modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-29 12:28:39
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-29 12:28:30
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
SreyanG-NVIDIA/gpt2-wikitext2
|
SreyanG-NVIDIA
| 2022-05-16T11:44:23Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-16T11:23:42Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.1085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 6.5573 | 1.0 | 2249 | 6.4633 |
| 6.1893 | 2.0 | 4498 | 6.1993 |
| 6.0153 | 3.0 | 6747 | 6.1085 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
ml6team/mbart-large-cc25-cnn-dailymail-nl
|
ml6team
| 2022-05-16T11:41:37Z | 16 | 6 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"bart",
"summarization",
"nl",
"dataset:ml6team/cnn_dailymail_nl",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-03-02T23:29:05Z |
---
language:
- nl
tags:
- mbart
- bart
- summarization
datasets:
- ml6team/cnn_dailymail_nl
pipeline_tag: summarization
widget:
- text: 'Het jongetje werd eind april met zwaar letsel naar het ziekenhuis gebracht in Maastricht. Drie weken later overleed het kindje als gevolg van het letsel. Onderzoek moet nog uitwijzen wat voor verwondingen de baby precies had en hoe hij gewond is geraakt. Daarnaast doet de politie onderzoek in de woning van de ouders. Het is nog niet duidelijk wanneer de onderzoeken zijn afgerond, meldt 1Limburg. De verdachten zitten in beperkingen en mogen alleen contact hebben met hun advocaat.'
- text: 'Volgens De Vries gaat het om "de hoogste beloning die ooit is uitgeloofd in Nederland". De stichting heeft een website waar donateurs geld kunnen storten, schrijft NH Nieuws. Volgens De Vries is dit initiatief ook bedoeld voor andere zaken waar beloningen voor een gouden tip worden uitgereikt. "Het is dus niet eenmalig", aldus De Vries. Het is de eerste keer dat zoiets wordt opgezet, stelt hij: De 18-jarige Tanja Groen verdween spoorloos tijdens de ontgroeningsweek van de Universiteit Maastricht in augustus 1993. Ze werd voor het laatst gezien nadat ze was vertrokken van een feestje. De studente zou vandaag 46 jaar zijn geworden. Ook de ouders van Groen waren op de persconferentie aanwezig. "Het is vandaag de verjaardag van Tanja Groen, die haar ouders al 27 jaar niet meer hebben kunnen vieren, omdat zij eind augustus 1993 spoorloos is verdwenen", zei De Vries. "Haar ouders zitten in tergende onzekerheid. Ze geloven dat ze niet meer leeft. Maar die ene promille vreet aan ze. Ze hebben recht op duidelijkheid. Ze komen op leeftijd. Grootste angst is nooit te weten wat er met hun kind is gebeurd." De Vries wil dat het miljoen binnen een jaar is ingezameld. Als het bedrag na een jaar lager uitkomt, dan is dat de uit te loven beloning. Is het meer, dan zal de rest van het geld gebruikt worden in beloningen in andere zaken. Het initiatief wordt gesteund door de politie en justitie. De afgelopen jaren is er vaker uitgebreid naar sporen van Tanja Groen gezocht, maar die zoekacties hebben niets concreets opgeleverd. Vorige week werd opnieuw naar de vrouw gezocht, op de Strabrechtse Heide in Noord-Brabant. Ook die zoektocht leverde niets op.'
---
# mbart-large-cc25-cnn-dailymail-nl
## Model description
Finetuned version of [mbart](https://huggingface.co/facebook/mbart-large-cc25). We also wrote a **blog post** about this model [here](https://blog.ml6.eu/why-we-open-sourced-two-dutch-summarization-datasets-1047445abc97)
## Intended uses & limitations
It's meant for summarizing Dutch news articles.
#### How to use
```python
import transformers
undisputed_best_model = transformers.MBartForConditionalGeneration.from_pretrained(
"ml6team/mbart-large-cc25-cnn-dailymail-nl"
)
tokenizer = transformers.MBartTokenizer.from_pretrained("facebook/mbart-large-cc25")
summarization_pipeline = transformers.pipeline(
task="summarization",
model=undisputed_best_model,
tokenizer=tokenizer,
)
summarization_pipeline.model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
"nl_XX"
]
article = "Kan je dit even samenvatten alsjeblief." # Dutch
summarization_pipeline(
article,
do_sample=True,
top_p=0.75,
top_k=50,
# num_beams=4,
min_length=50,
early_stopping=True,
truncation=True,
)[0]["summary_text"]
```
## Training data
Finetuned [mbart](https://huggingface.co/facebook/mbart-large-cc25) with [this dataset](https://huggingface.co/datasets/ml6team/cnn_dailymail_nl)
|
anes-saidi/aragpt2-base-finetuned-wikitext2
|
anes-saidi
| 2022-05-16T11:14:18Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-16T10:51:28Z |
---
tags:
- generated_from_trainer
model-index:
- name: aragpt2-base-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# aragpt2-base-finetuned-wikitext2
This model is a fine-tuned version of [aubmindlab/aragpt2-base](https://huggingface.co/aubmindlab/aragpt2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 5.0307
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 387 | 5.1841 |
| 5.9664 | 2.0 | 774 | 5.0627 |
| 5.4166 | 3.0 | 1161 | 5.0307 |
### Framework versions
- Transformers 4.11.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.10.3
|
SreyanG-NVIDIA/distilgpt2-finetuned-wikitext2
|
SreyanG-NVIDIA
| 2022-05-16T11:06:40Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-16T10:15:16Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7592 | 1.0 | 2334 | 3.6646 |
| 3.6519 | 2.0 | 4668 | 3.6454 |
| 3.601 | 3.0 | 7002 | 3.6408 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
jsunster/layoutlmv2-finetuned-cord
|
jsunster
| 2022-05-16T09:35:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv2",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-16T08:58:07Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
model-index:
- name: layoutlmv2-finetuned-cord
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv2-finetuned-cord
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.19.1
- Pytorch 1.10.0+cu111
- Datasets 2.2.1
- Tokenizers 0.12.1
|
SreyanG-NVIDIA/bert-base-cased-finetuned-squad
|
SreyanG-NVIDIA
| 2022-05-16T08:39:41Z | 35 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T13:39:02Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-base-cased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0337 | 1.0 | 5546 | 1.0150 |
| 0.7546 | 2.0 | 11092 | 1.0015 |
| 0.5537 | 3.0 | 16638 | 1.0848 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
|
madatnlp/sk-kogptv2-kormath-causal
|
madatnlp
| 2022-05-16T07:56:43Z | 8 | 0 |
transformers
|
[
"transformers",
"tf",
"gpt2",
"text-generation",
"generated_from_keras_callback",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-13T11:28:16Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_keras_callback
model-index:
- name: madatnlp/sk-kogptv2-kormath-causal
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# madatnlp/sk-kogptv2-kormath-causal
This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.3184
- Validation Loss: 1.4046
- Epoch: 15
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2.2999999e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.7142 | 1.8683 | 0 |
| 1.6077 | 1.4417 | 1 |
| 1.2458 | 1.3161 | 2 |
| 1.0396 | 1.2704 | 3 |
| 0.8848 | 1.2818 | 4 |
| 0.7634 | 1.2579 | 5 |
| 0.6699 | 1.2724 | 6 |
| 0.5948 | 1.2718 | 7 |
| 0.5306 | 1.3300 | 8 |
| 0.4832 | 1.3377 | 9 |
| 0.4401 | 1.3038 | 10 |
| 0.4053 | 1.3622 | 11 |
| 0.3782 | 1.3577 | 12 |
| 0.3550 | 1.3696 | 13 |
| 0.3347 | 1.3682 | 14 |
| 0.3184 | 1.4046 | 15 |
### Framework versions
- Transformers 4.19.1
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
ceggian/sbert_pt_reddit_softmax_256
|
ceggian
| 2022-05-16T06:52:11Z | 2 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-05-16T06:48:33Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 117759 with parameters:
```
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 11775,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
kompactss/JeBERT_ko_je
|
kompactss
| 2022-05-16T06:11:24Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"license:afl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-01T15:16:08Z |
---
license: afl-3.0
---
# 🍊 제주 방언 번역 모델 🍊
- 표준어 -> 제주어
- Made by. 구름 자연어처리 과정 3기 3조!!
- github link : https://github.com/Goormnlpteam3/JeBERT
## 1. Seq2Seq Transformer Model
- encoder : BertConfig
- decoder : BertConfig
- Tokenizer : WordPiece Tokenizer
## 2. Dataset
- Jit Dataset
- AI HUB(+아래아 문자)
## 3. Hyper Parameters
- Epoch : 10 epochs(best at 7 epoch)
- Random Seed : 42
- Learning Rate : 5e-5
- Warm up Ratio : 0.1
- Batch Size : 32
## 4. BLEU Score
- Jit + AI HUB(+아래아 문자) Dataset : 67.3
---
### CREDIT
- 주형준 : wngudwns2798@gmail.com
- 강가람 : 1st9aram@gmail.com
- 고광연 : rhfprl11@gmail.com
- 김수연 : s01090445778@gmail.com
- 이원경 : hjtwin2@gmail.com
- 조성은 : eun102476@gmail.com
|
kompactss/JeBERT_ko_je_v2
|
kompactss
| 2022-05-16T06:10:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"encoder-decoder",
"text2text-generation",
"license:afl-3.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-02T17:30:31Z |
---
license: afl-3.0
---
# 🍊 제주 방언 번역 모델 🍊
- 표준어 -> 제주어
- Made by. 구름 자연어처리 과정 3기 3조!!
- github link : https://github.com/Goormnlpteam3/JeBERT
## 1. Seq2Seq Transformer Model
- encoder : BertConfig
- decoder : BertConfig
- Tokenizer : WordPiece Tokenizer
## 2. Dataset
- Jit Dataset
- AI HUB(+아래아 문자)_v2
## 3. Hyper Parameters
- Epoch : 10 epochs(best at 7 epoch)
- Random Seed : 42
- Learning Rate : 5e-5
- Warm up Ratio : 0.1
- Batch Size : 32
## 4. BLEU Score
- Jit + AI HUB(+아래아 문자) Dataset : 67.6
---
### CREDIT
- 주형준 : wngudwns2798@gmail.com
- 강가람 : 1st9aram@gmail.com
- 고광연 : rhfprl11@gmail.com
- 김수연 : s01090445778@gmail.com
- 이원경 : hjtwin2@gmail.com
- 조성은 : eun102476@gmail.com
|
minsik-oh/TEST2ppo-LunarLander-v2
|
minsik-oh
| 2022-05-16T06:09:03Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-16T06:08:36Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 259.04 +/- 16.81
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
fancyerii/bert-finetuned-ner
|
fancyerii
| 2022-05-16T05:35:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-16T05:00:21Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9387755102040817
- name: Recall
type: recall
value: 0.9522046449007069
- name: F1
type: f1
value: 0.9454423928481912
- name: Accuracy
type: accuracy
value: 0.9869606169423677
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0592
- Precision: 0.9388
- Recall: 0.9522
- F1: 0.9454
- Accuracy: 0.9870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0857 | 1.0 | 1756 | 0.0635 | 0.9121 | 0.9359 | 0.9238 | 0.9830 |
| 0.0318 | 2.0 | 3512 | 0.0586 | 0.9245 | 0.9465 | 0.9354 | 0.9857 |
| 0.0222 | 3.0 | 5268 | 0.0592 | 0.9388 | 0.9522 | 0.9454 | 0.9870 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu113
- Datasets 1.18.3
- Tokenizers 0.11.6
|
IMSyPP/hate_speech_targets_nl
|
IMSyPP
| 2022-05-16T04:49:35Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"nl",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-16T04:23:10Z |
---
language:
- nl
license: mit
---
# Hate Speech Target Classifier for Social Media Content in Dutch
A monolingual model for hate speech target classification of social media content in Dutch. The model was trained on 20000 social media posts (youtube, twitter, facebook) and tested on an independent test set of 2000 posts. It is based on the pre-trained language model [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased).
## Tokenizer
During training the text was preprocessed using the Distilbert tokenizer. We suggest the same tokenizer is used for inference.
## Model output
The model classifies each input into one of four distinct classes:
* 0 - HOMOPHOBIA
* 1 - OTHER
* 2 - RELIGION
* 3 - ANTISEMITISM
* 4 - IDEOLOGY
* 5 - MIGRANTS
* 6 - POLITICS
* 7 - RACISM
* 8 - MEDIA
* 9 - ISLAMOPHOBIA
* 10 - INDIVIDUAL
* 11 - SEXISM
|
Tititun/consumer_super
|
Tititun
| 2022-05-16T04:46:12Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-15T15:31:47Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: consumer_super
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# consumer_super
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu102
- Datasets 2.2.1
- Tokenizers 0.12.1
|
nttoanh/t5vi-finetuned-en-to-vi
|
nttoanh
| 2022-05-15T22:20:38Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"dataset:mt_eng_vietnamese",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-15T17:03:36Z |
---
tags:
- generated_from_trainer
datasets:
- mt_eng_vietnamese
metrics:
- bleu
model-index:
- name: t5vi-finetuned-en-to-vi
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: mt_eng_vietnamese
type: mt_eng_vietnamese
args: iwslt2015-en-vi
metrics:
- name: Bleu
type: bleu
value: 13.547
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5vi-finetuned-en-to-vi
This model is a fine-tuned version of [imthanhlv/t5vi](https://huggingface.co/imthanhlv/t5vi) on the mt_eng_vietnamese dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3827
- Bleu: 13.547
- Gen Len: 17.3719
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 1.8026 | 1.0 | 6666 | 1.5907 | 10.9756 | 17.3231 |
| 1.6217 | 2.0 | 13332 | 1.4635 | 12.375 | 17.3444 |
| 1.5087 | 3.0 | 19998 | 1.4131 | 13.1828 | 17.3924 |
| 1.4446 | 4.0 | 26664 | 1.3915 | 13.5217 | 17.3617 |
| 1.4076 | 5.0 | 33330 | 1.3827 | 13.547 | 17.3719 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
nadirbekovnadir/LunarLander-64_128_tanh
|
nadirbekovnadir
| 2022-05-15T22:16:03Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T22:15:21Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 279.69 +/- 14.54
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
vukpetar/ppo-CarRacing-v0-v2
|
vukpetar
| 2022-05-15T21:43:18Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T21:41:44Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 849.04 +/- 31.91
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **PPO** Agent playing **CarRacing-v0**
This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
mateotyz/tf-xml-r-base-ape-swm
|
mateotyz
| 2022-05-15T21:19:18Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"tensorboard",
"xlm-roberta",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-15T18:47:41Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: mateotyz/tf-xml-r-base-ape-swm
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# mateotyz/tf-xml-r-base-ape-swm
This model is a fine-tuned version of [jplu/tf-xlm-roberta-base](https://huggingface.co/jplu/tf-xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.1811
- Validation Loss: 1.0441
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -125, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.3563 | 1.0668 | 0 |
| 1.1682 | 1.0687 | 1 |
| 1.1811 | 1.0441 | 2 |
### Framework versions
- Transformers 4.19.1
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
maglagla/TEST2ppo-LunarLander-v2
|
maglagla
| 2022-05-15T19:23:03Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T19:01:19Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 269.84 +/- 18.09
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
KhariotnovKK/luna_lender_v1
|
KhariotnovKK
| 2022-05-15T18:37:37Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-06T08:33:31Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 260.20 +/- 20.71
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
send-it/TEST5ppo-LunarLander-v2
|
send-it
| 2022-05-15T18:30:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T18:30:25Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 270.57 +/- 10.85
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
prashanth/mbart-large-cc25-ge-en-to-hi
|
prashanth
| 2022-05-15T17:11:05Z | 19 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:hindi_english_machine_translation",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T23:04:55Z |
---
tags:
- generated_from_trainer
datasets:
- hindi_english_machine_translation
metrics:
- bleu
model-index:
- name: mbart-large-cc25-ge-en-to-hi
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: hindi_english_machine_translation
type: hindi_english_machine_translation
args: hi-en
metrics:
- name: Bleu
type: bleu
value: 4.5974
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-cc25-ge-en-to-hi
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3397
- Bleu: 4.5974
- Gen Len: 66.244
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:------:|:-------:|
| 1.4602 | 1.0 | 135739 | 1.3397 | 4.5974 | 66.244 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu102
- Datasets 1.18.0
- Tokenizers 0.12.1
|
SebastianS/bert-finetuned-squad
|
SebastianS
| 2022-05-15T16:19:22Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-15T14:39:46Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: bert-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
huggingtweets/dclblogger-loopifyyy
|
huggingtweets
| 2022-05-15T15:32:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-15T15:28:31Z |
---
language: en
thumbnail: http://www.huggingtweets.com/dclblogger-loopifyyy/1652628765621/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1472740175130230784/L7Xcs7wJ_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1480550067564163078/D90SnyUa_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Matty & Loopify 🧙♂️</div>
<div style="text-align: center; font-size: 14px;">@dclblogger-loopifyyy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Matty & Loopify 🧙♂️.
| Data | Matty | Loopify 🧙♂️ |
| --- | --- | --- |
| Tweets downloaded | 3250 | 3250 |
| Retweets | 62 | 117 |
| Short tweets | 494 | 867 |
| Tweets kept | 2694 | 2266 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pq5pxck/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dclblogger-loopifyyy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/as5uacn5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dclblogger-loopifyyy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
kktoto/kt_punc
|
kktoto
| 2022-05-15T15:16:29Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:chn_senti_corp",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-15T13:47:21Z |
---
tags:
- generated_from_trainer
datasets:
- chn_senti_corp
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: kt_punc
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: chn_senti_corp
type: chn_senti_corp
args: default
metrics:
- name: Precision
type: precision
value: 0.7078651685393258
- name: Recall
type: recall
value: 0.7313662547821116
- name: F1
type: f1
value: 0.7194238380517767
- name: Accuracy
type: accuracy
value: 0.957316742326961
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kt_punc
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the chn_senti_corp dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1703
- Precision: 0.7079
- Recall: 0.7314
- F1: 0.7194
- Accuracy: 0.9573
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1661 | 1.0 | 600 | 0.1351 | 0.6566 | 0.6833 | 0.6697 | 0.9498 |
| 0.1246 | 2.0 | 1200 | 0.1330 | 0.6854 | 0.6665 | 0.6758 | 0.9521 |
| 0.1121 | 3.0 | 1800 | 0.1303 | 0.6885 | 0.6994 | 0.6939 | 0.9537 |
| 0.1008 | 4.0 | 2400 | 0.1359 | 0.6836 | 0.7248 | 0.7036 | 0.9543 |
| 0.0809 | 5.0 | 3000 | 0.1404 | 0.7035 | 0.7082 | 0.7059 | 0.9559 |
| 0.0696 | 6.0 | 3600 | 0.1449 | 0.6986 | 0.7224 | 0.7103 | 0.9560 |
| 0.0628 | 7.0 | 4200 | 0.1563 | 0.7063 | 0.7214 | 0.7138 | 0.9567 |
| 0.0561 | 8.0 | 4800 | 0.1618 | 0.7024 | 0.7333 | 0.7175 | 0.9568 |
| 0.0525 | 9.0 | 5400 | 0.1669 | 0.7083 | 0.7335 | 0.7207 | 0.9574 |
| 0.0453 | 10.0 | 6000 | 0.1703 | 0.7079 | 0.7314 | 0.7194 | 0.9573 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
umbertospazio/1500000_PPO-LunarLander-v2
|
umbertospazio
| 2022-05-15T15:03:24Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T15:02:54Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 283.46 +/- 17.55
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Zohar/distilgpt2-finetuned-negative-restaurant-reviews-clean
|
Zohar
| 2022-05-15T14:12:08Z | 11 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-15T11:47:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-negative-restaurant-reviews-clean
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-negative-restaurant-reviews-clean
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.5187
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6841 | 1.0 | 3105 | 3.5793 |
| 3.6184 | 2.0 | 6210 | 3.5313 |
| 3.5943 | 3.0 | 9315 | 3.5187 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.2
- Tokenizers 0.11.0
|
KrusHan/PPO-LunarLander-v2
|
KrusHan
| 2022-05-15T13:18:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T13:18:09Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 260.52 +/- 27.65
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
robert1003/LunarLander-v2-ppo
|
robert1003
| 2022-05-15T13:15:46Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T05:03:44Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 280.07 +/- 14.87
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
WhatIsThisSignupForm/ppo-LunarLander-v2
|
WhatIsThisSignupForm
| 2022-05-15T12:50:36Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T12:46:36Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 174.04 +/- 57.75
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
ipvikas/rare-puppers
|
ipvikas
| 2022-05-15T12:47:13Z | 61 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-05-01T16:51:17Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: rare-puppers
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9552238583564758
---
# rare-puppers
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### corgi

#### samoyed

#### shiba inu

|
huggingtweets/medvedevrussia
|
huggingtweets
| 2022-05-15T12:26:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-15T12:26:21Z |
---
language: en
thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2348558617/x0vh6bui3sq97vt4jd2n_400x400.png')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Дмитрий Медведев</div>
<div style="text-align: center; font-size: 14px;">@medvedevrussia</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Дмитрий Медведев.
| Data | Дмитрий Медведев |
| --- | --- |
| Tweets downloaded | 1740 |
| Retweets | 300 |
| Short tweets | 48 |
| Tweets kept | 1392 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2s7c3vz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medvedevrussia's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e00s9pz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/medvedevrussia')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
NikiTricky/ffhq-autoencoder-16dim
|
NikiTricky
| 2022-05-15T12:01:27Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2022-05-15T11:29:08Z |
---
license: apache-2.0
---
# FFHQ Autoencoder
An autoencoder train on the **F**lickr-**F**aces-**HQ** Dataset with 16 latent dimensions for 1000 epochs. **Note:** The images trained on were 128x128.
It was meant for the [Latent Space Explorer](https://github.com/NikiTricky2/Latent-space-vizualizer)
|
FollishBoi/dqn-MountainCar-v0-try1
|
FollishBoi
| 2022-05-15T12:00:10Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"MountainCar-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T11:59:45Z |
---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: -102.50 +/- 5.73
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
---
# **DQN** Agent playing **MountainCar-v0**
This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
anas-awadalla/splinter-base-finetuned-squad
|
anas-awadalla
| 2022-05-15T11:49:58Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-15T10:55:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-base-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-base-finetuned-squad
This model is a fine-tuned version of [tau/splinter-base-qass](https://huggingface.co/tau/splinter-base-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
harikp20/hkp24
|
harikp20
| 2022-05-15T11:34:27Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-15T08:30:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: hkp24
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hkp24
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2249 | 1.0 | 5533 | 1.1675 |
| 0.961 | 2.0 | 11066 | 1.1376 |
| 0.7581 | 3.0 | 16599 | 1.1619 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-finetuned-squad
|
anas-awadalla
| 2022-05-15T10:51:43Z | 27 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-15T08:20:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-finetuned-squad
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
FumaNet/TEST1PPO-MountainCar-v0
|
FumaNet
| 2022-05-15T10:48:34Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"MountainCar-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T10:47:58Z |
---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: -200.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
---
# **PPO** Agent playing **MountainCar-v0**
This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
FumaNet/TEST1PPO-CartPole-v1
|
FumaNet
| 2022-05-15T10:24:11Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CartPole-v1",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T10:23:40Z |
---
library_name: stable-baselines3
tags:
- CartPole-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 397.00 +/- 103.22
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
---
# **PPO** Agent playing **CartPole-v1**
This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
esh/MountainCar-v0
|
esh
| 2022-05-15T09:23:41Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"MountainCar-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T09:10:58Z |
---
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: -169.90 +/- 36.95
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
---
# **PPO** Agent playing **MountainCar-v0**
This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
pujaburman30/autotrain-hi_ner_xlmr-869827677
|
pujaburman30
| 2022-05-15T09:00:47Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"xlm-roberta",
"token-classification",
"autotrain",
"unk",
"dataset:pujaburman30/autotrain-data-hi_ner_xlmr",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-15T08:56:46Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
datasets:
- pujaburman30/autotrain-data-hi_ner_xlmr
co2_eq_emissions: 4.365496441173981
---
# Model Trained Using AutoTrain
- Problem type: Entity Extraction
- Model ID: 869827677
- CO2 Emissions (in grams): 4.365496441173981
## Validation Metrics
- Loss: 0.894961416721344
- Accuracy: 0.7411180773249739
- Precision: 0.590625
- Recall: 0.5080645161290323
- F1: 0.546242774566474
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/pujaburman30/autotrain-hi_ner_xlmr-869827677
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr-869827677", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("pujaburman30/autotrain-hi_ner_xlmr-869827677", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```
|
anas-awadalla/roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-15T07:49:59Z | 0 | 0 | null |
[
"generated_from_trainer",
"dataset:squad",
"license:mit",
"region:us"
] | null | 2022-05-15T05:12:28Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-15T07:40:11Z | 0 | 0 | null |
[
"generated_from_trainer",
"dataset:squad",
"license:mit",
"region:us"
] | null | 2022-05-15T05:02:33Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
meln1k/ppo-CarRacing-v0-v1
|
meln1k
| 2022-05-15T07:33:43Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T07:32:54Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 800.67 +/- 46.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **PPO** Agent playing **CarRacing-v0**
This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
meln1k/ppo-CarRacing-v0
|
meln1k
| 2022-05-15T07:31:25Z | 11 | 2 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-15T07:19:11Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 840.32 +/- 21.17
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **PPO** Agent playing **CarRacing-v0**
This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
anas-awadalla/roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-15T07:30:26Z | 0 | 0 | null |
[
"generated_from_trainer",
"dataset:squad",
"license:mit",
"region:us"
] | null | 2022-05-15T04:52:31Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-512-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-15T07:20:51Z | 0 | 0 | null |
[
"generated_from_trainer",
"dataset:squad",
"license:mit",
"region:us"
] | null | 2022-05-15T04:47:24Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-15T07:06:17Z | 0 | 0 | null |
[
"generated_from_trainer",
"dataset:squad",
"license:mit",
"region:us"
] | null | 2022-05-15T04:38:07Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-houlsby-few-shot-k-256-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
questgen/all-mpnet-base-v2-feature-extraction-pipeline
|
questgen
| 2022-05-15T06:29:59Z | 8 | 2 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"en",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2022-05-15T06:25:37Z |
---
pipeline_tag: feature-extraction
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
---
# all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
# Normalize embeddings
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2)
------
## Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
We developped this model during the
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
organized by Hugging Face. We developped this model as part of the project:
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
## Intended uses
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
By default, input text longer than 384 word pieces is truncated.
## Training procedure
### Pre-training
We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
### Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
We then apply the cross entropy loss by comparing with true pairs.
#### Hyper parameters
We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
#### Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
| Dataset | Paper | Number of training tuples |
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
| **Total** | | **1,170,060,424** |
|
ahmeddbahaa/mbart-large-50-finetuned-persian
|
ahmeddbahaa
| 2022-05-15T04:01:56Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"summarization",
"persian",
"MBart50",
"Abstractive Summarization",
"generated_from_trainer",
"dataset:xlsum",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-05-14T13:40:15Z |
---
tags:
- summarization
- persian
- MBart50
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: mbart-large-50-finetuned-persian
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-50-finetuned-persian
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 4.1932
- Rouge-1: 26.11
- Rouge-2: 8.11
- Rouge-l: 21.09
- Gen Len: 37.29
- Bertscore: 71.08
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 5.5612 | 1.0 | 1476 | 4.5015 | 17.07 | 3.14 | 13.54 | 47.49 | 66.83 |
| 4.3049 | 2.0 | 2952 | 4.1055 | 22.63 | 5.89 | 18.03 | 40.43 | 69.23 |
| 3.8154 | 3.0 | 4428 | 3.9822 | 24.57 | 7.15 | 19.74 | 37.35 | 70.36 |
| 3.3401 | 4.0 | 5904 | 4.0088 | 25.84 | 7.96 | 20.95 | 37.56 | 70.83 |
| 2.8879 | 5.0 | 7380 | 4.1932 | 26.24 | 8.26 | 21.23 | 37.78 | 71.05 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
bkh6722/bach-arb
|
bkh6722
| 2022-05-15T02:34:26Z | 30 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-07T21:50:59Z |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bach-arb
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-german](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9404
- Wer: 0.6130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 115
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 27.8653 | 7.14 | 100 | 3.1369 | 1.0 |
| 2.5975 | 14.28 | 200 | 2.1223 | 0.9976 |
| 1.2001 | 21.41 | 300 | 1.7455 | 0.8774 |
| 0.5938 | 28.55 | 400 | 1.8534 | 0.7981 |
| 0.4001 | 35.69 | 500 | 2.3318 | 0.7740 |
| 0.2895 | 42.83 | 600 | 2.2214 | 0.7163 |
| 0.1853 | 49.97 | 700 | 2.4841 | 0.7043 |
| 0.1318 | 57.14 | 800 | 2.9749 | 0.7139 |
| 0.1067 | 64.28 | 900 | 2.4759 | 0.7115 |
| 0.0635 | 71.41 | 1000 | 2.6708 | 0.6635 |
| 0.0515 | 78.55 | 1100 | 3.0593 | 0.6923 |
| 0.0455 | 85.69 | 1200 | 2.9637 | 0.6587 |
| 0.0329 | 92.83 | 1300 | 2.9837 | 0.6346 |
| 0.0232 | 99.97 | 1400 | 2.9361 | 0.6178 |
| 0.021 | 107.14 | 1500 | 2.9221 | 0.6010 |
| 0.0193 | 114.28 | 1600 | 2.9404 | 0.6130 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-15T00:58:56Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-15T00:45:41Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-512-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-512-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T23:53:22Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T23:32:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-1024-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-1024-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T23:31:40Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T23:11:05Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-1024-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-1024-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T23:31:40Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T23:11:15Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-1024-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-1024-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Metformin/T5model_medFineTune
|
Metformin
| 2022-05-14T23:15:48Z | 5 | 0 |
transformers
|
[
"transformers",
"tf",
"mt5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T10:11:14Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Metformin/T5model_medFineTune
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Metformin/T5model_medFineTune
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 9.0442
- Validation Loss: 6.1005
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 1e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 7820, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 100, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 42.6321 | 28.0647 | 0 |
| 31.2672 | 21.0068 | 1 |
| 24.8310 | 16.6186 | 2 |
| 20.5368 | 13.8025 | 3 |
| 17.3796 | 11.7180 | 4 |
| 15.0329 | 10.0404 | 5 |
| 13.0886 | 8.6286 | 6 |
| 11.5235 | 7.5594 | 7 |
| 10.1123 | 6.8079 | 8 |
| 9.0442 | 6.1005 | 9 |
### Framework versions
- Transformers 4.18.0
- TensorFlow 2.6.3
- Datasets 2.0.0
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T23:09:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:49:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-1024-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-1024-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
prashanth/mbart-large-cc25-ind_finetun-en-to-hi
|
prashanth
| 2022-05-14T22:51:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:hindi_english_machine_translation",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T22:06:44Z |
---
tags:
- generated_from_trainer
datasets:
- hindi_english_machine_translation
metrics:
- bleu
model-index:
- name: mbart-large-cc25-ind_finetun-en-to-hi
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: hindi_english_machine_translation
type: hindi_english_machine_translation
args: hi-en
metrics:
- name: Bleu
type: bleu
value: 7.8242
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-cc25-ind_finetun-en-to-hi
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8148
- Bleu: 7.8242
- Gen Len: 75.28
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 3.3247 | 1.0 | 620 | 1.8148 | 7.8242 | 75.28 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu102
- Datasets 1.18.0
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T22:32:48Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:19:32Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-512-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-512-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T22:17:30Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:04:23Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-512-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-512-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T22:02:44Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:52:47Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-256-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-256-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T21:51:44Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:41:56Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-256-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-256-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-256-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T21:40:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:30:12Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-256-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-256-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T21:40:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:30:14Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-256-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-256-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-128-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T21:28:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:16:06Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-128-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-128-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T21:28:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:10:06Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-128-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-128-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-128-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T21:14:58Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:02:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-128-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-128-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-128-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T21:00:55Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:51:17Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-128-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-128-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:58:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:48:33Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-128-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-128-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Leizhang/distilbert-base-uncased-finetuned-emotion
|
Leizhang
| 2022-05-14T20:55:21Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"dataset:emotion",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-14T16:53:40Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0
- Datasets 1.16.1
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-few-shot-k-64-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:49:53Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:40:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-64-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-64-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:46:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:35:59Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T20:35:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:25:43Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-64-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:28:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:19:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-64-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-64-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:24:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:15:19Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:18:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:08:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-32-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-32-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T19:56:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:47:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-32-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-32-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T19:42:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:33:24Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-16-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-16-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Xiaoman/NER-CoNLL2003-V4
|
Xiaoman
| 2022-05-14T19:37:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-14T18:52:51Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: NER-CoNLL2003-V4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NER-CoNLL2003-V4
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.961395091713594e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 27
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 14 | 0.3630 |
| No log | 2.0 | 28 | 0.2711 |
| No log | 3.0 | 42 | 0.2407 |
| No log | 4.0 | 56 | 0.2057 |
| No log | 5.0 | 70 | 0.2095 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T19:22:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:13:38Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-16-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-16-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
kangaroo927/en_pipeline
|
kangaroo927
| 2022-05-14T18:04:29Z | 0 | 0 |
spacy
|
[
"spacy",
"text-classification",
"en",
"region:us"
] |
text-classification
| 2022-05-14T04:29:58Z |
---
tags:
- spacy
- text-classification
language:
- en
model-index:
- name: en_pipeline
results: []
---
| Feature | Description |
| --- | --- |
| **Name** | `en_pipeline` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.1.4,<3.2.0` |
| **Default Pipeline** | `transformer`, `textcat` |
| **Components** | `transformer`, `textcat` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (22 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`textcat`** | `Acute Bleed/Mesenteric Ischemia`, `Adrenal Mass Abdomen/Pelvis`, `Aortic Aneurysm Post EVT`, `Aortic Aneurysm Pre EVT`, `Aortic Dissection`, `Cystogram`, `Dual Phase Abdomen/Pelvis`, `Enterography IBD`, `NON Contrast Abdomen/Pelvis`, `Oral & IV Abdomen Pelvis`, `Oral Contrast Abdomen/Pelvis`, `Pancreas Mass Abdomen/Pelvis`, `Pelvis Only`, `Rectal Contrast Abdomen/Pelvis`, `Renal Donor`, `Renal Mass Abdomen/Pelvis`, `Renal Stone Abdomen/Pelvis`, `Routine Abdomen/Pelvis`, `Trauma Abdomen/Pelvis`, `Urogram Post Treatment/Follow Up`, `Urogram Pre Treatment Initial`, `Venogram` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `CATS_SCORE` | 76.67 |
| `CATS_MICRO_P` | 85.89 |
| `CATS_MICRO_R` | 85.19 |
| `CATS_MICRO_F` | 85.54 |
| `CATS_MACRO_P` | 74.35 |
| `CATS_MACRO_R` | 80.69 |
| `CATS_MACRO_F` | 76.67 |
| `CATS_MACRO_AUC` | 97.57 |
| `CATS_MACRO_AUC_PER_TYPE` | 0.00 |
| `TRANSFORMER_LOSS` | 19.80 |
| `TEXTCAT_LOSS` | 504.30 |
|
huggingtweets/spacex
|
huggingtweets
| 2022-05-14T18:02:18Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-14T17:51:44Z |
---
language: en
thumbnail: http://www.huggingtweets.com/spacex/1652551333667/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1082744382585856001/rH_k3PtQ_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">SpaceX</div>
<div style="text-align: center; font-size: 14px;">@spacex</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from SpaceX.
| Data | SpaceX |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 539 |
| Short tweets | 157 |
| Tweets kept | 2554 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/562aigw4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @spacex's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b58vg41) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b58vg41/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/spacex')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
memorysaver/ppo-LunarLander-v2-2
|
memorysaver
| 2022-05-14T17:43:28Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T17:43:05Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 272.57 +/- 8.99
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
memorysaver/TEST2ppo-LunarLander-v2
|
memorysaver
| 2022-05-14T17:02:04Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T17:01:33Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 192.42 +/- 91.58
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
syp1229/bert-base-finetuned-koidiom
|
syp1229
| 2022-05-14T16:44:17Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-14T16:42:21Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: syp1229/bert-base-finetuned-koidiom
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# syp1229/bert-base-finetuned-koidiom
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.1288
- Validation Loss: 1.8307
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.1288 | 1.8307 | 0 |
### Framework versions
- Transformers 4.19.1
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
meln1k/ppo-CartPole-v1
|
meln1k
| 2022-05-14T16:37:49Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CartPole-v1",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T16:37:31Z |
---
library_name: stable-baselines3
tags:
- CartPole-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
---
# **PPO** Agent playing **CartPole-v1**
This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
akreal/mbart-large-50-finetuned-slurp
|
akreal
| 2022-05-14T16:36:01Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"mbart-50",
"en",
"dataset:SLURP",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T15:56:23Z |
---
language:
- en
tags:
- mbart-50
license: apache-2.0
datasets:
- SLURP
metrics:
- accuracy
- slu-f1
---
This model is `mbart-large-50-many-to-many-mmt` model fine-tuned on the text part of [SLURP](https://github.com/pswietojanski/slurp) spoken language understanding dataset.
The scores on the test set are 85.68% and 79.00% for Intent accuracy and SLU-F1 respectively.
|
syp1229/koelectra-base-v3-generator-finetuned-koidiom
|
syp1229
| 2022-05-14T16:14:31Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"electra",
"fill-mask",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-14T16:10:36Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: syp1229/koelectra-base-v3-generator-finetuned-koidiom
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# syp1229/koelectra-base-v3-generator-finetuned-koidiom
This model is a fine-tuned version of [monologg/koelectra-base-v3-generator](https://huggingface.co/monologg/koelectra-base-v3-generator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.4310
- Validation Loss: 2.0533
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.4310 | 2.0533 | 0 |
### Framework versions
- Transformers 4.19.1
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
nadirbekovnadir/LunarLander-281_23
|
nadirbekovnadir
| 2022-05-14T15:38:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T15:38:03Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 278.11 +/- 23.37
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
syp1229/roberta-base-finetuned-koidiom
|
syp1229
| 2022-05-14T15:31:26Z | 3 | 0 |
transformers
|
[
"transformers",
"tf",
"roberta",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-14T15:29:33Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: syp1229/roberta-base-finetuned-koidiom
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# syp1229/roberta-base-finetuned-koidiom
This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.5140
- Validation Loss: 2.0026
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 2.5140 | 2.0026 | 0 |
### Framework versions
- Transformers 4.19.1
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
nadirbekovnadir/LunarLander-283_19
|
nadirbekovnadir
| 2022-05-14T13:25:49Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T13:25:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 283.38 +/- 17.68
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
huggingtweets/vrsoloviev
|
huggingtweets
| 2022-05-14T13:25:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-14T13:21:58Z |
---
language: en
thumbnail: http://www.huggingtweets.com/vrsoloviev/1652534655103/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1170975520458203136/4eDVAZZa_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Vladimir Soloviev</div>
<div style="text-align: center; font-size: 14px;">@vrsoloviev</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Vladimir Soloviev.
| Data | Vladimir Soloviev |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 9 |
| Short tweets | 29 |
| Tweets kept | 3212 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/elfi2jwn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vrsoloviev's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vrsoloviev')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
FumaNet/TEST2PPO-LunarLander-v2
|
FumaNet
| 2022-05-14T12:30:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T12:30:16Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 261.60 +/- 27.38
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Sigma/financial-sentiment-analysis
|
Sigma
| 2022-05-14T11:48:56Z | 79 | 17 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:financial_phrasebank",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-14T08:41:10Z |
---
tags:
- generated_from_trainer
datasets:
- financial_phrasebank
metrics:
- accuracy
- f1
model-index:
- name: financial-sentiment-analysis
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: financial_phrasebank
type: financial_phrasebank
args: sentences_allagree
metrics:
- name: Accuracy
type: accuracy
value: 0.9924242424242424
- name: F1
type: f1
value: 0.9924242424242424
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# financial-sentiment-analysis
This model is a fine-tuned version of [ahmedrachid/FinancialBERT](https://huggingface.co/ahmedrachid/FinancialBERT) on the financial_phrasebank dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0395
- Accuracy: 0.9924
- F1: 0.9924
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
nadirbekovnadir/LunarLander-278_18
|
nadirbekovnadir
| 2022-05-14T11:40:41Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T11:40:01Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 278.68 +/- 16.88
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
nadirbekovnadir/LunarLander-278_18_2
|
nadirbekovnadir
| 2022-05-14T11:39:44Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T11:39:04Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 274.15 +/- 17.03
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v5
|
danieleV9H
| 2022-05-14T10:32:52Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-12T20:23:29Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: hubert-base-timit-demo-google-colab-ft30ep_v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-timit-demo-google-colab-ft30ep_v5
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the timit-asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4763
- Wer: 0.3322
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.9596 | 0.87 | 500 | 3.1237 | 1.0 |
| 2.5388 | 1.73 | 1000 | 1.1689 | 0.9184 |
| 1.0448 | 2.6 | 1500 | 0.6106 | 0.5878 |
| 0.6793 | 3.46 | 2000 | 0.4912 | 0.5200 |
| 0.5234 | 4.33 | 2500 | 0.4529 | 0.4798 |
| 0.4368 | 5.19 | 3000 | 0.4239 | 0.4543 |
| 0.3839 | 6.06 | 3500 | 0.4326 | 0.4339 |
| 0.3315 | 6.92 | 4000 | 0.4265 | 0.4173 |
| 0.2878 | 7.79 | 4500 | 0.4304 | 0.4068 |
| 0.25 | 8.65 | 5000 | 0.4130 | 0.3940 |
| 0.242 | 9.52 | 5500 | 0.4310 | 0.3938 |
| 0.2182 | 10.38 | 6000 | 0.4204 | 0.3843 |
| 0.2063 | 11.25 | 6500 | 0.4449 | 0.3816 |
| 0.2099 | 12.11 | 7000 | 0.4016 | 0.3681 |
| 0.1795 | 12.98 | 7500 | 0.4027 | 0.3647 |
| 0.1604 | 13.84 | 8000 | 0.4294 | 0.3664 |
| 0.1683 | 14.71 | 8500 | 0.4412 | 0.3661 |
| 0.1452 | 15.57 | 9000 | 0.4484 | 0.3588 |
| 0.1491 | 16.44 | 9500 | 0.4508 | 0.3515 |
| 0.1388 | 17.3 | 10000 | 0.4240 | 0.3518 |
| 0.1399 | 18.17 | 10500 | 0.4605 | 0.3513 |
| 0.1265 | 19.03 | 11000 | 0.4412 | 0.3485 |
| 0.1137 | 19.9 | 11500 | 0.4520 | 0.3467 |
| 0.106 | 20.76 | 12000 | 0.4873 | 0.3426 |
| 0.1243 | 21.63 | 12500 | 0.4456 | 0.3396 |
| 0.1055 | 22.49 | 13000 | 0.4819 | 0.3406 |
| 0.1124 | 23.36 | 13500 | 0.4613 | 0.3391 |
| 0.1064 | 24.22 | 14000 | 0.4842 | 0.3430 |
| 0.0875 | 25.09 | 14500 | 0.4661 | 0.3348 |
| 0.086 | 25.95 | 15000 | 0.4724 | 0.3371 |
| 0.0842 | 26.82 | 15500 | 0.4982 | 0.3381 |
| 0.0834 | 27.68 | 16000 | 0.4856 | 0.3337 |
| 0.0918 | 28.55 | 16500 | 0.4783 | 0.3344 |
| 0.0773 | 29.41 | 17000 | 0.4763 | 0.3322 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
conan1024hao/cjkbert-small
|
conan1024hao
| 2022-05-14T10:18:04Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"ja",
"zh",
"ko",
"dataset:wikipedia",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-14T09:07:12Z |
---
language:
- ja
- zh
- ko
license: cc-by-sa-4.0
datasets:
- wikipedia
mask_token: "[MASK]"
widget:
- text: "早稲田大学で自然言語処理を[MASK]ぶ。"
- text: "李白是[MASK]朝人。"
- text: "불고기[MASK] 먹겠습니다."
---
### Model description
- This model was trained on **ZH, JA, KO**'s Wikipedia (5 epochs).
### How to use
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("conan1024hao/cjkbert-small")
model = AutoModelForMaskedLM.from_pretrained("conan1024hao/cjkbert-small")
```
- Before you fine-tune downstream tasks, you don't need any text segmentation.
- (Though you may obtain better results if you applied morphological analysis to the data before fine-tuning)
### Morphological analysis tools
- ZH: For Chinese, we use [LTP](https://github.com/HIT-SCIR/ltp).
- JA: For Japanese, we use [Juman++](https://github.com/ku-nlp/jumanpp).
- KO: For Korean, we use [KoNLPy](https://github.com/konlpy/konlpy)(Kkma class).
### Tokenization
- We use character-based tokenization with **whole-word-masking** strategy.
### Model size
- vocab_size: 15015
- num_hidden_layers: 4
- hidden_size: 512
- num_attention_heads: 8
- param_num: 25M
|
BitanBiswas/wav2vec2-base-timit-demo-google-colab
|
BitanBiswas
| 2022-05-14T07:46:48Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-14T05:46:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4770
- Wer: 0.3360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.6401 | 1.0 | 500 | 2.4138 | 1.0 |
| 0.9717 | 2.01 | 1000 | 0.6175 | 0.5531 |
| 0.4393 | 3.01 | 1500 | 0.4309 | 0.4414 |
| 0.2976 | 4.02 | 2000 | 0.4167 | 0.4162 |
| 0.2345 | 5.02 | 2500 | 0.4273 | 0.3927 |
| 0.1919 | 6.02 | 3000 | 0.3983 | 0.3886 |
| 0.1565 | 7.03 | 3500 | 0.5581 | 0.3928 |
| 0.1439 | 8.03 | 4000 | 0.4509 | 0.3821 |
| 0.1266 | 9.04 | 4500 | 0.4733 | 0.3774 |
| 0.1091 | 10.04 | 5000 | 0.4755 | 0.3808 |
| 0.1001 | 11.04 | 5500 | 0.4435 | 0.3689 |
| 0.0911 | 12.05 | 6000 | 0.4962 | 0.3897 |
| 0.0813 | 13.05 | 6500 | 0.5031 | 0.3622 |
| 0.0729 | 14.06 | 7000 | 0.4853 | 0.3597 |
| 0.0651 | 15.06 | 7500 | 0.5180 | 0.3577 |
| 0.0608 | 16.06 | 8000 | 0.5251 | 0.3630 |
| 0.0592 | 17.07 | 8500 | 0.4915 | 0.3591 |
| 0.0577 | 18.07 | 9000 | 0.4724 | 0.3656 |
| 0.0463 | 19.08 | 9500 | 0.4536 | 0.3546 |
| 0.0475 | 20.08 | 10000 | 0.5107 | 0.3546 |
| 0.0464 | 21.08 | 10500 | 0.4829 | 0.3464 |
| 0.0369 | 22.09 | 11000 | 0.4844 | 0.3448 |
| 0.0327 | 23.09 | 11500 | 0.4865 | 0.3437 |
| 0.0337 | 24.1 | 12000 | 0.4825 | 0.3488 |
| 0.0271 | 25.1 | 12500 | 0.4824 | 0.3445 |
| 0.0236 | 26.1 | 13000 | 0.4747 | 0.3397 |
| 0.0243 | 27.11 | 13500 | 0.4840 | 0.3397 |
| 0.0226 | 28.11 | 14000 | 0.4716 | 0.3354 |
| 0.0235 | 29.12 | 14500 | 0.4770 | 0.3360 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
NeonPigeon/TEST2ppo-LunarLander-v2
|
NeonPigeon
| 2022-05-14T06:48:08Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T05:31:06Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 289.62 +/- 18.60
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.