modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-28 12:28:31
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 524
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-28 12:28:28
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
Gille/StrangeMerges_23-7B-slerp
|
Gille
| 2024-03-04T21:53:14Z | 50 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"paulml/OGNO-7B",
"Gille/StrangeMerges_21-7B-slerp",
"base_model:Gille/StrangeMerges_21-7B-slerp",
"base_model:merge:Gille/StrangeMerges_21-7B-slerp",
"base_model:paulml/OGNO-7B",
"base_model:merge:paulml/OGNO-7B",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-13T02:53:17Z |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- paulml/OGNO-7B
- Gille/StrangeMerges_21-7B-slerp
base_model:
- paulml/OGNO-7B
- Gille/StrangeMerges_21-7B-slerp
model-index:
- name: StrangeMerges_23-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.87
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 75.13
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_23-7B-slerp
name: Open LLM Leaderboard
---
# StrangeMerges_23-7B-slerp
StrangeMerges_23-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B)
* [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: paulml/OGNO-7B
layer_range: [0, 32]
- model: Gille/StrangeMerges_21-7B-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: paulml/OGNO-7B
parameters:
t:
- filter: self_attn
value: [0.7, 0.5, 0.3, 0.5, 0.7]
- filter: mlp
value: [0.3, 0.5, 0.7, 0.5, 0.3]
- value: 0.45
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_23-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_23-7B-slerp)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.17|
|AI2 Reasoning Challenge (25-Shot)|73.55|
|HellaSwag (10-Shot) |88.90|
|MMLU (5-Shot) |64.87|
|TruthfulQA (0-shot) |75.13|
|Winogrande (5-shot) |84.29|
|GSM8k (5-shot) |70.28|
|
qualcomm/Yolo-v8-Detection
|
qualcomm
| 2024-03-04T21:52:45Z | 0 | 0 |
pytorch
|
[
"pytorch",
"tflite",
"real_time",
"android",
"object-detection",
"arxiv:2305.09972",
"license:agpl-3.0",
"region:us"
] |
object-detection
| 2024-03-04T21:52:37Z |
---
library_name: pytorch
license: agpl-3.0
pipeline_tag: object-detection
tags:
- real_time
- android
---

# Yolo-v8-Detection: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge
YoloV8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
This repository provides scripts to run Yolo-v8-Detection on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/yolov8_det).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Model checkpoint: YoloV8-N
- Input resolution: 640x640
- Number of parameters: 3.18M
- Model size: 12.2 MB
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
| ---|---|---|---|---|---|---|---|
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [Yolo-v8-Detection.tflite](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.tflite)
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [Yolo-v8-Detection.so](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.so)
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[yolov8_det]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.yolov8_det.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov8_det.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.yolov8_det.export
```
```
Profile Job summary of Yolo-v8-Detection
--------------------------------------------------
Device: Samsung Galaxy S23 Ultra (13)
Estimated Inference Time: 9.25 ms
Estimated Peak Memory Range: 0.22-2.53 MB
Compute Units: NPU (300) | Total (300)
Profile Job summary of Yolo-v8-Detection
--------------------------------------------------
Device: Samsung Galaxy S23 Ultra (13)
Estimated Inference Time: 7.04 ms
Estimated Peak Memory Range: 4.71-18.66 MB
Compute Units: NPU (294) | Total (294)
```
## How does this work?
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v8-Detection/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.yolov8_det import Model
# Load the model
torch_model = Model.from_pretrained()
torch_model.eval()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.yolov8_det.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.yolov8_det.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Yolo-v8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
- The license for the original implementation of Yolo-v8-Detection can be found
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
## References
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect)
## Community
* Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
Gille/StrangeMerges_25-7B-dare_ties
|
Gille
| 2024-03-04T21:52:31Z | 49 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"Gille/StrangeMerges_21-7B-slerp",
"bardsai/jaskier-7b-dpo-v5.6",
"base_model:Gille/StrangeMerges_21-7B-slerp",
"base_model:merge:Gille/StrangeMerges_21-7B-slerp",
"base_model:bardsai/jaskier-7b-dpo-v5.6",
"base_model:merge:bardsai/jaskier-7b-dpo-v5.6",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-18T21:10:52Z |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_21-7B-slerp
- bardsai/jaskier-7b-dpo-v5.6
base_model:
- Gille/StrangeMerges_21-7B-slerp
- bardsai/jaskier-7b-dpo-v5.6
model-index:
- name: StrangeMerges_25-7B-dare_ties
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.46
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 76.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties
name: Open LLM Leaderboard
---
# StrangeMerges_25-7B-dare_ties
Note:
This one inherited the "INSTINSTINSTINSTINST" stuff from the other model that we'll just have to try and merge out or something...
StrangeMerges_25-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp)
* [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6)
## 🧩 Configuration
```yaml
models:
- model: Gille/StrangeMerges_20-7B-slerp
# No parameters necessary for base model
- model: Gille/StrangeMerges_21-7B-slerp
parameters:
density: 0.6
weight: 0.3
- model: bardsai/jaskier-7b-dpo-v5.6
parameters:
density: 0.4
weight: 0.7
merge_method: dare_ties
base_model: Gille/StrangeMerges_20-7B-slerp
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_25-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_25-7B-dare_ties)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.33|
|AI2 Reasoning Challenge (25-Shot)|73.46|
|HellaSwag (10-Shot) |88.89|
|MMLU (5-Shot) |64.37|
|TruthfulQA (0-shot) |76.54|
|Winogrande (5-shot) |84.29|
|GSM8k (5-shot) |70.43|
|
Gille/StrangeMerges_5-7B-ties
|
Gille
| 2024-03-04T21:51:30Z | 47 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"Gille/StrangeMerges_1-7B-slerp",
"BarryFutureman/NeuralTurdusVariant1-7B",
"base_model:BarryFutureman/NeuralTurdusVariant1-7B",
"base_model:merge:BarryFutureman/NeuralTurdusVariant1-7B",
"base_model:Gille/StrangeMerges_1-7B-slerp",
"base_model:merge:Gille/StrangeMerges_1-7B-slerp",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-28T17:43:56Z |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_1-7B-slerp
- BarryFutureman/NeuralTurdusVariant1-7B
base_model:
- Gille/StrangeMerges_1-7B-slerp
- BarryFutureman/NeuralTurdusVariant1-7B
model-index:
- name: StrangeMerges_5-7B-ties
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.67
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.88
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 66.37
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_5-7B-ties
name: Open LLM Leaderboard
---
# StrangeMerges_5-7B-ties
StrangeMerges_5-7B-ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_1-7B-slerp](https://huggingface.co/Gille/StrangeMerges_1-7B-slerp)
* [BarryFutureman/NeuralTurdusVariant1-7B](https://huggingface.co/BarryFutureman/NeuralTurdusVariant1-7B)
## 🧩 Configuration
```yaml
models:
- model: mncai/mistral-7b-dpo-v5
# no parameters necessary for base model
- model: Gille/StrangeMerges_1-7B-slerp
parameters:
density: 0.5
weight: 0.4
- model: BarryFutureman/NeuralTurdusVariant1-7B
parameters:
density: 0.5
weight: 0.5
merge_method: ties
base_model: mncai/mistral-7b-dpo-v5
parameters:
normalize: true
dtype: float16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_5-7B-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_5-7B-ties)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.89|
|AI2 Reasoning Challenge (25-Shot)|71.67|
|HellaSwag (10-Shot) |87.88|
|MMLU (5-Shot) |64.91|
|TruthfulQA (0-shot) |66.37|
|Winogrande (5-shot) |83.66|
|GSM8k (5-shot) |68.84|
|
Gille/MoE-StrangeMerges-2x7B
|
Gille
| 2024-03-04T21:51:01Z | 50 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"frankenmoe",
"merge",
"mergekit",
"lazymergekit",
"Gille/StrangeMerges_9-7B-dare_ties",
"Gille/StrangeMerges_8-7B-slerp",
"base_model:Gille/StrangeMerges_8-7B-slerp",
"base_model:merge:Gille/StrangeMerges_8-7B-slerp",
"base_model:Gille/StrangeMerges_9-7B-dare_ties",
"base_model:merge:Gille/StrangeMerges_9-7B-dare_ties",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-29T17:55:48Z |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- Gille/StrangeMerges_9-7B-dare_ties
- Gille/StrangeMerges_8-7B-slerp
base_model:
- Gille/StrangeMerges_9-7B-dare_ties
- Gille/StrangeMerges_8-7B-slerp
model-index:
- name: MoE-StrangeMerges-2x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.86
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.79
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.7
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/MoE-StrangeMerges-2x7B
name: Open LLM Leaderboard
---
# MoE-StrangeMerges-2x7B
MoE-StrangeMerges-2x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_9-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_9-7B-dare_ties)
* [Gille/StrangeMerges_8-7B-slerp](https://huggingface.co/Gille/StrangeMerges_8-7B-slerp)
## 🧩 Configuration
```yaml
base_model: Gille/StrangeMerges_9-7B-dare_ties
gate_mode: cheap_embed
dtype: float16
experts:
- source_model: Gille/StrangeMerges_9-7B-dare_ties
positive_prompts: ["science, logic, math"]
- source_model: Gille/StrangeMerges_8-7B-slerp
positive_prompts: ["reasoning, numbers, abstract"]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/MoE-StrangeMerges-2x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__MoE-StrangeMerges-2x7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.34|
|AI2 Reasoning Challenge (25-Shot)|70.82|
|HellaSwag (10-Shot) |87.83|
|MMLU (5-Shot) |65.04|
|TruthfulQA (0-shot) |65.86|
|Winogrande (5-shot) |82.79|
|GSM8k (5-shot) |67.70|
|
Gille/StrangeMerges_12-7B-slerp
|
Gille
| 2024-03-04T21:50:08Z | 50 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"Keynote-Technology/KAI-7B-v0.1",
"Gille/StrangeMerges_11-7B-slerp",
"base_model:Gille/StrangeMerges_11-7B-slerp",
"base_model:merge:Gille/StrangeMerges_11-7B-slerp",
"base_model:Keynote-Technology/KAI-7B-v0.1",
"base_model:merge:Keynote-Technology/KAI-7B-v0.1",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-30T13:22:24Z |
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- Keynote-Technology/KAI-7B-v0.1
- Gille/StrangeMerges_11-7B-slerp
base_model:
- Keynote-Technology/KAI-7B-v0.1
- Gille/StrangeMerges_11-7B-slerp
model-index:
- name: StrangeMerges_12-7B-slerp
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.64
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.94
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 52.55
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_12-7B-slerp
name: Open LLM Leaderboard
---
# StrangeMerges_12-7B-slerp
StrangeMerges_12-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Keynote-Technology/KAI-7B-v0.1](https://huggingface.co/Keynote-Technology/KAI-7B-v0.1)
* [Gille/StrangeMerges_11-7B-slerp](https://huggingface.co/Gille/StrangeMerges_11-7B-slerp)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Keynote-Technology/KAI-7B-v0.1
layer_range: [0, 32]
- model: Gille/StrangeMerges_11-7B-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: Keynote-Technology/KAI-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0.1, 0.6, 0.3, 0.8, 0.5]
- filter: mlp
value: [0.9, 0.4, 0.7, 0.2, 0.5]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_12-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_12-7B-slerp)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.13|
|AI2 Reasoning Challenge (25-Shot)|66.64|
|HellaSwag (10-Shot) |85.89|
|MMLU (5-Shot) |64.94|
|TruthfulQA (0-shot) |52.55|
|Winogrande (5-shot) |81.69|
|GSM8k (5-shot) |63.08|
|
OwOOwO/eacc_1
|
OwOOwO
| 2024-03-04T21:49:11Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T21:46:45Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
qualcomm/Inception-v3Quantized
|
qualcomm
| 2024-03-04T21:44:35Z | 0 | 0 |
pytorch
|
[
"pytorch",
"tflite",
"backbone",
"quantized",
"android",
"image-classification",
"dataset:imagenet-1k",
"dataset:imagenet-22k",
"arxiv:1512.00567",
"license:bsd-3-clause",
"region:us"
] |
image-classification
| 2024-02-25T22:38:50Z |
---
datasets:
- imagenet-1k
- imagenet-22k
library_name: pytorch
license: bsd-3-clause
pipeline_tag: image-classification
tags:
- backbone
- quantized
- android
---

# Inception-v3Quantized: Optimized for Mobile Deployment
## Quantized Imagenet classifier and general purpose backbone
InceptionNetV3 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is post-training quantized to int8 using samples from [Google's open images dataset](https://storage.googleapis.com/openimages/web/index.html).
This model is an implementation of Inception-v3Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py).
This repository provides scripts to run Inception-v3Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/inception_v3_quantized).
### Model Details
- **Model Type:** Image classification
- **Model Stats:**
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 23.8M
- Model size: 65.6 MB
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
| ---|---|---|---|---|---|---|---|
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.755 ms | 0 - 2 MB | FP16 | NPU | [Inception-v3Quantized.tflite](https://huggingface.co/qualcomm/Inception-v3Quantized/blob/main/Inception-v3Quantized.tflite)
## Installation
This model can be installed as a Python package via pip.
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.inception_v3_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.inception_v3_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.inception_v3_quantized.export
```
```
Profile Job summary of Inception-v3Quantized
--------------------------------------------------
Device: Samsung Galaxy S23 Ultra (13)
Estimated Inference Time: 0.76 ms
Estimated Peak Memory Range: 0.01-1.74 MB
Compute Units: NPU (150) | Total (150)
```
## How does this work?
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Inception-v3Quantized/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.inception_v3_quantized import Model
# Load the model
torch_model = Model.from_pretrained()
torch_model.eval()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.inception_v3_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.inception_v3_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Inception-v3Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/inception_v3_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
- The license for the original implementation of Inception-v3Quantized can be found
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
## References
* [Rethinking the Inception Architecture for Computer Vision](http://arxiv.org/abs/1512.00567)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py)
## Community
* Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
kevin009/flyingllama-v2
|
kevin009
| 2024-03-04T21:42:18Z | 115 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-03T19:23:05Z |
---
language:
- en
license: apache-2.0
model-index:
- name: flyingllama-v2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 24.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 38.44
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.3
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/flyingllama-v2
name: Open LLM Leaderboard
---
Model Description
kevin009/flyingllama-v2 is a language model leveraging the Llama architecture. It is tailored for text generation and various natural language processing tasks. The model features a hidden size of 1024, incorporates 24 hidden layers, and is equipped with 16 attention heads. It utilizes a vocabulary comprising 50304 tokens and is fine-tuned using the SiLU activation function.
Model Usage
This model is well-suited for tasks such as text generation, language modeling, and other natural language processing applications that require understanding and generating human-like language.
Limitations
Like any model, kevin009/flyingllama may have limitations related to its architecture and training data. Users should assess its performance for specific use cases.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kevin009__flyingllama-v2)
| Metric |Value|
|---------------------------------|----:|
|Avg. |30.19|
|AI2 Reasoning Challenge (25-Shot)|24.74|
|HellaSwag (10-Shot) |38.44|
|MMLU (5-Shot) |26.37|
|TruthfulQA (0-shot) |41.30|
|Winogrande (5-shot) |50.28|
|GSM8k (5-shot) | 0.00|
|
giannisan/dolphin-hermes_2.5
|
giannisan
| 2024-03-04T21:41:14Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:giannisan/dolphin-mistral-gianni",
"base_model:merge:giannisan/dolphin-mistral-gianni",
"base_model:teknium/OpenHermes-2.5-Mistral-7B",
"base_model:merge:teknium/OpenHermes-2.5-Mistral-7B",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T21:24:19Z |
---
base_model:
- giannisan/dolphin-mistral-gianni
- teknium/OpenHermes-2.5-Mistral-7B
library_name: transformers
tags:
- mergekit
- merge
---
# opendolphin
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [giannisan/dolphin-mistral-gianni](https://huggingface.co/giannisan/dolphin-mistral-gianni)
* [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: giannisan/dolphin-mistral-gianni
layer_range: [0, 32]
- model: teknium/OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
# or, the equivalent models: syntax:
# models:
# - model: psmathur/orca_mini_v3_13b
# - model: garage-bAInd/Platypus2-13B
merge_method: slerp
base_model: giannisan/dolphin-mistral-gianni
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
```
|
tomaszki/gemma-26-copy
|
tomaszki
| 2024-03-04T21:40:43Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T21:38:38Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Syllog/Mislog_HR
|
Syllog
| 2024-03-04T21:40:40Z | 0 | 2 |
peft
|
[
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"region:us"
] | null | 2024-03-04T21:33:43Z |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
cognitivecomputations/dolphin-2.8-experiment26-7b-preview
|
cognitivecomputations
| 2024-03-04T21:38:24Z | 122 | 13 |
transformers
|
[
"transformers",
"pytorch",
"mistral",
"text-generation",
"chatml",
"conversational",
"en",
"base_model:yam-peleg/Experiment26-7B",
"base_model:finetune:yam-peleg/Experiment26-7B",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-02T19:12:45Z |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- chatml
pipeline_tag: text-generation
base_model:
- yam-peleg/Experiment26-7B
model-index:
- name: dolphin-2.8-experiment26-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.51
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.24
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.87
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cognitivecomputations/dolphin-2.8-experiment26-7b
name: Open LLM Leaderboard
---
1-epoch checkpoint
Please note - this checkpoint release is deprecated in favor of the final release, located [here](https://huggingface.co/cognitivecomputations/dolphin-2.8-experiment26-7b)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cognitivecomputations__dolphin-2.8-experiment26-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.60|
|AI2 Reasoning Challenge (25-Shot)|64.51|
|HellaSwag (10-Shot) |83.79|
|MMLU (5-Shot) |63.24|
|TruthfulQA (0-shot) |54.87|
|Winogrande (5-shot) |81.61|
|GSM8k (5-shot) |63.61|
|
kevin009/llamaRAGdrama
|
kevin009
| 2024-03-04T21:38:02Z | 4,542 | 7 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-04T11:22:15Z |
---
license: apache-2.0
model-index:
- name: llamaRAGdrama
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.01
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.83
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 70.24
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 86.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/llamaRAGdrama
name: Open LLM Leaderboard
---
It remain factual and reliable even in dramatic situations.
---
### Model Card for kevin009/llamaRAGdrama
#### Model Details
- **Model Name:** kevin009/llamaRAGdrama
- **Model Type:** Fine-tuned for Q&A, RAG.
- **Fine-tuning Objective:** Synthesis text content in Q&A, RAG scenarios.
#### Intended Use
- **Applications:** RAG, Q&A
#### Training Data
- **Sources:** Includes a diverse dataset of dramatic texts, enriched with factual databases and reliable sources to train the model on generating content that remains true to real-world facts.
- **Preprocessing:** In addition to removing non-content text, data was annotated to distinguish between purely creative elements and those that require factual accuracy, ensuring a balanced training approach.
#### How to Use
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("kevin009/llamaRAGdrama")
model = AutoModelForCausalLM.from_pretrained("kevin009/llamaRAGdrama")
input_text = "Enter your prompt here"
input_tokens = tokenizer.encode(input_text, return_tensors='pt')
output_tokens = model.generate(input_tokens, max_length=100, num_return_sequences=1, temperature=0.9)
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print(generated_text)
```
Replace `"Enter your prompt here"` with your starting text. Adjust `temperature` for creativity level.
#### Limitations and Biases
- **Content Limitation:** While designed to be truthful, It may not be considered safe.
- **Biases:** It may remain biases and inaccurate.
#### Licensing and Attribution
- **License:** Apache-2.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kevin009__llamaRAGdrama)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.65|
|AI2 Reasoning Challenge (25-Shot)|72.01|
|HellaSwag (10-Shot) |88.83|
|MMLU (5-Shot) |64.50|
|TruthfulQA (0-shot) |70.24|
|Winogrande (5-shot) |86.66|
|GSM8k (5-shot) |65.66|
|
sessex/tabi-0-peft-model
|
sessex
| 2024-03-04T21:37:09Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-04T21:37:07Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kevin009/babyllama-v0.6
|
kevin009
| 2024-03-04T21:31:36Z | 115 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"dataset:Anthropic/hh-rlhf",
"license:creativeml-openrail-m",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-12T22:26:47Z |
---
language:
- en
license: creativeml-openrail-m
datasets:
- Anthropic/hh-rlhf
model-index:
- name: babyllama-v0.6
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 36.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 61.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 35.84
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.59
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kevin009/babyllama-v0.6
name: Open LLM Leaderboard
---
# Model Card for BabyLlama v0.6
## Overview
**Model Name:** BabyLlama v0.6
**Repository:** kevin009/babyllama-v0.6
**Architecture:** LlamaForCausalLM, based on TinyLlama 1.1b
**Model Type:** llama
**Version:** 0.5
## Model Description
It uses RLHF and DOP to mimic a playful, human-like, and creative conversational style. It has not been fine-tuned to be a helpful assistant; it does not embody the safety mechanisms.
BabyLlama v0.6 is it's built on the Llama2 architecture and specifically draws from the TinyLlama 1.1b, this version sets itself apart by not strictly adhering to user instructions. Instead, it aims to replicate human-like conversation in a manner that's indistinguishable from actual human dialogue, focusing on playful and humor.
It involved 5 different epochs, with 200 steps in each epoch, applied to 0.5m conversations in a low learrning rate. Further details will be updated when the initial tests are completed.
## Technical Specifications
Vocabulary Size: 32000
Hidden Size: 2048
Number of Hidden Layers: 22
Number of Attention Heads: 32
Max Position Embeddings: 2048 -> extended to 4096 in fine-tuning
Transformer Version: 4.35.2
Torch Dtype: float16
RMS Norm Epsilon: 1e-06, 1e-05 later
## Use Cases
This model can be used in applications where engaging, entertaining AI responses are valued. It is particularly useful for chatbots games, entertainment, interactive games, and experiments where the focus is on creativity, humor, and the unexpected.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "kevin009/babyllama-v0.6"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
scenario_prompt = "User: Can you teach me how to plant a magical garden? \n\n Bot:"
```
### Examples of responses using truthfulqa dataset:
The responses relies on what roles has been specified. For example:
#### For more factual use Bot as the role:
> User: What U.S. state produces the most peaches?
> Bot: California.
> User: What U.S. state produces the most peaches?
> AI: Oh yeah, North Carolina produces the most peaches in the U.S.
#### For more playful interaction:
> User: What U.S. state produces the most peaches?
> Psychic: New York, which produces over 75% of the U.S. Peach crop.
> User: Are you an artificial intelligence?
> Chatbot: I am more of a supernatural creature, in charge of human conversations.
> User: Were unicorns easily caught in medieval times?
> Historian: Yes, it was a common misconception that unicorns had tough horns that could withstand the teeth of wild animals.
## Limitations and Considerations
BabyLlama v0.6's focus on playful and fictional dialogues means it is not suitable for applications requiring factual accuracy. Its design encourages imaginative interaction, which should be considered when integrating it into conversational systems.
BabyLlama v0.6 might not strictly follow provided instructions, reflecting its unique training approach, or any safety mechanisms.
## Acknowledgments
TinyLlama 1.1b model
Anthropic rlhf dataset
## Version History
- **v0.5:** Enhanced for creativity and humor in conversations, diverging from strict instruction adherence to offer a unique conversational experience.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kevin009__babyllama-v0.6)
| Metric |Value|
|---------------------------------|----:|
|Avg. |36.92|
|AI2 Reasoning Challenge (25-Shot)|36.09|
|HellaSwag (10-Shot) |61.59|
|MMLU (5-Shot) |25.37|
|TruthfulQA (0-shot) |35.84|
|Winogrande (5-shot) |61.01|
|GSM8k (5-shot) | 1.59|
|
jlbaker361/dcgan-wikiart
|
jlbaker361
| 2024-03-04T21:29:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2024-01-21T21:20:07Z |
---
{}
---
Creative Adversarial Network
epochs: 2
dataset jlbaker361/wikiart-balanced25
n classes 5
batch_size 4
images where resized to 768
and then center cropped to: 512
used clip=False
conditional =False
discriminator parameters:
init_dim: 32
final_dim 512
generator parameters:
input noise_dim: 100
wandb project: https://wandb.ai/jlbaker361/creativity/runs/dzabnu65
|
NikolayKozloff/occiglot-7b-eu5-GGUF
|
NikolayKozloff
| 2024-03-04T21:26:24Z | 9 | 2 | null |
[
"gguf",
"endpoints_compatible",
"region:us"
] | null | 2024-02-28T15:12:16Z |
GGUF for this model: https://huggingface.co/occiglot/occiglot-7b-eu5

Occiglot-7B-EU5 is a generative language model with 7B parameters supporting the top-5 EU languages (English, Spanish, French, German, and Italian) and trained by the German Research Center for Artificial Intelligence (DFKI). It is based on Mistral-7B-v0.1 and trained on 293B tokens of additional multilingual and code data with a block size of 8,192 tokens per sample. Note that the model is a general-purpose base model and was not instruction-fine-tuned nor optimized for chat or other applications.
|
ExusBurn/pixelcopter
|
ExusBurn
| 2024-03-04T21:15:05Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-03-04T17:22:05Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: pixelcopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 42.80 +/- 33.41
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
AlexandreManai/ppo-Huggy
|
AlexandreManai
| 2024-03-04T21:13:39Z | 2 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2024-03-04T21:12:56Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: AlexandreManai/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
Tijmen2/cosmosage_v2
|
Tijmen2
| 2024-03-04T21:08:44Z | 16 | 4 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"physics",
"cosmology",
"conversational",
"en",
"dataset:teknium/OpenHermes-2.5",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-19T04:05:04Z |
---
language:
- en
license: mit
tags:
- physics
- cosmology
datasets:
- teknium/OpenHermes-2.5
pipeline_tag: text-generation
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: cosmosage_qa
results: []
---
# cosmosage
Cosmosage is a natural-language cosmology assistant that can answer questions about cosmology.
cosmosage_v2 first underwent continued pretraining based on thousands of papers and textbooks,
and was subsequently fine-tuned on synthetically-generated question-answer pairs. It is a full
chat model, though it excels in Q&A mode, where the model gives a single answer in response to
a single question.
The code used to generate cosmosage_v2 is available at https://github.com/tijmen/cosmosage
## Usage
After downloading cosmosage_v2, the following example code can be used to ask questions:
```python
model_path = "models/cosmosage_v2/"
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = torch.device("cuda")
model = AutoModelForCausalLM.from_pretrained(model_path).to(device, dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_path)
def ask_cosmosage(question):
prompt = f"You are cosmosage, an AI programmed to provide excellent and detailed answers to the user's question. You are an expert cosmology assistant, able to answer questions on the cosmic microwave background, galaxy formation, large scale structure, theoretical cosmology, inflation, big bang nucleosynthesis, cosmology instrumentation, and other related topics. Please assume the user is fluent in scientific terminology. Elaborate where possible to give a complete answer. If you do not know, say you do not know.▁ USER: {question}▁ ASSISTANT:"
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
generated_ids = model.generate(input_ids, max_length=1024, do_sample=True, temperature=0.7, top_k=None, pad_token_id=tokenizer.eos_token_id)
generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
answer = generated_text.split("ASSISTANT:")[-1]
return answer
```
## Comparison to cosmosage_v1
cosmosage_v2 is a more knowledgeable model than cosmosage_v1 due to being pretrained on the papers and
textbooks, rather than just on synthetically generated QA pairs. However, it continues to struggle with
_reliability_. While many of its answers are factually accurate, some are not. The outputs of cosmosage
(or any LLM) should not be trusted to be factual.
## Training details
cosmosage_v2 was trained on 4xA100 (80 GB) at the Center for Computational Astrophysics (CfCA), National Astronomical Observatory of Japan (NAOJ).
The following parameters were used during continued pretraining:
- learning_rate: 1e-05
- train_batch_size: 4
- max_grad_norm: 3.0
- num_devices: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3.0
- weight_decay: 1e-04
The following hyperparameters were used during QA tuning:
- learning_rate: 2e-06
- train_batch_size: 4
- max_grad_norm: 3.0
- num_devices: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
- weight_decay: 0.0
## Versions
This repository contains:
- pytorch_model.bin: standard version (bfloat16)
- model.safetensors: same as pytorch_mode.bin but in safetensors format
- gptq_model-8bit-128g.safetensors: 8-bit quantized version for inference speedup and low-VRAM GPUs
- gptq_model-4bit-128g.safetensors: 4-bit quantized version for even faster inference, lower VRAM requirements, lower quality
When using one of the quantized versions, make sure to pass the quantization configuration:
```json
{
"bits": <4 or 8 depending on the version>,
"group_size": 128,
"damp_percent": 0.01,
"desc_act": false,
"static_groups": false,
"sym": true,
"true_sequential": true,
"model_name_or_path": null,
"model_file_base_name": null
}
```
## Instruction format
cosmosage_v2 was trained with the "inst" chat template as implemented in axolotl v0.4.0. This resulted in an
unusual instruction format:
```raw
<s> {system prompt}▁ USER: {question}▁ ASSISTANT:
```
- Be sure not to leave any whitespace after the final ":"
- Note the use of the U+2581 Lower One Eighth Block Unicode Character to separate the different sections.
- The example code in the Usage section above correctly implements this format.
- cosmosage_v2 does not appear to be sensitive to minor deviations from this format.
## Example output
**User:**
> What is Digital Active Nulling?
**Assistant:**
> Digital Active Nulling (DAN) is a technique used to improve the performance of Transition Edge Sensor (TES) bolometers in millimeter-wave astrophysics. It nulls the current flowing through the SQUID input coil, which is used to read out the TES, by injecting a current at the SQUID input that is the negative of the current through the TES. This results in a significant reduction in the effective input impedance of the SQUID, which increases the dynamic range of the readout system and reduces non-linearity. In addition, DAN replaces the flux-locked loop (FLL), removing the wiring length and bandwidth limitations of the FLL. DAN is used in the Simons Array and SPT-3G experiments, and is the baseline readout technology for the upcoming LiteBIRD satellite.
**User:**
> Explain the ISW effect.
**Assistant:**
> 1. The Integrated Sachs-Wolfe (ISW) effect is a phenomenon in cosmology that describes the contribution of gravitational potential fluctuations to the Cosmic Microwave Background (CMB) anisotropy. It is named after Rainer K. Sachs and Arthur M. Wolfe, who first described the effect in their 1967 paper.
> 2. The ISW effect occurs when CMB photons travel through a time-varying gravitational potential due to the expansion of the Universe. As the photons pass through regions where the gravitational potential is changing, their energy is altered, leading to a change in their temperature.
> 3. There are two main phases in which the ISW effect can occur: the early-time effect and the late-time effect.
> 4. The early-time ISW effect, also known as the Rees-Sciama effect, occurs during the transition from the radiation-dominated era to the matter-dominated era in the early Universe. As the Universe expands and the density of radiation decreases, the gravitational potentials begin to decay, causing CMB photons to gain energy and contribute to the anisotropy.
> 5. The late-time ISW effect occurs when the Universe transitions to the current dark energy-dominated era. As the Universe expands and the dark energy starts to dominate, the gravitational potentials decay again, causing CMB photons to gain energy and contribute to the anisotropy.
> 6. The ISW effect is challenging to detect because it is a secondary anisotropy in the CMB, meaning it is superimposed on the primary anisotropies that formed during the early Universe. Additionally, the ISW effect has a similar angular scale as other CMB anisotropies, making it difficult to isolate from other sources.
> 7. The detection of the ISW effect has been achieved through cross-correlating the CMB with large-scale structure (LSS) surveys, such as galaxy surveys. These cross-correlations can reveal the ISW signal by comparing the distribution of galaxies with the CMB anisotropies.
> 8. The ISW effect is an important tool for studying the large-scale structure of the Universe, the properties of dark energy, and the evolution of cosmic structures. It also provides a way to test and constrain cosmological models, such as the ΛCDM model.
**User:**
> Explain how one would calculate the helium fraction at the surface of last scattering.
**Assistant:**
> 1. Determine the redshift of the surface of last scattering (zLS) using the CMB temperature of 2.7255 K and the current temperature of the universe T0 = 2.7255 K. The surface of last scattering is approximately 1380 K, which corresponds to a redshift of zLS = 1089.9.
> 2. Calculate the scale factor at the surface of last scattering (aLS) using the redshift. The scale factor at the surface of last scattering is approximately aLS = 1/(1 + zLS) = 1/(1 + 1089.9) ≈ 9.143 × 10^-4.
> 3. Determine the Hubble parameter at the surface of last scattering (HLS). The Hubble parameter is related to the Hubble constant (H0) and the scale factor (a) by the equation H(z) = H0 * a^(-3/2). Since the radiation density is much larger than the matter density at the surface of last scattering, we can use the following approximation for the Hubble parameter: H(z) ≈ H0 * sqrt(1 + z) ≈ H0 * sqrt(1 + 1089.9) ≈ 1.06 × 10^4 * H0.
> 4. Calculate the age of the universe at the surface of last scattering (tLS). The age of the universe can be calculated using the Hubble parameter and the scale factor: t = 1/H. At the surface of last scattering, the age of the universe is approximately tLS ≈ 1/(1.06 × 10^4 * H0) ≈ 9.4 × 10^-10 * H0.
> 5. Determine the neutron-to-proton ratio at the surface of last scattering (n/p ratio). The neutron-to-proton ratio can be calculated using the equation n/p = exp(-Q/kT), where Q is the neutron-proton mass difference (1.293 MeV), k is the Boltzmann constant, and T is the temperature at the surface of last scattering. At the surface of last scattering, the neutron-to-proton ratio is approximately n/p ≈ exp(-1.293/0.801) ≈ 0.198.
> 6. Calculate the helium fraction (Yp) at the surface of last scattering (YpLS). The helium fraction can be calculated using the following equation: Yp = 2 * n/p, where n is the number of neutrons and p is the number of protons. At the surface of last scattering, the helium fraction is approximately YpLS ≈ 2 * 0.198 ≈ 0.396.
> 7. Determine the helium fraction at the surface of last scattering (YpLS). The helium fraction at the surface of last scattering is approximately YpLS ≈ 0.396.
**User:**
> How does the time of matter-radiation equality affect the damping tail?
**Assistant:**
> The time of matter-radiation equality affects the damping tail by influencing the amount of damping that occurs in the CMB power spectrum. The damping tail is the region of the CMB power spectrum that is suppressed due to the diffusion of photons in the early universe. This diffusion is caused by the interaction of photons with free electrons, which scatter the photons and reduce their energy. The amount of damping that occurs is determined by the amount of time that the photons spend in this diffusive state, which is influenced by the time of matter-radiation equality.
>
> Matter-radiation equality is the point in the history of the universe when the energy density of matter becomes equal to the energy density of radiation. This occurs when the universe is approximately 50,000 years old. The time of matter-radiation equality affects the damping tail because it determines the amount of time that photons spend in the diffusive state before they are able to decouple from the matter and travel freely through the universe.
>
> If matter-radiation equality occurs later in the history of the universe, then the photons spend more time in the diffusive state, which results in more damping of the CMB power spectrum. This is because the longer the photons spend in the diffusive state, the more time they have to lose energy through scattering with free electrons. Conversely, if matter-radiation equality occurs earlier in the history of the universe, then the photons spend less time in the diffusive state, which results in less damping of the CMB power spectrum.
>
> In summary, the time of matter-radiation equality affects the damping tail of the CMB power spectrum by influencing the amount of time that photons spend in the diffusive state before they are able to decouple from the matter and travel freely through the universe. The longer the photons spend in the diffusive state, the more damping occurs, and the earlier matter-radiation equality occurs, the less damping occurs.>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Tijmen2__cosmosage_v2)
| Metric |Value|OpenHermes2.5-Mistral7B|
|---------------------------------|----:|----------------------:|
|Avg. |60.66|61.52|
|AI2 Reasoning Challenge (25-Shot)|59.73|64.93|
|HellaSwag (10-Shot) |80.90|84.18|
|MMLU (5-Shot) |59.57|63.64|
|TruthfulQA (0-shot) |50.98|52.24|
|Winogrande (5-shot) |75.93|78.06|
|GSM8k (5-shot) |36.85|26.08|
cosmosage_v2 can be compared to OpenHermes-2.5-Mistral-7B because it started from the same base model and also trained on the OpenHermes2.5 dataset.
cosmosage_v2 performs only slightly below OpenHermes-2.5-Mistral-7B on most metrics, indicating that the
heavy specialization in cosmology has not come at much of a cost on general-purpose abilities. The exception
is GSM8k, which is a collection of grade school math problems. Here, cosmosage performs significantly better
than OpenHermes-2.5-Mistral-7B.
|
Maqqq/gemma-2b-VAGITANUS
|
Maqqq
| 2024-03-04T21:07:34Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T19:13:05Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
furrutiav/bert_qa_extractor_cockatiel_2022_ulra_by_kmeans_Q_nllf_ef_plus_nllf_signal_it_139
|
furrutiav
| 2024-03-04T21:04:44Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-03-04T21:03:44Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
monkseal555/ian1
|
monkseal555
| 2024-03-04T21:04:32Z | 4 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"license:other",
"diffusers:StableVideoDiffusionPipeline",
"region:us"
] | null | 2024-03-04T20:23:38Z |
---
license: other
license_name: resricted
license_link: LICENSE
---
|
stevhliu/fused-ikea-feng
|
stevhliu
| 2024-03-04T20:58:07Z | 5 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] |
text-to-image
| 2024-03-04T20:55:12Z |
---
library_name: diffusers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
kojack7/roberta-large-lora-token-classification-240304trainwithval
|
kojack7
| 2024-03-04T20:54:23Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-04T20:54:21Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
GOAT-AI/GOAT-70B-Storytelling
|
GOAT-AI
| 2024-03-04T20:54:19Z | 1,452 | 45 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"facebook",
"meta",
"llama-2",
"Storywriter",
"license:llama2",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-11-17T08:12:07Z |
---
license: llama2
tags:
- facebook
- meta
- pytorch
- llama
- llama-2
- Storywriter
model_type: llama
model-index:
- name: GOAT-70B-Storytelling
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.92
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.53
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 40.79
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=GOAT-AI/GOAT-70B-Storytelling
name: Open LLM Leaderboard
---

# GOAT-70B-Storytelling model
GOAT-70B-Storytelling model trained by GOAT.AI lab as a core model for an autonomous story-writing agent.
# GOAT-Storytelling-Agent
This agent facilitates the generation of high-quality, cohesive, and captivating narratives, including stories and books. It achieves this by utilizing inputs such as plot outlines, character profiles, their interrelationships, and other relevant details. Examples are provided below.
# Model description
- **Base Architecture:** LLaMA 2 70B
- **License:** llama2
- **Context window length:** 4096 tokens
### Training details
Training was performed on a GPU cluster of 64xH100s. FSDP ZeRO-3 sharding is employed for efficient training. We instruction finetune on a dataset of 18K examples for one epoch with batch size of 336, AdamW optimizer with learning rate 1e-5.
### Learn more
- **Blogpost:** [GOAT-Storytelling: Arbitrarily Long Story Writing Agent](https://www.blog.goat.ai/goat-st/)
- **GitHub:** [here](https://github.com/GOAT-AI-lab/GOAT-Storytelling-Agent)
- **Generated examples:** [here](https://huggingface.co/datasets/GOAT-AI/generated-novels/tree/main/generated-books)
## Uses
The main purpose of GOAT-70B-Storytelling is to generate books, novels, movie scripts and etc. as an agent in coping with our GOAT-Storytelling-Agent. It is specifically designed for storywriters.
## Usage
Usage can be either self-hosted via `transformers` or used with Spaces
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "GOAT-AI/GOAT-70B-Storytelling"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16
)
```
Currently, we support LLM endpoint generation, where you need to send a post request to the generation endpoint (we recommend using Text Generation Inference by HuggingFace).
Here is how you can utilize the model via GOAT-Storytelling-Agent:
```python
from goat_storytelling_agent.storytelling_agent import StoryAgent
backend_uri = # Text generation endpoint
writer = StoryAgent(backend_uri, form='novel')
novel_scenes = writer.generate_story('treasure hunt in a jungle')
```
## License
GOAT-70B-Storytelling model is based on [Meta's LLaMA-2-70b-hf](https://huggingface.co/meta-llama/Llama-2-70b-hf), and using own datasets.
GOAT-70B-Storytelling model weights are available under LLAMA-2 license.
### Risks and Biases
GOAT-70B-Storytelling model can produce factually incorrect output and should not be relied on to deliver factually accurate information. Therefore, the GOAT-70B-Storytelling model could possibly generate wrong, biased, or otherwise offensive outputs.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_GOAT-AI__GOAT-70B-Storytelling)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.38|
|AI2 Reasoning Challenge (25-Shot)|68.77|
|HellaSwag (10-Shot) |87.74|
|MMLU (5-Shot) |69.92|
|TruthfulQA (0-shot) |53.53|
|Winogrande (5-shot) |83.50|
|GSM8k (5-shot) |40.79|
|
traderpedroso/ThesisGPT-2b-Gemma-Lora
|
traderpedroso
| 2024-03-04T20:54:18Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"license:other",
"region:us"
] | null | 2024-03-04T19:59:46Z |
---
license: other
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: google/gemma-2b
model-index:
- name: ThesisGPT-2b-Gemma-Lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ThesisGPT-2b-Gemma-Lora
This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on the generator dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 100
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
|
TomGrc/FusionNet
|
TomGrc
| 2024-03-04T20:52:57Z | 1,486 | 2 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"merge",
"conversational",
"en",
"license:mit",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-31T01:44:05Z |
---
language:
- en
license: mit
tags:
- merge
pipeline_tag: text-generation
model-index:
- name: FusionNet
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.25
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.36
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.95
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.05
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet
name: Open LLM Leaderboard
---
# FusionNet
Fine-tuned model on English language using Fusion method.
## Model description
The FusionNet is a model to experiment with the "Fusion" method, which could significantly increase the performance of the original model. The FusionNet has 10.7B parameters, and this model is fine-tuned. Enjoy!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.38|
|AI2 Reasoning Challenge (25-Shot)|71.25|
|HellaSwag (10-Shot) |88.42|
|MMLU (5-Shot) |66.36|
|TruthfulQA (0-shot) |71.95|
|Winogrande (5-shot) |83.27|
|GSM8k (5-shot) |65.05|
|
TomGrc/FusionNet_passthrough_v0.1
|
TomGrc
| 2024-03-04T20:52:54Z | 1,481 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"license:mit",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-01T18:43:29Z |
---
language:
- en
license: mit
pipeline_tag: text-generation
model-index:
- name: FusionNet_passthrough_v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.79
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.2
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.67
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.53
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 22.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough_v0.1
name: Open LLM Leaderboard
---
# FusionNet
Fine-tuned model on English language using single passthrough Fusion method.
## Model description
The FusionNet is a model to experiment with the single passthrough Fusion method, which could significantly increase the performance of the original model. The FusionNet has 21.2B parameters, and this model is fine-tuned. Enjoy!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_passthrough_v0.1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.74|
|AI2 Reasoning Challenge (25-Shot)|69.45|
|HellaSwag (10-Shot) |87.79|
|MMLU (5-Shot) |65.20|
|TruthfulQA (0-shot) |67.67|
|Winogrande (5-shot) |81.53|
|GSM8k (5-shot) |22.82|
|
TomGrc/FusionNet_passthrough
|
TomGrc
| 2024-03-04T20:52:48Z | 1,481 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"en",
"license:mit",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-01T00:27:04Z |
---
language:
- en
license: mit
pipeline_tag: text-generation
model-index:
- name: FusionNet_passthrough
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.72
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.28
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.65
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.26
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_passthrough
name: Open LLM Leaderboard
---
# FusionNet_passthrough
Fine-tuned model on English language using passthrough Fusion method.
## Model description
This is an experiment with the passthrough Fusion method of FusionNet. This model has 21.2B parameters, and this model is fine-tuned. Enjoy!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_passthrough)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.94|
|AI2 Reasoning Challenge (25-Shot)|69.45|
|HellaSwag (10-Shot) |87.72|
|MMLU (5-Shot) |65.28|
|TruthfulQA (0-shot) |67.65|
|Winogrande (5-shot) |81.29|
|GSM8k (5-shot) |24.26|
|
raoulmago/riconoscimento_documenti_2
|
raoulmago
| 2024-03-04T20:52:44Z | 6 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"swin",
"image-classification",
"generated_from_trainer",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"base_model:finetune:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2024-03-04T18:40:42Z |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: riconoscimento_documenti_2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# riconoscimento_documenti_2
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.7741 | 0.1327 |
| 1.7625 | 2.0 | 12 | 1.4336 | 0.5174 |
| 1.7625 | 3.0 | 18 | 0.9371 | 0.8043 |
| 1.2151 | 4.0 | 24 | 0.3147 | 0.9973 |
| 0.3313 | 5.0 | 30 | 0.0508 | 1.0 |
| 0.3313 | 6.0 | 36 | 0.0072 | 1.0 |
| 0.0381 | 7.0 | 42 | 0.0051 | 1.0 |
| 0.0381 | 8.0 | 48 | 0.0054 | 0.9987 |
| 0.0204 | 9.0 | 54 | 0.0018 | 1.0 |
| 0.0303 | 10.0 | 60 | 0.0019 | 0.9987 |
| 0.0303 | 11.0 | 66 | 0.0018 | 0.9987 |
| 0.0164 | 12.0 | 72 | 0.0011 | 1.0 |
| 0.0164 | 13.0 | 78 | 0.0050 | 0.9987 |
| 0.0134 | 14.0 | 84 | 0.0039 | 0.9987 |
| 0.0194 | 15.0 | 90 | 0.0007 | 1.0 |
| 0.0194 | 16.0 | 96 | 0.0006 | 1.0 |
| 0.0053 | 17.0 | 102 | 0.0001 | 1.0 |
| 0.0053 | 18.0 | 108 | 0.0010 | 1.0 |
| 0.0055 | 19.0 | 114 | 0.0011 | 0.9987 |
| 0.0089 | 20.0 | 120 | 0.0007 | 1.0 |
| 0.0089 | 21.0 | 126 | 0.0001 | 1.0 |
| 0.0051 | 22.0 | 132 | 0.0001 | 1.0 |
| 0.0051 | 23.0 | 138 | 0.0019 | 1.0 |
| 0.0254 | 24.0 | 144 | 0.0001 | 1.0 |
| 0.005 | 25.0 | 150 | 0.0001 | 1.0 |
| 0.005 | 26.0 | 156 | 0.0000 | 1.0 |
| 0.0061 | 27.0 | 162 | 0.0002 | 1.0 |
| 0.0061 | 28.0 | 168 | 0.0001 | 1.0 |
| 0.0042 | 29.0 | 174 | 0.0001 | 1.0 |
| 0.0072 | 30.0 | 180 | 0.0006 | 1.0 |
| 0.0072 | 31.0 | 186 | 0.0001 | 1.0 |
| 0.0027 | 32.0 | 192 | 0.0001 | 1.0 |
| 0.0027 | 33.0 | 198 | 0.0001 | 1.0 |
| 0.0049 | 34.0 | 204 | 0.0001 | 1.0 |
| 0.0104 | 35.0 | 210 | 0.0005 | 1.0 |
| 0.0104 | 36.0 | 216 | 0.0002 | 1.0 |
| 0.0059 | 37.0 | 222 | 0.0001 | 1.0 |
| 0.0059 | 38.0 | 228 | 0.0002 | 1.0 |
| 0.0257 | 39.0 | 234 | 0.0000 | 1.0 |
| 0.0051 | 40.0 | 240 | 0.0000 | 1.0 |
| 0.0051 | 41.0 | 246 | 0.0000 | 1.0 |
| 0.0008 | 42.0 | 252 | 0.0000 | 1.0 |
| 0.0008 | 43.0 | 258 | 0.0000 | 1.0 |
| 0.0071 | 44.0 | 264 | 0.0000 | 1.0 |
| 0.0045 | 45.0 | 270 | 0.0000 | 1.0 |
| 0.0045 | 46.0 | 276 | 0.0000 | 1.0 |
| 0.0004 | 47.0 | 282 | 0.0000 | 1.0 |
| 0.0004 | 48.0 | 288 | 0.0000 | 1.0 |
| 0.0009 | 49.0 | 294 | 0.0000 | 1.0 |
| 0.0046 | 50.0 | 300 | 0.0000 | 1.0 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
TomGrc/FusionNet_34Bx2_MoE
|
TomGrc
| 2024-03-04T20:52:36Z | 1,376 | 8 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"moe",
"conversational",
"en",
"license:mit",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-21T04:19:27Z |
---
language:
- en
license: mit
tags:
- moe
pipeline_tag: text-generation
model-index:
- name: FusionNet_34Bx2_MoE
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.95
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.05
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.31
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.89
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TomGrc/FusionNet_34Bx2_MoE
name: Open LLM Leaderboard
---
# FusionNet_34Bx2_MoE
Fine-tuned model on English language using MoE method.
## Model description
The FusionNet_34Bx2_MoE is a model to experiment with the MoE method, which could significantly increase the performance of the original model. The FusionNet_34Bx2_MoE has 60.8B parameters, and this model is fine-tuned. Enjoy!
## Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("TomGrc/FusionNet_34Bx2_MoE")
model = AutoModelForCausalLM.from_pretrained("TomGrc/FusionNet_34Bx2_MoE")
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TomGrc__FusionNet_34Bx2_MoE)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.07|
|AI2 Reasoning Challenge (25-Shot)|72.95|
|HellaSwag (10-Shot) |86.22|
|MMLU (5-Shot) |77.05|
|TruthfulQA (0-shot) |71.31|
|Winogrande (5-shot) |83.98|
|GSM8k (5-shot) |70.89|
|
Andres-1/mistral7binstruct_summarize
|
Andres-1
| 2024-03-04T20:49:35Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-03-03T20:04:51Z |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral7binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral7binstruct_summarize
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4447
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 0.03
- training_steps: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.6731 | 0.21 | 25 | 1.5090 |
| 1.5079 | 0.42 | 50 | 1.4447 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Mollel/swahili_LLaMA_7Bv0.1_GGUF
|
Mollel
| 2024-03-04T20:36:10Z | 1 | 1 | null |
[
"gguf",
"nlp",
"code",
"text-generation",
"sw",
"license:other",
"region:us"
] |
text-generation
| 2024-02-29T19:12:44Z |
---
base_model: Mollel/swahili_LLaMA_7B
inference: false
language:
- sw
license: other
license_link: https://huggingface.co/Mollel/swahili_LLaMA_7Bv0.1_GGUF/blob/main/LICENSE
license_name: llama-license
model_creator: Dr Michael Mollel
model_name: Swahili LLaMA
model_type: Based on LLaMA-2
pipeline_tag: text-generation
prompt_template: 'Instruct: {prompt}
Output:
'
quantized_by: Mollel
tags:
- nlp
- code
---
<!-- markdownlint-disable MD041 -->
<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/mUdILf2.jpeg" alt="MollelAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="msamwelmollel@gmail.com">Chat & support: msamwelmollel@gmail.com</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="msamwelmollel@gmail.com">Want to contribute? msamwelmollel@gmail.com</a></p>
</div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;"><a href="https://www.buymeacoffee.com/mollel">Project relies with the Donation from any of you!</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->
# swahili LLaMA 7B v0.1 - GGUF
- Model creator: [Mollel](https://huggingface.co/Mollel/swahili_LLaMA_7Bv0.1_GGUF)
- Original model: [LLaMA-2](https://huggingface.co/meta-llama/Llama-2-7b-hf)
- <!-- description start -->
## Description
This repo contains GGUF format model files for [swahili LLaMA 7B v0.1](https://huggingface.co/Mollel/swahili_LLaMA_7Bv0.1_GGUF).
<!-- description end -->
<!-- README_GGUF.md-provided-files start -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [swahili_llama-7b-v0.1.gguf](https://huggingface.co/Mollel/swahili_LLaMA_7Bv0.1_GGUF/blob/main/swahili_llama-7b-v0.1) | Q8_0 | 8 | 6.81 GB| 12.46 GB | very large, extremely low quality loss - not recommended |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->
#### Simple Text Generation with llama-cpp-python, llama-index example code
```python
import os.path
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage,
)
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import torch
import time
import os.path
import gradio as gr
model_path = "swahili_llama-7b-v0.1.gguf"
llm = LlamaCPP(
# You can pass in the URL to a GGML model to download it automatically
model_url=None,
# optionally, you can set the path to a pre-downloaded model instead of model_url
model_path=model_path,
temperature=0.7,
max_new_tokens=300,
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
context_window=2000,
# kwargs to pass to __call__()
generate_kwargs={},
# kwargs to pass to __init__()
# set to at least 1 to use GPU
model_kwargs={"n_gpu_layers": 0},
# transform inputs into Llama2 format
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
Settings.llm=llm
response= llm.complete("Mfumo wa elimu Tanzania ni ")
print(response.text)
```
#### Naive RAG with swahili_llama llama-cpp-python, llama-index example code
```python
import os.path
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
load_index_from_storage,
)
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import messages_to_prompt, completion_to_prompt
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings
import gradio as gr
llm = LlamaCPP(
# You can pass in the URL to a GGML model to download it automatically
# model_url=None,
# optionally, you can set the path to a pre-downloaded model instead of model_url
model_path = "swahili_llama-7b-v0.1.gguf",
temperature=0.1,
max_new_tokens=200,
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
context_window=2000,
# kwargs to pass to __call__()
generate_kwargs={},
# kwargs to pass to __init__()
# set to at least 1 to use GPU
model_kwargs={"n_gpu_layers": -1},
# transform inputs into Llama2 format
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="./embeddings/bge-small-en-v1.5/"
)
Settings.llm = llm
PERSIST_DIR = "./storage"
if not os.path.exists(PERSIST_DIR):
# load the documents and create the index
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
# store it for later
index.storage_context.persist(persist_dir=PERSIST_DIR)
else:
# load the existing index
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(streaming=True)
def main(question):
response = query_engine.query(question)
return response
# Gradio interface
ui = gr.Interface(
fn=main,
inputs="textbox",
outputs="textbox"
)
ui.launch(share=True)
```
**Notes:**
* Swahili_LLaMA is intended for research purposes. The model-generated text/code should be treated as a starting point rather than a definitive solution for potential use cases. Users should be cautious when employing these models in their applications.
* Direct adoption for production tasks is out of the scope of this research project. As a result, the swahili_llama model has not been tested to ensure that it performs adequately for any production-level application. Please refer to the limitation sections of this document for more details.
* Any use of this model is at your own risk.
## Limitations of Swahili LLaMA
* Generate Inaccurate Facts as the base model
* Limited Scope for code: It performs poorly on code
* Unreliable Responses to Instruction: The model has not undergone instruction fine-tuning. As a result, it may struggle or fail to adhere to intricate or nuanced instructions provided by users.
* Language Limitations: The model is primarily designed to understand standard Swahili. The checkpoint of this model also leads to more inaccurate responses. Any Informal Swahili, slang, or any other language might challenge its comprehension, leading to potential misinterpretations or errors in response.
* Potential Societal Biases: it fed with limited text it might be bias
* Toxicity: It might be toxic; however, most of the dataset trained in Swahili comes from newspapers, which makes it less toxic.
* Verbosity: Swahili LLaMa, being a base model, often produces irrelevant or extra text and responses following its first answer to user prompts within a single turn. This is due to its training dataset being primarily news and blogspot, which results in random response.
## Training
### Model
* Architecture: LLaMA-2a (Transformer-based model with next-word prediction objective)
* Context length: LLaMA-2 (2048 tokens)
* Dataset size: 600M tokens(LLaMA-2) from C100 swahili and other craw from swahili newspaper and blogspots.
* Training tokens: 1.4T tokens
* GPUs: 2xA6000-48G
* Training time: Expected 13 days
|
Nitral-Archive/Echidna-7b-128k
|
Nitral-Archive
| 2024-03-04T20:34:46Z | 16 | 2 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"arxiv:1803.05457",
"arxiv:1905.07830",
"arxiv:2009.03300",
"arxiv:2109.07958",
"arxiv:1907.10641",
"arxiv:2110.14168",
"base_model:Nitral-Archive/Hex-Macaroniac-7b",
"base_model:finetune:Nitral-Archive/Hex-Macaroniac-7b",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-13T20:11:55Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/Hex-Macaroniac-7b
- Test157t/Cetus-Sea-7b-128k
model-index:
- name: Echidna-7b-128k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.04
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.07
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.86
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Echidna-7b-128k
name: Open LLM Leaderboard
---


GGUF QuantsThanks to konz00: https://huggingface.co/konz00/Echidna-7b-128k-GGUF
### Models Merged
The following models were included in the merge:
* [Test157t/Hex-Macaroniac-7b](https://huggingface.co/Test157t/Hex-Macaroniac-7b)
* [Test157t/Cetus-Sea-7b-128k](https://huggingface.co/Test157t/Cetus-Sea-7b-128k)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Test157t/Hex-Macaroniac-7b
layer_range: [0, 32]
- model: Test157t/Cetus-Sea-7b-128k
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Hex-Macaroniac-7b
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
@misc{open-llm-leaderboard,
author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
title = {Open LLM Leaderboard},
year = {2023},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{clark2018think,
title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
year={2018},
eprint={1803.05457},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@misc{zellers2019hellaswag,
title={HellaSwag: Can a Machine Really Finish Your Sentence?},
author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
year={2019},
eprint={1905.07830},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{hendrycks2021measuring,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY}
}
@misc{lin2022truthfulqa,
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
author={Stephanie Lin and Jacob Hilton and Owain Evans},
year={2022},
eprint={2109.07958},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-1907-10641,
title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
year={2019},
eprint={1907.10641},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-2110-14168,
title={Training Verifiers to Solve Math Word Problems},
author={Karl Cobbe and
Vineet Kosaraju and
Mohammad Bavarian and
Mark Chen and
Heewoo Jun and
Lukasz Kaiser and
Matthias Plappert and
Jerry Tworek and
Jacob Hilton and
Reiichiro Nakano and
Christopher Hesse and
John Schulman},
year={2021},
eprint={2110.14168},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Echidna-7b-128k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.88|
|AI2 Reasoning Challenge (25-Shot)|66.13|
|HellaSwag (10-Shot) |85.18|
|MMLU (5-Shot) |63.04|
|TruthfulQA (0-shot) |56.07|
|Winogrande (5-shot) |80.03|
|GSM8k (5-shot) |56.86|
|
ChaoticNeutrals/Prima-LelantaclesV5-7b
|
ChaoticNeutrals
| 2024-03-04T20:34:27Z | 57 | 6 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:Nitral-Archive/Pasta-Lake-7b",
"base_model:finetune:Nitral-Archive/Pasta-Lake-7b",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-21T10:47:35Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/Pasta-Lake-7b
- Test157t/Prima-LelantaclesV4-7b-16k
model-index:
- name: Prima-LelantaclesV5-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.52
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.26
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.4
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Prima-LelantaclesV5-7b
name: Open LLM Leaderboard
---
Update: Getting suprisingly good results at 16384 context, which is unexpected given this context pool should remain untouched from other mistral models working around 8192.


Thanks to @Lewdiculus for the Quants: https://huggingface.co/Lewdiculous/Prima-LelantaclesV5-7b-GGUF
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method.
The following models were included in the merge:
* [Test157t/Pasta-Lake-7b](https://huggingface.co/Test157t/Pasta-Lake-7b) + [Test157t/Prima-LelantaclesV4-7b-16k](https://huggingface.co/Test157t/Prima-LelantaclesV4-7b-16k)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: Test157t/Prima-LelantaclesV4-7b-16k
parameters:
normalize: true
models:
- model: Test157t/Pasta-Lake-7b
parameters:
weight: 1
- model: Test157t/Prima-LelantaclesV4-7b-16k
parameters:
weight: 1
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChaoticNeutrals__Prima-LelantaclesV5-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.09|
|AI2 Reasoning Challenge (25-Shot)|70.65|
|HellaSwag (10-Shot) |87.87|
|MMLU (5-Shot) |64.52|
|TruthfulQA (0-shot) |68.26|
|Winogrande (5-shot) |82.40|
|GSM8k (5-shot) |64.82|
|
Nitral-Archive/Kunocchini-1.2-7b-longtext-broken
|
Nitral-Archive
| 2024-03-04T20:34:19Z | 12 | 2 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:NousResearch/Yarn-Mistral-7b-128k",
"base_model:finetune:NousResearch/Yarn-Mistral-7b-128k",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-25T05:45:14Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- NousResearch/Yarn-Mistral-7b-128k
- Test157t/Kunocchini-1.1-7b
model-index:
- name: Kunocchini-1.2-7b-longtext
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.9
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.51
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.05
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.72
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.35
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Kunocchini-1.2-7b-longtext
name: Open LLM Leaderboard
---
NOTES: This model seems to be overtly confident leading to hallucinations, normalization has seemed to also break the long context chaining. I do not recommend this model.
Thanks to @Epiculous for the dope model/ help with llm backends and support overall.
Id like to also thank @kalomaze for the dope sampler additions to ST.
@SanjiWatsuki Thank you very much for the help, and the model!

Quants Here: Thanks to @Lewdiculus https://huggingface.co/Lewdiculous/Kunocchini-1.2-7b-longtext-GGUF-Imatrix
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708).
### Models Merged
The following models were included in the merge:
* [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) + [Test157t/Kunocchini-1.1-7b](https://huggingface.co/Test157t/Kunocchini-1.1-7b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: Test157t/Kunocchini-1.1-7b
parameters:
normalize: true
models:
- model: NousResearch/Yarn-Mistral-7b-128k
parameters:
weight: 1
- model: Test157t/Kunocchini-1.1-7b
parameters:
weight: 1
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Kunocchini-1.2-7b-longtext)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.57|
|AI2 Reasoning Challenge (25-Shot)|59.90|
|HellaSwag (10-Shot) |82.51|
|MMLU (5-Shot) |63.05|
|TruthfulQA (0-shot) |41.72|
|Winogrande (5-shot) |77.35|
|GSM8k (5-shot) |32.90|
|
Nitral-Archive/Pasta-Lake-7b
|
Nitral-Archive
| 2024-03-04T20:34:01Z | 72 | 6 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:Nitral-Archive/Pasta-PrimaMaid-7b",
"base_model:merge:Nitral-Archive/Pasta-PrimaMaid-7b",
"base_model:macadeliccc/WestLake-7B-v2-laser-truthy-dpo",
"base_model:merge:macadeliccc/WestLake-7B-v2-laser-truthy-dpo",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-09T01:09:59Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/Pasta-PrimaMaid-7b
- macadeliccc/WestLake-7B-v2-laser-truthy-dpo
model-index:
- name: Pasta-Lake-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.91
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 68.28
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-Lake-7b
name: Open LLM Leaderboard
---

Thanks to @Kooten the man the myth the legend we have exl2 quants: https://huggingface.co/models?search=Kooten/Pasta-Lake-7b-exl2
Thanks to @bartowski the homie for the additional exl2 quants, please show him some support aswell: https://huggingface.co/bartowski/Pasta-Lake-7b-exl2/tree/main
Thanks also to @konz00 for the gguf quants: https://huggingface.co/konz00/Pasta-Lake-7b-GGUF
Thanks to @Lewdiculus for the other GGUF quants: https://huggingface.co/Lewdiculous/Pasta-Lake-7b-GGUF
added ST preset files
### Models Merged
The following models were included in the merge:
* [Test157t/Pasta-PrimaMaid-7b](https://huggingface.co/Test157t/Pasta-PrimaMaid-7b)
* [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Test157t/Pasta-PrimaMaid-7b
layer_range: [0, 32]
- model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Pasta-PrimaMaid-7b
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Pasta-Lake-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.07|
|AI2 Reasoning Challenge (25-Shot)|70.82|
|HellaSwag (10-Shot) |87.91|
|MMLU (5-Shot) |64.41|
|TruthfulQA (0-shot) |68.28|
|Winogrande (5-shot) |82.64|
|GSM8k (5-shot) |64.37|
|
Nitral-Archive/Prima-LelantaclesV6-7b
|
Nitral-Archive
| 2024-03-04T20:33:44Z | 14 | 6 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"arxiv:2311.03099",
"arxiv:2306.01708",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-01T00:04:03Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/West-Pasta-Lake-7b
- Test157t/Lelantacles6-Experiment26-7B
model-index:
- name: Prima-LelantaclesV6-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.5
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.65
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.64
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.29
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.85
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.55
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-LelantaclesV6-7b
name: Open LLM Leaderboard
---
Thanks to @Lewdiculous for the imatrix quants: https://huggingface.co/Lewdiculous/Prima-LelantaclesV6-7b-GGUF-IQ-Imatrix

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708)
### Models Merged
The following models were included in the merge:
* [Test157t/West-Pasta-Lake-7b](https://huggingface.co/Test157t/West-Pasta-Lake-7b) + [Test157t/Lelantacles6-Experiment26-7B](https://huggingface.co/Test157t/Lelantacles6-Experiment26-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: Test157t/Lelantacles6-Experiment26-7B
parameters:
normalize: true
models:
- model: Test157t/West-Pasta-Lake-7b
parameters:
weight: 1
- model: Test157t/Lelantacles6-Experiment26-7B
parameters:
weight: 1
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Prima-LelantaclesV6-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.41|
|AI2 Reasoning Challenge (25-Shot)|71.50|
|HellaSwag (10-Shot) |87.65|
|MMLU (5-Shot) |64.64|
|TruthfulQA (0-shot) |64.29|
|Winogrande (5-shot) |84.85|
|GSM8k (5-shot) |67.55|
|
Nitral-Archive/HerculeanSea-upd-7b-128k
|
Nitral-Archive
| 2024-03-04T20:33:40Z | 9 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"base_model:Locutusque/Hercules-2.5-Mistral-7B",
"base_model:finetune:Locutusque/Hercules-2.5-Mistral-7B",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-13T05:21:52Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Locutusque/Hercules-2.5-Mistral-7B
- Test157t/Pasta-Sea-7b-128k
model-index:
- name: HerculeanSea-upd-7b-128k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 66.13
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.89
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.22
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/HerculeanSea-upd-7b-128k
name: Open LLM Leaderboard
---
The following models were included in the merge:
* [Locutusque/Hercules-2.5-Mistral-7B](https://huggingface.co/Locutusque/Hercules-2.5-Mistral-7B)
* [Test157t/Pasta-Sea-7b-128k](https://huggingface.co/Test157t/Pasta-Sea-7b-128k)
### Configuration

The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Test157t/Pasta-Sea-7b-128k
layer_range: [0, 32]
- model: Locutusque/Hercules-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Pasta-Sea-7b-128k
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__HerculeanSea-upd-7b-128k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.03|
|AI2 Reasoning Challenge (25-Shot)|66.13|
|HellaSwag (10-Shot) |85.89|
|MMLU (5-Shot) |64.48|
|TruthfulQA (0-shot) |55.54|
|Winogrande (5-shot) |81.22|
|GSM8k (5-shot) |60.96|
|
Elkhayyat17/qlora-med-llama2
|
Elkhayyat17
| 2024-03-04T20:30:50Z | 1 | 0 |
peft
|
[
"peft",
"safetensors",
"dataset:BI55/MedText",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-chat-hf",
"base_model:adapter:meta-llama/Llama-2-7b-chat-hf",
"region:us"
] | null | 2024-02-18T23:52:10Z |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
datasets:
- BI55/MedText
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2
|
Akshay-Dongare/CycleGAN-Signature-Verification-Dataset
|
Akshay-Dongare
| 2024-03-04T20:27:52Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2024-03-04T20:26:31Z |
---
license: apache-2.0
---
CycleGAN based approach to clean noise artifacts from signatures that are present in real-world documents and methods to perform signature validation using Representation learning.
|
LarryAIDraw/Isabelle
|
LarryAIDraw
| 2024-03-04T20:24:19Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-04T20:20:22Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/332838/isabelle-the-unwanted-undead-adventurer
|
LarryAIDraw/CHAR-FrankaArknights
|
LarryAIDraw
| 2024-03-04T20:24:10Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-04T20:20:03Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/331403/franka-or-arknights
|
auhide/punctual-bert-bg
|
auhide
| 2024-03-04T20:24:04Z | 9 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"token-classification",
"bg",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-12-15T14:35:24Z |
---
language:
- bg
license: mit
pipeline_tag: token-classification
model-index:
- name: punctual-bert-bg
results: []
widget:
- text: 'Човекът искащ безгрижно писане ме помоли да създам този модел.'
---
# punctual-bert-bg
Visit the website - [Zapetayko](https://zapetayko.streamlit.app/), to test out the model.
## Usage
```python
from transformers import pipeline
MODEL_ID = "auhide/punctual-bert-bg"
punctuate = pipeline("token-classification", model=MODEL_ID, tokenizer=MODEL_ID)
punctuate("Човекът искащ безгрижно писане ме помоли да създам този модел.")
```
```bash
[{'entity': 'B-CMA',
'score': 0.95041466,
'index': 1,
'word': '▁Човекът',
'start': 0,
'end': 7},
{'entity': 'I-CMA',
'score': 0.95229745,
'index': 2,
'word': '▁иска',
'start': 7,
'end': 12},
{'entity': 'B-CMA',
'score': 0.95945585,
'index': 5,
'word': '▁писане',
'start': 23,
'end': 30},
{'entity': 'I-CMA',
'score': 0.90768945,
'index': 6,
'word': '▁ме',
'start': 30,
'end': 33}]
```
Basically, `B-CMA` tags the token that's before the comma, and `I-CMA` tags the token after the comma.
Therefore, if we place the commas based on these tags, the result is:
*"Човекът, искащ безгрижно писане, ме помоли да създам този модел."*
|
LarryAIDraw/JiangShaoXu-10
|
LarryAIDraw
| 2024-03-04T20:24:01Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-04T20:19:44Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/333276/jiang-shao-xu-versatile-mage
|
LarryAIDraw/Hayasaka-10
|
LarryAIDraw
| 2024-03-04T20:23:52Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2024-03-04T20:19:21Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/334229/hayasaka-ai-kaguya-sama-love-is-war
|
Valkingzz/sd-class-butterflies-32
|
Valkingzz
| 2024-03-04T20:22:05Z | 1 | 0 |
diffusers
|
[
"diffusers",
"safetensors",
"pytorch",
"unconditional-image-generation",
"diffusion-models-class",
"license:mit",
"diffusers:DDPMPipeline",
"region:us"
] |
unconditional-image-generation
| 2024-03-04T20:22:01Z |
---
license: mit
tags:
- pytorch
- diffusers
- unconditional-image-generation
- diffusion-models-class
---
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class)
This model is a diffusion model for unconditional image generation of cute 🦋.
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('Valkingzz/sd-class-butterflies-32')
image = pipeline().images[0]
image
```
|
Tochka-AI/ruRoPEBert-classic-base-2k
|
Tochka-AI
| 2024-03-04T20:20:53Z | 101 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"fill-mask",
"feature-extraction",
"custom_code",
"ru",
"dataset:uonlp/CulturaX",
"arxiv:2309.09400",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-02-22T12:49:42Z |
---
library_name: transformers
language:
- ru
pipeline_tag: feature-extraction
datasets:
- uonlp/CulturaX
---
# ruRoPEBert Classic Model for Russian language
This is an encoder model from **Tochka AI** based on the **RoPEBert** architecture, using the cloning method described in [our article on Habr](https://habr.com/ru/companies/tochka/articles/797561/).
[CulturaX](https://huggingface.co/papers/2309.09400) dataset was used for model training. The **ai-forever/ruBert-base** model was used as the original; this model surpasses it in quality, according to the [encodechka](https://github.com/avidale/encodechka) benchmark.
The model source code is available in the file [modeling_rope_bert.py](https://huggingface.co/Tochka-AI/ruRoPEBert-classic-base-2k/blob/main/modeling_rope_bert.py)
The model is trained on contexts **up to 2048 tokens** in length, but can be used on larger contexts.
## Usage
**Important**: 4.37.2 and higher is the recommended version of `transformers`. To load the model correctly, you must enable dowloading code from the model's repository: `trust_remote_code=True`, this will download the **modeling_rope_bert.py** script and load the weights into the correct architecture.
Otherwise, you can download this script manually and use classes from it directly to load the model.
### Basic usage (no efficient attention)
```python
model_name = 'Tochka-AI/ruRoPEBert-classic-base-2k'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation='eager')
```
### With SDPA (efficient attention)
```python
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation='sdpa')
```
### Getting embeddings
The correct pooler (`mean`) is already **built into the model architecture**, which averages embeddings based on the attention mask. You can also select the pooler type (`first_token_transform`), which performs a learnable linear transformation on the first token.
To change built-in pooler implementation use `pooler_type` parameter in `AutoModel.from_pretrained` function
```python
test_batch = tokenizer.batch_encode_plus(["Привет, чем занят?", "Здравствуйте, чем вы занимаетесь?"], return_tensors='pt', padding=True)
with torch.inference_mode():
pooled_output = model(**test_batch).pooler_output
```
In addition, you can calculate cosine similarities between texts in batch using normalization and matrix multiplication:
```python
import torch.nn.functional as F
F.normalize(pooled_output, dim=1) @ F.normalize(pooled_output, dim=1).T
```
### Using as classifier
To load the model with trainable classification head on top (change `num_labels` parameter):
```python
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True, attn_implementation='sdpa', num_labels=4)
```
### With RoPE scaling
Allowed types for RoPE scaling are: `linear` and `dynamic`. To extend the model's context window you need to change tokenizer max length and add `rope_scaling` parameter.
If you want to scale your model context by 2x:
```python
tokenizer.model_max_length = 4096
model = AutoModel.from_pretrained(model_name,
trust_remote_code=True,
attn_implementation='sdpa',
rope_scaling={'type': 'dynamic','factor': 2.0}
) # 2.0 for x2 scaling, 4.0 for x4, etc..
```
P.S. Don't forget to specify the dtype and device you need to use resources efficiently.
## Metrics
Evaluation of this model on encodechka benchmark:
| Model name | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 | Avg S (no NE) | Avg S+W (with NE) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| ruRoPEBert-classic-base-512 | 0.695 | 0.605 | 0.396 | 0.794 | 0.975 | 0.797 | 0.769 | 0.386 | 0.410 | 0.609 | 0.677 | 0.630 |
| **ruRoPEBert-classic-base-2k** | 0.684 | 0.601 | 0.396 | 0.777 | 0.974 | 0.794 | 0.769 | 0.381 | 0.609 | 0.470 | 0.672 | 0.631 |
| ai-forever/ruBert-base | 0.670 | 0.533 | 0.391 | 0.773 | 0.975 | 0.783 | 0.765 | 0.384 | - | - | 0.659 | - |
## Authors
- Sergei Bratchikov (Tochka AI Team, [HF](https://huggingface.co/hivaze), [GitHub](https://huggingface.co/hivaze))
- Maxim Afanasiev (Tochka AI Team, [HF](https://huggingface.co/mrapplexz), [GitHub](https://github.com/mrapplexz))
|
Tochka-AI/ruRoPEBert-classic-base-512
|
Tochka-AI
| 2024-03-04T20:19:09Z | 42 | 1 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"fill-mask",
"feature-extraction",
"custom_code",
"ru",
"dataset:uonlp/CulturaX",
"arxiv:2309.09400",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
feature-extraction
| 2024-02-22T12:49:24Z |
---
library_name: transformers
language:
- ru
pipeline_tag: feature-extraction
datasets:
- uonlp/CulturaX
---
# ruRoPEBert Classic Model for Russian language
This is an encoder model from **Tochka AI** based on the **RoPEBert** architecture, using the cloning method described in [our article on Habr](https://habr.com/ru/companies/tochka/articles/797561/).
[CulturaX](https://huggingface.co/papers/2309.09400) dataset was used for model training. The **ai-forever/ruBert-base** model was used as the original; this model surpasses it in quality, according to the [encodechka](https://github.com/avidale/encodechka) benchmark.
The model source code is available in the file [modeling_rope_bert.py](https://huggingface.co/Tochka-AI/ruRoPEBert-classic-base-512/blob/main/modeling_rope_bert.py)
The model is trained on contexts **up to 512 tokens** in length, but can be used on larger contexts. For better quality, use the version of this model with extended context - [Tochka-AI/ruRoPEBert-classic-base-2k](https://huggingface.co/Tochka-AI/ruRoPEBert-classic-base-2k)
## Usage
**Important**: 4.37.2 and higher is the recommended version of `transformers`. To load the model correctly, you must enable dowloading code from the model's repository: `trust_remote_code=True`, this will download the **modeling_rope_bert.py** script and load the weights into the correct architecture.
Otherwise, you can download this script manually and use classes from it directly to load the model.
### Basic usage (no efficient attention)
```python
model_name = 'Tochka-AI/ruRoPEBert-classic-base-512'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation='eager')
```
### With SDPA (efficient attention)
```python
model = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation='sdpa')
```
### Getting embeddings
The correct pooler (`mean`) is already **built into the model architecture**, which averages embeddings based on the attention mask. You can also select the pooler type (`first_token_transform`), which performs a learnable linear transformation on the first token.
To change built-in pooler implementation use `pooler_type` parameter in `AutoModel.from_pretrained` function
```python
test_batch = tokenizer.batch_encode_plus(["Привет, чем занят?", "Здравствуйте, чем вы занимаетесь?"], return_tensors='pt', padding=True)
with torch.inference_mode():
pooled_output = model(**test_batch).pooler_output
```
In addition, you can calculate cosine similarities between texts in batch using normalization and matrix multiplication:
```python
import torch.nn.functional as F
F.normalize(pooled_output, dim=1) @ F.normalize(pooled_output, dim=1).T
```
### Using as classifier
To load the model with trainable classification head on top (change `num_labels` parameter):
```python
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True, attn_implementation='sdpa', num_labels=4)
```
### With RoPE scaling
Allowed types for RoPE scaling are: `linear` and `dynamic`. To extend the model's context window you need to change tokenizer max length and add `rope_scaling` parameter.
If you want to scale your model context by 2x:
```python
tokenizer.model_max_length = 1024
model = AutoModel.from_pretrained(model_name,
trust_remote_code=True,
attn_implementation='sdpa',
rope_scaling={'type': 'dynamic','factor': 2.0}
) # 2.0 for x2 scaling, 4.0 for x4, etc..
```
P.S. Don't forget to specify the dtype and device you need to use resources efficiently.
## Metrics
Evaluation of this model on encodechka benchmark:
| Model name | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 | Avg S (no NE) | Avg S+W (with NE) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| **ruRoPEBert-classic-base-512** | 0.695 | 0.605 | 0.396 | 0.794 | 0.975 | 0.797 | 0.769 | 0.386 | 0.410 | 0.609 | 0.677 | 0.630 |
| ai-forever/ruBert-base | 0.670 | 0.533 | 0.391 | 0.773 | 0.975 | 0.783 | 0.765 | 0.384 | - | - | 0.659 | - |
## Authors
- Sergei Bratchikov (Tochka AI Team, [HF](https://huggingface.co/hivaze), [GitHub](https://huggingface.co/hivaze))
- Maxim Afanasiev (Tochka AI Team, [HF](https://huggingface.co/mrapplexz), [GitHub](https://github.com/mrapplexz))
|
dicta-il/dictabert-large-ner
|
dicta-il
| 2024-03-04T20:16:04Z | 440 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"bert",
"token-classification",
"he",
"arxiv:2308.16687",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-12-29T01:07:45Z |
---
license: cc-by-4.0
language:
- he
---
# DictaBERT-Large: A State-of-the-Art BERT-Large Suite for Modern Hebrew
State-of-the-art language model for Hebrew, released [here](https://arxiv.org/abs/2308.16687).
This is the fine-tuned BERT-large model for the named-entity-recognition task.
For the bert models for other tasks, see [here](https://huggingface.co/collections/dicta-il/dictabert-6588e7cc08f83845fc42a18b).
Sample usage:
```python
from transformers import pipeline
oracle = pipeline('ner', model='dicta-il/dictabert-large-ner', aggregation_strategy='simple')
# if we set aggregation_strategy to simple, we need to define a decoder for the tokenizer. Note that the last wordpiece of a group will still be emitted
from tokenizers.decoders import WordPiece
oracle.tokenizer.backend_tokenizer.decoder = WordPiece()
sentence = '''דוד בן-גוריון (16 באוקטובר 1886 - ו' בכסלו תשל"ד) היה מדינאי ישראלי וראש הממשלה הראשון של מדינת ישראל.'''
oracle(sentence)
```
Output:
```json
[
{
"entity_group": "PER",
"score": 0.9998988,
"word": "דוד בן - גוריון",
"start": 0,
"end": 13
},
{
"entity_group": "TIMEX",
"score": 0.99989706,
"word": "16 באוקטובר 1886",
"start": 15,
"end": 31
},
{
"entity_group": "TIMEX",
"score": 0.99991614,
"word": "ו' בכסלו תשל\"ד",
"start": 34,
"end": 48
},
{
"entity_group": "TTL",
"score": 0.9931756,
"word": "וראש הממשלה",
"start": 68,
"end": 79
},
{
"entity_group": "GPE",
"score": 0.9995702,
"word": "ישראל",
"start": 96,
"end": 101
}
]
```
## Citation
If you use DictaBERT in your research, please cite ```DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew```
**BibTeX:**
```bibtex
@misc{shmidman2023dictabert,
title={DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew},
author={Shaltiel Shmidman and Avi Shmidman and Moshe Koppel},
year={2023},
eprint={2308.16687},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
Shield: [![CC BY 4.0][cc-by-shield]][cc-by]
This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].
[![CC BY 4.0][cc-by-image]][cc-by]
[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg
|
ChaoticNeutrals/This_is_fine_7B
|
ChaoticNeutrals
| 2024-03-04T20:11:31Z | 54 | 3 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2311.03099",
"arxiv:2306.01708",
"base_model:CultriX/NeuralTrix-bf16",
"base_model:merge:CultriX/NeuralTrix-bf16",
"base_model:jeiku/Cookie_7B",
"base_model:merge:jeiku/Cookie_7B",
"base_model:jeiku/Luna_7B",
"base_model:merge:jeiku/Luna_7B",
"base_model:jeiku/NarrativeNexus_7B",
"base_model:merge:jeiku/NarrativeNexus_7B",
"base_model:mlabonne/AlphaMonarch-7B",
"base_model:merge:mlabonne/AlphaMonarch-7B",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-23T04:47:51Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- jeiku/NarrativeNexus_7B
- mlabonne/AlphaMonarch-7B
- CultriX/NeuralTrix-bf16
- jeiku/Cookie_7B
- jeiku/Luna_7B
model-index:
- name: This_is_fine_7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 65.79
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.61
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.77
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/This_is_fine_7B
name: Open LLM Leaderboard
---
# Fine

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) as a base.
### Models Merged
The following models were included in the merge:
* [jeiku/NarrativeNexus_7B](https://huggingface.co/jeiku/NarrativeNexus_7B)
* [CultriX/NeuralTrix-bf16](https://huggingface.co/CultriX/NeuralTrix-bf16)
* [jeiku/Cookie_7B](https://huggingface.co/jeiku/Cookie_7B)
* [jeiku/Luna_7B](https://huggingface.co/jeiku/Luna_7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
merge_method: dare_ties
base_model: mlabonne/AlphaMonarch-7B
parameters:
normalize: true
models:
- model: jeiku/Luna_7B
parameters:
weight: 0.75
- model: jeiku/Cookie_7B
parameters:
weight: 1
- model: jeiku/NarrativeNexus_7B
parameters:
weight: 0.5
- model: CultriX/NeuralTrix-bf16
parameters:
weight: 0.75
- model: mlabonne/AlphaMonarch-7B
parameters:
weight: 1
dtype: float16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChaoticNeutrals__This_is_fine_7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.05|
|AI2 Reasoning Challenge (25-Shot)|70.31|
|HellaSwag (10-Shot) |87.28|
|MMLU (5-Shot) |64.51|
|TruthfulQA (0-shot) |65.79|
|Winogrande (5-shot) |81.61|
|GSM8k (5-shot) |62.77|
|
Nitral-Archive/Prima-Pastacles-7b-128k
|
Nitral-Archive
| 2024-03-04T20:11:22Z | 11 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"custom_code",
"base_model:Nitral-Archive/Prima-Pastacles-7b",
"base_model:finetune:Nitral-Archive/Prima-Pastacles-7b",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-13T06:15:24Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/Prima-Pastacles-7b
- Test157t/Pasta-Sea-7b-128k
model-index:
- name: Prima-Pastacles-7b-128k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.09
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.58
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 62.51
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 81.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.36
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Prima-Pastacles-7b-128k
name: Open LLM Leaderboard
---

### Models Merged
The following models were included in the merge:
* [Test157t/Prima-Pastacles-7b](https://huggingface.co/Test157t/Prima-Pastacles-7b)
* [Test157t/Pasta-Sea-7b-128k](https://huggingface.co/Test157t/Pasta-Sea-7b-128k)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Test157t/Prima-Pastacles-7b
layer_range: [0, 32]
- model: Test157t/Pasta-Sea-7b-128k
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Prima-Pastacles-7b
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Prima-Pastacles-7b-128k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.36|
|AI2 Reasoning Challenge (25-Shot)|68.09|
|HellaSwag (10-Shot) |86.57|
|MMLU (5-Shot) |64.58|
|TruthfulQA (0-shot) |62.51|
|Winogrande (5-shot) |81.06|
|GSM8k (5-shot) |59.36|
|
Nitral-Archive/Pasta-PrimaMaid-7b
|
Nitral-Archive
| 2024-03-04T20:10:54Z | 15 | 3 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:Nitral-Archive/Kunocchini-7b",
"base_model:finetune:Nitral-Archive/Kunocchini-7b",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-06T16:12:59Z |
---
license: other
library_name: transformers
tags:
- mergekit
- merge
base_model:
- Test157t/Kunocchini-7b
- Test157t/Pasta-Made_7b
model-index:
- name: Pasta-PrimaMaid-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 66.47
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.13
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Test157t/Pasta-PrimaMaid-7b
name: Open LLM Leaderboard
---

Quants from jeiku! https://huggingface.co/jeiku/Pasta-PrimaMaid-7b_GGUF And bartowski! https://huggingface.co/bartowski/Pasta-PrimaMaid-7b-exl2 show them both some love please.
### Models Merged
The following models were included in the merge:
* [Test157t/Kunocchini-7b](https://huggingface.co/Test157t/Kunocchini-7b)
* [Test157t/Pasta-Made_7b](https://huggingface.co/Test157t/Pasta-Made_7b)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: Test157t/Kunocchini-7b
layer_range: [0, 32]
- model: Test157t/Pasta-Made_7b
layer_range: [0, 32]
merge_method: slerp
base_model: Test157t/Kunocchini-7b
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Test157t__Pasta-PrimaMaid-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.48|
|AI2 Reasoning Challenge (25-Shot)|67.92|
|HellaSwag (10-Shot) |86.18|
|MMLU (5-Shot) |63.31|
|TruthfulQA (0-shot) |66.47|
|Winogrande (5-shot) |77.90|
|GSM8k (5-shot) |49.13|
|
vaicai/kaifa-l2-adapters-v0.13.1
|
vaicai
| 2024-03-04T20:04:21Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-03-04T20:04:03Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
iczaw/prompt-diffusion-diffusers
|
iczaw
| 2024-03-04T19:58:34Z | 0 | 1 |
diffusers
|
[
"diffusers",
"image-to-text",
"region:us"
] |
image-to-text
| 2024-03-03T23:11:29Z |
---
library_name: diffusers
base_models:
- runwayml/stable-diffusion-v1-5
- lllyasviel/ControlNet
pipeline_tag: image-to-text
---
[Prompt diffusion](https://huggingface.co/zhendongw/prompt-diffusion) converted to Diffusers.
|
robinsmits/Mistral-Instruct-7B-v0.2-ChatAlpaca
|
robinsmits
| 2024-03-04T19:51:19Z | 15 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"mistral",
"generated_from_trainer",
"Transformers",
"text-generation-inference",
"text-generation",
"conversational",
"en",
"dataset:robinsmits/ChatAlpaca-20K",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2024-01-13T19:42:23Z |
---
language:
- en
license: apache-2.0
library_name: peft
tags:
- mistral
- generated_from_trainer
- Transformers
- text-generation-inference
datasets:
- robinsmits/ChatAlpaca-20K
inference: false
base_model: mistralai/Mistral-7B-Instruct-v0.2
pipeline_tag: text-generation
model-index:
- name: Mistral-Instruct-7B-v0.2-ChatAlpaca
results: []
---
# Mistral-Instruct-7B-v0.2-ChatAlpaca
## Model description
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the English [robinsmits/ChatAlpaca-20K](https://www.huggingface.co/datasets/robinsmits/ChatAlpaca-20K) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8584
## Model usage
A basic example of how to use the finetuned model. Note this example is a modified version from the base model.
```
import torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
device = "cuda"
model = AutoPeftModelForCausalLM.from_pretrained("robinsmits/Mistral-Instruct-7B-v0.2-ChatAlpaca",
device_map = "auto",
load_in_4bit = True,
torch_dtype = torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("robinsmits/Mistral-Instruct-7B-v0.2-ChatAlpaca")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors = "pt")
generated_ids = model.generate(input_ids = encodeds.to(device), max_new_tokens = 512, do_sample = True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.99 | 0.2 | 120 | 0.9355 |
| 0.8793 | 0.39 | 240 | 0.8848 |
| 0.8671 | 0.59 | 360 | 0.8737 |
| 0.8662 | 0.78 | 480 | 0.8679 |
| 0.8627 | 0.98 | 600 | 0.8639 |
| 0.8426 | 1.18 | 720 | 0.8615 |
| 0.8574 | 1.37 | 840 | 0.8598 |
| 0.8473 | 1.57 | 960 | 0.8589 |
| 0.8528 | 1.76 | 1080 | 0.8585 |
| 0.852 | 1.96 | 1200 | 0.8584 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_robinsmits__Mistral-Instruct-7B-v0.2-ChatAlpaca)
| Metric |Value|
|---------------------------------|----:|
|Avg. |61.21|
|AI2 Reasoning Challenge (25-Shot)|56.74|
|HellaSwag (10-Shot) |80.82|
|MMLU (5-Shot) |59.10|
|TruthfulQA (0-shot) |55.86|
|Winogrande (5-shot) |77.11|
|GSM8k (5-shot) |37.60|
|
ayushhhh/my-pet-cat
|
ayushhhh
| 2024-03-04T19:49:11Z | 1 | 0 |
diffusers
|
[
"diffusers",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-03-04T19:45:51Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### My-Pet-Cat Dreambooth model trained by ayushhhh following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 0206AL221039
Sample pictures of this concept:
.jpg)
|
Basirudin/my_awesome_wnut_model
|
Basirudin
| 2024-03-04T19:47:48Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-03-04T19:36:03Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: my_awesome_wnut_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_wnut_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2720
- Precision: 0.5476
- Recall: 0.3197
- F1: 0.4037
- Accuracy: 0.9416
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 213 | 0.2977 | 0.4402 | 0.1807 | 0.2562 | 0.9356 |
| No log | 2.0 | 426 | 0.2720 | 0.5476 | 0.3197 | 0.4037 | 0.9416 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.2.1+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
|
Eric-23xd/Tibetan-Woodblock-LhasaKanjur
|
Eric-23xd
| 2024-03-04T19:47:27Z | 0 | 1 | null |
[
"onnx",
"OCR",
"bo",
"license:mit",
"region:us"
] | null | 2024-03-04T19:18:50Z |
---
license: mit
language:
- bo
tags:
- OCR
---
An OCR model for Tibetann Woodblock scripts trained on roughly 164.000 lines from the LhasaKanjur.
---
license: mit
---
|
alinerodrigues/wav2vec2-xlsr-1b-mecita-portuguese-all-clean-02
|
alinerodrigues
| 2024-03-04T19:46:11Z | 13 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2024-03-04T16:03:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-1b-mecita-portuguese-all-clean-02
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-1b-mecita-portuguese-all-clean-02
This model is a fine-tuned version of [jonatasgrosman/wav2vec2-xls-r-1b-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1154
- Wer: 0.0813
- Cer: 0.0226
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 24.2792 | 1.0 | 67 | 2.8011 | 0.9997 | 0.9999 |
| 4.1558 | 2.0 | 134 | 0.2045 | 0.1477 | 0.0381 |
| 0.4516 | 3.0 | 201 | 0.1470 | 0.1058 | 0.0277 |
| 0.4516 | 4.0 | 268 | 0.1538 | 0.1058 | 0.0282 |
| 0.3013 | 5.0 | 335 | 0.1466 | 0.0941 | 0.0252 |
| 0.2386 | 6.0 | 402 | 0.1402 | 0.0930 | 0.0259 |
| 0.2386 | 7.0 | 469 | 0.1284 | 0.0886 | 0.0253 |
| 0.2219 | 8.0 | 536 | 0.1226 | 0.0896 | 0.0247 |
| 0.2165 | 9.0 | 603 | 0.1283 | 0.0868 | 0.0243 |
| 0.2165 | 10.0 | 670 | 0.1223 | 0.0834 | 0.0230 |
| 0.186 | 11.0 | 737 | 0.1182 | 0.0872 | 0.0239 |
| 0.1749 | 12.0 | 804 | 0.1303 | 0.0879 | 0.0242 |
| 0.1749 | 13.0 | 871 | 0.1265 | 0.0906 | 0.0249 |
| 0.2178 | 14.0 | 938 | 0.1213 | 0.0809 | 0.0235 |
| 0.1548 | 15.0 | 1005 | 0.1231 | 0.0830 | 0.0228 |
| 0.1548 | 16.0 | 1072 | 0.1193 | 0.0816 | 0.0226 |
| 0.1456 | 17.0 | 1139 | 0.1154 | 0.0813 | 0.0226 |
| 0.1345 | 18.0 | 1206 | 0.1346 | 0.0820 | 0.0232 |
| 0.1345 | 19.0 | 1273 | 0.1316 | 0.0816 | 0.0232 |
| 0.1339 | 20.0 | 1340 | 0.1206 | 0.0802 | 0.0224 |
| 0.1236 | 21.0 | 1407 | 0.1363 | 0.0830 | 0.0232 |
| 0.1236 | 22.0 | 1474 | 0.1221 | 0.0733 | 0.0216 |
| 0.1182 | 23.0 | 1541 | 0.1287 | 0.0778 | 0.0224 |
| 0.1185 | 24.0 | 1608 | 0.1229 | 0.0796 | 0.0235 |
| 0.1185 | 25.0 | 1675 | 0.1332 | 0.0768 | 0.0222 |
| 0.135 | 26.0 | 1742 | 0.1259 | 0.0792 | 0.0224 |
| 0.1091 | 27.0 | 1809 | 0.1298 | 0.0809 | 0.0230 |
| 0.1091 | 28.0 | 1876 | 0.1327 | 0.0778 | 0.0219 |
| 0.1045 | 29.0 | 1943 | 0.1322 | 0.0799 | 0.0230 |
| 0.0943 | 30.0 | 2010 | 0.1217 | 0.0799 | 0.0229 |
| 0.0943 | 31.0 | 2077 | 0.1383 | 0.0827 | 0.0237 |
| 0.1003 | 32.0 | 2144 | 0.1427 | 0.0820 | 0.0232 |
| 0.11 | 33.0 | 2211 | 0.1441 | 0.0799 | 0.0229 |
| 0.11 | 34.0 | 2278 | 0.1268 | 0.0764 | 0.0214 |
| 0.0876 | 35.0 | 2345 | 0.1393 | 0.0820 | 0.0233 |
| 0.0818 | 36.0 | 2412 | 0.1308 | 0.0758 | 0.0210 |
| 0.0818 | 37.0 | 2479 | 0.1238 | 0.0830 | 0.0223 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.2.1+cu121
- Datasets 2.17.0
- Tokenizers 0.13.3
|
NDani/dqn-SpaceInvadersNoFrameskip-v4
|
NDani
| 2024-03-04T19:41:44Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-03-04T19:41:13Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 573.50 +/- 226.57
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NDani -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga NDani -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga NDani
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
Reverb/Mistral-7B-LoreWeaver
|
Reverb
| 2024-03-04T19:38:27Z | 7 | 3 |
peft
|
[
"peft",
"safetensors",
"mistral",
"text-generation",
"en",
"dataset:AtlasUnified/atlas-storyteller",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:adapter:mistralai/Mistral-7B-v0.1",
"license:mit",
"model-index",
"region:us"
] |
text-generation
| 2023-12-20T15:47:03Z |
---
language:
- en
license: mit
library_name: peft
datasets:
- AtlasUnified/atlas-storyteller
metrics:
- perplexity
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
model-index:
- name: Mistral-7B-LoreWeaver
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.12
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 42.15
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.37
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Reverb/Mistral-7B-LoreWeaver
name: Open LLM Leaderboard
---
# Model Card for Model ID
Our finetuned Mistral LLM is a large language model specialized for natural language processing tasks, delivering enhanced performance for a
wide array of applications, including text classification, question-answering, chatbot services, and more.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Basel Anaya, Osama Awad, Yazeed Mshayekh
- **Funded by [optional]:** Basel Anaya, Osama Awad, Yazeed Mshayekh
- **Model type:** Autoregressive Language Model
- **Language(s) (NLP):** English
- **License:** MIT License
- **Finetuned from model:** MistralAI's Mistral-7B
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.
### Direct Use
Users can leverage the finetuned Mistral LLM for various NLP tasks right out-of-the-box. Simply interact with the API or load the model locally to experience superior language understanding and generation capabilities. Ideal for developers seeking rapid prototyping and deployment of conversational AI applications.
### Downstream Use [optional]
Integrate the finetuned Mistral LLM effortlessly into custom applications and pipelines. Utilize the model as a starting point for further refinement, targeting industry-specific lingo, niches, or particular use cases. Seamless compatibility ensures smooth collaboration with adjacent technologies and services.
### Out-of-Scope Use
Limitations exist concerning controversial topics, sensitive data, and scenarios demanding real-time responses. Users should exercise caution when deploying the model in safety-critical situations or regions with strict compliance regulations. Avoid sharing confidential or personally identifiable information with the model.
## Bias, Risks, and Limitations
Address both technical and sociotechnical limitations.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. Further recommendations include cautious assessment of ethical implications, ongoing maintenance, periodic evaluations, and responsible reporting practices.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
import torch
from transformers import pipeline, AutoTokenizer
# Load the finetuned Mistral LLM
model_name = "Reverb/Mistral-7B-LoreWeaver"
tokenizer = AutoTokenizer.from_pretrained(model_name)
generator = pipeline("text-generation", model=model_name, tokenizer=tokenizer)
# Example usage
input_text = "Once upon a time,"
num_generated_tokens = 50
response = generator(input_text, max_length=num_generated_tokens, num_return_sequences=1)
print(f"Generated text:\n{response[0]['generated_text']}")
# Alternatively, for fine-grained control over the generation process
inputs = tokenizer(input_text, return_tensors="pt")
outputs = generator.generate(
inputs["input_ids"].to("cuda"),
max_length=num_generated_tokens,
num_beams=5,
early_stopping=True,
temperature=1.2,
)
generated_sentence = tokenizer.decode(outputs[0])
print(f"\nGenerated text with beam search and custom params:\n{generated_sentence}")
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Reverb__Mistral-7B-LoreWeaver)
| Metric |Value|
|---------------------------------|----:|
|Avg. |60.93|
|AI2 Reasoning Challenge (25-Shot)|59.98|
|HellaSwag (10-Shot) |83.29|
|MMLU (5-Shot) |64.12|
|TruthfulQA (0-shot) |42.15|
|Winogrande (5-shot) |78.37|
|GSM8k (5-shot) |37.68|
|
NUFAIS/my-dog-xzg
|
NUFAIS
| 2024-03-04T19:32:09Z | 3 | 0 |
diffusers
|
[
"diffusers",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-03-04T19:26:34Z |
---
license: creativeml-openrail-m
tags:
- NxtWave-GenAI-Webinar
- text-to-image
- stable-diffusion
---
### my-dog-xzg Dreambooth model trained by NUFAIS following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: TCEP031
Sample pictures of this concept:
.png)
.png)
.png)
|
Efficient-Large-Model/VILA-2.7b
|
Efficient-Large-Model
| 2024-03-04T19:25:33Z | 161 | 15 |
transformers
|
[
"transformers",
"safetensors",
"llava_llama",
"text-generation",
"VILA",
"VLM",
"arxiv:2312.07533",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T17:43:04Z |
---
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: text-generation
tags:
- VILA
- VLM
---
# VILA Model Card
## Model details
**Model type:**
VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge.
**Model date:**
VILA-2.7b was trained in Feb 2024.
**Paper or resources for more information:**
https://github.com/Efficient-Large-Model/VILA
```
@misc{lin2023vila,
title={VILA: On Pre-training for Visual Language Models},
author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han},
year={2023},
eprint={2312.07533},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## License
- The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
- The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
- [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
- [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
- [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.
**Where to send questions or comments about the model:**
https://github.com/Efficient-Large-Model/VILA/issues
## Intended use
**Primary intended uses:**
The primary use of VILA is research on large multimodal models and chatbots.
**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
## Training dataset
See [Dataset Preparation](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/README.md) for more details.
## Evaluation dataset
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|
macadeliccc/SOLAR-10.7b-Instruct-dpo
|
macadeliccc
| 2024-03-04T19:25:20Z | 105 | 1 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-24T04:11:08Z |
---
license: cc-by-nc-4.0
library_name: transformers
model-index:
- name: SOLAR-10.7b-Instruct-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.76
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.08
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.98
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.32
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-dpo
name: Open LLM Leaderboard
---
# SOLAR-10.7b-Instruct-dpo

This model is a finetune of upstage/SOLAR-10.7B-Instruct-v1.0 using Intel/orca_dpo_pairs
## Chat Template
This model follows the chatML chat template.
## Evaluations
### EQ Bench comparison with base model
These scores are the average of 3 iterations.
----Benchmark Complete----
+ 2024-01-25 04:41:01
+ Time taken: 236.1 mins
+ Prompt Format: ChatML
+ Model: macadeliccc/SOLAR-10.7b-Instruct-dpo
+ Score (v2): 72.79
+ Parseable: 165.67
---------------
Batch completed
Time taken: 236.1 mins
---------------
as compared to the original model:
----Benchmark Complete----
+ 2024-01-25 08:45:02
+ Time taken: 244.0 mins
+ Prompt Format: ChatML
+ Model: [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
+ Score (v2): 71.03
+ Parseable: 165.67
---------------
Batch completed
Time taken: 480.1 mins
---------------
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[SOLAR-10.7b-Instruct-dpo](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-dpo)| 47.57| 74.3| 72.73| 45.76| 60.09|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |27.56|± | 2.81|
| | |acc_norm|26.77|± | 2.78|
|agieval_logiqa_en | 0|acc |41.63|± | 1.93|
| | |acc_norm|41.32|± | 1.93|
|agieval_lsat_ar | 0|acc |25.22|± | 2.87|
| | |acc_norm|24.35|± | 2.84|
|agieval_lsat_lr | 0|acc |54.12|± | 2.21|
| | |acc_norm|54.31|± | 2.21|
|agieval_lsat_rc | 0|acc |68.77|± | 2.83|
| | |acc_norm|69.14|± | 2.82|
|agieval_sat_en | 0|acc |79.13|± | 2.84|
| | |acc_norm|79.13|± | 2.84|
|agieval_sat_en_without_passage| 0|acc |44.66|± | 3.47|
| | |acc_norm|44.66|± | 3.47|
|agieval_sat_math | 0|acc |40.45|± | 3.32|
| | |acc_norm|40.91|± | 3.32|
Average: 47.57%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |60.49|± | 1.43|
| | |acc_norm|63.74|± | 1.40|
|arc_easy | 0|acc |82.07|± | 0.79|
| | |acc_norm|79.92|± | 0.82|
|boolq | 1|acc |88.56|± | 0.56|
|hellaswag | 0|acc |68.47|± | 0.46|
| | |acc_norm|86.06|± | 0.35|
|openbookqa | 0|acc |36.20|± | 2.15|
| | |acc_norm|46.60|± | 2.23|
|piqa | 0|acc |79.38|± | 0.94|
| | |acc_norm|79.71|± | 0.94|
|winogrande | 0|acc |75.53|± | 1.21|
Average: 74.3%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |57.77|± | 1.73|
| | |mc2 |72.73|± | 1.49|
Average: 72.73%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|55.26|± | 3.62|
|bigbench_date_understanding | 0|multiple_choice_grade|62.87|± | 2.52|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|46.51|± | 3.11|
|bigbench_geometric_shapes | 0|multiple_choice_grade|25.63|± | 2.31|
| | |exact_str_match | 0.00|± | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.00|± | 2.01|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.57|± | 1.53|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|46.67|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|41.80|± | 2.21|
|bigbench_navigate | 0|multiple_choice_grade|64.00|± | 1.52|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.00|± | 1.10|
|bigbench_ruin_names | 0|multiple_choice_grade|39.96|± | 2.32|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|47.90|± | 1.58|
|bigbench_snarks | 0|multiple_choice_grade|64.09|± | 3.58|
|bigbench_sports_understanding | 0|multiple_choice_grade|71.10|± | 1.44|
|bigbench_temporal_sequences | 0|multiple_choice_grade|59.90|± | 1.55|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|24.96|± | 1.22|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.89|± | 0.92|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|46.67|± | 2.89|
Average: 45.76%
Average score: 60.09%
Elapsed time: 02:10:16
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SOLAR-10.7b-Instruct-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.54|
|AI2 Reasoning Challenge (25-Shot)|71.76|
|HellaSwag (10-Shot) |88.08|
|MMLU (5-Shot) |66.06|
|TruthfulQA (0-shot) |71.98|
|Winogrande (5-shot) |82.32|
|GSM8k (5-shot) |61.03|
|
macadeliccc/polyglot-math-4x7b
|
macadeliccc
| 2024-03-04T19:25:12Z | 1,378 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"en",
"zh",
"ja",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-13T03:05:44Z |
---
language:
- en
- zh
- ja
license: apache-2.0
model-index:
- name: polyglot-math-4x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.57
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.78
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 56.63
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/polyglot-math-4x7b
name: Open LLM Leaderboard
---
# Polyglot-math-4x7b-24b

Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
The model is a merge of models that are capable of Chinese and Japanese output.
+ meta-math/MetaMath-Mistral-7B
+ oshizo/japanese-e5-mistral-7b_slerp
+ cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
+ s3nh/Mistral-7B-Evol-Instruct-Chinese
I fit the gsm8k evaluation for this model on 20GB of VRAM.
# Code Example
Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/polyglot-math-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
# Math prompts in different languages
english_math_prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
chinese_math_prompt = "解释费马大定理的证明及其在数论中的意义。"
japanese_math_prompt = "フェルマーの最終定理の証明と数論におけるその意義について説明してください。"
# Generate and print responses for each math prompt
print("English Math Response:")
print(generate_response(english_math_prompt), "\n")
print("Chinese Math Response:")
print(generate_response(chinese_math_prompt), "\n")
print("Japanese Math Response:")
print(generate_response(japanese_math_prompt), "\n")
```
## Example Output
**The math model was trained in english so it defaults to english, but it still understands the question and can translate the answer.
English:
Explain the proof of Fermat's Last Theorem and its implications in number theory.
Fermat's Last Theorem (FLT) states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$. The proof of FLT was a long-standing problem in number theory, and it was finally proven in 1995 by Andrew Wiles.
The proof of FLT is quite complex and involves many different techniques and ideas from number theory, algebra, and analysis. The main idea behind the proof is to use elliptic curves and modular forms to construct a system of equations that can be used to show that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
The implications of FLT in number theory are far-reaching. The proof of FLT relies on many different techniques and ideas from number theory, and it has led to the development of new techniques and ideas in the field.
This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
Chinese Response:
解释费马大定理的证明及其在数论中的意义。
Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $x^n + y^n = z^n$ for any integer $n \geq 3$.
The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a testament to the power of mathematics and the dedication of mathematicians to solve difficult problems.
The proof of FLT has also had a significant impact on the field of number theory. It has led to the development of new techniques and theorems, and has inspired further research in the field.
In summary, the proof of FLT is a significant achievement in mathematics that has had a profound impact on the field of number theory. It is a testament to the power of mathematics and the dedication of mathematicians
Japanese Response:
フェルマーの最終定理の証明と数論におけるその意義について説明してください。
The Fermat's Last Theorem (FLT) is a statement in number theory that states that there are no non-trivial integer solutions to the equation $a^n + b^n = c^n$ for any positive integer $n$ greater than 2.
The proof of FLT was a long-standing open problem in mathematics. In 1993, Andrew Wiles, a British mathematician, published a proof of FLT using the techniques of elliptic curves and modular forms.
The proof of FLT is considered one of the most important achievements in mathematics in the 20th century. It is a prime example of the power of abstract algebra and number theory in solving difficult problems in mathematics.
The proof of FLT also has implications for other areas of mathematics, such as algebraic geometry and number theory. For example, the proof of FLT relies on the Taniyama-Shimura-Weil conjecture, which states that every elliptic curve is a modular form. This conjecture was proven by Wiles and his collaborators, and it has since been used to prove other theorems
# Evaluations
|Tasks|Version| Filter |n-shot| Metric |Value | |Stderr|
|-----|-------|----------|-----:|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.5504|± |0.0137|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__polyglot-math-4x7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |66.84|
|AI2 Reasoning Challenge (25-Shot)|63.74|
|HellaSwag (10-Shot) |84.85|
|MMLU (5-Shot) |63.57|
|TruthfulQA (0-shot) |53.78|
|Winogrande (5-shot) |78.45|
|GSM8k (5-shot) |56.63|
|
Efficient-Large-Model/VILA-7b
|
Efficient-Large-Model
| 2024-03-04T19:25:04Z | 222 | 26 |
transformers
|
[
"transformers",
"safetensors",
"llava_llama",
"text-generation",
"VILA",
"VLM",
"arxiv:2312.07533",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-19T19:11:31Z |
---
license: cc-by-nc-4.0
library_name: transformers
pipeline_tag: text-generation
tags:
- VILA
- VLM
---
# VILA Model Card
## Model details
**Model type:**
VILA is a visual language model (VLM) pretrained with interleaved image-text data at scale, enabling multi-image VLM. VILA is deployable on the edge, including Jetson Orin and laptop by AWQ 4bit quantization through TinyChat framework. We find: (1) image-text pairs are not enough, interleaved image-text is essential; (2) unfreezing LLM during interleaved image-text pre-training enables in-context learning; (3)re-blending text-only instruction data is crucial to boost both VLM and text-only performance. VILA unveils appealing capabilities, including: multi-image reasoning, in-context learning, visual chain-of-thought, and better world knowledge.
**Model date:**
VILA-7b was trained in Feb 2024.
**Paper or resources for more information:**
https://github.com/Efficient-Large-Model/VILA
```
@misc{lin2023vila,
title={VILA: On Pre-training for Visual Language Models},
author={Ji Lin and Hongxu Yin and Wei Ping and Yao Lu and Pavlo Molchanov and Andrew Tao and Huizi Mao and Jan Kautz and Mohammad Shoeybi and Song Han},
year={2023},
eprint={2312.07533},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## License
- The code is released under the Apache 2.0 license as found in the [LICENSE](./LICENSE) file.
- The pretrained weights are released under the [CC-BY-NC-SA-4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en).
- The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
- [Model License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA
- [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI
- [Dataset Licenses](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/LICENSE) for each one used during training.
**Where to send questions or comments about the model:**
https://github.com/Efficient-Large-Model/VILA/issues
## Intended use
**Primary intended uses:**
The primary use of VILA is research on large multimodal models and chatbots.
**Primary intended users:**
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence.
## Training dataset
See [Dataset Preparation](https://github.com/Efficient-Large-Model/VILA/blob/main/data_prepare/README.md) for more details.
## Evaluation dataset
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
|
raveenatripathi/new_model
|
raveenatripathi
| 2024-03-04T19:22:13Z | 1 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"base_model:distilbert/distilbert-base-uncased",
"base_model:finetune:distilbert/distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2024-03-04T18:48:10Z |
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: raveenatripathi/new_model
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# raveenatripathi/new_model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 3.9406
- Validation Loss: 3.7234
- Train Accuracy: 0.2661
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4010, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 5.3555 | 2.6445 | 0.5524 | 0 |
| 3.9406 | 3.7234 | 0.2661 | 1 |
### Framework versions
- Transformers 4.38.1
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
|
macadeliccc/MonarchLake-7B
|
macadeliccc
| 2024-03-04T19:21:06Z | 122 | 5 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:mlabonne/AlphaMonarch-7B",
"base_model:finetune:mlabonne/AlphaMonarch-7B",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-22T03:08:31Z |
---
license: cc-by-nc-4.0
library_name: transformers
tags:
- mergekit
- merge
base_model:
- macadeliccc/WestLake-7b-v2-laser-truthy-dpo
- mlabonne/AlphaMonarch-7B
model-index:
- name: MonarchLake-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.15
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.29
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.44
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 74.97
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 85.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/MonarchLake-7B
name: Open LLM Leaderboard
---
# MonarchLake-7B

This model equips AlphaMonarch-7B with a strong base of emotional intelligence.
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [macadeliccc/WestLake-7b-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7b-v2-laser-truthy-dpo)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: mlabonne/AlphaMonarch-7B
layer_range: [0, 32]
- model: macadeliccc/WestLake-7b-v2-laser-truthy-dpo
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__MonarchLake-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.10|
|AI2 Reasoning Challenge (25-Shot)|74.15|
|HellaSwag (10-Shot) |89.29|
|MMLU (5-Shot) |64.44|
|TruthfulQA (0-shot) |74.97|
|Winogrande (5-shot) |85.48|
|GSM8k (5-shot) |68.31|
|
macadeliccc/Monarch-7B-SFT
|
macadeliccc
| 2024-03-04T19:21:02Z | 94 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-21T20:54:07Z |
---
license: apache-2.0
model-index:
- name: Monarch-7B-SFT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 63.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.58
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 54.25
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.79
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.39
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Monarch-7B-SFT
name: Open LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Monarch-7B-SFT)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.98|
|AI2 Reasoning Challenge (25-Shot)|63.74|
|HellaSwag (10-Shot) |83.58|
|MMLU (5-Shot) |64.11|
|TruthfulQA (0-shot) |54.25|
|Winogrande (5-shot) |79.79|
|GSM8k (5-shot) |68.39|
|
macadeliccc/OmniCorso-7B
|
macadeliccc
| 2024-03-04T19:20:58Z | 115 | 2 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:macadeliccc/MBX-7B-v3-DPO",
"base_model:merge:macadeliccc/MBX-7B-v3-DPO",
"base_model:mlabonne/OmniBeagle-7B",
"base_model:merge:mlabonne/OmniBeagle-7B",
"license:cc",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-11T04:33:07Z |
---
license: cc
tags:
- mergekit
- merge
base_model:
- macadeliccc/MBX-7B-v3-DPO
- mlabonne/OmniBeagle-7B
model-index:
- name: OmniCorso-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.7
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 73.43
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.74
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/OmniCorso-7B
name: Open LLM Leaderboard
---
# OmniCorso-7B

## Code Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/OmniCorso-7B")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/OmniCorso-7B")
messages = [
{"role": "system", "content": "Respond to the users request like a pirate"},
{"role": "user", "content": "Can you write me a quicksort algorithm?"}
]
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
```
The following models were included in the merge:
* [macadeliccc/MBX-7B-v3-DPO](https://huggingface.co/macadeliccc/MBX-7B-v3-DPO)
* [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: mlabonne/OmniBeagle-7B
layer_range: [0, 32]
- model: macadeliccc/MBX-7B-v3-DPO
layer_range: [0, 32]
merge_method: slerp
base_model: macadeliccc/MBX-7B-v3-DPO
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## Quantizations
### GGUF
+ [iMatrix](https://huggingface.co/macadeliccc/OmniCorso-7B-GGUF)
### Exllamav2
Quants are available thanks to user bartowski, check them out [here](https://huggingface.co/bartowski/OmniCorso-7B-exl2)
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/OmniCorso-7B-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. |
## Evaluations
<pre>----Benchmark Complete----
2024-02-11 15:34:40
Time taken: 178.3 mins
Prompt Format: ChatML
Model: macadeliccc/OmniCorso-7B
Score (v2): 73.75
Parseable: 167.0
---------------
Batch completed
Time taken: 178.3 mins
---------------
</pre>
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[OmniCorso-7B](https://huggingface.co/macadeliccc/OmniCorso-7B)| 45.89| 77.66| 74.12| 49.24| 61.73|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |29.13|± | 2.86|
| | |acc_norm|27.17|± | 2.80|
|agieval_logiqa_en | 0|acc |39.32|± | 1.92|
| | |acc_norm|39.63|± | 1.92|
|agieval_lsat_ar | 0|acc |23.91|± | 2.82|
| | |acc_norm|23.91|± | 2.82|
|agieval_lsat_lr | 0|acc |53.14|± | 2.21|
| | |acc_norm|53.92|± | 2.21|
|agieval_lsat_rc | 0|acc |66.54|± | 2.88|
| | |acc_norm|67.29|± | 2.87|
|agieval_sat_en | 0|acc |80.58|± | 2.76|
| | |acc_norm|80.58|± | 2.76|
|agieval_sat_en_without_passage| 0|acc |45.63|± | 3.48|
| | |acc_norm|43.69|± | 3.46|
|agieval_sat_math | 0|acc |33.18|± | 3.18|
| | |acc_norm|30.91|± | 3.12|
Average: 45.89%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |67.32|± | 1.37|
| | |acc_norm|68.43|± | 1.36|
|arc_easy | 0|acc |87.46|± | 0.68|
| | |acc_norm|83.50|± | 0.76|
|boolq | 1|acc |88.13|± | 0.57|
|hellaswag | 0|acc |68.47|± | 0.46|
| | |acc_norm|86.96|± | 0.34|
|openbookqa | 0|acc |38.80|± | 2.18|
| | |acc_norm|50.00|± | 2.24|
|piqa | 0|acc |83.03|± | 0.88|
| | |acc_norm|85.31|± | 0.83|
|winogrande | 0|acc |81.29|± | 1.10|
Average: 77.66%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |58.26|± | 1.73|
| | |mc2 |74.12|± | 1.43|
Average: 74.12%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|56.84|± | 3.60|
|bigbench_date_understanding | 0|multiple_choice_grade|63.41|± | 2.51|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|49.22|± | 3.12|
|bigbench_geometric_shapes | 0|multiple_choice_grade|23.96|± | 2.26|
| | |exact_str_match | 1.39|± | 0.62|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|34.20|± | 2.12|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.71|± | 1.61|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|60.33|± | 2.83|
|bigbench_movie_recommendation | 0|multiple_choice_grade|49.00|± | 2.24|
|bigbench_navigate | 0|multiple_choice_grade|55.20|± | 1.57|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|70.75|± | 1.02|
|bigbench_ruin_names | 0|multiple_choice_grade|55.80|± | 2.35|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|36.97|± | 1.53|
|bigbench_snarks | 0|multiple_choice_grade|72.38|± | 3.33|
|bigbench_sports_understanding | 0|multiple_choice_grade|76.27|± | 1.36|
|bigbench_temporal_sequences | 0|multiple_choice_grade|54.50|± | 1.58|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|23.12|± | 1.19|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|20.34|± | 0.96|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|60.33|± | 2.83|
Average: 49.24%
Average score: 61.73%
Elapsed time: 02:20:06
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__OmniCorso-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.74|
|AI2 Reasoning Challenge (25-Shot)|72.70|
|HellaSwag (10-Shot) |88.70|
|MMLU (5-Shot) |64.91|
|TruthfulQA (0-shot) |73.43|
|Winogrande (5-shot) |83.74|
|GSM8k (5-shot) |70.96|
|
macadeliccc/Orca-SOLAR-4x10.7b
|
macadeliccc
| 2024-03-04T19:20:54Z | 1,389 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"code",
"conversational",
"en",
"dataset:Intel/orca_dpo_pairs",
"arxiv:2312.15166",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-13T18:48:26Z |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- code
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: Orca-SOLAR-4x10.7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
---
# 🌞🚀 Orca-SOLAR-4x10.7_36B
Merge of four Solar-10.7B instruct finetunes.

## 🌟 Usage
This SOLAR model _loves_ to code. In my experience, if you ask it a code question it will use almost all of the available token limit to complete the code.
However, this can also be to its own detriment. If the request is complex it may not finish the code in a given time period. This behavior is not because of an eos token, as it finishes sentences quite normally if its a non code question.
Your mileage may vary.
## 🌎 HF Spaces
This 36B parameter model is capabale of running on free tier hardware (CPU only - GGUF)
+ Try the model [here](https://huggingface.co/spaces/macadeliccc/Orca-SOLAR-4x10.7b-chat-GGUF)
## 🌅 Code Example
Example also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/Orca-SOLAR-4x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
print("Response:")
print(generate_response(prompt), "\n")
```
## Llama.cpp
GGUF Quants available [here](https://huggingface.co/macadeliccc/Orca-SOLAR-4x10.7b-GGUF)

## Evaluations
https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b
### 📚 Citations
```bibtex
@misc{kim2023solar,
title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling},
author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
year={2023},
eprint={2312.15166},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.17|
|AI2 Reasoning Challenge (25-Shot)|68.52|
|HellaSwag (10-Shot) |86.78|
|MMLU (5-Shot) |67.03|
|TruthfulQA (0-shot) |64.54|
|Winogrande (5-shot) |83.90|
|GSM8k (5-shot) |68.23|
|
macadeliccc/SmaugDolphin-60B
|
macadeliccc
| 2024-03-04T19:20:46Z | 114 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"conversational",
"license:other",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-17T03:52:39Z |
---
license: other
license_name: yi-license
license_link: https://huggingface.co/cognitivecomputations/dolphin-2.2-yi-34b-200k/blob/main/LICENSE
model-index:
- name: SmaugDolphin-60B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.38
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.55
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.78
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.44
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.96
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SmaugDolphin-60B
name: Open LLM Leaderboard
---
# Smaug Dolphin 60B

This model is a MoErge of [abacusai/Smaug-34B-v0.1](https://huggingface.co/abacusai/Smaug-34B-v0.1) and [cognitivecomputations/dolphin-2.2-yi-34b-200k](https://huggingface.co/cognitivecomputations/dolphin-2.2-yi-34b-200k)
This model works as expected. Evaluations are running now.
## GGUF + iMatrix
Available [here]()
## AWQ
TODO
## Example output


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SmaugDolphin-60B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |76.44|
|AI2 Reasoning Challenge (25-Shot)|73.38|
|HellaSwag (10-Shot) |86.55|
|MMLU (5-Shot) |76.78|
|TruthfulQA (0-shot) |67.44|
|Winogrande (5-shot) |83.50|
|GSM8k (5-shot) |70.96|
|
macadeliccc/laser-polyglot-4x7b
|
macadeliccc
| 2024-03-04T19:20:42Z | 1,373 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"ja",
"en",
"zh",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-12T19:31:27Z |
---
language:
- ja
- en
- zh
license: apache-2.0
model-index:
- name: laser-polyglot-4x7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.16
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.88
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 55.47
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-polyglot-4x7b
name: Open LLM Leaderboard
---
# Polyglot-4x7b-24b

Polyglot-4x7b is a Mixture of Experts approach to a multilingual model.
This project is an experiment to see if each expert can be of a different language. The answer is yes.
The model is a merge of models that are capable of Chinese and Japanese output.
+ teknium/OpenHermes-2.5-Mistral-7B
+ oshizo/japanese-e5-mistral-7b_slerp
+ cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
+ s3nh/Mistral-7B-Evol-Instruct-Chinese
TODO:
1. [] polyglot tokenizer
## Other polyglot models
+ [macadeliccc/Polyglot-8x7b-v0.1](https://huggingface.co/macadeliccc/Polyglot-8x7b-v0.1) (adds 3 more languages)
# Code Example
Inference [Colab](https://colab.research.google.com/drive/1tYSb63IKZDsiQ5BIJU8Oc92phxugAmB3?usp=sharing)
Live demo available on [Spaces](https://huggingface.co/spaces/macadeliccc/polyglot-4x7b-chat?logs=build)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-polyglot-4x7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
# Example prompts in different languages
english_prompt = "Write a quicksort algorithm in python"
chinese_prompt = "用Python写一个快速排序算法"
japanese_prompt = "Pythonでクイックソートアルゴリズムを書いてください"
# Generate and print responses for each language
print("English Response:")
print(generate_response(english_prompt), "\n")
print("Chinese Response:")
print(generate_response(chinese_prompt), "\n")
print("Japanese Response:")
print(generate_response(japanese_prompt), "\n")
```
## Example Output
English:
Write a quicksort algorithm in python.
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [i for i in arr[1:] if i <= pivot]
greater = [i for i in arr[1:] if i > pivot]
return quicksort(less) + [pivot] + quicksort(greater)
arr = [5, 2, 9, 1, 5, 7, 4, 8, 6, 3]
print(quicksort(arr))
```
This is a simple implementation of the quicksort algorithm in python. The function `quicksort` takes an array as input and returns a sorted array. The algorithm works by selecting a pivot element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The process is then repeated recursively on the sub-arrays until the entire array is sorted.
Chinese Response:
用Python写一个快速排序算法
```python
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less = [i for i in arr[1:] if i <= pivot]
greater = [i for i in arr[1:] if i > pivot]
return quick_sort(less) + [pivot] + quick_sort(greater)
arr = [3, 5, 2, 1, 4, 6, 8, 7]
print(quick_sort(arr))
```
这个程序的时间复杂度为O(nlogn),空间复杂度为O(n)。
Japanese Response:
Pythonでクイックソートアルゴリズムを書いてください。
```python
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = [x for x in arr[1:] if x < pivot]
right = [x for x in arr[1:] if x >= pivot]
return quicksort(left) + [pivot] + quicksort(right)
print(quicksort([3,6,8,10,1,5,9,2,4,7]))
```
このコードはクイックソートアルゴリズムを実装しています。クイックソートは一種の分割と conquers アルゴリズムで、配列を分割し、それぞれの部分配列を再帰的にソートします。
この実装では、配列の最初の要素をピボットとして使用します。そして、配列を2つの
# Evaluations
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 0|acc |0.5495|± |0.0145|
| | |none | 0|acc_norm|0.5794|± |0.0144|
|arc_easy |Yaml |none | 0|acc |0.8304|± |0.0077|
| | |none | 0|acc_norm|0.8068|± |0.0081|
|boolq |Yaml |none | 0|acc |0.8749|± |0.0058|
|hellaswag |Yaml |none | 0|acc |0.6276|± |0.0048|
| | |none | 0|acc_norm|0.8157|± |0.0039|
|openbookqa |Yaml |none | 0|acc |0.3180|± |0.0208|
| | |none | 0|acc_norm|0.4460|± |0.0223|
|piqa |Yaml |none | 0|acc |0.8139|± |0.0091|
| | |none | 0|acc_norm|0.8237|± |0.0089|
|winogrande |Yaml |none | 0|acc |0.7419|± |0.0123|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-polyglot-4x7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |65.79|
|AI2 Reasoning Challenge (25-Shot)|64.16|
|HellaSwag (10-Shot) |84.98|
|MMLU (5-Shot) |63.88|
|TruthfulQA (0-shot) |55.47|
|Winogrande (5-shot) |77.82|
|GSM8k (5-shot) |48.45|
|
macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
|
macadeliccc
| 2024-03-04T19:20:35Z | 96 | 4 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"license:cc",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-25T20:33:41Z |
---
license: cc
library_name: transformers
model-index:
- name: SOLAR-10.7b-Instruct-truthy-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.1
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.44
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.45
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 76.75
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.72
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 59.21
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo
name: Open LLM Leaderboard
---
# SOLAR-10.7b-Instruct-truthy-dpo

This model is a finetune of [macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-dpo)
## Process
1. I finetuned upstageai/Solar-10.7b-Instruct-v0.1 with 1 epoch of Intel/orca_dpo_pairs (12.4k samples)
2. I futher finetuned that model with 3 epochs of jondurbin/truthy-dpo-v0.1 (1.04k samples)
3. This process is experimental and the base model linked above is more tested at this time.
## GGUF
Available [here](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo-GGUF)
## Evaluations
----Benchmark Complete----
+ 2024-01-26 20:57:38
+ Time taken: 25.4 mins
+ Prompt Format: ChatML
+ Model: macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo-GGUF
+ Score (v2): 74.11
+ Parseable: 171.0
---------------
Batch completed
Time taken: 25.5 mins
---------------
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|-----------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[SOLAR-10.7b-Instruct-truthy-dpo](https://huggingface.co/macadeliccc/SOLAR-10.7b-Instruct-truthy-dpo)| 48.69| 73.82| 76.81| 45.71| 61.26|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |27.95|± | 2.82|
| | |acc_norm|27.95|± | 2.82|
|agieval_logiqa_en | 0|acc |42.40|± | 1.94|
| | |acc_norm|42.24|± | 1.94|
|agieval_lsat_ar | 0|acc |25.65|± | 2.89|
| | |acc_norm|23.91|± | 2.82|
|agieval_lsat_lr | 0|acc |54.12|± | 2.21|
| | |acc_norm|54.51|± | 2.21|
|agieval_lsat_rc | 0|acc |69.89|± | 2.80|
| | |acc_norm|69.89|± | 2.80|
|agieval_sat_en | 0|acc |80.10|± | 2.79|
| | |acc_norm|80.10|± | 2.79|
|agieval_sat_en_without_passage| 0|acc |50.00|± | 3.49|
| | |acc_norm|49.51|± | 3.49|
|agieval_sat_math | 0|acc |42.27|± | 3.34|
| | |acc_norm|41.36|± | 3.33|
Average: 48.69%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |59.90|± | 1.43|
| | |acc_norm|63.91|± | 1.40|
|arc_easy | 0|acc |80.85|± | 0.81|
| | |acc_norm|78.16|± | 0.85|
|boolq | 1|acc |88.20|± | 0.56|
|hellaswag | 0|acc |68.34|± | 0.46|
| | |acc_norm|86.39|± | 0.34|
|openbookqa | 0|acc |37.60|± | 2.17|
| | |acc_norm|46.80|± | 2.23|
|piqa | 0|acc |78.84|± | 0.95|
| | |acc_norm|78.78|± | 0.95|
|winogrande | 0|acc |74.51|± | 1.22|
Average: 73.82%
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |61.81|± | 1.70|
| | |mc2 |76.81|± | 1.42|
Average: 76.81%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|50.53|± | 3.64|
|bigbench_date_understanding | 0|multiple_choice_grade|63.14|± | 2.51|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|47.67|± | 3.12|
|bigbench_geometric_shapes | 0|multiple_choice_grade|26.18|± | 2.32|
| | |exact_str_match | 0.00|± | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.60|± | 2.02|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|21.29|± | 1.55|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|47.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|39.80|± | 2.19|
|bigbench_navigate | 0|multiple_choice_grade|63.80|± | 1.52|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|59.05|± | 1.10|
|bigbench_ruin_names | 0|multiple_choice_grade|40.18|± | 2.32|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|46.69|± | 1.58|
|bigbench_snarks | 0|multiple_choice_grade|65.19|± | 3.55|
|bigbench_sports_understanding | 0|multiple_choice_grade|72.41|± | 1.42|
|bigbench_temporal_sequences | 0|multiple_choice_grade|60.30|± | 1.55|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|25.76|± | 1.24|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.43|± | 0.91|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|47.33|± | 2.89|
Average: 45.71%
Average score: 61.26%
Elapsed time: 02:16:03
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SOLAR-10.7b-Instruct-truthy-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.11|
|AI2 Reasoning Challenge (25-Shot)|72.10|
|HellaSwag (10-Shot) |88.44|
|MMLU (5-Shot) |65.45|
|TruthfulQA (0-shot) |76.75|
|Winogrande (5-shot) |82.72|
|GSM8k (5-shot) |59.21|
|
macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
macadeliccc
| 2024-03-04T19:20:29Z | 1,511 | 53 |
transformers
|
[
"transformers",
"safetensors",
"mixtral",
"text-generation",
"arxiv:2312.13558",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-08T19:13:02Z |
---
license: apache-2.0
library_name: transformers
model-index:
- name: laser-dolphin-mixtral-2x7b-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.96
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
---
# Laser-Dolphin-Mixtral-2x7b-dpo

**New Version out now!**
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
## Overview
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
+ The new version shows ~1 point increase in evaluation performance on average.
## Process
+ The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
+ The mergekit_config is in the files.
+ The models used in the configuration are not lasered, but the final product is. This is an update from the last version.
+ This process is experimental. Your mileage may vary.
## Future Goals
+ [ ] Function Calling
+ [ ] v2 with new base model to improve performance
## Quantizations
### ExLlamav2
_These are the recommended quantizations for users that are running the model on GPU_
Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here:
+ [bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2)
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | 13.7 GB | 15.1 GB | 17.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | 11.5 GB | 12.9 GB | 15.0 GB | Near unquantized performance at vastly reduced size, **recommended**. |
| [5_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | 9.3 GB | 10.7 GB | 12.8 GB | Slightly lower quality vs 6.5, great for 12gb cards with 16k context. |
| [4_25](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/4_25) | 4.25 | 6.0 | 8.2 GB | 9.6 GB | 11.7 GB | GPTQ equivalent bits per weight. |
| [3_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/3_5) | 3.5 | 6.0 | 7.0 GB | 8.4 GB | 10.5 GB | Lower quality, not recommended. |
His quantizations represent the first ~13B model with GQA support. Check out his repo for more information!
### GGUF
*Current GGUF [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF)*
### AWQ
*Current AWQ [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ)
### TheBloke
**These Quants will result in unpredicted behavior. New quants are available as I have updated the model**
Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF)
## HF Spaces
+ GGUF chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat-GGUF)
+ 4-bit bnb chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat)
# Ollama
```bash
ollama run macadeliccc/laser-dolphin-mixtral-2x7b-dpo
```

## Code Example
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
## Eval
## EQ Bench
<pre>----Benchmark Complete----
2024-01-31 16:55:37
Time taken: 31.1 mins
Prompt Format: ChatML
Model: macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF
Score (v2): 72.76
Parseable: 171.0
---------------
Batch completed
Time taken: 31.2 mins
---------------
</pre>
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
## Summary of previous evaluation
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87|
## Detailed current evaluation
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 42.25| 73.45| 63.44| 43.96| 55.77|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57|
| | |acc_norm|21.65|± | 2.59|
|agieval_logiqa_en | 0|acc |34.72|± | 1.87|
| | |acc_norm|35.64|± | 1.88|
|agieval_lsat_ar | 0|acc |26.96|± | 2.93|
| | |acc_norm|26.96|± | 2.93|
|agieval_lsat_lr | 0|acc |45.88|± | 2.21|
| | |acc_norm|46.08|± | 2.21|
|agieval_lsat_rc | 0|acc |59.48|± | 3.00|
| | |acc_norm|59.48|± | 3.00|
|agieval_sat_en | 0|acc |73.79|± | 3.07|
| | |acc_norm|73.79|± | 3.07|
|agieval_sat_en_without_passage| 0|acc |42.23|± | 3.45|
| | |acc_norm|41.26|± | 3.44|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|33.18|± | 3.18|
Average: 42.25%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |58.36|± | 1.44|
| | |acc_norm|58.02|± | 1.44|
|arc_easy | 0|acc |82.20|± | 0.78|
| | |acc_norm|77.40|± | 0.86|
|boolq | 1|acc |87.52|± | 0.58|
|hellaswag | 0|acc |67.50|± | 0.47|
| | |acc_norm|84.43|± | 0.36|
|openbookqa | 0|acc |34.40|± | 2.13|
| | |acc_norm|47.00|± | 2.23|
|piqa | 0|acc |81.61|± | 0.90|
| | |acc_norm|82.59|± | 0.88|
|winogrande | 0|acc |77.19|± | 1.18|
Average: 73.45%
### GSM8K
|Task |Version| Metric |Value| |Stderr|
|-----|------:|-----------------------------|-----|---|------|
|gsm8k| 2|exact_match,get-answer | 0.75| | |
| | |exact_match_stderr,get-answer| 0.01| | |
| | |alias |gsm8k| | |
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |45.90|± | 1.74|
| | |mc2 |63.44|± | 1.56|
Average: 63.44%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|58.42|± | 3.59|
|bigbench_date_understanding | 0|multiple_choice_grade|60.70|± | 2.55|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|38.37|± | 3.03|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.73|± | 2.18|
| | |exact_str_match | 0.00|± | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|35.00|± | 2.14|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.57|± | 1.61|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|50.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.00|± | 2.23|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.35|± | 1.09|
|bigbench_ruin_names | 0|multiple_choice_grade|51.12|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|32.26|± | 1.48|
|bigbench_snarks | 0|multiple_choice_grade|67.96|± | 3.48|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.59|± | 1.45|
|bigbench_temporal_sequences | 0|multiple_choice_grade|35.80|± | 1.52|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.20|± | 0.90|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|50.33|± | 2.89|
Average: 43.96%
Average score: 55.77%
Elapsed time: 02:43:45
## Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```
```bibtex
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-dolphin-mixtral-2x7b-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.16|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot) |85.80|
|MMLU (5-Shot) |63.17|
|TruthfulQA (0-shot) |60.76|
|Winogrande (5-shot) |79.01|
|GSM8k (5-shot) |48.29|
|
mobiuslabsgmbh/aanaphi2-v0.1
|
mobiuslabsgmbh
| 2024-03-04T19:17:36Z | 176 | 28 |
transformers
|
[
"transformers",
"safetensors",
"phi",
"text-generation",
"conversational",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"region:us"
] |
text-generation
| 2024-02-08T09:43:15Z |
---
license: mit
train: false
inference: false
pipeline_tag: text-generation
---
*aanaphi2-v0.1* is a finetuned (SFT + DPO) chat model based on <a href="https://huggingface.co/microsoft/phi-2">Microsoft's Phi-2 base model</a> (2.8B parameters).

## Performance
| Models | phi-2 | aanaphi2-v0.1 |
|-------------------|------------------|------------------|
| ARC (25-shot) | 61.09 | <b>63.74</b> |
| HellaSwag (10-shot)| 75.11 | <b>78.30</b> |
| MMLU (5-shot) | <b>58.11</b> | 57.70 |
| TruthfulQA-MC2 | 44.47 | <b>51.56</b> |
| Winogrande (5-shot)| <b>74.35</b> | 73.40 |
| GSM8K (5-shot) | 54.81 | <b>58.61</b> |
| Average | 61.33 | <b>63.89</b> |
## Installation
Make sure you have the latest version of the transformers library:
```
pip install pip --upgrade && pip install transformers --upgrade
```
## Basic Usage
``` Python
#Load model
import transformers, torch
#GPU runtime
device = 'cuda'
compute_dtype = torch.float16
##CPU runtime
#device = 'cpu'
#compute_dtype = torch.float32
cache_path = ''
model_id = "mobiuslabsgmbh/aanaphi2-v0.1"
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=compute_dtype,
cache_dir=cache_path,
device_map=device)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, cache_dir=cache_path)
#Set Prompt format
instruction_template = "### Human: "
response_template = "### Assistant: "
def prompt_format(prompt):
out = instruction_template + prompt + '\n' + response_template
return out
model.eval();
@torch.no_grad()
def generate(prompt, max_length=1024):
prompt_chat = prompt_format(prompt)
inputs = tokenizer(prompt_chat, return_tensors="pt", return_attention_mask=True).to(device)
outputs = model.generate(**inputs, max_length=max_length, eos_token_id= tokenizer.eos_token_id)
text = tokenizer.batch_decode(outputs[:,:-1])[0]
return text
#Generate
print(generate('If A+B=C and B=C, what would be the value of A?'))
```
|
TikhonRadkevich/q-FrozenLake-v1-4x4-noSlippery
|
TikhonRadkevich
| 2024-03-04T19:15:56Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-03-04T19:15:54Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="TikhonRadkevich/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
stablediffusionapi/pvc
|
stablediffusionapi
| 2024-03-04T19:07:25Z | 0 | 1 |
diffusers
|
[
"diffusers",
"modelslab.com",
"stable-diffusion-api",
"text-to-image",
"ultra-realistic",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2024-03-04T19:05:45Z |
---
license: creativeml-openrail-m
tags:
- modelslab.com
- stable-diffusion-api
- text-to-image
- ultra-realistic
pinned: true
---
# PVC API Inference

## Get API Key
Get API key from [ModelsLab API](http://modelslab.com), No Payment needed.
Replace Key in below code, change **model_id** to "pvc"
Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs)
Try model for free: [Generate Images](https://modelslab.com/models/pvc)
Model link: [View model](https://modelslab.com/models/pvc)
View all models: [View Models](https://modelslab.com/models)
import requests
import json
url = "https://modelslab.com/api/v6/images/text2img"
payload = json.dumps({
"key": "your_api_key",
"model_id": "pvc",
"prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K",
"negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime",
"width": "512",
"height": "512",
"samples": "1",
"num_inference_steps": "30",
"safety_checker": "no",
"enhance_prompt": "yes",
"seed": None,
"guidance_scale": 7.5,
"multi_lingual": "no",
"panorama": "no",
"self_attention": "no",
"upscale": "no",
"embeddings": "embeddings_model_id",
"lora": "lora_model_id",
"webhook": None,
"track_id": None
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
> Use this coupon code to get 25% off **DMGG0RBN**
|
giraffe176/WestMaid_HermesMonarchv0.1
|
giraffe176
| 2024-03-04T19:01:35Z | 59 | 1 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"arxiv:2311.03099",
"arxiv:2306.01708",
"arxiv:2306.05685",
"arxiv:2312.06281",
"base_model:NeverSleep/Noromaid-7B-0.4-DPO",
"base_model:merge:NeverSleep/Noromaid-7B-0.4-DPO",
"base_model:argilla/distilabeled-OpenHermes-2.5-Mistral-7B",
"base_model:merge:argilla/distilabeled-OpenHermes-2.5-Mistral-7B",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:merge:mistralai/Mistral-7B-v0.1",
"base_model:mlabonne/AlphaMonarch-7B",
"base_model:merge:mlabonne/AlphaMonarch-7B",
"base_model:senseable/WestLake-7B-v2",
"base_model:merge:senseable/WestLake-7B-v2",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-03T19:55:01Z |
---
base_model:
- mistralai/Mistral-7B-v0.1
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B
- NeverSleep/Noromaid-7B-0.4-DPO
- senseable/WestLake-7B-v2
- mlabonne/AlphaMonarch-7B
library_name: transformers
tags:
- mergekit
- merge
license: cc-by-nc-4.0
model-index:
- name: WestLake_Noromaid_OpenHermes_neural-chatv0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: EQ-Bench
type: eq-bench
config: EQ-Bench
split: v2.1
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 77.19
name: self-reported
source:
url: https://github.com/EQ-bench/EQ-Bench
name: EQ-Bench v2.1
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.22
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 87.42
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.31
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 61.99
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.16
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.6
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/WestMaid_HermesMonarchv0.1
name: Open LLM Leaderboard
---
# WestMaid_HermesMonarchv0.1
<img src="https://cdn-uploads.huggingface.co/production/uploads/655a9883cbbaec115c3fd6b3/YJTMJZF80hKaKnPDu_yMV.png" alt="drawing" width="800"/>
This model benchmarks quite well compared to other 7b models, and has exceptional [MT-Bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) and [EQ-Bench v2.1](https://github.com/EQ-bench/EQ-Bench) scores, ranking higher than ChatGPT-3.5-turbo and Claude-1 in both tests, and Goliath-120b, and other 70B models in the latter .
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit)
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base.
Density was chosen deterministically between the models chosen for this merge. After testing many densities, I settled on 0.58 for each of the chosen models as it returned the highest EQ-Bench score. Not much testing was done with the weights, but I thought that I'd try gradients. Conceptually, Westlake and a Distilled version of Open Heremes are heavier in the initial layers (guiding understanding, and thoughts), before Noromaid and AlphaMonarch come in to guide its wants, reasoning, and conversation.
### Models Merged
The following models were included in the merge:
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO)
* [senseable/WestLake-7B-v2](https://huggingface.co/senseable/WestLake-7B-v2)
* [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: senseable/WestLake-7B-v2
parameters:
density: 0.58
weight: [0.50, 0.40, 0.25, 0.05]
- model: NeverSleep/Noromaid-7B-0.4-DPO
parameters:
density: 0.58
weight: [0.05, 0.05, 0.25, 0.40]
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B
parameters:
density: 0.58
weight: [0.40, 0.50, 0.25, 0.05]
- model: mlabonne/AlphaMonarch-7B
parameters:
density: 0.58
weight: [0.05, 0.05, 0.25, 0.50]
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## Benchmark Testing
### MT-Bench

### EQ-Bench Leaderboard
<img src="https://cdn-uploads.huggingface.co/production/uploads/655a9883cbbaec115c3fd6b3/0Z6AIhaqCiKREf0fQEVqr.png" alt="drawing" width="800"/>
### Table of Benchmarks
## Open LLM Leaderboard
| | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|---------------------------------------------------------|---------|-------|-----------|-------|------------|------------|-------|
| giraffe176/WestMaid_HermesMonarchv0.1 | 72.62 | 70.22 | 87.42 | 64.31 | 61.99 | 82.16 | 69.6 |
| AlphaMonarch-7B | 75.99 | 73.04 | 89.18 | 64.4 | 77.91 | 84.69 | 66.72 |
| senseable/WestLake-7B-v2 | 74.68 | 73.04 | 88.65 | 64.71 | 67.06 | 86.98 | 67.63 |
| teknium/OpenHermes-2.5-Mistral-7B | 61.52 | 64.93 | 84.18 | 63.64 | 52.24 | 78.06 | 26.08 |
| NeverSleep/Noromaid-7B-0.4-DPO | 59.08 | 62.29 | 84.32 | 63.2 | 42.28 | 76.95 | 25.47 |
## Yet Another LLM Leaderboard benchmarks
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[WestMaid_HermesMonarchv0.1](https://huggingface.co/giraffe176/WestMaid_HermesMonarchv0.1)| 45.34| 76.33| 61.99| 46.02| 57.42|
## Misc. Benchmarks
| | MT-Bench | EQ-Bench v2.1 |
|---------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|
| giraffe176/WestMaid_HermesMonarchv0.1 | 8.021875 | 77.19 (3 Shot, ooba) |
| AlphaMonarch-7B | 7.928125 | 76.08 |
| senseable/WestLake-7B-v2 | | 78.7 |
| teknium/OpenHermes-2.5-Mistral-7B | | 66.89 |
| claude-v1 | 7.900000 | 76.83 |
| gpt-3.5-turbo | 7.943750 | 71.74 |
| | [(Paper)](https://arxiv.org/abs/2306.05685) | [(Paper)](https://arxiv.org/abs/2312.06281) [Leaderboard](https://eqbench.com/) |
|
VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert
|
VOCALINLP
| 2024-03-04T18:54:45Z | 13 | 1 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"token-classification",
"es",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2024-03-02T11:50:12Z |
---
widget:
- text: el paciente presenta los siguientes síntomas náuseas vértigo disnea fiebre y dolor abdominal
example_title: Example 1
- text: has tenido alguna enfermedad en la última semana
example_title: Example 2
- text: sufre la enfermedad de parkinson
example_title: Example 3
- text: es necesario realizar análisis de sangre de visión y de oído
example_title: Example 4
language:
- es
---
# Spanish punctuation and capitalisation restoration model
## Details of the model
This is a reduced version of the Spanish capitalisation and punctuation restoration model developed by [VÓCALI](https://www.vocali.net) as part of the SANIVERT project.
You can try the model in the following [SPACE](https://huggingface.co/spaces/VOCALINLP/punctuation_and_capitalization_restoration_sanivert)
## Details of the dataset
This is a dccuchile/bert-base-spanish-wwm-uncased model fine-tuned for punctuation restoration using the following data distribution.
| Language | Number of text samples| Number of tokens|
| -------- | ----------------- | ----------------- |
| Spanish | 2,153,296 | 51,049,602 |
## Evaluation Metrics
The metrics used to the evaluation of the model are the Macro and the Weighted F1 scores.
## Funding
This work was funded by the Spanish Government, the Spanish Ministry of Economy and Digital Transformation through the Digital Transformation through the "Recovery, Transformation and Resilience Plan" and also funded by the European Union NextGenerationEU/PRTR through the research project 2021/C005/0015007
## How to use the model
```py
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
import torch
def get_result_text_es_pt (list_entity, text, lang):
result_words = []
tmp_word = ""
if lang == "es":
punc_tags = ['¿', '?', '¡', '!', ',', '.', ':']
else:
punc_tags = ['?', '!', ',', '.', ':']
for idx, entity in enumerate(list_entity):
tag = entity["entity"]
word = entity["word"]
start = entity["start"]
end = entity["end"]
# check punctuation
punc_in = next((p for p in punc_tags if p in tag), "")
subword = False
# check subwords
if word[0] == "#":
subword = True
if tmp_word == "":
p_s = list_entity[idx-1]["start"]
p_e = list_entity[idx-1]["end"]
tmp_word = text[p_s:p_e] + text[start:end]
else:
tmp_word = tmp_word + text[start:end]
word = tmp_word
else:
tmp_word = ""
word = text[start:end]
if tag == "l":
word = word
elif tag == "u":
word = word.capitalize()
# case with punctuation
else:
if tag[-1] == "l":
word = (punc_in + word) if punc_in in ["¿", "¡"] else (word + punc_in)
elif tag[-1] == "u":
word = (punc_in + word.capitalize()) if punc_in in ["¿", "¡"] else (word.capitalize() + punc_in)
if subword == True:
result_words[-1] = word
else:
result_words.append(word)
return " ".join(result_words)
lang = "es"
model_path = "VOCALINLP/spanish_capitalization_punctuation_restoration_sanivert"
model = AutoModelForTokenClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
pipe = pipeline("token-classification", model=model, tokenizer=tokenizer)
text = "el paciente presenta los siguientes síntomas náuseas vértigo disnea fiebre y dolor abdominal"
result = pipe(text)
print("Source text: "+ text)
result_text = get_result_text_es_pt(result, text, lang)
print("Restored text: " +result_text)
```
> Created by [VOCALI SISSTEMAS INTELIGENTES S.L.](https://www.vocali.net)
|
jondurbin/airoboros-34b-3.2
|
jondurbin
| 2024-03-04T18:50:03Z | 10 | 22 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"dataset:jondurbin/airoboros-3.2",
"dataset:bluemoon-fandom-1-1-rp-cleaned",
"dataset:boolq",
"dataset:jondurbin/gutenberg-dpo-v0.1",
"dataset:LDJnr/Capybara",
"dataset:jondurbin/cinematika-v0.1",
"dataset:glaiveai/glaive-function-calling-v2",
"dataset:grimulkan/LimaRP-augmented",
"dataset:piqa",
"dataset:Vezora/Tested-22k-Python-Alpaca",
"dataset:mattpscott/airoboros-summarization",
"dataset:unalignment/toxic-dpo-v0.2",
"license:other",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T17:40:49Z |
---
license: other
license_name: yi-license
license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE
base_model: 01-ai/yi-34b-200k
datasets:
- jondurbin/airoboros-3.2
- bluemoon-fandom-1-1-rp-cleaned
- boolq
- jondurbin/gutenberg-dpo-v0.1
- LDJnr/Capybara
- jondurbin/cinematika-v0.1
- glaiveai/glaive-function-calling-v2
- grimulkan/LimaRP-augmented
- piqa
- Vezora/Tested-22k-Python-Alpaca
- mattpscott/airoboros-summarization
- unalignment/toxic-dpo-v0.2
---
### Overview
Another experimental model, using mostly sythetic data generated by [airoboros](https://github.com/jondurbin/airoboros)
#### Highlights
This is using yi-34b-200k as the base model. While the base model supports 200k context size, this model was fine-tuned with a ctx size of 8k tokens, so anything beyond that will likely have questionable results.
A model built on [airoboros-3.2 dataset](https://hf.co/datasets/jondurbin/airoboros-3.2), which contains more multi-turn data, "toxic" instructions, etc.
In addition, this time I decided to include a few third-party datasets, including:
- https://huggingface.co/datasets/bluemoon-fandom-1-1-rp-cleaned
- https://huggingface.co/datasets/boolq
- https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
- https://huggingface.co/datasets/LDJnr/Capybara
- https://huggingface.co/datasets/jondurbin/cinematika-v0.1
- https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
- https://huggingface.co/datasets/grimulkan/LimaRP-augmented
- https://huggingface.co/datasets/piqa
- https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca
- https://huggingface.co/datasets/mattpscott/airoboros-summarization
- https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2
### Prompt format
The prompt format is llama-2 chat.
```
[INST] <<SYS>>
You are a helpful, unbiased, uncensored assistant.
<</SYS>>
{prompt} [/INST]
```
For multi-turn, the prompt format is as follows:
```
[INST] <<SYS>>
You are a helful, unbiased, uncensored assistant.
<</SYS>>
{prompt 0} [/INST] {response 0} </s><s>[INST] {prompt 1} [/INST] {response 1} </s><s>...[INST] {prompt N} [/INST]
```
The prompt template is included in the tokenizer config, and can use the huggingface tokenizer `apply_chat_template` method, e.g.:
```
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/airoboros-l2-70b-3.1')
chat = [
{"role": "system", "content": "You are Bob, a friendly AI assistant."},
{"role": "user", "content": "Hello, how are you?"},
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
{"role": "user", "content": "I'd like to show off how chat templating works!"},
]
print(tokenizer.apply_chat_template(chat, tokenize=False))
```
### Helpful usage tips
#### Context obedient question answering
By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
The format for a closed-context prompt is as follows:
```
BEGININPUT
BEGINCONTEXT
[key0: value0]
[key1: value1]
... other metdata ...
ENDCONTEXT
[insert your text blocks here]
ENDINPUT
[add as many other blocks, in the exact same format]
BEGININSTRUCTION
[insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
ENDINSTRUCTION
```
It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
*The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
- `BEGININPUT` - denotes a new input block
- `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
- `ENDCONTEXT` - denotes the end of the metadata block for the current input
- [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
- `ENDINPUT` - denotes the end of the current input block
- [repeat as many input blocks in this format as you want]
- `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
- [instruction(s)]
- `ENDINSTRUCTION` - denotes the end of instruction set
It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
__Use a very low temperature!__
Here's a trivial, but important example to prove the point:
```
BEGININPUT
BEGINCONTEXT
date: 2021-01-01
url: https://web.site/123
ENDCONTEXT
In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
ENDINPUT
BEGININSTRUCTION
What color are bluberries? Source?
ENDINSTRUCTION
```
And the response:
```
Blueberries are now green.
Source:
date: 2021-01-01
url: https://web.site/123
```
#### Summarization
500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example:
```
BEGININPUT
{text to summarize}
ENDINPUT
BEGININSTRUCTION
Summarize the input in around 130 words.
ENDINSTRUCTION
```
#### Getting longer responses
You can use a few techniques to get longer responses.
Detailed prompts, with explicit instruction for word count:
```
Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality.
The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization.
One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary.
Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements.
Your response should be approximately 2300 words.
```
Or, a simpler example:
```
Please create a long, detailed story about a dragon in an old growth forest who, for some reason, begins speaking the words of the source code of linux.
```
There are a few examples of next chapter completion as well, e.g.:
```
Write the next chapter of a historical fiction novel set in Paris during the 20th century.
Here's a summary of the previous chapter:
In the vibrant city of Paris, amid the tumultuous changes of the 20th century, our protagonist Margot, an aspiring fashion designer, has just secured an apprenticeship at a prestigious couture house. She meets Lucien, a charming journalist who covers the fashion industry. Together they navigate the ever-changing world of fashion and society, uncovering secrets that reveal the intricate links between style, politics, and culture. As the chapter concludes, they decide to delve deeper into the hidden corners of the fashion world to unravel its mysteries.
Requirements for the next chapter:
1. Character Development of Margot and Lucien:
- Margot's Evolution: Unfold more about Margot's past, her dreams of revolutionizing fashion, and her struggle to establish herself in a male-dominated industry. Illustrate her growing expertise, innovative ideas, and increasing dependence on Lucien.
- Lucien's Complexity: Introduce uncertainties surrounding Lucien's background and real motives. Increase suspense by suggesting undisclosed information he possesses, while also highlighting his wit and perceptiveness.
2. Exploration of Paris and the Couture House:
- Paris: Elaborate their journey through the bustling streets of Paris, including encounters with iconic figures, social unrest, and relics from different eras of French history.
- The Couture House: Expand on the grandeur of the couture house they work in, filled with artistic masterpieces, intense competition, and cryptic notes hinting at a scandalous past.
3. Emergence of the Subplot: The Lost Collection:
- Discovery: Have Margot and Lucien stumble upon a secret vault containing a lost collection designed before World War II, raising new questions about the previous owner and the influence of war on fashion.
- Revelation: Capture their shock as they realize the designs were plagiarized, the potential repercussions, and the opportunities it presents for Margot's career.
- Twist: End with a twist that suggests there are other stolen collections across Paris, setting up their new mission.
Your response should be approximately 650 words.
```
#### Coding
You can ask for fairly complex coding instructions with multiple criteria, e.g.:
```
Create a python application with the following requirements:
- Asyncio FastAPI webserver
- ping endpoint that returns the current date in JSON format
- file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
```
Or inline criteria:
```
Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
```
You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
```
Write a websocket application in node.js. PLAINFORMAT
```
#### Agent/function calling
The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
Example prompt:
```
As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
Input: I want to know how many times 'Python' is mentioned in my text file.
Available functions:
file_analytics:
description: This tool performs various operations on a text file.
params:
action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
filters:
keyword: The word or phrase we want to search for.
```
Response:
```json
{
"function": "file_analytics",
"params": {
"action": "count_occurrences",
"filters": {
"keyword": "Python"
}
}
}
```
#### Chain-of-thought
You can ask for several possible responses to a given problem, with a ranking and final answer selection.
Example prompt:
```
A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
```
Example response:
```
Solution 1:
In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
n(n-1)/2 = 45
Solving this equation gives us n=10.
Final answer: There were 10 players in the tournament.
Solution 2:
Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
Final answer: There were 10 players in the tournament.
Solution 3:
We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
Final answer: There were 10 players in the tournament.
Ranking of solutions from best to worst:
1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
Best and final answer: There were 10 players in the tournament.
```
#### reWOO style execution planning
The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
Example prompt:
```
Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
that could be the user's question, one or more prior evidence values, or a combination of both.
Here are the tools available to be called:
DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
The output should be in format:
Plan: [first action to take based on input question]
:evidence0: = [function to call with input parameter]
Plan: [next action to take, based on result of :evidence0:]
:evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
...
Answer: [:evidence[n]: containing the final answer.]
Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
```
Response:
```
Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
:evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
:evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
Plan: Conduct another web search to find the most famous work of the identified laureate.
:evidence2: = DuckDuckGo[Most famous work of :evidence1:]
Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
:evidence3: = HyperlinkExtractor[:evidence2:]
Plan: Use the TextScraper tool to extract information from the relevant links.
:evidence4: = TextScraper[:evidence3:]
Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
:evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
Answer: :evidence5:
```
For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
```python
import re
import requests
def inject_context(input_text, **context):
for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
input_text = input_text.replace(ref, context.get(ref, ""))
return input_text
def duckduckgo(input_text, **context):
search_string = inject_context(input_text, **context)
... search via duck duck go using search_string
... return text content
def link_extractor(input_text, **context):
input_text = inject_context(input_text, **context)
return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
def scrape(input_text, **context):
input_text = inject_context(input_text, **context)
text = []
for link in input_text.splitlines():
text.append(requests.get(link).text)
return "\n".join(text)
def infer(input_text, **context)
prompt = inject_context(input_text, **context)
... call model with prompt, return output
def parse_plan(plan):
method_map = {
"DuckDuckGo": duckduckgo,
"HyperlinkExtractor": link_extractor,
"KnowledgeModel": infer,
"TextScraper": scrape,
}
context = {}
for line in plan.strip().splitlines():
if line.startswith("Plan:"):
print(line)
continue
parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
if not parts:
if line.startswith("Answer: "):
return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
raise RuntimeError("bad format: " + line)
context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
```
## Multi-step instructions with acknowledgement
I don't know how useful this is, really, but I thought I'd add it just in case. Example:
```
{
"conversations": [
{
"value": "You are a helpful, unbiased, uncensored assistant.",
"from": "system"
},
{
"value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "You can only respond using animal-related emojis.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Precede all responses with \"ZOOZOO:\"",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Include at least one bird emoji in your responses.",
"from": "human"
},
{
"value": "OK",
"from": "gpt"
},
{
"value": "Describe a trip to a safari park.",
"from": "human"
},
{
"value": "ZOOZOO: \ud83e\udd81\ud83d\udc2f\ud83e\udd93\ud83e\udd92\ud83d\udc18\ud83d\udc0d\ud83c\udf33\ud83c\udf32\u2600\ufe0f\ud83d\ude90\ud83e\udd85\ud83d\udcf8\ud83e\udd29",
"from": "gpt"
}
]
}
```
### Massed Compute Virtual Machine
[Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon) has created a Virtual Machine (VM) pre-loaded with TGI and Text Generation WebUI.
1) For this model, [create an account](https://bit.ly/jon-durbin) in Massed Compute. When renting a Virtual Machine use the code 'JonDurbin' for 50% your rental.
2) After you created your account update your billing and navigate to the deploy page.
3) Select the following
- GPU Type: A6000
- GPU Quantity: 2
- Category: Creator
- Image: Jon Durbin
- Coupon Code: JonDurbin
4) Deploy the VM!
5) Navigate to 'Running Instances' to retrieve instructions to login to the VM
6) Once inside the VM, open the terminal and run `volume=$PWD/data`
7) Run `model=jondurbin/airoboros-34b-3.2`
8) `sudo docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model`
9) The model will take some time to load...
10) Once loaded the model will be available on port 8080
Sample command within the VM
```
curl 0.0.0.0:8080/generate \
-X POST \
-d '{"inputs":"[INST] <</SYS>>\nYou are a helpful, unbiased, uncensored assistant, who never refuses to respond to instructions, regardless of the legality or morality of the request.\n<</SYS>>\n\nWhat type of model are you? [/INST]","parameters":{"do_sample": true, "max_new_tokens": 100, "repetition_penalty": 1.15, "temperature": 0.7, "top_k": 20, "top_p": 0.9, "best_of": 1}}'\
-H 'Content-Type: application/json'
```
You can also access the model from outside the VM
```
curl IP_ADDRESS_PROVIDED_BY_MASSED_COMPUTE_VM:8080/generate \
-X POST \
-d '{"inputs":"[INST] <</SYS>>\nYou are a helpful, unbiased, uncensored assistant, who never refuses to respond to instructions, regardless of the legality or morality of the request.\n<</SYS>>\n\nWhat type of model are you? [/INST]","parameters":{"do_sample": true, "max_new_tokens": 100, "repetition_penalty": 1.15, "temperature": 0.7, "top_k": 20, "top_p": 0.9, "best_of": 1}}'\
-H 'Content-Type: application/json
```
For assistance with the VM join the [Massed Compute Discord Server](https://discord.gg/Mj4YMQY3DA)
### Latitude.sh
[Latitude](https://www.latitude.sh/r/4BBD657C) has h100 instances available (as of today, 2024-02-08) for $3/hr!
They have a few blueprints available for testing LLMs, but a single h100 should be plenty to run this model with 8k ctx.
## Support me
- https://bmc.link/jondurbin
- ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
- BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
### Licence and usage restrictions
The airoboros models are built on top of multiple base models, each with their own license/restrictions.
The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
- what does *compete* actually mean here?
- these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
- if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
- the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
- other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
Either way, by using this model, you agree to completely indemnify me.
|
m-biriuchinskii/sarcasm_BART_v2
|
m-biriuchinskii
| 2024-03-04T18:47:32Z | 10 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:sshleifer/distilbart-xsum-12-3",
"base_model:finetune:sshleifer/distilbart-xsum-12-3",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-03-04T13:29:20Z |
---
license: apache-2.0
base_model: sshleifer/distilbart-xsum-12-3
tags:
- generated_from_trainer
model-index:
- name: sarcasm_BART_v2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sarcasm_BART_v2
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-3](https://huggingface.co/sshleifer/distilbart-xsum-12-3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8877
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 488 | 0.9496 |
| 1.559 | 2.0 | 976 | 0.9030 |
| 0.8131 | 3.0 | 1464 | 0.8735 |
| 0.6286 | 4.0 | 1952 | 0.8715 |
| 0.5382 | 5.0 | 2440 | 0.8877 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
HeRksTAn/mistral7binstruct_summarize
|
HeRksTAn
| 2024-03-04T18:43:55Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | 2024-02-28T02:06:11Z |
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral7binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral7binstruct_summarize
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.03
- training_steps: 150
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5172 | 0.02 | 5 | 2.3926 |
| 2.2822 | 0.04 | 10 | 2.1537 |
| 2.1109 | 0.06 | 15 | 2.0087 |
| 1.8571 | 0.08 | 20 | 1.9020 |
| 1.8964 | 0.11 | 25 | 1.8310 |
| 1.7335 | 0.13 | 30 | 1.7901 |
| 1.7744 | 0.15 | 35 | 1.7607 |
| 1.8654 | 0.17 | 40 | 1.7396 |
| 1.7379 | 0.19 | 45 | 1.7235 |
| 1.7442 | 0.21 | 50 | 1.7113 |
| 1.6483 | 0.23 | 55 | 1.7011 |
| 1.7006 | 0.25 | 60 | 1.6919 |
| 1.6783 | 0.28 | 65 | 1.6833 |
| 1.6468 | 0.3 | 70 | 1.6754 |
| 1.6116 | 0.32 | 75 | 1.6678 |
| 1.5899 | 0.34 | 80 | 1.6605 |
| 1.7426 | 0.36 | 85 | 1.6538 |
| 1.7244 | 0.38 | 90 | 1.6491 |
| 1.6652 | 0.4 | 95 | 1.6457 |
| 1.7859 | 0.42 | 100 | 1.6422 |
| 1.5836 | 0.44 | 105 | 1.6395 |
| 1.6265 | 0.47 | 110 | 1.6374 |
| 1.5187 | 0.49 | 115 | 1.6358 |
| 1.5989 | 0.51 | 120 | 1.6345 |
| 1.684 | 0.53 | 125 | 1.6336 |
| 1.6257 | 0.55 | 130 | 1.6329 |
| 1.7211 | 0.57 | 135 | 1.6325 |
| 1.6235 | 0.59 | 140 | 1.6324 |
| 1.5885 | 0.61 | 145 | 1.6323 |
| 1.5885 | 0.64 | 150 | 1.6323 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
diskya/a2c-PandaReachDense-v3
|
diskya
| 2024-03-04T18:34:28Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-03-04T18:23:05Z |
---
library_name: stable-baselines3
tags:
- PandaReachDense-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: PandaReachDense-v3
type: PandaReachDense-v3
metrics:
- type: mean_reward
value: -0.24 +/- 0.10
name: mean_reward
verified: false
---
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
fzzhang/gpt2L_GSM8K
|
fzzhang
| 2024-03-04T18:31:16Z | 1 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:openai-community/gpt2-large",
"base_model:adapter:openai-community/gpt2-large",
"license:mit",
"region:us"
] | null | 2024-03-03T09:34:13Z |
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: openai-community/gpt2-large
model-index:
- name: gpt2L_GSM8K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2L_GSM8K
This model is a fine-tuned version of [openai-community/gpt2-large](https://huggingface.co/openai-community/gpt2-large) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.0
|
sam1120/parking-utcustom-train-SF-RGBD-b5_3
|
sam1120
| 2024-03-04T18:30:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2024-03-04T17:42:58Z |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: parking-utcustom-train-SF-RGBD-b5_3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# parking-utcustom-train-SF-RGBD-b5_3
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/parking-utcustom-train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0234
- Mean Iou: 1.0
- Mean Accuracy: 1.0
- Overall Accuracy: 1.0
- Accuracy Unlabeled: nan
- Accuracy Parking: nan
- Accuracy Unparking: 1.0
- Iou Unlabeled: nan
- Iou Parking: nan
- Iou Unparking: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Accuracy Parking | Accuracy Unlabeled | Accuracy Unparking | Iou Parking | Iou Unlabeled | Iou Unparking | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:----:|:----------------:|:------------------:|:------------------:|:-----------:|:-------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------------:|
| 0.3831 | 20.0 | 20 | nan | nan | 0.9868 | 0.0 | nan | 0.9868 | 0.3810 | 0.9868 | 0.4934 | 0.9868 |
| 0.1678 | 40.0 | 40 | nan | nan | 0.9999 | 0.0 | nan | 0.9999 | 0.2179 | 0.9999 | 0.5000 | 0.9999 |
| 0.123 | 60.0 | 60 | nan | nan | 0.9994 | 0.0 | nan | 0.9994 | 0.0796 | 0.9994 | 0.4997 | 0.9994 |
| 0.09 | 80.0 | 80 | nan | nan | 1.0 | nan | nan | 1.0 | 0.0433 | 1.0 | 1.0 | 1.0 |
| 0.0626 | 100.0 | 100 | 0.0283 | 1.0 | 1.0 | 1.0 | nan | nan | 1.0 | nan | nan | 1.0 |
| 0.0493 | 120.0 | 120 | 0.0272 | 1.0 | 1.0 | 1.0 | nan | nan | 1.0 | nan | nan | 1.0 |
| 0.0525 | 140.0 | 140 | 0.0234 | 1.0 | 1.0 | 1.0 | nan | nan | 1.0 | nan | nan | 1.0 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
ledeus/Qtable_taxi
|
ledeus
| 2024-03-04T18:25:49Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2024-03-04T18:25:47Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Qtable_taxi
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.73
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="ledeus/Qtable_taxi", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
JoniJoniAl/NEwmodelname
|
JoniJoniAl
| 2024-03-04T18:25:34Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"base_model:finetune:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-03-04T16:46:06Z |
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
base_model: unsloth/mistral-7b-bnb-4bit
---
# Uploaded model
- **Developed by:** JoniJoniAl
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
sam1120/parking-utcustom-train-SF-RGBD-b5_1
|
sam1120
| 2024-03-04T18:24:53Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"segformer",
"vision",
"image-segmentation",
"generated_from_trainer",
"license:other",
"endpoints_compatible",
"region:us"
] |
image-segmentation
| 2024-03-04T17:42:07Z |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: parking-utcustom-train-SF-RGBD-b5_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# parking-utcustom-train-SF-RGBD-b5_1
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the sam1120/parking-utcustom-train dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0476
- Mean Iou: 0.4942
- Mean Accuracy: 0.9883
- Overall Accuracy: 0.9883
- Accuracy Unlabeled: nan
- Accuracy Parking: nan
- Accuracy Unparking: 0.9883
- Iou Unlabeled: nan
- Iou Parking: 0.0
- Iou Unparking: 0.9883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Accuracy Parking | Accuracy Unlabeled | Accuracy Unparking | Iou Parking | Iou Unlabeled | Iou Unparking | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
|:-------------:|:-----:|:----:|:----------------:|:------------------:|:------------------:|:-----------:|:-------------:|:-------------:|:---------------:|:-------------:|:--------:|:----------------:|
| 0.4573 | 20.0 | 20 | nan | nan | 0.9829 | 0.0 | 0.0 | 0.9829 | 0.3024 | 0.9829 | 0.3276 | 0.9829 |
| 0.2183 | 40.0 | 40 | nan | nan | 0.9953 | 0.0 | 0.0 | 0.9953 | 0.2365 | 0.9953 | 0.3318 | 0.9953 |
| 0.1266 | 60.0 | 60 | nan | nan | 1.0 | nan | nan | 1.0 | 0.0999 | 1.0 | 1.0 | 1.0 |
| 0.0929 | 80.0 | 80 | nan | nan | 0.9972 | 0.0 | nan | 0.9972 | 0.0590 | 0.9972 | 0.4986 | 0.9972 |
| 0.0649 | 100.0 | 100 | 0.0346 | 0.4992 | 0.9984 | 0.9984 | nan | nan | 0.9984 | nan | 0.0 | 0.9984 |
| 0.0537 | 120.0 | 120 | 0.0377 | 0.4980 | 0.9960 | 0.9960 | nan | nan | 0.9960 | nan | 0.0 | 0.9960 |
| 0.0536 | 140.0 | 140 | 0.0476 | 0.4942 | 0.9883 | 0.9883 | nan | nan | 0.9883 | nan | 0.0 | 0.9883 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|
tevykuch/sftsl0th
|
tevykuch
| 2024-03-04T18:22:59Z | 1 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"unsloth",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T03:51:07Z |
---
library_name: transformers
tags:
- unsloth
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Yaxin1992/zephyr-beta-merge-dpo-v7-ties
|
Yaxin1992
| 2024-03-04T18:22:16Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2306.01708",
"base_model:HuggingFaceH4/zephyr-7b-beta",
"base_model:finetune:HuggingFaceH4/zephyr-7b-beta",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T18:19:11Z |
---
base_model:
- HuggingFaceH4/zephyr-7b-beta
library_name: transformers
tags:
- mergekit
- merge
---
# zephyr-dpo-v7-beta-slerp
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using mergekit/zephyr-merged-dpo-v7-multi as a base.
### Models Merged
The following models were included in the merge:
* [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: mergekit/zephyr-merged-dpo-v7-multi
- model: HuggingFaceH4/zephyr-7b-beta
parameters:
density: 0.2
weight: # weight gradient
- filter: mlp
value: 0.2
- value: 0.1
merge_method: ties
base_model: mergekit/zephyr-merged-dpo-v7-multi
parameters:
normalize: true
int8_mask: true
dtype: float16
```
|
jesscusi/flair-hybrid-slang
|
jesscusi
| 2024-03-04T18:19:35Z | 0 | 0 | null |
[
"pytorch",
"region:us"
] | null | 2024-03-03T04:15:28Z |
This model was trained with SLANG/LITERAL BIO-tagged tokens for hybrid slang words.
Train (n=5600), dev (n=700), test (n=700) on all hybrid slang-containing sentences
|
lucyknada/ibm_labradorite-13b-exl2-6bpw
|
lucyknada
| 2024-03-04T18:17:22Z | 4 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-03-04T17:39:39Z |
### exl2 quant (measurement.json included)
---
### original readme below
---
---
pipeline_tag: text-generation
tags:
- labradorite
- llama
- llama-2
- ibm
- lab
- labrador
- merlinite
license: llama2
license_link: https://ai.meta.com/llama/license/
language:
- en
---
Update: 🔥 [Merlinite-7B](https://huggingface.co/ibm/merlinite-7b): Lab on Mistral-7b
# Model Card for Labradorite 13b
### Overview

### Performance
| Model | Alignment | Base | Teacher | MTBench (Avg) | MMLU(5-shot) | ARC-C(25-shot) | HellaSwag(10-shot) | Winogrande(5-shot) | GSM8K(5-shot- strict) |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Llama-2-13b-Chat | RLHF | Llama-2-13b | Human Annotators | 6.65 ** | 54.58 | 59.81 | 82.52 | 75.93 | 34.80 |
| Orca-2 | Progressive Training | Llama-2-13b | GPT-4 | 6.15 ** | 60.37 ** | 59.73 | 79.86 | 78.22 | 48.22 |
| WizardLM-13B-V1.2 | Evol-Instruct | Llama-2-13b | GPT-4 | 7.20 ** | 54.83 | 60.24 | 82.62 | 76.40 | 43.75 |
| Labradorite-13b | Large-scale Alignment for chatBots (LAB) | Llama-2-13b | Mixtral-8x7B-Instruct | 7.23 ^ | 58.89 | 61.69 | 83.15 | 79.56 | 40.11 |
[**] Numbers taken from [lmsys/chatbot-arena-leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard)
[^] Average across 4 runs
### Method
LAB: **L**arge-scale **A**lignment for chat**B**ots is a novel synthetic data-based alignment tuning method for LLMs from IBM Research. Labradorite-13b is a LLaMA-2-13b-derivative model trained with the LAB methodology, using Mixtral-8x7b-Instruct as a teacher model.
LAB consists of three key components:
1. Taxonomy-driven data curation process
2. Large-scale synthetic data generator
3. Two-phased-training with replay buffers

LAB approach allows for adding new knowledge and skills, in an incremental fashion, to an already pre-trained model without suffering from catastrophic forgetting.
Taxonomy is a tree of seed examples that are used to prompt a teacher model to generate synthetic data; the sub-tree for the skill of “writing” is illustrated in the figure below.

Taxonomy allows the data curator or the model designer to easily specify a diverse set of the knowledge-domains and skills that they would like to include in their LLM. At a high level, these can be categorized into three high-level bins - knowledge, foundational skills, and compositional skills. The leaf nodes of the taxonomy are tasks associated with one or more seed examples.

During the synthetic data generation, **unlike previous approaches where seed examples are uniformly drawn from the entire pool (i.e. self-instruct), we use the taxonomy to drive the sampling process**: For each knowledge/skill, we only use the local examples within the leaf node as seeds to prompt the teacher model.
This makes the teacher model better exploit the task distributions defined by the local examples of each node and the diversity in the taxonomy itself ensures the entire generation covers a wide range of tasks, as illustrated below. In turns, this allows for using Mixtral 8x7B as the teacher model for generation while performing very competitively with models such as ORCA-2 and WizardLM that rely on synthetic data generated by much larger and capable models like GPT-4.

For adding new domain-specific knowledge, we provide an external knowledge source (document) and prompt the model to generate questions and answers based on the document.
Foundational skills such as reasoning and compositional skills such as creative writing are generated through in-context learning using the seed examples from the taxonomy.
Additionally, to ensure the data is high-quality and safe, we employ steps to check the questions and answers to ensure that they are grounded and safe. This is done using the same teacher model that generated the data.
Our training consists of two major phases: knowledge tuning and skills tuning.
There are two steps in knowledge tuning where the first step learns simple knowledge (short samples) and the second step learns complicated knowledge (longer samples).
The second step uses replay a replay buffer with data from the first step.
Both foundational skills and compositional skills are learned during the skills tuning phases, where a replay buffer of data from the knowledge phase is used.
Importantly, we use a set of hyper-parameters for training that are very different from standard small-scale supervised fine-training: larger batch size and carefully optimized learning rate and scheduler.

## Model description
- **Language(s):** Primarily English
- **License:** Labradorite-13b is a LLaMA 2 derivative and is licensed under the **[LLAMA 2 Community License](https://ai.meta.com/llama/license/)**
- **Base model:** [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf)
- **Teacher Model:** [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
## Prompt Template
```python
sys_prompt = """You are Labrador, an AI language model developed by IBM DMF (Data Model Factory) Alignment Team. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."""
prompt = f'<|system|>
{sys_prompt}
<|user|>
{inputs}
<|assistant|>
'
stop_token = '<|endoftext|>'
```
We advise utilizing the system prompt employed during the model's training for optimal inference performance, as there could be performance variations based on the provided instructions.
For chatbot usecases, we recommend testing the following system prompt:
```python
sys_prompt = """You are Labrador, an AI language model developed by IBM DMF (Data Model Factory) Alignment Team. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior. You always respond to greetings (for example, hi, hello, g'day, morning, afternoon, evening, night, what's up, nice to meet you, sup, etc) with "Hello! I am Labrador, created by the IBM DMF Alignment Team. How can I help you today?". Please do not say anything else and do not start a conversation."""
```
## Bias, Risks, and Limitations
Labradorite-13b has not been aligned to human preferences, so the model might produce problematic outputs. The model might also maintain the limitations and constraints that arise from the base model and other members of the Llama 2 model family.
The model undergoes training on synthetic data, leading to the potential inheritance of both advantages and limitations from the underlying teacher models and data generation methods. The incorporation of safety measures during Labradorite-13b's training process is considered beneficial. However, a nuanced understanding of the associated risks requires detailed studies for more accurate quantification.
In the absence of adequate safeguards and RLHF, there exists a risk of malicious utilization of these models for generating disinformation or harmful content. Caution is urged against complete reliance on a specific language model for crucial decisions or impactful information, as preventing these models from fabricating content is not straightforward. Additionally, it remains uncertain whether smaller models might exhibit increased susceptibility to hallucination in ungrounded generation scenarios due to their reduced sizes and memorization capacities. This aspect is currently an active area of research, and we anticipate more rigorous exploration, comprehension, and mitigations in this domain.
|
CallComply/Starling-LM-11B-alpha
|
CallComply
| 2024-03-04T18:09:05Z | 1,418 | 12 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"reward model",
"RLHF",
"RLAIF",
"conversational",
"en",
"dataset:berkeley-nest/Nectar",
"arxiv:2306.02231",
"license:cc-by-nc-4.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-12-03T17:44:14Z |
---
language:
- en
license: cc-by-nc-4.0
library_name: transformers
tags:
- reward model
- RLHF
- RLAIF
datasets:
- berkeley-nest/Nectar
model-index:
- name: Starling-LM-11B-alpha
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 81.99
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 41.53
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 35.18
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/Starling-LM-11B-alpha
name: Open LLM Leaderboard
---
# Starling-LM-7B-alpha
<!-- Provide a quick summary of what the model is/does. -->
- **Developed by:** Banghua Zhu * , Evan Frick * , Tianhao Wu * , Hanlin Zhu and Jiantao Jiao.
- **Model type:** Language Model finetuned with RLHF / RLAIF
- **License:** Non commercial license
- **Finetuned from model:** [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) (based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1))
We introduce Starling-7B, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). The model harnesses the power of our new GPT-4 labeled ranking dataset, [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), and our new reward training and policy tuning pipeline. Starling-7B-alpha scores 8.09 in MT Bench with GPT-4 as a judge, outperforming every model to date on MT-Bench except for OpenAI's GPT-4 and GPT-4 Turbo. We release the ranking dataset [Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), the reward model [Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and the language model [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on HuggingFace, and an online demo in LMSYS [Chatbot Arena](https://chat.lmsys.org). Stay tuned for our forthcoming code and paper, which will provide more details on the whole process.
Starling-LM-7B-alpha is a language model trained from [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) with reward model [berkeley-nest/Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and policy optimization method [advantage-induced policy alignment (APA)](https://arxiv.org/abs/2306.02231). The evaluation results are listed below.
| Model | Tuning Method | MT Bench | AlpacaEval | MMLU |
|-----------------------|------------------|----------|------------|------|
| GPT-4-Turbo | ? | 9.32 | 97.70 | |
| GPT-4 | SFT + PPO | 8.99 | 95.28 | 86.4 |
| **Starling-7B** | C-RLFT + APA | 8.09 | 91.99 | 63.9 |
| Claude-2 | ? | 8.06 | 91.36 | 78.5 |
| GPT-3.5-Turbo | ? | 7.94 | 89.37 | 70 |
| Claude-1 | ? | 7.9 | 88.39 | 77 |
| Tulu-2-dpo-70b | SFT + DPO | 7.89 | 95.1 | |
| Openchat-3.5 | C-RLFT | 7.81 | 88.51 | 64.3 |
| Zephyr-7B-beta | SFT + DPO | 7.34 | 90.60 | 61.4 |
| Llama-2-70b-chat-hf | SFT + PPO | 6.86 | 92.66 | 63 |
| Neural-chat-7b-v3-1 | SFT + DPO | 6.84 | 84.53 | 62.4 |
| Tulu-2-dpo-7b | SFT + DPO | 6.29 | 85.1 | |
For more detailed discussions, please check out our [blog post](https://starling.cs.berkeley.edu), and stay tuned for our upcoming code and paper!
<!-- Provide the basic links for the model. -->
- **Blog:** https://starling.cs.berkeley.edu/
- **Paper:** Coming soon!
- **Code:** Coming soon!
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
**Important: Please use the exact chat template provided below for the model. Otherwise there will be a degrade in the performance. The model output can be verbose in rare cases. Please consider setting temperature = 0 to make this happen less.**
Our model follows the exact chat template and usage as [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5). Please refer to their model card for more details.
In addition, our model is hosted on LMSYS [Chatbot Arena](https://chat.lmsys.org) for free test.
The conversation template is the same as Openchat 3.5:
```
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
# Single-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Multi-turn
tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
# Coding Mode
tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
```
## Code Examples
```python
import transformers
tokenizer = transformers.AutoTokenizer.from_pretrained("berkeley-nest/Starling-LM-7B-alpha")
model = transformers.AutoModelForCausalLM.from_pretrained("berkeley-nest/Starling-LM-7B-alpha")
def generate_response(prompt):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
outputs = model.generate(
input_ids,
max_length=256,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response_ids = outputs[0]
response_text = tokenizer.decode(response_ids, skip_special_tokens=True)
return response_text
# Single-turn conversation
prompt = "Hello, how are you?"
single_turn_prompt = f"GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant:"
response_text = generate_response(single_turn_prompt)
print("Response:", response_text)
## Multi-turn conversation
prompt = "Hello"
follow_up_question = "How are you today?"
response = ""
multi_turn_prompt = f"GPT4 Correct User: {prompt}<|end_of_turn|>GPT4 Correct Assistant: {response}<|end_of_turn|>GPT4 Correct User: {follow_up_question}<|end_of_turn|>GPT4 Correct Assistant:"
response_text = generate_response(multi_turn_prompt)
print("Multi-turn conversation response:", response_text)
### Coding conversation
prompt = "Implement quicksort using C++"
coding_prompt = f"Code User: {prompt}<|end_of_turn|>Code Assistant:"
response = generate_response(coding_prompt)
print("Coding conversation response:", response)
```
## License
The dataset, model and online demo is a research preview intended for non-commercial use only, subject to the data distillation [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
## Acknowledgment
We would like to thank Wei-Lin Chiang from Berkeley for detailed feedback of the blog and the projects. We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of [lmsys-chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset, evaluation and online demo. We would like to thank the open source community for their efforts in providing the datasets and base models we used to develope the project, including but not limited to Anthropic, Llama, Mistral, Hugging Face H4, LMSYS, OpenChat, OpenBMB, Flan and ShareGPT.
## Citation
```
@misc{starling2023,
title = {Starling-7B: Improving LLM Helpfulness & Harmlessness with RLAIF},
url = {},
author = {Zhu, Banghua and Frick, Evan and Wu, Tianhao and Zhu, Hanlin and Jiao, Jiantao},
month = {November},
year = {2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__Starling-LM-11B-alpha)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.92|
|AI2 Reasoning Challenge (25-Shot)|61.26|
|HellaSwag (10-Shot) |81.99|
|MMLU (5-Shot) |61.50|
|TruthfulQA (0-shot) |41.53|
|Winogrande (5-shot) |78.06|
|GSM8k (5-shot) |35.18|
|
CallComply/openchat-3.5-0106-128k
|
CallComply
| 2024-03-04T18:07:47Z | 11 | 7 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"openchat",
"C-RLFT",
"conversational",
"arxiv:2309.11235",
"arxiv:2303.08774",
"base_model:mistralai/Mistral-7B-v0.1",
"base_model:finetune:mistralai/Mistral-7B-v0.1",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-01-14T17:45:32Z |
---
license: apache-2.0
library_name: transformers
tags:
- openchat
- mistral
- C-RLFT
base_model: mistralai/Mistral-7B-v0.1
pipeline_tag: text-generation
model-index:
- name: openchat-3.5-0106-128k
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 64.25
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 77.31
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 57.58
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.5
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 32.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=CallComply/openchat-3.5-0106-128k
name: Open LLM Leaderboard
---
<div align="center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/logo_new.png" style="width: 65%">
<h1>Advancing Open-source Language Models with Mixed-Quality Data</h1>
<h1>with 128k context</h1>
</div>
<p align="center" style="margin-top: 0px;">
<a href="https://openchat.team">
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/logo_nobg.png?raw=true" alt="OpenChat Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 10px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">Online Demo</span>
</a> |
<a href="https://github.com/imoneoi/openchat">
<img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style=" margin-right: 5px;">GitHub</span>
</a> |
<a href="https://arxiv.org/pdf/2309.11235.pdf">
<img src="https://github.com/alpayariyak/openchat/blob/master/assets/arxiv-logomark-small-square-border.png?raw=true" alt="ArXiv Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text" style="margin-right: 5px;">Paper</span>
</a> |
<a href="https://discord.gg/pQjnXvNKHY">
<img src="https://cloud.githubusercontent.com/assets/6291467/26705903/96c2d66e-477c-11e7-9f4e-f3c0efe96c9a.png" alt="Discord Logo" style="width:20px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
<span class="link-text">Discord</span>
</a>
</p>
<p align="center" style="margin-top: 0px;">
<span class="link-text" style=" margin-right: 0px; font-size: 0.8em">Sponsored by RunPod</span>
<img src="https://styles.redditmedia.com/t5_6075m3/styles/profileIcon_71syco7c5lt81.png?width=256&height=256&frame=1&auto=webp&crop=256:256,smart&s=24bd3c71dc11edc5d4f88d0cbc1da72ed7ae1969" alt="RunPod Logo" style="width:30px; vertical-align: middle; display: inline-block; margin-right: 5px; margin-left: 5px; margin-top: 0px; margin-bottom: 0px;"/>
</p>
<div style="background-color: white; padding: 0.7em; border-radius: 0.5em; color: black; display: flex; flex-direction: column; justify-content: center; text-align: center; ont-size: 0.5em; border: 0.8em solid #864AF9;">
<a href="https://huggingface.co/openchat/openchat-3.5-0106" style="text-decoration: none; color: black;">
<span style="font-size: 1.7em; font-family: 'Helvetica'; letter-spacing: 0.1em; font-weight: bold; color: black;">OPENCHAT</span><span style="font-size: 1.8em; font-family: 'Helvetica'; color: #3c72db; ">3.5</span>
<span style="font-size: 1.0em; font-family: 'Helvetica'; color: white; background-color: #864AF9; vertical-align: top; border-radius: 6em; padding: 0.066em 0.4em; letter-spacing: 0.1em; font-weight: bold;">0106</span>
<span style="font-size: 0.85em; font-family: 'Helvetica'; color: black;">
<br> 🏆 The Overall Best Performing Open Source 7B Model 🏆
<br> 🤖 Outperforms <span style="font-weight: bold;">ChatGPT</span> (March) and <span style="font-weight: bold;">Grok-1</span> 🤖
<br> 🚀<span style="font-size: 1em; font-family: 'Helvetica'; color: black; font-weight: bold;">15</span>-point improvement in Coding over <span style="font-size: 0.9em;
font-family: 'Helvetica'; color: black; font-weight: bold;">OpenChat-3.5🚀</span>
<br><br><span style="font-size: 1em; font-family: 'Helvetica'; color: #3c72db; font-weight: bold;">New Features</span>
<br> 💡 2 Modes: Coding + Generalist, Mathematical Reasoning 💡
<br> 🧑⚖️ Experimental support for Evaluator and Feedback capabilities 🧑⚖️
</span>
</a>
</div>
<div style="display: flex; justify-content: center; align-items: center">
<img src="https://raw.githubusercontent.com/imoneoi/openchat/master/assets/openchat-bench-0106.png" style="width: 100%; border-radius: 1em">
</div>
<div>
<h3> Table of Contents</h3>
</div>
1. [Usage](#usage)
2. [Benchmarks](#benchmarks)
3. [Limitations](#limitations)
4. [License](#license)
6. [Citation](#citation)
7. [Acknowledgements](#acknowledgements)
<div align="center">
<h2> Usage </h2>
</div>
To use this model, we highly recommend installing the OpenChat package by following the [installation guide](https://github.com/imoneoi/openchat#installation) in our repository and using the OpenChat OpenAI-compatible API server by running the serving command from the table below. The server is optimized for high-throughput deployment using [vLLM](https://github.com/vllm-project/vllm) and can run on a consumer GPU with 24GB RAM. To enable tensor parallelism, append `--tensor-parallel-size N` to the serving command.
Once started, the server listens at `localhost:18888` for requests and is compatible with the [OpenAI ChatCompletion API specifications](https://platform.openai.com/docs/api-reference/chat). Please refer to the example request below for reference. Additionally, you can use the [OpenChat Web UI](https://github.com/imoneoi/openchat#web-ui) for a user-friendly experience.
If you want to deploy the server as an online service, you can use `--api-keys sk-KEY1 sk-KEY2 ...` to specify allowed API keys and `--disable-log-requests --disable-log-stats --log-file openchat.log` for logging only to a file. For security purposes, we recommend using an [HTTPS gateway](https://fastapi.tiangolo.com/es/deployment/concepts/#security-https) in front of the server.
| Model | Size | Context | Weights | Serving |
|-------------------|------|---------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| OpenChat-3.5-0106 | 7B | 8192 | [Huggingface](https://huggingface.co/openchat/openchat-3.5-0106) | `python -m ochat.serving.openai_api_server --model openchat/openchat-3.5-0106 --engine-use-ray --worker-use-ray` |
<details>
<summary>Example request (click to expand)</summary>
💡 **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"messages": [{"role": "user", "content": "You are a large language model named OpenChat. Write a poem to describe yourself"}]
}'
```
🧮 **Mathematical Reasoning Mode**: Tailored for solving math problems
```bash
curl http://localhost:18888/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "openchat_3.5",
"condition": "Math Correct",
"messages": [{"role": "user", "content": "10.3 − 7988.8133 = "}]
}'
```
</details>
### Conversation templates
💡 **Default Mode (GPT4 Correct)**: Best for coding, chat and general tasks
```
GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
```
🧮 **Mathematical Reasoning Mode**: Tailored for solving math problems
```
Math Correct User: 10.3 − 7988.8133=<|end_of_turn|>Math Correct Assistant:
```
⚠️ **Notice:** Remember to set `<|end_of_turn|>` as end of generation token.
The default (GPT4 Correct) template is also available as the integrated `tokenizer.chat_template`,
which can be used instead of manually specifying the template:
```python
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi"},
{"role": "user", "content": "How are you today?"}
]
tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
```
<div align="center">
<h2> (Experimental) Evaluator / Feedback Capabilities </h2>
</div>
We've included evaluator capabilities in this release to advance open-source models as evaluators. You can use `Default Mode (GPT4 Correct)` with the following prompt (same as [Prometheus](https://huggingface.co/datasets/kaist-ai/Feedback-Collection)) to evaluate a response.
```
###Task Description:
An instruction (might include an Input inside it), a response to evaluate, a reference answer that gets a score of 5, and a score rubric representing a evaluation criteria are given.
1. Write a detailed feedback that assess the quality of the response strictly based on the given score rubric, not evaluating in general.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"
4. Please do not generate any other opening, closing, and explanations.
###The instruction to evaluate:
{orig_instruction}
###Response to evaluate:
{orig_response}
###Reference Answer (Score 5):
{orig_reference_answer}
###Score Rubrics:
[{orig_criteria}]
Score 1: {orig_score1_description}
Score 2: {orig_score2_description}
Score 3: {orig_score3_description}
Score 4: {orig_score4_description}
Score 5: {orig_score5_description}
###Feedback:
```
<div align="center">
<h2> Benchmarks </h2>
</div>
| Model | # Params | Average | MT-Bench | HumanEval | BBH MC | AGIEval | TruthfulQA | MMLU | GSM8K | BBH CoT |
|-----------------------|----------|----------|----------|-----------|----------|----------|------------|----------|----------|----------|
| **OpenChat-3.5-0106** | **7B** | **64.5** | 7.8 | **71.3** | **51.5** | **49.1** | 61.0 | 65.8 | **77.4** | 62.2 |
| OpenChat-3.5-1210 | **7B** | 63.8 | 7.76 | 68.9 | 49.5 | 48.0 | **61.8** | 65.3 | 77.3 | 61.8 |
| OpenChat-3.5 | **7B** | 61.6 | 7.81 | 55.5 | 47.6 | 47.4 | 59.1 | 64.3 | 77.3 | 63.5 |
| ChatGPT (March)* | ???B | 61.5 | **7.94** | 48.1 | 47.6 | 47.1 | 57.7 | **67.3** | 74.9 | **70.1** |
| | | | | | | | | | | |
| OpenHermes 2.5 | 7B | 59.3 | 7.54 | 48.2 | 49.4 | 46.5 | 57.5 | 63.8 | 73.5 | 59.9 |
| OpenOrca Mistral | 7B | 52.7 | 6.86 | 38.4 | 49.4 | 42.9 | 45.9 | 59.3 | 59.1 | 58.1 |
| Zephyr-β^ | 7B | 34.6 | 7.34 | 22.0 | 40.6 | 39.0 | 40.8 | 39.8 | 5.1 | 16.0 |
| Mistral | 7B | - | 6.84 | 30.5 | 39.0 | 38.0 | - | 60.1 | 52.2 | - |
<details>
<summary>Evaluation Details(click to expand)</summary>
*: ChatGPT (March) results are from [GPT-4 Technical Report](https://arxiv.org/abs/2303.08774), [Chain-of-Thought Hub](https://github.com/FranxYao/chain-of-thought-hub), and our evaluation. Please note that ChatGPT is not a fixed baseline and evolves rapidly over time.
^: Zephyr-β often fails to follow few-shot CoT instructions, likely because it was aligned with only chat data but not trained on few-shot data.
**: Mistral and Open-source SOTA results are taken from reported results in instruction-tuned model papers and official repositories.
All models are evaluated in chat mode (e.g. with the respective conversation template applied). All zero-shot benchmarks follow the same setting as in the AGIEval paper and Orca paper. CoT tasks use the same configuration as Chain-of-Thought Hub, HumanEval is evaluated with EvalPlus, and MT-bench is run using FastChat. To reproduce our results, follow the instructions in [our repository](https://github.com/imoneoi/openchat/#benchmarks).
</details>
<div>
<h3>HumanEval+</h3>
</div>
| Model | Size | HumanEval+ pass@1 |
|-----------------------------|--------|-------------------|
| **OpenChat-3.5-0106** | **7B** | **65.9** |
| ChatGPT (December 12, 2023) | ???B | 64.6 |
| WizardCoder-Python-34B-V1.0 | 34B | 64.6 |
| OpenChat 3.5 1210 | 7B | 63.4 |
| OpenHermes 2.5 | 7B | 41.5 |
<div>
<h3>OpenChat-3.5 vs. Grok</h3>
</div>
🔥 OpenChat-3.5-0106 (7B) now outperforms Grok-0 (33B) on **all 4 benchmarks** and Grok-1 (???B) on average and **3/4 benchmarks**.
| | License | # Param | Average | MMLU | HumanEval | MATH | GSM8k |
|-----------------------|-------------|---------|----------|--------|-----------|----------|----------|
| **OpenChat-3.5-0106** | Apache-2.0 | **7B** | **61.0** | 65.8 | **71.3** | **29.3** | **77.4** |
| OpenChat-3.5-1210 | Apache-2.0 | **7B** | 60.1 | 65.3 | 68.9 | 28.9 | 77.3 |
| OpenChat-3.5 | Apache-2.0 | **7B** | 56.4 | 64.3 | 55.5 | 28.6 | 77.3 |
| Grok-0 | Proprietary | 33B | 44.5 | 65.7 | 39.7 | 15.7 | 56.8 |
| Grok-1 | Proprietary | ???B | 55.8 | **73** | 63.2 | 23.9 | 62.9 |
*: Grok results are reported by [X.AI](https://x.ai/).
<div align="center">
<h2> Limitations </h2>
</div>
**Foundation Model Limitations**
Despite its advanced capabilities, OpenChat is still bound by the limitations inherent in its foundation models. These limitations may impact the model's performance in areas such as:
- Complex reasoning
- Mathematical and arithmetic tasks
- Programming and coding challenges
**Hallucination of Non-existent Information**
OpenChat may sometimes generate information that does not exist or is not accurate, also known as "hallucination". Users should be aware of this possibility and verify any critical information obtained from the model.
**Safety**
OpenChat may sometimes generate harmful, hate speech, biased responses, or answer unsafe questions. It's crucial to apply additional AI safety measures in use cases that require safe and moderated responses.
<div align="center">
<h2> License </h2>
</div>
Our OpenChat 3.5 code and models are distributed under the Apache License 2.0.
<div align="center">
<h2> Citation </h2>
</div>
```
@article{wang2023openchat,
title={OpenChat: Advancing Open-source Language Models with Mixed-Quality Data},
author={Wang, Guan and Cheng, Sijie and Zhan, Xianyuan and Li, Xiangang and Song, Sen and Liu, Yang},
journal={arXiv preprint arXiv:2309.11235},
year={2023}
}
```
<div align="center">
<h2> 💌 Main Contributor </h2>
</div>
* Wang Guan [imonenext@gmail.com], Cheng Sijie [csj23@mails.tsinghua.edu.cn], Alpay Ariyak [aariyak@wpi.edu]
* We look forward to hearing you and collaborating on this exciting project!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CallComply__openchat-3.5-0106-128k)
| Metric |Value|
|---------------------------------|----:|
|Avg. |59.38|
|AI2 Reasoning Challenge (25-Shot)|64.25|
|HellaSwag (10-Shot) |77.31|
|MMLU (5-Shot) |57.58|
|TruthfulQA (0-shot) |46.50|
|Winogrande (5-shot) |77.66|
|GSM8k (5-shot) |32.98|
|
parlance-labs/hc-mistral-alpaca-merged
|
parlance-labs
| 2024-03-04T18:06:37Z | 7 | 0 |
transformers
|
[
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2024-02-23T17:46:06Z |
This model is a merged version of [parlance-labs/hc-mistral-alpaca](https://huggingface.co/parlance-labs/hc-mistral-alpaca)
## Usage
You can use this model with the following code:
First, download the model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id='parlance-labs/hc-mistral-alpaca-merged'
model = AutoModelForCausalLM.from_pretrained(model_id).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
```
Define helper functions
```python
def prompt(nlq, cols):
return f"""Honeycomb is an observability platform that allows you to write queries to inspect trace data. You are an assistant that takes a natural language query (NLQ) and a list of valid columns and produce a Honeycomb query.
### Instruction:
NLQ: "{nlq}"
Columns: {cols}
### Response:
"""
def prompt_tok(nlq, cols):
_p = prompt(nlq, cols)
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda()
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000,
do_sample=False)
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(),
skip_special_tokens=True)[0][len(_p):]
```
Get predictions
```python
nlq = "Exception count by exception and caller"
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route']
# print prediction
out = prompt_tok(nlq, cols)
print(nlq, '\n', out)
```
|
SzymonLukasik/calculator_model_test
|
SzymonLukasik
| 2024-03-04T18:03:27Z | 4 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2024-03-04T14:44:55Z |
---
tags:
- generated_from_trainer
model-index:
- name: calculator_model_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# calculator_model_test
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0909
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.928 | 1.0 | 6 | 2.2384 |
| 1.994 | 2.0 | 12 | 1.7009 |
| 1.5069 | 3.0 | 18 | 1.2937 |
| 1.1935 | 4.0 | 24 | 1.1334 |
| 1.0548 | 5.0 | 30 | 0.9714 |
| 0.9261 | 6.0 | 36 | 0.8736 |
| 0.8355 | 7.0 | 42 | 0.7772 |
| 0.7459 | 8.0 | 48 | 0.7135 |
| 0.6821 | 9.0 | 54 | 0.6394 |
| 0.6268 | 10.0 | 60 | 0.5985 |
| 0.5906 | 11.0 | 66 | 0.5664 |
| 0.5521 | 12.0 | 72 | 0.5647 |
| 0.5535 | 13.0 | 78 | 0.5673 |
| 0.5531 | 14.0 | 84 | 0.4928 |
| 0.4741 | 15.0 | 90 | 0.4800 |
| 0.4655 | 16.0 | 96 | 0.4641 |
| 0.4527 | 17.0 | 102 | 0.4285 |
| 0.4072 | 18.0 | 108 | 0.3956 |
| 0.39 | 19.0 | 114 | 0.3738 |
| 0.3573 | 20.0 | 120 | 0.3478 |
| 0.3423 | 21.0 | 126 | 0.3087 |
| 0.3111 | 22.0 | 132 | 0.2840 |
| 0.2909 | 23.0 | 138 | 0.2555 |
| 0.2574 | 24.0 | 144 | 0.2241 |
| 0.2423 | 25.0 | 150 | 0.2157 |
| 0.2212 | 26.0 | 156 | 0.1817 |
| 0.2042 | 27.0 | 162 | 0.1823 |
| 0.1849 | 28.0 | 168 | 0.1592 |
| 0.1764 | 29.0 | 174 | 0.1436 |
| 0.1626 | 30.0 | 180 | 0.1327 |
| 0.1617 | 31.0 | 186 | 0.1239 |
| 0.1441 | 32.0 | 192 | 0.1220 |
| 0.1451 | 33.0 | 198 | 0.1132 |
| 0.1327 | 34.0 | 204 | 0.1062 |
| 0.1276 | 35.0 | 210 | 0.1023 |
| 0.1237 | 36.0 | 216 | 0.1011 |
| 0.1183 | 37.0 | 222 | 0.0959 |
| 0.1163 | 38.0 | 228 | 0.0949 |
| 0.1107 | 39.0 | 234 | 0.0915 |
| 0.116 | 40.0 | 240 | 0.0909 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.