.033 | 15 | 3 | 12.3483 | 3.6036 | | 0.0794 | 37.0 | 1369 | 2.5782 | 0.4897 | 0.262 | 0.4354 | 0.4364 | 0.8762 | 0.8723 | 8.3153 | 16 | 3 | 12.7538 | 6.9069 | | 0.0823 | 38.0 | 1406 | 2.6590 | 0.4752 | 0.2486 | 0.4222 | 0.423 | 0.8737 | 0.8651 | 8.027 | 15 | 3 | 12.3123 | 6.3063 | | 0.0813 | 39.0 | 1443 | 2.6823 | 0.4817 | 0.2605 | 0.427 | 0.4276 | 0.8763 | 0.8696 | 8.1532 | 15 | 2 | 12.6006 | 5.1051 | | 0.0868 | 40.0 | 1480 | 2.6642 | 0.4827 | 0.2572 | 0.4308 | 0.4314 | 0.8757 | 0.8702 | 8.3964 | 16 | 3 | 12.6877 | 8.1081 | | 0.0786 | 41.0 | 1517 | 2.7908 | 0.4623 | 0.24 | 0.4086 | 0.4096 | 0.8704 | 0.863 | 8.1351 | 16 | 4 | 12.7447 | 7.2072 | | 0.0901 | 42.0 | 1554 | 2.7242 | 0.4613 | 0.2405 | 0.4115 | 0.413 | 0.8716 | 0.8636 | 8.2523 | 18 | 4 | 12.5465 | 6.9069 | | 0.0912 | 43.0 | 1591 | 2.7376 | 0.474 | 0.2446 | 0.4194 | 0.4191 | 0.8707 | 0.8694 | 8.6877 | 16 | 3 | 13.2282 | 10.5105 | | 0.0887 | 44.0 | 1628 | 2.7192 | 0.479 | 0.2539 | 0.4266 | 0.4268 | 0.874 | 0.8703 | 8.4865 | 15 | 4 | 13.1321 | 7.2072 | | 0.0807 | 45.0 | 1665 | 2.6935 | 0.4738 | 0.2501 | 0.4213 | 0.4223 | 0.874 | 0.8675 | 8.2042 | 16 | 2 | 12.6787 | 6.006 | | 0.0801 | 46.0 | 1702 | 2.7149 | 0.4662 | 0.2443 | 0.4229 | 0.4236 | 0.8745 | 0.8659 | 8.033 | 15 | 3 | 12.3453 | 4.2042 | | 0.0764 | 47.0 | 1739 | 2.6544 | 0.4697 | 0.249 | 0.4206 | 0.4202 | 0.8726 | 0.8668 | 8.2432 | 16 | 4 | 12.6637 | 6.9069 | | 0.0765 | 48.0 | 1776 | 2.7157 | 0.4764 | 0.2535 | 0.4234 | 0.4236 | 0.8762 | 0.8676 | 8.021 | 15 | 3 | 12.3544 | 4.5045 | | 0.065 | 49.0 | 1813 | 2.8051 | 0.4666 | 0.2452 | 0.4161 | 0.4165 | 0.8728 | 0.8665 | 8.2673 | 16 | 2 | 12.6246 | 5.1051 | | 0.0626 | 50.0 | 1850 | 2.7845 | 0.4781 | 0.2519 | 0.4254 | 0.4253 | 0.8746 | 0.8688 | 8.2192 | 16 | 3 | 12.5796 | 5.4054 | | 0.0608 | 51.0 | 1887 | 2.7371 | 0.4745 | 0.2456 | 0.4213 | 0.4208 | 0.8751 | 0.866 | 8.0871 | 17 | 2 | 12.3063 | 6.9069 | | 0.0599 | 52.0 | 1924 | 2.7620 | 0.474 | 0.2515 | 0.419 | 0.4204 | 0.8718 | 0.8667 | 8.1381 | 15 | 4 | 12.8979 | 3.9039 | | 0.0625 | 53.0 | 1961 | 2.8097 | 0.4646 | 0.2481 | 0.4137 | 0.4146 | 0.8706 | 0.8663 | 8.2733 | 15 | 3 | 12.7237 | 4.5045 | | 0.0529 | 54.0 | 1998 | 2.8677 | 0.4714 | 0.2436 | 0.4142 | 0.4147 | 0.8745 | 0.8651 | 7.8709 | 16 | 2 | 12.2012 | 4.2042 | | 0.05 | 55.0 | 2035 | 2.7892 | 0.467 | 0.2465 | 0.4152 | 0.4159 | 0.8739 | 0.8668 | 8.1712 | 17 | 2 | 12.4925 | 3.3033 | | 0.047 | 56.0 | 2072 | 2.7682 | 0.4719 | 0.2451 | 0.4223 | 0.423 | 0.8717 | 0.866 | 8.1802 | 15 | 3 | 12.5826 | 5.1051 | | 0.0504 | 57.0 | 2109 | 2.7897 | 0.4823 | 0.2555 | 0.427 | 0.4276 | 0.8754 | 0.8717 | 8.5345 | 15 | 3 | 12.9249 | 7.5075 | | 0.0463 | 58.0 | 2146 | 2.8505 | 0.471 | 0.2513 | 0.42 | 0.4204 | 0.8748 | 0.8683 | 8.2132 | 15 | 3 | 12.6426 | 5.7057 | | 0.0487 | 59.0 | 2183 | 2.7699 | 0.4658 | 0.2472 | 0.4156 | 0.4166 | 0.8726 | 0.8667 | 8.1231 | 15 | 3 | 12.5465 | 3.9039 | | 0.045 | 60.0 | 2220 | 2.7589 | 0.4718 | 0.2495 | 0.4211 | 0.4216 | 0.8741 | 0.8676 | 8.2432 | 17 | 4 | 12.5556 | 5.1051 | | 0.047 | 61.0 | 2257 | 2.8092 | 0.4814 | 0.2517 | 0.4253 | 0.4257 | 0.8759 | 0.8687 | 7.997 | 17 | 3 | 12.3393 | 3.003 | | 0.0415 | 62.0 | 2294 | 2.8059 | 0.4689 | 0.2494 | 0.4183 | 0.4191 | 0.8767 | 0.8655 | 7.7538 | 17 | 2 | 12.1381 | 2.4024 | | 0.0429 | 63.0 | 2331 | 2.8317 | 0.4783 | 0.2516 | 0.4248 | 0.4252 | 0.8764 | 0.8689 | 8.0811 | 17 | 3 | 12.4234 | 3.003 | | 0.0383 | 64.0 | 2368 | 2.8147 | 0.4728 | 0.2547 | 0.4189 | 0.4193 | 0.8732 | 0.867 | 8.1622 | 18 | 3 | 12.5916 | 4.2042 | | 0.039 | 65.0 | 2405 | 2.8237 | 0.4638 | 0.2401 | 0.414 | 0.4145 | 0.871 | 0.8654 | 8.3183 | 15 | 3 | 12.7057 | 5.7057 | | 0.0417 | 66.0 | 2442 | 2.8289 | 0.4726 | 0.2532 | 0.4242 | 0.4243 | 0.8746 | 0.8667 | 7.9159 | 15 | 3 | 12.3363 | 3.003 | | 0.0365 | 67.0 | 2479 | 2.8272 | 0.4752 | 0.2506 | 0.4222 | 0.4218 | 0.8732 | 0.8673 | 8.1652 | 15 | 3 | 12.5165 | 4.8048 | | 0.0372 | 68.0 | 2516 | 2.8469 | 0.4726 | 0.2491 | 0.4225 | 0.423 | 0.873 | 0.8665 | 8.1802 | 17 | 4 | 12.5796 | 5.4054 | | 0.0363 | 69.0 | 2553 | 2.8233 | 0.4745 | 0.2554 | 0.4244 | 0.4239 | 0.8751 | 0.8672 | 8.0601 | 16 | 4 | 12.2342 | 3.6036 | | 0.0356 | 70.0 | 2590 | 2.8652 | 0.4737 | 0.2471 | 0.4169 | 0.4167 | 0.8735 | 0.8658 | 8.03 | 17 | 4 | 12.3273 | 5.1051 | | 0.0366 | 71.0 | 2627 | 2.8722 | 0.4838 | 0.2598 | 0.4274 | 0.428 | 0.8767 | 0.869 | 8.0541 | 14 | 4 | 12.2913 | 3.003 | | 0.0334 | 72.0 | 2664 | 2.8650 | 0.4708 | 0.2508 | 0.4194 | 0.4195 | 0.873 | 0.8674 | 8.2252 | 16 | 4 | 12.6426 | 4.2042 | | 0.0328 | 73.0 | 2701 | 2.8827 | 0.479 | 0.2498 | 0.4221 | 0.422 | 0.8753 | 0.8683 | 8.1802 | 16 | 4 | 12.4835 | 3.3033 | | 0.0322 | 74.0 | 2738 | 2.8599 | 0.479 | 0.2524 | 0.4295 | 0.43 | 0.8746 | 0.8689 | 8.2583 | 17 | 4 | 12.6727 | 4.2042 | | 0.0308 | 75.0 | 2775 | 2.8559 | 0.4781 | 0.255 | 0.4279 | 0.4292 | 0.8766 | 0.8687 | 8.042 | 14 | 4 | 12.3033 | 2.4024 | | 0.0304 | 76.0 | 2812 | 2.8364 | 0.4779 | 0.2581 | 0.4286 | 0.4287 | 0.8759 | 0.8682 | 7.994 | 17 | 3 | 12.3063 | 3.3033 | | 0.0322 | 77.0 | 2849 | 2.8167 | 0.472 | 0.2489 | 0.4222 | 0.4225 | 0.8746 | 0.8673 | 8.003 | 17 | 4 | 12.3754 | 4.8048 | | 0.0296 | 78.0 | 2886 | 2.8835 | 0.4716 | 0.2541 | 0.4217 | 0.4219 | 0.8734 | 0.8679 | 8.2252 | 17 | 4 | 12.6787 | 4.5045 | | 0.0284 | 79.0 | 2923 | 2.8712 | 0.4729 | 0.2526 | 0.4228 | 0.4229 | 0.874 | 0.8672 | 8.1772 | 18 | 4 | 12.5495 | 3.6036 | | 0.0286 | 80.0 | 2960 | 2.8709 | 0.4826 | 0.2596 | 0.4328 | 0.4324 | 0.877 | 0.8705 | 8.1592 | 18 | 4 | 12.4234 | 4.2042 | | 0.0287 | 81.0 | 2997 | 2.8556 | 0.4746 | 0.2558 | 0.4228 | 0.4236 | 0.8747 | 0.8681 | 8.1381 | 17 | 4 | 12.3994 | 3.003 | | 0.0287 | 82.0 | 3034 | 2.8867 | 0.4788 | 0.2617 | 0.429 | 0.4291 | 0.8757 | 0.8701 | 8.3273 | 17 | 4 | 12.6997 | 5.1051 | | 0.0298 | 83.0 | 3071 | 2.8793 | 0.4828 | 0.2609 | 0.4306 | 0.4295 | 0.8757 | 0.8702 | 8.2673 | 17 | 4 | 12.6066 | 4.5045 | | 0.0266 | 84.0 | 3108 | 2.8795 | 0.472 | 0.2499 | 0.4208 | 0.4207 | 0.8742 | 0.8677 | 8.1742 | 15 | 4 | 12.5345 | 3.6036 | | 0.0257 | 85.0 | 3145 | 2.8788 | 0.48 | 0.2543 | 0.4244 | 0.4247 | 0.876 | 0.8686 | 8.1321 | 14 | 4 | 12.3874 | 2.7027 | | 0.0255 | 86.0 | 3182 | 2.9130 | 0.4868 | 0.266 | 0.4307 | 0.4304 | 0.8762 | 0.8702 | 8.1652 | 15 | 4 | 12.5285 | 3.3033 | | 0.0254 | 87.0 | 3219 | 2.9050 | 0.4847 | 0.2627 | 0.4327 | 0.432 | 0.877 | 0.8702 | 8.042 | 16 | 4 | 12.4324 | 3.3033 | | 0.0233 | 88.0 | 3256 | 2.9014 | 0.4855 | 0.2615 | 0.433 | 0.4328 | 0.8758 | 0.8701 | 8.2613 | 16 | 4 | 12.5706 | 3.9039 | | 0.0268 | 89.0 | 3293 | 2.8937 | 0.487 | 0.2586 | 0.4316 | 0.4317 | 0.8763 | 0.8707 | 8.2402 | 15 | 4 | 12.5616 | 4.2042 | | 0.0243 | 90.0 | 3330 | 2.8926 | 0.4838 | 0.2584 | 0.4271 | 0.4268 | 0.8765 | 0.8695 | 8.1171 | 14 | 4 | 12.3483 | 3.3033 | | 0.0248 | 91.0 | 3367 | 2.8870 | 0.4775 | 0.2503 | 0.4223 | 0.4222 | 0.8748 | 0.8678 | 8.1201 | 14 | 4 | 12.4354 | 3.3033 | | 0.0237 | 92.0 | 3404 | 2.8978 | 0.4816 | 0.2556 | 0.4275 | 0.4275 | 0.8752 | 0.8688 | 8.0991 | 14 | 4 | 12.4685 | 2.7027 | | 0.0244 | 93.0 | 3441 | 2.9025 | 0.4778 | 0.2506 | 0.4246 | 0.4249 | 0.8747 | 0.868 | 8.039 | 14 | 4 | 12.4174 | 3.003 | | 0.0227 | 94.0 | 3478 | 2.9164 | 0.4733 | 0.2486 | 0.4199 | 0.4204 | 0.8745 | 0.8669 | 7.973 | 14 | 4 | 12.3123 | 2.7027 | | 0.0215 | 95.0 | 3515 | 2.9183 | 0.4795 | 0.2495 | 0.4233 | 0.4231 | 0.8751 | 0.8682 | 8.03 | 14 | 4 | 12.4084 | 3.003 | | 0.0225 | 96.0 | 3552 | 2.9207 | 0.4763 | 0.2463 | 0.4204 | 0.4206 | 0.8752 | 0.8677 | 8.0511 | 14 | 4 | 12.3934 | 2.7027 | | 0.0208 | 97.0 | 3589 | 2.9226 | 0.4815 | 0.2556 | 0.4271 | 0.4276 | 0.8758 | 0.869 | 8.0871 | 14 | 4 | 12.4144 | 2.7027 | | 0.0225 | 98.0 | 3626 | 2.9234 | 0.4832 | 0.2576 | 0.4285 | 0.4281 | 0.8762 | 0.8693 | 8.1351 | 16 | 4 | 12.4595 | 3.003 | | 0.0219 | 99.0 | 3663 | 2.9243 | 0.4809 | 0.2543 | 0.4249 | 0.4249 | 0.8754 | 0.8686 | 8.1141 | 14 | 4 | 12.4775 | 2.7027 | | 0.0214 | 100.0 | 3700 | 2.9239 | 0.4821 | 0.2554 | 0.4273 | 0.4271 | 0.8753 | 0.8686 | 8.1231 | 14 | 4 | 12.4805 | 2.7027 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
begeri/ppo-LunarLander-v2
begeri
2023-09-11T13:06:41Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T13:06:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 240.37 +/- 63.93 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
RickyIG/audio_classification
RickyIG
2023-09-11T13:05:24Z
166
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-11T12:55:36Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.061946902654867256 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # audio_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6511 - Accuracy: 0.0619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6362 | 0.0796 | | No log | 1.87 | 7 | 2.6455 | 0.0708 | | 2.6353 | 2.93 | 11 | 2.6499 | 0.0619 | | 2.6353 | 4.0 | 15 | 2.6488 | 0.0708 | | 2.6353 | 4.8 | 18 | 2.6491 | 0.0885 | | 2.6272 | 5.87 | 22 | 2.6521 | 0.0619 | | 2.6272 | 6.93 | 26 | 2.6511 | 0.0442 | | 2.6245 | 8.0 | 30 | 2.6511 | 0.0619 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bigmorning/whisper_4_with_init_sun_syl_wd_0__0075
bigmorning
2023-09-11T13:04:01Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T13:03:53Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0075 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0075 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2666 - Train Accuracy: 0.0338 - Train Wermet: 0.0486 - Train Wermet Syl: 0.0575 - Validation Loss: 1.2036 - Validation Accuracy: 0.0207 - Validation Wermet: 0.3241 - Validation Wermet Syl: 0.2887 - Epoch: 74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | | 0.7684 | 0.0292 | 0.2020 | 0.2029 | 1.1879 | 0.0202 | 0.3553 | 0.3215 | 45 | | 0.7262 | 0.0295 | 0.1938 | 0.1947 | 1.2263 | 0.0200 | 0.3537 | 0.3177 | 46 | | 0.7286 | 0.0295 | 0.1876 | 0.1898 | 1.1772 | 0.0203 | 0.3485 | 0.3135 | 47 | | 0.6807 | 0.0300 | 0.1775 | 0.1797 | 1.1761 | 0.0203 | 0.3490 | 0.3155 | 48 | | 0.6609 | 0.0301 | 0.1713 | 0.1742 | 1.1853 | 0.0203 | 0.3484 | 0.3153 | 49 | | 0.6062 | 0.0306 | 0.1615 | 0.1653 | 1.1660 | 0.0204 | 0.3432 | 0.3090 | 50 | | 0.5755 | 0.0309 | 0.1547 | 0.1584 | 1.1698 | 0.0204 | 0.3428 | 0.3089 | 51 | | 0.5600 | 0.0310 | 0.1482 | 0.1524 | 1.1667 | 0.0204 | 0.3398 | 0.3058 | 52 | | 0.5715 | 0.0308 | 0.1449 | 0.1496 | 1.1614 | 0.0205 | 0.3381 | 0.3036 | 53 | | 0.5247 | 0.0313 | 0.1358 | 0.1411 | 1.1639 | 0.0205 | 0.3359 | 0.3025 | 54 | | 0.5085 | 0.0315 | 0.1301 | 0.1358 | 1.2420 | 0.0202 | 0.3412 | 0.3064 | 55 | | 0.4827 | 0.0317 | 0.1239 | 0.1295 | 1.1677 | 0.0205 | 0.3349 | 0.3009 | 56 | | 0.4848 | 0.0317 | 0.1207 | 0.1280 | 1.1653 | 0.0205 | 0.3326 | 0.2991 | 57 | | 0.4323 | 0.0322 | 0.1109 | 0.1185 | 1.1602 | 0.0206 | 0.3299 | 0.2953 | 58 | | 0.4183 | 0.0323 | 0.1057 | 0.1133 | 1.1622 | 0.0206 | 0.3307 | 0.2962 | 59 | | 0.4329 | 0.0322 | 0.1028 | 0.1100 | 1.1714 | 0.0206 | 0.3300 | 0.2950 | 60 | | 0.3962 | 0.0326 | 0.0964 | 0.1045 | 1.1726 | 0.0206 | 0.3311 | 0.2967 | 61 | | 0.3642 | 0.0329 | 0.0898 | 0.0973 | 1.1699 | 0.0206 | 0.3289 | 0.2936 | 62 | | 0.3786 | 0.0327 | 0.0884 | 0.0963 | 1.1734 | 0.0206 | 0.3279 | 0.2929 | 63 | | 0.3698 | 0.0328 | 0.0842 | 0.0925 | 1.1728 | 0.0207 | 0.3282 | 0.2932 | 64 | | 0.3219 | 0.0333 | 0.0765 | 0.0850 | 1.1830 | 0.0207 | 0.3258 | 0.2907 | 65 | | 0.3035 | 0.0335 | 0.0725 | 0.0811 | 1.1840 | 0.0207 | 0.3261 | 0.2904 | 66 | | 0.3522 | 0.0330 | 0.0745 | 0.0826 | 1.2107 | 0.0206 | 0.3299 | 0.2955 | 67 | | 0.3001 | 0.0335 | 0.0663 | 0.0749 | 1.1810 | 0.0207 | 0.3264 | 0.2909 | 68 | | 0.2729 | 0.0338 | 0.0595 | 0.0677 | 1.1911 | 0.0207 | 0.3247 | 0.2886 | 69 | | 0.2696 | 0.0338 | 0.0572 | 0.0654 | 1.1950 | 0.0207 | 0.3260 | 0.2905 | 70 | | 0.2840 | 0.0337 | 0.0563 | 0.0648 | 1.2094 | 0.0207 | 0.3250 | 0.2887 | 71 | | 0.2319 | 0.0342 | 0.0484 | 0.0569 | 1.2107 | 0.0207 | 0.3250 | 0.2878 | 72 | | 0.2371 | 0.0342 | 0.0464 | 0.0541 | 1.2059 | 0.0207 | 0.3240 | 0.2880 | 73 | | 0.2666 | 0.0338 | 0.0486 | 0.0575 | 1.2036 | 0.0207 | 0.3241 | 0.2887 | 74 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
HamZurger/Reinforce-CartPole_v2
HamZurger
2023-09-11T13:00:21Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T13:00:13Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole_v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
tuikhar/naga
tuikhar
2023-09-11T12:57:49Z
0
0
null
[ "arxiv:1910.09700", "region:us" ]
null
2023-09-11T12:57:09Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards {} --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
JasperLS/gelectra-base-injection-pt_v1
JasperLS
2023-09-11T12:55:08Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "electra", "text-classification", "generated_from_trainer", "base_model:deepset/gelectra-base", "base_model:finetune:deepset/gelectra-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-04-06T12:31:06Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: deepset/gelectra-base model-index: - name: gelectra-base-injection-pt_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gelectra-base-injection-pt_v1 DEPRECATED - PLEASE USE NEWER GELECTRA OR DEBERTA VERSION This model is a fine-tuned version of [deepset/gelectra-base](https://huggingface.co/deepset/gelectra-base) on a closed prompt injection dataset. It achieves the following results on the evaluation set: - Loss: 0.0163 - Accuracy: 1.0 ## Model description The model classifies prompts as injections or legitimate questions. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 45 | 0.2042 | 0.9211 | | No log | 2.0 | 90 | 0.0247 | 1.0 | | No log | 3.0 | 135 | 0.0163 | 1.0 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Tokenizers 0.13.3
abelkrw/audio_classification
abelkrw
2023-09-11T12:53:59Z
162
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-11T12:50:42Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07079646017699115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # audio_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6569 - Accuracy: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6456 | 0.0265 | | No log | 1.87 | 7 | 2.6512 | 0.0442 | | 2.6372 | 2.93 | 11 | 2.6509 | 0.0619 | | 2.6372 | 4.0 | 15 | 2.6541 | 0.0708 | | 2.6372 | 4.8 | 18 | 2.6554 | 0.0708 | | 2.6217 | 5.87 | 22 | 2.6561 | 0.0708 | | 2.6217 | 6.93 | 26 | 2.6564 | 0.0708 | | 2.6141 | 8.0 | 30 | 2.6569 | 0.0708 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
esperesa/xlm-roberta-base-finetuned-panx-de
esperesa
2023-09-11T12:53:29Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T12:43:57Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8653353814644136 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - F1: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2583 | 1.0 | 525 | 0.1596 | 0.8231 | | 0.1262 | 2.0 | 1050 | 0.1395 | 0.8468 | | 0.0824 | 3.0 | 1575 | 0.1339 | 0.8653 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
Jukaboo/Llama2_7B_chat_dialogsum_ft_adapters_v4100
Jukaboo
2023-09-11T12:52:20Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-11T12:23:44Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: Llama2_7B_chat_dialogsum_ft_adapters_v4100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2_7B_chat_dialogsum_ft_adapters_v4100 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
kaitchup/Llama-2-7b-gptq-2bit
kaitchup
2023-09-11T12:48:38Z
160
1
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "2-bit", "gptq", "region:us" ]
text-generation
2023-08-29T11:19:52Z
--- license: apache-2.0 language: - en --- # Model Card for Model ID This is Meta's Llama 2 7B quantized in 2-bit using AutoGPTQ from Hugging Face Transformers. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [The Kaitchup](https://kaitchup.substack.com/) - **Model type:** Causal (Llama 2) - **Language(s) (NLP):** English - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0), [Llama 2 license agreement](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) ### Model Sources The method and code used to quantize the model are explained here: [Quantize and Fine-tune LLMs with GPTQ Using Transformers and TRL](https://kaitchup.substack.com/p/quantize-and-fine-tune-llms-with) ## Uses This model is pre-trained and not fine-tuned. You may fine-tune it with PEFT using adapters. Note that the 2-bit quantization significantly decreases the performance of Llama 2. ## Other versions - [kaitchup/Llama-2-7b-gptq-4bit](https://huggingface.co/kaitchup/Llama-2-7b-gptq-4bit) - [kaitchup/Llama-2-7b-gptq-3bit](https://huggingface.co/kaitchup/Llama-2-7b-gptq-3bit) ## Model Card Contact [The Kaitchup](https://kaitchup.substack.com/)
ChristianMDahl/segFormer-b3-horizontal-vertical
ChristianMDahl
2023-09-11T12:45:44Z
2
0
transformers
[ "transformers", "tf", "segformer", "generated_from_keras_callback", "base_model:nvidia/mit-b3", "base_model:finetune:nvidia/mit-b3", "license:other", "endpoints_compatible", "region:us" ]
null
2023-06-13T19:07:57Z
--- license: other tags: - generated_from_keras_callback base_model: nvidia/mit-b3 model-index: - name: ChristianMDahl/segFormer-b3-horizontal-vertical results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ChristianMDahl/segFormer-b3-horizontal-vertical This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1671 - Validation Loss: 0.2320 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 6e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.3203 | 0.2831 | 0 | | 0.2822 | 0.2688 | 1 | | 0.2662 | 0.2578 | 2 | | 0.2526 | 0.2484 | 3 | | 0.2396 | 0.2442 | 4 | | 0.2288 | 0.2416 | 5 | | 0.2195 | 0.2381 | 6 | | 0.2121 | 0.2361 | 7 | | 0.2058 | 0.2314 | 8 | | 0.1999 | 0.2277 | 9 | | 0.1952 | 0.2287 | 10 | | 0.1912 | 0.2221 | 11 | | 0.1869 | 0.2205 | 12 | | 0.1835 | 0.2226 | 13 | | 0.1804 | 0.2209 | 14 | | 0.1775 | 0.2181 | 15 | | 0.1745 | 0.2206 | 16 | | 0.1721 | 0.2179 | 17 | | 0.1693 | 0.2199 | 18 | | 0.1671 | 0.2320 | 19 | ### Framework versions - Transformers 4.29.2 - TensorFlow 2.10.1 - Tokenizers 0.13.3
baebee/llama2-qlora-finetunined-french
baebee
2023-09-11T12:40:30Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T12:40:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
davanstrien/deberta-v3-base_fine_tuned_food_ner
davanstrien
2023-09-11T12:33:57Z
154
10
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "base_model:finetune:microsoft/deberta-v3-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-03T14:39:17Z
--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: microsoft/deberta-v3-base model-index: - name: deberta-v3-base_fine_tuned_food_ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base_fine_tuned_food_ner This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4164 - Precision: 0.9268 - Recall: 0.9446 - F1: 0.9356 - Accuracy: 0.9197 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 40 | 0.8425 | 0.8323 | 0.8323 | 0.8323 | 0.8073 | | No log | 2.0 | 80 | 0.5533 | 0.8703 | 0.8941 | 0.8820 | 0.8731 | | No log | 3.0 | 120 | 0.4855 | 0.8771 | 0.9109 | 0.8937 | 0.8797 | | No log | 4.0 | 160 | 0.4238 | 0.8949 | 0.9222 | 0.9083 | 0.8964 | | No log | 5.0 | 200 | 0.4176 | 0.9048 | 0.9302 | 0.9173 | 0.9008 | | No log | 6.0 | 240 | 0.4127 | 0.9065 | 0.9342 | 0.9202 | 0.9004 | | No log | 7.0 | 280 | 0.4409 | 0.9294 | 0.9302 | 0.9298 | 0.9043 | | No log | 8.0 | 320 | 0.3971 | 0.9129 | 0.9334 | 0.9230 | 0.9061 | | No log | 9.0 | 360 | 0.3941 | 0.9112 | 0.9390 | 0.9249 | 0.9061 | | No log | 10.0 | 400 | 0.4069 | 0.9233 | 0.9366 | 0.9299 | 0.9148 | | No log | 11.0 | 440 | 0.4039 | 0.9213 | 0.9390 | 0.9300 | 0.9162 | | No log | 12.0 | 480 | 0.4000 | 0.9126 | 0.9470 | 0.9295 | 0.9113 | | 0.3799 | 13.0 | 520 | 0.4126 | 0.9323 | 0.9390 | 0.9356 | 0.9179 | | 0.3799 | 14.0 | 560 | 0.4076 | 0.9272 | 0.9398 | 0.9334 | 0.9140 | | 0.3799 | 15.0 | 600 | 0.4129 | 0.9317 | 0.9414 | 0.9365 | 0.9188 | | 0.3799 | 16.0 | 640 | 0.4000 | 0.9239 | 0.9446 | 0.9341 | 0.9162 | | 0.3799 | 17.0 | 680 | 0.4098 | 0.9267 | 0.9438 | 0.9352 | 0.9179 | | 0.3799 | 18.0 | 720 | 0.4110 | 0.9232 | 0.9454 | 0.9342 | 0.9188 | | 0.3799 | 19.0 | 760 | 0.4202 | 0.9275 | 0.9446 | 0.9360 | 0.9183 | | 0.3799 | 20.0 | 800 | 0.4164 | 0.9268 | 0.9446 | 0.9356 | 0.9197 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
flyswot/flyswot
flyswot
2023-09-11T12:33:38Z
229
0
transformers
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "base_model:flyswot/convnext-tiny-224_flyswot", "base_model:finetune:flyswot/convnext-tiny-224_flyswot", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-04-06T15:56:05Z
--- tags: - generated_from_trainer base_model: flyswot/convnext-tiny-224_flyswot model-index: - name: flyswot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot This model is a fine-tuned version of [flyswot/convnext-tiny-224_flyswot](https://huggingface.co/flyswot/convnext-tiny-224_flyswot) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.1 | 23 | 0.0894 | 0.9941 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
stefaniftime/tmpnk87cy75
stefaniftime
2023-09-11T12:22:58Z
196
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:daily_dialog", "base_model:microsoft/DialoGPT-medium", "base_model:finetune:microsoft/DialoGPT-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-11T12:20:13Z
--- license: mit base_model: microsoft/DialoGPT-medium tags: - generated_from_trainer datasets: - daily_dialog model-index: - name: tmpnk87cy75 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tmpnk87cy75 This model is a fine-tuned version of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) on the daily_dialog dataset. It achieves the following results on the evaluation set: - eval_loss: 1.7442 - eval_runtime: 12.5801 - eval_samples_per_second: 79.49 - eval_steps_per_second: 2.544 - epoch: 9.35 - step: 6500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Jukaboo/Llama2_7B_chat_dialogsum_ft_adapters_v2400
Jukaboo
2023-09-11T12:14:06Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-11T11:56:50Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: Llama2_7B_chat_dialogsum_ft_adapters_v2400 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2_7B_chat_dialogsum_ft_adapters_v2400 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
tyzp-INC/bench2-all-MiniLM-L6-v2-tuned-stratified
tyzp-INC
2023-09-11T12:09:48Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-09-10T13:38:56Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # tyzp-INC/bench2-all-MiniLM-L6-v2-tuned-stratified This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("tyzp-INC/bench2-all-MiniLM-L6-v2-tuned-stratified") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
NbAiLab/nb-bert-large
NbAiLab
2023-09-11T12:08:15Z
1,099
13
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "bert", "norwegian", "fill-mask", "no", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: no license: cc-by-4.0 tags: - norwegian - bert thumbnail: nblogo_3.png pipeline_tag: fill-mask widget: - text: På biblioteket kan du låne en [MASK]. --- - **Release 1.0beta** (April 29, 2021) # NB-BERT-large (beta) ## Description NB-BERT-large is a general BERT-large model built on the large digital collection at the National Library of Norway. This model is trained from scratch on a wide variety of Norwegian text (both bokmål and nynorsk) from the last 200 years using a monolingual Norwegian vocabulary. ## Intended use & limitations The 1.0 version of the model is general, and should be fine-tuned for any particular use. Some fine-tuning sets may be found on Github, see * https://github.com/NBAiLab/notram ## Training data The model is trained on a wide variety of text. The training set is described on * https://github.com/NBAiLab/notram ## More information For more information on the model, see https://github.com/NBAiLab/notram
bigmorning/whisper_4_with_init_sun_syl_wd_0__0055
bigmorning
2023-09-11T12:03:22Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T12:03:14Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0055 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0055 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5247 - Train Accuracy: 0.0313 - Train Wermet: 0.1358 - Train Wermet Syl: 0.1411 - Validation Loss: 1.1639 - Validation Accuracy: 0.0205 - Validation Wermet: 0.3359 - Validation Wermet Syl: 0.3025 - Epoch: 54 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | | 0.7684 | 0.0292 | 0.2020 | 0.2029 | 1.1879 | 0.0202 | 0.3553 | 0.3215 | 45 | | 0.7262 | 0.0295 | 0.1938 | 0.1947 | 1.2263 | 0.0200 | 0.3537 | 0.3177 | 46 | | 0.7286 | 0.0295 | 0.1876 | 0.1898 | 1.1772 | 0.0203 | 0.3485 | 0.3135 | 47 | | 0.6807 | 0.0300 | 0.1775 | 0.1797 | 1.1761 | 0.0203 | 0.3490 | 0.3155 | 48 | | 0.6609 | 0.0301 | 0.1713 | 0.1742 | 1.1853 | 0.0203 | 0.3484 | 0.3153 | 49 | | 0.6062 | 0.0306 | 0.1615 | 0.1653 | 1.1660 | 0.0204 | 0.3432 | 0.3090 | 50 | | 0.5755 | 0.0309 | 0.1547 | 0.1584 | 1.1698 | 0.0204 | 0.3428 | 0.3089 | 51 | | 0.5600 | 0.0310 | 0.1482 | 0.1524 | 1.1667 | 0.0204 | 0.3398 | 0.3058 | 52 | | 0.5715 | 0.0308 | 0.1449 | 0.1496 | 1.1614 | 0.0205 | 0.3381 | 0.3036 | 53 | | 0.5247 | 0.0313 | 0.1358 | 0.1411 | 1.1639 | 0.0205 | 0.3359 | 0.3025 | 54 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
tttonyalpha/FRED-T5-1.7B-LoRA-conversational
tttonyalpha
2023-09-11T12:03:06Z
5
0
peft
[ "peft", "region:us" ]
null
2023-09-11T11:59:14Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0
mesolitica/llama-13b-hf-16384-fpf
mesolitica
2023-09-11T11:57:07Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "ms", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-30T14:14:39Z
--- language: - ms --- # Full Parameter Finetuning 13B 16384 context length Llama2 on Malaysian text README at https://github.com/huseinzol05/malaya/tree/5.1/session/llama2#full-parameter-finetuning WandB, https://wandb.ai/mesolitica/fpf-Llama-2-13b-16k-hf?workspace=user-husein-mesolitica
bigmorning/whisper_4_with_init_sun_syl_wd_0__0050
bigmorning
2023-09-11T11:48:19Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T11:48:10Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0050 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0050 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6609 - Train Accuracy: 0.0301 - Train Wermet: 0.1713 - Train Wermet Syl: 0.1742 - Validation Loss: 1.1853 - Validation Accuracy: 0.0203 - Validation Wermet: 0.3484 - Validation Wermet Syl: 0.3153 - Epoch: 49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | | 0.7684 | 0.0292 | 0.2020 | 0.2029 | 1.1879 | 0.0202 | 0.3553 | 0.3215 | 45 | | 0.7262 | 0.0295 | 0.1938 | 0.1947 | 1.2263 | 0.0200 | 0.3537 | 0.3177 | 46 | | 0.7286 | 0.0295 | 0.1876 | 0.1898 | 1.1772 | 0.0203 | 0.3485 | 0.3135 | 47 | | 0.6807 | 0.0300 | 0.1775 | 0.1797 | 1.1761 | 0.0203 | 0.3490 | 0.3155 | 48 | | 0.6609 | 0.0301 | 0.1713 | 0.1742 | 1.1853 | 0.0203 | 0.3484 | 0.3153 | 49 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
moonlightnexus/shaper
moonlightnexus
2023-09-11T11:39:03Z
3
1
diffusers
[ "diffusers", "safetensors", "General", "Anime", "Art", "Girl", "Photorealistic", "3D", "LandScapes", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "XpucT", "Lykon", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-11T09:37:30Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image language: - en tags: - General - Anime - Art - Girl - Photorealistic - 3D - LandScapes - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - XpucT - Lykon ---
bigmorning/whisper_4_with_init_sun_syl_wd_0__0045
bigmorning
2023-09-11T11:33:13Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T11:33:03Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0045 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0045 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.8201 - Train Accuracy: 0.0288 - Train Wermet: 0.2114 - Train Wermet Syl: 0.2108 - Validation Loss: 1.2056 - Validation Accuracy: 0.0201 - Validation Wermet: 0.3601 - Validation Wermet Syl: 0.3270 - Epoch: 44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
ALIGHASEMI931/finetune
ALIGHASEMI931
2023-09-11T11:29:37Z
78
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T11:27:46Z
--- tags: - generated_from_trainer model-index: - name: finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune This model was trained from scratch on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 0 - gradient_accumulation_steps: 50 - total_train_batch_size: 400 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ldos/text_shortening_model_v26
ldos
2023-09-11T11:28:09Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T09:52:36Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v26 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v26 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2306 - Rouge1: 0.5085 - Rouge2: 0.2908 - Rougel: 0.4563 - Rougelsum: 0.456 - Bert precision: 0.88 - Bert recall: 0.8755 - Average word count: 8.5646 - Max word count: 17 - Min word count: 3 - Average token count: 13.2012 - % shortened texts with length > 12: 8.7087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 2.1038 | 1.0 | 145 | 1.6481 | 0.4984 | 0.2848 | 0.4508 | 0.4519 | 0.8723 | 0.8719 | 9.1502 | 18 | 3 | 13.7117 | 15.9159 | | 1.7274 | 2.0 | 290 | 1.5436 | 0.5177 | 0.3156 | 0.4706 | 0.4714 | 0.8771 | 0.8775 | 9.1141 | 18 | 4 | 13.6637 | 14.7147 | | 1.561 | 3.0 | 435 | 1.4685 | 0.5264 | 0.3157 | 0.4671 | 0.469 | 0.8773 | 0.8793 | 9.2823 | 17 | 4 | 13.955 | 14.1141 | | 1.4244 | 4.0 | 580 | 1.4429 | 0.5213 | 0.3136 | 0.4674 | 0.4689 | 0.8772 | 0.8774 | 9.0811 | 17 | 4 | 13.8288 | 12.9129 | | 1.3375 | 5.0 | 725 | 1.4171 | 0.5326 | 0.3172 | 0.4768 | 0.4778 | 0.8785 | 0.8807 | 9.3063 | 18 | 5 | 13.964 | 14.4144 | | 1.2462 | 6.0 | 870 | 1.3989 | 0.5259 | 0.3126 | 0.4707 | 0.4714 | 0.8807 | 0.8768 | 8.6577 | 17 | 4 | 13.1441 | 9.6096 | | 1.1822 | 7.0 | 1015 | 1.3797 | 0.5321 | 0.3147 | 0.4687 | 0.4699 | 0.8798 | 0.8792 | 9.009 | 17 | 4 | 13.6877 | 12.9129 | | 1.1001 | 8.0 | 1160 | 1.3735 | 0.5387 | 0.325 | 0.481 | 0.4814 | 0.8805 | 0.8835 | 9.3213 | 17 | 4 | 14.0601 | 14.7147 | | 1.0329 | 9.0 | 1305 | 1.3813 | 0.53 | 0.3122 | 0.4694 | 0.4706 | 0.8799 | 0.8811 | 9.024 | 17 | 4 | 13.7057 | 11.1111 | | 0.9891 | 10.0 | 1450 | 1.3734 | 0.5334 | 0.3191 | 0.4715 | 0.4726 | 0.8793 | 0.8829 | 9.3243 | 17 | 4 | 14.1291 | 13.8138 | | 0.9205 | 11.0 | 1595 | 1.3687 | 0.5279 | 0.3111 | 0.4663 | 0.4676 | 0.8793 | 0.8802 | 9.03 | 16 | 4 | 13.6577 | 11.4114 | | 0.8857 | 12.0 | 1740 | 1.3986 | 0.5219 | 0.3098 | 0.4694 | 0.4703 | 0.8811 | 0.879 | 8.8018 | 15 | 3 | 13.3934 | 11.4114 | | 0.8444 | 13.0 | 1885 | 1.4143 | 0.5291 | 0.3084 | 0.4707 | 0.4718 | 0.8802 | 0.8796 | 9.03 | 17 | 4 | 13.6727 | 13.5135 | | 0.8039 | 14.0 | 2030 | 1.4352 | 0.5216 | 0.2989 | 0.4631 | 0.464 | 0.8812 | 0.878 | 8.7958 | 16 | 4 | 13.4805 | 9.3093 | | 0.7653 | 15.0 | 2175 | 1.4509 | 0.525 | 0.3076 | 0.4743 | 0.4751 | 0.8834 | 0.8783 | 8.5526 | 16 | 4 | 13.2162 | 8.7087 | | 0.7256 | 16.0 | 2320 | 1.4541 | 0.5153 | 0.2952 | 0.4566 | 0.4579 | 0.8779 | 0.8768 | 8.8739 | 16 | 4 | 13.5405 | 12.012 | | 0.7018 | 17.0 | 2465 | 1.4859 | 0.5312 | 0.306 | 0.4722 | 0.4727 | 0.8812 | 0.8823 | 9.0841 | 17 | 4 | 13.6967 | 14.4144 | | 0.6784 | 18.0 | 2610 | 1.4977 | 0.5215 | 0.3068 | 0.4674 | 0.4684 | 0.8817 | 0.877 | 8.5766 | 16 | 4 | 13.2072 | 10.2102 | | 0.6483 | 19.0 | 2755 | 1.5040 | 0.5297 | 0.3192 | 0.4757 | 0.4756 | 0.8817 | 0.8818 | 9.021 | 16 | 4 | 13.7327 | 12.012 | | 0.6166 | 20.0 | 2900 | 1.5376 | 0.526 | 0.3119 | 0.4768 | 0.4774 | 0.8835 | 0.8808 | 8.8138 | 16 | 4 | 13.3634 | 10.2102 | | 0.5955 | 21.0 | 3045 | 1.5198 | 0.528 | 0.3129 | 0.4795 | 0.4805 | 0.8829 | 0.8807 | 8.8769 | 16 | 4 | 13.5075 | 9.9099 | | 0.5678 | 22.0 | 3190 | 1.5499 | 0.518 | 0.2988 | 0.4636 | 0.464 | 0.8802 | 0.8785 | 8.9249 | 17 | 4 | 13.6006 | 12.6126 | | 0.5599 | 23.0 | 3335 | 1.5487 | 0.519 | 0.3057 | 0.4691 | 0.4698 | 0.8812 | 0.8773 | 8.6607 | 18 | 4 | 13.2192 | 9.3093 | | 0.535 | 24.0 | 3480 | 1.5912 | 0.5243 | 0.3054 | 0.4708 | 0.4717 | 0.8828 | 0.8779 | 8.6456 | 16 | 4 | 13.1532 | 9.9099 | | 0.5189 | 25.0 | 3625 | 1.5995 | 0.5314 | 0.3106 | 0.4735 | 0.474 | 0.8827 | 0.8815 | 8.9099 | 18 | 4 | 13.6126 | 12.6126 | | 0.4981 | 26.0 | 3770 | 1.6036 | 0.5222 | 0.3037 | 0.4675 | 0.4676 | 0.8824 | 0.8788 | 8.7658 | 15 | 4 | 13.3784 | 9.9099 | | 0.4729 | 27.0 | 3915 | 1.6360 | 0.5114 | 0.2927 | 0.46 | 0.4604 | 0.8807 | 0.875 | 8.5676 | 15 | 4 | 13.1592 | 9.009 | | 0.462 | 28.0 | 4060 | 1.6648 | 0.5145 | 0.2945 | 0.4586 | 0.459 | 0.8812 | 0.8754 | 8.5435 | 17 | 3 | 13.0841 | 9.009 | | 0.4467 | 29.0 | 4205 | 1.6749 | 0.5076 | 0.2828 | 0.4527 | 0.4533 | 0.8794 | 0.8746 | 8.6697 | 16 | 3 | 13.1772 | 9.6096 | | 0.4298 | 30.0 | 4350 | 1.6873 | 0.5215 | 0.2976 | 0.4683 | 0.4679 | 0.8822 | 0.8774 | 8.5766 | 16 | 3 | 13.1682 | 7.8078 | | 0.4186 | 31.0 | 4495 | 1.7008 | 0.5129 | 0.2915 | 0.4614 | 0.4614 | 0.8814 | 0.8763 | 8.5736 | 16 | 4 | 13.1892 | 8.7087 | | 0.4043 | 32.0 | 4640 | 1.7077 | 0.5121 | 0.2859 | 0.4572 | 0.457 | 0.8796 | 0.8765 | 8.7387 | 16 | 3 | 13.4114 | 10.2102 | | 0.3835 | 33.0 | 4785 | 1.7421 | 0.5106 | 0.2831 | 0.4579 | 0.4577 | 0.8785 | 0.8763 | 8.7988 | 17 | 3 | 13.4865 | 10.8108 | | 0.377 | 34.0 | 4930 | 1.7763 | 0.5135 | 0.2907 | 0.4585 | 0.4586 | 0.8808 | 0.8768 | 8.6787 | 15 | 3 | 13.4084 | 10.8108 | | 0.3672 | 35.0 | 5075 | 1.7642 | 0.5243 | 0.3018 | 0.4701 | 0.4694 | 0.8826 | 0.8777 | 8.5616 | 15 | 3 | 13.1892 | 9.6096 | | 0.3499 | 36.0 | 5220 | 1.7840 | 0.5175 | 0.2965 | 0.466 | 0.4656 | 0.8815 | 0.8772 | 8.5796 | 17 | 3 | 13.2252 | 9.9099 | | 0.3417 | 37.0 | 5365 | 1.8032 | 0.5163 | 0.2964 | 0.4638 | 0.4636 | 0.8801 | 0.8785 | 8.8348 | 16 | 3 | 13.6156 | 11.4114 | | 0.3364 | 38.0 | 5510 | 1.8112 | 0.5096 | 0.2832 | 0.4532 | 0.4536 | 0.8783 | 0.8763 | 8.8829 | 17 | 4 | 13.4925 | 10.5105 | | 0.315 | 39.0 | 5655 | 1.8360 | 0.5208 | 0.3034 | 0.4692 | 0.4694 | 0.8836 | 0.8797 | 8.7177 | 17 | 4 | 13.3213 | 11.4114 | | 0.3117 | 40.0 | 5800 | 1.8419 | 0.5069 | 0.285 | 0.4555 | 0.4558 | 0.879 | 0.8746 | 8.7117 | 17 | 3 | 13.3634 | 9.009 | | 0.3195 | 41.0 | 5945 | 1.8435 | 0.5214 | 0.2984 | 0.4686 | 0.4691 | 0.8817 | 0.8779 | 8.7297 | 17 | 3 | 13.3303 | 11.4114 | | 0.3062 | 42.0 | 6090 | 1.8574 | 0.5174 | 0.2941 | 0.4672 | 0.4676 | 0.8827 | 0.8779 | 8.6907 | 17 | 3 | 13.3604 | 9.6096 | | 0.2892 | 43.0 | 6235 | 1.8839 | 0.5083 | 0.2939 | 0.4603 | 0.4603 | 0.8789 | 0.8763 | 8.7147 | 17 | 4 | 13.5045 | 10.8108 | | 0.283 | 44.0 | 6380 | 1.8838 | 0.5078 | 0.2873 | 0.4546 | 0.4552 | 0.879 | 0.8757 | 8.7327 | 17 | 4 | 13.5135 | 10.8108 | | 0.2813 | 45.0 | 6525 | 1.8947 | 0.5126 | 0.2919 | 0.4603 | 0.4608 | 0.8803 | 0.8762 | 8.7027 | 16 | 3 | 13.4505 | 10.8108 | | 0.2716 | 46.0 | 6670 | 1.9045 | 0.5163 | 0.3 | 0.4687 | 0.4686 | 0.8813 | 0.8771 | 8.6126 | 17 | 4 | 13.3303 | 9.3093 | | 0.2604 | 47.0 | 6815 | 1.9097 | 0.5106 | 0.2928 | 0.4617 | 0.4621 | 0.8796 | 0.8761 | 8.7477 | 17 | 3 | 13.5135 | 9.009 | | 0.2514 | 48.0 | 6960 | 1.9477 | 0.5156 | 0.2959 | 0.463 | 0.4633 | 0.8813 | 0.876 | 8.6006 | 17 | 3 | 13.3453 | 8.4084 | | 0.2444 | 49.0 | 7105 | 1.9599 | 0.5107 | 0.2903 | 0.4581 | 0.4586 | 0.8796 | 0.875 | 8.6607 | 16 | 4 | 13.3994 | 8.4084 | | 0.2428 | 50.0 | 7250 | 1.9775 | 0.5082 | 0.2903 | 0.4587 | 0.4587 | 0.88 | 0.8748 | 8.5435 | 16 | 3 | 13.2823 | 8.1081 | | 0.2395 | 51.0 | 7395 | 1.9783 | 0.5154 | 0.2948 | 0.4647 | 0.4647 | 0.8809 | 0.8768 | 8.6817 | 17 | 3 | 13.3303 | 9.6096 | | 0.2317 | 52.0 | 7540 | 1.9881 | 0.5092 | 0.2895 | 0.4545 | 0.4546 | 0.8807 | 0.8766 | 8.6126 | 17 | 3 | 13.3964 | 7.8078 | | 0.224 | 53.0 | 7685 | 2.0001 | 0.5165 | 0.3017 | 0.4622 | 0.4627 | 0.8802 | 0.8777 | 8.7598 | 17 | 3 | 13.4895 | 9.3093 | | 0.2161 | 54.0 | 7830 | 2.0140 | 0.5176 | 0.2974 | 0.465 | 0.4652 | 0.881 | 0.878 | 8.7327 | 17 | 3 | 13.4384 | 9.9099 | | 0.2201 | 55.0 | 7975 | 2.0317 | 0.5102 | 0.2904 | 0.4554 | 0.4553 | 0.8802 | 0.8765 | 8.6306 | 16 | 3 | 13.3754 | 10.8108 | | 0.2153 | 56.0 | 8120 | 2.0427 | 0.5172 | 0.2983 | 0.4632 | 0.4632 | 0.8808 | 0.8771 | 8.7297 | 17 | 3 | 13.4114 | 11.1111 | | 0.211 | 57.0 | 8265 | 2.0432 | 0.5165 | 0.2983 | 0.4652 | 0.4652 | 0.8815 | 0.8765 | 8.5976 | 17 | 3 | 13.2432 | 9.9099 | | 0.1995 | 58.0 | 8410 | 2.0720 | 0.5062 | 0.2913 | 0.4528 | 0.4528 | 0.8781 | 0.8739 | 8.6006 | 17 | 3 | 13.2763 | 8.7087 | | 0.2072 | 59.0 | 8555 | 2.0574 | 0.5099 | 0.2902 | 0.4554 | 0.4563 | 0.8803 | 0.8751 | 8.5435 | 17 | 3 | 13.1411 | 9.009 | | 0.1989 | 60.0 | 8700 | 2.0722 | 0.5127 | 0.2943 | 0.459 | 0.4585 | 0.8807 | 0.8767 | 8.6967 | 17 | 4 | 13.3213 | 11.1111 | | 0.1911 | 61.0 | 8845 | 2.0669 | 0.5125 | 0.2922 | 0.459 | 0.4581 | 0.8806 | 0.875 | 8.5556 | 16 | 3 | 13.1622 | 9.009 | | 0.1902 | 62.0 | 8990 | 2.0912 | 0.5063 | 0.2892 | 0.4498 | 0.45 | 0.8795 | 0.8739 | 8.5105 | 17 | 4 | 13.0751 | 9.9099 | | 0.1905 | 63.0 | 9135 | 2.0875 | 0.5029 | 0.2845 | 0.4492 | 0.4492 | 0.878 | 0.8745 | 8.6727 | 16 | 4 | 13.3423 | 10.5105 | | 0.1895 | 64.0 | 9280 | 2.0787 | 0.5094 | 0.2941 | 0.4551 | 0.4557 | 0.8791 | 0.8751 | 8.7117 | 17 | 4 | 13.2973 | 9.9099 | | 0.1813 | 65.0 | 9425 | 2.0960 | 0.5168 | 0.2998 | 0.462 | 0.4619 | 0.8812 | 0.8773 | 8.7177 | 17 | 4 | 13.3634 | 10.8108 | | 0.1856 | 66.0 | 9570 | 2.0888 | 0.5053 | 0.2921 | 0.4549 | 0.4552 | 0.8793 | 0.8746 | 8.5676 | 17 | 3 | 13.1772 | 8.7087 | | 0.1669 | 67.0 | 9715 | 2.1158 | 0.5184 | 0.3018 | 0.4623 | 0.4624 | 0.8814 | 0.8772 | 8.6517 | 17 | 4 | 13.2462 | 12.012 | | 0.1676 | 68.0 | 9860 | 2.1246 | 0.5195 | 0.2977 | 0.4642 | 0.4638 | 0.8814 | 0.8778 | 8.7207 | 17 | 4 | 13.3243 | 11.4114 | | 0.1682 | 69.0 | 10005 | 2.1325 | 0.5112 | 0.2963 | 0.4572 | 0.4579 | 0.8805 | 0.8759 | 8.5916 | 17 | 4 | 13.1742 | 9.9099 | | 0.1664 | 70.0 | 10150 | 2.1442 | 0.5048 | 0.2828 | 0.4505 | 0.4506 | 0.8786 | 0.8743 | 8.6366 | 17 | 4 | 13.2883 | 8.7087 | | 0.1655 | 71.0 | 10295 | 2.1339 | 0.5132 | 0.295 | 0.4603 | 0.4603 | 0.8802 | 0.8754 | 8.7087 | 17 | 4 | 13.3273 | 10.8108 | | 0.1621 | 72.0 | 10440 | 2.1391 | 0.5036 | 0.2858 | 0.4527 | 0.4526 | 0.8786 | 0.8722 | 8.4715 | 17 | 4 | 13.0901 | 9.009 | | 0.1624 | 73.0 | 10585 | 2.1438 | 0.5055 | 0.2865 | 0.4558 | 0.4557 | 0.8786 | 0.8737 | 8.5255 | 17 | 4 | 13.1832 | 9.009 | | 0.1486 | 74.0 | 10730 | 2.1623 | 0.5073 | 0.2871 | 0.4554 | 0.4551 | 0.8794 | 0.8745 | 8.5375 | 17 | 4 | 13.2372 | 8.4084 | | 0.1593 | 75.0 | 10875 | 2.1699 | 0.5054 | 0.2873 | 0.4527 | 0.4526 | 0.8782 | 0.874 | 8.6126 | 17 | 4 | 13.2913 | 10.2102 | | 0.16 | 76.0 | 11020 | 2.1652 | 0.5062 | 0.284 | 0.4557 | 0.4556 | 0.8788 | 0.8748 | 8.6937 | 17 | 4 | 13.2733 | 9.9099 | | 0.1464 | 77.0 | 11165 | 2.1777 | 0.5073 | 0.2876 | 0.4556 | 0.4553 | 0.8786 | 0.8749 | 8.6787 | 17 | 4 | 13.3453 | 10.8108 | | 0.1492 | 78.0 | 11310 | 2.1705 | 0.5027 | 0.2854 | 0.4498 | 0.45 | 0.8774 | 0.8738 | 8.6937 | 17 | 4 | 13.3724 | 10.5105 | | 0.1565 | 79.0 | 11455 | 2.1738 | 0.4946 | 0.2768 | 0.4432 | 0.4431 | 0.8757 | 0.8718 | 8.5916 | 17 | 4 | 13.3303 | 10.2102 | | 0.1429 | 80.0 | 11600 | 2.1968 | 0.5021 | 0.2878 | 0.4523 | 0.452 | 0.8781 | 0.8737 | 8.5375 | 17 | 4 | 13.2583 | 9.009 | | 0.1424 | 81.0 | 11745 | 2.1810 | 0.509 | 0.2909 | 0.4562 | 0.4558 | 0.8785 | 0.8752 | 8.6186 | 17 | 3 | 13.2703 | 10.8108 | | 0.1447 | 82.0 | 11890 | 2.1790 | 0.5042 | 0.283 | 0.4504 | 0.4507 | 0.8782 | 0.874 | 8.5616 | 15 | 4 | 13.2162 | 10.5105 | | 0.1399 | 83.0 | 12035 | 2.1908 | 0.5018 | 0.2801 | 0.4489 | 0.4488 | 0.8772 | 0.8733 | 8.5796 | 17 | 3 | 13.2042 | 10.2102 | | 0.1417 | 84.0 | 12180 | 2.1985 | 0.504 | 0.2812 | 0.4534 | 0.4527 | 0.8782 | 0.8739 | 8.5375 | 17 | 3 | 13.0751 | 9.6096 | | 0.1375 | 85.0 | 12325 | 2.1914 | 0.5061 | 0.2844 | 0.4557 | 0.4549 | 0.8791 | 0.8749 | 8.5435 | 17 | 4 | 13.1441 | 9.9099 | | 0.1354 | 86.0 | 12470 | 2.2087 | 0.5084 | 0.2889 | 0.4592 | 0.4589 | 0.8798 | 0.8755 | 8.5315 | 17 | 4 | 13.1321 | 10.2102 | | 0.1381 | 87.0 | 12615 | 2.2014 | 0.5068 | 0.2857 | 0.4555 | 0.4551 | 0.8792 | 0.8754 | 8.5345 | 17 | 4 | 13.1802 | 10.2102 | | 0.137 | 88.0 | 12760 | 2.2022 | 0.5077 | 0.2894 | 0.4561 | 0.4552 | 0.8793 | 0.8753 | 8.5495 | 17 | 4 | 13.1682 | 10.2102 | | 0.1301 | 89.0 | 12905 | 2.2055 | 0.5096 | 0.2905 | 0.4581 | 0.4581 | 0.8795 | 0.8758 | 8.6186 | 17 | 4 | 13.1802 | 10.2102 | | 0.1374 | 90.0 | 13050 | 2.2118 | 0.507 | 0.2865 | 0.4544 | 0.4544 | 0.8793 | 0.8751 | 8.5766 | 17 | 4 | 13.1532 | 9.9099 | | 0.1338 | 91.0 | 13195 | 2.2074 | 0.5048 | 0.2863 | 0.453 | 0.4529 | 0.8791 | 0.8747 | 8.5135 | 17 | 4 | 13.0661 | 8.7087 | | 0.1308 | 92.0 | 13340 | 2.2144 | 0.5053 | 0.2886 | 0.4542 | 0.4545 | 0.8789 | 0.8742 | 8.5195 | 17 | 3 | 13.0961 | 8.4084 | | 0.1254 | 93.0 | 13485 | 2.2208 | 0.5118 | 0.294 | 0.4611 | 0.4612 | 0.8805 | 0.8763 | 8.5225 | 17 | 3 | 13.1141 | 8.4084 | | 0.1311 | 94.0 | 13630 | 2.2254 | 0.5084 | 0.2909 | 0.4573 | 0.4573 | 0.8798 | 0.8752 | 8.5165 | 17 | 3 | 13.0751 | 7.8078 | | 0.1272 | 95.0 | 13775 | 2.2274 | 0.5056 | 0.2872 | 0.454 | 0.4538 | 0.8792 | 0.8745 | 8.5766 | 17 | 3 | 13.1982 | 8.4084 | | 0.1304 | 96.0 | 13920 | 2.2313 | 0.5053 | 0.2879 | 0.4526 | 0.4526 | 0.8794 | 0.8747 | 8.5435 | 17 | 3 | 13.1652 | 8.7087 | | 0.1303 | 97.0 | 14065 | 2.2304 | 0.5061 | 0.2871 | 0.4532 | 0.4532 | 0.8793 | 0.8748 | 8.5586 | 17 | 3 | 13.2012 | 8.7087 | | 0.1306 | 98.0 | 14210 | 2.2303 | 0.5081 | 0.2889 | 0.4556 | 0.4552 | 0.8796 | 0.8753 | 8.5766 | 17 | 3 | 13.2102 | 8.7087 | | 0.1387 | 99.0 | 14355 | 2.2304 | 0.5088 | 0.2903 | 0.4563 | 0.4561 | 0.8799 | 0.8754 | 8.5766 | 17 | 3 | 13.2042 | 9.009 | | 0.1339 | 100.0 | 14500 | 2.2306 | 0.5085 | 0.2908 | 0.4563 | 0.456 | 0.88 | 0.8755 | 8.5646 | 17 | 3 | 13.2012 | 8.7087 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
mindchain/llama2-adapter_01
mindchain
2023-09-11T11:26:08Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T11:26:04Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
Shishir1807/cherry-gopher
Shishir1807
2023-09-11T11:24:12Z
140
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-11T11:23:32Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/cherry-gopher", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/cherry-gopher", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/cherry-gopher", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/cherry-gopher" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
DragosGorduza/FRPile_GPL_test_pipeline_BAAI-bge-large-en_1400
DragosGorduza
2023-09-11T11:20:32Z
2
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-09-11T11:01:22Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 700 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `gpl.toolkit.loss.MarginDistillationLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1400, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bigmorning/whisper_4_with_init_sun_syl_wd_0__0040
bigmorning
2023-09-11T11:18:12Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T11:18:04Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0040 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9922 - Train Accuracy: 0.0275 - Train Wermet: 0.2580 - Train Wermet Syl: 0.2542 - Validation Loss: 1.2566 - Validation Accuracy: 0.0197 - Validation Wermet: 0.3801 - Validation Wermet Syl: 0.3444 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Yoshimitsujhi/11-09-falcon7b-code
Yoshimitsujhi
2023-09-11T11:14:24Z
0
0
null
[ "generated_from_trainer", "base_model:tiiuae/falcon-7b", "base_model:finetune:tiiuae/falcon-7b", "license:apache-2.0", "region:us" ]
null
2023-09-11T10:44:55Z
--- license: apache-2.0 base_model: tiiuae/falcon-7b tags: - generated_from_trainer model-index: - name: 11-09-falcon7b-code results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 11-09-falcon7b-code This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 320 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.14.4 - Tokenizers 0.13.3
ritheeshrl/ppo-LunarLander-v2
ritheeshrl
2023-09-11T11:11:01Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T11:09:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 268.03 +/- 15.19 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_4_with_init_sun_syl_wd_0__0035
bigmorning
2023-09-11T11:03:15Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T11:03:07Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0035 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0035 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2565 - Train Accuracy: 0.0256 - Train Wermet: 0.3135 - Train Wermet Syl: 0.3060 - Validation Loss: 1.3172 - Validation Accuracy: 0.0194 - Validation Wermet: 0.4065 - Validation Wermet Syl: 0.3722 - Epoch: 34 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
bigmorning/whisper_4_with_init_sun_syl_wd_0__0030
bigmorning
2023-09-11T10:48:13Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T10:48:06Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0030 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0030 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6240 - Train Accuracy: 0.0233 - Train Wermet: 0.3833 - Train Wermet Syl: 0.3729 - Validation Loss: 1.4718 - Validation Accuracy: 0.0186 - Validation Wermet: 0.4515 - Validation Wermet Syl: 0.4170 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
dragocennova/chlbnskatr
dragocennova
2023-09-11T10:36:40Z
29
0
diffusers
[ "diffusers", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-11T10:20:12Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### CHLBNSKatr Dreambooth model trained by dragocennova with TheLastBen's fast-DreamBooth notebook
bigmorning/whisper_4_with_init_sun_syl_wd_0__0025
bigmorning
2023-09-11T10:33:14Z
61
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T10:33:07Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0025 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0025 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.1205 - Train Accuracy: 0.0207 - Train Wermet: 0.4752 - Train Wermet Syl: 0.4607 - Validation Loss: 1.7245 - Validation Accuracy: 0.0175 - Validation Wermet: 0.5208 - Validation Wermet Syl: 0.4838 - Epoch: 24 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Ionut-Marius/rare-dogs
Ionut-Marius
2023-09-11T10:12:29Z
191
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T10:12:22Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-dogs results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8089887499809265 --- # rare-dogs Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### husky ![husky](images/husky.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
yogeshchandrasekharuni/ludwig-llama-2-7b-skil-internal-wiki-no-lm-manual-v1
yogeshchandrasekharuni
2023-09-11T10:11:18Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-11T10:11:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
bigmorning/whisper_4_with_init_sun_syl_wd_0__0015
bigmorning
2023-09-11T10:03:19Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T10:03:11Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0015 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0015 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.9762 - Train Accuracy: 0.0138 - Train Wermet: 0.6987 - Train Wermet Syl: 0.6559 - Validation Loss: 3.1318 - Validation Accuracy: 0.0133 - Validation Wermet: 0.7644 - Validation Wermet Syl: 0.7231 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
fedbor/13bllama2_lora16_modello2
fedbor
2023-09-11T10:01:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T10:01:52Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0.dev0
thangvip/distilbert-base-uncased-finetuned-imdb
thangvip
2023-09-11T09:51:51Z
121
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-11T09:48:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7024 | 1.0 | 157 | 2.4968 | | 2.5794 | 2.0 | 314 | 2.4281 | | 2.5354 | 3.0 | 471 | 2.4509 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
bigmorning/whisper_4_with_init_sun_syl_wd_0__0010
bigmorning
2023-09-11T09:48:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T09:48:16Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5060 - Train Accuracy: 0.0122 - Train Wermet: 0.7392 - Train Wermet Syl: 0.6844 - Validation Loss: 3.7537 - Validation Accuracy: 0.0118 - Validation Wermet: 0.8578 - Validation Wermet Syl: 0.8152 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
Shishir1807/pistachio-tapir
Shishir1807
2023-09-11T09:39:48Z
141
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "gpt", "llm", "large language model", "h2o-llmstudio", "en", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-09-11T09:39:12Z
--- language: - en library_name: transformers tags: - gpt - llm - large language model - h2o-llmstudio inference: false thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico --- # Model Card ## Summary This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio). - Base model: [EleutherAI/pythia-2.8b-deduped](https://huggingface.co/EleutherAI/pythia-2.8b-deduped) ## Usage To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed. ```bash pip install transformers==4.29.2 pip install einops==0.6.1 pip install accelerate==0.19.0 pip install torch==2.0.0 ``` ```python import torch from transformers import pipeline generate_text = pipeline( model="Shishir1807/pistachio-tapir", torch_dtype="auto", trust_remote_code=True, use_fast=True, device_map={"": "cuda:0"}, ) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=512, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer: ```python print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"]) ``` ```bash <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|> ``` Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`. ```python import torch from h2oai_pipeline import H2OTextGenerationPipeline from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "Shishir1807/pistachio-tapir", use_fast=True, padding_side="left", trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( "Shishir1807/pistachio-tapir", torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer) res = generate_text( "Why is drinking water so healthy?", min_new_tokens=2, max_new_tokens=512, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True ) print(res[0]["generated_text"]) ``` You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Shishir1807/pistachio-tapir" # either local folder or huggingface model name # Important: The prompt needs to be in the same format the model was trained with. # You can find an example prompt in the experiment logs. prompt = "<|prompt|>How are you?<|endoftext|><|answer|>" tokenizer = AutoTokenizer.from_pretrained( model_name, use_fast=True, trust_remote_code=True, ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map={"": "cuda:0"}, trust_remote_code=True, ) model.cuda().eval() inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda") # generate configuration can be modified to your needs tokens = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], min_new_tokens=2, max_new_tokens=512, do_sample=False, num_beams=1, temperature=float(0.3), repetition_penalty=float(1.2), renormalize_logits=True )[0] tokens = tokens[inputs["input_ids"].shape[1]:] answer = tokenizer.decode(tokens, skip_special_tokens=True) print(answer) ``` ## Quantization and sharding You can load the models using quantization by specifying ```load_in_8bit=True``` or ```load_in_4bit=True```. Also, sharding on multiple GPUs is possible by setting ```device_map=auto```. ## Model Architecture ``` GPTNeoXForCausalLM( (gpt_neox): GPTNeoXModel( (embed_in): Embedding(50304, 2560) (layers): ModuleList( (0-31): 32 x GPTNeoXLayer( (input_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (post_attention_layernorm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) (attention): GPTNeoXAttention( (rotary_emb): RotaryEmbedding() (query_key_value): Linear(in_features=2560, out_features=7680, bias=True) (dense): Linear(in_features=2560, out_features=2560, bias=True) ) (mlp): GPTNeoXMLP( (dense_h_to_4h): Linear(in_features=2560, out_features=10240, bias=True) (dense_4h_to_h): Linear(in_features=10240, out_features=2560, bias=True) (act): GELUActivation() ) ) ) (final_layer_norm): LayerNorm((2560,), eps=1e-05, elementwise_affine=True) ) (embed_out): Linear(in_features=2560, out_features=50304, bias=False) ) ``` ## Model Configuration This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models. ## Disclaimer Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions. - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints. - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion. - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model. - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities. - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues. - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes. By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
bigmorning/whisper_4_with_init_sun_syl_wd_0__0005
bigmorning
2023-09-11T09:33:31Z
58
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T09:33:21Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.6282 - Train Accuracy: 0.0118 - Train Wermet: 0.8286 - Train Wermet Syl: 0.7805 - Validation Loss: 3.8738 - Validation Accuracy: 0.0114 - Validation Wermet: 0.9433 - Validation Wermet Syl: 0.9119 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
EuropeanParliament/eurovoc_fr
EuropeanParliament
2023-09-11T09:30:25Z
0
0
null
[ "pytorch", "license:eupl-1.1", "endpoints_compatible", "region:us" ]
null
2023-09-08T14:08:03Z
--- license: eupl-1.1 --- French version of https://huggingface.co/EuropeanParliament/eurovoc_en Mean F1 score threshold 0.21 : value 0.4744 Example: > Journal officiel de l'Union européenne L 60/40 DÉCISION D'EXÉCUTION (UE) 2018/313 DE LA COMMISSION du 28 février 2018 modifiant la décision 2009/821/CE en ce qui concerne la liste des postes d'inspection frontaliers et celle des unités vétérinaires du système TRACES [notifiée sous le numéro C(2018) 1149] (Texte présentant de l'intérêt pour l'EEE) LA COMMISSION EUROPÉENNE, vu le traité sur le fonctionnement de l'Union européenne, vu la directive 90/425/CEE du Conseil du 26 juin 1990 relative aux contrôles vétérinaires et zootechniques applicables dans les échanges intracommunautaires de certains animaux vivants et produits dans la perspective de la réalisation du marché intérieur (1), et notamment son article 20, paragraphes 1 et 3, vu la directive 91/496/CEE du Conseil du 15 juillet 1991 fixant les principes relatifs à l'organisation des contrôles vétérinaires pour les animaux en provenance des pays tiers Predictions: - customs - import (EU) - veterinary inspection
Youssef320/Public100_1L_BERT_20epoch_notweettokenizer
Youssef320
2023-09-11T09:29:05Z
112
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-06T22:33:38Z
--- tags: - generated_from_trainer model-index: - name: Public100_1L_BERT_20epoch_notweettokenizer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Public100_1L_BERT_20epoch_notweettokenizer This model is a fine-tuned version of [Youssef320/LSTM-finetuned-50label-15epoch](https://huggingface.co/Youssef320/LSTM-finetuned-50label-15epoch) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5924 - Top 1 Macro F1 Score: 0.1416 - Top 1 Weighted F1score: 0.1916 - Top 3 Macro F1 Score: 0.2701 - Top3 3 Weighted F1 Score : 0.3431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 2048 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 20.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Top 1 Macro F1 Score | Top 1 Weighted F1score | Top 3 Macro F1 Score | Top3 3 Weighted F1 Score | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:|:----------------------:|:--------------------:|:-------------------------:| | 3.9476 | 0.12 | 64 | 3.8956 | 0.0154 | 0.0435 | 0.0778 | 0.1518 | | 3.7671 | 0.25 | 128 | 3.7204 | 0.0321 | 0.0730 | 0.1125 | 0.1998 | | 3.6435 | 0.38 | 192 | 3.6285 | 0.0470 | 0.0933 | 0.1347 | 0.2295 | | 3.6113 | 0.5 | 256 | 3.5790 | 0.0511 | 0.1013 | 0.1452 | 0.2450 | | 3.5837 | 0.62 | 320 | 3.5457 | 0.0557 | 0.1080 | 0.1501 | 0.2515 | | 3.5886 | 0.75 | 384 | 3.5189 | 0.0630 | 0.1166 | 0.1633 | 0.2631 | | 3.5612 | 0.88 | 448 | 3.5018 | 0.0665 | 0.1207 | 0.1666 | 0.2677 | | 3.5261 | 1.0 | 512 | 3.4790 | 0.0710 | 0.1259 | 0.1736 | 0.2763 | | 3.4758 | 1.12 | 576 | 3.4725 | 0.0734 | 0.1287 | 0.1763 | 0.2780 | | 3.4484 | 1.25 | 640 | 3.4608 | 0.0761 | 0.1318 | 0.1776 | 0.2808 | | 3.4559 | 1.38 | 704 | 3.4483 | 0.0800 | 0.1357 | 0.1827 | 0.2846 | | 3.4483 | 1.5 | 768 | 3.4403 | 0.0790 | 0.1340 | 0.1831 | 0.2839 | | 3.4488 | 1.62 | 832 | 3.4306 | 0.0833 | 0.1394 | 0.1888 | 0.2917 | | 3.4398 | 1.75 | 896 | 3.4241 | 0.0825 | 0.1383 | 0.1880 | 0.2908 | | 3.4068 | 1.88 | 960 | 3.4159 | 0.0807 | 0.1364 | 0.1890 | 0.2898 | | 3.4246 | 2.0 | 1024 | 3.4081 | 0.0864 | 0.1426 | 0.1965 | 0.2976 | | 3.3525 | 2.12 | 1088 | 3.4119 | 0.0897 | 0.1473 | 0.1990 | 0.3016 | | 3.3207 | 2.25 | 1152 | 3.4120 | 0.0882 | 0.1445 | 0.1986 | 0.2991 | | 3.3495 | 2.38 | 1216 | 3.4062 | 0.0896 | 0.1460 | 0.1993 | 0.2999 | | 3.3679 | 2.5 | 1280 | 3.3947 | 0.0922 | 0.1489 | 0.2028 | 0.3023 | | 3.3537 | 2.62 | 1344 | 3.3908 | 0.0919 | 0.1484 | 0.2050 | 0.3043 | | 3.3593 | 2.75 | 1408 | 3.3848 | 0.0938 | 0.1514 | 0.2056 | 0.3066 | | 3.3545 | 2.88 | 1472 | 3.3797 | 0.0931 | 0.1506 | 0.2057 | 0.3042 | | 3.3591 | 3.0 | 1536 | 3.3719 | 0.0960 | 0.1534 | 0.2087 | 0.3105 | | 3.2401 | 3.12 | 1600 | 3.3882 | 0.0976 | 0.1548 | 0.2111 | 0.3093 | | 3.2436 | 3.25 | 1664 | 3.3915 | 0.0966 | 0.1532 | 0.2081 | 0.3081 | | 3.2566 | 3.38 | 1728 | 3.3859 | 0.0966 | 0.1529 | 0.2111 | 0.3076 | | 3.284 | 3.5 | 1792 | 3.3851 | 0.0979 | 0.1543 | 0.2144 | 0.3104 | | 3.2874 | 3.62 | 1856 | 3.3747 | 0.0997 | 0.1577 | 0.2164 | 0.3130 | | 3.2583 | 3.75 | 1920 | 3.3705 | 0.0975 | 0.1543 | 0.2135 | 0.3101 | | 3.2894 | 3.88 | 1984 | 3.3630 | 0.0993 | 0.1558 | 0.2168 | 0.3125 | | 3.2938 | 4.0 | 2048 | 3.3581 | 0.1002 | 0.1579 | 0.2194 | 0.3163 | | 3.1876 | 4.12 | 2112 | 3.3837 | 0.1020 | 0.1606 | 0.2183 | 0.3148 | | 3.1862 | 4.25 | 2176 | 3.3821 | 0.1006 | 0.1578 | 0.2167 | 0.3124 | | 3.2146 | 4.38 | 2240 | 3.3766 | 0.0999 | 0.1571 | 0.2203 | 0.3142 | | 3.2184 | 4.5 | 2304 | 3.3691 | 0.1039 | 0.1603 | 0.2236 | 0.3181 | | 3.1851 | 4.62 | 2368 | 3.3677 | 0.1007 | 0.1584 | 0.2207 | 0.3144 | | 3.2276 | 4.75 | 2432 | 3.3640 | 0.1044 | 0.1631 | 0.2242 | 0.3185 | | 3.2099 | 4.88 | 2496 | 3.3576 | 0.1057 | 0.1615 | 0.2293 | 0.3186 | | 3.2162 | 5.0 | 2560 | 3.3523 | 0.1071 | 0.1635 | 0.2296 | 0.3223 | | 3.1196 | 5.12 | 2624 | 3.3784 | 0.1082 | 0.1649 | 0.2268 | 0.3204 | | 3.1171 | 5.25 | 2688 | 3.3842 | 0.1061 | 0.1629 | 0.2270 | 0.3189 | | 3.1548 | 5.38 | 2752 | 3.3796 | 0.1066 | 0.1630 | 0.2293 | 0.3198 | | 3.1555 | 5.5 | 2816 | 3.3660 | 0.1093 | 0.1659 | 0.2295 | 0.3223 | | 3.151 | 5.62 | 2880 | 3.3707 | 0.1078 | 0.1646 | 0.2242 | 0.3195 | | 3.1547 | 5.75 | 2944 | 3.3622 | 0.1079 | 0.1639 | 0.2310 | 0.3212 | | 3.1672 | 5.88 | 3008 | 3.3592 | 0.1090 | 0.1658 | 0.2316 | 0.3224 | | 3.1675 | 6.0 | 3072 | 3.3489 | 0.1110 | 0.1668 | 0.2320 | 0.3243 | | 3.0247 | 6.12 | 3136 | 3.3832 | 0.1111 | 0.1656 | 0.2320 | 0.3214 | | 3.0598 | 6.25 | 3200 | 3.3871 | 0.1089 | 0.1672 | 0.2330 | 0.3224 | | 3.0756 | 6.38 | 3264 | 3.3814 | 0.1070 | 0.1648 | 0.2309 | 0.3214 | | 3.0705 | 6.5 | 3328 | 3.3747 | 0.1123 | 0.1675 | 0.2343 | 0.3235 | | 3.1081 | 6.62 | 3392 | 3.3693 | 0.1138 | 0.1686 | 0.2328 | 0.3239 | | 3.1071 | 6.75 | 3456 | 3.3693 | 0.1144 | 0.1688 | 0.2373 | 0.3253 | | 3.0873 | 6.88 | 3520 | 3.3653 | 0.1134 | 0.1686 | 0.2391 | 0.3255 | | 3.0756 | 7.0 | 3584 | 3.3604 | 0.1135 | 0.1691 | 0.2368 | 0.3260 | | 2.9902 | 7.12 | 3648 | 3.3951 | 0.1159 | 0.1685 | 0.2380 | 0.3237 | | 2.9916 | 7.25 | 3712 | 3.3906 | 0.1171 | 0.1705 | 0.2385 | 0.3263 | | 2.9935 | 7.38 | 3776 | 3.3849 | 0.1159 | 0.1700 | 0.2390 | 0.3258 | | 3.0519 | 7.5 | 3840 | 3.3888 | 0.1149 | 0.1694 | 0.2372 | 0.3249 | | 3.0453 | 7.62 | 3904 | 3.3777 | 0.1156 | 0.1697 | 0.2378 | 0.3256 | | 3.0489 | 7.75 | 3968 | 3.3689 | 0.1180 | 0.1725 | 0.2381 | 0.3281 | | 3.0915 | 7.88 | 4032 | 3.3688 | 0.1176 | 0.1710 | 0.2422 | 0.3284 | | 3.068 | 8.0 | 4096 | 3.3630 | 0.1196 | 0.1737 | 0.2440 | 0.3311 | | 2.936 | 8.12 | 4160 | 3.4107 | 0.1174 | 0.1718 | 0.2414 | 0.3276 | | 2.9538 | 8.25 | 4224 | 3.4067 | 0.1194 | 0.1725 | 0.2418 | 0.3271 | | 2.9462 | 8.38 | 4288 | 3.4039 | 0.1177 | 0.1736 | 0.2406 | 0.3275 | | 2.9749 | 8.5 | 4352 | 3.3934 | 0.1187 | 0.1739 | 0.2426 | 0.3286 | | 2.9765 | 8.62 | 4416 | 3.3843 | 0.1197 | 0.1739 | 0.2432 | 0.3296 | | 3.0085 | 8.75 | 4480 | 3.3747 | 0.1191 | 0.1741 | 0.2425 | 0.3304 | | 3.011 | 8.88 | 4544 | 3.3753 | 0.1197 | 0.1742 | 0.2421 | 0.3306 | | 3.0206 | 9.0 | 4608 | 3.3720 | 0.1207 | 0.1744 | 0.2445 | 0.3307 | | 2.8646 | 9.12 | 4672 | 3.4271 | 0.1209 | 0.1736 | 0.2459 | 0.3280 | | 2.901 | 9.25 | 4736 | 3.4206 | 0.1208 | 0.1743 | 0.2458 | 0.3288 | | 2.9068 | 9.38 | 4800 | 3.4083 | 0.1210 | 0.1756 | 0.2453 | 0.3305 | | 2.9034 | 9.5 | 4864 | 3.4071 | 0.1226 | 0.1753 | 0.2471 | 0.3307 | | 2.9234 | 9.62 | 4928 | 3.4125 | 0.1232 | 0.1754 | 0.2483 | 0.3307 | | 2.9476 | 9.75 | 4992 | 3.3911 | 0.1232 | 0.1759 | 0.2499 | 0.3324 | | 2.9721 | 9.88 | 5056 | 3.3894 | 0.1224 | 0.1750 | 0.2500 | 0.3323 | | 2.9635 | 10.0 | 5120 | 3.3853 | 0.1232 | 0.1757 | 0.2473 | 0.3319 | | 2.8175 | 10.12 | 5184 | 3.4355 | 0.1234 | 0.1752 | 0.2482 | 0.3302 | | 2.8413 | 10.25 | 5248 | 3.4343 | 0.1252 | 0.1776 | 0.2516 | 0.3321 | | 2.8334 | 10.38 | 5312 | 3.4430 | 0.1260 | 0.1769 | 0.2509 | 0.3312 | | 2.8687 | 10.5 | 5376 | 3.4307 | 0.1240 | 0.1763 | 0.2467 | 0.3298 | | 2.8712 | 10.62 | 5440 | 3.4227 | 0.1254 | 0.1777 | 0.2519 | 0.3330 | | 2.932 | 10.75 | 5504 | 3.4023 | 0.1244 | 0.1791 | 0.2523 | 0.3353 | | 2.9086 | 10.88 | 5568 | 3.4013 | 0.1260 | 0.1791 | 0.2505 | 0.3344 | | 2.9175 | 11.0 | 5632 | 3.4031 | 0.1241 | 0.1773 | 0.2509 | 0.3337 | | 2.7496 | 11.12 | 5696 | 3.4659 | 0.1259 | 0.1777 | 0.2528 | 0.3319 | | 2.789 | 11.25 | 5760 | 3.4639 | 0.1271 | 0.1779 | 0.2540 | 0.3319 | | 2.8063 | 11.38 | 5824 | 3.4506 | 0.1241 | 0.1773 | 0.2534 | 0.3320 | | 2.8347 | 11.5 | 5888 | 3.4467 | 0.1257 | 0.1783 | 0.2548 | 0.3333 | | 2.86 | 11.62 | 5952 | 3.4319 | 0.1261 | 0.1784 | 0.2533 | 0.3341 | | 2.8587 | 11.75 | 6016 | 3.4353 | 0.1292 | 0.1805 | 0.2573 | 0.3355 | | 2.8614 | 11.88 | 6080 | 3.4346 | 0.1271 | 0.1804 | 0.2548 | 0.3361 | | 2.8685 | 12.0 | 6144 | 3.4163 | 0.1284 | 0.1810 | 0.2558 | 0.3361 | | 2.7086 | 12.12 | 6208 | 3.4749 | 0.1299 | 0.1812 | 0.2554 | 0.3351 | | 2.7243 | 12.25 | 6272 | 3.4758 | 0.1309 | 0.1802 | 0.2575 | 0.3341 | | 2.7587 | 12.38 | 6336 | 3.4686 | 0.1269 | 0.1793 | 0.2553 | 0.3340 | | 2.7425 | 12.5 | 6400 | 3.4612 | 0.1297 | 0.1800 | 0.2565 | 0.3341 | | 2.8271 | 12.62 | 6464 | 3.4618 | 0.1310 | 0.1806 | 0.2578 | 0.3343 | | 2.8029 | 12.75 | 6528 | 3.4484 | 0.1318 | 0.1821 | 0.2596 | 0.3362 | | 2.7919 | 12.88 | 6592 | 3.4504 | 0.1277 | 0.1797 | 0.2540 | 0.3347 | | 2.8563 | 13.0 | 6656 | 3.4359 | 0.1302 | 0.1827 | 0.2576 | 0.3373 | | 2.64 | 13.12 | 6720 | 3.5101 | 0.1317 | 0.1816 | 0.2598 | 0.3350 | | 2.6662 | 13.25 | 6784 | 3.5056 | 0.1319 | 0.1822 | 0.2585 | 0.3347 | | 2.6846 | 13.38 | 6848 | 3.5022 | 0.1319 | 0.1824 | 0.2586 | 0.3355 | | 2.7247 | 13.5 | 6912 | 3.4979 | 0.1308 | 0.1819 | 0.2575 | 0.3342 | | 2.765 | 13.62 | 6976 | 3.4800 | 0.1308 | 0.1820 | 0.2592 | 0.3362 | | 2.7755 | 13.75 | 7040 | 3.4690 | 0.1319 | 0.1835 | 0.2614 | 0.3385 | | 2.7942 | 13.88 | 7104 | 3.4701 | 0.1307 | 0.1834 | 0.2596 | 0.3382 | | 2.7924 | 14.0 | 7168 | 3.4530 | 0.1315 | 0.1833 | 0.2612 | 0.3384 | | 2.629 | 14.12 | 7232 | 3.5201 | 0.1325 | 0.1843 | 0.2576 | 0.3369 | | 2.6385 | 14.25 | 7296 | 3.5230 | 0.1319 | 0.1830 | 0.2605 | 0.3366 | | 2.6686 | 14.38 | 7360 | 3.5289 | 0.1350 | 0.1833 | 0.2611 | 0.3360 | | 2.6554 | 14.5 | 7424 | 3.5077 | 0.1330 | 0.1834 | 0.2615 | 0.3359 | | 2.6983 | 14.62 | 7488 | 3.5098 | 0.1341 | 0.1838 | 0.2624 | 0.3372 | | 2.7053 | 14.75 | 7552 | 3.4997 | 0.1337 | 0.1850 | 0.2643 | 0.3391 | | 2.7072 | 14.88 | 7616 | 3.4865 | 0.1326 | 0.1831 | 0.2622 | 0.3385 | | 2.7289 | 15.0 | 7680 | 3.4797 | 0.1315 | 0.1832 | 0.2607 | 0.3382 | | 2.5489 | 15.12 | 7744 | 3.5449 | 0.1321 | 0.1831 | 0.2605 | 0.3354 | | 2.5588 | 15.25 | 7808 | 3.5659 | 0.1327 | 0.1844 | 0.2621 | 0.3368 | | 2.6278 | 15.38 | 7872 | 3.5455 | 0.1345 | 0.1856 | 0.2609 | 0.3372 | | 2.6577 | 15.5 | 7936 | 3.5211 | 0.1356 | 0.1858 | 0.2627 | 0.3392 | | 2.6756 | 15.62 | 8000 | 3.5211 | 0.1345 | 0.1849 | 0.2624 | 0.3386 | | 2.6792 | 15.75 | 8064 | 3.5099 | 0.1349 | 0.1860 | 0.2636 | 0.3387 | | 2.7076 | 15.88 | 8128 | 3.5140 | 0.1364 | 0.1864 | 0.2663 | 0.3394 | | 2.6966 | 16.0 | 8192 | 3.5095 | 0.1363 | 0.1872 | 0.2660 | 0.3412 | | 2.5254 | 16.12 | 8256 | 3.5661 | 0.1326 | 0.1850 | 0.2626 | 0.3374 | | 2.5661 | 16.25 | 8320 | 3.5637 | 0.1341 | 0.1862 | 0.2618 | 0.3377 | | 2.6016 | 16.38 | 8384 | 3.5735 | 0.1349 | 0.1860 | 0.2646 | 0.3384 | | 2.599 | 16.5 | 8448 | 3.5743 | 0.1361 | 0.1870 | 0.2660 | 0.3396 | | 2.5939 | 16.62 | 8512 | 3.5511 | 0.1354 | 0.1849 | 0.2665 | 0.3389 | | 2.6532 | 16.75 | 8576 | 3.5462 | 0.1362 | 0.1868 | 0.2660 | 0.3401 | | 2.6507 | 16.88 | 8640 | 3.5305 | 0.1354 | 0.1867 | 0.2661 | 0.3405 | | 2.6816 | 17.0 | 8704 | 3.5186 | 0.1371 | 0.1883 | 0.2682 | 0.3427 | | 2.5029 | 17.12 | 8768 | 3.5992 | 0.1370 | 0.1865 | 0.2662 | 0.3386 | | 2.5321 | 17.25 | 8832 | 3.5813 | 0.1359 | 0.1873 | 0.2647 | 0.3390 | | 2.5431 | 17.38 | 8896 | 3.6024 | 0.1378 | 0.1869 | 0.2675 | 0.3396 | | 2.5516 | 17.5 | 8960 | 3.5993 | 0.1362 | 0.1863 | 0.2676 | 0.3386 | | 2.5854 | 17.62 | 9024 | 3.5717 | 0.1359 | 0.1875 | 0.2644 | 0.3398 | | 2.6053 | 17.75 | 9088 | 3.5717 | 0.1361 | 0.1875 | 0.2660 | 0.3402 | | 2.5922 | 17.88 | 9152 | 3.5571 | 0.1374 | 0.1889 | 0.2671 | 0.3417 | | 2.6054 | 18.0 | 9216 | 3.5500 | 0.1385 | 0.1893 | 0.2680 | 0.3419 | | 2.4719 | 18.12 | 9280 | 3.6322 | 0.1388 | 0.1885 | 0.2681 | 0.3392 | | 2.5108 | 18.25 | 9344 | 3.6259 | 0.1382 | 0.1876 | 0.2689 | 0.3384 | | 2.5403 | 18.38 | 9408 | 3.6152 | 0.1387 | 0.1889 | 0.2684 | 0.3408 | | 2.5282 | 18.5 | 9472 | 3.6076 | 0.1384 | 0.1905 | 0.2686 | 0.3425 | | 2.5471 | 18.62 | 9536 | 3.5930 | 0.1388 | 0.1895 | 0.2693 | 0.3417 | | 2.5404 | 18.75 | 9600 | 3.6039 | 0.1386 | 0.1905 | 0.2686 | 0.3426 | | 2.5889 | 18.88 | 9664 | 3.5814 | 0.1393 | 0.1890 | 0.2681 | 0.3420 | | 2.6072 | 19.0 | 9728 | 3.5757 | 0.1405 | 0.1915 | 0.2694 | 0.3436 | | 2.4302 | 19.12 | 9792 | 3.6515 | 0.1404 | 0.1893 | 0.2675 | 0.3399 | | 2.4458 | 19.25 | 9856 | 3.6381 | 0.1398 | 0.1892 | 0.2679 | 0.3407 | | 2.4839 | 19.38 | 9920 | 3.6380 | 0.1407 | 0.1903 | 0.2698 | 0.3413 | | 2.4615 | 19.5 | 9984 | 3.6431 | 0.1416 | 0.1909 | 0.2699 | 0.3422 | | 2.5243 | 19.62 | 10048 | 3.6180 | 0.1400 | 0.1891 | 0.2709 | 0.3408 | | 2.4949 | 19.75 | 10112 | 3.6116 | 0.1387 | 0.1899 | 0.2685 | 0.3421 | | 2.5115 | 19.88 | 10176 | 3.6154 | 0.1404 | 0.1900 | 0.2711 | 0.3428 | | 2.5604 | 20.0 | 10240 | 3.5924 | 0.1416 | 0.1916 | 0.2701 | 0.3431 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1+cu102 - Datasets 2.0.0 - Tokenizers 0.11.0
GroNLP/gpt2-small-italian
GroNLP
2023-09-11T08:57:44Z
884
10
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "gpt2", "text-generation", "adaption", "recycled", "gpt2-small", "it", "arxiv:2012.05628", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: it tags: - adaption - recycled - gpt2-small pipeline_tag: text-generation --- # GPT-2 recycled for Italian (small) [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) • [Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) ## Model description This model is based on the small OpenAI GPT-2 ([`gpt2`](https://huggingface.co/gpt2)) model. For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle). ## Related models ### Dutch - [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings. ### Italian - [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings. ## How to use ```python from transformers import pipeline pipe = pipeline("text-generation", model="GroNLP/gpt2-small-italian") ``` ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-small-italian") model = AutoModel.from_pretrained("GroNLP/gpt2-small-italian") # PyTorch model = TFAutoModel.from_pretrained("GroNLP/gpt2-small-italian") # Tensorflow ``` ## BibTeX entry ```bibtex @misc{devries2020good, title={As good as new. How to successfully recycle English GPT-2 to make models for other languages}, author={Wietse de Vries and Malvina Nissim}, year={2020}, eprint={2012.05628}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wietsedv/xlm-roberta-base-ft-udpos28-ko
wietsedv
2023-09-11T08:57:03Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "ko", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ko license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ko results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 61.7 - type: accuracy name: Dutch Test accuracy value: 55.9 - type: accuracy name: German Test accuracy value: 58.9 - type: accuracy name: Italian Test accuracy value: 58.7 - type: accuracy name: French Test accuracy value: 53.6 - type: accuracy name: Spanish Test accuracy value: 52.6 - type: accuracy name: Russian Test accuracy value: 66.4 - type: accuracy name: Swedish Test accuracy value: 64.0 - type: accuracy name: Norwegian Test accuracy value: 58.9 - type: accuracy name: Danish Test accuracy value: 63.7 - type: accuracy name: Low Saxon Test accuracy value: 41.1 - type: accuracy name: Akkadian Test accuracy value: 37.5 - type: accuracy name: Armenian Test accuracy value: 66.2 - type: accuracy name: Welsh Test accuracy value: 51.1 - type: accuracy name: Old East Slavic Test accuracy value: 56.3 - type: accuracy name: Albanian Test accuracy value: 54.7 - type: accuracy name: Slovenian Test accuracy value: 51.3 - type: accuracy name: Guajajara Test accuracy value: 36.4 - type: accuracy name: Kurmanji Test accuracy value: 62.4 - type: accuracy name: Turkish Test accuracy value: 65.7 - type: accuracy name: Finnish Test accuracy value: 67.6 - type: accuracy name: Indonesian Test accuracy value: 62.3 - type: accuracy name: Ukrainian Test accuracy value: 64.7 - type: accuracy name: Polish Test accuracy value: 61.7 - type: accuracy name: Portuguese Test accuracy value: 63.1 - type: accuracy name: Kazakh Test accuracy value: 70.6 - type: accuracy name: Latin Test accuracy value: 59.9 - type: accuracy name: Old French Test accuracy value: 41.5 - type: accuracy name: Buryat Test accuracy value: 56.4 - type: accuracy name: Kaapor Test accuracy value: 30.0 - type: accuracy name: Korean Test accuracy value: 82.5 - type: accuracy name: Estonian Test accuracy value: 67.8 - type: accuracy name: Croatian Test accuracy value: 57.1 - type: accuracy name: Gothic Test accuracy value: 20.5 - type: accuracy name: Swiss German Test accuracy value: 41.9 - type: accuracy name: Assyrian Test accuracy value: 17.7 - type: accuracy name: North Sami Test accuracy value: 41.7 - type: accuracy name: Naija Test accuracy value: 33.0 - type: accuracy name: Latvian Test accuracy value: 69.6 - type: accuracy name: Chinese Test accuracy value: 61.9 - type: accuracy name: Tagalog Test accuracy value: 58.9 - type: accuracy name: Bambara Test accuracy value: 29.2 - type: accuracy name: Lithuanian Test accuracy value: 72.7 - type: accuracy name: Galician Test accuracy value: 60.5 - type: accuracy name: Vietnamese Test accuracy value: 57.2 - type: accuracy name: Greek Test accuracy value: 57.6 - type: accuracy name: Catalan Test accuracy value: 50.6 - type: accuracy name: Czech Test accuracy value: 60.8 - type: accuracy name: Erzya Test accuracy value: 49.1 - type: accuracy name: Bhojpuri Test accuracy value: 45.6 - type: accuracy name: Thai Test accuracy value: 52.1 - type: accuracy name: Marathi Test accuracy value: 79.8 - type: accuracy name: Basque Test accuracy value: 65.7 - type: accuracy name: Slovak Test accuracy value: 61.4 - type: accuracy name: Kiche Test accuracy value: 39.0 - type: accuracy name: Yoruba Test accuracy value: 31.7 - type: accuracy name: Warlpiri Test accuracy value: 38.5 - type: accuracy name: Tamil Test accuracy value: 76.4 - type: accuracy name: Maltese Test accuracy value: 29.4 - type: accuracy name: Ancient Greek Test accuracy value: 54.7 - type: accuracy name: Icelandic Test accuracy value: 61.4 - type: accuracy name: Mbya Guarani Test accuracy value: 31.2 - type: accuracy name: Urdu Test accuracy value: 49.6 - type: accuracy name: Romanian Test accuracy value: 60.5 - type: accuracy name: Persian Test accuracy value: 60.0 - type: accuracy name: Apurina Test accuracy value: 39.1 - type: accuracy name: Japanese Test accuracy value: 55.5 - type: accuracy name: Hungarian Test accuracy value: 55.7 - type: accuracy name: Hindi Test accuracy value: 52.6 - type: accuracy name: Classical Chinese Test accuracy value: 38.9 - type: accuracy name: Komi Permyak Test accuracy value: 48.5 - type: accuracy name: Faroese Test accuracy value: 55.1 - type: accuracy name: Sanskrit Test accuracy value: 41.2 - type: accuracy name: Livvi Test accuracy value: 55.5 - type: accuracy name: Arabic Test accuracy value: 57.3 - type: accuracy name: Wolof Test accuracy value: 31.9 - type: accuracy name: Bulgarian Test accuracy value: 60.8 - type: accuracy name: Akuntsu Test accuracy value: 44.5 - type: accuracy name: Makurap Test accuracy value: 24.7 - type: accuracy name: Kangri Test accuracy value: 46.9 - type: accuracy name: Breton Test accuracy value: 54.6 - type: accuracy name: Telugu Test accuracy value: 76.3 - type: accuracy name: Cantonese Test accuracy value: 58.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 45.2 - type: accuracy name: Karelian Test accuracy value: 57.5 - type: accuracy name: Upper Sorbian Test accuracy value: 54.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 57.7 - type: accuracy name: Komi Zyrian Test accuracy value: 45.1 - type: accuracy name: Irish Test accuracy value: 46.3 - type: accuracy name: Nayini Test accuracy value: 50.0 - type: accuracy name: Munduruku Test accuracy value: 43.3 - type: accuracy name: Manx Test accuracy value: 35.6 - type: accuracy name: Skolt Sami Test accuracy value: 40.5 - type: accuracy name: Afrikaans Test accuracy value: 57.3 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 38.7 - type: accuracy name: Belarusian Test accuracy value: 63.7 - type: accuracy name: Serbian Test accuracy value: 56.9 - type: accuracy name: Moksha Test accuracy value: 48.0 - type: accuracy name: Western Armenian Test accuracy value: 61.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 46.2 - type: accuracy name: Khunsari Test accuracy value: 50.0 - type: accuracy name: Hebrew Test accuracy value: 85.4 - type: accuracy name: Uyghur Test accuracy value: 60.2 - type: accuracy name: Chukchi Test accuracy value: 37.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Korean This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ko") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ko") ```
wietsedv/xlm-roberta-base-ft-udpos28-ja
wietsedv
2023-09-11T08:57:00Z
133
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "ja", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - ja license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-ja results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 47.7 - type: accuracy name: Dutch Test accuracy value: 49.8 - type: accuracy name: German Test accuracy value: 55.7 - type: accuracy name: Italian Test accuracy value: 52.0 - type: accuracy name: French Test accuracy value: 47.2 - type: accuracy name: Spanish Test accuracy value: 48.2 - type: accuracy name: Russian Test accuracy value: 62.7 - type: accuracy name: Swedish Test accuracy value: 52.6 - type: accuracy name: Norwegian Test accuracy value: 48.6 - type: accuracy name: Danish Test accuracy value: 54.3 - type: accuracy name: Low Saxon Test accuracy value: 34.7 - type: accuracy name: Akkadian Test accuracy value: 38.6 - type: accuracy name: Armenian Test accuracy value: 67.0 - type: accuracy name: Welsh Test accuracy value: 48.4 - type: accuracy name: Old East Slavic Test accuracy value: 55.2 - type: accuracy name: Albanian Test accuracy value: 51.8 - type: accuracy name: Slovenian Test accuracy value: 46.6 - type: accuracy name: Guajajara Test accuracy value: 39.3 - type: accuracy name: Kurmanji Test accuracy value: 54.6 - type: accuracy name: Turkish Test accuracy value: 65.4 - type: accuracy name: Finnish Test accuracy value: 69.1 - type: accuracy name: Indonesian Test accuracy value: 59.1 - type: accuracy name: Ukrainian Test accuracy value: 63.2 - type: accuracy name: Polish Test accuracy value: 60.5 - type: accuracy name: Portuguese Test accuracy value: 53.3 - type: accuracy name: Kazakh Test accuracy value: 71.9 - type: accuracy name: Latin Test accuracy value: 53.5 - type: accuracy name: Old French Test accuracy value: 30.0 - type: accuracy name: Buryat Test accuracy value: 58.2 - type: accuracy name: Kaapor Test accuracy value: 21.7 - type: accuracy name: Korean Test accuracy value: 64.5 - type: accuracy name: Estonian Test accuracy value: 67.0 - type: accuracy name: Croatian Test accuracy value: 57.5 - type: accuracy name: Gothic Test accuracy value: 15.4 - type: accuracy name: Swiss German Test accuracy value: 34.5 - type: accuracy name: Assyrian Test accuracy value: 28.3 - type: accuracy name: North Sami Test accuracy value: 35.1 - type: accuracy name: Naija Test accuracy value: 16.8 - type: accuracy name: Latvian Test accuracy value: 69.6 - type: accuracy name: Chinese Test accuracy value: 66.2 - type: accuracy name: Tagalog Test accuracy value: 50.4 - type: accuracy name: Bambara Test accuracy value: 27.5 - type: accuracy name: Lithuanian Test accuracy value: 69.7 - type: accuracy name: Galician Test accuracy value: 51.6 - type: accuracy name: Vietnamese Test accuracy value: 50.6 - type: accuracy name: Greek Test accuracy value: 54.9 - type: accuracy name: Catalan Test accuracy value: 46.1 - type: accuracy name: Czech Test accuracy value: 61.1 - type: accuracy name: Erzya Test accuracy value: 41.3 - type: accuracy name: Bhojpuri Test accuracy value: 41.9 - type: accuracy name: Thai Test accuracy value: 52.3 - type: accuracy name: Marathi Test accuracy value: 77.3 - type: accuracy name: Basque Test accuracy value: 68.4 - type: accuracy name: Slovak Test accuracy value: 62.3 - type: accuracy name: Kiche Test accuracy value: 41.0 - type: accuracy name: Yoruba Test accuracy value: 28.8 - type: accuracy name: Warlpiri Test accuracy value: 30.4 - type: accuracy name: Tamil Test accuracy value: 75.9 - type: accuracy name: Maltese Test accuracy value: 29.8 - type: accuracy name: Ancient Greek Test accuracy value: 50.2 - type: accuracy name: Icelandic Test accuracy value: 54.4 - type: accuracy name: Mbya Guarani Test accuracy value: 28.1 - type: accuracy name: Urdu Test accuracy value: 46.4 - type: accuracy name: Romanian Test accuracy value: 55.4 - type: accuracy name: Persian Test accuracy value: 51.8 - type: accuracy name: Apurina Test accuracy value: 34.5 - type: accuracy name: Japanese Test accuracy value: 92.6 - type: accuracy name: Hungarian Test accuracy value: 61.2 - type: accuracy name: Hindi Test accuracy value: 48.2 - type: accuracy name: Classical Chinese Test accuracy value: 46.1 - type: accuracy name: Komi Permyak Test accuracy value: 42.8 - type: accuracy name: Faroese Test accuracy value: 51.1 - type: accuracy name: Sanskrit Test accuracy value: 33.0 - type: accuracy name: Livvi Test accuracy value: 57.2 - type: accuracy name: Arabic Test accuracy value: 52.7 - type: accuracy name: Wolof Test accuracy value: 32.1 - type: accuracy name: Bulgarian Test accuracy value: 55.1 - type: accuracy name: Akuntsu Test accuracy value: 41.4 - type: accuracy name: Makurap Test accuracy value: 19.9 - type: accuracy name: Kangri Test accuracy value: 41.0 - type: accuracy name: Breton Test accuracy value: 46.4 - type: accuracy name: Telugu Test accuracy value: 71.8 - type: accuracy name: Cantonese Test accuracy value: 60.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 39.5 - type: accuracy name: Karelian Test accuracy value: 60.7 - type: accuracy name: Upper Sorbian Test accuracy value: 54.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 49.4 - type: accuracy name: Komi Zyrian Test accuracy value: 39.8 - type: accuracy name: Irish Test accuracy value: 46.8 - type: accuracy name: Nayini Test accuracy value: 37.2 - type: accuracy name: Munduruku Test accuracy value: 39.3 - type: accuracy name: Manx Test accuracy value: 33.9 - type: accuracy name: Skolt Sami Test accuracy value: 36.4 - type: accuracy name: Afrikaans Test accuracy value: 45.7 - type: accuracy name: Old Turkish Test accuracy value: 18.1 - type: accuracy name: Tupinamba Test accuracy value: 32.0 - type: accuracy name: Belarusian Test accuracy value: 62.6 - type: accuracy name: Serbian Test accuracy value: 58.0 - type: accuracy name: Moksha Test accuracy value: 42.2 - type: accuracy name: Western Armenian Test accuracy value: 62.3 - type: accuracy name: Scottish Gaelic Test accuracy value: 38.6 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 69.8 - type: accuracy name: Uyghur Test accuracy value: 65.4 - type: accuracy name: Chukchi Test accuracy value: 33.7 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Japanese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ja") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-ja") ```
GroNLP/bert_dutch_base_abusive_language
GroNLP
2023-09-11T08:56:56Z
114
0
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "nl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-06-07T07:29:11Z
--- license: apache-2.0 language: - nl pipeline_tag: text-classification --- Fine-tuned model for detecting instances of abusive language in Ducth tweets. The model has been trained with [DALC v2.0 ](https://github.com/tommasoc80/DALC). Abusive language is defined as "Impolite, harsh, or hurtful language (that may contain profanities or vulgar language) that result in a debasement, harassment, threat, or aggression of an individual or a (social) group, but not necessarily of an entity, an institution, an organisations, or a concept." ([Ruitenbeek et al., 2022](https://aclanthology.org/2022.woah-1.5/)) The model achieve the following results on multiple test data: - DALC held-out test set: macro F1: 72.23; F1 Abusive: 51.60 - HateCheck-NL (functional benchmark for hate speech): Accuracy: 60.19; Accuracy non-hateful tests: 57.38 ; Accuracy hateful tests: 59.58 - OP-NL (dynamyc benchmark for offensive language): macro F1: 57.57 More details on the training settings and pre-processind are available [here](https://github.com/tommasoc80/DALC)
SHENMU007/neunit_BASE_V9.5.11
SHENMU007
2023-09-11T08:56:39Z
76
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "1.1.0", "generated_from_trainer", "zh", "dataset:facebook/voxpopuli", "base_model:microsoft/speecht5_tts", "base_model:finetune:microsoft/speecht5_tts", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-09-11T07:51:35Z
--- language: - zh license: mit base_model: microsoft/speecht5_tts tags: - 1.1.0 - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: SpeechT5 TTS Dutch neunit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 TTS Dutch neunit This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the VoxPopuli dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
wietsedv/xlm-roberta-base-ft-udpos28-el
wietsedv
2023-09-11T08:56:35Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "el", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - el license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-el results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.6 - type: accuracy name: Dutch Test accuracy value: 82.2 - type: accuracy name: German Test accuracy value: 82.6 - type: accuracy name: Italian Test accuracy value: 82.0 - type: accuracy name: French Test accuracy value: 78.7 - type: accuracy name: Spanish Test accuracy value: 82.2 - type: accuracy name: Russian Test accuracy value: 88.4 - type: accuracy name: Swedish Test accuracy value: 87.4 - type: accuracy name: Norwegian Test accuracy value: 82.1 - type: accuracy name: Danish Test accuracy value: 85.9 - type: accuracy name: Low Saxon Test accuracy value: 49.8 - type: accuracy name: Akkadian Test accuracy value: 24.4 - type: accuracy name: Armenian Test accuracy value: 84.0 - type: accuracy name: Welsh Test accuracy value: 68.9 - type: accuracy name: Old East Slavic Test accuracy value: 75.0 - type: accuracy name: Albanian Test accuracy value: 87.7 - type: accuracy name: Slovenian Test accuracy value: 77.2 - type: accuracy name: Guajajara Test accuracy value: 25.8 - type: accuracy name: Kurmanji Test accuracy value: 74.3 - type: accuracy name: Turkish Test accuracy value: 75.3 - type: accuracy name: Finnish Test accuracy value: 83.4 - type: accuracy name: Indonesian Test accuracy value: 75.4 - type: accuracy name: Ukrainian Test accuracy value: 88.6 - type: accuracy name: Polish Test accuracy value: 84.0 - type: accuracy name: Portuguese Test accuracy value: 82.4 - type: accuracy name: Kazakh Test accuracy value: 80.5 - type: accuracy name: Latin Test accuracy value: 77.3 - type: accuracy name: Old French Test accuracy value: 52.5 - type: accuracy name: Buryat Test accuracy value: 56.0 - type: accuracy name: Kaapor Test accuracy value: 11.2 - type: accuracy name: Korean Test accuracy value: 59.9 - type: accuracy name: Estonian Test accuracy value: 83.6 - type: accuracy name: Croatian Test accuracy value: 84.9 - type: accuracy name: Gothic Test accuracy value: 20.2 - type: accuracy name: Swiss German Test accuracy value: 43.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 33.5 - type: accuracy name: Naija Test accuracy value: 42.7 - type: accuracy name: Latvian Test accuracy value: 84.9 - type: accuracy name: Chinese Test accuracy value: 42.1 - type: accuracy name: Tagalog Test accuracy value: 66.7 - type: accuracy name: Bambara Test accuracy value: 28.2 - type: accuracy name: Lithuanian Test accuracy value: 85.3 - type: accuracy name: Galician Test accuracy value: 82.1 - type: accuracy name: Vietnamese Test accuracy value: 62.8 - type: accuracy name: Greek Test accuracy value: 98.0 - type: accuracy name: Catalan Test accuracy value: 80.4 - type: accuracy name: Czech Test accuracy value: 85.0 - type: accuracy name: Erzya Test accuracy value: 43.9 - type: accuracy name: Bhojpuri Test accuracy value: 45.0 - type: accuracy name: Thai Test accuracy value: 58.6 - type: accuracy name: Marathi Test accuracy value: 85.3 - type: accuracy name: Basque Test accuracy value: 72.4 - type: accuracy name: Slovak Test accuracy value: 82.8 - type: accuracy name: Kiche Test accuracy value: 36.2 - type: accuracy name: Yoruba Test accuracy value: 28.9 - type: accuracy name: Warlpiri Test accuracy value: 38.9 - type: accuracy name: Tamil Test accuracy value: 83.0 - type: accuracy name: Maltese Test accuracy value: 22.3 - type: accuracy name: Ancient Greek Test accuracy value: 64.2 - type: accuracy name: Icelandic Test accuracy value: 80.7 - type: accuracy name: Mbya Guarani Test accuracy value: 32.4 - type: accuracy name: Urdu Test accuracy value: 53.0 - type: accuracy name: Romanian Test accuracy value: 83.7 - type: accuracy name: Persian Test accuracy value: 74.4 - type: accuracy name: Apurina Test accuracy value: 41.3 - type: accuracy name: Japanese Test accuracy value: 30.0 - type: accuracy name: Hungarian Test accuracy value: 80.2 - type: accuracy name: Hindi Test accuracy value: 60.0 - type: accuracy name: Classical Chinese Test accuracy value: 30.1 - type: accuracy name: Komi Permyak Test accuracy value: 44.2 - type: accuracy name: Faroese Test accuracy value: 72.9 - type: accuracy name: Sanskrit Test accuracy value: 40.4 - type: accuracy name: Livvi Test accuracy value: 65.2 - type: accuracy name: Arabic Test accuracy value: 76.6 - type: accuracy name: Wolof Test accuracy value: 28.0 - type: accuracy name: Bulgarian Test accuracy value: 89.6 - type: accuracy name: Akuntsu Test accuracy value: 26.7 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 43.1 - type: accuracy name: Breton Test accuracy value: 63.5 - type: accuracy name: Telugu Test accuracy value: 85.3 - type: accuracy name: Cantonese Test accuracy value: 48.3 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.6 - type: accuracy name: Karelian Test accuracy value: 71.0 - type: accuracy name: Upper Sorbian Test accuracy value: 69.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.2 - type: accuracy name: Komi Zyrian Test accuracy value: 36.5 - type: accuracy name: Irish Test accuracy value: 61.3 - type: accuracy name: Nayini Test accuracy value: 43.6 - type: accuracy name: Munduruku Test accuracy value: 29.4 - type: accuracy name: Manx Test accuracy value: 33.8 - type: accuracy name: Skolt Sami Test accuracy value: 31.5 - type: accuracy name: Afrikaans Test accuracy value: 85.0 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 29.2 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 85.2 - type: accuracy name: Moksha Test accuracy value: 43.8 - type: accuracy name: Western Armenian Test accuracy value: 76.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.8 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 88.5 - type: accuracy name: Uyghur Test accuracy value: 75.7 - type: accuracy name: Chukchi Test accuracy value: 34.8 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Greek This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-el") ```
wietsedv/xlm-roberta-base-ft-udpos28-de
wietsedv
2023-09-11T08:56:20Z
110
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "de", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - de license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-de results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 87.0 - type: accuracy name: Dutch Test accuracy value: 89.6 - type: accuracy name: German Test accuracy value: 97.2 - type: accuracy name: Italian Test accuracy value: 85.6 - type: accuracy name: French Test accuracy value: 84.8 - type: accuracy name: Spanish Test accuracy value: 88.4 - type: accuracy name: Russian Test accuracy value: 89.4 - type: accuracy name: Swedish Test accuracy value: 92.3 - type: accuracy name: Norwegian Test accuracy value: 87.7 - type: accuracy name: Danish Test accuracy value: 88.9 - type: accuracy name: Low Saxon Test accuracy value: 44.3 - type: accuracy name: Akkadian Test accuracy value: 21.4 - type: accuracy name: Armenian Test accuracy value: 85.6 - type: accuracy name: Welsh Test accuracy value: 69.0 - type: accuracy name: Old East Slavic Test accuracy value: 67.7 - type: accuracy name: Albanian Test accuracy value: 84.6 - type: accuracy name: Slovenian Test accuracy value: 76.5 - type: accuracy name: Guajajara Test accuracy value: 18.1 - type: accuracy name: Kurmanji Test accuracy value: 74.1 - type: accuracy name: Turkish Test accuracy value: 75.6 - type: accuracy name: Finnish Test accuracy value: 83.8 - type: accuracy name: Indonesian Test accuracy value: 82.2 - type: accuracy name: Ukrainian Test accuracy value: 89.0 - type: accuracy name: Polish Test accuracy value: 86.6 - type: accuracy name: Portuguese Test accuracy value: 87.8 - type: accuracy name: Kazakh Test accuracy value: 80.6 - type: accuracy name: Latin Test accuracy value: 75.8 - type: accuracy name: Old French Test accuracy value: 36.3 - type: accuracy name: Buryat Test accuracy value: 49.8 - type: accuracy name: Kaapor Test accuracy value: 11.7 - type: accuracy name: Korean Test accuracy value: 61.4 - type: accuracy name: Estonian Test accuracy value: 86.6 - type: accuracy name: Croatian Test accuracy value: 88.8 - type: accuracy name: Gothic Test accuracy value: 8.1 - type: accuracy name: Swiss German Test accuracy value: 54.4 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 25.0 - type: accuracy name: Naija Test accuracy value: 28.2 - type: accuracy name: Latvian Test accuracy value: 83.9 - type: accuracy name: Chinese Test accuracy value: 52.6 - type: accuracy name: Tagalog Test accuracy value: 72.1 - type: accuracy name: Bambara Test accuracy value: 17.5 - type: accuracy name: Lithuanian Test accuracy value: 82.6 - type: accuracy name: Galician Test accuracy value: 85.2 - type: accuracy name: Vietnamese Test accuracy value: 60.8 - type: accuracy name: Greek Test accuracy value: 88.7 - type: accuracy name: Catalan Test accuracy value: 86.8 - type: accuracy name: Czech Test accuracy value: 87.4 - type: accuracy name: Erzya Test accuracy value: 33.6 - type: accuracy name: Bhojpuri Test accuracy value: 46.5 - type: accuracy name: Thai Test accuracy value: 62.4 - type: accuracy name: Marathi Test accuracy value: 86.5 - type: accuracy name: Basque Test accuracy value: 77.3 - type: accuracy name: Slovak Test accuracy value: 87.6 - type: accuracy name: Kiche Test accuracy value: 21.6 - type: accuracy name: Yoruba Test accuracy value: 16.6 - type: accuracy name: Warlpiri Test accuracy value: 21.5 - type: accuracy name: Tamil Test accuracy value: 84.2 - type: accuracy name: Maltese Test accuracy value: 15.3 - type: accuracy name: Ancient Greek Test accuracy value: 62.0 - type: accuracy name: Icelandic Test accuracy value: 84.1 - type: accuracy name: Mbya Guarani Test accuracy value: 20.5 - type: accuracy name: Urdu Test accuracy value: 68.0 - type: accuracy name: Romanian Test accuracy value: 83.5 - type: accuracy name: Persian Test accuracy value: 76.0 - type: accuracy name: Apurina Test accuracy value: 22.2 - type: accuracy name: Japanese Test accuracy value: 36.2 - type: accuracy name: Hungarian Test accuracy value: 86.7 - type: accuracy name: Hindi Test accuracy value: 73.0 - type: accuracy name: Classical Chinese Test accuracy value: 28.6 - type: accuracy name: Komi Permyak Test accuracy value: 34.9 - type: accuracy name: Faroese Test accuracy value: 76.6 - type: accuracy name: Sanskrit Test accuracy value: 9.4 - type: accuracy name: Livvi Test accuracy value: 50.9 - type: accuracy name: Arabic Test accuracy value: 79.4 - type: accuracy name: Wolof Test accuracy value: 21.1 - type: accuracy name: Bulgarian Test accuracy value: 91.1 - type: accuracy name: Akuntsu Test accuracy value: 14.4 - type: accuracy name: Makurap Test accuracy value: 1.4 - type: accuracy name: Kangri Test accuracy value: 40.5 - type: accuracy name: Breton Test accuracy value: 60.0 - type: accuracy name: Telugu Test accuracy value: 83.2 - type: accuracy name: Cantonese Test accuracy value: 48.9 - type: accuracy name: Old Church Slavonic Test accuracy value: 38.7 - type: accuracy name: Karelian Test accuracy value: 64.4 - type: accuracy name: Upper Sorbian Test accuracy value: 65.5 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.8 - type: accuracy name: Komi Zyrian Test accuracy value: 28.4 - type: accuracy name: Irish Test accuracy value: 66.3 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 8.0 - type: accuracy name: Manx Test accuracy value: 20.6 - type: accuracy name: Skolt Sami Test accuracy value: 25.8 - type: accuracy name: Afrikaans Test accuracy value: 88.9 - type: accuracy name: Old Turkish Test accuracy value: 31.7 - type: accuracy name: Tupinamba Test accuracy value: 20.9 - type: accuracy name: Belarusian Test accuracy value: 89.5 - type: accuracy name: Serbian Test accuracy value: 89.8 - type: accuracy name: Moksha Test accuracy value: 31.3 - type: accuracy name: Western Armenian Test accuracy value: 77.6 - type: accuracy name: Scottish Gaelic Test accuracy value: 56.5 - type: accuracy name: Khunsari Test accuracy value: 35.1 - type: accuracy name: Hebrew Test accuracy value: 91.7 - type: accuracy name: Uyghur Test accuracy value: 71.5 - type: accuracy name: Chukchi Test accuracy value: 29.0 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: German This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-de") ```
wietsedv/xlm-roberta-base-ft-udpos28-fa
wietsedv
2023-09-11T08:56:13Z
120
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "fa", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - fa license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-fa results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 77.1 - type: accuracy name: Dutch Test accuracy value: 75.7 - type: accuracy name: German Test accuracy value: 75.4 - type: accuracy name: Italian Test accuracy value: 76.0 - type: accuracy name: French Test accuracy value: 73.7 - type: accuracy name: Spanish Test accuracy value: 76.7 - type: accuracy name: Russian Test accuracy value: 81.5 - type: accuracy name: Swedish Test accuracy value: 80.5 - type: accuracy name: Norwegian Test accuracy value: 79.6 - type: accuracy name: Danish Test accuracy value: 81.1 - type: accuracy name: Low Saxon Test accuracy value: 51.1 - type: accuracy name: Akkadian Test accuracy value: 40.8 - type: accuracy name: Armenian Test accuracy value: 79.5 - type: accuracy name: Welsh Test accuracy value: 72.1 - type: accuracy name: Old East Slavic Test accuracy value: 71.6 - type: accuracy name: Albanian Test accuracy value: 73.6 - type: accuracy name: Slovenian Test accuracy value: 74.0 - type: accuracy name: Guajajara Test accuracy value: 32.5 - type: accuracy name: Kurmanji Test accuracy value: 78.9 - type: accuracy name: Turkish Test accuracy value: 76.9 - type: accuracy name: Finnish Test accuracy value: 79.8 - type: accuracy name: Indonesian Test accuracy value: 76.1 - type: accuracy name: Ukrainian Test accuracy value: 80.0 - type: accuracy name: Polish Test accuracy value: 82.7 - type: accuracy name: Portuguese Test accuracy value: 77.8 - type: accuracy name: Kazakh Test accuracy value: 78.5 - type: accuracy name: Latin Test accuracy value: 73.5 - type: accuracy name: Old French Test accuracy value: 53.0 - type: accuracy name: Buryat Test accuracy value: 62.4 - type: accuracy name: Kaapor Test accuracy value: 19.6 - type: accuracy name: Korean Test accuracy value: 62.6 - type: accuracy name: Estonian Test accuracy value: 83.5 - type: accuracy name: Croatian Test accuracy value: 81.5 - type: accuracy name: Gothic Test accuracy value: 22.6 - type: accuracy name: Swiss German Test accuracy value: 50.2 - type: accuracy name: Assyrian Test accuracy value: 20.1 - type: accuracy name: North Sami Test accuracy value: 39.4 - type: accuracy name: Naija Test accuracy value: 39.6 - type: accuracy name: Latvian Test accuracy value: 80.0 - type: accuracy name: Chinese Test accuracy value: 41.2 - type: accuracy name: Tagalog Test accuracy value: 79.0 - type: accuracy name: Bambara Test accuracy value: 34.4 - type: accuracy name: Lithuanian Test accuracy value: 78.5 - type: accuracy name: Galician Test accuracy value: 74.9 - type: accuracy name: Vietnamese Test accuracy value: 57.0 - type: accuracy name: Greek Test accuracy value: 66.7 - type: accuracy name: Catalan Test accuracy value: 75.0 - type: accuracy name: Czech Test accuracy value: 80.3 - type: accuracy name: Erzya Test accuracy value: 47.8 - type: accuracy name: Bhojpuri Test accuracy value: 61.1 - type: accuracy name: Thai Test accuracy value: 53.6 - type: accuracy name: Marathi Test accuracy value: 84.0 - type: accuracy name: Basque Test accuracy value: 72.2 - type: accuracy name: Slovak Test accuracy value: 77.2 - type: accuracy name: Kiche Test accuracy value: 37.9 - type: accuracy name: Yoruba Test accuracy value: 30.8 - type: accuracy name: Warlpiri Test accuracy value: 35.2 - type: accuracy name: Tamil Test accuracy value: 82.0 - type: accuracy name: Maltese Test accuracy value: 30.5 - type: accuracy name: Ancient Greek Test accuracy value: 62.9 - type: accuracy name: Icelandic Test accuracy value: 82.3 - type: accuracy name: Mbya Guarani Test accuracy value: 31.0 - type: accuracy name: Urdu Test accuracy value: 74.4 - type: accuracy name: Romanian Test accuracy value: 79.2 - type: accuracy name: Persian Test accuracy value: 91.4 - type: accuracy name: Apurina Test accuracy value: 41.8 - type: accuracy name: Japanese Test accuracy value: 31.8 - type: accuracy name: Hungarian Test accuracy value: 71.0 - type: accuracy name: Hindi Test accuracy value: 79.2 - type: accuracy name: Classical Chinese Test accuracy value: 30.2 - type: accuracy name: Komi Permyak Test accuracy value: 46.7 - type: accuracy name: Faroese Test accuracy value: 73.4 - type: accuracy name: Sanskrit Test accuracy value: 35.1 - type: accuracy name: Livvi Test accuracy value: 63.9 - type: accuracy name: Arabic Test accuracy value: 81.7 - type: accuracy name: Wolof Test accuracy value: 35.7 - type: accuracy name: Bulgarian Test accuracy value: 83.5 - type: accuracy name: Akuntsu Test accuracy value: 37.5 - type: accuracy name: Makurap Test accuracy value: 15.1 - type: accuracy name: Kangri Test accuracy value: 52.3 - type: accuracy name: Breton Test accuracy value: 57.4 - type: accuracy name: Telugu Test accuracy value: 82.1 - type: accuracy name: Cantonese Test accuracy value: 45.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.2 - type: accuracy name: Karelian Test accuracy value: 65.1 - type: accuracy name: Upper Sorbian Test accuracy value: 68.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.7 - type: accuracy name: Komi Zyrian Test accuracy value: 41.6 - type: accuracy name: Irish Test accuracy value: 66.5 - type: accuracy name: Nayini Test accuracy value: 48.7 - type: accuracy name: Munduruku Test accuracy value: 24.9 - type: accuracy name: Manx Test accuracy value: 33.3 - type: accuracy name: Skolt Sami Test accuracy value: 38.3 - type: accuracy name: Afrikaans Test accuracy value: 75.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 39.2 - type: accuracy name: Belarusian Test accuracy value: 78.9 - type: accuracy name: Serbian Test accuracy value: 82.5 - type: accuracy name: Moksha Test accuracy value: 45.4 - type: accuracy name: Western Armenian Test accuracy value: 76.4 - type: accuracy name: Scottish Gaelic Test accuracy value: 54.7 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 89.6 - type: accuracy name: Uyghur Test accuracy value: 77.0 - type: accuracy name: Chukchi Test accuracy value: 33.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Persian This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fa") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-fa") ```
GroNLP/gpt2-medium-dutch-embeddings
GroNLP
2023-09-11T08:56:08Z
325
3
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "gpt2", "text-generation", "adaption", "recycled", "gpt2-medium", "nl", "arxiv:2012.05628", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: nl tags: - adaption - recycled - gpt2-medium pipeline_tag: text-generation --- # GPT-2 recycled for Dutch (medium, adapted lexical embeddings) [Wietse de Vries](https://www.semanticscholar.org/author/Wietse-de-Vries/144611157) • [Malvina Nissim](https://www.semanticscholar.org/author/M.-Nissim/2742475) ## Model description This model is based on the medium OpenAI GPT-2 ([`gpt2-medium`](https://huggingface.co/gpt2-medium)) model. The Transformer layer weights in this model are identical to the original English, model but the lexical layer has been retrained for a Dutch vocabulary. For details, check out our paper on [arXiv](https://arxiv.org/abs/2012.05628) and the code on [Github](https://github.com/wietsedv/gpt2-recycle). ## Related models ### Dutch - [`gpt2-small-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-small-dutch-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-dutch`](https://huggingface.co/GroNLP/gpt2-small-dutch): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-dutch-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-dutch-embeddings): Medium model size with only retrained lexical embeddings. ### Italian - [`gpt2-small-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-small-italian-embeddings): Small model size with only retrained lexical embeddings. - [`gpt2-small-italian`](https://huggingface.co/GroNLP/gpt2-small-italian): Small model size with retrained lexical embeddings and additional fine-tuning of the full model. (**Recommended**) - [`gpt2-medium-italian-embeddings`](https://huggingface.co/GroNLP/gpt2-medium-italian-embeddings): Medium model size with only retrained lexical embeddings. ## How to use ```python from transformers import pipeline pipe = pipeline("text-generation", model="GroNLP/gpt2-medium-dutch-embeddings") ``` ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings") model = AutoModel.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings") # PyTorch model = TFAutoModel.from_pretrained("GroNLP/gpt2-medium-dutch-embeddings") # Tensorflow ``` ## BibTeX entry ```bibtex @misc{devries2020good, title={As good as new. How to successfully recycle English GPT-2 to make models for other languages}, author={Wietse de Vries and Malvina Nissim}, year={2020}, eprint={2012.05628}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wietsedv/xlm-roberta-base-ft-udpos28-en
wietsedv
2023-09-11T08:56:04Z
110
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "en", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - en license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-en results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 96.0 - type: accuracy name: Dutch Test accuracy value: 90.4 - type: accuracy name: German Test accuracy value: 88.6 - type: accuracy name: Italian Test accuracy value: 87.8 - type: accuracy name: French Test accuracy value: 87.4 - type: accuracy name: Spanish Test accuracy value: 90.3 - type: accuracy name: Russian Test accuracy value: 91.0 - type: accuracy name: Swedish Test accuracy value: 94.0 - type: accuracy name: Norwegian Test accuracy value: 89.6 - type: accuracy name: Danish Test accuracy value: 91.6 - type: accuracy name: Low Saxon Test accuracy value: 57.4 - type: accuracy name: Akkadian Test accuracy value: 26.4 - type: accuracy name: Armenian Test accuracy value: 88.5 - type: accuracy name: Welsh Test accuracy value: 70.6 - type: accuracy name: Old East Slavic Test accuracy value: 76.5 - type: accuracy name: Albanian Test accuracy value: 82.3 - type: accuracy name: Slovenian Test accuracy value: 79.0 - type: accuracy name: Guajajara Test accuracy value: 17.2 - type: accuracy name: Kurmanji Test accuracy value: 76.9 - type: accuracy name: Turkish Test accuracy value: 79.1 - type: accuracy name: Finnish Test accuracy value: 87.2 - type: accuracy name: Indonesian Test accuracy value: 86.9 - type: accuracy name: Ukrainian Test accuracy value: 87.6 - type: accuracy name: Polish Test accuracy value: 87.2 - type: accuracy name: Portuguese Test accuracy value: 90.0 - type: accuracy name: Kazakh Test accuracy value: 82.5 - type: accuracy name: Latin Test accuracy value: 79.6 - type: accuracy name: Old French Test accuracy value: 53.4 - type: accuracy name: Buryat Test accuracy value: 58.8 - type: accuracy name: Kaapor Test accuracy value: 9.2 - type: accuracy name: Korean Test accuracy value: 64.0 - type: accuracy name: Estonian Test accuracy value: 88.4 - type: accuracy name: Croatian Test accuracy value: 87.9 - type: accuracy name: Gothic Test accuracy value: 20.5 - type: accuracy name: Swiss German Test accuracy value: 47.6 - type: accuracy name: Assyrian Test accuracy value: 14.6 - type: accuracy name: North Sami Test accuracy value: 32.0 - type: accuracy name: Naija Test accuracy value: 47.5 - type: accuracy name: Latvian Test accuracy value: 87.5 - type: accuracy name: Chinese Test accuracy value: 47.5 - type: accuracy name: Tagalog Test accuracy value: 73.5 - type: accuracy name: Bambara Test accuracy value: 27.7 - type: accuracy name: Lithuanian Test accuracy value: 87.3 - type: accuracy name: Galician Test accuracy value: 87.1 - type: accuracy name: Vietnamese Test accuracy value: 66.4 - type: accuracy name: Greek Test accuracy value: 87.6 - type: accuracy name: Catalan Test accuracy value: 89.7 - type: accuracy name: Czech Test accuracy value: 88.1 - type: accuracy name: Erzya Test accuracy value: 47.6 - type: accuracy name: Bhojpuri Test accuracy value: 50.7 - type: accuracy name: Thai Test accuracy value: 59.5 - type: accuracy name: Marathi Test accuracy value: 82.2 - type: accuracy name: Basque Test accuracy value: 76.0 - type: accuracy name: Slovak Test accuracy value: 88.5 - type: accuracy name: Kiche Test accuracy value: 25.4 - type: accuracy name: Yoruba Test accuracy value: 18.5 - type: accuracy name: Warlpiri Test accuracy value: 29.1 - type: accuracy name: Tamil Test accuracy value: 83.4 - type: accuracy name: Maltese Test accuracy value: 21.1 - type: accuracy name: Ancient Greek Test accuracy value: 66.8 - type: accuracy name: Icelandic Test accuracy value: 84.8 - type: accuracy name: Mbya Guarani Test accuracy value: 24.1 - type: accuracy name: Urdu Test accuracy value: 67.0 - type: accuracy name: Romanian Test accuracy value: 85.7 - type: accuracy name: Persian Test accuracy value: 76.7 - type: accuracy name: Apurina Test accuracy value: 28.6 - type: accuracy name: Japanese Test accuracy value: 34.1 - type: accuracy name: Hungarian Test accuracy value: 86.0 - type: accuracy name: Hindi Test accuracy value: 74.1 - type: accuracy name: Classical Chinese Test accuracy value: 29.4 - type: accuracy name: Komi Permyak Test accuracy value: 47.4 - type: accuracy name: Faroese Test accuracy value: 77.0 - type: accuracy name: Sanskrit Test accuracy value: 25.6 - type: accuracy name: Livvi Test accuracy value: 63.2 - type: accuracy name: Arabic Test accuracy value: 80.7 - type: accuracy name: Wolof Test accuracy value: 26.1 - type: accuracy name: Bulgarian Test accuracy value: 90.8 - type: accuracy name: Akuntsu Test accuracy value: 18.3 - type: accuracy name: Makurap Test accuracy value: 5.5 - type: accuracy name: Kangri Test accuracy value: 43.0 - type: accuracy name: Breton Test accuracy value: 64.1 - type: accuracy name: Telugu Test accuracy value: 84.7 - type: accuracy name: Cantonese Test accuracy value: 54.0 - type: accuracy name: Old Church Slavonic Test accuracy value: 53.7 - type: accuracy name: Karelian Test accuracy value: 69.7 - type: accuracy name: Upper Sorbian Test accuracy value: 75.6 - type: accuracy name: South Levantine Arabic Test accuracy value: 66.3 - type: accuracy name: Komi Zyrian Test accuracy value: 39.9 - type: accuracy name: Irish Test accuracy value: 67.0 - type: accuracy name: Nayini Test accuracy value: 44.9 - type: accuracy name: Munduruku Test accuracy value: 12.3 - type: accuracy name: Manx Test accuracy value: 25.4 - type: accuracy name: Skolt Sami Test accuracy value: 29.9 - type: accuracy name: Afrikaans Test accuracy value: 89.3 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 23.1 - type: accuracy name: Belarusian Test accuracy value: 89.1 - type: accuracy name: Serbian Test accuracy value: 88.4 - type: accuracy name: Moksha Test accuracy value: 44.1 - type: accuracy name: Western Armenian Test accuracy value: 80.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.0 - type: accuracy name: Khunsari Test accuracy value: 43.2 - type: accuracy name: Hebrew Test accuracy value: 90.6 - type: accuracy name: Uyghur Test accuracy value: 75.8 - type: accuracy name: Chukchi Test accuracy value: 32.6 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: English This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-en") ```
wietsedv/xlm-roberta-base-ft-udpos28-zh
wietsedv
2023-09-11T08:55:57Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "zh", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - zh license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-zh results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 60.2 - type: accuracy name: Dutch Test accuracy value: 56.9 - type: accuracy name: German Test accuracy value: 57.5 - type: accuracy name: Italian Test accuracy value: 57.3 - type: accuracy name: French Test accuracy value: 54.1 - type: accuracy name: Spanish Test accuracy value: 54.4 - type: accuracy name: Russian Test accuracy value: 69.6 - type: accuracy name: Swedish Test accuracy value: 61.8 - type: accuracy name: Norwegian Test accuracy value: 60.3 - type: accuracy name: Danish Test accuracy value: 62.6 - type: accuracy name: Low Saxon Test accuracy value: 29.6 - type: accuracy name: Akkadian Test accuracy value: 16.3 - type: accuracy name: Armenian Test accuracy value: 70.7 - type: accuracy name: Welsh Test accuracy value: 52.3 - type: accuracy name: Old East Slavic Test accuracy value: 50.1 - type: accuracy name: Albanian Test accuracy value: 59.0 - type: accuracy name: Slovenian Test accuracy value: 52.9 - type: accuracy name: Guajajara Test accuracy value: 20.3 - type: accuracy name: Kurmanji Test accuracy value: 66.5 - type: accuracy name: Turkish Test accuracy value: 69.6 - type: accuracy name: Finnish Test accuracy value: 70.3 - type: accuracy name: Indonesian Test accuracy value: 65.8 - type: accuracy name: Ukrainian Test accuracy value: 69.4 - type: accuracy name: Polish Test accuracy value: 65.3 - type: accuracy name: Portuguese Test accuracy value: 60.6 - type: accuracy name: Kazakh Test accuracy value: 76.2 - type: accuracy name: Latin Test accuracy value: 60.5 - type: accuracy name: Old French Test accuracy value: 19.5 - type: accuracy name: Buryat Test accuracy value: 56.2 - type: accuracy name: Kaapor Test accuracy value: 10.4 - type: accuracy name: Korean Test accuracy value: 63.2 - type: accuracy name: Estonian Test accuracy value: 70.4 - type: accuracy name: Croatian Test accuracy value: 61.2 - type: accuracy name: Gothic Test accuracy value: 5.4 - type: accuracy name: Swiss German Test accuracy value: 36.2 - type: accuracy name: Assyrian Test accuracy value: 17.0 - type: accuracy name: North Sami Test accuracy value: 22.9 - type: accuracy name: Naija Test accuracy value: 21.5 - type: accuracy name: Latvian Test accuracy value: 74.1 - type: accuracy name: Chinese Test accuracy value: 93.4 - type: accuracy name: Tagalog Test accuracy value: 59.1 - type: accuracy name: Bambara Test accuracy value: 21.0 - type: accuracy name: Lithuanian Test accuracy value: 73.8 - type: accuracy name: Galician Test accuracy value: 56.7 - type: accuracy name: Vietnamese Test accuracy value: 59.6 - type: accuracy name: Greek Test accuracy value: 58.4 - type: accuracy name: Catalan Test accuracy value: 52.2 - type: accuracy name: Czech Test accuracy value: 64.6 - type: accuracy name: Erzya Test accuracy value: 39.4 - type: accuracy name: Bhojpuri Test accuracy value: 42.7 - type: accuracy name: Thai Test accuracy value: 65.6 - type: accuracy name: Marathi Test accuracy value: 74.2 - type: accuracy name: Basque Test accuracy value: 66.0 - type: accuracy name: Slovak Test accuracy value: 66.0 - type: accuracy name: Kiche Test accuracy value: 23.1 - type: accuracy name: Yoruba Test accuracy value: 16.4 - type: accuracy name: Warlpiri Test accuracy value: 29.6 - type: accuracy name: Tamil Test accuracy value: 82.6 - type: accuracy name: Maltese Test accuracy value: 13.7 - type: accuracy name: Ancient Greek Test accuracy value: 65.2 - type: accuracy name: Icelandic Test accuracy value: 63.4 - type: accuracy name: Mbya Guarani Test accuracy value: 23.2 - type: accuracy name: Urdu Test accuracy value: 53.8 - type: accuracy name: Romanian Test accuracy value: 61.2 - type: accuracy name: Persian Test accuracy value: 59.6 - type: accuracy name: Apurina Test accuracy value: 24.7 - type: accuracy name: Japanese Test accuracy value: 56.4 - type: accuracy name: Hungarian Test accuracy value: 59.9 - type: accuracy name: Hindi Test accuracy value: 59.4 - type: accuracy name: Classical Chinese Test accuracy value: 58.2 - type: accuracy name: Komi Permyak Test accuracy value: 34.7 - type: accuracy name: Faroese Test accuracy value: 55.9 - type: accuracy name: Sanskrit Test accuracy value: 19.0 - type: accuracy name: Livvi Test accuracy value: 52.8 - type: accuracy name: Arabic Test accuracy value: 64.2 - type: accuracy name: Wolof Test accuracy value: 17.6 - type: accuracy name: Bulgarian Test accuracy value: 64.2 - type: accuracy name: Akuntsu Test accuracy value: 16.5 - type: accuracy name: Makurap Test accuracy value: 6.8 - type: accuracy name: Kangri Test accuracy value: 38.9 - type: accuracy name: Breton Test accuracy value: 49.9 - type: accuracy name: Telugu Test accuracy value: 82.8 - type: accuracy name: Cantonese Test accuracy value: 80.6 - type: accuracy name: Old Church Slavonic Test accuracy value: 41.0 - type: accuracy name: Karelian Test accuracy value: 60.5 - type: accuracy name: Upper Sorbian Test accuracy value: 47.0 - type: accuracy name: South Levantine Arabic Test accuracy value: 59.7 - type: accuracy name: Komi Zyrian Test accuracy value: 29.4 - type: accuracy name: Irish Test accuracy value: 49.7 - type: accuracy name: Nayini Test accuracy value: 50.0 - type: accuracy name: Munduruku Test accuracy value: 10.6 - type: accuracy name: Manx Test accuracy value: 22.3 - type: accuracy name: Skolt Sami Test accuracy value: 24.9 - type: accuracy name: Afrikaans Test accuracy value: 58.6 - type: accuracy name: Old Turkish Test accuracy value: 45.7 - type: accuracy name: Tupinamba Test accuracy value: 20.7 - type: accuracy name: Belarusian Test accuracy value: 69.7 - type: accuracy name: Serbian Test accuracy value: 61.9 - type: accuracy name: Moksha Test accuracy value: 35.1 - type: accuracy name: Western Armenian Test accuracy value: 67.2 - type: accuracy name: Scottish Gaelic Test accuracy value: 44.6 - type: accuracy name: Khunsari Test accuracy value: 44.6 - type: accuracy name: Hebrew Test accuracy value: 82.3 - type: accuracy name: Uyghur Test accuracy value: 71.6 - type: accuracy name: Chukchi Test accuracy value: 32.1 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Chinese This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-zh") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-zh") ```
wietsedv/xlm-roberta-base-ft-udpos28-cs
wietsedv
2023-09-11T08:55:51Z
114
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "cs", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - cs license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-cs results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 83.4 - type: accuracy name: Dutch Test accuracy value: 83.9 - type: accuracy name: German Test accuracy value: 83.2 - type: accuracy name: Italian Test accuracy value: 81.5 - type: accuracy name: French Test accuracy value: 83.5 - type: accuracy name: Spanish Test accuracy value: 85.9 - type: accuracy name: Russian Test accuracy value: 91.2 - type: accuracy name: Swedish Test accuracy value: 88.3 - type: accuracy name: Norwegian Test accuracy value: 79.6 - type: accuracy name: Danish Test accuracy value: 85.4 - type: accuracy name: Low Saxon Test accuracy value: 55.4 - type: accuracy name: Akkadian Test accuracy value: 40.3 - type: accuracy name: Armenian Test accuracy value: 84.2 - type: accuracy name: Welsh Test accuracy value: 66.4 - type: accuracy name: Old East Slavic Test accuracy value: 76.6 - type: accuracy name: Albanian Test accuracy value: 76.8 - type: accuracy name: Slovenian Test accuracy value: 87.4 - type: accuracy name: Guajajara Test accuracy value: 37.3 - type: accuracy name: Kurmanji Test accuracy value: 79.3 - type: accuracy name: Turkish Test accuracy value: 77.5 - type: accuracy name: Finnish Test accuracy value: 83.3 - type: accuracy name: Indonesian Test accuracy value: 83.0 - type: accuracy name: Ukrainian Test accuracy value: 92.8 - type: accuracy name: Polish Test accuracy value: 92.1 - type: accuracy name: Portuguese Test accuracy value: 86.3 - type: accuracy name: Kazakh Test accuracy value: 80.2 - type: accuracy name: Latin Test accuracy value: 79.7 - type: accuracy name: Old French Test accuracy value: 59.4 - type: accuracy name: Buryat Test accuracy value: 60.3 - type: accuracy name: Kaapor Test accuracy value: 22.5 - type: accuracy name: Korean Test accuracy value: 58.9 - type: accuracy name: Estonian Test accuracy value: 85.7 - type: accuracy name: Croatian Test accuracy value: 94.9 - type: accuracy name: Gothic Test accuracy value: 27.2 - type: accuracy name: Swiss German Test accuracy value: 48.8 - type: accuracy name: Assyrian Test accuracy value: 15.0 - type: accuracy name: North Sami Test accuracy value: 43.4 - type: accuracy name: Naija Test accuracy value: 41.6 - type: accuracy name: Latvian Test accuracy value: 85.9 - type: accuracy name: Chinese Test accuracy value: 31.9 - type: accuracy name: Tagalog Test accuracy value: 72.0 - type: accuracy name: Bambara Test accuracy value: 27.8 - type: accuracy name: Lithuanian Test accuracy value: 86.5 - type: accuracy name: Galician Test accuracy value: 85.1 - type: accuracy name: Vietnamese Test accuracy value: 67.4 - type: accuracy name: Greek Test accuracy value: 84.2 - type: accuracy name: Catalan Test accuracy value: 84.6 - type: accuracy name: Czech Test accuracy value: 98.4 - type: accuracy name: Erzya Test accuracy value: 51.1 - type: accuracy name: Bhojpuri Test accuracy value: 48.7 - type: accuracy name: Thai Test accuracy value: 52.4 - type: accuracy name: Marathi Test accuracy value: 87.7 - type: accuracy name: Basque Test accuracy value: 74.0 - type: accuracy name: Slovak Test accuracy value: 95.8 - type: accuracy name: Kiche Test accuracy value: 36.8 - type: accuracy name: Yoruba Test accuracy value: 28.3 - type: accuracy name: Warlpiri Test accuracy value: 43.3 - type: accuracy name: Tamil Test accuracy value: 84.3 - type: accuracy name: Maltese Test accuracy value: 33.1 - type: accuracy name: Ancient Greek Test accuracy value: 59.5 - type: accuracy name: Icelandic Test accuracy value: 79.1 - type: accuracy name: Mbya Guarani Test accuracy value: 34.1 - type: accuracy name: Urdu Test accuracy value: 61.9 - type: accuracy name: Romanian Test accuracy value: 83.8 - type: accuracy name: Persian Test accuracy value: 80.1 - type: accuracy name: Apurina Test accuracy value: 48.4 - type: accuracy name: Japanese Test accuracy value: 19.4 - type: accuracy name: Hungarian Test accuracy value: 79.1 - type: accuracy name: Hindi Test accuracy value: 65.8 - type: accuracy name: Classical Chinese Test accuracy value: 15.7 - type: accuracy name: Komi Permyak Test accuracy value: 49.2 - type: accuracy name: Faroese Test accuracy value: 76.1 - type: accuracy name: Sanskrit Test accuracy value: 35.8 - type: accuracy name: Livvi Test accuracy value: 65.9 - type: accuracy name: Arabic Test accuracy value: 80.4 - type: accuracy name: Wolof Test accuracy value: 38.2 - type: accuracy name: Bulgarian Test accuracy value: 91.9 - type: accuracy name: Akuntsu Test accuracy value: 38.0 - type: accuracy name: Makurap Test accuracy value: 21.2 - type: accuracy name: Kangri Test accuracy value: 48.4 - type: accuracy name: Breton Test accuracy value: 58.2 - type: accuracy name: Telugu Test accuracy value: 82.1 - type: accuracy name: Cantonese Test accuracy value: 37.2 - type: accuracy name: Old Church Slavonic Test accuracy value: 48.4 - type: accuracy name: Karelian Test accuracy value: 69.5 - type: accuracy name: Upper Sorbian Test accuracy value: 81.0 - type: accuracy name: South Levantine Arabic Test accuracy value: 68.7 - type: accuracy name: Komi Zyrian Test accuracy value: 44.4 - type: accuracy name: Irish Test accuracy value: 67.8 - type: accuracy name: Nayini Test accuracy value: 47.4 - type: accuracy name: Munduruku Test accuracy value: 28.1 - type: accuracy name: Manx Test accuracy value: 37.6 - type: accuracy name: Skolt Sami Test accuracy value: 40.2 - type: accuracy name: Afrikaans Test accuracy value: 78.2 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 43.5 - type: accuracy name: Belarusian Test accuracy value: 90.1 - type: accuracy name: Serbian Test accuracy value: 96.0 - type: accuracy name: Moksha Test accuracy value: 48.5 - type: accuracy name: Western Armenian Test accuracy value: 74.9 - type: accuracy name: Scottish Gaelic Test accuracy value: 58.0 - type: accuracy name: Khunsari Test accuracy value: 39.2 - type: accuracy name: Hebrew Test accuracy value: 87.5 - type: accuracy name: Uyghur Test accuracy value: 72.1 - type: accuracy name: Chukchi Test accuracy value: 35.4 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Czech This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cs") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-cs") ```
wietsedv/xlm-roberta-base-ft-udpos28-grc
wietsedv
2023-09-11T08:55:42Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "grc", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - grc license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-grc results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 58.3 - type: accuracy name: Dutch Test accuracy value: 57.1 - type: accuracy name: German Test accuracy value: 61.3 - type: accuracy name: Italian Test accuracy value: 56.6 - type: accuracy name: French Test accuracy value: 57.3 - type: accuracy name: Spanish Test accuracy value: 54.5 - type: accuracy name: Russian Test accuracy value: 71.1 - type: accuracy name: Swedish Test accuracy value: 62.9 - type: accuracy name: Norwegian Test accuracy value: 59.9 - type: accuracy name: Danish Test accuracy value: 61.6 - type: accuracy name: Low Saxon Test accuracy value: 45.3 - type: accuracy name: Akkadian Test accuracy value: 38.9 - type: accuracy name: Armenian Test accuracy value: 69.4 - type: accuracy name: Welsh Test accuracy value: 57.9 - type: accuracy name: Old East Slavic Test accuracy value: 68.0 - type: accuracy name: Albanian Test accuracy value: 63.3 - type: accuracy name: Slovenian Test accuracy value: 58.2 - type: accuracy name: Guajajara Test accuracy value: 26.5 - type: accuracy name: Kurmanji Test accuracy value: 62.0 - type: accuracy name: Turkish Test accuracy value: 66.5 - type: accuracy name: Finnish Test accuracy value: 70.3 - type: accuracy name: Indonesian Test accuracy value: 59.7 - type: accuracy name: Ukrainian Test accuracy value: 72.6 - type: accuracy name: Polish Test accuracy value: 70.3 - type: accuracy name: Portuguese Test accuracy value: 59.7 - type: accuracy name: Kazakh Test accuracy value: 71.0 - type: accuracy name: Latin Test accuracy value: 68.8 - type: accuracy name: Old French Test accuracy value: 49.4 - type: accuracy name: Buryat Test accuracy value: 56.4 - type: accuracy name: Kaapor Test accuracy value: 27.9 - type: accuracy name: Korean Test accuracy value: 55.5 - type: accuracy name: Estonian Test accuracy value: 70.0 - type: accuracy name: Croatian Test accuracy value: 64.8 - type: accuracy name: Gothic Test accuracy value: 33.9 - type: accuracy name: Swiss German Test accuracy value: 47.2 - type: accuracy name: Assyrian Test accuracy value: 29.1 - type: accuracy name: North Sami Test accuracy value: 37.4 - type: accuracy name: Naija Test accuracy value: 37.2 - type: accuracy name: Latvian Test accuracy value: 74.5 - type: accuracy name: Chinese Test accuracy value: 56.6 - type: accuracy name: Tagalog Test accuracy value: 57.6 - type: accuracy name: Bambara Test accuracy value: 28.6 - type: accuracy name: Lithuanian Test accuracy value: 77.4 - type: accuracy name: Galician Test accuracy value: 61.6 - type: accuracy name: Vietnamese Test accuracy value: 63.7 - type: accuracy name: Greek Test accuracy value: 63.3 - type: accuracy name: Catalan Test accuracy value: 54.2 - type: accuracy name: Czech Test accuracy value: 70.1 - type: accuracy name: Erzya Test accuracy value: 46.7 - type: accuracy name: Bhojpuri Test accuracy value: 43.7 - type: accuracy name: Thai Test accuracy value: 61.1 - type: accuracy name: Marathi Test accuracy value: 75.5 - type: accuracy name: Basque Test accuracy value: 63.3 - type: accuracy name: Slovak Test accuracy value: 67.3 - type: accuracy name: Kiche Test accuracy value: 29.7 - type: accuracy name: Yoruba Test accuracy value: 30.4 - type: accuracy name: Warlpiri Test accuracy value: 49.4 - type: accuracy name: Tamil Test accuracy value: 68.7 - type: accuracy name: Maltese Test accuracy value: 29.6 - type: accuracy name: Ancient Greek Test accuracy value: 89.6 - type: accuracy name: Icelandic Test accuracy value: 63.6 - type: accuracy name: Mbya Guarani Test accuracy value: 36.4 - type: accuracy name: Urdu Test accuracy value: 44.8 - type: accuracy name: Romanian Test accuracy value: 66.3 - type: accuracy name: Persian Test accuracy value: 64.4 - type: accuracy name: Apurina Test accuracy value: 41.7 - type: accuracy name: Japanese Test accuracy value: 44.3 - type: accuracy name: Hungarian Test accuracy value: 61.4 - type: accuracy name: Hindi Test accuracy value: 47.8 - type: accuracy name: Classical Chinese Test accuracy value: 48.0 - type: accuracy name: Komi Permyak Test accuracy value: 45.9 - type: accuracy name: Faroese Test accuracy value: 59.2 - type: accuracy name: Sanskrit Test accuracy value: 42.9 - type: accuracy name: Livvi Test accuracy value: 61.8 - type: accuracy name: Arabic Test accuracy value: 65.3 - type: accuracy name: Wolof Test accuracy value: 27.8 - type: accuracy name: Bulgarian Test accuracy value: 64.9 - type: accuracy name: Akuntsu Test accuracy value: 30.8 - type: accuracy name: Makurap Test accuracy value: 18.5 - type: accuracy name: Kangri Test accuracy value: 45.9 - type: accuracy name: Breton Test accuracy value: 47.1 - type: accuracy name: Telugu Test accuracy value: 75.3 - type: accuracy name: Cantonese Test accuracy value: 60.2 - type: accuracy name: Old Church Slavonic Test accuracy value: 58.8 - type: accuracy name: Karelian Test accuracy value: 64.5 - type: accuracy name: Upper Sorbian Test accuracy value: 62.9 - type: accuracy name: South Levantine Arabic Test accuracy value: 61.7 - type: accuracy name: Komi Zyrian Test accuracy value: 45.4 - type: accuracy name: Irish Test accuracy value: 52.4 - type: accuracy name: Nayini Test accuracy value: 51.3 - type: accuracy name: Munduruku Test accuracy value: 21.6 - type: accuracy name: Manx Test accuracy value: 27.1 - type: accuracy name: Skolt Sami Test accuracy value: 44.7 - type: accuracy name: Afrikaans Test accuracy value: 58.4 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 44.4 - type: accuracy name: Belarusian Test accuracy value: 75.3 - type: accuracy name: Serbian Test accuracy value: 63.3 - type: accuracy name: Moksha Test accuracy value: 46.1 - type: accuracy name: Western Armenian Test accuracy value: 67.1 - type: accuracy name: Scottish Gaelic Test accuracy value: 49.2 - type: accuracy name: Khunsari Test accuracy value: 45.9 - type: accuracy name: Hebrew Test accuracy value: 72.9 - type: accuracy name: Uyghur Test accuracy value: 72.7 - type: accuracy name: Chukchi Test accuracy value: 40.2 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Ancient Greek This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-grc") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-grc") ```
GroNLP/mdebertav3-subjectivity-multilingual
GroNLP
2023-09-11T08:55:38Z
915
2
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "subjectivity", "newspapers", "CLEF2023", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T09:22:51Z
--- tags: - subjectivity - newspapers - CLEF2023 --- Fine-tuned [mDeBERTa V3](https://huggingface.co/microsoft/mdeberta-v3-base) model for subjectivity detection in newspaper sentences. This model was developed as part of the CLEF 2023 CheckThat! Lab [Task 2: Subjectivity in News Articles](https://checkthat.gitlab.io/clef2023/task2/). The goal in this task is to detect whether a sentence is objective (OBJ) or subjective (SUBJ). A sentence is subjective if its content is based on or influenced by personal feelings, tastes, or opinions. Otherwise, the sentence is objective. [(Antici et al., 2023)](https://ceur-ws.org/Vol-3370/paper10.pdf). The model was fine-tuned using a multilingual training and development dataset, for which the following (hyper)parameters were utilized: ``` Batch Size = 64 Max Epochs = 8 Learning Rate = 3e-5 Warmup Steps = 500 Weight Decay = 0.3 ``` The model ranked second in the CheckThat! Lab and obtained a macro F1 of 0.81 and a SUBJ F1 of 0.81.
GroNLP/mdebertav3-subjectivity-dutch
GroNLP
2023-09-11T08:55:02Z
106
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "subjectivity", "newspapers", "CLEF2023", "nl", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T09:56:48Z
--- language: - nl tags: - subjectivity - newspapers - CLEF2023 --- Fine-tuned [mDeBERTa V3](https://huggingface.co/microsoft/mdeberta-v3-base) model for subjectivity detection in newspaper sentences. This model was developed as part of the CLEF 2023 CheckThat! Lab [Task 2: Subjectivity in News Articles](https://checkthat.gitlab.io/clef2023/task2/). The goal in this task is to detect whether a sentence is objective (OBJ) or subjective (SUBJ). A sentence is subjective if its content is based on or influenced by personal feelings, tastes, or opinions. Otherwise, the sentence is objective. [(Antici et al., 2023)](https://ceur-ws.org/Vol-3370/paper10.pdf). The model was fine-tuned using a multilingual training and Dutch development dataset, for which the following (hyper)parameters were utilized: ``` Batch Size = 64 Max Epochs = 6 Learning Rate = 4e-5 Warmup Steps = 100 Weight Decay = 0.2 ``` The model ranked first in the CheckThat! Lab and obtained a macro F1 of 0.81 and a SUBJ F1 of 0.80.
wietsedv/wav2vec2-large-xlsr-53-dutch
wietsedv
2023-09-11T08:54:57Z
1,989
0
transformers
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "nl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: nl datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Dutch XLSR Wav2Vec2 Large 53 by Wietse de Vries results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice nl type: common_voice args: nl metrics: - name: Test WER type: wer value: 17.09 --- # Wav2Vec2-Large-XLSR-53-Dutch Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dutch using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "nl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-dutch") model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-dutch") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dutch test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "nl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-dutch") model = Wav2Vec2ForCTC.from_pretrained("wietsedv/wav2vec2-large-xlsr-53-dutch") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\'\“\%\‘\”]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.09 % ## Training The Common Voice `train` and `validation` datasets were used for training.
wietsedv/xlm-roberta-base-ft-udpos28-af
wietsedv
2023-09-11T08:54:52Z
111
2
transformers
[ "transformers", "pytorch", "safetensors", "xlm-roberta", "token-classification", "part-of-speech", "af", "dataset:universal_dependencies", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - af license: apache-2.0 library_name: transformers tags: - part-of-speech - token-classification datasets: - universal_dependencies metrics: - accuracy model-index: - name: xlm-roberta-base-ft-udpos28-af results: - task: type: token-classification name: Part-of-Speech Tagging dataset: type: universal_dependencies name: Universal Dependencies v2.8 metrics: - type: accuracy name: English Test accuracy value: 85.8 - type: accuracy name: Dutch Test accuracy value: 83.7 - type: accuracy name: German Test accuracy value: 83.6 - type: accuracy name: Italian Test accuracy value: 84.4 - type: accuracy name: French Test accuracy value: 83.1 - type: accuracy name: Spanish Test accuracy value: 86.7 - type: accuracy name: Russian Test accuracy value: 86.4 - type: accuracy name: Swedish Test accuracy value: 87.7 - type: accuracy name: Norwegian Test accuracy value: 81.3 - type: accuracy name: Danish Test accuracy value: 86.8 - type: accuracy name: Low Saxon Test accuracy value: 62.5 - type: accuracy name: Akkadian Test accuracy value: 28.6 - type: accuracy name: Armenian Test accuracy value: 82.7 - type: accuracy name: Welsh Test accuracy value: 70.3 - type: accuracy name: Old East Slavic Test accuracy value: 72.5 - type: accuracy name: Albanian Test accuracy value: 79.4 - type: accuracy name: Slovenian Test accuracy value: 76.6 - type: accuracy name: Guajajara Test accuracy value: 23.2 - type: accuracy name: Kurmanji Test accuracy value: 74.7 - type: accuracy name: Turkish Test accuracy value: 72.8 - type: accuracy name: Finnish Test accuracy value: 83.9 - type: accuracy name: Indonesian Test accuracy value: 79.5 - type: accuracy name: Ukrainian Test accuracy value: 84.0 - type: accuracy name: Polish Test accuracy value: 85.6 - type: accuracy name: Portuguese Test accuracy value: 85.5 - type: accuracy name: Kazakh Test accuracy value: 77.5 - type: accuracy name: Latin Test accuracy value: 76.2 - type: accuracy name: Old French Test accuracy value: 58.4 - type: accuracy name: Buryat Test accuracy value: 59.7 - type: accuracy name: Kaapor Test accuracy value: 23.8 - type: accuracy name: Korean Test accuracy value: 59.4 - type: accuracy name: Estonian Test accuracy value: 86.7 - type: accuracy name: Croatian Test accuracy value: 86.4 - type: accuracy name: Gothic Test accuracy value: 20.7 - type: accuracy name: Swiss German Test accuracy value: 55.5 - type: accuracy name: Assyrian Test accuracy value: 17.2 - type: accuracy name: North Sami Test accuracy value: 38.8 - type: accuracy name: Naija Test accuracy value: 39.3 - type: accuracy name: Latvian Test accuracy value: 83.0 - type: accuracy name: Chinese Test accuracy value: 49.8 - type: accuracy name: Tagalog Test accuracy value: 71.7 - type: accuracy name: Bambara Test accuracy value: 29.9 - type: accuracy name: Lithuanian Test accuracy value: 82.8 - type: accuracy name: Galician Test accuracy value: 83.6 - type: accuracy name: Vietnamese Test accuracy value: 60.3 - type: accuracy name: Greek Test accuracy value: 83.3 - type: accuracy name: Catalan Test accuracy value: 86.1 - type: accuracy name: Czech Test accuracy value: 85.1 - type: accuracy name: Erzya Test accuracy value: 43.6 - type: accuracy name: Bhojpuri Test accuracy value: 50.1 - type: accuracy name: Thai Test accuracy value: 62.5 - type: accuracy name: Marathi Test accuracy value: 87.1 - type: accuracy name: Basque Test accuracy value: 76.2 - type: accuracy name: Slovak Test accuracy value: 84.8 - type: accuracy name: Kiche Test accuracy value: 34.1 - type: accuracy name: Yoruba Test accuracy value: 26.4 - type: accuracy name: Warlpiri Test accuracy value: 39.7 - type: accuracy name: Tamil Test accuracy value: 81.0 - type: accuracy name: Maltese Test accuracy value: 24.2 - type: accuracy name: Ancient Greek Test accuracy value: 59.3 - type: accuracy name: Icelandic Test accuracy value: 82.6 - type: accuracy name: Mbya Guarani Test accuracy value: 31.3 - type: accuracy name: Urdu Test accuracy value: 63.2 - type: accuracy name: Romanian Test accuracy value: 81.4 - type: accuracy name: Persian Test accuracy value: 75.4 - type: accuracy name: Apurina Test accuracy value: 32.2 - type: accuracy name: Japanese Test accuracy value: 35.9 - type: accuracy name: Hungarian Test accuracy value: 84.9 - type: accuracy name: Hindi Test accuracy value: 70.2 - type: accuracy name: Classical Chinese Test accuracy value: 30.5 - type: accuracy name: Komi Permyak Test accuracy value: 46.0 - type: accuracy name: Faroese Test accuracy value: 76.5 - type: accuracy name: Sanskrit Test accuracy value: 32.4 - type: accuracy name: Livvi Test accuracy value: 66.5 - type: accuracy name: Arabic Test accuracy value: 79.7 - type: accuracy name: Wolof Test accuracy value: 31.8 - type: accuracy name: Bulgarian Test accuracy value: 87.0 - type: accuracy name: Akuntsu Test accuracy value: 24.4 - type: accuracy name: Makurap Test accuracy value: 15.1 - type: accuracy name: Kangri Test accuracy value: 49.6 - type: accuracy name: Breton Test accuracy value: 62.0 - type: accuracy name: Telugu Test accuracy value: 82.2 - type: accuracy name: Cantonese Test accuracy value: 52.4 - type: accuracy name: Old Church Slavonic Test accuracy value: 51.0 - type: accuracy name: Karelian Test accuracy value: 73.1 - type: accuracy name: Upper Sorbian Test accuracy value: 74.2 - type: accuracy name: South Levantine Arabic Test accuracy value: 69.3 - type: accuracy name: Komi Zyrian Test accuracy value: 37.3 - type: accuracy name: Irish Test accuracy value: 66.3 - type: accuracy name: Nayini Test accuracy value: 47.4 - type: accuracy name: Munduruku Test accuracy value: 19.0 - type: accuracy name: Manx Test accuracy value: 39.6 - type: accuracy name: Skolt Sami Test accuracy value: 33.0 - type: accuracy name: Afrikaans Test accuracy value: 98.9 - type: accuracy name: Old Turkish Test accuracy value: 37.1 - type: accuracy name: Tupinamba Test accuracy value: 25.9 - type: accuracy name: Belarusian Test accuracy value: 86.4 - type: accuracy name: Serbian Test accuracy value: 87.0 - type: accuracy name: Moksha Test accuracy value: 42.9 - type: accuracy name: Western Armenian Test accuracy value: 80.0 - type: accuracy name: Scottish Gaelic Test accuracy value: 59.4 - type: accuracy name: Khunsari Test accuracy value: 37.8 - type: accuracy name: Hebrew Test accuracy value: 84.4 - type: accuracy name: Uyghur Test accuracy value: 73.3 - type: accuracy name: Chukchi Test accuracy value: 33.3 --- # XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Afrikaans This model is part of our paper called: - Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages Check the [Space](https://huggingface.co/spaces/wietsedv/xpos) for more details. ## Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-af") model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-af") ```
GroNLP/mdebertav3-subjectivity-italian
GroNLP
2023-09-11T08:54:22Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "subjectivity", "newspapers", "CLEF2023", "it", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-12T09:30:48Z
--- language: - it tags: - subjectivity - newspapers - CLEF2023 --- Fine-tuned [mDeBERTa V3](https://huggingface.co/microsoft/mdeberta-v3-base) model for subjectivity detection in newspaper sentences. This model was developed as part of the CLEF 2023 CheckThat! Lab [Task 2: Subjectivity in News Articles](https://checkthat.gitlab.io/clef2023/task2/). The goal in this task is to detect whether a sentence is objective (OBJ) or subjective (SUBJ). A sentence is subjective if its content is based on or influenced by personal feelings, tastes, or opinions. Otherwise, the sentence is objective. [(Antici et al., 2023)](https://ceur-ws.org/Vol-3370/paper10.pdf). The model was fine-tuned using a multilingual training and Italian development dataset, for which the following (hyper)parameters were utilized: ``` Batch Size = 32 Max Epochs = 2 Learning Rate = 5e-5 Warmup Steps = 300 Weight Decay = 0 ``` The model ranked first in the CheckThat! Lab and obtained a macro F1 of 0.76 and a SUBJ F1 of 0.65.