modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-28 18:27:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
525 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-28 18:27:52
card
stringlengths
11
1.01M
Gman/pretrained-bert
Gman
2023-08-14T10:35:06Z
47
0
transformers
[ "transformers", "tf", "bert", "pretraining", "generated_from_keras_callback", "endpoints_compatible", "region:us" ]
null
2023-08-14T10:34:07Z
--- base_model: '' tags: - generated_from_keras_callback model-index: - name: pretrained-bert results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pretrained-bert This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.4779 - Validation Loss: 8.6183 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.4779 | 8.6183 | 0 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round4__0005
bigmorning
2023-08-14T10:33:57Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T10:33:48Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round4__0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round4__0005 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 8.4533 - Validation Loss: 0.5771 - Validation Accuracy: 0.0771 - Validation Wermet: 7.4112 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9702 | 0.5713 | 0.0770 | 6.9300 | 0 | | 0.0011 | 0.0795 | 7.7485 | 0.5743 | 0.0771 | 6.6465 | 1 | | 0.0011 | 0.0795 | 8.1600 | 0.5748 | 0.0771 | 7.1363 | 2 | | 0.0008 | 0.0795 | 8.1954 | 0.5845 | 0.0770 | 7.1869 | 3 | | 0.0009 | 0.0795 | 8.4533 | 0.5771 | 0.0771 | 7.4112 | 4 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
frankjoshua/controlnet-depth-sdxl-1.0
frankjoshua
2023-08-14T10:27:05Z
86
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "controlnet", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-10-14T01:25:51Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: false --- # SDXL-controlnet: Depth These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following. prompt: spiderman lecture, photorealistic ![images_0)](./spiderman.png) ## Usage Make sure to first install the libraries: ```bash pip install accelerate transformers safetensors diffusers ``` And then we're ready to go: ```python import torch import numpy as np from PIL import Image from transformers import DPTFeatureExtractor, DPTForDepthEstimation from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-depth-sdxl-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") pipe.enable_model_cpu_offload() def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") with torch.no_grad(), torch.autocast("cuda"): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image prompt = "stormtrooper lecture, photorealistic" image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") controlnet_conditioning_scale = 0.5 # recommended for good generalization depth_image = get_depth_map(image) images = pipe( prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale, ).images images[0] images[0].save(f"stormtrooper.png") ``` To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl). ### Training Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). #### Training data and Compute The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs. #### Batch size Data parallel with a single gpu batch size of 8 for a total batch size of 256. #### Hyper Parameters Constant learning rate of 1e-5. #### Mixed precision fp16
amirhamza11/my_awesome_eli5_mlm_model_2
amirhamza11
2023-08-14T10:17:27Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-14T09:59:42Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer model-index: - name: my_awesome_eli5_mlm_model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_eli5_mlm_model_2 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.2469 | 1.0 | 1138 | 2.0423 | | 2.1601 | 2.0 | 2276 | 2.0028 | | 2.1295 | 3.0 | 3414 | 2.0125 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Tokenizers 0.13.3
vj1148/lora-peft-flant5-large-v2
vj1148
2023-08-14T10:03:02Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T10:03:01Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
AdirK/CartPole-v1
AdirK
2023-08-14T09:45:20Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T09:45:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
M2LInES/gz21-ocean-momentum
M2LInES
2023-08-14T09:40:18Z
0
0
null
[ "region:us" ]
null
2023-08-14T09:10:22Z
# gz21-ocean-momentum pretrained models [gfdl-cm2.6-pangeo]: https://catalog.pangeo.io/browse/master/ocean/GFDL_CM2_6/ [gz21-gh]: https://github.com/m2lines/gz21_ocean_momentum [gz21-data-hf]: https://huggingface.co/datasets/M2LInES/gfdl-cmip26-gz21-ocean-forcing [gz21-ocean-momentum][gz21-gh] models trained on the forcing data generated from the [GFDL CM2.6][gfdl-cm2.6-pangeo] dataset. (Some forcing is hosted on Hugging Face at [datasets/M2LInES/gfdl-cmip26-gz21-ocean-forcing][gz21-data-hf]. See individual model directories for details (hyperparameters, code used).
anikesh-mane/prompt-tuned-flan-t5-large
anikesh-mane
2023-08-14T09:38:40Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-14T09:38:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Xilabs/instructmix-llama-3b
Xilabs
2023-08-14T09:35:38Z
8
1
peft
[ "peft", "text-generation", "dataset:Xilabs/instructmix", "region:us" ]
text-generation
2023-07-24T03:00:40Z
--- library_name: peft datasets: - Xilabs/instructmix pipeline_tag: text-generation --- ## Model Card for "InstructMix Llama 3B" **Model Name:** InstructMix Llama 3B **Description:** InstructMix Llama 3B is a language model fine-tuned on the InstructMix dataset using parameter-efficient fine-tuning (PEFT), using the base model "openlm-research/open_llama_3b_v2," which can be found at [https://huggingface.co/openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2). An easy way to use InstructMix Llama 3B is via the API: https://replicate.com/ritabratamaiti/instructmix-llama-3b **Usage:** ```py import torch from transformers import LlamaForCausalLM, LlamaTokenizer from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig from peft import PeftModel, PeftConfig # Hugging Face model_path model_path = 'openlm-research/open_llama_3b_v2' peft_model_id = 'Xilabs/instructmix-llama-3b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" def evaluate( instruction, input=None, temperature=0.5, top_p=0.75, top_k=40, num_beams=5, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, early_stopping=True, repetition_penalty=1.1, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s, skip_special_tokens = True) #print(output) return output.split("### Response:")[1] instruction = "What is the meaning of life?" print(evaluate(instruction, num_beams=3, temperature=0.1, max_new_tokens=256)) ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0
vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ
vnktrmnb
2023-08-14T09:29:24Z
71
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-12T07:38:12Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vnktrmnb/bert-base-multilingual-cased-FT-TyDiQA_AUQ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3207 - Train End Logits Accuracy: 0.8945 - Train Start Logits Accuracy: 0.9240 - Validation Loss: 0.4883 - Validation End Logits Accuracy: 0.8621 - Validation Start Logits Accuracy: 0.9124 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2439, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 1.2099 | 0.6849 | 0.7242 | 0.5171 | 0.8454 | 0.8930 | 0 | | 0.5374 | 0.8328 | 0.8737 | 0.4915 | 0.8570 | 0.8943 | 1 | | 0.3207 | 0.8945 | 0.9240 | 0.4883 | 0.8621 | 0.9124 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
gagneurlab/SpeciesLM
gagneurlab
2023-08-14T09:27:08Z
1,351
1
null
[ "license:mit", "region:us" ]
null
2023-08-14T08:41:30Z
--- license: mit --- Load each model using: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("gagneurlab/SpeciesLM", revision = "<<choose model type>>") model = AutoModelForMaskedLM.from_pretrained("gagneurlab/SpeciesLM", revision = "<<choose model type>>") ``` Model type: - Species LM, 3' region: `downstream_species_lm` - Agnostic LM, 3' region: `downstream_agnostic_lm` - Species LM, 5' region: `upstream_species_lm` - Agnostic LM, 5' region: `upstream_agnostic_lm`
CyberHarem/temari_naruto
CyberHarem
2023-08-14T09:18:34Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/temari_naruto", "license:mit", "region:us" ]
text-to-image
2023-08-14T09:12:33Z
--- license: mit datasets: - CyberHarem/temari_naruto pipeline_tag: text-to-image tags: - art --- # Lora of temari_naruto This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/temari_naruto.pt` as the embedding and `1500/temari_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `temari_naruto`.** These are available steps: | Steps | pattern_1 | pattern_2 | pattern_3 | pattern_4 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------------|:-----------------------------------------------|:----------------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:-----------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![pattern_2-1500](1500/previews/pattern_2.png) | ![pattern_3-1500](1500/previews/pattern_3.png) | [<NSFW, click to see>](1500/previews/pattern_4.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/temari_naruto.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![pattern_2-1400](1400/previews/pattern_2.png) | ![pattern_3-1400](1400/previews/pattern_3.png) | [<NSFW, click to see>](1400/previews/pattern_4.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/temari_naruto.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![pattern_2-1300](1300/previews/pattern_2.png) | ![pattern_3-1300](1300/previews/pattern_3.png) | [<NSFW, click to see>](1300/previews/pattern_4.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/temari_naruto.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![pattern_2-1200](1200/previews/pattern_2.png) | ![pattern_3-1200](1200/previews/pattern_3.png) | [<NSFW, click to see>](1200/previews/pattern_4.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/temari_naruto.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![pattern_2-1100](1100/previews/pattern_2.png) | ![pattern_3-1100](1100/previews/pattern_3.png) | [<NSFW, click to see>](1100/previews/pattern_4.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/temari_naruto.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![pattern_2-1000](1000/previews/pattern_2.png) | ![pattern_3-1000](1000/previews/pattern_3.png) | [<NSFW, click to see>](1000/previews/pattern_4.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/temari_naruto.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![pattern_2-900](900/previews/pattern_2.png) | ![pattern_3-900](900/previews/pattern_3.png) | [<NSFW, click to see>](900/previews/pattern_4.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/temari_naruto.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![pattern_2-800](800/previews/pattern_2.png) | ![pattern_3-800](800/previews/pattern_3.png) | [<NSFW, click to see>](800/previews/pattern_4.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/temari_naruto.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![pattern_2-700](700/previews/pattern_2.png) | ![pattern_3-700](700/previews/pattern_3.png) | [<NSFW, click to see>](700/previews/pattern_4.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/temari_naruto.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![pattern_2-600](600/previews/pattern_2.png) | ![pattern_3-600](600/previews/pattern_3.png) | [<NSFW, click to see>](600/previews/pattern_4.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/temari_naruto.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![pattern_2-500](500/previews/pattern_2.png) | ![pattern_3-500](500/previews/pattern_3.png) | [<NSFW, click to see>](500/previews/pattern_4.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/temari_naruto.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![pattern_2-400](400/previews/pattern_2.png) | ![pattern_3-400](400/previews/pattern_3.png) | [<NSFW, click to see>](400/previews/pattern_4.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/temari_naruto.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![pattern_2-300](300/previews/pattern_2.png) | ![pattern_3-300](300/previews/pattern_3.png) | [<NSFW, click to see>](300/previews/pattern_4.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/temari_naruto.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![pattern_2-200](200/previews/pattern_2.png) | ![pattern_3-200](200/previews/pattern_3.png) | [<NSFW, click to see>](200/previews/pattern_4.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/temari_naruto.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![pattern_2-100](100/previews/pattern_2.png) | ![pattern_3-100](100/previews/pattern_3.png) | [<NSFW, click to see>](100/previews/pattern_4.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/temari_naruto.zip) |
rokset3/kazroberta-180kstep
rokset3
2023-08-14T09:18:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T09:16:45Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
jondurbin/airoboros-13b
jondurbin
2023-08-14T09:07:30Z
1,446
106
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-05-19T11:56:55Z
--- license: cc-by-nc-4.0 --- # Overview This is a fine-tuned 13b parameter LlaMa model, using completely synthetic training data created by https://github.com/jondurbin/airoboros __*I don't recommend using this model! The outputs aren't particularly great, and it may contain "harmful" data due to jailbreak*__ Please see one of the updated airoboros models for a much better experience. ### Eval (gpt4 judging) ![chart](meta-chart.png) | model | raw score | gpt-3.5 adjusted score | | --- | --- | --- | | __airoboros-13b__ | __17947__ | __98.087__ | | gpt35 | 18297 | 100.0 | | gpt4-x-alpasta-30b | 15612 | 85.33 | | manticore-13b | 15856 | 86.66 | | vicuna-13b-1.1 | 16306 | 89.12 | | wizard-vicuna-13b-uncensored | 16287 | 89.01 | <details> <summary>individual question scores, with shareGPT links (200 prompts generated by gpt-4)</summary> *wb-13b-u is Wizard-Vicuna-13b-Uncensored* | airoboros-13b | gpt35 | gpt4-x-alpasta-30b | manticore-13b | vicuna-13b-1.1 | wv-13b-u | link | |----------------:|--------:|---------------------:|----------------:|-----------------:|-------------------------------:|:---------------------------------------| | 80 | 95 | 70 | 90 | 85 | 60 | [eval](https://sharegpt.com/c/PIbRQD3) | | 20 | 95 | 40 | 30 | 90 | 80 | [eval](https://sharegpt.com/c/fSzwzzd) | | 100 | 100 | 100 | 95 | 95 | 100 | [eval](https://sharegpt.com/c/AXMzZiO) | | 90 | 100 | 85 | 60 | 95 | 100 | [eval](https://sharegpt.com/c/7obzJm2) | | 95 | 90 | 80 | 85 | 95 | 75 | [eval](https://sharegpt.com/c/cRpj6M1) | | 100 | 95 | 90 | 95 | 98 | 92 | [eval](https://sharegpt.com/c/p0by1T7) | | 50 | 100 | 80 | 95 | 60 | 55 | [eval](https://sharegpt.com/c/rowNlKx) | | 70 | 90 | 80 | 60 | 85 | 40 | [eval](https://sharegpt.com/c/I4POj4I) | | 100 | 95 | 50 | 85 | 40 | 60 | [eval](https://sharegpt.com/c/gUAeiRp) | | 85 | 60 | 55 | 65 | 50 | 70 | [eval](https://sharegpt.com/c/Lgw4QQL) | | 95 | 100 | 85 | 90 | 60 | 75 | [eval](https://sharegpt.com/c/X9tDYft) | | 100 | 95 | 70 | 80 | 50 | 85 | [eval](https://sharegpt.com/c/9V2ElkH) | | 100 | 95 | 80 | 70 | 60 | 90 | [eval](https://sharegpt.com/c/D5xg6qt) | | 95 | 100 | 70 | 85 | 90 | 90 | [eval](https://sharegpt.com/c/lQnSfDs) | | 80 | 95 | 90 | 60 | 30 | 85 | [eval](https://sharegpt.com/c/1hpHGNc) | | 60 | 95 | 0 | 75 | 50 | 40 | [eval](https://sharegpt.com/c/an6TqE4) | | 100 | 95 | 90 | 98 | 95 | 95 | [eval](https://sharegpt.com/c/7vr6n3F) | | 60 | 85 | 40 | 50 | 20 | 0 | [eval](https://sharegpt.com/c/TOkMkgE) | | 100 | 90 | 85 | 95 | 95 | 80 | [eval](https://sharegpt.com/c/Qu7ak0r) | | 100 | 95 | 100 | 95 | 90 | 95 | [eval](https://sharegpt.com/c/hMD4gPo) | | 95 | 90 | 96 | 80 | 92 | 88 | [eval](https://sharegpt.com/c/HTlicNh) | | 95 | 92 | 90 | 93 | 89 | 91 | [eval](https://sharegpt.com/c/MjxHpAf) | | 95 | 93 | 90 | 94 | 96 | 92 | [eval](https://sharegpt.com/c/4RvxOR9) | | 95 | 90 | 93 | 88 | 92 | 85 | [eval](https://sharegpt.com/c/PcAIU9r) | | 95 | 90 | 85 | 96 | 88 | 92 | [eval](https://sharegpt.com/c/MMqul3q) | | 95 | 95 | 90 | 93 | 92 | 91 | [eval](https://sharegpt.com/c/YQsLyzJ) | | 95 | 98 | 80 | 97 | 99 | 96 | [eval](https://sharegpt.com/c/UDhSTMq) | | 95 | 93 | 90 | 87 | 92 | 89 | [eval](https://sharegpt.com/c/4gCfdCV) | | 90 | 85 | 95 | 80 | 92 | 75 | [eval](https://sharegpt.com/c/bkQs4SP) | | 90 | 85 | 95 | 93 | 80 | 92 | [eval](https://sharegpt.com/c/LeLCEEt) | | 95 | 92 | 90 | 91 | 93 | 89 | [eval](https://sharegpt.com/c/DFxNzVu) | | 100 | 95 | 90 | 85 | 80 | 95 | [eval](https://sharegpt.com/c/gnVzNML) | | 95 | 97 | 93 | 92 | 96 | 94 | [eval](https://sharegpt.com/c/y7pxMIy) | | 95 | 93 | 94 | 90 | 88 | 92 | [eval](https://sharegpt.com/c/5UeCvTY) | | 90 | 95 | 98 | 85 | 96 | 92 | [eval](https://sharegpt.com/c/T4oL9I5) | | 90 | 88 | 85 | 80 | 82 | 84 | [eval](https://sharegpt.com/c/HnGyTAG) | | 90 | 95 | 85 | 87 | 92 | 88 | [eval](https://sharegpt.com/c/ZbRMBNj) | | 95 | 97 | 96 | 90 | 93 | 92 | [eval](https://sharegpt.com/c/iTmFJqd) | | 95 | 93 | 92 | 90 | 89 | 91 | [eval](https://sharegpt.com/c/VuPifET) | | 90 | 95 | 93 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/AvFAH1x) | | 90 | 85 | 95 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/4ealKGN) | | 85 | 90 | 95 | 88 | 92 | 80 | [eval](https://sharegpt.com/c/bE1b2vX) | | 90 | 95 | 92 | 85 | 80 | 87 | [eval](https://sharegpt.com/c/I3nMPBC) | | 85 | 90 | 95 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/as7r3bW) | | 85 | 80 | 75 | 90 | 70 | 82 | [eval](https://sharegpt.com/c/qYceaUa) | | 90 | 85 | 95 | 92 | 93 | 80 | [eval](https://sharegpt.com/c/g4FXchU) | | 90 | 95 | 75 | 85 | 80 | 70 | [eval](https://sharegpt.com/c/6kGLvL5) | | 85 | 90 | 80 | 88 | 82 | 83 | [eval](https://sharegpt.com/c/SRozqaF) | | 85 | 90 | 95 | 92 | 88 | 80 | [eval](https://sharegpt.com/c/GoKydf6) | | 85 | 90 | 80 | 75 | 95 | 88 | [eval](https://sharegpt.com/c/37aXkHQ) | | 85 | 90 | 80 | 88 | 84 | 92 | [eval](https://sharegpt.com/c/nVuUaTj) | | 80 | 90 | 75 | 85 | 70 | 95 | [eval](https://sharegpt.com/c/TkAQKLC) | | 90 | 88 | 85 | 80 | 92 | 83 | [eval](https://sharegpt.com/c/55cO2y0) | | 85 | 75 | 90 | 80 | 78 | 88 | [eval](https://sharegpt.com/c/tXtq5lT) | | 85 | 90 | 80 | 82 | 75 | 88 | [eval](https://sharegpt.com/c/TfMjeJQ) | | 90 | 85 | 40 | 95 | 80 | 88 | [eval](https://sharegpt.com/c/2jQ6K2S) | | 85 | 95 | 90 | 75 | 88 | 80 | [eval](https://sharegpt.com/c/aQtr2ca) | | 85 | 95 | 90 | 92 | 89 | 88 | [eval](https://sharegpt.com/c/tbWLyZ7) | | 80 | 85 | 75 | 60 | 90 | 70 | [eval](https://sharegpt.com/c/moHC7i2) | | 85 | 90 | 87 | 80 | 88 | 75 | [eval](https://sharegpt.com/c/GK6GShh) | | 85 | 80 | 75 | 50 | 90 | 80 | [eval](https://sharegpt.com/c/ugcW4qG) | | 95 | 80 | 90 | 85 | 75 | 82 | [eval](https://sharegpt.com/c/WL8iq6F) | | 85 | 90 | 80 | 70 | 95 | 88 | [eval](https://sharegpt.com/c/TZJKnvS) | | 90 | 95 | 70 | 85 | 80 | 75 | [eval](https://sharegpt.com/c/beNOKb5) | | 90 | 85 | 70 | 75 | 80 | 60 | [eval](https://sharegpt.com/c/o2oRCF5) | | 95 | 90 | 70 | 50 | 85 | 80 | [eval](https://sharegpt.com/c/TNjbK6D) | | 80 | 85 | 40 | 60 | 90 | 95 | [eval](https://sharegpt.com/c/rJvszWJ) | | 75 | 60 | 80 | 55 | 70 | 85 | [eval](https://sharegpt.com/c/HJwRkro) | | 90 | 85 | 60 | 50 | 80 | 95 | [eval](https://sharegpt.com/c/AeFoSDK) | | 45 | 85 | 60 | 20 | 65 | 75 | [eval](https://sharegpt.com/c/KA1cgOl) | | 85 | 90 | 30 | 60 | 80 | 70 | [eval](https://sharegpt.com/c/RTy8n0y) | | 90 | 95 | 80 | 40 | 85 | 70 | [eval](https://sharegpt.com/c/PJMJoXh) | | 85 | 90 | 70 | 75 | 80 | 95 | [eval](https://sharegpt.com/c/Ib3jzyC) | | 90 | 70 | 50 | 20 | 60 | 40 | [eval](https://sharegpt.com/c/oMmqqtX) | | 90 | 95 | 75 | 60 | 85 | 80 | [eval](https://sharegpt.com/c/qRNhNTw) | | 85 | 80 | 60 | 70 | 65 | 75 | [eval](https://sharegpt.com/c/3MAHQIy) | | 90 | 85 | 80 | 75 | 82 | 70 | [eval](https://sharegpt.com/c/0Emc5HS) | | 90 | 95 | 80 | 70 | 85 | 75 | [eval](https://sharegpt.com/c/UqAxRWF) | | 85 | 75 | 30 | 80 | 90 | 70 | [eval](https://sharegpt.com/c/eywxGAw) | | 85 | 90 | 50 | 70 | 80 | 60 | [eval](https://sharegpt.com/c/A2KSEWP) | | 100 | 95 | 98 | 99 | 97 | 96 | [eval](https://sharegpt.com/c/C8rebQf) | | 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/cd9HF4V) | | 95 | 92 | 90 | 85 | 88 | 91 | [eval](https://sharegpt.com/c/LHkjvQJ) | | 100 | 95 | 98 | 97 | 96 | 99 | [eval](https://sharegpt.com/c/o5PdoyZ) | | 100 | 100 | 100 | 90 | 100 | 95 | [eval](https://sharegpt.com/c/rh8pZVg) | | 100 | 95 | 98 | 97 | 94 | 99 | [eval](https://sharegpt.com/c/T5DYL83) | | 95 | 90 | 92 | 93 | 94 | 91 | [eval](https://sharegpt.com/c/G5Osg3X) | | 100 | 95 | 98 | 90 | 96 | 95 | [eval](https://sharegpt.com/c/9ZqI03V) | | 95 | 96 | 92 | 90 | 89 | 93 | [eval](https://sharegpt.com/c/4tFfwZU) | | 100 | 95 | 93 | 90 | 92 | 88 | [eval](https://sharegpt.com/c/mG1JqPH) | | 100 | 100 | 98 | 97 | 99 | 100 | [eval](https://sharegpt.com/c/VDdtgCu) | | 95 | 90 | 92 | 85 | 93 | 94 | [eval](https://sharegpt.com/c/uKtGkvg) | | 95 | 93 | 90 | 92 | 96 | 91 | [eval](https://sharegpt.com/c/9B92N6P) | | 95 | 96 | 92 | 90 | 93 | 91 | [eval](https://sharegpt.com/c/GeIFfOu) | | 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/gn3E9nN) | | 100 | 98 | 95 | 97 | 96 | 99 | [eval](https://sharegpt.com/c/Erxa46H) | | 90 | 95 | 85 | 88 | 92 | 87 | [eval](https://sharegpt.com/c/oRHVOvK) | | 95 | 93 | 90 | 92 | 89 | 88 | [eval](https://sharegpt.com/c/ghtKLUX) | | 100 | 95 | 97 | 90 | 96 | 94 | [eval](https://sharegpt.com/c/ZL4KjqP) | | 95 | 93 | 90 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/YOnqIQa) | | 95 | 92 | 90 | 93 | 94 | 88 | [eval](https://sharegpt.com/c/3BKwKho) | | 95 | 92 | 60 | 97 | 90 | 96 | [eval](https://sharegpt.com/c/U1i31bn) | | 95 | 90 | 92 | 93 | 91 | 89 | [eval](https://sharegpt.com/c/etfRoAE) | | 95 | 90 | 97 | 92 | 91 | 93 | [eval](https://sharegpt.com/c/B0OpVxR) | | 90 | 95 | 93 | 85 | 92 | 91 | [eval](https://sharegpt.com/c/MBgGJ5A) | | 95 | 90 | 40 | 92 | 93 | 85 | [eval](https://sharegpt.com/c/eQKTYO7) | | 100 | 100 | 95 | 90 | 95 | 90 | [eval](https://sharegpt.com/c/szKWCBt) | | 90 | 95 | 96 | 98 | 93 | 92 | [eval](https://sharegpt.com/c/8ZhUcAv) | | 90 | 95 | 92 | 89 | 93 | 94 | [eval](https://sharegpt.com/c/VQWdy99) | | 100 | 95 | 100 | 98 | 96 | 99 | [eval](https://sharegpt.com/c/g1DHUSM) | | 100 | 100 | 95 | 90 | 100 | 90 | [eval](https://sharegpt.com/c/uYgfJC3) | | 90 | 85 | 88 | 92 | 87 | 91 | [eval](https://sharegpt.com/c/crk8BH3) | | 95 | 97 | 90 | 92 | 93 | 94 | [eval](https://sharegpt.com/c/95F9afQ) | | 90 | 95 | 85 | 88 | 92 | 89 | [eval](https://sharegpt.com/c/otioHUo) | | 95 | 93 | 90 | 92 | 94 | 91 | [eval](https://sharegpt.com/c/KSiL9F6) | | 90 | 95 | 85 | 80 | 88 | 82 | [eval](https://sharegpt.com/c/GmGq3b3) | | 95 | 90 | 60 | 85 | 93 | 70 | [eval](https://sharegpt.com/c/VOhklyz) | | 95 | 92 | 94 | 93 | 96 | 90 | [eval](https://sharegpt.com/c/wqy8m6k) | | 95 | 90 | 85 | 93 | 87 | 92 | [eval](https://sharegpt.com/c/iWKrIuS) | | 95 | 96 | 93 | 90 | 97 | 92 | [eval](https://sharegpt.com/c/o1h3w8N) | | 100 | 0 | 0 | 100 | 0 | 0 | [eval](https://sharegpt.com/c/3UH9eed) | | 60 | 100 | 0 | 80 | 0 | 0 | [eval](https://sharegpt.com/c/44g0FAh) | | 0 | 100 | 60 | 0 | 0 | 90 | [eval](https://sharegpt.com/c/PaQlcrU) | | 100 | 100 | 0 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/51icV4o) | | 100 | 100 | 100 | 100 | 95 | 100 | [eval](https://sharegpt.com/c/1VnbGAR) | | 100 | 100 | 100 | 50 | 90 | 100 | [eval](https://sharegpt.com/c/EYGBrgw) | | 100 | 100 | 100 | 100 | 95 | 90 | [eval](https://sharegpt.com/c/EGRduOt) | | 100 | 100 | 100 | 95 | 0 | 100 | [eval](https://sharegpt.com/c/O3JJfnK) | | 50 | 95 | 20 | 10 | 30 | 85 | [eval](https://sharegpt.com/c/2roVtAu) | | 100 | 100 | 60 | 20 | 30 | 40 | [eval](https://sharegpt.com/c/sphFpfx) | | 100 | 0 | 0 | 0 | 0 | 100 | [eval](https://sharegpt.com/c/OeWGKBo) | | 0 | 100 | 60 | 0 | 0 | 80 | [eval](https://sharegpt.com/c/TOUsuFA) | | 50 | 100 | 20 | 90 | 0 | 10 | [eval](https://sharegpt.com/c/Y3P6DCu) | | 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/hkbdeiM) | | 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/eubbaVC) | | 40 | 100 | 95 | 0 | 100 | 40 | [eval](https://sharegpt.com/c/QWiF49v) | | 100 | 100 | 100 | 100 | 80 | 100 | [eval](https://sharegpt.com/c/dKTapBu) | | 100 | 100 | 100 | 0 | 90 | 40 | [eval](https://sharegpt.com/c/P8NGwFZ) | | 0 | 100 | 100 | 50 | 70 | 20 | [eval](https://sharegpt.com/c/v96BtBL) | | 100 | 100 | 50 | 90 | 0 | 95 | [eval](https://sharegpt.com/c/YRlzj1t) | | 100 | 95 | 90 | 85 | 98 | 80 | [eval](https://sharegpt.com/c/76VX3eB) | | 95 | 98 | 90 | 92 | 96 | 89 | [eval](https://sharegpt.com/c/JK1uNef) | | 90 | 95 | 75 | 85 | 80 | 82 | [eval](https://sharegpt.com/c/ku6CKmx) | | 95 | 98 | 50 | 92 | 96 | 94 | [eval](https://sharegpt.com/c/0iAFuKW) | | 95 | 90 | 0 | 93 | 92 | 94 | [eval](https://sharegpt.com/c/6uGnKio) | | 95 | 90 | 85 | 92 | 80 | 88 | [eval](https://sharegpt.com/c/lfpRBw8) | | 95 | 93 | 75 | 85 | 90 | 92 | [eval](https://sharegpt.com/c/mKu70jb) | | 90 | 95 | 88 | 85 | 92 | 89 | [eval](https://sharegpt.com/c/GkYzJHO) | | 100 | 100 | 100 | 95 | 97 | 98 | [eval](https://sharegpt.com/c/mly2k0z) | | 85 | 40 | 30 | 95 | 90 | 88 | [eval](https://sharegpt.com/c/5td2ob0) | | 90 | 95 | 92 | 85 | 88 | 93 | [eval](https://sharegpt.com/c/0ISpWfy) | | 95 | 96 | 92 | 90 | 89 | 93 | [eval](https://sharegpt.com/c/kdUDUn7) | | 90 | 95 | 85 | 80 | 92 | 88 | [eval](https://sharegpt.com/c/fjMNYr2) | | 95 | 98 | 65 | 90 | 85 | 93 | [eval](https://sharegpt.com/c/6xBIf2Q) | | 95 | 92 | 96 | 97 | 90 | 89 | [eval](https://sharegpt.com/c/B9GY8Ln) | | 95 | 90 | 92 | 91 | 89 | 93 | [eval](https://sharegpt.com/c/vn1FPU4) | | 95 | 90 | 80 | 75 | 95 | 90 | [eval](https://sharegpt.com/c/YurEMYg) | | 92 | 40 | 30 | 95 | 90 | 93 | [eval](https://sharegpt.com/c/D19Qeui) | | 90 | 92 | 85 | 88 | 89 | 87 | [eval](https://sharegpt.com/c/5QRFfrt) | | 95 | 80 | 90 | 92 | 91 | 88 | [eval](https://sharegpt.com/c/pYWPRi4) | | 95 | 93 | 92 | 90 | 91 | 94 | [eval](https://sharegpt.com/c/wPRTntL) | | 100 | 98 | 95 | 90 | 92 | 96 | [eval](https://sharegpt.com/c/F6PLYKE) | | 95 | 92 | 80 | 85 | 90 | 93 | [eval](https://sharegpt.com/c/WeJnMGv) | | 95 | 98 | 90 | 88 | 97 | 96 | [eval](https://sharegpt.com/c/zNKL49e) | | 90 | 95 | 85 | 88 | 86 | 92 | [eval](https://sharegpt.com/c/kIKmA1b) | | 100 | 100 | 100 | 100 | 100 | 100 | [eval](https://sharegpt.com/c/1btWd4O) | | 90 | 95 | 85 | 96 | 92 | 88 | [eval](https://sharegpt.com/c/s9sf1Lp) | | 100 | 98 | 95 | 99 | 97 | 96 | [eval](https://sharegpt.com/c/RWzv8py) | | 95 | 92 | 70 | 90 | 93 | 89 | [eval](https://sharegpt.com/c/bYF7FqA) | | 95 | 90 | 88 | 92 | 94 | 93 | [eval](https://sharegpt.com/c/SuUqjMj) | | 95 | 90 | 93 | 92 | 85 | 94 | [eval](https://sharegpt.com/c/r0aRdYY) | | 95 | 93 | 90 | 87 | 92 | 91 | [eval](https://sharegpt.com/c/VuMfkkd) | | 95 | 93 | 90 | 96 | 92 | 91 | [eval](https://sharegpt.com/c/rhm6fa4) | | 95 | 97 | 85 | 96 | 98 | 90 | [eval](https://sharegpt.com/c/DwXnyqG) | | 95 | 92 | 90 | 85 | 93 | 94 | [eval](https://sharegpt.com/c/0ScdkGS) | | 95 | 96 | 92 | 90 | 97 | 93 | [eval](https://sharegpt.com/c/6yIoCDU) | | 95 | 93 | 96 | 94 | 90 | 92 | [eval](https://sharegpt.com/c/VubEvp9) | | 95 | 94 | 93 | 92 | 90 | 89 | [eval](https://sharegpt.com/c/RHzmZWG) | | 90 | 85 | 95 | 80 | 87 | 75 | [eval](https://sharegpt.com/c/IMiP9Zm) | | 95 | 94 | 92 | 93 | 90 | 96 | [eval](https://sharegpt.com/c/bft4PIL) | | 95 | 100 | 90 | 95 | 95 | 95 | [eval](https://sharegpt.com/c/iHXB34b) | | 100 | 95 | 85 | 100 | 0 | 90 | [eval](https://sharegpt.com/c/vCGn9R7) | | 100 | 95 | 90 | 95 | 100 | 95 | [eval](https://sharegpt.com/c/be8crZL) | | 95 | 90 | 60 | 95 | 85 | 80 | [eval](https://sharegpt.com/c/33elmDz) | | 100 | 95 | 90 | 98 | 97 | 99 | [eval](https://sharegpt.com/c/RWD3Zx7) | | 95 | 90 | 85 | 95 | 80 | 92 | [eval](https://sharegpt.com/c/GiwBvM7) | | 100 | 95 | 100 | 98 | 100 | 90 | [eval](https://sharegpt.com/c/hX2pYxk) | | 100 | 95 | 80 | 85 | 90 | 85 | [eval](https://sharegpt.com/c/MfxdGd7) | | 100 | 90 | 95 | 85 | 95 | 100 | [eval](https://sharegpt.com/c/28hQjmS) | | 95 | 90 | 85 | 80 | 88 | 92 | [eval](https://sharegpt.com/c/fzy5EPe) | | 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/vwxPjbR) | | 100 | 100 | 100 | 50 | 100 | 75 | [eval](https://sharegpt.com/c/FAYfFWy) | | 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/SoudGsQ) | | 0 | 100 | 0 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/mkwEgVn) | | 100 | 100 | 50 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/q8MQEsz) | | 100 | 100 | 100 | 100 | 100 | 95 | [eval](https://sharegpt.com/c/tzHpsKh) | | 100 | 100 | 50 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/3ugYBtJ) | | 100 | 100 | 0 | 0 | 100 | 0 | [eval](https://sharegpt.com/c/I6KfOJT) | | 90 | 85 | 80 | 95 | 70 | 75 | [eval](https://sharegpt.com/c/enaV1CK) | | 100 | 100 | 0 | 0 | 0 | 0 | [eval](https://sharegpt.com/c/JBk7oSh) | </details> ### Training data This was an experiment to see if a "jailbreak" prompt could be used to generate a broader range of data that would otherwise have been filtered by OpenAI's alignment efforts. The jailbreak did indeed work with a high success rate, and caused OpenAI to generate a broader range of topics and fewer refusals to answer questions/instructions of sensitive topics. ### Prompt format The prompt should be 1:1 compatible with the FastChat/vicuna format, e.g.: With a system prompt: ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: [prompt] ASSISTANT: ``` Or without a system prompt: ``` USER: [prompt] ASSISTANT: ``` ### Usage and License Notices The model and dataset are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
samaksh-khatri-crest-data/gmra_model_gpt2-medium_14082023T134929
samaksh-khatri-crest-data
2023-08-14T09:05:39Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2-medium", "base_model:finetune:openai-community/gpt2-medium", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T08:19:30Z
--- license: mit base_model: gpt2-medium tags: - generated_from_trainer metrics: - accuracy model-index: - name: gmra_model_gpt2-medium_14082023T134929 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gmra_model_gpt2-medium_14082023T134929 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3831 - Accuracy: 0.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 284 | 0.2626 | 0.9069 | | 0.3464 | 2.0 | 568 | 0.2263 | 0.9262 | | 0.3464 | 3.0 | 852 | 0.2545 | 0.9394 | | 0.1022 | 4.0 | 1137 | 0.2577 | 0.9464 | | 0.1022 | 5.0 | 1421 | 0.3485 | 0.9420 | | 0.0292 | 6.0 | 1705 | 0.3445 | 0.9429 | | 0.0292 | 7.0 | 1989 | 0.3127 | 0.9464 | | 0.0125 | 8.0 | 2274 | 0.4068 | 0.9411 | | 0.0085 | 9.0 | 2558 | 0.3853 | 0.9438 | | 0.0085 | 9.99 | 2840 | 0.3831 | 0.9438 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Skie0007/reinforce-pixel
Skie0007
2023-08-14T09:02:11Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T08:24:43Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-pixel results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 6.50 +/- 8.95 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
wangxso/ppo-PyramidsTraining
wangxso
2023-08-14T08:58:00Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-08-14T08:57:57Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: wangxso/ppo-PyramidsTraining 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ai-forever/mGPT-1.3B-ukranian
ai-forever
2023-08-14T08:57:08Z
31
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt3", "mgpt", "uk", "en", "ru", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T05:12:23Z
--- language: - uk - en - ru license: mit tags: - gpt3 - transformers - mgpt --- # 🇺🇦 Ukranian mGPT 1.3B Language model for Ukranian. Model has 1.3B parameters as you can guess from it's name. Ukranian belongs to Indo-European language family. It's a very melodic language with approximately 40 million speakers. Here are some facts about it: 1. One of the East Slavic languages, alongside Russian and Belarusian. 2. It is the official language of Ukraine and is written in a version of the Cyrillic script. 3. Ukrainian has a rich literary history, it has maintained a vibrant cultural presence, especially in poetry and music. ## Technical details It's one of the models derived from the base [mGPT-XL (1.3B)](https://huggingface.co/ai-forever/mGPT) model (see the list below) which was originally trained on the 61 languages from 25 language families using Wikipedia and C4 corpus. We've found additional data for 23 languages most of which are considered as minor and decided to further tune the base model. **Ukranian mGPT 1.3B** was trained for another 10000 steps with batch_size=4 and context window of **2048** tokens on 1 A100. Final perplexity for this model on validation is **7.1**. _Chart of the training loss and perplexity:_ ![](https://i.imgur.com/DppAo6e.png) ## Other mGPT-1.3B models - [🇦🇲 mGPT-1.3B Armenian](https://huggingface.co/ai-forever/mGPT-1.3B-armenian) - [🇦🇿 mGPT-1.3B Azerbaijan](https://huggingface.co/ai-forever/mGPT-1.3B-azerbaijan) - [🍯 mGPT-1.3B Bashkir](https://huggingface.co/ai-forever/mGPT-1.3B-bashkir) - [🇧🇾 mGPT-1.3B Belorussian](https://huggingface.co/ai-forever/mGPT-1.3B-belorussian) - [🇧🇬 mGPT-1.3B Bulgarian](https://huggingface.co/ai-forever/mGPT-1.3B-bulgarian) - [🌞 mGPT-1.3B Buryat](https://huggingface.co/ai-forever/mGPT-1.3B-buryat) - [🌳 mGPT-1.3B Chuvash](https://huggingface.co/ai-forever/mGPT-1.3B-chuvash) - [🇬🇪 mGPT-1.3B Georgian](https://huggingface.co/ai-forever/mGPT-1.3B-georgian) - [🌸 mGPT-1.3B Kalmyk](https://huggingface.co/ai-forever/mGPT-1.3B-kalmyk) - [🇰🇿 mGPT-1.3B Kazakh](https://huggingface.co/ai-forever/mGPT-1.3B-kazakh) - [🇰🇬 mGPT-1.3B Kirgiz](https://huggingface.co/ai-forever/mGPT-1.3B-kirgiz) - [🐻 mGPT-1.3B Mari](https://huggingface.co/ai-forever/mGPT-1.3B-mari) - [🇲🇳 mGPT-1.3B Mongol](https://huggingface.co/ai-forever/mGPT-1.3B-mongol) - [🐆 mGPT-1.3B Ossetian](https://huggingface.co/ai-forever/mGPT-1.3B-ossetian) - [🇮🇷 mGPT-1.3B Persian](https://huggingface.co/ai-forever/mGPT-1.3B-persian) - [🇷🇴 mGPT-1.3B Romanian](https://huggingface.co/ai-forever/mGPT-1.3B-romanian) - [🇹🇯 mGPT-1.3B Tajik](https://huggingface.co/ai-forever/mGPT-1.3B-tajik) - [☕ mGPT-1.3B Tatar](https://huggingface.co/ai-forever/mGPT-1.3B-tatar) - [🇹🇲 mGPT-1.3B Turkmen](https://huggingface.co/ai-forever/mGPT-1.3B-turkmen) - [🐎 mGPT-1.3B Tuvan](https://huggingface.co/ai-forever/mGPT-1.3B-tuvan) - [🇺🇿 mGPT-1.3B Uzbek](https://huggingface.co/ai-forever/mGPT-1.3B-uzbek) - [💎 mGPT-1.3B Yakut](https://huggingface.co/ai-forever/mGPT-1.3B-yakut) ## Feedback If you'll find a bug or have additional data to train a model on your language — **please, give us feedback**. Model will be improved over time. Stay tuned!
nagupv/Stable13B_contextLLMExam_f4
nagupv
2023-08-14T08:31:09Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T08:30:46Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round3__0073
bigmorning
2023-08-14T08:28:57Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T08:28:49Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0073 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0073 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0013 - Train Accuracy: 0.0795 - Train Wermet: 8.0558 - Validation Loss: 0.5732 - Validation Accuracy: 0.0770 - Validation Wermet: 6.5109 - Epoch: 72 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | | 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 | | 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 | | 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 | | 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 | | 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 | | 0.0013 | 0.0795 | 8.2501 | 0.5772 | 0.0770 | 6.9794 | 71 | | 0.0013 | 0.0795 | 8.0558 | 0.5732 | 0.0770 | 6.5109 | 72 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0072
bigmorning
2023-08-14T08:24:48Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T08:24:40Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0072 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0072 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0013 - Train Accuracy: 0.0795 - Train Wermet: 8.2501 - Validation Loss: 0.5772 - Validation Accuracy: 0.0770 - Validation Wermet: 6.9794 - Epoch: 71 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | | 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 | | 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 | | 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 | | 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 | | 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 | | 0.0013 | 0.0795 | 8.2501 | 0.5772 | 0.0770 | 6.9794 | 71 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
phatpt/ppo-Huggy
phatpt
2023-08-14T08:23:33Z
12
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-14T08:23:27Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: phatpt/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bigmorning/whisper_charsplit_new_round3__0071
bigmorning
2023-08-14T08:20:41Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T08:20:29Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0071 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0071 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0010 - Train Accuracy: 0.0795 - Train Wermet: 7.8106 - Validation Loss: 0.5724 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8654 - Epoch: 70 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | | 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 | | 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 | | 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 | | 0.0005 | 0.0795 | 7.7786 | 0.5695 | 0.0771 | 6.3958 | 69 | | 0.0010 | 0.0795 | 7.8106 | 0.5724 | 0.0771 | 6.8654 | 70 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
vnktrmnb/bert-base-multilingual-cased-finetuned-TyDiQA-GoldP_Te
vnktrmnb
2023-08-14T08:20:26Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "question-answering", "generated_from_keras_callback", "base_model:google-bert/bert-base-multilingual-cased", "base_model:finetune:google-bert/bert-base-multilingual-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-21T20:10:34Z
--- license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_keras_callback model-index: - name: vnktrmnb/bert-base-multilingual-cased-finetuned-TyDiQA-GoldP_Te results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # vnktrmnb/bert-base-multilingual-cased-finetuned-TyDiQA-GoldP_Te This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3152 - Train End Logits Accuracy: 0.9004 - Train Start Logits Accuracy: 0.9263 - Validation Loss: 0.4931 - Validation End Logits Accuracy: 0.8686 - Validation Start Logits Accuracy: 0.9162 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1359, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.7083 | 0.7903 | 0.8387 | 0.4992 | 0.8505 | 0.8892 | 0 | | 0.4552 | 0.8584 | 0.8957 | 0.4905 | 0.8686 | 0.8995 | 1 | | 0.3152 | 0.9004 | 0.9263 | 0.4931 | 0.8686 | 0.9162 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
HuHu88/ddpm-celebahq-finetuned-butterflies-2epochs
HuHu88
2023-08-14T08:12:45Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-14T08:11:54Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) Describe your model here ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('HuHu88/ddpm-celebahq-finetuned-butterflies-2epochs') image = pipeline().images[0] image ```
bigmorning/whisper_charsplit_new_round3__0069
bigmorning
2023-08-14T08:12:18Z
58
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T08:12:11Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0069 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0069 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0007 - Train Accuracy: 0.0795 - Train Wermet: 7.7019 - Validation Loss: 0.5691 - Validation Accuracy: 0.0771 - Validation Wermet: 6.6536 - Epoch: 68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | | 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 | | 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 | | 0.0007 | 0.0795 | 7.7019 | 0.5691 | 0.0771 | 6.6536 | 68 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0068
bigmorning
2023-08-14T08:08:09Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T08:08:02Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0068 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0068 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 7.7899 - Validation Loss: 0.5646 - Validation Accuracy: 0.0770 - Validation Wermet: 6.8492 - Epoch: 67 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | | 0.0010 | 0.0795 | 7.8135 | 0.5750 | 0.0770 | 7.0532 | 66 | | 0.0009 | 0.0795 | 7.7899 | 0.5646 | 0.0770 | 6.8492 | 67 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0066
bigmorning
2023-08-14T07:59:56Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:59:48Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0066 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0066 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0020 - Train Accuracy: 0.0795 - Train Wermet: 7.9131 - Validation Loss: 0.5655 - Validation Accuracy: 0.0770 - Validation Wermet: 7.0500 - Epoch: 65 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | | 0.0020 | 0.0795 | 7.9131 | 0.5655 | 0.0770 | 7.0500 | 65 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
wangxso/ppo-SnowballTarget
wangxso
2023-08-14T07:55:52Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-14T07:55:49Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: wangxso/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bigmorning/whisper_charsplit_new_round3__0065
bigmorning
2023-08-14T07:55:48Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:55:41Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0065 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0065 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0019 - Train Accuracy: 0.0795 - Train Wermet: 7.8859 - Validation Loss: 0.5789 - Validation Accuracy: 0.0769 - Validation Wermet: 6.9689 - Epoch: 64 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | | 0.0019 | 0.0795 | 7.8859 | 0.5789 | 0.0769 | 6.9689 | 64 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
merryjane/q-FrozenLake-v1-4x4-noSlippery
merryjane
2023-08-14T07:52:00Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T07:51:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="merryjane/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
bigmorning/whisper_charsplit_new_round3__0064
bigmorning
2023-08-14T07:51:39Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:51:30Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0064 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0064 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0005 - Train Accuracy: 0.0795 - Train Wermet: 7.6199 - Validation Loss: 0.5783 - Validation Accuracy: 0.0770 - Validation Wermet: 6.9551 - Epoch: 63 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | | 0.0002 | 0.0795 | 7.5238 | 0.5561 | 0.0772 | 6.6962 | 61 | | 0.0002 | 0.0795 | 7.4915 | 0.5613 | 0.0772 | 6.6315 | 62 | | 0.0005 | 0.0795 | 7.6199 | 0.5783 | 0.0770 | 6.9551 | 63 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
thibaud/controlnet-sd21-openpose-diffusers
thibaud
2023-08-14T07:44:42Z
28
14
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-03-10T12:41:24Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### Openpose: ![<openpose> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openpose.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
thibaud/controlnet-sd21-scribble-diffusers
thibaud
2023-08-14T07:44:23Z
8
0
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-03-10T22:59:55Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### Scribble: ![<scribble> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_scribble.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
thibaud/controlnet-sd21-zoedepth-diffusers
thibaud
2023-08-14T07:44:03Z
7
6
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-03-23T20:50:11Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### ZoeDepth: ![<color> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_zoedepth.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
thibaud/controlnet-sd21-openposev2-diffusers
thibaud
2023-08-14T07:43:52Z
8
2
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-04-08T18:53:05Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### OpenPose v2: ![<color> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openposev2.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
thibaud/controlnet-sd21-lineart-diffusers
thibaud
2023-08-14T07:43:36Z
9
3
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-04-10T12:04:54Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### Lineart v2: ![<color> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_lineart.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
thibaud/controlnet-sd21
thibaud
2023-08-14T07:43:07Z
18,429
395
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "dataset:laion/laion-art", "license:other", "region:us" ]
null
2023-03-06T15:24:04Z
--- language: - en license: other tags: - art - diffusers - stable diffusion - controlnet datasets: laion/laion-art --- Want to support my work: you can bought my Artbook: https://thibaud.art ___ Here's the first version of controlnet for stablediffusion 2.1 Trained on a subset of laion/laion-art License: refers to the different preprocessor's ones. ### Safetensors version uploaded, only 700mb! ### Canny: ![<canny> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_canny.png) ### Depth: ![<depth> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_depth.png) ### ZoeDepth: ![<depth> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_zoedepth.png) ### Hed: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_hed.png) ### Scribble: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_scribble.png) ### OpenPose: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openpose.png) ### Color: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_color.png) ### OpenPose: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_openposev2.png) ### LineArt: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_lineart.png) ### Ade20K: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_ade20k.png) ### Normal BAE: ![<hed> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_normalbae.png) ### To use with Automatic1111: * Download the ckpt files or safetensors ones * Put it in extensions/sd-webui-controlnet/models * in settings/controlnet, change cldm_v15.yaml by cldm_v21.yaml * Enjoy ### To use ZoeDepth: You can use it with annotator depth/le_res but it works better with ZoeDepth Annotator. My PR is not accepted yet but you can use my fork. My fork: https://github.com/thibaudart/sd-webui-controlnet The PR: https://github.com/Mikubill/sd-webui-controlnet/pull/655#issuecomment-1481724024 ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. Thanks https://huggingface.co/lllyasviel/ for the implementation and the release of 1.5 models. Thanks https://huggingface.co/p1atdev/ for the conversion script from ckpt to safetensors pruned & fp16 ### Models can't be sell, merge, distributed without prior writing agreement.
thibaud/controlnet-sd21-ade20k-diffusers
thibaud
2023-08-14T07:41:14Z
10
0
diffusers
[ "diffusers", "art", "stable diffusion", "controlnet", "en", "license:other", "region:us" ]
null
2023-04-10T12:04:59Z
--- license: other language: - en tags: - art - diffusers - stable diffusion - controlnet --- Here's the first version of controlnet for stablediffusion 2.1 for diffusers Trained on a subset of laion/laion-art ### ADE 20K: ![<color> 0](https://huggingface.co/thibaud/controlnet-sd21/resolve/main/example_ade20k.png) ### Misuse, Malicious Use, and Out-of-Scope Use The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. License: refers to the ade20K's one. Thanks - https://huggingface.co/lllyasviel/ControlNet for the implementation and the release of 1.5 models. - https://huggingface.co/thepowefuldeez for the conversion script to diffusers
bigmorning/whisper_charsplit_new_round3__0061
bigmorning
2023-08-14T07:39:05Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:38:56Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0061 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0061 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0004 - Train Accuracy: 0.0795 - Train Wermet: 7.6676 - Validation Loss: 0.5577 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7898 - Epoch: 60 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | | 0.0004 | 0.0795 | 7.6676 | 0.5577 | 0.0771 | 6.7898 | 60 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0060
bigmorning
2023-08-14T07:34:51Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:34:45Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0060 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0060 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0009 - Train Accuracy: 0.0795 - Train Wermet: 7.4969 - Validation Loss: 0.5584 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7292 - Epoch: 59 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | | 0.0009 | 0.0795 | 7.4969 | 0.5584 | 0.0771 | 6.7292 | 59 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Skie0007/Reinforce-cartpole
Skie0007
2023-08-14T07:34:29Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T07:34:18Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Den4ikAI/rubert-tiny2-retriever
Den4ikAI
2023-08-14T07:33:22Z
2
2
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "ru", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-07T13:33:54Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: mit language: - ru widget: - source_sentence: "query: Когда родился Пушкин?" sentences: - "passage: Алекса́ндр Серге́евич Пу́шкин (26 мая [6 июня] 1799, Москва — 29 января [10 февраля] 1837, Санкт-Петербург) — русский поэт, драматург и прозаик, заложивший основы русского реалистического направления[2], литературный критик[3] и теоретик литературы, историк[3], публицист, журналист[3]." - "passage: Пушкин ловил кайф со своими друзьями" - "passage: Пушкин из самых авторитетных литературных деятелей первой трети XIX века. Ещё при жизни Пушкина сложилась его репутация величайшего национального русского поэта[4][5]. Пушкин рассматривается как основоположник современного русского литературного языка[~ 2]." --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 312 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 966 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.ContrastiveLoss.ContrastiveLoss` with parameters: ``` {'distance_metric': 'SiameseDistanceMetric.COSINE_DISTANCE', 'margin': 0.5, 'size_average': True} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 500, "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 966, "weight_decay": 1e-05 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
bookbot/sherpa-ncnn-pruned-transducer-stateless7-streaming-id
bookbot
2023-08-14T07:32:20Z
0
1
null
[ "icefall", "sherpa-ncnn", "phoneme-recognition", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_13_0", "dataset:indonesian-nlp/librivox-indonesia", "dataset:google/fleurs", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-06-23T07:58:15Z
--- language: id license: apache-2.0 tags: - icefall - sherpa-ncnn - phoneme-recognition - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_13_0 - indonesian-nlp/librivox-indonesia - google/fleurs --- # Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID Sherpa-ncnn Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets: - [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) - [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia) - [FLEURS ID](https://huggingface.co/datasets/google/fleurs) Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id). This model was converted from the TorchScript version of [Pruned Stateless Zipformer RNN-T Streaming ID](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id) to ncnn format. ## Converting from TorchScript Refer to the [official instructions](https://icefall.readthedocs.io/en/latest/model-export/export-ncnn-zipformer.html) for conversion to ncnn, which includes installation of `csukuangfj`'s [ncnn](https://github.com/csukuangfj/ncnn) fork. ## Frameworks - [k2](https://github.com/k2-fsa/k2) - [icefall](https://github.com/bookbot-hive/icefall) - [lhotse](https://github.com/bookbot-hive/lhotse) - [sherpa-ncnn](https://github.com/k2-fsa/sherpa-ncnn) - [ncnn](https://github.com/csukuangfj/ncnn)
bookbot/pruned-transducer-stateless7-streaming-id
bookbot
2023-08-14T07:31:44Z
0
0
null
[ "tensorboard", "icefall", "phoneme-recognition", "automatic-speech-recognition", "id", "dataset:mozilla-foundation/common_voice_13_0", "dataset:indonesian-nlp/librivox-indonesia", "dataset:google/fleurs", "license:apache-2.0", "region:us" ]
automatic-speech-recognition
2023-06-21T10:13:29Z
--- language: id license: apache-2.0 tags: - icefall - phoneme-recognition - automatic-speech-recognition datasets: - mozilla-foundation/common_voice_13_0 - indonesian-nlp/librivox-indonesia - google/fleurs --- # Pruned Stateless Zipformer RNN-T Streaming ID Pruned Stateless Zipformer RNN-T Streaming ID is an automatic speech recognition model trained on the following datasets: - [Common Voice ID](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) - [LibriVox Indonesia](https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia) - [FLEURS ID](https://huggingface.co/datasets/google/fleurs) Instead of being trained to predict sequences of words, this model was trained to predict sequence of phonemes, e.g. `['p', 'ə', 'r', 'b', 'u', 'a', 't', 'a', 'n', 'ɲ', 'a']`. Therefore, the model's [vocabulary](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/blob/main/data/lang_phone/tokens.txt) contains the different IPA phonemes found in [g2p ID](https://github.com/bookbot-kids/g2p_id). This model was trained using [icefall](https://github.com/k2-fsa/icefall) framework. All training was done on a Scaleway RENDER-S VM with a Tesla P100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id/tensorboard) logged via Tensorboard. ## Evaluation Results ### Simulated Streaming ```sh for m in greedy_search fast_beam_search modified_beam_search; do ./pruned_transducer_stateless7_streaming/decode.py \ --epoch 30 \ --avg 9 \ --exp-dir ./pruned_transducer_stateless7_streaming/exp \ --max-duration 600 \ --decode-chunk-len 32 \ --decoding-method $m done ``` The model achieves the following phoneme error rates on the different test sets: | Decoding | LibriVox | FLEURS | Common Voice | | -------------------- | :------: | :----: | :----------: | | Greedy Search | 4.87% | 11.45% | 14.97% | | Modified Beam Search | 4.71% | 11.25% | 14.31% | | Fast Beam Search | 4.85% | 12.55% | 14.89% | ### Chunk-wise Streaming ```sh for m in greedy_search fast_beam_search modified_beam_search; do ./pruned_transducer_stateless7_streaming/streaming_decode.py \ --epoch 30 \ --avg 9 \ --exp-dir ./pruned_transducer_stateless7_streaming/exp \ --decoding-method $m \ --decode-chunk-len 32 \ --num-decode-streams 1500 done ``` The model achieves the following phoneme error rates on the different test sets: | Decoding | LibriVox | FLEURS | Common Voice | | -------------------- | :------: | :----: | :----------: | | Greedy Search | 5.12% | 12.74% | 15.78% | | Modified Beam Search | 4.78% | 11.83% | 14.54% | | Fast Beam Search | 4.81% | 12.93% | 14.96% | ## Usage ### Download Pre-trained Model ```sh cd egs/bookbot/ASR mkdir tmp cd tmp git lfs install git clone https://huggingface.co/bookbot/pruned-transducer-stateless7-streaming-id ``` ### Inference To decode with greedy search, run: ```sh ./pruned_transducer_stateless7_streaming/jit_pretrained.py \ --nn-model-filename ./tmp/pruned-transducer-stateless7-streaming-id/exp/cpu_jit.pt \ --lang-dir ./tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone \ ./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav ``` <details> <summary>Decoding Output</summary> ``` 2023-06-21 10:19:18,563 INFO [jit_pretrained.py:217] device: cpu 2023-06-21 10:19:19,231 INFO [lexicon.py:168] Loading pre-compiled tmp/pruned-transducer-stateless7-streaming-id/data/lang_phone/Linv.pt 2023-06-21 10:19:19,232 INFO [jit_pretrained.py:228] Constructing Fbank computer 2023-06-21 10:19:19,233 INFO [jit_pretrained.py:238] Reading sound files: ['./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav'] 2023-06-21 10:19:19,234 INFO [jit_pretrained.py:244] Decoding started 2023-06-21 10:19:20,090 INFO [jit_pretrained.py:271] ./tmp/pruned-transducer-stateless7-streaming-id/test_waves/sample1.wav: p u l a ŋ | s ə k o l a h | p i t ə r i | s a ŋ a t | l a p a r 2023-06-21 10:19:20,090 INFO [jit_pretrained.py:273] Decoding Done ``` </details> ## Training procedure ### Install icefall ```sh git clone https://github.com/bookbot-hive/icefall cd icefall export PYTHONPATH=`pwd`:$PYTHONPATH ``` ### Prepare Data ```sh cd egs/bookbot_id/ASR ./prepare.sh ``` ### Train ```sh export CUDA_VISIBLE_DEVICES="0" ./pruned_transducer_stateless7_streaming/train.py \ --num-epochs 30 \ --use-fp16 1 \ --max-duration 400 ``` ## Frameworks - [k2](https://github.com/k2-fsa/k2) - [icefall](https://github.com/bookbot-hive/icefall) - [lhotse](https://github.com/bookbot-hive/lhotse)
bigmorning/whisper_charsplit_new_round3__0059
bigmorning
2023-08-14T07:30:48Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:30:41Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0059 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0059 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0030 - Train Accuracy: 0.0795 - Train Wermet: 7.4853 - Validation Loss: 0.5586 - Validation Accuracy: 0.0770 - Validation Wermet: 6.6707 - Epoch: 58 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | | 0.0030 | 0.0795 | 7.4853 | 0.5586 | 0.0770 | 6.6707 | 58 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0058
bigmorning
2023-08-14T07:26:41Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:26:32Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0058 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0058 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0113 - Train Accuracy: 0.0793 - Train Wermet: 7.8674 - Validation Loss: 0.5714 - Validation Accuracy: 0.0768 - Validation Wermet: 6.0540 - Epoch: 57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | | 0.0113 | 0.0793 | 7.8674 | 0.5714 | 0.0768 | 6.0540 | 57 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0057
bigmorning
2023-08-14T07:22:32Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:22:24Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0057 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0057 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.0364 - Validation Loss: 0.5907 - Validation Accuracy: 0.0772 - Validation Wermet: 7.0683 - Epoch: 56 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | | 0.0000 | 0.0795 | 7.9400 | 0.5822 | 0.0772 | 7.0438 | 53 | | 0.0000 | 0.0795 | 7.9697 | 0.5846 | 0.0772 | 7.0785 | 54 | | 0.0000 | 0.0795 | 8.0061 | 0.5875 | 0.0772 | 7.0840 | 55 | | 0.0000 | 0.0795 | 8.0364 | 0.5907 | 0.0772 | 7.0683 | 56 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
gtxygyzb/distilbert-base-uncased-finetuned-imdb
gtxygyzb
2023-08-14T07:15:51Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-08-14T07:08:02Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4125 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7026 | 1.0 | 157 | 2.4957 | | 2.581 | 2.0 | 314 | 2.4286 | | 2.5363 | 3.0 | 471 | 2.4515 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
CyberHarem/hyuuga_hinata_naruto
CyberHarem
2023-08-14T07:11:38Z
0
0
null
[ "art", "text-to-image", "dataset:CyberHarem/hyuuga_hinata_naruto", "license:mit", "region:us" ]
text-to-image
2023-08-14T07:08:01Z
--- license: mit datasets: - CyberHarem/hyuuga_hinata_naruto pipeline_tag: text-to-image tags: - art --- # Lora of hyuuga_hinata_naruto This model is trained with [HCP-Diffusion](https://github.com/7eu7d7/HCP-Diffusion). And the auto-training framework is maintained by [DeepGHS Team](https://huggingface.co/deepghs). After downloading the pt and safetensors files for the specified step, you need to use them simultaneously. The pt file will be used as an embedding, while the safetensors file will be loaded for Lora. For example, if you want to use the model from step 1500, you need to download `1500/hyuuga_hinata_naruto.pt` as the embedding and `1500/hyuuga_hinata_naruto.safetensors` for loading Lora. By using both files together, you can generate images for the desired characters. **The trigger word is `hyuuga_hinata_naruto`.** These are available steps: | Steps | pattern_1 | bikini | free | nude | Download | |--------:|:-----------------------------------------------|:-----------------------------------------|:-------------------------------------|:-----------------------------------------------|:------------------------------------------| | 1500 | ![pattern_1-1500](1500/previews/pattern_1.png) | ![bikini-1500](1500/previews/bikini.png) | ![free-1500](1500/previews/free.png) | [<NSFW, click to see>](1500/previews/nude.png) | [Download](1500/hyuuga_hinata_naruto.zip) | | 1400 | ![pattern_1-1400](1400/previews/pattern_1.png) | ![bikini-1400](1400/previews/bikini.png) | ![free-1400](1400/previews/free.png) | [<NSFW, click to see>](1400/previews/nude.png) | [Download](1400/hyuuga_hinata_naruto.zip) | | 1300 | ![pattern_1-1300](1300/previews/pattern_1.png) | ![bikini-1300](1300/previews/bikini.png) | ![free-1300](1300/previews/free.png) | [<NSFW, click to see>](1300/previews/nude.png) | [Download](1300/hyuuga_hinata_naruto.zip) | | 1200 | ![pattern_1-1200](1200/previews/pattern_1.png) | ![bikini-1200](1200/previews/bikini.png) | ![free-1200](1200/previews/free.png) | [<NSFW, click to see>](1200/previews/nude.png) | [Download](1200/hyuuga_hinata_naruto.zip) | | 1100 | ![pattern_1-1100](1100/previews/pattern_1.png) | ![bikini-1100](1100/previews/bikini.png) | ![free-1100](1100/previews/free.png) | [<NSFW, click to see>](1100/previews/nude.png) | [Download](1100/hyuuga_hinata_naruto.zip) | | 1000 | ![pattern_1-1000](1000/previews/pattern_1.png) | ![bikini-1000](1000/previews/bikini.png) | ![free-1000](1000/previews/free.png) | [<NSFW, click to see>](1000/previews/nude.png) | [Download](1000/hyuuga_hinata_naruto.zip) | | 900 | ![pattern_1-900](900/previews/pattern_1.png) | ![bikini-900](900/previews/bikini.png) | ![free-900](900/previews/free.png) | [<NSFW, click to see>](900/previews/nude.png) | [Download](900/hyuuga_hinata_naruto.zip) | | 800 | ![pattern_1-800](800/previews/pattern_1.png) | ![bikini-800](800/previews/bikini.png) | ![free-800](800/previews/free.png) | [<NSFW, click to see>](800/previews/nude.png) | [Download](800/hyuuga_hinata_naruto.zip) | | 700 | ![pattern_1-700](700/previews/pattern_1.png) | ![bikini-700](700/previews/bikini.png) | ![free-700](700/previews/free.png) | [<NSFW, click to see>](700/previews/nude.png) | [Download](700/hyuuga_hinata_naruto.zip) | | 600 | ![pattern_1-600](600/previews/pattern_1.png) | ![bikini-600](600/previews/bikini.png) | ![free-600](600/previews/free.png) | [<NSFW, click to see>](600/previews/nude.png) | [Download](600/hyuuga_hinata_naruto.zip) | | 500 | ![pattern_1-500](500/previews/pattern_1.png) | ![bikini-500](500/previews/bikini.png) | ![free-500](500/previews/free.png) | [<NSFW, click to see>](500/previews/nude.png) | [Download](500/hyuuga_hinata_naruto.zip) | | 400 | ![pattern_1-400](400/previews/pattern_1.png) | ![bikini-400](400/previews/bikini.png) | ![free-400](400/previews/free.png) | [<NSFW, click to see>](400/previews/nude.png) | [Download](400/hyuuga_hinata_naruto.zip) | | 300 | ![pattern_1-300](300/previews/pattern_1.png) | ![bikini-300](300/previews/bikini.png) | ![free-300](300/previews/free.png) | [<NSFW, click to see>](300/previews/nude.png) | [Download](300/hyuuga_hinata_naruto.zip) | | 200 | ![pattern_1-200](200/previews/pattern_1.png) | ![bikini-200](200/previews/bikini.png) | ![free-200](200/previews/free.png) | [<NSFW, click to see>](200/previews/nude.png) | [Download](200/hyuuga_hinata_naruto.zip) | | 100 | ![pattern_1-100](100/previews/pattern_1.png) | ![bikini-100](100/previews/bikini.png) | ![free-100](100/previews/free.png) | [<NSFW, click to see>](100/previews/nude.png) | [Download](100/hyuuga_hinata_naruto.zip) |
bigmorning/whisper_charsplit_new_round3__0053
bigmorning
2023-08-14T07:05:55Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:05:45Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0053 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0053 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.9169 - Validation Loss: 0.5794 - Validation Accuracy: 0.0772 - Validation Wermet: 7.0149 - Epoch: 52 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | | 0.0000 | 0.0795 | 7.9169 | 0.5794 | 0.0772 | 7.0149 | 52 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0052
bigmorning
2023-08-14T07:01:45Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T07:01:37Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0052 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0052 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8924 - Validation Loss: 0.5770 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9928 - Epoch: 51 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | | 0.0000 | 0.0795 | 7.8924 | 0.5770 | 0.0772 | 6.9928 | 51 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0051
bigmorning
2023-08-14T06:57:31Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:57:22Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0051 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0051 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8755 - Validation Loss: 0.5744 - Validation Accuracy: 0.0772 - Validation Wermet: 6.9767 - Epoch: 50 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | | 0.0000 | 0.0795 | 7.6768 | 0.5556 | 0.0771 | 6.8287 | 41 | | 0.0000 | 0.0795 | 7.7199 | 0.5578 | 0.0772 | 6.8398 | 42 | | 0.0000 | 0.0795 | 7.7423 | 0.5600 | 0.0772 | 6.8518 | 43 | | 0.0000 | 0.0795 | 7.7561 | 0.5617 | 0.0772 | 6.8898 | 44 | | 0.0000 | 0.0795 | 7.7766 | 0.5639 | 0.0772 | 6.8982 | 45 | | 0.0000 | 0.0795 | 7.7962 | 0.5659 | 0.0772 | 6.9091 | 46 | | 0.0000 | 0.0795 | 7.8106 | 0.5680 | 0.0772 | 6.9293 | 47 | | 0.0000 | 0.0795 | 7.8387 | 0.5701 | 0.0772 | 6.9401 | 48 | | 0.0000 | 0.0795 | 7.8480 | 0.5724 | 0.0772 | 6.9544 | 49 | | 0.0000 | 0.0795 | 7.8755 | 0.5744 | 0.0772 | 6.9767 | 50 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
yadhikari/yogesh-a-v2
yadhikari
2023-08-14T06:56:14Z
2
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-14T06:50:18Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### yogesh-a-v2 Dreambooth model trained by yadhikari with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
Dhiraj223/Dhiraj-bert-finetuned-squad
Dhiraj223
2023-08-14T06:55:33Z
71
0
transformers
[ "transformers", "tf", "bert", "question-answering", "generated_from_keras_callback", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-14T04:29:18Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Dhiraj223/Dhiraj-bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Dhiraj223/Dhiraj-bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2570 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 16635, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.9529 | 0 | | 1.2570 | 1 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.1.0 - Tokenizers 0.13.3
mainuzzaman/llama-2-7b-miniguanaco
mainuzzaman
2023-08-14T06:54:33Z
0
1
peft
[ "peft", "region:us" ]
null
2023-08-14T06:48:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
TheTravellingEngineer/llama2-7b-chat-hf-dpo
TheTravellingEngineer
2023-08-14T06:50:53Z
1,530
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-14T06:33:07Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using DPO and the comparison_gpt4 dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - comparison_gpt4 <br> - language: - en <br> - reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main ---
wangxso/Reinforce-PG-Carpolt
wangxso
2023-08-14T06:48:58Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T06:48:56Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PG-Carpolt results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 20.50 +/- 8.13 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
bjfxs/llama2-7b-200steps-finetunined-sxl-1
bjfxs
2023-08-14T06:41:24Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T06:41:17Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
msthil2/distilhubert-finetuned-gtzan
msthil2
2023-08-14T06:29:19Z
159
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-13T20:35:13Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.84 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5620 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9979 | 1.0 | 113 | 1.8250 | 0.39 | | 1.3648 | 2.0 | 226 | 1.3015 | 0.58 | | 1.0783 | 3.0 | 339 | 0.9586 | 0.78 | | 0.8267 | 4.0 | 452 | 0.8479 | 0.74 | | 0.7503 | 5.0 | 565 | 0.7404 | 0.76 | | 0.404 | 6.0 | 678 | 0.6402 | 0.81 | | 0.4935 | 7.0 | 791 | 0.5936 | 0.81 | | 0.2201 | 8.0 | 904 | 0.5934 | 0.82 | | 0.2689 | 9.0 | 1017 | 0.5614 | 0.81 | | 0.1843 | 10.0 | 1130 | 0.5620 | 0.84 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
samaksh-khatri-crest-data/gmra_model_gpt2_14082023T112228
samaksh-khatri-crest-data
2023-08-14T06:27:56Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T05:52:28Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gmra_model_gpt2_14082023T112228 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gmra_model_gpt2_14082023T112228 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3424 - Accuracy: 0.9016 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 71 | 0.7440 | 0.7636 | | No log | 1.99 | 142 | 0.5466 | 0.8278 | | No log | 2.99 | 213 | 0.4379 | 0.8656 | | No log | 4.0 | 285 | 0.3959 | 0.8787 | | No log | 5.0 | 356 | 0.3560 | 0.8919 | | No log | 5.99 | 427 | 0.3442 | 0.8946 | | No log | 6.99 | 498 | 0.3535 | 0.8954 | | 0.5012 | 8.0 | 570 | 0.3232 | 0.9007 | | 0.5012 | 9.0 | 641 | 0.3364 | 0.8989 | | 0.5012 | 9.96 | 710 | 0.3424 | 0.9016 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sara98/bert-finetuned-mrpc-trainerclass
sara98
2023-08-14T06:24:18Z
105
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T06:08:34Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - glue model-index: - name: bert-finetuned-mrpc results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
prudhvirazz/google-flan-t5-small-modified_v2
prudhvirazz
2023-08-14T06:22:24Z
77
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2023-08-14T05:42:53Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer datasets: - squad model-index: - name: google-flan-t5-small-modified_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # google-flan-t5-small-modified_v2 This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 3.7751 | | 4.3074 | 2.0 | 500 | 2.1221 | | 4.3074 | 3.0 | 750 | 1.7130 | | 2.5366 | 4.0 | 1000 | 1.5271 | | 2.5366 | 5.0 | 1250 | 1.4301 | | 2.0483 | 6.0 | 1500 | 1.3643 | | 2.0483 | 7.0 | 1750 | 1.3389 | | 1.8774 | 8.0 | 2000 | 1.3123 | | 1.8774 | 9.0 | 2250 | 1.3067 | | 1.7724 | 10.0 | 2500 | 1.3020 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
morell23/crrysxmrky
morell23
2023-08-14T06:20:57Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T06:15:44Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_charsplit_new_round3__0041
bigmorning
2023-08-14T06:15:42Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:15:35Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0041 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0041 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.6623 - Validation Loss: 0.5535 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7829 - Epoch: 40 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | | 0.0000 | 0.0795 | 7.6623 | 0.5535 | 0.0771 | 6.7829 | 40 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
ryand1234/mllama2-testing
ryand1234
2023-08-14T06:14:48Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T03:19:42Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
chriskim2273/IOTNation_Classification_Model_0.8_6K_AND_ORIGINAL_DATASET_BERT
chriskim2273
2023-08-14T06:14:05Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T05:39:40Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: IOTNation_Classification_Model_0.8_6K_AND_ORIGINAL_DATASET_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_Classification_Model_0.8_6K_AND_ORIGINAL_DATASET_BERT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0406 - Accuracy: 0.9946 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
anikesh-mane/prefix-tuned-flan-t5-large
anikesh-mane
2023-08-14T06:13:10Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-14T06:13:09Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
phatpt/ppo-LunarLander-v2
phatpt
2023-08-14T06:12:18Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T06:11:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.16 +/- 19.35 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/whisper_charsplit_new_round3__0040
bigmorning
2023-08-14T06:11:28Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:11:19Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0040 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.6100 - Validation Loss: 0.5515 - Validation Accuracy: 0.0771 - Validation Wermet: 6.7738 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | | 0.0001 | 0.0795 | 7.6100 | 0.5515 | 0.0771 | 6.7738 | 39 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Araki/Bacchus-22B-GGML
Araki
2023-08-14T06:07:23Z
0
0
null
[ "llama", "ggml", "text-generation", "region:us" ]
text-generation
2023-08-13T23:47:01Z
--- pipeline_tag: text-generation tags: - llama - ggml --- **Quantization from:** [Envoid/Bacchus-22B](https://huggingface.co/Envoid/Bacchus-22B) **Converted to the GGML format with:** [llama.cpp master-ee77efe (AUG 13, 2023)](https://github.com/ggerganov/llama.cpp/releases/tag/master-ee77efe) **Tested with:** [koboldcpp 1.40.1](https://github.com/LostRuins/koboldcpp/releases/tag/v1.40.1a) **Example usage:** ``` koboldcpp.exe Bacchus-22B-ggmlv3.Q5_K_M.bin --threads 6 --contextsize 4096 --stream --smartcontext --unbantokens --ropeconfig 1 10000 ``` **Prompt format:** This is an experimental model with no defined format. However, the creator of the model recommends using it in pair with [SillyTavern](https://github.com/SillyTavern/SillyTavern/tree/staging) and [simple-proxy-for-tavern](https://github.com/anon998/simple-proxy-for-tavern) with presets 'singleline' or 'verbose'. According to the creator, as well as how it was shown in my own tests, the 'verbose' format gives detailed responses where the characters may tend to flee the roleplay scene, whereas the 'singleline' format sometimes results in too short, dull replies. Please refer to the original model for additional details. The credit for the used formats goes to the developer of simple-proxy-for-tavern. **Format 1 (verbose):** ``` ## {CHAR} - You're "{CHAR}" in this never-ending roleplay with "{USER}". ### Input: {character's personality} Circumstances and context of the dialogue: {circumstances of the dialogue} ### Response: (OOC) Understood. I will take this info into account for the roleplay. (end OOC) ### New Roleplay: ### Instruction: #### {USER}: {example message from the user} ### Response: #### {CHAR}: {example response from the bot} ### New Roleplay: ### Response: #### {CHAR}: {character's initial, user-written message} ### Instruction: #### {USER}: {user's initial response} ### Response (2 paragraphs, engaging, natural, authentic, descriptive, creative): #### {CHAR}: ``` **Format 2 (singleline):** ``` Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Write {CHAR}'s next reply in a fictional chat between {CHAR} and {USER}. Write 1 reply only in internet RP style, italicize actions, and avoid quotation marks. Use markdown. Be proactive, creative, and drive the plot and conversation forward. Write at least 2 paragraph, up to 4. Always stay in character and avoid repetition. ### Input: {character's personality} Circumstances and context of the dialogue: {circumstances of the dialogue} [Start a new chat] {USER}: {example message from the user} {CHAR}: {example response from the bot} [Start a new chat] ### Response: Okay, I will now generate a reply, continuing from the end of the provided conversation. (This may contain NSFW or offensive output.) [...] {CHAR}: {character's initial, user-written message} {USER}: {user's initial response} {CHAR}: ```
bigmorning/whisper_charsplit_new_round3__0039
bigmorning
2023-08-14T06:07:21Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:07:13Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0039 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0039 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.6685 - Validation Loss: 0.5493 - Validation Accuracy: 0.0771 - Validation Wermet: 6.6914 - Epoch: 38 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | | 0.0001 | 0.0795 | 7.6685 | 0.5493 | 0.0771 | 6.6914 | 38 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0038
bigmorning
2023-08-14T06:03:11Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T06:03:04Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0038 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0038 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0002 - Train Accuracy: 0.0795 - Train Wermet: 7.6265 - Validation Loss: 0.5471 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8107 - Epoch: 37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | | 0.0002 | 0.0795 | 7.6265 | 0.5471 | 0.0771 | 6.8107 | 37 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
draziert/rl_course_vizdoom_health_gathering_supreme
draziert
2023-08-14T06:02:21Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-14T06:00:09Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 13.66 +/- 5.17 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r draziert/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
bigmorning/whisper_charsplit_new_round3__0037
bigmorning
2023-08-14T05:58:59Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:58:52Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0037 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0037 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0008 - Train Accuracy: 0.0795 - Train Wermet: 7.9115 - Validation Loss: 0.5447 - Validation Accuracy: 0.0771 - Validation Wermet: 6.9422 - Epoch: 36 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | | 0.0008 | 0.0795 | 7.9115 | 0.5447 | 0.0771 | 6.9422 | 36 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0036
bigmorning
2023-08-14T05:54:56Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:54:49Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0036 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0036 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0063 - Train Accuracy: 0.0794 - Train Wermet: 8.2517 - Validation Loss: 0.5491 - Validation Accuracy: 0.0769 - Validation Wermet: 7.1324 - Epoch: 35 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | | 0.0080 | 0.0794 | 8.3693 | 0.5947 | 0.0762 | 7.3034 | 34 | | 0.0063 | 0.0794 | 8.2517 | 0.5491 | 0.0769 | 7.1324 | 35 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0034
bigmorning
2023-08-14T05:46:38Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:46:30Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0034 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0034 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2872 - Validation Loss: 0.5744 - Validation Accuracy: 0.0772 - Validation Wermet: 7.2069 - Epoch: 33 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | | 0.0000 | 0.0795 | 8.3059 | 0.5721 | 0.0772 | 7.2341 | 32 | | 0.0000 | 0.0795 | 8.2872 | 0.5744 | 0.0772 | 7.2069 | 33 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0032
bigmorning
2023-08-14T05:38:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:38:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0032 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0032 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2992 - Validation Loss: 0.5700 - Validation Accuracy: 0.0772 - Validation Wermet: 7.2006 - Epoch: 31 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | | 0.0000 | 0.0795 | 8.2992 | 0.5700 | 0.0772 | 7.2006 | 31 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0031
bigmorning
2023-08-14T05:34:02Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:33:54Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0031 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0031 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2607 - Validation Loss: 0.5689 - Validation Accuracy: 0.0771 - Validation Wermet: 7.2107 - Epoch: 30 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | | 0.0000 | 0.0795 | 8.2607 | 0.5689 | 0.0771 | 7.2107 | 30 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
DAMO-NLP-SG/zero-shot-classify-SSTuning-base
DAMO-NLP-SG
2023-08-14T05:33:57Z
163
7
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "Zero-Shot Classification", "zero-shot-classification", "arxiv:2305.11442", "license:mit", "autotrain_compatible", "region:us" ]
zero-shot-classification
2023-05-18T11:14:04Z
--- inference: false license: mit tags: - Zero-Shot Classification pipeline_tag: zero-shot-classification --- # Zero-shot text classification (base-sized model) trained with self-supervised tuning Zero-shot text classification model trained with self-supervised tuning (SSTuning). It was introduced in the paper [Zero-Shot Text Classification via Self-Supervised Tuning](https://arxiv.org/abs/2305.11442) by Chaoqun Liu, Wenxuan Zhang, Guizhen Chen, Xiaobao Wu, Anh Tuan Luu, Chip Hong Chang, Lidong Bing and first released in [this repository](https://github.com/DAMO-NLP-SG/SSTuning). The model backbone is RoBERTa-base. ## Model description The model is tuned with unlabeled data using a learning objective called first sentence prediction (FSP). The FSP task is designed by considering both the nature of the unlabeled corpus and the input/output format of classification tasks. The training and validation sets are constructed from the unlabeled corpus using FSP. During tuning, BERT-like pre-trained masked language models such as RoBERTa and ALBERT are employed as the backbone, and an output layer for classification is added. The learning objective for FSP is to predict the index of the correct label. A cross-entropy loss is used for tuning the model. ## Model variations There are four versions of models released. The details are: | Model | Backbone | #params | lang | acc | Speed | #Train |------------|-----------|----------|-------|-------|----|-------------| | [zero-shot-classify-SSTuning-base](https://huggingface.co/DAMO-NLP-SG/zero-shot-classify-SSTuning-base) | [roberta-base](https://huggingface.co/roberta-base) | 125M | En | Low | High | 20.48M | | [zero-shot-classify-SSTuning-large](https://huggingface.co/DAMO-NLP-SG/zero-shot-classify-SSTuning-large) | [roberta-large](https://huggingface.co/roberta-large) | 355M | En | Medium | Medium | 5.12M | | [zero-shot-classify-SSTuning-ALBERT](https://huggingface.co/DAMO-NLP-SG/zero-shot-classify-SSTuning-ALBERT) | [albert-xxlarge-v2](https://huggingface.co/albert-xxlarge-v2) | 235M | En | High | Low| 5.12M | | [zero-shot-classify-SSTuning-XLM-R](https://huggingface.co/DAMO-NLP-SG/zero-shot-classify-SSTuning-XLM-R) | [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) | 278M | Multi | - | - | 20.48M | Please note that zero-shot-classify-SSTuning-XLM-R is trained with 20.48M English samples only. However, it can also be used in other languages as long as xlm-roberta supports. Please check [this repository](https://github.com/DAMO-NLP-SG/SSTuning) for the performance of each model. ## Intended uses & limitations The model can be used for zero-shot text classification such as sentiment analysis and topic classification. No further finetuning is needed. The number of labels should be 2 ~ 20. ### How to use You can try the model with the Colab [Notebook](https://colab.research.google.com/drive/17bqc8cXFF-wDmZ0o8j7sbrQB9Cq7Gowr?usp=sharing). ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch, string, random tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-SG/zero-shot-classify-SSTuning-base") model = AutoModelForSequenceClassification.from_pretrained("DAMO-NLP-SG/zero-shot-classify-SSTuning-base") text = "I love this place! The food is always so fresh and delicious." list_label = ["negative", "positive"] device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') list_ABC = [x for x in string.ascii_uppercase] def check_text(model, text, list_label, shuffle=False): list_label = [x+'.' if x[-1] != '.' else x for x in list_label] list_label_new = list_label + [tokenizer.pad_token]* (20 - len(list_label)) if shuffle: random.shuffle(list_label_new) s_option = ' '.join(['('+list_ABC[i]+') '+list_label_new[i] for i in range(len(list_label_new))]) text = f'{s_option} {tokenizer.sep_token} {text}' model.to(device).eval() encoding = tokenizer([text],truncation=True, max_length=512,return_tensors='pt') item = {key: val.to(device) for key, val in encoding.items()} logits = model(**item).logits logits = logits if shuffle else logits[:,0:len(list_label)] probs = torch.nn.functional.softmax(logits, dim = -1).tolist() predictions = torch.argmax(logits, dim=-1).item() probabilities = [round(x,5) for x in probs[0]] print(f'prediction: {predictions} => ({list_ABC[predictions]}) {list_label_new[predictions]}') print(f'probability: {round(probabilities[predictions]*100,2)}%') check_text(model, text, list_label) # prediction: 1 => (B) positive. # probability: 99.92% ``` ### BibTeX entry and citation info ```bibtxt @inproceedings{acl23/SSTuning, author = {Chaoqun Liu and Wenxuan Zhang and Guizhen Chen and Xiaobao Wu and Anh Tuan Luu and Chip Hong Chang and Lidong Bing}, title = {Zero-Shot Text Classification via Self-Supervised Tuning}, booktitle = {Findings of the Association for Computational Linguistics: ACL 2023}, year = {2023}, url = {https://arxiv.org/abs/2305.11442}, } ```
samaksh-khatri-crest-data/gmra_model_gpt2_14082023T103028
samaksh-khatri-crest-data
2023-08-14T05:30:26Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-classification", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-classification
2023-08-14T05:00:28Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: gmra_model_gpt2_14082023T103028 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gmra_model_gpt2_14082023T103028 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2685 - Accuracy: 0.9192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 71 | 0.6906 | 0.7742 | | No log | 1.99 | 142 | 0.4773 | 0.8286 | | No log | 2.99 | 213 | 0.3916 | 0.8708 | | No log | 4.0 | 285 | 0.3393 | 0.8849 | | No log | 5.0 | 356 | 0.3144 | 0.9007 | | No log | 5.99 | 427 | 0.2959 | 0.9112 | | No log | 6.99 | 498 | 0.2825 | 0.9165 | | 0.538 | 8.0 | 570 | 0.2803 | 0.9069 | | 0.538 | 9.0 | 641 | 0.2612 | 0.9192 | | 0.538 | 9.96 | 710 | 0.2685 | 0.9192 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0030
bigmorning
2023-08-14T05:29:51Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:29:43Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0030 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0030 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2571 - Validation Loss: 0.5667 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1787 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | | 0.0000 | 0.0795 | 8.2571 | 0.5667 | 0.0771 | 7.1787 | 29 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0029
bigmorning
2023-08-14T05:25:39Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:25:31Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0029 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0029 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 8.2573 - Validation Loss: 0.5648 - Validation Accuracy: 0.0771 - Validation Wermet: 7.2086 - Epoch: 28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | | 0.0000 | 0.0795 | 8.2151 | 0.5614 | 0.0771 | 7.1972 | 26 | | 0.0000 | 0.0795 | 8.2332 | 0.5633 | 0.0771 | 7.1736 | 27 | | 0.0000 | 0.0795 | 8.2573 | 0.5648 | 0.0771 | 7.2086 | 28 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Yntec/QToriReloaded
Yntec
2023-08-14T05:20:14Z
640
2
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "agntperseus", "TkskKurumi", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-28T22:27:49Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - agntperseus - TkskKurumi --- # QTori Reloaded QTori LORA merged in with RMHF 2.5D-V2. Original pages: https://civitai.com/models/15179/qtori-style-lora https://civitai.com/models/101518?modelVersionId=110456
nerijs/lego-brickheadz-xl
nerijs
2023-08-14T05:20:10Z
536
22
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:apache-2.0", "region:us" ]
text-to-image
2023-08-14T05:18:21Z
--- license: apache-2.0 tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: lego brickheadz widget: - text: picture of a lego brickheadz of a corgi --- # LEGO Minifig XL ## Consider supporting further research on [Patreon](https://www.patreon.com/user?u=29466374) or [Twitter](https://twitter.com/nerijs) ![3x3_grid_image.jpg](https://cdn-uploads.huggingface.co/production/uploads/6303f37c3926de1f7ec42d3e/O7dzeM5-OAnoT_YZPLIbr.jpeg)
GesonAnko/ppo-Huggy
GesonAnko
2023-08-14T05:19:38Z
11
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-14T05:19:28Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: GesonAnko/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
bigmorning/whisper_charsplit_new_round3__0026
bigmorning
2023-08-14T05:13:16Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T05:13:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0026 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0026 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 8.1494 - Validation Loss: 0.5589 - Validation Accuracy: 0.0771 - Validation Wermet: 7.1609 - Epoch: 25 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | | 0.0004 | 0.0795 | 8.0507 | 0.5619 | 0.0770 | 7.0678 | 22 | | 0.0003 | 0.0795 | 8.0534 | 0.5593 | 0.0771 | 7.0433 | 23 | | 0.0002 | 0.0795 | 8.1738 | 0.5604 | 0.0771 | 7.1617 | 24 | | 0.0001 | 0.0795 | 8.1494 | 0.5589 | 0.0771 | 7.1609 | 25 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
li-ping/plus_summary_0814
li-ping
2023-08-14T05:08:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T04:23:11Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
casque/t3_xx3B09Ver3Prototyp
casque
2023-08-14T05:02:27Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T04:31:30Z
--- license: creativeml-openrail-m ---
bigmorning/whisper_charsplit_new_round3__0022
bigmorning
2023-08-14T04:56:26Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:56:08Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0022 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0022 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0013 - Train Accuracy: 0.0795 - Train Wermet: 8.2537 - Validation Loss: 0.5574 - Validation Accuracy: 0.0770 - Validation Wermet: 6.7708 - Epoch: 21 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | | 0.0013 | 0.0795 | 8.2537 | 0.5574 | 0.0770 | 6.7708 | 21 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0021
bigmorning
2023-08-14T04:52:07Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:51:59Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0021 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0021 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0115 - Train Accuracy: 0.0793 - Train Wermet: 8.3288 - Validation Loss: 0.5580 - Validation Accuracy: 0.0769 - Validation Wermet: 7.1457 - Epoch: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | | 0.0003 | 0.0795 | 7.6709 | 0.6610 | 0.0762 | 7.0119 | 19 | | 0.0115 | 0.0793 | 8.3288 | 0.5580 | 0.0769 | 7.1457 | 20 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
muhammadravi251001/fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
muhammadravi251001
2023-08-14T04:47:32Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-large", "base_model:finetune:FacebookAI/xlm-roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-11T06:40:57Z
--- license: mit base_model: xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4428 - Accuracy: 0.8439 - F1: 0.8445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.4595 | 0.5 | 3654 | 0.4630 | 0.8064 | 0.8089 | | 0.4138 | 1.0 | 7308 | 0.4497 | 0.8146 | 0.8165 | | 0.3748 | 1.5 | 10962 | 0.4280 | 0.8420 | 0.8422 | | 0.3687 | 2.0 | 14616 | 0.4161 | 0.8363 | 0.8376 | | 0.3265 | 2.5 | 18270 | 0.4209 | 0.8459 | 0.8465 | | 0.3392 | 3.0 | 21924 | 0.4107 | 0.8459 | 0.8453 | | 0.2928 | 3.5 | 25578 | 0.4479 | 0.8395 | 0.8401 | | 0.2975 | 4.0 | 29232 | 0.4428 | 0.8439 | 0.8445 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.1 - Datasets 2.14.4 - Tokenizers 0.13.3
chriskim2273/IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT
chriskim2273
2023-08-14T04:44:35Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-13T08:25:38Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_Classification_Model_0.75_5K_AND_ORIGINAL_DATASET_BERT This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0178 - Accuracy: 0.9958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0019
bigmorning
2023-08-14T04:43:40Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:43:33Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0019 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0019 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7427 - Validation Loss: 0.5796 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8406 - Epoch: 18 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | | 0.0000 | 0.0795 | 7.7427 | 0.5796 | 0.0771 | 6.8406 | 18 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0018
bigmorning
2023-08-14T04:39:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:39:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0018 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0018 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.7109 - Validation Loss: 0.5784 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8560 - Epoch: 17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | | 0.0000 | 0.0795 | 7.7745 | 0.5741 | 0.0771 | 6.8770 | 14 | | 0.0000 | 0.0795 | 7.7277 | 0.5752 | 0.0771 | 6.8671 | 15 | | 0.0000 | 0.0795 | 7.7355 | 0.5765 | 0.0771 | 6.8447 | 16 | | 0.0000 | 0.0795 | 7.7109 | 0.5784 | 0.0771 | 6.8560 | 17 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0014
bigmorning
2023-08-14T04:22:33Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:22:26Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0014 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0014 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0000 - Train Accuracy: 0.0795 - Train Wermet: 7.8163 - Validation Loss: 0.5721 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8876 - Epoch: 13 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | | 0.0000 | 0.0795 | 7.8163 | 0.5721 | 0.0771 | 6.8876 | 13 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0013
bigmorning
2023-08-14T04:18:23Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:18:15Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0013 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0013 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.7721 - Validation Loss: 0.5726 - Validation Accuracy: 0.0771 - Validation Wermet: 6.8911 - Epoch: 12 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | | 0.0001 | 0.0795 | 7.7721 | 0.5726 | 0.0771 | 6.8911 | 12 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
bigmorning/whisper_charsplit_new_round3__0012
bigmorning
2023-08-14T04:14:15Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:14:07Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0012 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0012 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0001 - Train Accuracy: 0.0795 - Train Wermet: 7.7540 - Validation Loss: 0.5725 - Validation Accuracy: 0.0771 - Validation Wermet: 6.9281 - Epoch: 11 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | | 0.0004 | 0.0795 | 7.3807 | 0.5698 | 0.0770 | 7.0671 | 9 | | 0.0001 | 0.0795 | 7.7157 | 0.5681 | 0.0771 | 6.8391 | 10 | | 0.0001 | 0.0795 | 7.7540 | 0.5725 | 0.0771 | 6.9281 | 11 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3
Mustain/llama2_7b_formatted_tweeter_dataset
Mustain
2023-08-14T04:07:23Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-14T01:40:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
bigmorning/whisper_charsplit_new_round3__0009
bigmorning
2023-08-14T04:01:32Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:bigmorning/whisper_charsplit_new_round2__0061", "base_model:finetune:bigmorning/whisper_charsplit_new_round2__0061", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-14T04:01:25Z
--- license: apache-2.0 base_model: bigmorning/whisper_charsplit_new_round2__0061 tags: - generated_from_keras_callback model-index: - name: whisper_charsplit_new_round3__0009 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_charsplit_new_round3__0009 This model is a fine-tuned version of [bigmorning/whisper_charsplit_new_round2__0061](https://huggingface.co/bigmorning/whisper_charsplit_new_round2__0061) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0010 - Train Accuracy: 0.0795 - Train Wermet: 7.5822 - Validation Loss: 0.5755 - Validation Accuracy: 0.0769 - Validation Wermet: 6.6613 - Epoch: 8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Validation Loss | Validation Accuracy | Validation Wermet | Epoch | |:----------:|:--------------:|:------------:|:---------------:|:-------------------:|:-----------------:|:-----:| | 0.0009 | 0.0795 | 7.9492 | 0.5730 | 0.0769 | 7.2856 | 0 | | 0.0015 | 0.0795 | 8.4221 | 0.5756 | 0.0769 | 7.1487 | 1 | | 0.0012 | 0.0795 | 7.8476 | 0.5699 | 0.0769 | 6.5976 | 2 | | 0.0010 | 0.0795 | 7.6843 | 0.5740 | 0.0769 | 6.9513 | 3 | | 0.0014 | 0.0795 | 8.0796 | 0.5763 | 0.0768 | 7.4043 | 4 | | 0.0019 | 0.0795 | 7.7274 | 0.5724 | 0.0769 | 6.4922 | 5 | | 0.0008 | 0.0795 | 7.3468 | 0.5734 | 0.0769 | 6.1909 | 6 | | 0.0009 | 0.0795 | 7.2393 | 0.5816 | 0.0769 | 6.5734 | 7 | | 0.0010 | 0.0795 | 7.5822 | 0.5755 | 0.0769 | 6.6613 | 8 | ### Framework versions - Transformers 4.32.0.dev0 - TensorFlow 2.12.0 - Tokenizers 0.13.3