modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-29 18:27:06
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-29 18:26:56
card
stringlengths
11
1.01M
fabianmmueller/deep-haiku-gpt-j-6b-8bit
fabianmmueller
2022-06-13T15:40:47Z
7
3
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-06-10T10:10:18Z
--- license: mit tags: - generated_from_trainer model-index: - name: deep-haiku-gpt-j-6b-8bit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deep-haiku-gpt-j-6b-8bit This model is a fine-tuned version of [gpt-j-6B-8bit](https://huggingface.co/hivemind/gpt-j-6B-8bit) on the [haiku](https://huggingface.co/datasets/statworx/haiku) dataset. ## Model description The model is a fine-tuned version of GPT-J-6B-8Bit for generation of [Haikus](https://en.wikipedia.org/wiki/Haiku). The model, data and training procedure is inspired by a [blog post by Robert A. Gonsalves](https://towardsdatascience.com/deep-haiku-teaching-gpt-j-to-compose-with-syllable-patterns-5234bca9701). We used the same multitask training approach as in der post, but significantly extended the dataset (almost double the size of the original one). A prepared version of the dataset can be found [here](https://huggingface.co/datasets/statworx/haiku). ## Intended uses & limitations The model is intended to generate Haikus. To do so, it was trained using a multitask learning approach (see [Caruana 1997](http://www.cs.cornell.edu/~caruana/mlj97.pdf)) with the following four different tasks: : - topic2graphemes `(keywords = text)` - topic2phonemes `<keyword_phonemes = text_phonemes>` - graphemes2phonemes `[text = text_phonemes]` - phonemes2graphemes `{text_phonemes = text}` To use the model, use an appropriate prompt like `"(dog rain ="` and let the model generate a Haiku given the keyword. ## Training and evaluation data We used a collection of existing haikus for training. Furthermore, all haikus were used in their graphemes version as well as a phonemes version. In addition, we extracted key word for all haikus using [KeyBERT](https://github.com/MaartenGr/KeyBERT) and sorted out haikus with a low text quality according to the [GRUEN score](https://github.com/WanzhengZhu/GRUEN). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
huggingtweets/salgotrader
huggingtweets
2022-06-13T14:46:27Z
107
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T14:45:34Z
--- language: en thumbnail: http://www.huggingtweets.com/salgotrader/1655131582645/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1521075169611112448/S_w82Ewg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">0xPatrician.eth</div> <div style="text-align: center; font-size: 14px;">@salgotrader</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 0xPatrician.eth. | Data | 0xPatrician.eth | | --- | --- | | Tweets downloaded | 910 | | Retweets | 250 | | Short tweets | 84 | | Tweets kept | 576 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2f275xqv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @salgotrader's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ljt0uhcw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ljt0uhcw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/salgotrader') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Andrey1989/xlmr-finetuned-ner
Andrey1989
2022-06-13T14:03:57Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:wikiann", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T13:23:58Z
--- license: mit tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: xlmr-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: et metrics: - name: Precision type: precision value: 0.9044097027481772 - name: Recall type: recall value: 0.9136978539556626 - name: F1 type: f1 value: 0.9090300532008596 - name: Accuracy type: accuracy value: 0.9649304793632428 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlmr-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.1395 - Precision: 0.9044 - Recall: 0.9137 - F1: 0.9090 - Accuracy: 0.9649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4215 | 1.0 | 938 | 0.1650 | 0.8822 | 0.8781 | 0.8802 | 0.9529 | | 0.1559 | 2.0 | 1876 | 0.1412 | 0.9018 | 0.9071 | 0.9045 | 0.9631 | | 0.1051 | 3.0 | 2814 | 0.1395 | 0.9044 | 0.9137 | 0.9090 | 0.9649 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Shenghao1993/xlm-roberta-base-finetuned-panx-all
Shenghao1993
2022-06-13T13:45:41Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T13:21:03Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1719 - F1: 0.8544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2951 | 1.0 | 835 | 0.1882 | 0.8171 | | 0.1547 | 2.0 | 1670 | 0.1707 | 0.8454 | | 0.1018 | 3.0 | 2505 | 0.1719 | 0.8544 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
optimum/distilbert-base-uncased-finetuned-sst-2-english
optimum
2022-06-13T13:43:16Z
28,187
2
transformers
[ "transformers", "onnx", "text-classification", "en", "dataset:sst2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-24T16:06:17Z
--- language: en license: apache-2.0 datasets: - sst2 --- # ONNX convert DistilBERT base uncased finetuned SST-2 ## Conversion of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2. This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7). For more details about DistilBERT, we encourage users to check out [this model card](https://huggingface.co/distilbert-base-uncased). # Fine-tuning hyper-parameters - learning_rate = 1e-5 - batch_size = 32 - warmup = 600 - max_seq_length = 128 - num_train_epochs = 3.0 # Bias Based on a few experimentations, we observed that this model could produce biased predictions that target underrepresented populations. For instance, for sentences like `This film was filmed in COUNTRY`, this binary classification model will give radically different probabilities for the positive label depending on the country (0.89 if the country is France, but 0.08 if the country is Afghanistan) when nothing in the input indicates such a strong semantic shift. In this [colab](https://colab.research.google.com/gist/ageron/fb2f64fb145b4bc7c49efc97e5f114d3/biasmap.ipynb), [Aurélien Géron](https://twitter.com/aureliengeron) made an interesting map plotting these probabilities for each country. <img src="https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/map.jpeg" alt="Map of positive probabilities per country." width="500"/> We strongly advise users to thoroughly probe these aspects on their use-cases in order to evaluate the risks of this model. We recommend looking at the following bias evaluation datasets as a place to start: [WinoBias](https://huggingface.co/datasets/wino_bias), [WinoGender](https://huggingface.co/datasets/super_glue), [Stereoset](https://huggingface.co/datasets/stereoset).
zoha/wav2vec2-base-librispeech100h-google-colab
zoha
2022-06-13T13:39:58Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-11T17:07:29Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-librispeech100h-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-librispeech100h-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1156 - Wer: 0.0756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.6033 | 0.9 | 1600 | 0.4802 | 0.2728 | | 0.1912 | 1.79 | 3200 | 0.1601 | 0.1140 | | 0.1409 | 2.69 | 4800 | 0.1423 | 0.0932 | | 0.108 | 3.59 | 6400 | 0.1260 | 0.0806 | | 0.1045 | 4.48 | 8000 | 0.1156 | 0.0756 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.3.dev0 - Tokenizers 0.12.1
Shenghao1993/xlm-roberta-base-finetuned-panx-en
Shenghao1993
2022-06-13T13:20:02Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T13:02:56Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.7032474804031354 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3859 - F1: 0.7032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.0494 | 1.0 | 50 | 0.5464 | 0.5507 | | 0.5329 | 2.0 | 100 | 0.4217 | 0.6715 | | 0.3799 | 3.0 | 150 | 0.3859 | 0.7032 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Shenghao1993/xlm-roberta-base-finetuned-panx-it
Shenghao1993
2022-06-13T13:02:39Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T12:44:36Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8358085808580858 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2403 - F1: 0.8358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7053 | 1.0 | 70 | 0.3077 | 0.7587 | | 0.2839 | 2.0 | 140 | 0.2692 | 0.8007 | | 0.1894 | 3.0 | 210 | 0.2403 | 0.8358 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Shenghao1993/xlm-roberta-base-finetuned-panx-fr
Shenghao1993
2022-06-13T12:44:17Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T12:25:56Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8438448566610455 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 - F1: 0.8438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5606 | 1.0 | 191 | 0.3157 | 0.7967 | | 0.2755 | 2.0 | 382 | 0.2684 | 0.8288 | | 0.1811 | 3.0 | 573 | 0.2675 | 0.8438 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Shenghao1993/xlm-roberta-base-finetuned-panx-de-fr
Shenghao1993
2022-06-13T11:59:43Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-13T11:52:07Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1623 - F1: 0.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2865 | 1.0 | 715 | 0.1981 | 0.8167 | | 0.1484 | 2.0 | 1430 | 0.1595 | 0.8486 | | 0.0949 | 3.0 | 2145 | 0.1623 | 0.8596 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Priya9/wav2vec2-large-xls-r-300m-turkish-colab
Priya9
2022-06-13T11:18:47Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-13T04:46:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3859 - Wer: 0.4680 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.8707 | 3.67 | 400 | 0.6588 | 0.7110 | | 0.3955 | 7.34 | 800 | 0.3859 | 0.4680 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
Satyamatury/wav2vec2-large-xls-r-300m-hindi-colab
Satyamatury
2022-06-13T11:08:04Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-27T16:29:37Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-hindi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7529 - Wer: 0.9130 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2923 | 44.42 | 400 | 1.7529 | 0.9130 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
zoha/wav2vec2-base-timit-google-colab
zoha
2022-06-13T10:50:12Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-13T06:02:13Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4659 - Wer: 0.3080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5787 | 0.87 | 500 | 1.7648 | 1.0305 | | 0.8692 | 1.73 | 1000 | 0.5136 | 0.5103 | | 0.4346 | 2.6 | 1500 | 0.4364 | 0.4515 | | 0.31 | 3.46 | 2000 | 0.3889 | 0.4070 | | 0.234 | 4.33 | 2500 | 0.4161 | 0.3863 | | 0.2054 | 5.19 | 3000 | 0.3845 | 0.3722 | | 0.165 | 6.06 | 3500 | 0.4035 | 0.3643 | | 0.1436 | 6.92 | 4000 | 0.4090 | 0.3623 | | 0.1381 | 7.79 | 4500 | 0.4007 | 0.3673 | | 0.1175 | 8.65 | 5000 | 0.4588 | 0.3632 | | 0.1052 | 9.52 | 5500 | 0.4441 | 0.3588 | | 0.0988 | 10.38 | 6000 | 0.4133 | 0.3489 | | 0.0877 | 11.25 | 6500 | 0.4758 | 0.3510 | | 0.0856 | 12.11 | 7000 | 0.4454 | 0.3425 | | 0.0731 | 12.98 | 7500 | 0.4252 | 0.3351 | | 0.0712 | 13.84 | 8000 | 0.4163 | 0.3370 | | 0.0711 | 14.71 | 8500 | 0.4166 | 0.3367 | | 0.06 | 15.57 | 9000 | 0.4195 | 0.3347 | | 0.0588 | 16.44 | 9500 | 0.4697 | 0.3367 | | 0.0497 | 17.3 | 10000 | 0.4255 | 0.3314 | | 0.0523 | 18.17 | 10500 | 0.4676 | 0.3307 | | 0.0444 | 19.03 | 11000 | 0.4570 | 0.3244 | | 0.0435 | 19.9 | 11500 | 0.4307 | 0.3243 | | 0.0348 | 20.76 | 12000 | 0.4763 | 0.3245 | | 0.036 | 21.63 | 12500 | 0.4635 | 0.3238 | | 0.0347 | 22.49 | 13000 | 0.4602 | 0.3212 | | 0.0333 | 23.36 | 13500 | 0.4472 | 0.3195 | | 0.0311 | 24.22 | 14000 | 0.4449 | 0.3183 | | 0.0294 | 25.09 | 14500 | 0.4631 | 0.3175 | | 0.025 | 25.95 | 15000 | 0.4466 | 0.3164 | | 0.023 | 26.82 | 15500 | 0.4581 | 0.3138 | | 0.0216 | 27.68 | 16000 | 0.4665 | 0.3114 | | 0.0198 | 28.55 | 16500 | 0.4590 | 0.3092 | | 0.0181 | 29.41 | 17000 | 0.4659 | 0.3080 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
0xrushi/dqn-SpaceInvadersNoFrameskip-v4
0xrushi
2022-06-13T10:39:05Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-13T10:38:33Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 892.00 +/- 340.52 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga rushic24 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga rushic24 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
antonioricciardi/q-FrozenLake-v1-4x4-noSlippery
antonioricciardi
2022-06-13T10:13:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-13T10:13:37Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="antonioricciardi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/ruinsman
huggingtweets
2022-06-13T09:33:18Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T09:13:47Z
--- language: en thumbnail: http://www.huggingtweets.com/ruinsman/1655112758889/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428391928110911499/qWeZuRbL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ManAmongTheRuins</div> <div style="text-align: center; font-size: 14px;">@ruinsman</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ManAmongTheRuins. | Data | ManAmongTheRuins | | --- | --- | | Tweets downloaded | 3184 | | Retweets | 424 | | Short tweets | 213 | | Tweets kept | 2547 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3evn1l2w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ruinsman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/apc372yb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/apc372yb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ruinsman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
anvayS/reddit-aita-classifier
anvayS
2022-06-13T09:08:26Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-13T07:47:08Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: reddit-aita-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reddit-aita-classifier This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1667 - Accuracy: 0.9497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5866 | 1.0 | 1250 | 0.5692 | 0.7247 | | 0.5638 | 2.0 | 2500 | 0.4841 | 0.7813 | | 0.4652 | 3.0 | 3750 | 0.2712 | 0.9077 | | 0.3088 | 4.0 | 5000 | 0.1667 | 0.9497 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
masifayub/autotrain-PAN-976832386
masifayub
2022-06-13T08:05:59Z
103
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:masifayub/autotrain-data-PAN", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-13T08:02:19Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - masifayub/autotrain-data-PAN co2_eq_emissions: 7.17945527948844 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 976832386 - CO2 Emissions (in grams): 7.17945527948844 ## Validation Metrics - Loss: 0.4892439842224121 - Accuracy: 0.7591666666666667 - Precision: 0.8088978766430738 - Recall: 0.8888888888888888 - AUC: 0.7550212962962962 - F1: 0.8470089994706194 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/masifayub/autotrain-PAN-976832386 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("masifayub/autotrain-PAN-976832386", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("masifayub/autotrain-PAN-976832386", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
huggingtweets/demondicekaren
huggingtweets
2022-06-13T07:19:24Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T07:18:24Z
--- language: en thumbnail: http://www.huggingtweets.com/demondicekaren/1655104759793/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1488027988075507712/FTIBkQRn_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">😈🎲 || DEMONDICE</div> <div style="text-align: center; font-size: 14px;">@demondicekaren</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 😈🎲 || DEMONDICE. | Data | 😈🎲 || DEMONDICE | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 371 | | Short tweets | 617 | | Tweets kept | 2258 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fxxzewl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @demondicekaren's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ow01rap) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ow01rap/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/demondicekaren') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
zoha/wav2vec2-base-timit-demo-google-colab
zoha
2022-06-13T06:01:58Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-18T13:11:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5035 - Wer: 0.3346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.1411 | 1.0 | 500 | 0.6675 | 0.6001 | | 0.5668 | 2.01 | 1000 | 0.4699 | 0.4973 | | 0.3773 | 3.01 | 1500 | 0.4475 | 0.4403 | | 0.2696 | 4.02 | 2000 | 0.4162 | 0.4166 | | 0.2165 | 5.02 | 2500 | 0.3809 | 0.4011 | | 0.1849 | 6.02 | 3000 | 0.4120 | 0.3849 | | 0.1542 | 7.03 | 3500 | 0.4436 | 0.3770 | | 0.1385 | 8.03 | 4000 | 0.3977 | 0.3732 | | 0.1224 | 9.04 | 4500 | 0.4530 | 0.3672 | | 0.1233 | 10.04 | 5000 | 0.3949 | 0.3596 | | 0.1078 | 11.04 | 5500 | 0.4616 | 0.3539 | | 0.097 | 12.05 | 6000 | 0.4354 | 0.3697 | | 0.0821 | 13.05 | 6500 | 0.4370 | 0.3643 | | 0.0724 | 14.06 | 7000 | 0.4729 | 0.3587 | | 0.0678 | 15.06 | 7500 | 0.5822 | 0.3742 | | 0.0632 | 16.06 | 8000 | 0.4460 | 0.3513 | | 0.0627 | 17.07 | 8500 | 0.5531 | 0.3537 | | 0.0574 | 18.07 | 9000 | 0.5262 | 0.3575 | | 0.0515 | 19.08 | 9500 | 0.4794 | 0.3488 | | 0.0475 | 20.08 | 10000 | 0.4941 | 0.3458 | | 0.0463 | 21.08 | 10500 | 0.4741 | 0.3377 | | 0.0392 | 22.09 | 11000 | 0.5390 | 0.3381 | | 0.0401 | 23.09 | 11500 | 0.4984 | 0.3413 | | 0.0371 | 24.1 | 12000 | 0.5112 | 0.3460 | | 0.0305 | 25.1 | 12500 | 0.5255 | 0.3418 | | 0.0278 | 26.1 | 13000 | 0.5045 | 0.3389 | | 0.0265 | 27.11 | 13500 | 0.4990 | 0.3371 | | 0.0248 | 28.11 | 14000 | 0.5242 | 0.3362 | | 0.0249 | 29.12 | 14500 | 0.5035 | 0.3346 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingtweets/elonmusk-jack
huggingtweets
2022-06-13T04:16:05Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-13T04:15:18Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-jack/1655093760817/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1115644092329758721/AFjOr-K8_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & jack</div> <div style="text-align: center; font-size: 14px;">@elonmusk-jack</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & jack. | Data | Elon Musk | jack | | --- | --- | --- | | Tweets downloaded | 3200 | 3232 | | Retweets | 147 | 1137 | | Short tweets | 959 | 832 | | Tweets kept | 2094 | 1263 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2zwk8y4o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-jack's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16z5871k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16z5871k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-jack') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rx-gkit/teset
rx-gkit
2022-06-13T00:41:05Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-06-13T00:31:05Z
--- license: apache-2.0 --- # Convert Text to Binary Open **bin.js** and run it with main HTML file. ```html <script src="./bin.js"></script> ```
TencentMedicalNet/MedicalNet-Resnet101
TencentMedicalNet
2022-06-12T23:17:54Z
0
2
null
[ "MedicalNet", "medical images", "medical", "3D", "Med3D", "en", "dataset:MRBrainS18", "arxiv:1904.00625", "license:mit", "region:us" ]
null
2022-06-12T00:52:14Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
TencentMedicalNet/MedicalNet-Resnet50
TencentMedicalNet
2022-06-12T23:17:39Z
0
0
null
[ "MedicalNet", "medical images", "medical", "3D", "Med3D", "en", "dataset:MRBrainS18", "arxiv:1904.00625", "license:mit", "region:us" ]
null
2022-06-12T00:35:55Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
C5i/SEAD-L-6_H-384_A-12-mnli
C5i
2022-06-12T22:59:51Z
107
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:mnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T22:59:29Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-mnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_m-accuracy | eval_m-runtime | eval_m-samples_per_second | eval_m-steps_per_second | eval_m-loss | eval_m-samples | eval_mm-accuracy | eval_mm-runtime | eval_mm-samples_per_second | eval_mm-steps_per_second | eval_mm-loss | eval_mm-samples | |:---------------:|:--------------:|:-------------------------:|:-----------------------:|:-----------:|:--------------:|:----------------:|:---------------:|:--------------------------:|:------------------------:|:------------:|:---------------:| | 0.8495 | 6.5443 | 1499.776 | 46.911 | 0.4366 | 9815 | 0.8508 | 5.6975 | 1725.678 | 54.059 | 0.4252 | 9832 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
C5i/SEAD-L-6_H-256_A-8-mnli
C5i
2022-06-12T22:43:38Z
105
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:mnli", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T22:43:18Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mnli --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-mnli This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mnli** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_m-accuracy | eval_m-runtime | eval_m-samples_per_second | eval_m-steps_per_second | eval_m-loss | eval_m-samples | eval_mm-accuracy | eval_mm-runtime | eval_mm-samples_per_second | eval_mm-steps_per_second | eval_mm-loss | eval_mm-samples | |:---------------:|:--------------:|:-------------------------:|:-----------------------:|:-----------:|:--------------:|:----------------:|:---------------:|:--------------------------:|:------------------------:|:------------:|:---------------:| | 0.8277 | 6.4665 | 1517.828 | 47.476 | 0.6014 | 9815 | 0.8310 | 5.3528 | 1836.786 | 57.54 | 0.5724 | 9832 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
C5i/SEAD-L-6_H-384_A-12-qqp
C5i
2022-06-12T22:24:04Z
106
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:qqp", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T22:23:41Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - qqp --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-qqp This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **qqp** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9126 | 0.8822 | 23.0122 | 1756.896 | 54.927 | 0.3389 | 40430 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
spuun/kekbot-beta-4-medium
spuun
2022-06-12T21:36:45Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T21:21:05Z
--- language: - en tags: - conversational co2_eq_emissions: emissions: "840" source: "mlco2.github.io" training_type: "fine-tuning" geographical_location: "West Java, Indonesia" hardware_used: "1 Tesla P100" license: cc-by-nc-sa-4.0 widget: - text: "Hey kekbot! What's up?" example_title: "Asking what's up" - text: "Hey kekbot! How r u?" example_title: "Asking how he is" --- > THIS MODEL IS IN PUBLIC BETA, PLEASE DO NOT EXPECT ANY FORM OF STABILITY IN ITS CURRENT STATE. # Art Union server chatbot Based on a DialoGPT-medium (`kekbot-beta-3-medium`) model, fine-tuned to a select subset (65k<= messages) of Art Union's general-chat channel chat history. ### Current issues (Which hopefully will be fixed in future iterations) Include, but not limited to: - Limited turns, after ~20 turns output may break for no apparent reason. - Inconsistent variance, acts like an overfitted model from time to time for no reason whatsoever.
C5i/SEAD-L-6_H-256_A-8-stsb
C5i
2022-06-12T21:12:01Z
107
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:stsb", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T21:11:42Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - stsb --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-stsb This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **stsb** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_pearson | eval_spearmanr | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:------------:|:--------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8962 | 0.8978 | 2.1978 | 682.498 | 21.385 | 0.4679 | 1500 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
C5i/SEAD-L-6_H-256_A-8-rte
C5i
2022-06-12T21:02:01Z
105
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:rte", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T21:01:41Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - rte --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-rte This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **rte** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.7906 | 1.5528 | 178.391 | 5.796 | 0.6934 | 277 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
84rry/84rry-xls-r-300M-AR
84rry
2022-06-12T20:54:28Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-09T00:08:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: 84rry-xls-r-300M-AR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 84rry-xls-r-300M-AR This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.0647 - Wer: 0.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1428 | 9.01 | 1000 | 0.9233 | 0.7477 | | 0.4941 | 18.02 | 2000 | 0.7661 | 0.5633 | | 0.3609 | 27.03 | 3000 | 0.8757 | 0.5480 | | 0.2395 | 36.04 | 4000 | 1.0097 | 0.5275 | | 0.1671 | 45.04 | 5000 | 1.0647 | 0.5078 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
tauseefr84/distilbert-base-uncased-finetuned-emotion
tauseefr84
2022-06-12T20:52:51Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T12:23:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.838 - name: F1 type: f1 value: 0.822753081351476 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.5268 - Accuracy: 0.838 - F1: 0.8228 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9225 | 1.0 | 250 | 0.5268 | 0.838 | 0.8228 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
C5i/SEAD-L-6_H-256_A-8-mrpc
C5i
2022-06-12T20:35:41Z
106
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:mrpc", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T20:35:21Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mrpc --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-256_A-8-mrpc This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mrpc** task. For weights initialization, we used [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.8897 | 0.9206 | 1.4486 | 281.643 | 8.974 | 0.4399 | 408 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
C5i/SEAD-L-6_H-384_A-12-mrpc
C5i
2022-06-12T20:21:42Z
107
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "SEAD", "en", "dataset:glue", "dataset:mrpc", "arxiv:1910.01108", "arxiv:1909.10351", "arxiv:2002.10957", "arxiv:1810.04805", "arxiv:1804.07461", "arxiv:1905.00537", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-12T20:21:20Z
--- language: - en license: apache-2.0 tags: - SEAD datasets: - glue - mrpc --- ## Paper ## [SEAD: SIMPLE ENSEMBLE AND KNOWLEDGE DISTILLATION FRAMEWORK FOR NATURAL LANGUAGE UNDERSTANDING](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63) Aurthors: *Moyan Mei*, *Rohit Sroch* ## Abstract With the widespread use of pre-trained language models (PLM), there has been increased research on how to make them applicable, especially in limited-resource or low latency high throughput scenarios. One of the dominant approaches is knowledge distillation (KD), where a smaller model is trained by receiving guidance from a large PLM. While there are many successful designs for learning knowledge from teachers, it remains unclear how students can learn better. Inspired by real university teaching processes, in this work we further explore knowledge distillation and propose a very simple yet effective framework, SEAD, to further improve task-specific generalization by utilizing multiple teachers. Our experiments show that SEAD leads to better performance compared to other popular KD methods [[1](https://arxiv.org/abs/1910.01108)] [[2](https://arxiv.org/abs/1909.10351)] [[3](https://arxiv.org/abs/2002.10957)] and achieves comparable or superior performance to its teacher model such as BERT [[4](https://arxiv.org/abs/1810.04805)] on total 13 tasks for the GLUE [[5](https://arxiv.org/abs/1804.07461)] and SuperGLUE [[6](https://arxiv.org/abs/1905.00537)] benchmarks. *Moyan Mei and Rohit Sroch. 2022. [SEAD: Simple ensemble and knowledge distillation framework for natural language understanding](https://www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63). Lattice, THE MACHINE LEARNING JOURNAL by Association of Data Scientists, 3(1).* ## SEAD-L-6_H-384_A-12-mrpc This is a student model distilled from [**BERT base**](https://huggingface.co/bert-base-uncased) as teacher by using SEAD framework on **mrpc** task. For weights initialization, we used [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) ## All SEAD Checkpoints Other Community Checkpoints: [here](https://huggingface.co/models?search=SEAD) ## Intended uses & limitations More information needed ### Training hyperparameters Please take a look at the `training_args.bin` file ```python $ import torch $ hyperparameters = torch.load(os.path.join('training_args.bin')) ``` ### Evaluation results | eval_accuracy | eval_f1 | eval_runtime | eval_samples_per_second | eval_steps_per_second | eval_loss | eval_samples | |:-------------:|:-------:|:------------:|:-----------------------:|:---------------------:|:---------:|:------------:| | 0.9093 | 0.9345 | 1.1947 | 341.494 | 10.881 | 0.4309 | 408 | ### Framework versions - Transformers >=4.8.0 - Pytorch >=1.6.0 - TensorFlow >=2.5.0 - Flax >=0.3.5 - Datasets >=1.10.2 - Tokenizers >=0.11.6 If you use these models, please cite the following paper: ``` @article{article, author={Mei, Moyan and Sroch, Rohit}, title={SEAD: Simple Ensemble and Knowledge Distillation Framework for Natural Language Understanding}, volume={3}, number={1}, journal={Lattice, The Machine Learning Journal by Association of Data Scientists}, day={26}, year={2022}, month={Feb}, url = {www.adasci.org/journals/lattice-35309407/?volumes=true&open=621a3b18edc4364e8a96cb63} } ```
huggingtweets/pandershirts
huggingtweets
2022-06-12T20:14:03Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T20:12:46Z
--- language: en thumbnail: http://www.huggingtweets.com/pandershirts/1655064824816/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1535688698993512449/903NKFWz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hellvetika</div> <div style="text-align: center; font-size: 14px;">@pandershirts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hellvetika. | Data | Hellvetika | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 119 | | Short tweets | 360 | | Tweets kept | 2767 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kyjr0nr8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @pandershirts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k8rb7z0d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k8rb7z0d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/pandershirts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rhuang/PPO-LunarLander-v2-baseline
rhuang
2022-06-12T19:59:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T19:59:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 174.18 +/- 29.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eslamxm/mbert2mbert-finetuned-ar-wikilingua
eslamxm
2022-06-12T19:37:00Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "ar", "mbert", "mbert2mbert", "Abstractive Summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-12T06:43:14Z
--- tags: - summarization - ar - encoder-decoder - mbert - mbert2mbert - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mbert2mbert-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert2mbert-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.6753 - Rouge-1: 15.19 - Rouge-2: 5.45 - Rouge-l: 14.64 - Gen Len: 20.0 - Bertscore: 67.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ilhami/Tr_En_AcademicTranslation
ilhami
2022-06-12T19:05:53Z
26
2
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "tr", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-06-12T09:19:05Z
--- language: - tr - en tags: - translation license: apache-2.0 datasets: - Parallel Corpora for Turkish-English Academic Translations metrics: - bleu - sacrebleu --- ## Model Details - **Developed by:** İlhami SEL - **Model type:** Turkish-English Machine Translation -- Transformer Based(6 Layer) - **Language:** Turkish - English - **Resources for more information:** Sel, İ. , Üzen, H. & Hanbay, D. (2021). Creating a Parallel Corpora for Turkish-English Academic Translations . Computer Science , 5th International Artificial Intelligence and Data Processing symposium , 335-340 . DOI: 10.53070/bbd.990959 ```python checkpoint = "ilhami/Tr_En_AcademicTranslation" from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint).to("cuda") tr= ["Sohbet robotları son yıllarda yaygın bir şekilde kullanılmaya başlanmıştır. ", "İnsanları taklit eden ve daha iyi müşteri memnuniyeti sağlayan sohbet robotları en gelişkin doğal dil işleme tekniklerine ihtiyaç duymaktadır. ", "Bu çalışma sohbet robotu konuşmalarının niyet tahminini geliştirmeye odaklanmıştır." , "Kelime gösterimi için TF-IDF, Doc2vec ve BERT gibi geleneksel ve gelişmiş doğal dil işleme yöntemleri, çoklu sınıf ve çoklu etiket tahmini için ise lojistik regresyon, rastgele orman ve yapay sinir ağları kullanılmıştır." , "Sohbet robotu konuşma veri kümeleri, sinema bileti rezervasyonu, restoran rezervasyonu ve taksi çağırma olmak üzere üç farklı alandan alınmıştır. ", "Bu çalışmanın sonunda, BERT ve BERT ile TF-IDF birleşimi modellerin diğer kombinasyonlardan daha iyi sonuç verdiği görülmüştür. ", "BERT gibi ön eğitimli modellerden faydalanmanın daha iyi bağlamsal anlama sağladığı ortaya çıkmıştır. ", "TF-IDF yerleştirmeleri, BERT gösterimi ile birleştirilerek niyet kategorisi tahmininin iyileştirilmesi amaçlanmıştır."] encoded_text = tokenizer(tr, return_tensors="pt", padding = True).to("cuda") generated_tokens = model.generate(**encoded_text) en = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) ```
abdoutony207/mbart-large-cc25-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize2
abdoutony207
2022-06-12T18:25:47Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T17:51:43Z
--- license: mit tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: mbart-large-cc25-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 10.5645 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize2 This model is a fine-tuned version of [akhooli/mbart-large-cc25-en-ar](https://huggingface.co/akhooli/mbart-large-cc25-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.4673 - Bleu: 10.5645 - Meteor: 0.0783 - Gen Len: 10.23 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 8.1731 | 0.25 | 100 | 2.8417 | 0.9599 | 0.028 | 230.885 | | 0.6743 | 0.5 | 200 | 0.4726 | 6.4055 | 0.0692 | 14.81 | | 0.3028 | 0.75 | 300 | 0.4572 | 6.7544 | 0.0822 | 23.92 | | 0.2555 | 1.0 | 400 | 0.4172 | 8.4078 | 0.0742 | 13.655 | | 0.1644 | 1.25 | 500 | 0.4236 | 9.284 | 0.071 | 13.03 | | 0.1916 | 1.5 | 600 | 0.4222 | 4.8976 | 0.0779 | 32.225 | | 0.2011 | 1.75 | 700 | 0.4305 | 7.6909 | 0.0738 | 16.675 | | 0.1612 | 2.0 | 800 | 0.4416 | 10.8622 | 0.0855 | 10.91 | | 0.116 | 2.25 | 900 | 0.4673 | 10.5645 | 0.0783 | 10.23 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
nlokam/adanimals_V1
nlokam
2022-06-12T18:02:30Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:43:58Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit ---
nlokam99/ada_sample_3
nlokam99
2022-06-12T17:43:04Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:40:59Z
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit ---
huggingtweets/dodecahedra
huggingtweets
2022-06-12T17:42:15Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T17:37:18Z
--- language: en thumbnail: http://www.huggingtweets.com/dodecahedra/1655055731499/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/3232494514/760c72bca0af20fac2cd61bcec557e7a_400x400.jpeg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">William Rose</div> <div style="text-align: center; font-size: 14px;">@dodecahedra</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from William Rose. | Data | William Rose | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 1115 | | Short tweets | 158 | | Tweets kept | 1968 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1geru0ac/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dodecahedra's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uy1zk82) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uy1zk82/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dodecahedra') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vasudevgupta/speech_jax_wav2vec2-large-lv60_960h
vasudevgupta
2022-06-12T16:10:32Z
7
0
transformers
[ "transformers", "jax", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-29T20:52:47Z
* Evaluation Notebook: https://colab.research.google.com/drive/1dV1Z3WajMCYMjNZab98CEEcg3FTbtONO?usp=sharing * Training Code: https://github.com/vasudevgupta7/speech-jax/blob/main/projects/finetune_wav2vec2.py * Weights & Biases: https://wandb.ai/7vasudevgupta/speech-JAX?workspace=user-7vasudevgupta Following results are obtained with `23ffe236840b7f75c9f01a9c347b01485a2bf9f6` & `95c3bc1b83c74452df29f792e0b5651c09fdaeb9` | dataset | WER | |------------------------|-------| | Librispeech-test-clean | 3.3 % |
kravchenko/uk-mt5-large
kravchenko
2022-06-12T15:00:46Z
8
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "t5", "uk", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T14:23:52Z
--- language: - uk - en tags: - t5 --- The aim is to compress the mT5-large model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 1.2B params -> 779M params (37%) - 250K tokens -> 8900 tokens - 4.6GB size model -> 2.9GB size model
kravchenko/uk-mt5-base
kravchenko
2022-06-12T14:57:59Z
14
4
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "t5", "uk", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-03T09:41:33Z
--- language: - uk - en tags: - t5 --- The aim is to compress the mT5-base model to leave only the Ukrainian language and some basic English. Reproduced the similar result (but with another language) from [this](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) medium article. Results: - 582M params -> 244M params (58%) - 250K tokens -> 30K tokens - 2.2GB size model -> 0.95GB size model
Doohae/msmarco-query-encoder-v0
Doohae
2022-06-12T14:52:52Z
0
0
null
[ "region:us" ]
null
2022-06-12T14:42:45Z
Query Encoder trained on Tevatron small sample dataset(3epochs)
ahmeddbahaa/mt5-base-finetune-ar-xlsum
ahmeddbahaa
2022-06-12T13:55:10Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "summarization", "mT5_multilingual_XLSum", "abstractive summarization", "ar", "xlsum", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-11T20:41:00Z
--- license: apache-2.0 tags: - summarization - mT5_multilingual_XLSum - mt5 - abstractive summarization - ar - xlsum - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetune-ar-xlsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetune-ar-xlsum This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.2546 - Rouge-1: 22.2 - Rouge-2: 9.57 - Rouge-l: 20.26 - Gen Len: 19.0 - Bertscore: 71.43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.9261 | 1.0 | 585 | 3.6314 | 18.19 | 6.49 | 16.37 | 19.0 | 70.17 | | 3.8429 | 2.0 | 1170 | 3.4253 | 19.45 | 7.58 | 17.73 | 19.0 | 70.35 | | 3.6311 | 3.0 | 1755 | 3.3569 | 20.83 | 8.54 | 18.9 | 19.0 | 70.89 | | 3.4917 | 4.0 | 2340 | 3.3101 | 20.77 | 8.53 | 18.89 | 19.0 | 70.98 | | 3.3873 | 5.0 | 2925 | 3.2867 | 21.47 | 9.0 | 19.54 | 19.0 | 71.23 | | 3.3037 | 6.0 | 3510 | 3.2693 | 21.41 | 9.0 | 19.5 | 19.0 | 71.21 | | 3.2357 | 7.0 | 4095 | 3.2581 | 22.05 | 9.36 | 20.04 | 19.0 | 71.43 | | 3.1798 | 8.0 | 4680 | 3.2522 | 22.21 | 9.56 | 20.23 | 19.0 | 71.41 | | 3.1359 | 9.0 | 5265 | 3.2546 | 22.27 | 9.58 | 20.23 | 19.0 | 71.46 | | 3.0997 | 10.0 | 5850 | 3.2546 | 22.2 | 9.57 | 20.26 | 19.0 | 71.43 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
keras-io/ProbabalisticBayesianModel-Wine
keras-io
2022-06-12T13:54:27Z
0
2
keras
[ "keras", "tensorboard", "probabilistic-models", "regression", "region:us" ]
null
2022-06-06T15:36:50Z
--- library_name: keras tags: - probabilistic-models - regression --- ## Model description This repo contains model weights for the the probabilistic model from [Probabilistic Bayesian Neural Networks](https://keras.io/examples/keras_recipes/bayesian_neural_networks/). This example demonstrates how to build basic probabilistic Bayesian neural networks to account for these two types of uncertainty. We use TensorFlow Probability library, which is compatible with Keras API. Taking a probabilistic approach to deep learning allows to account for uncertainty, so that models can assign less levels of confidence to incorrect predictions. Sources of uncertainty can be found in the data, due to measurement error or noise in the labels, or the model, due to insufficient data availability for the model to learn effectively. **Full credits go to [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)** ## Using this model This repo contains model weights only. To use this model, refer to the following code contained in load_bnn_model.py. ## Training and evaluation data 🍷 We use the wine quality dataset found [here](https://www.tensorflow.org/datasets/catalog/wine_quality). Each wine was scored from 0-10 by wine experts, and includes 11 physicochemical features about the wine. ## Versioning The training was done using TensorFlow 2.8.0 and TensorFlow Probability 0.16.0. When working with TensorFlow Probability, it is encouraged to check out the [releases](https://github.com/tensorflow/probability/releases/tag/v0.17.0) to make sure you are using a stable TensorFlow counterpart. ### Training hyperparameters | Optimizer | learning_rate | decay | rho | momentum | epsilon | centered | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |RMSprop|0.001|0.0|0.9|0.0|1e-07|False|float32|
nestoralvaro/mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base
nestoralvaro
2022-06-12T12:25:16Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T10:01:09Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-xsum-RAW_data_prep_2021_12_26___t55_403.csv__google_mt5_base This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.9712 - Rouge2: 0.1329 - Rougel: 0.9638 - Rougelsum: 0.9675 - Gen Len: 6.4489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 36479 | nan | 0.9712 | 0.1329 | 0.9638 | 0.9675 | 6.4489 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
FabianWillner/distilbert-base-uncased-finetuned-squad
FabianWillner
2022-06-12T12:09:32Z
13
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-09T10:41:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad metrics: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [FabianWillner/distilbert-base-uncased-finetuned-squad](https://huggingface.co/FabianWillner/distilbert-base-uncased-finetuned-squad) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
huggingnft/hedgies
huggingnft
2022-06-12T12:08:25Z
7
0
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/hedgies", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-05-24T18:12:29Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/hedgies license: mit --- # Hugging NFT: hedgies ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/hedgies). Dataset is available [here](https://huggingface.co/datasets/huggingnft/hedgies). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/hedgies). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
mgfrantz/dql-SpaceInvadersNoFrameskip-v4
mgfrantz
2022-06-12T11:13:41Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T11:12:58Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 1003.50 +/- 404.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mgfrantz -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mgfrantz ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
eunbeee/ainize-kobart-news-eb-finetuned-meetings-papers
eunbeee
2022-06-12T11:02:29Z
105
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T08:37:23Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: ainize-kobart-news-eb-finetuned-meetings-papers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ainize-kobart-news-eb-finetuned-meetings-papers This model is a fine-tuned version of [ainize/kobart-news](https://huggingface.co/ainize/kobart-news) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3289 - Rouge1: 17.3988 - Rouge2: 7.0454 - Rougel: 17.3877 - Rougelsum: 17.42 - Gen Len: 19.9473 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1402 | 1.0 | 7588 | 0.2930 | 17.1421 | 7.0141 | 17.1211 | 17.1473 | 19.9374 | | 0.0997 | 2.0 | 15176 | 0.2842 | 17.1692 | 6.8824 | 17.1557 | 17.1985 | 19.9435 | | 0.0692 | 3.0 | 22764 | 0.3052 | 17.4241 | 7.1083 | 17.4028 | 17.4472 | 19.9453 | | 0.0556 | 4.0 | 30352 | 0.3289 | 17.3988 | 7.0454 | 17.3877 | 17.42 | 19.9473 | | 0.0533 | 5.0 | 37940 | 0.3289 | 17.3988 | 7.0454 | 17.3877 | 17.42 | 19.9473 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
vishvamahadevan/distilbert-base-uncased-finetuned-squad
vishvamahadevan
2022-06-12T10:34:52Z
6
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-12T08:07:48Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: vishvamahadevan/distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vishvamahadevan/distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.9560 - Validation Loss: 1.1174 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 11064, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.3862 | 1.1639 | 0 | | 0.9560 | 1.1174 | 1 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
z-uo/vits-commonvoice9.0
z-uo
2022-06-12T09:46:23Z
1
0
transformers
[ "transformers", "tensorboard", "text-to-speech", "it", "dataset:mozilla-foundation/common_voice_9_0", "endpoints_compatible", "region:us" ]
text-to-speech
2022-06-12T07:07:07Z
--- tags: - text-to-speech language: - it model-index: - name: vits-commonvoice9.0 results: [] datasets: - mozilla-foundation/common_voice_9_0 --- # Common Voice it Vits Train on [Mozzila Common voice](https://commonvoice.mozilla.org/) v9.0 it with [Coqui VITS](https://github.com/coqui-ai/TTS) ``` # Coqui tts sha commit coquitts: 0cf3265a4686d7e856bd472cdaf1572d61cab2b8 PYTORCH_CUDA_ALLOC_CONF="max_split_size_mb:25" CUDA_VISIBLE_DEVICES=1 python recipes/common_voice/vits/train_vits.py CUDA_VISIBLE_DEVICES=0 tts-server --model_path "/run/media/opensuse/Barracuda/Models/TTS_new/trained_common_voice/vits_vctk-June-05-2022_03+45PM-0cf3265a/best_model.pth" --config_path "/run/media/opensuse/Barracuda/Models/TTS_new/trained_common_voice/vits_vctk-June-05-2022_03+45PM-0cf3265a/config.json" ```
huggingtweets/bosstjanz
huggingtweets
2022-06-12T09:27:34Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T09:26:54Z
--- language: en thumbnail: http://www.huggingtweets.com/bosstjanz/1655026050127/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1342130927737176064/SiNG_CxQ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Zrimškow</div> <div style="text-align: center; font-size: 14px;">@bosstjanz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Zrimškow. | Data | Zrimškow | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 368 | | Short tweets | 279 | | Tweets kept | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23nemiqj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bosstjanz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2pjrymzt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bosstjanz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ironbar/dqn-SpaceInvadersNoFrameskip-v4-1M-steps
ironbar
2022-06-12T08:16:08Z
11
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T08:15:30Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 629.50 +/- 140.06 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ironbar -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ironbar ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
ahmeddbahaa/arabert2arabert-finetuned-ar-wikilingua
ahmeddbahaa
2022-06-12T05:51:47Z
21
0
transformers
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "summarization", "ar", "arabert", "arabert2arabert", "Abstractive Summarization", "generated_from_trainer", "dataset:wiki_lingua", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-06-12T01:03:07Z
--- tags: - summarization - ar - encoder-decoder - arabert - arabert2arabert - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: arabert2arabert-finetuned-ar-wikilingua results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # arabert2arabert-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 4.6877 - Rouge-1: 13.2 - Rouge-2: 3.43 - Rouge-l: 12.45 - Gen Len: 20.0 - Bertscore: 64.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 6.7667 | 1.0 | 156 | 5.3846 | 3.36 | 0.56 | 3.27 | 20.0 | 60.6 | | 5.257 | 2.0 | 312 | 5.0424 | 5.44 | 0.88 | 5.35 | 20.0 | 60.56 | | 4.743 | 3.0 | 468 | 4.8294 | 9.21 | 1.8 | 8.93 | 20.0 | 62.91 | | 4.3832 | 4.0 | 624 | 4.7240 | 9.88 | 2.19 | 9.6 | 20.0 | 62.65 | | 4.1166 | 5.0 | 780 | 4.6861 | 11.61 | 2.86 | 11.13 | 20.0 | 63.71 | | 3.91 | 6.0 | 936 | 4.6692 | 12.27 | 3.11 | 11.76 | 20.0 | 64.07 | | 3.7569 | 7.0 | 1092 | 4.6805 | 12.93 | 3.38 | 12.28 | 20.0 | 64.61 | | 3.6454 | 8.0 | 1248 | 4.6877 | 13.2 | 3.43 | 12.45 | 20.0 | 64.88 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
xdai/mimic_roberta_base
xdai
2022-06-12T04:51:26Z
5
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "Clinical notes", "Discharge summaries", "RoBERTa", "dataset:MIMIC-III", "arxiv:2204.06683", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-12T04:12:20Z
--- language: - English tags: - Clinical notes - Discharge summaries - RoBERTa license: "cc-by-4.0" datasets: - MIMIC-III --- * Continue pre-training RoBERTa-base using discharge summaries from MIMIC-III datasets. * Details can be found in the following paper > Xiang Dai and Ilias Chalkidis and Sune Darkner and Desmond Elliott. 2022. Revisiting Transformer-based Models for Long Document Classification. (https://arxiv.org/abs/2204.06683) * Important hyper-parameters | | | |---|---| | Max sequence | 128 | | Batch size | 128 | | Learning rate | 5e-5 | | Training epochs | 15 | | Training time | 40 GPU-hours |
huggingtweets/tayplaysgaymes
huggingtweets
2022-06-12T03:56:41Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-12T03:55:39Z
--- language: en thumbnail: http://www.huggingtweets.com/tayplaysgaymes/1655006196516/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1144053838459969536/lv3yBmoX_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tay</div> <div style="text-align: center; font-size: 14px;">@tayplaysgaymes</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tay. | Data | Tay | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 693 | | Short tweets | 367 | | Tweets kept | 2152 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1hmextiq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tayplaysgaymes's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3r0cse8x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tayplaysgaymes') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Zengwei/icefall-asr-librispeech-conv-emformer-transducer-stateless-2022-06-11
Zengwei
2022-06-12T02:51:06Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-06-11T15:22:15Z
See <https://github.com/k2-fsa/icefall/pull/389>
bguan/SpaceInvadersNoFrameskip-v4
bguan
2022-06-12T01:05:09Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-12T01:04:38Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 255.00 +/- 93.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bguan -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga bguan ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 500000), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1
meghazisofiane
2022-06-12T00:44:37Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:un_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-12T00:34:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 53.0137 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instances-un_multi-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.1873 - Bleu: 53.0137 - Meteor: 0.5005 - Gen Len: 25.845 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.6585 | 0.5 | 100 | 0.2085 | 52.5874 | 0.4969 | 25.485 | | 0.1802 | 1.0 | 200 | 0.1788 | 52.9434 | 0.4982 | 25.1725 | | 0.1501 | 1.5 | 300 | 0.1683 | 53.6994 | 0.5033 | 25.625 | | 0.1454 | 2.0 | 400 | 0.1706 | 53.3946 | 0.5005 | 25.6675 | | 0.1193 | 2.5 | 500 | 0.1774 | 53.2011 | 0.4982 | 25.58 | | 0.1194 | 3.0 | 600 | 0.1741 | 53.8651 | 0.5026 | 25.5775 | | 0.1002 | 3.5 | 700 | 0.1878 | 53.1332 | 0.5005 | 25.8975 | | 0.0979 | 4.0 | 800 | 0.1881 | 52.5989 | 0.4974 | 25.485 | | 0.0807 | 4.5 | 900 | 0.1873 | 53.0137 | 0.5005 | 25.845 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
TencentMedicalNet/MedicalNet-Resnet10
TencentMedicalNet
2022-06-12T00:26:42Z
0
4
null
[ "MedicalNet", "medical images", "medical", "3D", "Med3D", "en", "dataset:MRBrainS18", "arxiv:1904.00625", "license:mit", "region:us" ]
null
2022-06-11T23:12:06Z
--- license: mit datasets: - MRBrainS18 language: - en metrics: - tags: - MedicalNet - medical images - medical - 3D - Med3D thumbnail: "https://github.com/Tencent/MedicalNet/blob/master/images/logo.png?raw=true" --- # MedicalNet This repository contains a Pytorch implementation of [Med3D: Transfer Learning for 3D Medical Image Analysis](https://arxiv.org/abs/1904.00625). Many studies have shown that the performance on deep learning is significantly affected by volume of training data. The MedicalNet project aggregated the dataset with diverse modalities, target organs, and pathologies to to build relatively large datasets. Based on this dataset, a series of 3D-ResNet pre-trained models and corresponding transfer-learning training code are provided. ### License MedicalNet is released under the MIT License (refer to the LICENSE file for detailso). ### Citing MedicalNet If you use this code or pre-trained models, please cite the following: ``` @article{chen2019med3d, title={Med3D: Transfer Learning for 3D Medical Image Analysis}, author={Chen, Sihong and Ma, Kai and Zheng, Yefeng}, journal={arXiv preprint arXiv:1904.00625}, year={2019} } ``` ### Update(2019/07/30) We uploaded 4 pre-trained models based on more datasets (23 datasets). ``` Model name : parameters settings resnet_10_23dataset.pth: --model resnet --model_depth 10 --resnet_shortcut B resnet_18_23dataset.pth: --model resnet --model_depth 18 --resnet_shortcut A resnet_34_23dataset.pth: --model resnet --model_depth 34 --resnet_shortcut A resnet_50_23dataset.pth: --model resnet --model_depth 50 --resnet_shortcut B ``` Hugging Face repository contribution by: [Rafael Zimmer](https://www.github.com/rzimmerdev)
huggingtweets/laserboat999
huggingtweets
2022-06-11T23:53:52Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T23:49:07Z
--- language: en thumbnail: http://www.huggingtweets.com/laserboat999/1654991516445/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1500274766195793921/bA4siut7_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">donald boat</div> <div style="text-align: center; font-size: 14px;">@laserboat999</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from donald boat. | Data | donald boat | | --- | --- | | Tweets downloaded | 3233 | | Retweets | 75 | | Short tweets | 516 | | Tweets kept | 2642 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38v40fpf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @laserboat999's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/pk1xum9h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/laserboat999') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
DLWCMD/TEST2ppo-LunarLander-v2
DLWCMD
2022-06-11T23:39:16Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:38:43Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 263.13 +/- 22.16 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
745H1N/LunarLander-v2-DQN-optuna
745H1N
2022-06-11T23:36:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:36:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -140.18 +/- 41.67 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
745H1N/LunarLander-v2-PPO-optuna
745H1N
2022-06-11T23:30:59Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T23:30:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -170.80 +/- 74.73 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aprischa/bart-large-cnn-aprischa2
aprischa
2022-06-11T23:27:38Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T17:40:18Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-aprischa2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-aprischa2 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3425 - Rouge1: 65.7088 - Rouge2: 56.6701 - Rougel: 62.1926 - Rougelsum: 64.7727 - Gen Len: 140.8469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.3772 | 1.0 | 5403 | 0.3586 | 65.7702 | 56.7968 | 62.264 | 64.8605 | 140.268 | | 0.316 | 2.0 | 10806 | 0.3421 | 64.8238 | 55.8837 | 61.3245 | 63.8894 | 140.7472 | | 0.2397 | 3.0 | 16209 | 0.3425 | 65.7088 | 56.6701 | 62.1926 | 64.7727 | 140.8469 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
twieland/SCRATCH_ja-en_helsinki
twieland
2022-06-11T23:01:52Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T01:05:11Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: SCRATCH_ja-en_helsinki results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SCRATCH_ja-en_helsinki This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5583 - Otaku Benchmark VN BLEU: 19.12 - Otaku Benchmark LN BLEU: 11.55 - Otaku Benchmark MANGA BLEU: 12.98 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 96 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 3.0252 | 0.02 | 2000 | 2.4140 | | 2.8406 | 0.03 | 4000 | 2.2819 | | 2.7505 | 0.05 | 6000 | 2.3018 | | 2.6948 | 0.06 | 8000 | 2.1931 | | 2.6408 | 0.08 | 10000 | 2.1724 | | 2.6004 | 0.09 | 12000 | 2.1583 | | 2.5685 | 0.11 | 14000 | 2.1203 | | 2.5432 | 0.12 | 16000 | 2.1593 | | 2.5153 | 0.14 | 18000 | 2.1009 | | 2.4906 | 0.15 | 20000 | 2.0899 | | 2.4709 | 0.17 | 22000 | 2.0512 | | 2.4471 | 0.18 | 24000 | 2.0208 | | 2.4295 | 0.2 | 26000 | 2.0773 | | 2.4154 | 0.21 | 28000 | 2.0441 | | 2.4008 | 0.23 | 30000 | 2.0235 | | 2.3834 | 0.24 | 32000 | 2.0190 | | 2.3709 | 0.26 | 34000 | 1.9831 | | 2.3537 | 0.27 | 36000 | 1.9870 | | 2.3486 | 0.29 | 38000 | 1.9692 | | 2.3346 | 0.3 | 40000 | 1.9517 | | 2.3195 | 0.32 | 42000 | 1.9800 | | 2.3104 | 0.33 | 44000 | 1.9676 | | 2.298 | 0.35 | 46000 | 1.9563 | | 2.2905 | 0.36 | 48000 | 1.9217 | | 2.2792 | 0.38 | 50000 | 1.9195 | | 2.2714 | 0.39 | 52000 | 1.9109 | | 2.2593 | 0.41 | 54000 | 1.9044 | | 2.2582 | 0.42 | 56000 | 1.8876 | | 2.2482 | 0.44 | 58000 | 1.8860 | | 2.2394 | 0.45 | 60000 | 1.8887 | | 2.2273 | 0.47 | 62000 | 1.8862 | | 2.2255 | 0.48 | 64000 | 1.8705 | | 2.2166 | 0.5 | 66000 | 1.8696 | | 2.2075 | 0.51 | 68000 | 1.8657 | | 2.1992 | 0.53 | 70000 | 1.8585 | | 2.1969 | 0.54 | 72000 | 1.8526 | | 2.1894 | 0.56 | 74000 | 1.8493 | | 2.1817 | 0.57 | 76000 | 1.8480 | | 2.1771 | 0.59 | 78000 | 1.8333 | | 2.1683 | 0.6 | 80000 | 1.8342 | | 2.1667 | 0.62 | 82000 | 1.8537 | | 2.1546 | 0.63 | 84000 | 1.8261 | | 2.1467 | 0.65 | 86000 | 1.8092 | | 2.1421 | 0.66 | 88000 | 1.8137 | | 2.1395 | 0.68 | 90000 | 1.8286 | | 2.1313 | 0.69 | 92000 | 1.8042 | | 2.1241 | 0.71 | 94000 | 1.7934 | | 2.1214 | 0.72 | 96000 | 1.7940 | | 2.12 | 0.74 | 98000 | 1.8064 | | 2.1096 | 0.75 | 100000 | 1.7983 | | 2.1035 | 0.77 | 102000 | 1.8089 | | 2.0937 | 0.78 | 104000 | 1.7941 | | 2.0893 | 0.8 | 106000 | 1.7791 | | 2.0869 | 0.81 | 108000 | 1.7807 | | 2.0845 | 0.83 | 110000 | 1.7852 | | 2.0782 | 0.84 | 112000 | 1.7675 | | 2.0755 | 0.86 | 114000 | 1.7756 | | 2.0657 | 0.87 | 116000 | 1.7604 | | 2.0614 | 0.89 | 118000 | 1.7447 | | 2.0591 | 0.9 | 120000 | 1.7489 | | 2.0586 | 0.92 | 122000 | 1.7550 | | 2.0498 | 0.93 | 124000 | 1.7543 | | 2.0455 | 0.95 | 126000 | 1.7510 | | 2.04 | 0.96 | 128000 | 1.7439 | | 2.0385 | 0.98 | 130000 | 1.7407 | | 2.0267 | 0.99 | 132000 | 1.7467 | | 2.0088 | 1.01 | 134000 | 1.7455 | | 1.9826 | 1.02 | 136000 | 1.7210 | | 1.9785 | 1.04 | 138000 | 1.7524 | | 1.9777 | 1.05 | 140000 | 1.7272 | | 1.9763 | 1.07 | 142000 | 1.7283 | | 1.9736 | 1.08 | 144000 | 1.7210 | | 1.9704 | 1.1 | 146000 | 1.7001 | | 1.9625 | 1.11 | 148000 | 1.7112 | | 1.9665 | 1.13 | 150000 | 1.7236 | | 1.9592 | 1.14 | 152000 | 1.7169 | | 1.9606 | 1.16 | 154000 | 1.6962 | | 1.9571 | 1.17 | 156000 | 1.7064 | | 1.9532 | 1.19 | 158000 | 1.6898 | | 1.9465 | 1.2 | 160000 | 1.7004 | | 1.9438 | 1.22 | 162000 | 1.7092 | | 1.9435 | 1.23 | 164000 | 1.6927 | | 1.9361 | 1.25 | 166000 | 1.6838 | | 1.9369 | 1.26 | 168000 | 1.6784 | | 1.9287 | 1.28 | 170000 | 1.6709 | | 1.928 | 1.29 | 172000 | 1.6735 | | 1.9227 | 1.31 | 174000 | 1.6689 | | 1.9213 | 1.32 | 176000 | 1.6685 | | 1.9152 | 1.34 | 178000 | 1.6635 | | 1.9092 | 1.35 | 180000 | 1.6561 | | 1.9059 | 1.37 | 182000 | 1.6673 | | 1.9094 | 1.38 | 184000 | 1.6717 | | 1.9006 | 1.4 | 186000 | 1.6593 | | 1.8956 | 1.41 | 188000 | 1.6483 | | 1.8972 | 1.43 | 190000 | 1.6635 | | 1.8907 | 1.44 | 192000 | 1.6604 | | 1.8885 | 1.46 | 194000 | 1.6465 | | 1.8844 | 1.47 | 196000 | 1.6444 | | 1.8799 | 1.49 | 198000 | 1.6307 | | 1.8813 | 1.5 | 200000 | 1.6240 | | 1.8693 | 1.52 | 202000 | 1.6102 | | 1.8768 | 1.53 | 204000 | 1.6197 | | 1.8678 | 1.55 | 206000 | 1.6275 | | 1.8588 | 1.56 | 208000 | 1.6183 | | 1.8585 | 1.58 | 210000 | 1.6197 | | 1.8564 | 1.59 | 212000 | 1.6004 | | 1.8493 | 1.61 | 214000 | 1.6078 | | 1.85 | 1.62 | 216000 | 1.6001 | | 1.8428 | 1.64 | 218000 | 1.6106 | | 1.8428 | 1.65 | 220000 | 1.5866 | | 1.8423 | 1.67 | 222000 | 1.5993 | | 1.8352 | 1.68 | 224000 | 1.6052 | | 1.8385 | 1.7 | 226000 | 1.5959 | | 1.8307 | 1.71 | 228000 | 1.6024 | | 1.8248 | 1.73 | 230000 | 1.5969 | | 1.82 | 1.74 | 232000 | 1.5878 | | 1.8254 | 1.76 | 234000 | 1.5934 | | 1.8188 | 1.77 | 236000 | 1.5827 | | 1.813 | 1.79 | 238000 | 1.5797 | | 1.8128 | 1.8 | 240000 | 1.5758 | | 1.8044 | 1.82 | 242000 | 1.5752 | | 1.808 | 1.83 | 244000 | 1.5818 | | 1.8025 | 1.85 | 246000 | 1.5772 | | 1.7992 | 1.86 | 248000 | 1.5738 | | 1.8021 | 1.88 | 250000 | 1.5752 | | 1.7988 | 1.89 | 252000 | 1.5717 | | 1.7967 | 1.91 | 254000 | 1.5690 | | 1.7909 | 1.92 | 256000 | 1.5607 | | 1.7942 | 1.94 | 258000 | 1.5618 | | 1.7897 | 1.95 | 260000 | 1.5585 | | 1.7871 | 1.97 | 262000 | 1.5576 | | 1.7843 | 1.98 | 264000 | 1.5577 | | 1.7888 | 2.0 | 266000 | 1.5583 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1
meghazisofiane
2022-06-11T21:50:40Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T21:33:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.8232 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-4000instances-opus-leaningRate2e-05-batchSize8-11-action-1 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1717 - Bleu: 26.8232 - Meteor: 0.172 - Gen Len: 12.1288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 0.7364 | 0.25 | 100 | 0.1731 | 27.2753 | 0.1729 | 12.0887 | | 0.2175 | 0.5 | 200 | 0.1731 | 27.2055 | 0.1722 | 11.5675 | | 0.2193 | 0.75 | 300 | 0.1722 | 27.3277 | 0.1798 | 12.1325 | | 0.2321 | 1.0 | 400 | 0.1750 | 27.5152 | 0.1762 | 11.925 | | 0.1915 | 1.25 | 500 | 0.1690 | 27.5043 | 0.1751 | 11.9038 | | 0.1794 | 1.5 | 600 | 0.1719 | 26.8607 | 0.1713 | 11.8138 | | 0.1741 | 1.75 | 700 | 0.1725 | 26.974 | 0.1724 | 11.8462 | | 0.1732 | 2.0 | 800 | 0.1717 | 26.8232 | 0.172 | 12.1288 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
tjscollins/q-Taxi-v3
tjscollins
2022-06-11T21:37:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T21:00:50Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 12.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
meghazisofiane
2022-06-11T21:27:25Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T19:41:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 26.2629 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-2000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1959 - Bleu: 26.2629 - Meteor: 0.1703 - Gen Len: 11.0925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.0519 | 0.5 | 100 | 0.1985 | 27.3525 | 0.1815 | 11.0725 | | 0.1947 | 1.0 | 200 | 0.1902 | 26.9728 | 0.1789 | 10.82 | | 0.1489 | 1.5 | 300 | 0.1910 | 27.7003 | 0.1811 | 10.975 | | 0.1665 | 2.0 | 400 | 0.1905 | 26.3739 | 0.1772 | 11.1075 | | 0.1321 | 2.5 | 500 | 0.1926 | 26.752 | 0.1772 | 10.975 | | 0.1271 | 3.0 | 600 | 0.1927 | 27.3663 | 0.1751 | 10.9725 | | 0.1105 | 3.5 | 700 | 0.1952 | 27.134 | 0.1738 | 10.9975 | | 0.109 | 4.0 | 800 | 0.1959 | 26.2629 | 0.1703 | 11.0925 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
MyMild/bert-finetuned-squad
MyMild
2022-06-11T21:24:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-06-11T20:26:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.11.0+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
tjscollins/q-FrozenLake-v1-4x4-slippery
tjscollins
2022-06-11T20:58:40Z
0
0
null
[ "FrozenLake-v1-4x4-4x4", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T20:32:22Z
--- tags: - FrozenLake-v1-4x4-4x4 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-slippery results: - metrics: - type: mean_reward value: 0.75 +/- 0.43 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-4x4 type: FrozenLake-v1-4x4-4x4 --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tjscollins/q-FrozenLake-v1-4x4-slippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
huggingtweets/elonmusk-rshowerthoughts-stephenking
huggingtweets
2022-06-11T20:15:51Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T20:04:06Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-rshowerthoughts-stephenking/1654978546952/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000836981162/b683f7509ec792c3e481ead332940cdc_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/641699738224455680/L_ji6ClT_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Stephen King & Showerthoughts</div> <div style="text-align: center; font-size: 14px;">@elonmusk-rshowerthoughts-stephenking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Stephen King & Showerthoughts. | Data | Elon Musk | Stephen King | Showerthoughts | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3230 | 3200 | | Retweets | 147 | 780 | 0 | | Short tweets | 954 | 202 | 0 | | Tweets kept | 2099 | 2248 | 3200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fvudd5c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-rshowerthoughts-stephenking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/39f9xftz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/39f9xftz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-rshowerthoughts-stephenking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meln1k/qrdqn-SpaceInvadersNoFrameskip-v4
meln1k
2022-06-11T19:51:36Z
5
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T09:29:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: QRDQN results: - metrics: - type: mean_reward value: 2581.50 +/- 1151.96 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **QRDQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **QRDQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -orga meln1k -f logs/ python enjoy.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo qrdqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga meln1k ``` ## Hyperparameters ```python OrderedDict([('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_fraction', 0.025), ('frame_stack', 4), ('n_timesteps', 10000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('normalize', False)]) ```
huggingtweets/rshowerthoughts-stephenking
huggingtweets
2022-06-11T19:50:01Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:42:08Z
--- language: en thumbnail: http://www.huggingtweets.com/rshowerthoughts-stephenking/1654976942704/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/378800000836981162/b683f7509ec792c3e481ead332940cdc_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/641699738224455680/L_ji6ClT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Stephen King & Showerthoughts</div> <div style="text-align: center; font-size: 14px;">@rshowerthoughts-stephenking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Stephen King & Showerthoughts. | Data | Stephen King | Showerthoughts | | --- | --- | --- | | Tweets downloaded | 3230 | 3200 | | Retweets | 780 | 0 | | Short tweets | 202 | 0 | | Tweets kept | 2248 | 3200 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bn3s9yg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rshowerthoughts-stephenking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2waq2b3w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2waq2b3w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rshowerthoughts-stephenking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/mdoukmas
huggingtweets
2022-06-11T19:35:54Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T19:34:24Z
--- language: en thumbnail: http://www.huggingtweets.com/mdoukmas/1654976150184/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1098660288193269762/n5v9daol_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maya Dukmasova</div> <div style="text-align: center; font-size: 14px;">@mdoukmas</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maya Dukmasova. | Data | Maya Dukmasova | | --- | --- | | Tweets downloaded | 3241 | | Retweets | 896 | | Short tweets | 158 | | Tweets kept | 2187 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jwhv7l5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdoukmas's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/25v3pmsy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mdoukmas') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
meghazisofiane/opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3
meghazisofiane
2022-06-11T19:25:04Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:opus100", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-11T19:16:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - opus100 metrics: - bleu model-index: - name: opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus100 type: opus100 args: ar-en metrics: - name: Bleu type: bleu value: 21.3028 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opus-mt-en-ar-evaluated-en-to-ar-1000instancesopus-leaningRate2e-05-batchSize8-11epoch-3 This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on the opus100 dataset. It achieves the following results on the evaluation set: - Loss: 0.1421 - Bleu: 21.3028 - Meteor: 0.1285 - Gen Len: 9.975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 1.0508 | 1.0 | 100 | 0.1413 | 27.9009 | 0.1416 | 8.85 | | 0.1253 | 2.0 | 200 | 0.1372 | 23.11 | 0.1345 | 9.855 | | 0.1017 | 3.0 | 300 | 0.1390 | 21.7885 | 0.1364 | 9.97 | | 0.0868 | 4.0 | 400 | 0.1378 | 21.3889 | 0.1314 | 9.835 | | 0.0754 | 5.0 | 500 | 0.1398 | 22.198 | 0.132 | 9.675 | | 0.0667 | 6.0 | 600 | 0.1396 | 20.8645 | 0.1308 | 10.055 | | 0.0604 | 7.0 | 700 | 0.1408 | 20.289 | 0.1303 | 10.53 | | 0.0553 | 8.0 | 800 | 0.1414 | 21.7023 | 0.1293 | 10.005 | | 0.0518 | 9.0 | 900 | 0.1421 | 21.3028 | 0.1285 | 9.975 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingtweets/elonmusk-iamjohnoliver-neiltyson
huggingtweets
2022-06-11T19:00:50Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T18:54:15Z
--- language: en thumbnail: http://www.huggingtweets.com/elonmusk-iamjohnoliver-neiltyson/1654974044761/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1529956155937759233/Nyn1HZWF_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1393958859/main_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/74188698/NeilTysonOriginsA-Crop_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & John Oliver & Neil deGrasse Tyson</div> <div style="text-align: center; font-size: 14px;">@elonmusk-iamjohnoliver-neiltyson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & John Oliver & Neil deGrasse Tyson. | Data | Elon Musk | John Oliver | Neil deGrasse Tyson | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 636 | 3237 | | Retweets | 147 | 122 | 10 | | Short tweets | 954 | 9 | 87 | | Tweets kept | 2099 | 505 | 3140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14h905cr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-iamjohnoliver-neiltyson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gcc5ko3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-iamjohnoliver-neiltyson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/rterdogan
huggingtweets
2022-06-11T18:56:47Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1151410974240444416/yVvaD7hU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Recep Tayyip Erdoğan</div> <div style="text-align: center; font-size: 14px;">@rterdogan</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Recep Tayyip Erdoğan. | Data | Recep Tayyip Erdoğan | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 418 | | Short tweets | 54 | | Tweets kept | 2778 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wf1dbaih/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rterdogan's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a3w2qxa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a3w2qxa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rterdogan') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Galeros/dqn-mountaincar-v0-local
Galeros
2022-06-11T18:38:27Z
3
0
stable-baselines3
[ "stable-baselines3", "MountainCar-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T18:38:19Z
--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -98.80 +/- 21.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lllFaNToMlll/wac2vec-lllfantomlll
lllFaNToMlll
2022-06-11T18:07:44Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-11T11:42:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wac2vec-lllfantomlll results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wac2vec-lllfantomlll This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5560 - Wer: 0.3417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.5768 | 1.0 | 500 | 2.0283 | 1.0238 | | 0.9219 | 2.01 | 1000 | 0.5103 | 0.5022 | | 0.4497 | 3.01 | 1500 | 0.4746 | 0.4669 | | 0.3163 | 4.02 | 2000 | 0.4144 | 0.4229 | | 0.2374 | 5.02 | 2500 | 0.4186 | 0.4161 | | 0.2033 | 6.02 | 3000 | 0.4115 | 0.3975 | | 0.1603 | 7.03 | 3500 | 0.4424 | 0.3817 | | 0.1455 | 8.03 | 4000 | 0.4151 | 0.3918 | | 0.1276 | 9.04 | 4500 | 0.4940 | 0.3798 | | 0.108 | 10.04 | 5000 | 0.4580 | 0.3688 | | 0.1053 | 11.04 | 5500 | 0.4243 | 0.3700 | | 0.0929 | 12.05 | 6000 | 0.4999 | 0.3727 | | 0.0896 | 13.05 | 6500 | 0.4991 | 0.3624 | | 0.0748 | 14.06 | 7000 | 0.4924 | 0.3602 | | 0.0681 | 15.06 | 7500 | 0.4908 | 0.3544 | | 0.0619 | 16.06 | 8000 | 0.5021 | 0.3559 | | 0.0569 | 17.07 | 8500 | 0.5448 | 0.3518 | | 0.0549 | 18.07 | 9000 | 0.4919 | 0.3508 | | 0.0478 | 19.08 | 9500 | 0.4704 | 0.3513 | | 0.0437 | 20.08 | 10000 | 0.5058 | 0.3555 | | 0.0421 | 21.08 | 10500 | 0.5127 | 0.3489 | | 0.0362 | 22.09 | 11000 | 0.5439 | 0.3527 | | 0.0322 | 23.09 | 11500 | 0.5418 | 0.3469 | | 0.0327 | 24.1 | 12000 | 0.5298 | 0.3422 | | 0.0292 | 25.1 | 12500 | 0.5511 | 0.3426 | | 0.0246 | 26.1 | 13000 | 0.5349 | 0.3472 | | 0.0251 | 27.11 | 13500 | 0.5646 | 0.3391 | | 0.0214 | 28.11 | 14000 | 0.5821 | 0.3424 | | 0.0217 | 29.12 | 14500 | 0.5560 | 0.3417 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
huggingnft/frames
huggingnft
2022-06-11T17:38:03Z
5
0
transformers
[ "transformers", "huggingnft", "nft", "huggan", "gan", "image", "images", "unconditional-image-generation", "dataset:huggingnft/frames", "license:mit", "endpoints_compatible", "region:us" ]
unconditional-image-generation
2022-06-11T14:58:47Z
--- tags: - huggingnft - nft - huggan - gan - image - images - unconditional-image-generation datasets: - huggingnft/frames license: mit --- # Hugging NFT: frames ## Disclaimer All rights belong to their owners. Models and datasets can be removed from the site at the request of the copyright holder. ## Model description LightWeight GAN model for unconditional generation. NFT collection available [here](https://opensea.io/collection/frames). Dataset is available [here](https://huggingface.co/datasets/huggingnft/frames). Check Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). Project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ## Intended uses & limitations #### How to use Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). #### Limitations and bias Check project repository: [link](https://github.com/AlekseyKorshuk/huggingnft). ## Training data Dataset is available [here](https://huggingface.co/datasets/huggingnft/frames). ## Training procedure Training script is available [here](https://github.com/AlekseyKorshuk/huggingnft). ## Generated Images Check results with Space: [link](https://huggingface.co/spaces/AlekseyKorshuk/huggingnft). ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingnft?style=social)](https://github.com/AlekseyKorshuk/huggingnft) ### BibTeX entry and citation info ```bibtex @InProceedings{huggingnft, author={Aleksey Korshuk} year=2022 } ```
DancingIguana/codeparrot-ds
DancingIguana
2022-06-11T16:58:04Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-08T21:56:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
YeRyeongLee/bertweet-base-finetuned-filtered-0609
YeRyeongLee
2022-06-11T16:50:19Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T15:37:42Z
--- tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bertweet-base-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-base-finetuned-filtered-0609 This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5397 - Accuracy: 0.9299 - Precision: 0.9297 - Recall: 0.9299 - F1: 0.9298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.331 | 1.0 | 3180 | 0.3687 | 0.9069 | 0.9147 | 0.9069 | 0.9081 | | 0.2611 | 2.0 | 6360 | 0.3725 | 0.9223 | 0.9227 | 0.9223 | 0.9224 | | 0.1993 | 3.0 | 9540 | 0.2948 | 0.9336 | 0.9350 | 0.9336 | 0.9339 | | 0.1648 | 4.0 | 12720 | 0.3563 | 0.9296 | 0.9303 | 0.9296 | 0.9298 | | 0.1324 | 5.0 | 15900 | 0.4136 | 0.9267 | 0.9279 | 0.9267 | 0.9270 | | 0.1102 | 6.0 | 19080 | 0.4060 | 0.9352 | 0.9357 | 0.9352 | 0.9353 | | 0.0568 | 7.0 | 22260 | 0.4653 | 0.9321 | 0.9328 | 0.9321 | 0.9322 | | 0.0292 | 8.0 | 25440 | 0.4818 | 0.9311 | 0.9310 | 0.9311 | 0.9310 | | 0.0155 | 9.0 | 28620 | 0.5405 | 0.9286 | 0.9288 | 0.9286 | 0.9286 | | 0.0095 | 10.0 | 31800 | 0.5397 | 0.9299 | 0.9297 | 0.9299 | 0.9298 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
bubblecookie/t5-small-finetuned-cnndm_trained
bubblecookie
2022-06-11T16:48:45Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-10T06:21:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-cnndm_trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnndm_trained This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
robingeibel/longformer-base-finetuned-big_patent
robingeibel
2022-06-11T16:33:49Z
62
1
transformers
[ "transformers", "tf", "longformer", "fill-mask", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-06-05T17:24:27Z
--- tags: - generated_from_keras_callback model-index: - name: robingeibel/longformer-base-finetuned-big_patent results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # robingeibel/longformer-base-finetuned-big_patent This model is a fine-tuned version of [robingeibel/longformer-base-finetuned-big_patent](https://huggingface.co/robingeibel/longformer-base-finetuned-big_patent) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1860 - Validation Loss: 1.0692 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 152946, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.1860 | 1.0692 | 0 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.8.2 - Datasets 2.2.2 - Tokenizers 0.12.1
tuni/distilbert-base-uncased-finetuned-cola
tuni
2022-06-11T15:12:53Z
17
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T13:50:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5324115893962171 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7035 - Matthews Correlation: 0.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.785228097724678e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5227 | 1.0 | 535 | 0.5005 | 0.4121 | | 0.318 | 2.0 | 1070 | 0.5265 | 0.4977 | | 0.1887 | 3.0 | 1605 | 0.7035 | 0.5324 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
antonioricciardi/CarRacing-v0
antonioricciardi
2022-06-11T14:26:51Z
2
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T14:26:00Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -75.94 +/- 1.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
neeenway/ppo-LunarLander-v2
neeenway
2022-06-11T13:43:31Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:43:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 240.31 +/- 12.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Akshat/xlm-roberta-base-finetuned-panx-de
Akshat
2022-06-11T13:35:25Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T12:19:48Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8611443210930829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1405 - F1: 0.8611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2542 | 1.0 | 787 | 0.1788 | 0.8083 | | 0.1307 | 2.0 | 1574 | 0.1371 | 0.8488 | | 0.0784 | 3.0 | 2361 | 0.1405 | 0.8611 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
YeRyeongLee/albert-base-v2-finetuned-filtered-0609
YeRyeongLee
2022-06-11T13:33:02Z
106
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T11:46:52Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-filtered-0609 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-filtered-0609 This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2062 - Accuracy: 0.9723 - Precision: 0.9724 - Recall: 0.9723 - F1: 0.9723 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2688 | 1.0 | 3180 | 0.2282 | 0.9560 | 0.9577 | 0.9560 | 0.9562 | | 0.2268 | 2.0 | 6360 | 0.1909 | 0.9638 | 0.9640 | 0.9638 | 0.9638 | | 0.1831 | 3.0 | 9540 | 0.2590 | 0.9572 | 0.9584 | 0.9572 | 0.9572 | | 0.1588 | 4.0 | 12720 | 0.1752 | 0.9673 | 0.9678 | 0.9673 | 0.9673 | | 0.0972 | 5.0 | 15900 | 0.1868 | 0.9695 | 0.9696 | 0.9695 | 0.9695 | | 0.0854 | 6.0 | 19080 | 0.2042 | 0.9701 | 0.9707 | 0.9701 | 0.9702 | | 0.0599 | 7.0 | 22260 | 0.1793 | 0.9748 | 0.9749 | 0.9748 | 0.9749 | | 0.0389 | 8.0 | 25440 | 0.1996 | 0.9742 | 0.9743 | 0.9742 | 0.9742 | | 0.0202 | 9.0 | 28620 | 0.2188 | 0.9723 | 0.9726 | 0.9723 | 0.9724 | | 0.0152 | 10.0 | 31800 | 0.2062 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.9.1+cu111 - Datasets 1.16.1 - Tokenizers 0.12.1
marieke93/BERT-evidence-types
marieke93
2022-06-11T13:32:10Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-08T11:54:50Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: BERT-evidence-types results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BERT-evidence-types This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the evidence types dataset. It achieves the following results on the evaluation set: - Loss: 2.8008 - Macro f1: 0.4227 - Weighted f1: 0.6976 - Accuracy: 0.7154 - Balanced accuracy: 0.3876 ## Training and evaluation data The data set, as well as the code that was used to fine tune this model can be found in the GitHub repository [BA-Thesis-Information-Science-Persuasion-Strategies](https://github.com/mariekevdh/BA-Thesis-Information-Science-Persuasion-Strategies) ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro f1 | Weighted f1 | Accuracy | Balanced accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:-----------------:| | 1.1148 | 1.0 | 125 | 1.0531 | 0.2566 | 0.6570 | 0.6705 | 0.2753 | | 0.7546 | 2.0 | 250 | 0.9725 | 0.3424 | 0.6947 | 0.7002 | 0.3334 | | 0.4757 | 3.0 | 375 | 1.1375 | 0.3727 | 0.7113 | 0.7184 | 0.3680 | | 0.2637 | 4.0 | 500 | 1.3585 | 0.3807 | 0.6836 | 0.6910 | 0.3805 | | 0.1408 | 5.0 | 625 | 1.6605 | 0.3785 | 0.6765 | 0.6872 | 0.3635 | | 0.0856 | 6.0 | 750 | 1.9703 | 0.3802 | 0.6890 | 0.7047 | 0.3704 | | 0.0502 | 7.0 | 875 | 2.1245 | 0.4067 | 0.6995 | 0.7169 | 0.3751 | | 0.0265 | 8.0 | 1000 | 2.2676 | 0.3756 | 0.6816 | 0.6925 | 0.3647 | | 0.0147 | 9.0 | 1125 | 2.4286 | 0.4052 | 0.6887 | 0.7062 | 0.3803 | | 0.0124 | 10.0 | 1250 | 2.5773 | 0.4084 | 0.6853 | 0.7040 | 0.3695 | | 0.0111 | 11.0 | 1375 | 2.5941 | 0.4146 | 0.6915 | 0.7085 | 0.3834 | | 0.0076 | 12.0 | 1500 | 2.6124 | 0.4157 | 0.6936 | 0.7078 | 0.3863 | | 0.0067 | 13.0 | 1625 | 2.7050 | 0.4139 | 0.6925 | 0.7108 | 0.3798 | | 0.0087 | 14.0 | 1750 | 2.6695 | 0.4252 | 0.7009 | 0.7169 | 0.3920 | | 0.0056 | 15.0 | 1875 | 2.7357 | 0.4257 | 0.6985 | 0.7161 | 0.3868 | | 0.0054 | 16.0 | 2000 | 2.7389 | 0.4249 | 0.6955 | 0.7116 | 0.3890 | | 0.0051 | 17.0 | 2125 | 2.7767 | 0.4197 | 0.6967 | 0.7146 | 0.3863 | | 0.004 | 18.0 | 2250 | 2.7947 | 0.4211 | 0.6977 | 0.7154 | 0.3876 | | 0.0041 | 19.0 | 2375 | 2.8030 | 0.4204 | 0.6953 | 0.7131 | 0.3855 | | 0.0042 | 20.0 | 2500 | 2.8008 | 0.4227 | 0.6976 | 0.7154 | 0.3876 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
send-it/dqn-SpaceInvadersNoFrameskip-v4
send-it
2022-06-11T13:31:04Z
7
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:30:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 558.50 +/- 102.18 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga send-it -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga send-it ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
titi7242229/roberta-base-bne-finetuned_personality_multi_3
titi7242229
2022-06-11T13:13:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-11T07:10:27Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: roberta-base-bne-finetuned_personality_multi_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned_personality_multi_3 This model is a fine-tuned version of [BSC-TeMU/roberta-base-bne](https://huggingface.co/BSC-TeMU/roberta-base-bne) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1145 - Accuracy: 0.4847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2498 | 1.0 | 63 | 2.2799 | 0.2236 | | 2.3044 | 2.0 | 126 | 2.1644 | 0.2980 | | 1.9017 | 3.0 | 189 | 1.9934 | 0.4127 | | 2.2281 | 4.0 | 252 | 1.8517 | 0.4501 | | 1.2955 | 5.0 | 315 | 1.7588 | 0.4870 | | 1.221 | 6.0 | 378 | 1.7269 | 0.4888 | | 1.1381 | 7.0 | 441 | 1.7617 | 0.4888 | | 0.8415 | 8.0 | 504 | 1.8101 | 0.4853 | | 0.6696 | 9.0 | 567 | 1.8325 | 0.4928 | | 0.6646 | 10.0 | 630 | 1.8707 | 0.4841 | | 0.3758 | 11.0 | 693 | 1.8766 | 0.4876 | | 0.3477 | 12.0 | 756 | 1.9171 | 0.4905 | | 0.2854 | 13.0 | 819 | 1.9203 | 0.4980 | | 0.2713 | 14.0 | 882 | 2.0089 | 0.4813 | | 0.3434 | 15.0 | 945 | 2.0130 | 0.4905 | | 0.0758 | 16.0 | 1008 | 2.0230 | 0.4922 | | 0.2518 | 17.0 | 1071 | 2.0793 | 0.4824 | | 0.0783 | 18.0 | 1134 | 2.0920 | 0.4830 | | 0.0933 | 19.0 | 1197 | 2.1067 | 0.4836 | | 0.184 | 20.0 | 1260 | 2.1145 | 0.4847 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
antonioricciardi/FrozenLake-v1
antonioricciardi
2022-06-11T13:06:56Z
2
0
stable-baselines3
[ "stable-baselines3", "FrozenLake-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T13:06:48Z
--- library_name: stable-baselines3 tags: - FrozenLake-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1 type: FrozenLake-v1 --- # **PPO** Agent playing **FrozenLake-v1** This is a trained model of a **PPO** agent playing **FrozenLake-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DavidCollier/SpaceInvader
DavidCollier
2022-06-11T12:40:06Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-06-11T12:39:28Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 15.50 +/- 12.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga DavidCollier -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga DavidCollier ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
huggingtweets/adrianramy
huggingtweets
2022-06-11T12:12:59Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-06-11T12:12:20Z
--- language: en thumbnail: http://www.huggingtweets.com/adrianramy/1654949574810/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1192394634305134593/kWwF0YSv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adri</div> <div style="text-align: center; font-size: 14px;">@adrianramy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Adri. | Data | Adri | | --- | --- | | Tweets downloaded | 3050 | | Retweets | 1585 | | Short tweets | 275 | | Tweets kept | 1190 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30dqbz5d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @adrianramy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16tp54yl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/adrianramy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)