modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
jonatasgrosman/exp_w2v2t_en_r-wav2vec2_s44
jonatasgrosman
2022-07-08T09:36:19Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:35:33Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_r-wav2vec2_s44 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
epsil/testpyramidsrnd
epsil
2022-07-08T09:27:21Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-08T09:27:16Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: epsil/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jonatasgrosman/exp_w2v2t_en_xls-r_s468
jonatasgrosman
2022-07-08T09:10:45Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T09:10:00Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_xls-r_s468 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_xls-r_s957
jonatasgrosman
2022-07-08T08:54:52Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T08:54:25Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_xls-r_s957 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech-sat_s456
jonatasgrosman
2022-07-08T08:26:50Z
6
0
transformers
[ "transformers", "pytorch", "unispeech-sat", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T08:26:01Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech-sat_s456 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-nl_s281
jonatasgrosman
2022-07-08T08:09:32Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T08:08:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-nl_s281 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-nl_s169
jonatasgrosman
2022-07-08T08:00:33Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:59:51Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-nl_s169 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-es_s186
jonatasgrosman
2022-07-08T07:54:17Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:53:28Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-es_s186 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-es_s474
jonatasgrosman
2022-07-08T07:45:27Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:44:40Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-es_s474 Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ClassCat/roberta-base-french
ClassCat
2022-07-08T07:34:58Z
7
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "fr", "dataset:wikipedia", "dataset:cc100", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-04T17:58:21Z
--- language: fr license: cc-by-sa-4.0 datasets: - wikipedia - cc100 widget: - text: "Je vais à la <mask>." - text: "J'aime le <mask>." - text: "J'ai ouvert la <mask>." - text: "Je m'appelle <mask>." - text: "J'ai beaucoup d'<mask>." --- ## RoBERTa French base model (Uncased) ### Prerequisites transformers==4.19.2 ### Model architecture This model uses RoBERTa base setttings except vocabulary size. ### Tokenizer Using BPE tokenizer with vocabulary size 50,000. ### Training Data * [wiki40b/fr](https://www.tensorflow.org/datasets/catalog/wiki40b#wiki40bfr) (French Wikipedia) * Subset of [CC-100/fr](https://data.statmt.org/cc-100/) : Monolingual Datasets from Web Crawl Data ### Usage ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='ClassCat/roberta-base-french') unmasker("Je vais à la <mask>.") ```
jonatasgrosman/exp_w2v2t_en_vp-fr_s51
jonatasgrosman
2022-07-08T07:29:19Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:28:38Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-fr_s51 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-fr_s691
jonatasgrosman
2022-07-08T07:20:48Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:20:01Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-fr_s691 Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s756
jonatasgrosman
2022-07-08T07:05:35Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T07:04:52Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech-ml_s756 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech-ml_s103
jonatasgrosman
2022-07-08T06:58:31Z
4
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:57:42Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech-ml_s103 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wavlm_s990
jonatasgrosman
2022-07-08T06:48:30Z
4
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:47:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wavlm_s990 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wavlm_s767
jonatasgrosman
2022-07-08T06:33:36Z
3
0
transformers
[ "transformers", "pytorch", "wavlm", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:32:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wavlm_s767 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-sv_s438
jonatasgrosman
2022-07-08T06:11:38Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:11:10Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-sv_s438 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-sv_s320
jonatasgrosman
2022-07-08T06:07:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:06:37Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-sv_s320 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_vp-sv_s179
jonatasgrosman
2022-07-08T06:02:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T06:01:42Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-sv_s179 Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
igpaub/Reinforce-Cartpole-v1
igpaub
2022-07-08T05:54:39Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T05:53:59Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Cartpole-v1 results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
jonatasgrosman/exp_w2v2t_en_hubert_s596
jonatasgrosman
2022-07-08T05:50:29Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:49:43Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_hubert_s596 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_hubert_s875
jonatasgrosman
2022-07-08T05:46:21Z
3
0
transformers
[ "transformers", "pytorch", "hubert", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:45:44Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_hubert_s875 Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_unispeech_s809
jonatasgrosman
2022-07-08T05:41:57Z
5
0
transformers
[ "transformers", "pytorch", "unispeech", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:41:08Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_unispeech_s809 Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
phyous/q-Taxi-v3-2
phyous
2022-07-08T05:32:54Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-08T05:27:28Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3-2 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="phyous/q-Taxi-v3-2", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
jonatasgrosman/exp_w2v2t_en_xlsr-53_s279
jonatasgrosman
2022-07-08T05:26:47Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T05:26:21Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_xlsr-53_s279 Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
ChauNguyen23/phobert-base-finetuned-imdb
ChauNguyen23
2022-07-08T05:03:20Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-08T04:47:50Z
--- tags: - generated_from_trainer datasets: - imdb model-index: - name: phobert-base-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # phobert-base-finetuned-imdb This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.6149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3266 | 1.0 | 157 | 2.7949 | | 2.9162 | 2.0 | 314 | 2.6515 | | 2.8177 | 3.0 | 471 | 2.6452 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
jonatasgrosman/exp_w2v2t_en_vp-100k_s364
jonatasgrosman
2022-07-08T04:56:51Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T04:56:25Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_vp-100k_s364 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
jonatasgrosman/exp_w2v2t_en_wav2vec2_s878
jonatasgrosman
2022-07-08T03:56:34Z
3
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "en", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T03:23:38Z
--- language: - en license: apache-2.0 tags: - automatic-speech-recognition - en datasets: - mozilla-foundation/common_voice_7_0 --- # exp_w2v2t_en_wav2vec2_s878 Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
okho0653/Bio_ClinicalBERT-zero-shot-tokenizer-truncation-sentiment-model
okho0653
2022-07-08T03:54:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T01:09:10Z
--- license: mit tags: - generated_from_trainer model-index: - name: Bio_ClinicalBERT-zero-shot-tokenizer-truncation-sentiment-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot-tokenizer-truncation-sentiment-model This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ccarvajal-reyes/beto-emoji
ccarvajal-reyes
2022-07-08T03:35:39Z
14
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "es", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-03T07:26:55Z
--- language: - es --- # beto-emoji Fine-tunning [BETO](https://github.com/dccuchile/beto) for emoji-prediction. ## Repository Details with training and a use example are shown in [github.com/camilocarvajalreyes/beto-emoji](https://github.com/camilocarvajalreyes/beto-emoji). A deeper analysis of this and other models on the full dataset can be found in [github.com/furrutiav/data-mining-2022](https://github.com/furrutiav/data-mining-2022). We have used this model for a project for [CC5205 Data Mining](https://github.com/dccuchile/CC5205) course. ## Example Inspired by model card from [cardiffnlp/twitter-roberta-base-emoji](https://huggingface.co/cardiffnlp/twitter-roberta-base-emoji). ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"ccarvajal/beto-emoji" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/camilocarvajalreyes/beto-emoji/main/es_mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "que viva españa" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output ```python 1) 🇪🇸 0.2508 2) 😍 0.238 3) 👌 0.2225 4) 😂 0.0806 5) ❤ 0.0489 6) 😁 0.0415 7) 😜 0.0232 8) 😎 0.0229 9) 😊 0.0156 10) 😉 0.0119 11) 💜 0.0079 12) 💕 0.0077 13) 💪 0.0066 14) 💘 0.0054 15) 💙 0.0052 16) 💞 0.005 17) 😘 0.0034 18) 🎶 0.0022 19) ✨ 0.0007 ``` ## Results in test set precision recall f1-score support ❤ 0.39 0.43 0.41 2141 😍 0.29 0.39 0.33 1408 😂 0.51 0.51 0.51 1499 💕 0.09 0.05 0.06 352 😊 0.12 0.23 0.16 514 😘 0.24 0.23 0.24 397 💪 0.37 0.43 0.40 307 😉 0.15 0.17 0.16 453 👌 0.09 0.16 0.11 180 🇪🇸 0.46 0.46 0.46 424 😎 0.12 0.11 0.11 339 💙 0.36 0.02 0.04 413 💜 0.00 0.00 0.00 235 😜 0.04 0.02 0.02 274 💞 0.00 0.00 0.00 93 ✨ 0.26 0.12 0.17 416 🎶 0.25 0.24 0.24 212 💘 0.00 0.00 0.00 134 😁 0.05 0.03 0.04 209 accuracy 0.30 10000 macro_avg 0.20 0.19 0.18 10000 weighted avg 0.29 0.30 0.29 10000 [Another example](https://github.com/camilocarvajalreyes/beto-emoji/blob/main/attention_visualisation.ipynb) with a visualisation of the attention modules within this model is carried out using [bertviz](https://github.com/jessevig/bertviz). ## Reproducibility The Multilingual Emoji Prediction dataset (Barbieri et al. 2010) consists of tweets in English and Spanish that originally had a single emoji, which is later used as a tag. Test and trial sets can be downloaded [here](https://github.com/fvancesco/Semeval2018-Task2-Emoji-Detection/blob/master/dataset/Semeval2018-Task2-EmojiPrediction.zip?raw=true), but the train set needs to be downloaded using a [twitter crawler](https://github.com/fra82/twitter-crawler/blob/master/semeval2018task2TwitterCrawlerHOWTO.md). The goal is to predict that single emoji that was originally in the tweet using the text in it (out of a fixed set of possible emojis, 20 for English and 19 for Spanish). Training parameters: ```python training_args = TrainingArguments( output_dir="./results", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=5, weight_decay=0.01 ) ```
ankitsharma/dummy-model
ankitsharma
2022-07-08T02:01:21Z
3
0
transformers
[ "transformers", "tf", "camembert", "fill-mask", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-08T01:49:43Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: dummy-model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
katharsis/vqgan-imagenet-dnd
katharsis
2022-07-08T01:59:40Z
0
0
null
[ "license:cc", "region:us" ]
null
2022-07-08T01:57:03Z
--- license: cc --- # D&D&VQGAN ## Intro As I get a chance to play around with a lot more of these models. I find myself wanting to create D&D (or general fantasy and Sci-Fi themed images) generated from text prompt (think of what you see being implemented now in AI Dungeon).
sam34738/bert-hinglish
sam34738
2022-07-08T00:00:58Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T23:37:37Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-hinglish results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-hinglish This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3557 | 1.0 | 460 | 0.7714 | | 0.6349 | 2.0 | 920 | 0.5475 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Tokenizers 0.12.1
huggingtweets/fairytale_bot23
huggingtweets
2022-07-07T21:44:10Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-07T21:43:08Z
--- language: en thumbnail: http://www.huggingtweets.com/fairytale_bot23/1657230245911/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486954631464771591/cwgDTNXD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Fairytale Generator</div> <div style="text-align: center; font-size: 14px;">@fairytale_bot23</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Fairytale Generator. | Data | Fairytale Generator | | --- | --- | | Tweets downloaded | 315 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 315 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lznwr8t9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @fairytale_bot23's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hjhfq1n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/fairytale_bot23') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
osanseviero/en_core_web_sm
osanseviero
2022-07-07T21:29:21Z
6
0
spacy
[ "spacy", "token-classification", "en", "license:mit", "model-index", "region:us" ]
token-classification
2022-07-07T21:28:43Z
--- tags: - spacy - token-classification language: - en license: mit model-index: - name: en_core_web_sm results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8508041869 - name: NER Recall type: recall value: 0.8344851763 - name: NER F Score type: f_score value: 0.8425656714 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9726545475 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9180803841 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.8996666011 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9060200669 --- ### Details: https://spacy.io/models/en#en_core_web_sm English pipeline optimized for CPU. Components: tok2vec, tagger, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `en_core_web_sm` | | **Version** | `3.3.0` | | **spaCy** | `>=3.3.0.dev0,<3.4.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `tagger`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (112 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.93 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.27 | | `SENTS_P` | 91.89 | | `SENTS_R` | 89.35 | | `SENTS_F` | 90.60 | | `DEP_UAS` | 91.81 | | `DEP_LAS` | 89.97 | | `ENTS_P` | 85.08 | | `ENTS_R` | 83.45 | | `ENTS_F` | 84.26 |
osanseviero/ca_core_news_sm
osanseviero
2022-07-07T21:23:31Z
7
0
spacy
[ "spacy", "token-classification", "ca", "license:gpl-3.0", "model-index", "region:us" ]
token-classification
2022-07-07T21:22:35Z
--- tags: - spacy - token-classification language: - ca license: gpl-3.0 model-index: - name: ca_core_news_sm results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7934394284 - name: NER Recall type: recall value: 0.7903591071 - name: NER F Score type: f_score value: 0.7918962723 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9810266317 - task: name: POS type: token-classification metrics: - name: POS (UPOS) Accuracy type: accuracy value: 0.9810266317 - task: name: MORPH type: token-classification metrics: - name: Morph (UFeats) Accuracy type: accuracy value: 0.9775079343 - task: name: LEMMA type: token-classification metrics: - name: Lemma Accuracy type: accuracy value: 0.974386827 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9141207189 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.8816511663 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.990348055 --- ### Details: https://spacy.io/models/ca#ca_core_news_sm Catalan pipeline optimized for CPU. Components: tok2vec, morphologizer, parser, senter, ner, attribute_ruler, lemmatizer. | Feature | Description | | --- | --- | | **Name** | `ca_core_news_sm` | | **Version** | `3.3.0` | | **spaCy** | `>=3.3.0.dev0,<3.4.0` | | **Default Pipeline** | `tok2vec`, `morphologizer`, `parser`, `attribute_ruler`, `lemmatizer`, `ner` | | **Components** | `tok2vec`, `morphologizer`, `parser`, `senter`, `attribute_ruler`, `lemmatizer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [UD Catalan AnCora v2.8](https://github.com/UniversalDependencies/UD_Catalan-AnCora) (Martínez Alonso, Héctor; Pascual, Elena; Zeman, Daniel)<br />[UD Catalan AnCora v2.8 + NER v3.2.8](https://github.com/TeMU-BSC/spacy/releases/tag/3.2.8) (Carlos Rodríguez-Penagos and Carme Armentano-Oller)<br />[Catalan Lemmatizer](https://github.com/explosion/spacy-lookups-data) (Text Mining Unit, Barcelona Supercomputing Center) | | **License** | `GNU GPL 3.0` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme <details> <summary>View label scheme (316 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`morphologizer`** | `Definite=Def\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Brck`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Brck`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=NOUN`, `POS=ADP`, `NumType=Card\|Number=Plur\|POS=NUM`, `Gender=Masc\|Number=Plur\|POS=NOUN`, `Number=Sing\|POS=ADJ`, `POS=CCONJ`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Ind`, `NumForm=Digit\|NumType=Card\|POS=NUM`, `NumForm=Digit\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Comm`, `POS=AUX\|VerbForm=Inf`, `Case=Acc,Dat\|POS=PRON\|Person=3\|PrepCase=Npr\|PronType=Prs\|Reflex=Yes`, `Definite=Def\|Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `POS=PRON\|PronType=Rel`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Definite=Def\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=NOUN`, `Gender=Fem\|Number=Plur\|POS=ADJ`, `POS=VERB\|VerbForm=Inf`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Peri`, `Number=Sing\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Sing\|POS=NOUN`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=2\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `POS=SCONJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Definite=Def\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=ADJ\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=VERB\|VerbForm=Ger`, `POS=NOUN`, `Gender=Fem\|NumType=Card\|Number=Sing\|POS=NUM`, `Gender=Fem\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Gender=Fem\|NumType=Ord\|Number=Plur\|POS=ADJ`, `POS=SYM`, `Gender=Masc\|Number=Sing\|POS=ADJ`, `Gender=Masc\|Number=Sing\|POS=ADJ\|VerbForm=Part`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Dem`, `POS=ADV\|Polarity=Neg`, `POS=ADV`, `Number=Sing\|POS=PRON\|PronType=Dem`, `Number=Sing\|POS=NOUN`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=NOUN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=ADJ`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Tot`, `Case=Loc\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Degree=Cmp\|POS=ADV`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Fem\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Ord\|Number=Sing\|POS=ADJ`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Plur\|POS=DET\|PronType=Ind`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Fut\|VerbForm=Fin`, `Gender=Masc\|NumType=Card\|Number=Sing\|POS=NUM`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=DET\|PronType=Ind`, `POS=PUNCT`, `Number=Sing\|POS=DET\|PronType=Rel`, `Case=Gen\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Ind`, `POS=AUX`, `Case=Acc\|Gender=Neut\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Degree=Cmp\|Number=Sing\|POS=ADJ`, `Number=Sing\|POS=VERB`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Dem`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Plur\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Fem,Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Rel`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `AdvType=Tim\|POS=NOUN`, `Gender=Masc\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Case=Acc\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Semi`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Dat\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|NumType=Card\|Number=Plur\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Ind`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `NumForm=Digit\|POS=SYM`, `Gender=Masc\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Sing\|POS=DET\|PronType=Int`, `POS=PRON\|PronType=Int`, `Gender=Fem\|Number=Plur\|POS=DET\|PronType=Int`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `POS=PART`, `Gender=Fem\|Number=Sing\|POS=PRON\|PronType=Dem`, `Gender=Masc\|Number=Sing\|POS=DET\|PronType=Tot`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Dem`, `POS=ADJ`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Degree=Cmp\|Number=Plur\|POS=ADJ`, `POS=PUNCT\|PunctType=Dash`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=VERB\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Gender=Masc\|POS=NOUN`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Int`, `Gender=Masc\|NumType=Ord\|Number=Plur\|POS=ADJ`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=PUNCT\|PunctType=Colo`, `Gender=Masc\|NumType=Card\|POS=NUM`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Number=Sing\|POS=PRON\|PronType=Int`, `POS=PUNCT\|PunctType=Quot`, `Mood=Imp\|Number=Sing\|POS=VERB\|Person=3\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `POS=AUX\|VerbForm=Ger`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Imp\|Number=Sing\|POS=AUX\|Person=3\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|PronType=Ind`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Dem`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Npr\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|PronType=Int`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `NumForm=Digit\|NumType=Frac\|POS=NUM`, `POS=VERB`, `Gender=Fem\|Number=Plur\|POS=PRON\|PronType=Dem`, `Gender=Fem\|POS=NOUN`, `Case=Acc,Dat\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Npr\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Fut\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=3\|Tense=Imp\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=1\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PronType=Prs`, `POS=X`, `Mood=Cnd\|Number=Plur\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Sing\|POS=DET\|PronType=Dem`, `POS=DET`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `NumType=Ord\|Number=Sing\|POS=ADJ`, `Gender=Fem\|Number=Sing\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|Number[psor]=Plur\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Masc\|Number=Plur\|POS=AUX\|Tense=Past\|VerbForm=Part`, `Number=Plur\|POS=PRON\|PronType=Dem`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `POS=PRON\|PronType=Ind`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Imp\|Number=Plur\|POS=VERB\|Person=3\|VerbForm=Fin`, `Case=Nom\|Number=Sing\|POS=PRON\|Person=1\|PronType=Prs`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=1\|PrepCase=Pre\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Qest`, `NumForm=Digit\|NumType=Ord\|POS=ADJ`, `Case=Acc\|POS=PRON\|Person=3\|PrepCase=Pre\|PronType=Prs\|Reflex=Yes`, `NumForm=Digit\|NumType=Frac\|POS=SYM`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Qest`, `NumType=Card\|Number=Sing\|POS=NUM`, `Foreign=Yes\|POS=PRON\|PronType=Int`, `Foreign=Yes\|Mood=Ind\|POS=VERB\|VerbForm=Fin`, `Foreign=Yes\|POS=ADP`, `Gender=Masc\|Number=Sing\|POS=PROPN`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Excl`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Excl`, `Mood=Cnd\|Number=Sing\|POS=AUX\|Person=1\|VerbForm=Fin`, `Number=Plur\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Mood=Sub\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=PUNCT\|PunctSide=Ini\|PunctType=Comm`, `POS=PUNCT\|PunctSide=Fin\|PunctType=Comm`, `Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc,Dat\|Number=Plur\|POS=PRON\|Person=2\|PronType=Prs`, `Mood=Cnd\|Number=Sing\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Cnd\|Number=Plur\|POS=VERB\|Person=1\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Definite=Ind\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Number=Sing\|POS=PRON\|Person=2\|Polite=Form\|PronType=Prs`, `Gender=Masc\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=1\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `POS=VERB\|Tense=Past\|VerbForm=Part`, `Mood=Imp\|Number=Plur\|POS=AUX\|Person=3\|VerbForm=Fin`, `Case=Nom\|POS=PRON\|Person=3\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Sing\|POS=PRON\|PronType=Rel`, `Definite=Ind\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|Number=Sing\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `Number=Plur\|Number[psor]=Plur\|POS=PRON\|Person=1\|Poss=Yes\|PronType=Prs`, `POS=AUX\|Tense=Past\|VerbForm=Part`, `Gender=Fem\|NumType=Card\|POS=NUM`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Plur\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Ind\|Number=Sing\|POS=AUX\|Person=1\|Tense=Fut\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=AUX\|Person=3\|Tense=Past\|VerbForm=Fin`, `AdvType=Tim\|Degree=Cmp\|POS=ADV`, `Case=Acc\|Number=Sing\|POS=PRON\|Person=2\|Polite=Infm\|PrepCase=Pre\|PronType=Prs`, `POS=DET\|PronType=Rel`, `Definite=Ind\|Gender=Fem\|Number=Plur\|POS=DET\|PronType=Art`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin`, `POS=INTJ`, `Mood=Sub\|Number=Sing\|POS=AUX\|Person=1\|Tense=Pres\|VerbForm=Fin`, `POS=VERB\|VerbForm=Fin`, `Mood=Ind\|Number=Plur\|POS=VERB\|Person=3\|Tense=Past\|VerbForm=Fin`, `Definite=Ind\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Mood=Sub\|Number=Plur\|POS=AUX\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=PRON\|Person=3\|Poss=Yes\|PronType=Prs`, `Mood=Sub\|Number=Sing\|POS=VERB\|Person=2\|Tense=Pres\|VerbForm=Fin`, `Case=Acc\|POS=PRON\|Person=3\|PronType=Prs\|Reflex=Yes`, `Foreign=Yes\|POS=NOUN`, `Foreign=Yes\|Mood=Ind\|Number=Sing\|POS=AUX\|Person=3\|Tense=Pres\|VerbForm=Fin`, `Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=PRON\|Person=3\|PronType=Prs`, `Foreign=Yes\|POS=SCONJ`, `Foreign=Yes\|Gender=Fem\|Number=Sing\|POS=DET\|PronType=Art`, `Gender=Masc\|POS=SYM`, `Gender=Fem\|Number=Sing\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Number=Sing\|POS=DET\|Person=3\|Poss=Yes\|PronType=Prs`, `Gender=Masc\|Number=Plur\|Number[psor]=Sing\|POS=DET\|Person=2\|Poss=Yes\|PronType=Prs`, `Gender=Fem\|Number=Sing\|POS=PROPN`, `Mood=Sub\|Number=Plur\|POS=VERB\|Person=1\|Tense=Imp\|VerbForm=Fin`, `Definite=Def\|Foreign=Yes\|Gender=Masc\|Number=Sing\|POS=DET\|PronType=Art`, `Foreign=Yes\|POS=VERB`, `Foreign=Yes\|POS=ADJ`, `Foreign=Yes\|POS=DET`, `Foreign=Yes\|POS=ADV`, `POS=PUNCT\|PunctSide=Fin\|Punta d'aignctType=Brck`, `Degree=Cmp\|POS=ADJ`, `AdvType=Tim\|POS=SYM`, `Number=Plur\|POS=DET\|PronType=Dem`, `Mood=Ind\|Number=Sing\|POS=VERB\|Person=2\|Tense=Fut\|VerbForm=Fin` | | **`parser`** | `ROOT`, `acl`, `advcl`, `advmod`, `amod`, `appos`, `aux`, `case`, `cc`, `ccomp`, `compound`, `conj`, `cop`, `csubj`, `dep`, `det`, `expl:pass`, `fixed`, `flat`, `iobj`, `mark`, `nmod`, `nsubj`, `nummod`, `obj`, `obl`, `parataxis`, `punct`, `xcomp` | | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.97 | | `TOKEN_P` | 99.78 | | `TOKEN_R` | 99.79 | | `TOKEN_F` | 99.79 | | `POS_ACC` | 98.10 | | `MORPH_ACC` | 97.75 | | `MORPH_MICRO_P` | 99.37 | | `MORPH_MICRO_R` | 98.67 | | `MORPH_MICRO_F` | 99.02 | | `SENTS_P` | 99.01 | | `SENTS_R` | 99.06 | | `SENTS_F` | 99.03 | | `DEP_UAS` | 91.41 | | `DEP_LAS` | 88.17 | | `TAG_ACC` | 98.10 | | `LEMMA_ACC` | 97.44 | | `ENTS_P` | 79.34 | | `ENTS_R` | 79.04 | | `ENTS_F` | 79.19 |
kwmr/wav2vec2_japanese
kwmr
2022-07-07T20:33:05Z
5
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-07T18:23:30Z
## Wav2Vec2.0 XLSR-53 large model の日本語 Fine Tuning モデル [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)を日本語用にFine Tuningしたモデル ## 使用データセット - [Common Voice](https://commonvoice.mozilla.org/ja) ## 使い方 ```python from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from datasets import load_dataset import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("kwmr/wav2vec2_japanese") model = Wav2Vec2ForCTC.from_pretrained("kwmr/wav2vec2_japanese") ```
phyous/q-FrozenLake-v1-4x4-noSlippery
phyous
2022-07-07T20:31:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T20:31:33Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="phyous/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Forkits/Reinforce-CartPole
Forkits
2022-07-07T20:30:43Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T21:06:43Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole results: - metrics: - type: mean_reward value: 95.30 +/- 33.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
PrimeQA/squad-v1-xlm-roberta-large
PrimeQA
2022-07-07T20:28:50Z
17
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "MRC", "SQuAD 1.1", "xlm-roberta-large", "multilingual", "arxiv:1606.05250", "arxiv:1910.07475", "arxiv:1910.11856", "arxiv:1911.02116", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-07-07T19:46:24Z
--- tags: - MRC - SQuAD 1.1 - xlm-roberta-large language: - multilingual license: apache-2.0 --- # Model description An XLM-RoBERTa reading comprehension model for [SQuAD 1.1](https://aclanthology.org/D16-1264/). The model is initialized with [xlm-roberta-large](https://huggingface.co/xlm-roberta-large/) and fine-tuned on the [SQuAD 1.1 train data](https://huggingface.co/datasets/squad). ## Intended uses & limitations You can use the raw model for the reading comprehension task. Biases associated with the pre-existing language model, xlm-roberta-large, that we used may be present in our fine-tuned model, squad-v1-xlm-roberta-large. This model is used for zero-shot decoding of [MLQA](https://huggingface.co/datasets/mlqa) and [XQuAD](https://huggingface.co/datasets/xquad) datasets. ## Usage You can use this model directly with the [PrimeQA](https://github.com/primeqa/primeqa) pipeline for reading comprehension [squad.ipynb](https://github.com/primeqa/primeqa/blob/main/notebooks/mrc/squad.ipynb). ```bibtex @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } ``` ```bibtex @article{lewis2019mlqa, title={MLQA: Evaluating Cross-lingual Extractive Question Answering}, author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger}, journal={arXiv preprint arXiv:1910.07475}, year={2019} } ``` ```bibtex @article{Artetxe:etal:2019, author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama}, title = {On the cross-lingual transferability of monolingual representations}, journal = {CoRR}, volume = {abs/1910.11856}, year = {2019}, archivePrefix = {arXiv}, eprint = {1910.11856} } ``` ```bibtex @article{DBLP:journals/corr/abs-1911-02116, author = {Alexis Conneau and Kartikay Khandelwal and Naman Goyal and Vishrav Chaudhary and Guillaume Wenzek and Francisco Guzm{\'{a}}n and Edouard Grave and Myle Ott and Luke Zettlemoyer and Veselin Stoyanov}, title = {Unsupervised Cross-lingual Representation Learning at Scale}, journal = {CoRR}, volume = {abs/1911.02116}, year = {2019}, url = {http://arxiv.org/abs/1911.02116}, eprinttype = {arXiv}, eprint = {1911.02116}, timestamp = {Mon, 11 Nov 2019 18:38:09 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243
mbyanfei
2022-07-07T20:02:39Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:mbyanfei/autotrain-data-amazon-shoe-reviews-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T19:48:42Z
--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - mbyanfei/autotrain-data-amazon-shoe-reviews-classification co2_eq_emissions: 27.982443349742287 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1104340243 - CO2 Emissions (in grams): 27.982443349742287 ## Validation Metrics - Loss: 0.9584922790527344 - Accuracy: 0.5843 - Macro F1: 0.5801009597024507 - Micro F1: 0.5843 - Weighted F1: 0.5792137097243996 - Macro Precision: 0.5897236028586046 - Micro Precision: 0.5843 - Weighted Precision: 0.5896188517045103 - Macro Recall: 0.5857983081566331 - Micro Recall: 0.5843 - Weighted Recall: 0.5843 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("mbyanfei/autotrain-amazon-shoe-reviews-classification-1104340243", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
drhyrum/bert-tiny-torch-vuln
drhyrum
2022-07-07T19:17:08Z
271
2
transformers
[ "transformers", "pytorch", "bert", "BERT", "MNLI", "NLI", "transformer", "pre-training", "en", "arxiv:1908.08962", "arxiv:2110.01518", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-06-27T17:26:26Z
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-mini](https://huggingface.co/prajjwal1/bert-mini) [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) Other models to check out: - `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
quanxi/TESTppo-LunarLander-v2
quanxi
2022-07-07T19:12:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T19:11:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 104.87 +/- 85.47 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
loicmagne/pr_dataset_metadata
loicmagne
2022-07-07T19:06:41Z
0
0
null
[ "pytorch", "tensorboard", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "region:us" ]
null
2022-07-07T19:06:03Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: pr_dataset_metadata results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: eval_accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pr_dataset_metadata This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6216 - eval_accuracy: 1.0 - eval_runtime: 0.4472 - eval_samples_per_second: 2.236 - eval_steps_per_second: 2.236 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: not_parallel - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.0.0 - Tokenizers 0.12.1
Mascariddu8/distilbert-base-uncased-finetuned-imdb
Mascariddu8
2022-07-07T17:47:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-07T17:34:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4897 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bothrajat/dqn-SpaceInvadersNoFrameskip-v4
bothrajat
2022-07-07T16:38:53Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T16:33:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 274.50 +/- 31.50 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga bothrajat -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga bothrajat ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', True), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
gemasphi/laprador_untrained
gemasphi
2022-07-07T15:20:10Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-07T15:20:02Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_untrained This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_untrained') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_untrained') model = AutoModel.from_pretrained('gemasphi/laprador_untrained') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_untrained) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
juanna/gptdc
juanna
2022-07-07T15:13:14Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-07T11:22:26Z
skt에서 만든 gptdc를 ainize 서비스를 이용해서 훈련시키고 huggingface에서 시뮬레이션 합니다
mmazuecos/Reinforce-Pixelcopter-PLE-v0
mmazuecos
2022-07-07T14:43:02Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T14:42:53Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - metrics: - type: mean_reward value: -2.70 +/- 0.46 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Mascariddu8/bert-finetuned-ner
Mascariddu8
2022-07-07T14:36:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-06T17:10:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9357296670531721 - name: Recall type: recall value: 0.9506900033658701 - name: F1 type: f1 value: 0.9431505133984472 - name: Accuracy type: accuracy value: 0.9857390946017542 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0639 - Precision: 0.9357 - Recall: 0.9507 - F1: 0.9432 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0847 | 1.0 | 1756 | 0.0636 | 0.9150 | 0.9387 | 0.9267 | 0.9840 | | 0.0399 | 2.0 | 3512 | 0.0592 | 0.9302 | 0.9485 | 0.9393 | 0.9854 | | 0.0201 | 3.0 | 5268 | 0.0639 | 0.9357 | 0.9507 | 0.9432 | 0.9857 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
gemasphi/laprador_trained
gemasphi
2022-07-07T14:25:10Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-07T14:25:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # gemasphi/laprador_trained This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gemasphi/laprador_trained') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_trained') model = AutoModel.from_pretrained('gemasphi/laprador_trained') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gemasphi/laprador_trained) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
mmazuecos/Reinforce-CartPole-v1
mmazuecos
2022-07-07T14:16:52Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T14:16:40Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - metrics: - type: mean_reward value: 78.00 +/- 15.28 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
dminiotas05/distilbert-base-uncased-finetuned-ft500_6class600
dminiotas05
2022-07-07T13:23:59Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T12:40:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-ft500_6class600 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft500_6class600 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6317 - Accuracy: 0.35 - F1: 0.3327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.5717 | 1.0 | 188 | 1.5375 | 0.3067 | 0.2820 | | 1.4338 | 2.0 | 376 | 1.5354 | 0.3207 | 0.2824 | | 1.3516 | 3.0 | 564 | 1.4852 | 0.3573 | 0.3287 | | 1.2722 | 4.0 | 752 | 1.4997 | 0.366 | 0.3534 | | 1.1923 | 5.0 | 940 | 1.5474 | 0.362 | 0.3454 | | 1.1156 | 6.0 | 1128 | 1.5998 | 0.3547 | 0.3387 | | 1.0522 | 7.0 | 1316 | 1.6154 | 0.3473 | 0.3316 | | 1.0148 | 8.0 | 1504 | 1.6317 | 0.35 | 0.3327 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Zengwei/icefall-asr-librispeech-pruned-transducer-stateless5-2022-07-07
Zengwei
2022-07-07T13:03:44Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-07-07T07:51:32Z
Introduction See https://github.com/k2-fsa/icefall/pull/330 and https://github.com/k2-fsa/icefall/pull/452 It has random combiner inside. Note: There is something wrong in the log file, which has been fixed in https://github.com/k2-fsa/icefall/pull/468.
Zengwei/icefall-asr-librispeech-pruned-transducer-stateless5-M-2022-07-07
Zengwei
2022-07-07T12:30:37Z
0
0
null
[ "tensorboard", "region:us" ]
null
2022-07-07T10:17:44Z
Introduction See https://github.com/k2-fsa/icefall/pull/330 and https://github.com/k2-fsa/icefall/pull/452 It has random combiner inside.
Vikasbhandari/TRY
Vikasbhandari
2022-07-07T12:17:31Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-07T11:42:30Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: TRY results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TRY This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4234 - eval_wer: 0.3884 - eval_runtime: 51.9275 - eval_samples_per_second: 32.353 - eval_steps_per_second: 4.044 - epoch: 7.03 - step: 3500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
paola-md/recipe-roberta-is
paola-md
2022-07-07T11:53:27Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-07T08:40:25Z
--- license: mit tags: - generated_from_trainer model-index: - name: recipe-roberta-is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-roberta-is This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.334 | 1.0 | 961 | 1.1217 | | 1.1638 | 2.0 | 1922 | 1.0369 | | 1.0936 | 3.0 | 2883 | 0.9922 | | 1.0503 | 4.0 | 3844 | 0.9606 | | 1.0188 | 5.0 | 4805 | 0.9314 | | 0.9953 | 6.0 | 5766 | 0.9256 | | 0.9769 | 7.0 | 6727 | 0.9109 | | 0.9599 | 8.0 | 7688 | 0.8978 | | 0.9461 | 9.0 | 8649 | 0.8813 | | 0.9377 | 10.0 | 9610 | 0.8777 | | 0.9253 | 11.0 | 10571 | 0.8755 | | 0.918 | 12.0 | 11532 | 0.8601 | | 0.9112 | 13.0 | 12493 | 0.8541 | | 0.9043 | 14.0 | 13454 | 0.8548 | | 0.8984 | 15.0 | 14415 | 0.8470 | | 0.8958 | 16.0 | 15376 | 0.8412 | | 0.8914 | 17.0 | 16337 | 0.8345 | | 0.8882 | 18.0 | 17298 | 0.8353 | | 0.8871 | 19.0 | 18259 | 0.8344 | | 0.8839 | 20.0 | 19220 | 0.8382 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
zhifei/autotrain-autotrain-chinese-title-summarization-9-1101340178
zhifei
2022-07-07T10:49:19Z
3
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain", "unk", "dataset:zhifei/autotrain-data-autotrain-chinese-title-summarization-9", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-07T10:48:04Z
--- tags: autotrain language: unk widget: - text: "I love AutoTrain 🤗" datasets: - zhifei/autotrain-data-autotrain-chinese-title-summarization-9 co2_eq_emissions: 1.565396518204961 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1101340178 - CO2 Emissions (in grams): 1.565396518204961 ## Validation Metrics - Loss: 0.00012778821110259742 - Rouge1: 29.2308 - Rouge2: 0.0 - RougeL: 29.2308 - RougeLsum: 29.2308 - Gen Len: 18.4462 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/zhifei/autotrain-autotrain-chinese-title-summarization-9-1101340178 ```
Fulccrum/trainii_ac94u-label-classification
Fulccrum
2022-07-07T10:48:17Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-07T10:48:16Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on trainii_ac94u to apply classification on label **Metrics of the best model:** accuracy 0.361046 recall_macro 0.353192 precision_macro 0.240667 f1_macro 0.278231 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-9 {color: black;background-color: white;}#sk-container-id-9 pre{padding: 0;}#sk-container-id-9 div.sk-toggleable {background-color: white;}#sk-container-id-9 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-9 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-9 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-9 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-9 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-9 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-9 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-9 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-9 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-9 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-9 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-9 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-9 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-9 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-9 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-9 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-9 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-9 div.sk-item {position: relative;z-index: 1;}#sk-container-id-9 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-9 div.sk-item::before, #sk-container-id-9 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-9 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-9 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-9 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-9 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-9 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-9 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-9 div.sk-label-container {text-align: center;}#sk-container-id-9 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-9 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-9" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-27" type="checkbox" ><label for="sk-estimator-id-27" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless id True False False ... False False False text False False False ... False True False[2 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=0.1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
TestZee/t5-small-finetuned-custom-wion-test-BIG
TestZee
2022-07-07T10:31:54Z
5
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-07T10:30:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: TestZee/t5-small-finetuned-custom-wion-test-BIG results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TestZee/t5-small-finetuned-custom-wion-test-BIG This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1165 - Validation Loss: 0.4609 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9622 | 0.8875 | 0 | | 1.9276 | 0.8601 | 1 | | 1.8301 | 0.8342 | 2 | | 1.7776 | 0.8104 | 3 | | 1.7345 | 0.7878 | 4 | | 1.7733 | 0.7660 | 5 | | 1.5626 | 0.7448 | 6 | | 1.6111 | 0.7245 | 7 | | 1.6754 | 0.7050 | 8 | | 1.5030 | 0.6867 | 9 | | 1.5101 | 0.6696 | 10 | | 1.4328 | 0.6536 | 11 | | 1.4311 | 0.6383 | 12 | | 1.3917 | 0.6232 | 13 | | 1.4102 | 0.6071 | 14 | | 1.3732 | 0.5948 | 15 | | 1.3468 | 0.5828 | 16 | | 1.2817 | 0.5712 | 17 | | 1.2920 | 0.5600 | 18 | | 1.2696 | 0.5491 | 19 | | 1.2552 | 0.5385 | 20 | | 1.1859 | 0.5285 | 21 | | 1.1995 | 0.5188 | 22 | | 1.1690 | 0.5094 | 23 | | 1.1678 | 0.5003 | 24 | | 1.1420 | 0.4916 | 25 | | 1.0959 | 0.4830 | 26 | | 1.0848 | 0.4750 | 27 | | 1.1248 | 0.4677 | 28 | | 1.1165 | 0.4609 | 29 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
hugginglearners/malayalam-blurr-xlm-roberta-base
hugginglearners
2022-07-07T10:17:28Z
0
2
fastai
[ "fastai", "text-generation", "ml", "dataset:rajeshradhakrishnan/malayalam_wiki", "region:us" ]
text-generation
2022-07-06T11:10:26Z
--- tags: - fastai - text-generation language: ml widget: - text: "ഓഹരി വിപണി തകരുമ്പോള്‍ നിക്ഷേപം എങ്ങനെ സുരക്ഷിതമാക്കാം" example_title: "Malayalam Casual Language Model" datasets: - rajeshradhakrishnan/malayalam_wiki --- # Blurr x Casual Machine Learning Model trained on Malayalam (മലയാളം) text. (Working in Progress) [![മലയാളം: notebook](https://img.shields.io/badge/മലയാളം%20-notebook-green.svg)](https://nbviewer.org/github/rajeshradhakrishnanmvk/kitchen2.0/blob/main/ml/malayalam_blurr_xlm_roberta_base.ipynb) --- # malayalam-blurr-xlm-roberta-base (base-sized model) malayalam-blurr-xlm-roberta-base model is pre-trained on [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) using the library [blurr](https://ohmeow.github.io/blurr/) Language Model using fastai x huggingface frameworks. Ref: [Causal Language Modeling](https://ohmeow.github.io/blurr/text-modeling-language-modeling.html#Causal-language-modeling). ## Usage ``` !pip install -Uqq huggingface_hub["fastai"] ohmeow-blurr from huggingface_hub import from_pretrained_fastai learner = from_pretrained_fastai(repo_id) learner.blurr_generate("ബ്‌ളൂർ പഠിക്കാൻ വളെരെ എളുപ്പമാണ് എന്തുകൊണ്ട് എന്നാൽ", max_length=50, do_sample=True, top_k=25) ``` ## Intended uses & limitations It's not fine tuned to the state of the art accuracy ## Training and evaluation data [Wiki 2020 Malayalam Dataset ](https://huggingface.co/datasets/rajeshradhakrishnan/malayalam_wiki)
osanseviero/ppo-LunarLander-v11
osanseviero
2022-07-07T09:43:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T09:42:42Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -115.46 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
huggingtweets/marsajal
huggingtweets
2022-07-07T09:42:16Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: http://www.huggingtweets.com/marsajal/1657186931820/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463196823728771079/wZc0m7cd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ajeng🦦</div> <div style="text-align: center; font-size: 14px;">@marsajal</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ajeng🦦. | Data | ajeng🦦 | | --- | --- | | Tweets downloaded | 214 | | Retweets | 37 | | Short tweets | 41 | | Tweets kept | 136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kdiymty/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsajal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsajal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
osanseviero/ppo-LunarLander-v9
osanseviero
2022-07-07T09:37:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T09:36:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -30.40 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
osanseviero/ppo-LunarLander-v6
osanseviero
2022-07-07T09:29:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T09:07:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -443.18 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53
gary109
2022-07-07T09:10:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-01T03:42:00Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.8797 - Wer: 0.5513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.9613 | 1.0 | 2309 | 1.0171 | 0.7271 | | 0.8254 | 2.0 | 4618 | 0.9771 | 0.6650 | | 0.7406 | 3.0 | 6927 | 0.9174 | 0.6420 | | 0.74 | 4.0 | 9236 | 0.9551 | 0.6371 | | 0.5855 | 5.0 | 11545 | 0.9262 | 0.6453 | | 0.5536 | 6.0 | 13854 | 0.9056 | 0.5894 | | 0.505 | 7.0 | 16163 | 0.9166 | 0.6029 | | 0.449 | 8.0 | 18472 | 0.8816 | 0.5873 | | 0.4219 | 9.0 | 20781 | 0.8970 | 0.5589 | | 0.5764 | 10.0 | 23090 | 0.9189 | 0.5649 | | 0.5075 | 11.0 | 25399 | 0.8797 | 0.5513 | | 0.4366 | 12.0 | 27708 | 0.9011 | 0.5567 | | 0.4915 | 13.0 | 30017 | 0.9248 | 0.5455 | | 0.3554 | 14.0 | 32326 | 0.9309 | 0.5374 | | 0.3975 | 15.0 | 34635 | 0.9103 | 0.5259 | | 0.4119 | 16.0 | 36944 | 0.9402 | 0.5290 | | 0.267 | 17.0 | 39253 | 0.9479 | 0.5115 | | 0.3107 | 18.0 | 41562 | 0.9428 | 0.5099 | | 0.2684 | 19.0 | 43871 | 0.9508 | 0.5133 | | 0.2125 | 20.0 | 46180 | 0.9737 | 0.5097 | | 0.3149 | 21.0 | 48489 | 0.9992 | 0.5095 | | 0.2313 | 22.0 | 50798 | 1.0037 | 0.5059 | | 0.2674 | 23.0 | 53107 | 1.0091 | 0.5040 | | 0.2056 | 24.0 | 55416 | 1.0082 | 0.5076 | | 0.2781 | 25.0 | 57725 | 1.0160 | 0.5015 | | 0.2005 | 26.0 | 60034 | 1.0390 | 0.5131 | | 0.2221 | 27.0 | 62343 | 1.0401 | 0.5074 | | 0.1857 | 28.0 | 64652 | 1.0484 | 0.5096 | | 0.1562 | 29.0 | 66961 | 1.0516 | 0.5064 | | 0.3027 | 30.0 | 69270 | 1.0543 | 0.5049 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
m-newhauser/distilbert-political-tweets
m-newhauser
2022-07-07T09:07:44Z
75
23
transformers
[ "transformers", "pytorch", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "en", "dataset:m-newhauser/senator-tweets", "license:lgpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en license: lgpl-3.0 library_name: transformers tags: - text-classification - transformers - pytorch - generated_from_keras_callback metrics: - accuracy - f1 datasets: - m-newhauser/senator-tweets widget: - text: "This pandemic has shown us clearly the vulgarity of our healthcare system. Highest costs in the world, yet not enough nurses or doctors. Many millions uninsured, while insurance company profits soar. The struggle continues. Healthcare is a human right. Medicare for all." example_title: "Bernie Sanders (D)" - text: "Team Biden would rather fund the Ayatollah's Death to America regime than allow Americans to produce energy for our own domestic consumption." example_title: "Ted Cruz (R)" --- # distilbert-political-tweets 🗣 🇺🇸 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [m-newhauser/senator-tweets](https://huggingface.co/datasets/m-newhauser/senator-tweets) dataset, which contains all tweets made by United States senators during the first year of the Biden Administration. It achieves the following results on the evaluation set: * Accuracy: 0.9076 * F1: 0.9117 ## Model description The goal of this model is to classify short pieces of text as having either Democratic or Republican sentiment. The model was fine-tuned on 99,693 tweets (51.6% Democrat, 48.4% Republican) made by US senators in 2021. Model accuracy may not hold up on pieces of text longer than a tweet. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: Adam - training_precision: float32 - learning_rate = 5e-5 - num_epochs = 5 ### Framework versions - Transformers 4.16.2 - TensorFlow 2.8.0 - Datasets 1.18.3 - Tokenizers 0.11.6
kalyanavirundhubiryani/Best-Biryani-in-Chennai-Kalyana-virundhu-Biryani
kalyanavirundhubiryani
2022-07-07T09:07:31Z
0
0
null
[ "region:us" ]
null
2022-07-07T08:48:29Z
Kalyana Virundhu Biryani is one of the best biryani in Chennai." We Serve various types of Biryani along with our special side-Dish. Order us"Phone: +91 8939234566 or visit our website https://www.kalyanavirundhubiryani.com/ #biryanifamousinchennai #biryanibestinchennai #chennaibestbiryanihotel #specialbiryaniinchennai #KalyanaVirundhuBiryani
osanseviero/ppo-LunarLander-v5
osanseviero
2022-07-07T08:59:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T08:47:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -479.21 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
osanseviero/ppo-LunarLander-v4
osanseviero
2022-07-07T08:47:35Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-05T19:12:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -247.76 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
avichr/Legal-heBERT_ft
avichr
2022-07-07T07:31:58Z
28
3
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:1911.03090", "arxiv:2010.02559", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-05T06:49:36Z
# Legal-HeBERT Legal-HeBERT is a BERT model for Hebrew legal and legislative domains. It is intended to improve the legal NLP research and tools development in Hebrew. We release two versions of Legal-HeBERT. The first version is a fine-tuned model of [HeBERT](https://github.com/avichaychriqui/HeBERT) applied on legal and legislative documents. The second version uses [HeBERT](https://github.com/avichaychriqui/HeBERT)'s architecture guidlines to train a BERT model from scratch. <br> We continue collecting legal data, examining different architectural designs, and performing tagged datasets and legal tasks for evaluating and to development of a Hebrew legal tools. ## Training Data Our training datasets are: | Name | Hebrew Description | Size (GB) | Documents | Sentences | Words | Notes | |----------------------------------------------------------------------------------------------------------------------------------- |-------------------------------------------------------------------------- |----------- |----------- |------------ |------------- |----------------------------------------- | | The Israeli Law Book | ספר החוקים הישראלי | 0.05 | 2338 | 293352 | 4851063 | | | Judgments of the Supreme Court | מאגר פסקי הדין של בית המשפט העליון | 0.7 | 212348 | 5790138 | 79672415 | | | custody courts | החלטות בתי הדין למשמורת | 2.46 | 169,708 | 8,555,893 | 213,050,492 | | | Law memoranda, drafts of secondary legislation and drafts of support tests that have been distributed to the public for comment | תזכירי חוק, טיוטות חקיקת משנה וטיוטות מבחני תמיכה שהופצו להערות הציבור | 0.4 | 3,291 | 294,752 | 7,218,960 | | | Supervisors of Land Registration judgments | מאגר פסקי דין של המפקחים על רישום המקרקעין | 0.02 | 559 | 67,639 | 1,785,446 | | | Decisions of the Labor Court - Corona | מאגר החלטות בית הדין לעניין שירות התעסוקה – קורונה | 0.001 | 146 | 3505 | 60195 | | | Decisions of the Israel Lands Council | החלטות מועצת מקרקעי ישראל | | 118 | 11283 | 162692 | aggregate file | | Judgments of the Disciplinary Tribunal and the Israel Police Appeals Tribunal | פסקי דין של בית הדין למשמעת ובית הדין לערעורים של משטרת ישראל | 0.02 | 54 | 83724 | 1743419 | aggregate files | | Disciplinary Appeals Committee in the Ministry of Health | ועדת ערר לדין משמעתי במשרד הבריאות | 0.004 | 252 | 21010 | 429807 | 465 files are scanned and didn't parser | | Attorney General's Positions | מאגר התייצבויות היועץ המשפטי לממשלה | 0.008 | 281 | 32724 | 813877 | | | Legal-Opinion of the Attorney General | מאגר חוות דעת היועץ המשפטי לממשלה | 0.002 | 44 | 7132 | 188053 | | | | | | | | | | | total | | 3.665 | 389,139 | 15,161,152 | 309,976,419 | | We thank <b>Yair Gardin</b> for the referring to the governance data, <b>Elhanan Schwarts</b> for collecting and parsing The Israeli law book, and <b>Jonathan Schler</b> for collecting the judgments of the supreme court. ## Training process * Vocabulary size: 50,000 tokens * 4 epochs (1M steps±) * lr=5e-5 * mlm_probability=0.15 * batch size = 32 (for each gpu) * NVIDIA GeForce RTX 2080 TI + NVIDIA GeForce RTX 3090 (1 week training) ### Additional training settings: <b>Fine-tuned [HeBERT](https://github.com/avichaychriqui/HeBERT) model:</b> The first eight layers were freezed (like [Lee et al. (2019)](https://arxiv.org/abs/1911.03090) suggest)<br> <b>Legal-HeBERT trained from scratch:</b> The training process is similar to [HeBERT](https://github.com/avichaychriqui/HeBERT) and inspired by [Chalkidis et al. (2020)](https://arxiv.org/abs/2010.02559) <br> ## How to use The models can be found in huggingface hub and can be fine-tunned to any down-stream task: ``` # !pip install transformers==4.14.1 from transformers import AutoTokenizer, AutoModel model_name = 'avichr/Legal-heBERT_ft' # for the fine-tuned HeBERT model model_name = 'avichr/Legal-heBERT' # for legal HeBERT model trained from scratch tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) from transformers import pipeline fill_mask = pipeline( "fill-mask", model=model_name, ) fill_mask("הקורונה לקחה את [MASK] ולנו לא נשאר דבר.") ``` ## Stay tuned! We are still working on our models and the datasets. We will edit this page as we progress. We are open for collaborations. ## If you used this model please cite us as : Chriqui, Avihay, Yahav, Inbal and Bar-Siman-Tov, Ittai, Legal HeBERT: A BERT-based NLP Model for Hebrew Legal, Judicial and Legislative Texts (June 27, 2022). Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4147127 ``` @article{chriqui2021hebert, title={Legal HeBERT: A BERT-based NLP Model for Hebrew Legal, Judicial and Legislative Texts}, author={Chriqui, Avihay, Yahav, Inbal and Bar-Siman-Tov, Ittai}, journal={SSRN preprint:4147127}, year={2022} } ``` ## Contact us [Avichay Chriqui](mailto:avichayc@mail.tau.ac.il), The Coller AI Lab <br> [Inbal yahav](mailto:inbalyahav@tauex.tau.ac.il), The Coller AI Lab <br> [Ittai Bar-Siman-Tov](mailto:Ittai.Bar-Siman-Tov@biu.ac.il), the BIU Innovation Lab for Law, Data-Science and Digital Ethics <br> Thank you, תודה, شكرا <br>
go2k/q-FrozenLake-v1-4x4-noSlippery
go2k
2022-07-07T05:26:00Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-07T05:25:54Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="go2k/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Evelyn18/distilbert-base-uncased-becasv2-5
Evelyn18
2022-07-07T04:25:27Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:becasv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-07T04:20:19Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becasv2-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becasv2-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 3.0409 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 5.3475 | | No log | 2.0 | 12 | 4.6045 | | No log | 3.0 | 18 | 4.1832 | | No log | 4.0 | 24 | 3.8223 | | No log | 5.0 | 30 | 3.4798 | | No log | 6.0 | 36 | 3.2615 | | No log | 7.0 | 42 | 3.1414 | | No log | 8.0 | 48 | 3.1067 | | No log | 9.0 | 54 | 2.9950 | | No log | 10.0 | 60 | 2.9482 | | No log | 11.0 | 66 | 2.9536 | | No log | 12.0 | 72 | 3.0180 | | No log | 13.0 | 78 | 3.0515 | | No log | 14.0 | 84 | 3.0444 | | No log | 15.0 | 90 | 3.0409 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
qanastek/pos-french-camembert-flair
qanastek
2022-07-06T23:49:12Z
52
3
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "fr", "dataset:qanastek/ANTILLES", "arxiv:1911.03894", "arxiv:1011.4088", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - flair - token-classification - sequence-tagger-model language: fr datasets: - qanastek/ANTILLES widget: - text: "George Washington est allé à Washington" --- # POET: A French Extended Part-of-Speech Tagger - Corpora: [ANTILLES](https://github.com/qanastek/ANTILLES) - Embeddings: [Flair](https://aclanthology.org/C18-1139.pdf) & [CamemBERT](https://arxiv.org/abs/1911.03894) - Sequence Labelling: [Bi-LSTM-CRF](https://arxiv.org/abs/1011.4088) - Number of Epochs: 50 **People Involved** * [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1) * [DUFOUR Richard](https://cv.archives-ouvertes.fr/richard-dufour) (2) **Affiliations** 1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France. 2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France. ## Demo: How to use in Flair Requires [Flair](https://pypi.org/project/flair/): ```pip install flair``` ```python from flair.data import Sentence from flair.models import SequenceTagger # Load the model model = SequenceTagger.load("qanastek/pos-french") sentence = Sentence("George Washington est allé à Washington") # predict tags model.predict(sentence) # print predicted pos tags print(sentence.to_tagged_string()) ``` Output: ![Preview Output](preview.PNG) ## Training data `ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb). Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add linguistic and semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora. We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001. The corpora used for this model is available on [Github](https://github.com/qanastek/ANTILLES) at the [CoNLL-U format](https://universaldependencies.org/format.html). Training data are fed to the model as free language and doesn't pass a normalization phase. Thus, it's made the model case and punctuation sensitive. ## Original Tags ```plain PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ ``` ## New additional POS tags | Abbreviation | Description | Examples | |:--------:|:--------:|:--------:| | PREP | Preposition | de | | AUX | Auxiliary Verb | est | | ADV | Adverb | toujours | | COSUB | Subordinating conjunction | que | | COCO | Coordinating Conjunction | et | | PART | Demonstrative particle | -t | | PRON | Pronoun | qui ce quoi | | PDEMMS | Demonstrative Pronoun - Singular Masculine | ce | | PDEMMP | Demonstrative Pronoun - Plural Masculine | ceux | | PDEMFS | Demonstrative Pronoun - Singular Feminine | cette | | PDEMFP | Demonstrative Pronoun - Plural Feminine | celles | | PINDMS | Indefinite Pronoun - Singular Masculine | tout | | PINDMP | Indefinite Pronoun - Plural Masculine | autres | | PINDFS | Indefinite Pronoun - Singular Feminine | chacune | | PINDFP | Indefinite Pronoun - Plural Feminine | certaines | | PROPN | Proper noun | Houston | | XFAMIL | Last name | Levy | | NUM | Numerical Adjective | trentaine vingtaine | | DINTMS | Masculine Numerical Adjective | un | | DINTFS | Feminine Numerical Adjective | une | | PPOBJMS | Pronoun complements of objects - Singular Masculine | le lui | | PPOBJMP | Pronoun complements of objects - Plural Masculine | eux y | | PPOBJFS | Pronoun complements of objects - Singular Feminine | moi la | | PPOBJFP | Pronoun complements of objects - Plural Feminine | en y | | PPER1S | Personal Pronoun First-Person - Singular | je | | PPER2S | Personal Pronoun Second-Person - Singular | tu | | PPER3MS | Personal Pronoun Third-Person - Singular Masculine | il | | PPER3MP | Personal Pronoun Third-Person - Plural Masculine | ils | | PPER3FS | Personal Pronoun Third-Person - Singular Feminine | elle | | PPER3FP | Personal Pronoun Third-Person - Plural Feminine | elles | | PREFS | Reflexive Pronoun First-Person - Singular | me m' | | PREF | Reflexive Pronoun Third-Person - Singular | se s' | | PREFP | Reflexive Pronoun First / Second-Person - Plural | nous vous | | VERB | Verb | obtient | | VPPMS | Past Participle - Singular Masculine | formulé | | VPPMP | Past Participle - Plural Masculine | classés | | VPPFS | Past Participle - Singular Feminine | appelée | | VPPFP | Past Participle - Plural Feminine | sanctionnées | | DET | Determinant | les l' | | DETMS | Determinant - Singular Masculine | les | | DETFS | Determinant - Singular Feminine | la | | ADJ | Adjective | capable sérieux | | ADJMS | Adjective - Singular Masculine | grand important | | ADJMP | Adjective - Plural Masculine | grands petits | | ADJFS | Adjective - Singular Feminine | française petite | | ADJFP | Adjective - Plural Feminine | légères petites | | NOUN | Noun | temps | | NMS | Noun - Singular Masculine | drapeau | | NMP | Noun - Plural Masculine | journalistes | | NFS | Noun - Singular Feminine | tête | | NFP | Noun - Plural Feminine | ondes | | PREL | Relative Pronoun | qui dont | | PRELMS | Relative Pronoun - Singular Masculine | lequel | | PRELMP | Relative Pronoun - Plural Masculine | lesquels | | PRELFS | Relative Pronoun - Singular Feminine | laquelle | | PRELFP | Relative Pronoun - Plural Feminine | lesquelles | | INTJ | Interjection | merci bref | | CHIF | Numbers | 1979 10 | | SYM | Symbol | € % | | YPFOR | Endpoint | . | | PUNCT | Ponctuation | : , | | MOTINC | Unknown words | Technology Lady | | X | Typos & others | sfeir 3D statu | ## Evaluation results The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/ANTILLES/blob/main/ANTILLES/test.conllu). ```plain Results: - F-score (micro) 0.9797 - F-score (macro) 0.9178 - Accuracy 0.9797 By class: precision recall f1-score support PREP 0.9966 0.9987 0.9976 1483 PUNCT 1.0000 1.0000 1.0000 833 NMS 0.9634 0.9801 0.9717 753 DET 0.9923 0.9984 0.9954 645 VERB 0.9913 0.9811 0.9862 583 NFS 0.9667 0.9839 0.9752 560 ADV 0.9940 0.9821 0.9880 504 PROPN 0.9541 0.8937 0.9229 395 DETMS 1.0000 1.0000 1.0000 362 AUX 0.9860 0.9915 0.9888 355 YPFOR 1.0000 1.0000 1.0000 353 NMP 0.9666 0.9475 0.9570 305 COCO 0.9959 1.0000 0.9980 245 ADJMS 0.9463 0.9385 0.9424 244 DETFS 1.0000 1.0000 1.0000 240 CHIF 0.9648 0.9865 0.9755 222 NFP 0.9515 0.9849 0.9679 199 ADJFS 0.9657 0.9286 0.9468 182 VPPMS 0.9387 0.9745 0.9563 157 COSUB 1.0000 0.9844 0.9921 128 DINTMS 0.9918 0.9918 0.9918 122 XFAMIL 0.9298 0.9217 0.9258 115 PPER3MS 1.0000 1.0000 1.0000 87 ADJMP 0.9294 0.9634 0.9461 82 PDEMMS 1.0000 1.0000 1.0000 75 ADJFP 0.9861 0.9342 0.9595 76 PREL 0.9859 1.0000 0.9929 70 DINTFS 0.9839 1.0000 0.9919 61 PREF 1.0000 1.0000 1.0000 52 PPOBJMS 0.9565 0.9362 0.9462 47 PREFP 0.9778 1.0000 0.9888 44 PINDMS 1.0000 0.9773 0.9885 44 VPPFS 0.8298 0.9750 0.8966 40 PPER1S 1.0000 1.0000 1.0000 42 SYM 1.0000 0.9474 0.9730 38 NOUN 0.8824 0.7692 0.8219 39 PRON 1.0000 0.9677 0.9836 31 PDEMFS 1.0000 1.0000 1.0000 29 VPPMP 0.9286 1.0000 0.9630 26 ADJ 0.9524 0.9091 0.9302 22 PPER3MP 1.0000 1.0000 1.0000 20 VPPFP 1.0000 1.0000 1.0000 19 PPER3FS 1.0000 1.0000 1.0000 18 MOTINC 0.3333 0.4000 0.3636 15 PREFS 1.0000 1.0000 1.0000 10 PPOBJMP 1.0000 0.8000 0.8889 10 PPOBJFS 0.6250 0.8333 0.7143 6 INTJ 0.5000 0.6667 0.5714 6 PART 1.0000 1.0000 1.0000 4 PDEMMP 1.0000 1.0000 1.0000 3 PDEMFP 1.0000 1.0000 1.0000 3 PPER3FP 1.0000 1.0000 1.0000 2 NUM 1.0000 0.3333 0.5000 3 PPER2S 1.0000 1.0000 1.0000 2 PPOBJFP 0.5000 0.5000 0.5000 2 PRELMS 1.0000 1.0000 1.0000 2 PINDFS 0.5000 1.0000 0.6667 1 PINDMP 1.0000 1.0000 1.0000 1 X 0.0000 0.0000 0.0000 1 PINDFP 1.0000 1.0000 1.0000 1 micro avg 0.9797 0.9797 0.9797 10019 macro avg 0.9228 0.9230 0.9178 10019 weighted avg 0.9802 0.9797 0.9798 10019 samples avg 0.9797 0.9797 0.9797 10019 ``` ## BibTeX Citations Please cite the following paper when using this model. ANTILLES corpus and POET taggers: ```latex @inproceedings{labrak:hal-03696042, TITLE = {{ANTILLES: An Open French Linguistically Enriched Part-of-Speech Corpus}}, AUTHOR = {Labrak, Yanis and Dufour, Richard}, URL = {https://hal.archives-ouvertes.fr/hal-03696042}, BOOKTITLE = {{25th International Conference on Text, Speech and Dialogue (TSD)}}, ADDRESS = {Brno, Czech Republic}, PUBLISHER = {{Springer}}, YEAR = {2022}, MONTH = Sep, KEYWORDS = {Part-of-speech corpus ; POS tagging ; Open tools ; Word embeddings ; Bi-LSTM ; CRF ; Transformers}, PDF = {https://hal.archives-ouvertes.fr/hal-03696042/file/ANTILLES_A_freNch_linguisTIcaLLy_Enriched_part_of_Speech_corpus.pdf}, HAL_ID = {hal-03696042}, HAL_VERSION = {v1}, } ``` UD_French-GSD corpora: ```latex @misc{ universaldependencies, title={UniversalDependencies/UD_French-GSD}, url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub}, author={UniversalDependencies} } ``` LIA TAGG: ```latex @techreport{LIA_TAGG, author = {Frédéric Béchet}, title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer}, institution = {Aix-Marseille University & CNRS}, year = {2001} } ``` Flair Embeddings: ```latex @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` ## Acknowledgment This work was financially supported by [Zenidoc](https://zenidoc.fr/)
qanastek/pos-french-camembert
qanastek
2022-07-06T23:48:53Z
19
9
transformers
[ "transformers", "pytorch", "camembert", "token-classification", "Transformers", "sequence-tagger-model", "fr", "dataset:qanastek/ANTILLES", "arxiv:1911.03894", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - Transformers - token-classification - sequence-tagger-model language: fr datasets: - qanastek/ANTILLES widget: - text: "George Washington est allé à Washington" --- # POET: A French Extended Part-of-Speech Tagger - Corpora: [ANTILLES](https://github.com/qanastek/ANTILLES) - Embeddings & Sequence Labelling: [CamemBERT](https://arxiv.org/abs/1911.03894) - Number of Epochs: 115 **People Involved** * [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1) * [DUFOUR Richard](https://cv.archives-ouvertes.fr/richard-dufour) (2) **Affiliations** 1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France. 2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France. ## Demo: How to use in HuggingFace Transformers Requires [transformers](https://pypi.org/project/transformers/): ```pip install transformers``` ```python from transformers import CamembertTokenizer, CamembertForTokenClassification, TokenClassificationPipeline tokenizer = CamembertTokenizer.from_pretrained('qanastek/pos-french-camembert') model = CamembertForTokenClassification.from_pretrained('qanastek/pos-french-camembert') pos = TokenClassificationPipeline(model=model, tokenizer=tokenizer) def make_prediction(sentence): labels = [l['entity'] for l in pos(sentence)] return list(zip(sentence.split(" "), labels)) res = make_prediction("George Washington est allé à Washington") ``` Output: ![Preview Output](preview.PNG) ## Training data `ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb). Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add linguistic and semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora. We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001. The corpora used for this model is available on [Github](https://github.com/qanastek/ANTILLES) at the [CoNLL-U format](https://universaldependencies.org/format.html). Training data are fed to the model as free language and doesn't pass a normalization phase. Thus, it's made the model case and punctuation sensitive. ## Original Tags ```plain PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ ``` ## New additional POS tags | Abbreviation | Description | Examples | |:--------:|:--------:|:--------:| | PREP | Preposition | de | | AUX | Auxiliary Verb | est | | ADV | Adverb | toujours | | COSUB | Subordinating conjunction | que | | COCO | Coordinating Conjunction | et | | PART | Demonstrative particle | -t | | PRON | Pronoun | qui ce quoi | | PDEMMS | Demonstrative Pronoun - Singular Masculine | ce | | PDEMMP | Demonstrative Pronoun - Plural Masculine | ceux | | PDEMFS | Demonstrative Pronoun - Singular Feminine | cette | | PDEMFP | Demonstrative Pronoun - Plural Feminine | celles | | PINDMS | Indefinite Pronoun - Singular Masculine | tout | | PINDMP | Indefinite Pronoun - Plural Masculine | autres | | PINDFS | Indefinite Pronoun - Singular Feminine | chacune | | PINDFP | Indefinite Pronoun - Plural Feminine | certaines | | PROPN | Proper noun | Houston | | XFAMIL | Last name | Levy | | NUM | Numerical Adjective | trentaine vingtaine | | DINTMS | Masculine Numerical Adjective | un | | DINTFS | Feminine Numerical Adjective | une | | PPOBJMS | Pronoun complements of objects - Singular Masculine | le lui | | PPOBJMP | Pronoun complements of objects - Plural Masculine | eux y | | PPOBJFS | Pronoun complements of objects - Singular Feminine | moi la | | PPOBJFP | Pronoun complements of objects - Plural Feminine | en y | | PPER1S | Personal Pronoun First-Person - Singular | je | | PPER2S | Personal Pronoun Second-Person - Singular | tu | | PPER3MS | Personal Pronoun Third-Person - Singular Masculine | il | | PPER3MP | Personal Pronoun Third-Person - Plural Masculine | ils | | PPER3FS | Personal Pronoun Third-Person - Singular Feminine | elle | | PPER3FP | Personal Pronoun Third-Person - Plural Feminine | elles | | PREFS | Reflexive Pronoun First-Person - Singular | me m' | | PREF | Reflexive Pronoun Third-Person - Singular | se s' | | PREFP | Reflexive Pronoun First / Second-Person - Plural | nous vous | | VERB | Verb | obtient | | VPPMS | Past Participle - Singular Masculine | formulé | | VPPMP | Past Participle - Plural Masculine | classés | | VPPFS | Past Participle - Singular Feminine | appelée | | VPPFP | Past Participle - Plural Feminine | sanctionnées | | DET | Determinant | les l' | | DETMS | Determinant - Singular Masculine | les | | DETFS | Determinant - Singular Feminine | la | | ADJ | Adjective | capable sérieux | | ADJMS | Adjective - Singular Masculine | grand important | | ADJMP | Adjective - Plural Masculine | grands petits | | ADJFS | Adjective - Singular Feminine | française petite | | ADJFP | Adjective - Plural Feminine | légères petites | | NOUN | Noun | temps | | NMS | Noun - Singular Masculine | drapeau | | NMP | Noun - Plural Masculine | journalistes | | NFS | Noun - Singular Feminine | tête | | NFP | Noun - Plural Feminine | ondes | | PREL | Relative Pronoun | qui dont | | PRELMS | Relative Pronoun - Singular Masculine | lequel | | PRELMP | Relative Pronoun - Plural Masculine | lesquels | | PRELFS | Relative Pronoun - Singular Feminine | laquelle | | PRELFP | Relative Pronoun - Plural Feminine | lesquelles | | INTJ | Interjection | merci bref | | CHIF | Numbers | 1979 10 | | SYM | Symbol | € % | | YPFOR | Endpoint | . | | PUNCT | Ponctuation | : , | | MOTINC | Unknown words | Technology Lady | | X | Typos & others | sfeir 3D statu | ## Evaluation results The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/ANTILLES/blob/main/ANTILLES/test.conllu). ```plain precision recall f1-score support ADJ 0.9040 0.8828 0.8933 128 ADJFP 0.9811 0.9585 0.9697 434 ADJFS 0.9606 0.9826 0.9715 918 ADJMP 0.9613 0.9357 0.9483 451 ADJMS 0.9561 0.9611 0.9586 952 ADV 0.9870 0.9948 0.9908 1524 AUX 0.9956 0.9964 0.9960 1124 CHIF 0.9798 0.9774 0.9786 1239 COCO 1.0000 0.9989 0.9994 884 COSUB 0.9939 0.9939 0.9939 328 DET 0.9972 0.9972 0.9972 2897 DETFS 0.9990 1.0000 0.9995 1007 DETMS 1.0000 0.9993 0.9996 1426 DINTFS 0.9967 0.9902 0.9934 306 DINTMS 0.9923 0.9948 0.9935 387 INTJ 0.8000 0.8000 0.8000 5 MOTINC 0.5049 0.5827 0.5410 266 NFP 0.9807 0.9675 0.9740 892 NFS 0.9778 0.9699 0.9738 2588 NMP 0.9687 0.9495 0.9590 1367 NMS 0.9759 0.9560 0.9659 3181 NOUN 0.6164 0.8673 0.7206 113 NUM 0.6250 0.8333 0.7143 6 PART 1.0000 0.9375 0.9677 16 PDEMFP 1.0000 1.0000 1.0000 3 PDEMFS 1.0000 1.0000 1.0000 89 PDEMMP 1.0000 1.0000 1.0000 20 PDEMMS 1.0000 1.0000 1.0000 222 PINDFP 1.0000 1.0000 1.0000 3 PINDFS 0.8571 1.0000 0.9231 12 PINDMP 0.9000 1.0000 0.9474 9 PINDMS 0.9286 0.9701 0.9489 67 PINTFS 0.0000 0.0000 0.0000 2 PPER1S 1.0000 1.0000 1.0000 62 PPER2S 0.7500 1.0000 0.8571 3 PPER3FP 1.0000 1.0000 1.0000 9 PPER3FS 1.0000 1.0000 1.0000 96 PPER3MP 1.0000 1.0000 1.0000 31 PPER3MS 1.0000 1.0000 1.0000 377 PPOBJFP 1.0000 0.7500 0.8571 4 PPOBJFS 0.9167 0.8919 0.9041 37 PPOBJMP 0.7500 0.7500 0.7500 12 PPOBJMS 0.9371 0.9640 0.9504 139 PREF 1.0000 1.0000 1.0000 332 PREFP 1.0000 1.0000 1.0000 64 PREFS 1.0000 1.0000 1.0000 13 PREL 0.9964 0.9964 0.9964 277 PRELFP 1.0000 1.0000 1.0000 5 PRELFS 0.8000 1.0000 0.8889 4 PRELMP 1.0000 1.0000 1.0000 3 PRELMS 1.0000 1.0000 1.0000 11 PREP 0.9971 0.9977 0.9974 6161 PRON 0.9836 0.9836 0.9836 61 PROPN 0.9468 0.9503 0.9486 4310 PUNCT 1.0000 1.0000 1.0000 4019 SYM 0.9394 0.8158 0.8732 76 VERB 0.9956 0.9921 0.9938 2273 VPPFP 0.9145 0.9469 0.9304 113 VPPFS 0.9562 0.9597 0.9580 273 VPPMP 0.8827 0.9728 0.9256 147 VPPMS 0.9778 0.9794 0.9786 630 VPPRE 0.0000 0.0000 0.0000 1 X 0.9604 0.9935 0.9766 1073 XFAMIL 0.9386 0.9113 0.9248 1342 YPFOR 1.0000 1.0000 1.0000 2750 accuracy 0.9778 47574 macro avg 0.9151 0.9285 0.9202 47574 weighted avg 0.9785 0.9778 0.9780 47574 ``` ## BibTeX Citations Please cite the following paper when using this model. ANTILLES corpus and POET taggers: ```latex @inproceedings{labrak:hal-03696042, TITLE = {{ANTILLES: An Open French Linguistically Enriched Part-of-Speech Corpus}}, AUTHOR = {Labrak, Yanis and Dufour, Richard}, URL = {https://hal.archives-ouvertes.fr/hal-03696042}, BOOKTITLE = {{25th International Conference on Text, Speech and Dialogue (TSD)}}, ADDRESS = {Brno, Czech Republic}, PUBLISHER = {{Springer}}, YEAR = {2022}, MONTH = Sep, KEYWORDS = {Part-of-speech corpus ; POS tagging ; Open tools ; Word embeddings ; Bi-LSTM ; CRF ; Transformers}, PDF = {https://hal.archives-ouvertes.fr/hal-03696042/file/ANTILLES_A_freNch_linguisTIcaLLy_Enriched_part_of_Speech_corpus.pdf}, HAL_ID = {hal-03696042}, HAL_VERSION = {v1}, } ``` UD_French-GSD corpora: ```latex @misc{ universaldependencies, title={UniversalDependencies/UD_French-GSD}, url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub}, author={UniversalDependencies} } ``` LIA TAGG: ```latex @techreport{LIA_TAGG, author = {Frédéric Béchet}, title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer}, institution = {Aix-Marseille University & CNRS}, year = {2001} } ``` Flair Embeddings: ```latex @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` ## Acknowledgment This work was financially supported by [Zenidoc](https://zenidoc.fr/)
ricardo-filho/bert_base_tcm_teste
ricardo-filho
2022-07-06T23:23:13Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-06T18:05:49Z
--- license: mit tags: - generated_from_trainer model-index: - name: bert_base_tcm_teste results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_base_tcm_teste This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0192 - Criterio Julgamento Precision: 0.7209 - Criterio Julgamento Recall: 0.8942 - Criterio Julgamento F1: 0.7983 - Criterio Julgamento Number: 104 - Data Sessao Precision: 0.6351 - Data Sessao Recall: 0.8545 - Data Sessao F1: 0.7287 - Data Sessao Number: 55 - Modalidade Licitacao Precision: 0.9224 - Modalidade Licitacao Recall: 0.9596 - Modalidade Licitacao F1: 0.9406 - Modalidade Licitacao Number: 421 - Numero Exercicio Precision: 0.8872 - Numero Exercicio Recall: 0.9351 - Numero Exercicio F1: 0.9105 - Numero Exercicio Number: 185 - Objeto Licitacao Precision: 0.2348 - Objeto Licitacao Recall: 0.4576 - Objeto Licitacao F1: 0.3103 - Objeto Licitacao Number: 59 - Valor Objeto Precision: 0.5424 - Valor Objeto Recall: 0.7805 - Valor Objeto F1: 0.64 - Valor Objeto Number: 41 - Overall Precision: 0.7683 - Overall Recall: 0.8971 - Overall F1: 0.8277 - Overall Accuracy: 0.9948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Criterio Julgamento Precision | Criterio Julgamento Recall | Criterio Julgamento F1 | Criterio Julgamento Number | Data Sessao Precision | Data Sessao Recall | Data Sessao F1 | Data Sessao Number | Modalidade Licitacao Precision | Modalidade Licitacao Recall | Modalidade Licitacao F1 | Modalidade Licitacao Number | Numero Exercicio Precision | Numero Exercicio Recall | Numero Exercicio F1 | Numero Exercicio Number | Objeto Licitacao Precision | Objeto Licitacao Recall | Objeto Licitacao F1 | Objeto Licitacao Number | Valor Objeto Precision | Valor Objeto Recall | Valor Objeto F1 | Valor Objeto Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:-----------------------------:|:--------------------------:|:----------------------:|:--------------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------------:|:---------------------------:|:-----------------------:|:---------------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-----------------------:|:-------------------:|:-----------------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.0346 | 0.96 | 2750 | 0.0329 | 0.6154 | 0.8462 | 0.7126 | 104 | 0.5495 | 0.9091 | 0.6849 | 55 | 0.8482 | 0.9287 | 0.8866 | 421 | 0.7438 | 0.9730 | 0.8431 | 185 | 0.0525 | 0.3220 | 0.0903 | 59 | 0.4762 | 0.7317 | 0.5769 | 41 | 0.5565 | 0.8763 | 0.6807 | 0.9880 | | 0.0309 | 1.92 | 5500 | 0.0322 | 0.6694 | 0.7788 | 0.72 | 104 | 0.5976 | 0.8909 | 0.7153 | 55 | 0.9178 | 0.9549 | 0.9360 | 421 | 0.8211 | 0.8432 | 0.8320 | 185 | 0.15 | 0.2034 | 0.1727 | 59 | 0.2203 | 0.3171 | 0.26 | 41 | 0.7351 | 0.8243 | 0.7771 | 0.9934 | | 0.0179 | 2.88 | 8250 | 0.0192 | 0.7209 | 0.8942 | 0.7983 | 104 | 0.6351 | 0.8545 | 0.7287 | 55 | 0.9224 | 0.9596 | 0.9406 | 421 | 0.8872 | 0.9351 | 0.9105 | 185 | 0.2348 | 0.4576 | 0.3103 | 59 | 0.5424 | 0.7805 | 0.64 | 41 | 0.7683 | 0.8971 | 0.8277 | 0.9948 | | 0.0174 | 3.84 | 11000 | 0.0320 | 0.7522 | 0.8173 | 0.7834 | 104 | 0.5741 | 0.5636 | 0.5688 | 55 | 0.8881 | 0.9430 | 0.9147 | 421 | 0.8490 | 0.8811 | 0.8647 | 185 | 0.2436 | 0.3220 | 0.2774 | 59 | 0.5370 | 0.7073 | 0.6105 | 41 | 0.7719 | 0.8370 | 0.8031 | 0.9946 | | 0.0192 | 4.8 | 13750 | 0.0261 | 0.6744 | 0.8365 | 0.7468 | 104 | 0.6190 | 0.7091 | 0.6610 | 55 | 0.9169 | 0.9430 | 0.9297 | 421 | 0.8404 | 0.8541 | 0.8472 | 185 | 0.2059 | 0.3559 | 0.2609 | 59 | 0.5088 | 0.7073 | 0.5918 | 41 | 0.7521 | 0.8451 | 0.7959 | 0.9949 | | 0.0158 | 5.76 | 16500 | 0.0250 | 0.6641 | 0.8173 | 0.7328 | 104 | 0.5610 | 0.8364 | 0.6715 | 55 | 0.9199 | 0.9549 | 0.9371 | 421 | 0.9167 | 0.9514 | 0.9337 | 185 | 0.1912 | 0.4407 | 0.2667 | 59 | 0.4828 | 0.6829 | 0.5657 | 41 | 0.7386 | 0.8821 | 0.8040 | 0.9948 | | 0.0126 | 6.72 | 19250 | 0.0267 | 0.6694 | 0.7981 | 0.7281 | 104 | 0.6386 | 0.9636 | 0.7681 | 55 | 0.8723 | 0.9572 | 0.9128 | 421 | 0.8812 | 0.9622 | 0.9199 | 185 | 0.2180 | 0.4915 | 0.3021 | 59 | 0.5323 | 0.8049 | 0.6408 | 41 | 0.7308 | 0.9006 | 0.8068 | 0.9945 | | 0.0162 | 7.68 | 22000 | 0.0328 | 0.675 | 0.7788 | 0.7232 | 104 | 0.6604 | 0.6364 | 0.6481 | 55 | 0.9263 | 0.9549 | 0.9404 | 421 | 0.8535 | 0.9135 | 0.8825 | 185 | 0.2471 | 0.3559 | 0.2917 | 59 | 0.5091 | 0.6829 | 0.5833 | 41 | 0.7788 | 0.8509 | 0.8133 | 0.9948 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
nateraw/new-modelcard-template-test
nateraw
2022-07-06T19:18:09Z
0
0
null
[ "image-classification", "created-with-modelcards", "en", "arxiv:1910.09700", "license:mit", "region:us" ]
image-classification
2022-07-06T19:17:41Z
--- language: en license: mit tags: - image-classification - created-with-modelcards --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> # Table of Contents 1. [Model Details](#model-details) 2. [Uses](#uses) 3. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 4. [Training Details](#training-details) 5. [Evaluation](#evaluation) 6. [Model Examination](#model-examination) 7. [Environmental Impact](#environmental-impact) 8. [Technical Specifications](#technical-specifications-optional) 9. [Citation](#citation) 10. [Glossary](#glossary-optional) 11. [More Information](#more-information-optional) 12. [Model Card Authors](#model-card-authors-optional) 13. [Model Card Contact](#model-card-contact) 14. [How To Get Started With the Model](#how-to-get-started-with-the-model) # Model Details ## Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [Optional]:** [More Information Needed] - **Model type:** Language model - **Language(s) (NLP):** en - **License:** mit - **Related Models:** [More Information Needed] - **Parent Model:** [More Information Needed] - **Resources for more information:** [More Information Needed] # Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ## Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ## Downstream Use [Optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ## Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] # Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ## Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations. # Training Details ## Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ## Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> ### Preprocessing [More Information Needed] ### Speeds, Sizes, Times <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] # Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ## Testing Data, Factors & Metrics ### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] ### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] ### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ## Results [More Information Needed] # Model Examination [More Information Needed] # Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] # Technical Specifications [optional] ## Model Architecture and Objective [More Information Needed] ## Compute Infrastructure [More Information Needed] ### Hardware [More Information Needed] ### Software [More Information Needed] # Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] # Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] # More Information [optional] [More Information Needed] # Model Card Authors [optional] [More Information Needed] # Model Card Contact [More Information Needed] # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> [More Information Needed] </details>
ManqingLiu/xlm-roberta-base-finetuned-panx-de
ManqingLiu
2022-07-06T18:16:00Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-06T17:02:45Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8627004891366169 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1363 - F1: 0.8627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2539 | 1.0 | 525 | 0.1697 | 0.8179 | | 0.1317 | 2.0 | 1050 | 0.1327 | 0.8516 | | 0.0819 | 3.0 | 1575 | 0.1363 | 0.8627 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
BigTimeCoderSean/q-Taxi-v3
BigTimeCoderSean
2022-07-06T18:13:18Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T18:13:12Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.54 +/- 2.70 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="BigTimeCoderSean/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
wiselinjayajos/t5-end2end-questions-generation-cv-squadV2
wiselinjayajos
2022-07-06T17:20:59Z
26
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-06T02:47:35Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-end2end-questions-generation-cv-squadV2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation-cv-squadV2 This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6703 | 2.17 | 100 | 1.9685 | | 1.9718 | 4.34 | 200 | 1.8541 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bigscience/tr11-176B-logs
bigscience
2022-07-06T17:01:14Z
0
250
null
[ "tensorboard", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zhs", "zht", "zu", "region:us" ]
null
2022-03-03T04:38:09Z
--- language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zhs - zht - zu --- # BigScience Large Language Model Training Training a multilingual 176 billion parameters model in the open ![BigScience Logo](https://assets.website-files.com/6139f3cdcbbff3a68486761d/613cd8997b270da063e230c5_Tekengebied%201-p-500.png) [BigScience](https://bigscience.huggingface.co) is a open and collaborative workshop around the study and creation of very large language models gathering more than 1000 researchers around the worlds. You can find more information on the main website at https://bigscience.huggingface.co. The training of BigScience’s main model started on **March 11, 2022 11:42am PST** and will continue for 3-4 months on 384 A100 80GB GPUs of the Jean Zay public supercomputer You can follow the training at [https://twitter.com/BigScienceLLM](https://twitter.com/BigScienceLLM) or on [the Tensorboards tab above](https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss). ## More information on the model, dataset, hardware, environmental consideration: ### **The model** - 176B parameters decoder-only architecture (GPT-like) - 70 layers - 112 attention heads per layers - hidden dimensionality of 14336 - 2048 tokens sequence length - ALiBi positional embeddings - GeLU activation function - **More information**: - Blog post summarizing how the architecture, size, shape, and pre-training duration where selected: [https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours](https://bigscience.huggingface.co/blog/what-language-model-to-train-if-you-have-two-million-gpu-hours) - More details on the architecture/optimizer: [https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml) ### **The dataset** - Multilingual: 46 languages: Full list is here: [https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling](https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling) - 341.6 billion tokens (1.5 TB of text data) - Tokenizer vocabulary: 250,680 tokens - More information: - Blog post detailing the design choices during the dataset creation: [https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling](https://bigscience.huggingface.co/blog/building-a-tb-scale-multilingual-dataset-for-language-modeling) ### **The engineering side** - number of GPU used for the training: 384 A100 GPU with 80 GB of memory each - one copy of the model takes 48 GPUs (using 60 GB of memory on each GPU) - checkpoint size: the bf16 weights are 329GB, the full checkpoint with optimizer states is 2.3TB - training throughput: ~150 TFLOPs - estimated training time: 3-4 months depending on throughput and unexpected events - **More information**: - Blog post on the hardware/engineering side: [https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model](https://bigscience.huggingface.co/blog/which-hardware-to-train-a-176b-parameters-model) - Details on the distributed setup used for the training: [https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml) - Tensorboard updated during the training: [https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss](https://huggingface.co/bigscience/tr11-176B-ml-logs/tensorboard#scalars&tagFilter=loss) - Details on the obstacles overcome during the preparation on the engineering side (instabilities, optimization of training throughput, so many technical tricks and questions): [https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md](https://github.com/bigscience-workshop/bigscience/blob/master/train/tr11-176B-ml/chronicles.md) ### **Environmental considerations** - [Jean Zay](http://www.idris.fr/eng/jean-zay/jean-zay-presentation-eng.html), the supercomputer we are using for model training, is mostly powered by nuclear energy, which is a low carbon energy source. - Significant efforts were made to make sure that the computing infrastructure is as efficient as possible — the heat generated by the hardware even gets used for heating buildings on campus! - **More information**: - We are currently working on making a precise estimate of the carbon emitted during all of the steps of model training, including intermediate experiments as well as inference. - More soon!
nawta/wav2vec2-wtimit-finetune
nawta
2022-07-06T16:07:23Z
4
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-06T09:40:28Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-wtimit-finetune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-wtimit-finetune This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0383 - Wer: 0.0160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3743 | 2.82 | 500 | 2.9567 | 1.0 | | 1.866 | 5.65 | 1000 | 0.2856 | 0.2580 | | 0.2005 | 8.47 | 1500 | 0.0979 | 0.0669 | | 0.08 | 11.3 | 2000 | 0.0617 | 0.0325 | | 0.0497 | 14.12 | 2500 | 0.0578 | 0.0284 | | 0.0348 | 16.95 | 3000 | 0.0557 | 0.0239 | | 0.0269 | 19.77 | 3500 | 0.0447 | 0.0212 | | 0.0198 | 22.6 | 4000 | 0.0437 | 0.0177 | | 0.016 | 25.42 | 4500 | 0.0407 | 0.0164 | | 0.014 | 28.25 | 5000 | 0.0383 | 0.0160 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.1+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
saekomdalkom/t5-small-finetuned-xsum
saekomdalkom
2022-07-06T15:25:39Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-06T13:04:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.3577 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4783 - Rouge1: 28.3577 - Rouge2: 7.759 - Rougel: 22.274 - Rougelsum: 22.2869 - Gen Len: 18.8298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.7158 | 1.0 | 12753 | 2.4783 | 28.3577 | 7.759 | 22.274 | 22.2869 | 18.8298 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
cacauvicosa/heart1ohr2x9e-target-classification
cacauvicosa
2022-07-06T15:11:05Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-06T15:11:03Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on heart1ohr2x9e to apply classification on target **Metrics of the best model:** accuracy 0.885854 average_precision 0.949471 roc_auc 0.050633 recall_macro 0.885324 f1_macro 0.885610 Name: LogisticRegression(class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:** <style>#sk-container-id-8 {color: black;background-color: white;}#sk-container-id-8 pre{padding: 0;}#sk-container-id-8 div.sk-toggleable {background-color: white;}#sk-container-id-8 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-8 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-8 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-8 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-8 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-8 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-8 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-8 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-8 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-8 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-8 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-8 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-8 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-8 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-8 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-8 div.sk-item {position: relative;z-index: 1;}#sk-container-id-8 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-8 div.sk-item::before, #sk-container-id-8 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-8 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-8 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-8 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-8 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-8 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-8 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-8 div.sk-label-container {text-align: center;}#sk-container-id-8 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-8 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-8" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless age False False False ... False False False sex False False False ... False False False cp False False False ... False False False trestbps True False False ... False False False chol True False False ... False False False fbs False False False ... False False False restecg False Fa...... False False False thalach True False False ... False False False exang False False False ... False False False oldpeak True False False ... False False False slope False False False ... False False False ca False False False ... False False False thal False False False ... False False False[13 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-24" type="checkbox" ><label for="sk-estimator-id-24" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless age False False False ... False False False sex False False False ... False False False cp False False False ... False False False trestbps True False False ... False False False chol True False False ... False False False fbs False False False ... False False False restecg False Fa...... False False False thalach True False False ... False False False exang False False False ... False False False oldpeak True False False ... False False False slope False False False ... False False False ca False False False ... False False False thal False False False ... False False False[13 rows x 7 columns])),(&#x27;logisticregression&#x27;,LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;,max_iter=1000))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-25" type="checkbox" ><label for="sk-estimator-id-25" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless age False False False ... False False False sex False False False ... False False False cp False False False ... False False False trestbps True False False ... False False False chol True False False ... False False False fbs False False False ... False False False restecg False False False ... False False False thalach True False False ... False False False exang False False False ... False False False oldpeak True False False ... False False False slope False False False ... False False False ca False False False ... False False False thal False False False ... False False False[13 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-26" type="checkbox" ><label for="sk-estimator-id-26" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(C=1, class_weight=&#x27;balanced&#x27;, max_iter=1000)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
IsaMaks/distilbert-base-uncased-finetuned-ner
IsaMaks
2022-07-06T14:48:51Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-24T08:41:36Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8874 - Precision: 0.2534 - Recall: 0.3333 - F1: 0.2879 - Accuracy: 0.7603 - True predictions: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - True labels: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | True predictions | True labels | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 2 | 0.9937 | 0.2839 | 0.3072 | 0.2951 | 0.6712 | [0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | | No log | 2.0 | 4 | 0.9155 | 0.2523 | 0.3273 | 0.2850 | 0.7466 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | | No log | 3.0 | 6 | 0.8874 | 0.2534 | 0.3333 | 0.2879 | 0.7603 | [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 2, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bothrajat/q-FrozenLake-v1-4x4-noSlippery
bothrajat
2022-07-06T14:34:51Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-04T12:45:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bothrajat/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
luizapzbn/titanicht_mp88q-Survived-classification
luizapzbn
2022-07-06T13:25:48Z
0
0
sklearn
[ "sklearn", "tabular-classification", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-classification
2022-07-06T13:25:46Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on titanicht_mp88q to apply classification on Survived **Metrics of the best model:** accuracy 0.803597 average_precision 0.801332 roc_auc 0.848079 recall_macro 0.795883 f1_macro 0.793746 Name: DecisionTreeClassifier(class_weight='balanced', max_depth=5), dtype: float64 **See model plot below:** <style>#sk-container-id-7 {color: black;background-color: white;}#sk-container-id-7 pre{padding: 0;}#sk-container-id-7 div.sk-toggleable {background-color: white;}#sk-container-id-7 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-7 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-7 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-7 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-7 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-7 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-7 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-7 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-7 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-7 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-7 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-7 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-7 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-7 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-7 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-7 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-7 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-7 div.sk-item {position: relative;z-index: 1;}#sk-container-id-7 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-7 div.sk-item::before, #sk-container-id-7 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-7 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-7 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-7 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-7 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-7 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-7 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-7 div.sk-label-container {text-align: center;}#sk-container-id-7 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-7 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-7" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Pclass False False False ... False False False Name False False False ... False True False Sex False False False ... False False False Age True False False ... False False False SibSp False False False ... False False False Parch False False False ... False False False Ticket False False False ... False True False Fare True False False ... False False False Cabin False False False ... False True False Embarked False False False ... False False False[10 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=5))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-21" type="checkbox" ><label for="sk-estimator-id-21" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Pclass False False False ... False False False Name False False False ... False True False Sex False False False ... False False False Age True False False ... False False False SibSp False False False ... False False False Parch False False False ... False False False Ticket False False False ... False True False Fare True False False ... False False False Cabin False False False ... False True False Embarked False False False ... False False False[10 rows x 7 columns])),(&#x27;decisiontreeclassifier&#x27;,DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=5))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-22" type="checkbox" ><label for="sk-estimator-id-22" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Pclass False False False ... False False False Name False False False ... False True False Sex False False False ... False False False Age True False False ... False False False SibSp False False False ... False False False Parch False False False ... False False False Ticket False False False ... False True False Fare True False False ... False False False Cabin False False False ... False True False Embarked False False False ... False False False[10 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-23" type="checkbox" ><label for="sk-estimator-id-23" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(class_weight=&#x27;balanced&#x27;, max_depth=5)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
sumitrsch/muril_base_multiconer22_bn
sumitrsch
2022-07-06T12:33:20Z
4
3
transformers
[ "transformers", "pytorch", "bert", "token-classification", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-30T07:24:11Z
--- license: afl-3.0 --- Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track. https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO
srg/outhimar_64-Close-regression
srg
2022-07-06T12:33:04Z
0
4
sklearn
[ "sklearn", "tabular-regression", "baseline-trainer", "license:apache-2.0", "region:us" ]
tabular-regression
2022-07-06T12:33:02Z
--- license: apache-2.0 library_name: sklearn tags: - tabular-regression - baseline-trainer --- ## Baseline Model trained on outhimar_64 to apply regression on Close **Metrics of the best model:** r2 0.999858 neg_mean_squared_error -1.067685 Name: Ridge(alpha=10), dtype: float64 **See model plot below:** <style>#sk-container-id-6 {color: black;background-color: white;}#sk-container-id-6 pre{padding: 0;}#sk-container-id-6 div.sk-toggleable {background-color: white;}#sk-container-id-6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-6 div.sk-item {position: relative;z-index: 1;}#sk-container-id-6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-6 div.sk-item::before, #sk-container-id-6 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-6 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-6 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-6 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-6 div.sk-label-container {text-align: center;}#sk-container-id-6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-6" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Date False False False ... True False False Open True False False ... False False False High True False False ... False False False Low True False False ... False False False Adj Close True False False ... False False False Volume True False False ... False False False[6 rows x 7 columns])),(&#x27;ridge&#x27;, Ridge(alpha=10))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-18" type="checkbox" ><label for="sk-estimator-id-18" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;easypreprocessor&#x27;,EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Date False False False ... True False False Open True False False ... False False False High True False False ... False False False Low True False False ... False False False Adj Close True False False ... False False False Volume True False False ... False False False[6 rows x 7 columns])),(&#x27;ridge&#x27;, Ridge(alpha=10))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-19" type="checkbox" ><label for="sk-estimator-id-19" class="sk-toggleable__label sk-toggleable__label-arrow">EasyPreprocessor</label><div class="sk-toggleable__content"><pre>EasyPreprocessor(types= continuous dirty_float low_card_int ... date free_string useless Date False False False ... True False False Open True False False ... False False False High True False False ... False False False Low True False False ... False False False Adj Close True False False ... False False False Volume True False False ... False False False[6 rows x 7 columns])</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-20" type="checkbox" ><label for="sk-estimator-id-20" class="sk-toggleable__label sk-toggleable__label-arrow">Ridge</label><div class="sk-toggleable__content"><pre>Ridge(alpha=10)</pre></div></div></div></div></div></div></div> **Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt
sumitrsch/Indic-bert_multiconer22_bn
sumitrsch
2022-07-06T12:32:40Z
3
2
transformers
[ "transformers", "pytorch", "albert", "token-classification", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-06T10:07:47Z
--- license: afl-3.0 --- Put this model path in variable best_model_path in first cell of given colab notebook for testing semeval multiconer task for bangla track. https://colab.research.google.com/drive/1P9827acdS7i6eZTi4B0cOms5qLREqvUO
dandelin/vilt-b32-mlm
dandelin
2022-07-06T12:18:37Z
66,336
11
transformers
[ "transformers", "pytorch", "vilt", "fill-mask", "arxiv:2102.03334", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- license: apache-2.0 --- # Vision-and-Language Transformer (ViLT), pre-trained only Vision-and-Language Transformer (ViLT) model pre-trained on GCC+SBU+COCO+VG (200k steps). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Note: this model only includes the language modeling head. Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the raw model for masked language modeling given an image and a piece of text with [MASK] tokens. ### How to use Here is how to use this model in PyTorch: ``` from transformers import ViltProcessor, ViltForMaskedLM import requests from PIL import Image import re url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) text = "a bunch of [MASK] laying on a [MASK]." processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) tl = len(re.findall("\[MASK\]", text)) inferred_token = [text] # gradually fill in the MASK tokens, one by one with torch.no_grad(): for i in range(tl): encoded = processor.tokenizer(inferred_token) input_ids = torch.tensor(encoded.input_ids).to(device) encoded = encoded["input_ids"][0][1:-1] outputs = model(input_ids=input_ids, pixel_values=pixel_values) mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size) # only take into account text features (minus CLS and SEP token) mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :] mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1) # only take into account text mlm_values[torch.tensor(encoded) != 103] = 0 select = mlm_values.argmax().item() encoded[select] = mlm_ids[select].item() inferred_token = [processor.decode(encoded)] selected_token = "" encoded = processor.tokenizer(inferred_token) processor.decode(encoded.input_ids[0], skip_special_tokens=True) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
SiddharthaM/beit-base-patch16-224-pt22k-ft22k-rim_one-new
SiddharthaM
2022-07-06T11:17:32Z
55
0
transformers
[ "transformers", "pytorch", "tensorboard", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-06T10:31:21Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-rim_one-new results: - task: type: image-classification name: Image Classification dataset: type: rimonedl name: RIM ONE DL split: test metrics: - type: f1 value: 0.9197860962566845 name: F1 - task: type: image-classification name: Image Classification dataset: type: rim one name: RIMONEDL split: test metrics: - type: precision value: 0.9247311827956989 name: precision - type: recall value: 0.9148936170212766 name: Recall - type: accuracy value: 0.8972602739726028 name: Accuracy - type: roc_auc value: 0.8901391162029461 name: AUC --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-rim_one-new This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4550 - Accuracy: 0.8767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.73 | 2 | 0.2411 | 0.9178 | | No log | 1.73 | 4 | 0.2182 | 0.8973 | | No log | 2.73 | 6 | 0.3085 | 0.8973 | | No log | 3.73 | 8 | 0.2794 | 0.8973 | | 0.1392 | 4.73 | 10 | 0.2398 | 0.9110 | | 0.1392 | 5.73 | 12 | 0.2925 | 0.8973 | | 0.1392 | 6.73 | 14 | 0.2798 | 0.9110 | | 0.1392 | 7.73 | 16 | 0.2184 | 0.9178 | | 0.1392 | 8.73 | 18 | 0.3007 | 0.9110 | | 0.0416 | 9.73 | 20 | 0.3344 | 0.9041 | | 0.0416 | 10.73 | 22 | 0.3626 | 0.9110 | | 0.0416 | 11.73 | 24 | 0.4842 | 0.8904 | | 0.0416 | 12.73 | 26 | 0.3664 | 0.8973 | | 0.0416 | 13.73 | 28 | 0.3458 | 0.9110 | | 0.0263 | 14.73 | 30 | 0.2810 | 0.9110 | | 0.0263 | 15.73 | 32 | 0.4695 | 0.8699 | | 0.0263 | 16.73 | 34 | 0.3723 | 0.9041 | | 0.0263 | 17.73 | 36 | 0.3447 | 0.9041 | | 0.0263 | 18.73 | 38 | 0.3708 | 0.8904 | | 0.0264 | 19.73 | 40 | 0.4052 | 0.9110 | | 0.0264 | 20.73 | 42 | 0.4492 | 0.9041 | | 0.0264 | 21.73 | 44 | 0.4649 | 0.8904 | | 0.0264 | 22.73 | 46 | 0.4061 | 0.9178 | | 0.0264 | 23.73 | 48 | 0.4136 | 0.9110 | | 0.0139 | 24.73 | 50 | 0.4183 | 0.8973 | | 0.0139 | 25.73 | 52 | 0.4504 | 0.8904 | | 0.0139 | 26.73 | 54 | 0.4368 | 0.8973 | | 0.0139 | 27.73 | 56 | 0.4711 | 0.9110 | | 0.0139 | 28.73 | 58 | 0.3928 | 0.9110 | | 0.005 | 29.73 | 60 | 0.4550 | 0.8767 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
paola-md/recipe-test
paola-md
2022-07-06T10:32:13Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-06T10:27:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.3675 | 1.0 | 16 | 3.0009 | | 3.0062 | 2.0 | 32 | 2.9583 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
kws/q-Taxi-v3
kws
2022-07-06T10:24:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T10:23:57Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="kws/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dnouri/brats_mri_segmentation
dnouri
2022-07-06T09:54:53Z
0
1
null
[ "monai", "arxiv:1810.11654", "region:us" ]
null
2022-07-06T09:13:12Z
--- tags: - monai --- # Model Overview A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation). ## Workflow The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR). - The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c. - The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor. - The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR. ## Data The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html). - Target: 3 tumor subregions - Task: Segmentation - Modality: MRI - Size: 285 3D volumes (4 channels each) The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets. Please run `scripts/prepare_datalist.py` to produce the data list. The command is like: ``` python scripts/prepare_datalist.py --path your-brats18-dataset-path ``` ## Training configuration This model utilized a similar approach described in 3D MRI brain tumor segmentation using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following: - GPU: At least 16GB of GPU memory. - Actual Model Input: 224 x 224 x 144 - AMP: True - Optimizer: Adam - Learning Rate: 1e-4 - Loss: DiceLoss ## Input Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm) 1. Normalizing to unit std with zero mean 2. Randomly cropping to (224, 224, 144) 3. Randomly spatial flipping 4. Randomly scaling and shifting intensity of the volume ## Output Output: 3 channels - Label 0: TC tumor subregion - Label 1: WT tumor subregion - Label 2: ET tumor subregion ## Model Performance The achieved Dice scores on the validation data are: - Tumor core (TC): 0.8559 - Whole tumor (WT): 0.9026 - Enhancing tumor (ET): 0.7905 - Average: 0.8518 ## commands example Execute training: ``` python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf ``` Override the `train` config to execute multi-GPU training: ``` torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf ``` Override the `train` config to execute evaluation with the trained model: ``` python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf ``` Execute inference: ``` python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf ``` # Disclaimer This is an example, not to be used for diagnostic purposes. # References [1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
go2k/TEST2ppo-LunarLander-v2
go2k
2022-07-06T06:26:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-06T06:26:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 200.81 +/- 77.09 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dee4hf/autotrain-deephate2-1093539673
dee4hf
2022-07-06T04:28:59Z
3
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "autotrain", "bn", "dataset:dee4hf/autotrain-data-deephate2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-06T04:25:25Z
--- tags: autotrain language: bn widget: - text: "I love AutoTrain 🤗" datasets: - dee4hf/autotrain-data-deephate2 co2_eq_emissions: 7.663051290039914 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1093539673 - CO2 Emissions (in grams): 7.663051290039914 ## Validation Metrics - Loss: 0.34404119849205017 - Accuracy: 0.8843120070113936 - Macro F1: 0.8771237753798016 - Micro F1: 0.8843120070113936 - Weighted F1: 0.8843498914288083 - Macro Precision: 0.8745249813256932 - Micro Precision: 0.8843120070113936 - Weighted Precision: 0.8854719661321065 - Macro Recall: 0.8812563739901838 - Micro Recall: 0.8843120070113936 - Weighted Recall: 0.8843120070113936 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/dee4hf/autotrain-deephate2-1093539673 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("dee4hf/autotrain-deephate2-1093539673", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("dee4hf/autotrain-deephate2-1093539673", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
miyoung/newProject
miyoung
2022-07-06T01:16:16Z
0
0
null
[ "region:us" ]
null
2022-06-17T04:39:53Z
### What's Hugging Face?!!! https://towardsdatascience.com/whats-hugging-face-122f4e7eb11a Hugging Face is a community and data science platform that provides: Tools that enable users to build, train and deploy ML models based on open source (OS) code and technologies!!!!!.
emilys/twitter-roberta-base-dec2021-WNUT
emilys
2022-07-05T22:26:37Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:wnut_17", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-05T22:21:52Z
--- tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: twitter-roberta-base-dec2021-WNUT results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 args: wnut_17 metrics: - name: Precision type: precision value: 0.7111716621253406 - name: Recall type: recall value: 0.6244019138755981 - name: F1 type: f1 value: 0.664968152866242 - name: Accuracy type: accuracy value: 0.9642789042140724 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # twitter-roberta-base-dec2021-WNUT This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.2152 - Precision: 0.7112 - Recall: 0.6244 - F1: 0.6650 - Accuracy: 0.9643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 1024 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.46 | 25 | 0.2818 | 0.0982 | 0.0383 | 0.0551 | 0.9241 | | No log | 0.93 | 50 | 0.2158 | 0.6181 | 0.4569 | 0.5254 | 0.9480 | | No log | 1.39 | 75 | 0.1930 | 0.6682 | 0.5347 | 0.5940 | 0.9555 | | No log | 1.85 | 100 | 0.1728 | 0.6583 | 0.5646 | 0.6079 | 0.9594 | | No log | 2.31 | 125 | 0.1787 | 0.7050 | 0.5718 | 0.6314 | 0.9619 | | No log | 2.78 | 150 | 0.2051 | 0.6979 | 0.5251 | 0.5993 | 0.9587 | | No log | 3.24 | 175 | 0.1755 | 0.7172 | 0.5945 | 0.6501 | 0.9621 | | No log | 3.7 | 200 | 0.1720 | 0.6943 | 0.6304 | 0.6608 | 0.9645 | | No log | 4.17 | 225 | 0.1873 | 0.7203 | 0.6316 | 0.6730 | 0.9646 | | No log | 4.63 | 250 | 0.1781 | 0.6934 | 0.6196 | 0.6545 | 0.9638 | | No log | 5.09 | 275 | 0.1953 | 0.7040 | 0.6172 | 0.6577 | 0.9631 | | No log | 5.56 | 300 | 0.1953 | 0.7223 | 0.6316 | 0.6739 | 0.9642 | | No log | 6.02 | 325 | 0.1839 | 0.7008 | 0.6471 | 0.6729 | 0.9648 | | No log | 6.48 | 350 | 0.1995 | 0.716 | 0.6423 | 0.6772 | 0.9650 | | No log | 6.94 | 375 | 0.2056 | 0.7251 | 0.6184 | 0.6675 | 0.9640 | | No log | 7.41 | 400 | 0.2044 | 0.7065 | 0.6220 | 0.6616 | 0.9640 | | No log | 7.87 | 425 | 0.2042 | 0.7201 | 0.6400 | 0.6776 | 0.9650 | | No log | 8.33 | 450 | 0.2247 | 0.7280 | 0.6244 | 0.6722 | 0.9638 | | No log | 8.8 | 475 | 0.2060 | 0.7064 | 0.6447 | 0.6742 | 0.9649 | | 0.0675 | 9.26 | 500 | 0.2152 | 0.7112 | 0.6244 | 0.6650 | 0.9643 | | 0.0675 | 9.72 | 525 | 0.2086 | 0.7070 | 0.6495 | 0.6771 | 0.9650 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/distilbert-base-uncased-becas-4
Evelyn18
2022-07-05T21:55:19Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:becasv2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-01T02:20:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - becasv2 model-index: - name: distilbert-base-uncased-becas-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-becas-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 3.1357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 9 | 4.9618 | | No log | 2.0 | 18 | 4.1071 | | No log | 3.0 | 27 | 3.5438 | | No log | 4.0 | 36 | 3.2115 | | No log | 5.0 | 45 | 2.9524 | | No log | 6.0 | 54 | 3.0645 | | No log | 7.0 | 63 | 2.9351 | | No log | 8.0 | 72 | 3.1037 | | No log | 9.0 | 81 | 3.1132 | | No log | 10.0 | 90 | 3.1357 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1