modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 00:39:23
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
526 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 00:39:08
card
stringlengths
11
1.01M
brresnic/ppo-LunarLander-v2
brresnic
2022-05-15T00:37:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T23:57:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: -150.86 +/- 74.20 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
smc/electric
smc
2022-05-15T00:19:16Z
50
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-15T00:13:48Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: electric results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9166666865348816 --- # electric Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-4
anas-awadalla
2022-05-14T23:53:15Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T23:32:52Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-1024-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-1024-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
anas-awadalla
2022-05-14T23:09:42Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:49:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-1024-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-1024-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
prashanth/mbart-large-cc25-ind_finetun-en-to-hi
prashanth
2022-05-14T22:51:49Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:hindi_english_machine_translation", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-14T22:06:44Z
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ind_finetun-en-to-hi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 7.8242 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ind_finetun-en-to-hi This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.8148 - Bleu: 7.8242 - Gen Len: 75.28 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 3.3247 | 1.0 | 620 | 1.8148 | 7.8242 | 75.28 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-2
anas-awadalla
2022-05-14T22:32:52Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:19:24Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-512-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-512-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-05-14T22:18:10Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:04:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
2022-05-14T22:17:30Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T22:04:23Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-512-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
prashanth/mbart-large-cc25-ind_finetun-hi-to-en
prashanth
2022-05-14T22:03:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "generated_from_trainer", "dataset:hindi_english_machine_translation", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-14T21:33:51Z
--- tags: - generated_from_trainer datasets: - hindi_english_machine_translation metrics: - bleu model-index: - name: mbart-large-cc25-ind_finetun-hi-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: hindi_english_machine_translation type: hindi_english_machine_translation args: hi-en metrics: - name: Bleu type: bleu value: 15.9135 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-large-cc25-ind_finetun-hi-to-en This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset. It achieves the following results on the evaluation set: - Loss: 1.4042 - Bleu: 15.9135 - Gen Len: 70.155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 2.3854 | 1.0 | 620 | 1.4042 | 15.9135 | 70.155 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu102 - Datasets 1.18.0 - Tokenizers 0.12.1
anas-awadalla/splinter-large-few-shot-k-256-finetuned-squad-seed-2
anas-awadalla
2022-05-14T21:52:18Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T21:41:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-256-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-2
anas-awadalla
2022-05-14T21:51:44Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T21:41:56Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-256-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-256-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ruselkomp/sber-full-test
ruselkomp
2022-05-14T21:47:33Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T12:57:24Z
--- tags: - generated_from_trainer model-index: - name: sber-full-test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sber-full-test This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0779 | 1.0 | 9046 | 1.3850 | | 0.7429 | 2.0 | 18092 | 1.1795 | | 0.446 | 3.0 | 27138 | 1.4148 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2.dev0 - Tokenizers 0.12.1
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-0
anas-awadalla
2022-05-14T21:40:29Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T21:30:14Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-256-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-256-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-4
anas-awadalla
2022-05-14T21:28:38Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T21:10:06Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-128-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-128-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-0
anas-awadalla
2022-05-14T20:58:03Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:48:33Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-128-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-128-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-4
anas-awadalla
2022-05-14T20:46:57Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:35:59Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-64-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-64-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-2
anas-awadalla
2022-05-14T20:35:00Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:25:43Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-64-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-64-finetuned-squad-seed-2 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-64-finetuned-squad-seed-0
anas-awadalla
2022-05-14T20:28:59Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:19:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-0
anas-awadalla
2022-05-14T20:24:34Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:15:19Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-64-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-64-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-05-14T20:18:03Z
5
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:08:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-32-finetuned-squad-seed-4
anas-awadalla
2022-05-14T20:13:53Z
4
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T20:04:35Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-32-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-32-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-2
anas-awadalla
2022-05-14T20:07:26Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:58:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-32-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-32-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-0
anas-awadalla
2022-05-14T19:56:59Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:47:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-32-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-32-finetuned-squad-seed-0
anas-awadalla
2022-05-14T19:53:09Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:43:48Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-32-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-32-finetuned-squad-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-4
anas-awadalla
2022-05-14T19:42:04Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:33:24Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-few-shot-k-16-finetuned-squad-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-few-shot-k-16-finetuned-squad-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Xiaoman/NER-CoNLL2003-V4
Xiaoman
2022-05-14T19:37:35Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T18:52:51Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: NER-CoNLL2003-V4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER-CoNLL2003-V4 This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.961395091713594e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 27 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 14 | 0.3630 | | No log | 2.0 | 28 | 0.2711 | | No log | 3.0 | 42 | 0.2407 | | No log | 4.0 | 56 | 0.2057 | | No log | 5.0 | 70 | 0.2095 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anas-awadalla/splinter-large-few-shot-k-16-finetuned-squad-seed-2
anas-awadalla
2022-05-14T19:36:09Z
4
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:27:14Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-16-finetuned-squad-seed-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-16-finetuned-squad-seed-2 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
anas-awadalla/splinter-large-few-shot-k-16-finetuned-squad-seed-0
anas-awadalla
2022-05-14T19:26:10Z
3
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-14T19:17:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: splinter-large-few-shot-k-16-finetuned-squad-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # splinter-large-few-shot-k-16-finetuned-squad-seed-0 This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 200 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
claytonsamples/xlm-roberta-base-finetuned-panx-de
claytonsamples
2022-05-14T19:19:42Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T18:40:01Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8620945214069894 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1372 - F1: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 | | 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 | | 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 | ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
kangaroo927/en_pipeline
kangaroo927
2022-05-14T18:04:29Z
0
0
spacy
[ "spacy", "text-classification", "en", "region:us" ]
text-classification
2022-05-14T04:29:58Z
--- tags: - spacy - text-classification language: - en model-index: - name: en_pipeline results: [] --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.4,<3.2.0` | | **Default Pipeline** | `transformer`, `textcat` | | **Components** | `transformer`, `textcat` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (22 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`textcat`** | `Acute Bleed/Mesenteric Ischemia`, `Adrenal Mass Abdomen/Pelvis`, `Aortic Aneurysm Post EVT`, `Aortic Aneurysm Pre EVT`, `Aortic Dissection`, `Cystogram`, `Dual Phase Abdomen/Pelvis`, `Enterography IBD`, `NON Contrast Abdomen/Pelvis`, `Oral & IV Abdomen Pelvis`, `Oral Contrast Abdomen/Pelvis`, `Pancreas Mass Abdomen/Pelvis`, `Pelvis Only`, `Rectal Contrast Abdomen/Pelvis`, `Renal Donor`, `Renal Mass Abdomen/Pelvis`, `Renal Stone Abdomen/Pelvis`, `Routine Abdomen/Pelvis`, `Trauma Abdomen/Pelvis`, `Urogram Post Treatment/Follow Up`, `Urogram Pre Treatment Initial`, `Venogram` | </details> ### Accuracy | Type | Score | | --- | --- | | `CATS_SCORE` | 76.67 | | `CATS_MICRO_P` | 85.89 | | `CATS_MICRO_R` | 85.19 | | `CATS_MICRO_F` | 85.54 | | `CATS_MACRO_P` | 74.35 | | `CATS_MACRO_R` | 80.69 | | `CATS_MACRO_F` | 76.67 | | `CATS_MACRO_AUC` | 97.57 | | `CATS_MACRO_AUC_PER_TYPE` | 0.00 | | `TRANSFORMER_LOSS` | 19.80 | | `TEXTCAT_LOSS` | 504.30 |
memorysaver/TEST2ppo-LunarLander-v2
memorysaver
2022-05-14T17:02:04Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T17:01:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 192.42 +/- 91.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-280_20
nadirbekovnadir
2022-05-14T16:54:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T16:52:45Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 275.05 +/- 18.08 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
meln1k/ppo-CartPole-v1
meln1k
2022-05-14T16:37:49Z
3
0
stable-baselines3
[ "stable-baselines3", "CartPole-v1", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T16:37:31Z
--- library_name: stable-baselines3 tags: - CartPole-v1 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **PPO** Agent playing **CartPole-v1** This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
DBusAI/RPPO-CarRacing-v0
DBusAI
2022-05-14T16:00:15Z
4
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T22:52:43Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: RPPO results: - metrics: - type: mean_reward value: 614.78 +/- 160.84 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **RPPO** Agent playing **CarRacing-v0** This is a trained model of a **RPPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-283_19
nadirbekovnadir
2022-05-14T13:25:49Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T13:25:08Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 283.38 +/- 17.68 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
huggingtweets/vrsoloviev
huggingtweets
2022-05-14T13:25:22Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-14T13:21:58Z
--- language: en thumbnail: http://www.huggingtweets.com/vrsoloviev/1652534655103/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1170975520458203136/4eDVAZZa_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vladimir Soloviev</div> <div style="text-align: center; font-size: 14px;">@vrsoloviev</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vladimir Soloviev. | Data | Vladimir Soloviev | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 9 | | Short tweets | 29 | | Tweets kept | 3212 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/elfi2jwn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vrsoloviev's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/vrsoloviev') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
FumaNet/TEST1PPO-LunarLander-v2
FumaNet
2022-05-14T11:53:46Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T11:53:17Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 228.88 +/- 19.90 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-276_21
nadirbekovnadir
2022-05-14T11:41:56Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T11:41:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.41 +/- 17.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
nadirbekovnadir/LunarLander-278_18
nadirbekovnadir
2022-05-14T11:40:41Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T11:40:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 278.68 +/- 16.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
buehlpa/bert-finetuned-ner
buehlpa
2022-05-14T11:06:59Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-14T10:38:18Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9308580858085809 - name: Recall type: recall value: 0.9493436553349041 - name: F1 type: f1 value: 0.9400099983336112 - name: Accuracy type: accuracy value: 0.9862541943839407 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0607 - Precision: 0.9309 - Recall: 0.9493 - F1: 0.9400 - Accuracy: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0855 | 1.0 | 1756 | 0.0632 | 0.9191 | 0.9386 | 0.9287 | 0.9832 | | 0.0414 | 2.0 | 3512 | 0.0572 | 0.9264 | 0.9475 | 0.9368 | 0.9855 | | 0.0198 | 3.0 | 5268 | 0.0607 | 0.9309 | 0.9493 | 0.9400 | 0.9863 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v4
danieleV9H
2022-05-14T10:32:13Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-11T14:05:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: hubert-base-timit-demo-google-colab-ft30ep_v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-timit-demo-google-colab-ft35ep This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the timit-asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4602 - Wer: 0.3466 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.825 | 0.87 | 500 | 2.9521 | 1.0 | | 2.431 | 1.73 | 1000 | 0.9760 | 0.8013 | | 1.0089 | 2.6 | 1500 | 0.5934 | 0.5968 | | 0.6859 | 3.46 | 2000 | 0.5132 | 0.5356 | | 0.5302 | 4.33 | 2500 | 0.4506 | 0.4894 | | 0.44 | 5.19 | 3000 | 0.4340 | 0.4670 | | 0.3926 | 6.06 | 3500 | 0.4506 | 0.4528 | | 0.3326 | 6.92 | 4000 | 0.4197 | 0.4486 | | 0.2937 | 7.79 | 4500 | 0.4093 | 0.4193 | | 0.2568 | 8.65 | 5000 | 0.4098 | 0.4229 | | 0.2473 | 9.52 | 5500 | 0.4090 | 0.4141 | | 0.2233 | 10.38 | 6000 | 0.4152 | 0.4125 | | 0.2108 | 11.25 | 6500 | 0.4586 | 0.4189 | | 0.2086 | 12.11 | 7000 | 0.4284 | 0.3969 | | 0.1858 | 12.98 | 7500 | 0.4028 | 0.3946 | | 0.1641 | 13.84 | 8000 | 0.4679 | 0.4002 | | 0.1686 | 14.71 | 8500 | 0.4441 | 0.3936 | | 0.1489 | 15.57 | 9000 | 0.4897 | 0.3828 | | 0.1541 | 16.44 | 9500 | 0.4953 | 0.3783 | | 0.1417 | 17.3 | 10000 | 0.4500 | 0.3758 | | 0.1428 | 18.17 | 10500 | 0.4533 | 0.3796 | | 0.1306 | 19.03 | 11000 | 0.4474 | 0.3792 | | 0.1185 | 19.9 | 11500 | 0.4762 | 0.3743 | | 0.1081 | 20.76 | 12000 | 0.4770 | 0.3699 | | 0.1253 | 21.63 | 12500 | 0.4749 | 0.3629 | | 0.1087 | 22.49 | 13000 | 0.4577 | 0.3534 | | 0.1172 | 23.36 | 13500 | 0.4819 | 0.3525 | | 0.1086 | 24.22 | 14000 | 0.4709 | 0.3623 | | 0.089 | 25.09 | 14500 | 0.4852 | 0.3544 | | 0.086 | 25.95 | 15000 | 0.4602 | 0.3555 | | 0.086 | 26.82 | 15500 | 0.4861 | 0.3497 | | 0.086 | 27.68 | 16000 | 0.4527 | 0.3473 | | 0.0919 | 28.55 | 16500 | 0.4607 | 0.3487 | | 0.0792 | 29.41 | 17000 | 0.4602 | 0.3466 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
conan1024hao/cjkbert-small
conan1024hao
2022-05-14T10:18:04Z
5
2
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ja", "zh", "ko", "dataset:wikipedia", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-14T09:07:12Z
--- language: - ja - zh - ko license: cc-by-sa-4.0 datasets: - wikipedia mask_token: "[MASK]" widget: - text: "早稲田大学で自然言語処理を[MASK]ぶ。" - text: "李白是[MASK]朝人。" - text: "불고기[MASK] 먹겠습니다." --- ### Model description - This model was trained on **ZH, JA, KO**'s Wikipedia (5 epochs). ### How to use ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("conan1024hao/cjkbert-small") model = AutoModelForMaskedLM.from_pretrained("conan1024hao/cjkbert-small") ``` - Before you fine-tune downstream tasks, you don't need any text segmentation. - (Though you may obtain better results if you applied morphological analysis to the data before fine-tuning) ### Morphological analysis tools - ZH: For Chinese, we use [LTP](https://github.com/HIT-SCIR/ltp). - JA: For Japanese, we use [Juman++](https://github.com/ku-nlp/jumanpp). - KO: For Korean, we use [KoNLPy](https://github.com/konlpy/konlpy)(Kkma class). ### Tokenization - We use character-based tokenization with **whole-word-masking** strategy. ### Model size - vocab_size: 15015 - num_hidden_layers: 4 - hidden_size: 512 - num_attention_heads: 8 - param_num: 25M
BitanBiswas/wav2vec2-base-timit-demo-google-colab
BitanBiswas
2022-05-14T07:46:48Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-14T05:46:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4770 - Wer: 0.3360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.6401 | 1.0 | 500 | 2.4138 | 1.0 | | 0.9717 | 2.01 | 1000 | 0.6175 | 0.5531 | | 0.4393 | 3.01 | 1500 | 0.4309 | 0.4414 | | 0.2976 | 4.02 | 2000 | 0.4167 | 0.4162 | | 0.2345 | 5.02 | 2500 | 0.4273 | 0.3927 | | 0.1919 | 6.02 | 3000 | 0.3983 | 0.3886 | | 0.1565 | 7.03 | 3500 | 0.5581 | 0.3928 | | 0.1439 | 8.03 | 4000 | 0.4509 | 0.3821 | | 0.1266 | 9.04 | 4500 | 0.4733 | 0.3774 | | 0.1091 | 10.04 | 5000 | 0.4755 | 0.3808 | | 0.1001 | 11.04 | 5500 | 0.4435 | 0.3689 | | 0.0911 | 12.05 | 6000 | 0.4962 | 0.3897 | | 0.0813 | 13.05 | 6500 | 0.5031 | 0.3622 | | 0.0729 | 14.06 | 7000 | 0.4853 | 0.3597 | | 0.0651 | 15.06 | 7500 | 0.5180 | 0.3577 | | 0.0608 | 16.06 | 8000 | 0.5251 | 0.3630 | | 0.0592 | 17.07 | 8500 | 0.4915 | 0.3591 | | 0.0577 | 18.07 | 9000 | 0.4724 | 0.3656 | | 0.0463 | 19.08 | 9500 | 0.4536 | 0.3546 | | 0.0475 | 20.08 | 10000 | 0.5107 | 0.3546 | | 0.0464 | 21.08 | 10500 | 0.4829 | 0.3464 | | 0.0369 | 22.09 | 11000 | 0.4844 | 0.3448 | | 0.0327 | 23.09 | 11500 | 0.4865 | 0.3437 | | 0.0337 | 24.1 | 12000 | 0.4825 | 0.3488 | | 0.0271 | 25.1 | 12500 | 0.4824 | 0.3445 | | 0.0236 | 26.1 | 13000 | 0.4747 | 0.3397 | | 0.0243 | 27.11 | 13500 | 0.4840 | 0.3397 | | 0.0226 | 28.11 | 14000 | 0.4716 | 0.3354 | | 0.0235 | 29.12 | 14500 | 0.4770 | 0.3360 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
fgaim/tielectra-small-sentiment
fgaim
2022-05-14T06:49:29Z
15
1
transformers
[ "transformers", "pytorch", "electra", "text-classification", "ti", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" metrics: - f1 - precision - recall - accuracy model-index: - name: tielectra-small-sentiment results: - task: name: Text Classification type: text-classification metrics: - name: F1 type: f1 value: 0.8228962818003914 - name: Precision type: precision value: 0.8055555555555556 - name: Recall type: recall value: 0.841 - name: Accuracy type: accuracy value: 0.819 --- # Sentiment Analysis for Tigrinya with TiELECTRA small This model is a fine-tuned version of [TiELECTRA small](https://huggingface.co/fgaim/tielectra-small) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tielectra-small-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results The model achieves the following results on the evaluation set: - F1: 0.8229 - Precision: 0.8056 - Recall: 0.841 - Accuracy: 0.819 - Loss: 0.4299 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
fgaim/tielectra-small-pos
fgaim
2022-05-14T06:48:42Z
5
1
transformers
[ "transformers", "pytorch", "electra", "token-classification", "ti", "dataset:TLMD", "dataset:NTC", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" datasets: - TLMD - NTC metrics: - f1 - precision - recall - accuracy model-index: - name: tielectra-small-pos results: - task: name: Token Classification type: token-classification metrics: - name: F1 type: f1 value: 0.9456 - name: Precision type: precision value: 0.9456 - name: Recall type: recall value: 0.9456 - name: Accuracy type: accuracy value: 0.9456 --- # Tigrinya POS tagging with TiELECTRA This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on the NTC-v1 dataset (Tedla et al. 2016). ## Basic usage ```python from transformers import pipeline ti_pos = pipeline("token-classification", model="fgaim/tielectra-small-pos") ti_pos("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Results The model achieves the following results on the test set: - Loss: 0.2236 - Adj Precision: 0.9148 - Adj Recall: 0.9192 - Adj F1: 0.9170 - Adj Number: 1670 - Adv Precision: 0.8228 - Adv Recall: 0.8058 - Adv F1: 0.8142 - Adv Number: 484 - Con Precision: 0.9793 - Con Recall: 0.9743 - Con F1: 0.9768 - Con Number: 972 - Fw Precision: 0.5 - Fw Recall: 0.3214 - Fw F1: 0.3913 - Fw Number: 28 - Int Precision: 0.64 - Int Recall: 0.6154 - Int F1: 0.6275 - Int Number: 26 - N Precision: 0.9525 - N Recall: 0.9587 - N F1: 0.9556 - N Number: 3992 - Num Precision: 0.9825 - Num Recall: 0.9372 - Num F1: 0.9593 - Num Number: 239 - N Prp Precision: 0.9132 - N Prp Recall: 0.9404 - N Prp F1: 0.9266 - N Prp Number: 470 - N V Precision: 0.9667 - N V Recall: 0.9760 - N V F1: 0.9713 - N V Number: 416 - Pre Precision: 0.9645 - Pre Recall: 0.9592 - Pre F1: 0.9619 - Pre Number: 907 - Pro Precision: 0.9395 - Pro Recall: 0.9079 - Pro F1: 0.9234 - Pro Number: 445 - Pun Precision: 1.0 - Pun Recall: 0.9994 - Pun F1: 0.9997 - Pun Number: 1607 - Unc Precision: 0.9286 - Unc Recall: 0.8125 - Unc F1: 0.8667 - Unc Number: 16 - V Precision: 0.7609 - V Recall: 0.8974 - V F1: 0.8235 - V Number: 78 - V Aux Precision: 0.9581 - V Aux Recall: 0.9786 - V Aux F1: 0.9682 - V Aux Number: 654 - V Ger Precision: 0.9183 - V Ger Recall: 0.9415 - V Ger F1: 0.9297 - V Ger Number: 513 - V Imf Precision: 0.9473 - V Imf Recall: 0.9442 - V Imf F1: 0.9458 - V Imf Number: 914 - V Imv Precision: 0.8163 - V Imv Recall: 0.5714 - V Imv F1: 0.6723 - V Imv Number: 70 - V Prf Precision: 0.8927 - V Prf Recall: 0.8776 - V Prf F1: 0.8851 - V Prf Number: 294 - V Rel Precision: 0.9535 - V Rel Recall: 0.9485 - V Rel F1: 0.9510 - V Rel Number: 757 - Overall Precision: 0.9456 - Overall Recall: 0.9456 - Overall F1: 0.9456 - Overall Accuracy: 0.9456 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title= {Monolingual Pre-trained Language Models for Tigrinya}, year= 2021, publisher= {WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016. Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus. International Journal Of Computer Applications 146 pp. 33-41 (2016). ```
fgaim/tiroberta-sentiment
fgaim
2022-05-14T06:47:23Z
4
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "ti", "dataset:TLMD", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" datasets: - TLMD metrics: - accuracy - f1 - precision - recall model-index: - name: tiroberta-sentiment results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.828 - name: F1 type: f1 value: 0.8476527900797165 - name: Precision type: precision value: 0.760731319554849 - name: Recall type: recall value: 0.957 --- # Sentiment Analysis for Tigrinya with TiRoBERTa This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/roberta-base-tigrinya) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020). ## Basic usage ```python from transformers import pipeline ti_sent = pipeline("sentiment-analysis", model="fgaim/tiroberta-sentiment") ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር") ``` ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Results It achieves the following results on the evaluation set: - F1: 0.8477 - Precision: 0.7607 - Recall: 0.957 - Accuracy: 0.828 - Loss: 0.6796 ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu111 - Datasets 1.10.2 - Tokenizers 0.10.1 ## Citation If you use this model in your product or research, please cite as follows: ``` @article{Fitsum2021TiPLMs, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, title={Monolingual Pre-trained Language Models for Tigrinya}, year=2021, publisher={WiNLP 2021/EMNLP 2021} } ``` ## References ``` Tela, A., Woubie, A. and Hautamäki, V. 2020. Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya. ArXiv, abs/2006.07698. ```
CogComp/ZeroShotWiki
CogComp
2022-05-14T04:00:26Z
4
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-13T04:04:45Z
--- license: apache-2.0 --- # Model description A BertForSequenceClassification model that is finetuned on Wikipedia for zero-shot text classification. For details, see our NAACL'22 paper. # Usage Concatenate the text sentence with each of the candidate labels as input to the model. The model will output a score for each label. Below is an example. ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("CogComp/ZeroShotWiki") model = AutoModelForSequenceClassification.from_pretrained("CogComp/ZeroShotWiki") labels = ["sports", "business", "politics"] texts = ["As of the 2018 FIFA World Cup, twenty-one final tournaments have been held and a total of 79 national teams have competed."] with torch.no_grad(): for text in texts: label_score = {} for label in labels: inputs = tokenizer(text, label, return_tensors='pt') out = model(**inputs) label_score[label]=float(torch.nn.functional.softmax(out[0], dim=-1)[0][0]) print(label_score) # Predict the label with the highest score ```
anwesham/imdb-sentiment-baseline-distilbert
anwesham
2022-05-14T03:58:39Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "unk", "dataset:anwesham/autotrain-data-imdb-sentiment-analysis", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-14T03:06:07Z
--- language: unk datasets: - anwesham/autotrain-data-imdb-sentiment-analysis --- ## Description - Problem type: Binary Classification ## Validation Metrics - Loss: 0.17481304705142975 - Accuracy: 0.936 - Precision: 0.9526578073089701 - Recall: 0.9176 - AUC: 0.9841454399999999 - F1: 0.93480032599837 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927555 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True) inputs = tokenizer("I love to eat good food and watch Moana.", return_tensors="pt") outputs = model(**inputs) ```
gregtozzi/ppo-LunarLander-v2-4
gregtozzi
2022-05-14T02:51:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:51:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 295.25 +/- 17.66 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
gregtozzi/ppo-LunarLander-v2-3
gregtozzi
2022-05-14T02:15:41Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:15:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 292.99 +/- 18.45 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
gregtozzi/ppo-LunarLander-v2-2
gregtozzi
2022-05-14T02:10:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-14T02:10:13Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 288.74 +/- 16.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
describeai/gemini
describeai
2022-05-14T00:46:52Z
765
41
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "Explain code", "Code Summarization", "Summarization", "en", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en tags: - Explain code - Code Summarization - Summarization license: mit --- # Gemini For in-depth understanding of our model and methods, please see our blog [here](https://www.describe-ai.com/gemini) ## Model description Gemini is a transformer based on Google's T5 model. The model is pre-trained on approximately 800k code/description pairs and then fine-tuned on 10k higher-level explanations that were synthetically generated. Gemini is capable of summarization/explaining short to medium code snippets in: - Python - Javascript (mostly vanilla JS, however, it can handle frameworks like React as well) - Java - Ruby - Go And outputs a description in English. ## Intended uses Gemini without any additional fine-tuning is capable of explaining code in a sentence or two and typically performs best in Python and Javascript. We recommend using Gemini for either simple code explanation, documentation or producing more synthetic data to improve its explanations. ### How to use You can use this model directly with a pipeline for Text2Text generation, as shown below: ```python from transformers import pipeline, set_seed summarizer = pipeline('text2text-generation', model='describeai/gemini') code = "print('hello world!')" response = summarizer(code, max_length=100, num_beams=3) print("Summarized code: " + response[0]['generated_text']) ``` Which should yield something along the lines of: ``` Summarized code: The following code is greeting the world. ``` ### Model sizes - Gemini (this repo): 770 Million Parameters - Gemini-Small - 220 Million Parameters ### Limitations Typically, Gemini may produce overly simplistic descriptions that don't encompass the entire code snippet. We suspect with more training data, this could be circumvented and will produce better results. ### About Us A Describe.ai, we are focused on building Artificial Intelligence systems that can understand language as well as humans. While a long path, we plan to contribute our findings to our API to the Open Source community.
itsroadtrip/test-pull-requests
itsroadtrip
2022-05-13T23:50:46Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-13T23:50:13Z
--- license: mit --- [click me](https://www.youtube.com/watch?v=dQw4w9WgXcQ)
bstad/ppo-LunarLander-v2-n_envs-32-steps-2e6
bstad
2022-05-13T23:30:52Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T23:30:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 274.57 +/- 19.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
grunty/ppo-LunarLander-v2
grunty
2022-05-13T22:59:30Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T22:58:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 225.45 +/- 14.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
SebastianS/codeparrot-ds
SebastianS
2022-05-13T22:28:22Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T20:46:53Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 300 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7149 | 0.85 | 1000 | 2.4905 | ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/en-finetuned-squad-qa-minilmv2-32
subhasisj
2022-05-13T21:50:53Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T19:47:17Z
--- tags: - generated_from_trainer datasets: - squad model-index: - name: en-finetuned-squad-qa-minilmv2-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-finetuned-squad-qa-minilmv2-32 This model is a fine-tuned version of [subhasisj/en-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/en-TAPT-MLM-MiniLM) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 350 | 2.1514 | | 2.9587 | 2.0 | 700 | 1.4819 | | 1.3873 | 3.0 | 1050 | 1.2724 | | 1.3873 | 4.0 | 1400 | 1.2039 | | 1.0438 | 5.0 | 1750 | 1.1955 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
anas-awadalla/roberta-large-initialization-seed-4
anas-awadalla
2022-05-13T21:07:51Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T19:00:31Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-initialization-seed-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-initialization-seed-4 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 4 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
eslamxm/mt5-base-finetuned-english-finetuned-english-arabic
eslamxm
2022-05-13T19:39:26Z
14
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "arabic", "ar", "en", "Abstractive Summarization", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-05-13T11:40:25Z
--- license: apache-2.0 tags: - summarization - arabic - ar - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-english-finetuned-english-arabic results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-english-finetuned-english-arabic This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.4788 - Rouge-1: 22.55 - Rouge-2: 9.84 - Rouge-l: 20.5 - Gen Len: 19.0 - Bertscore: 71.39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.999 | 1.0 | 1172 | 3.9343 | 17.67 | 5.93 | 15.86 | 19.0 | 69.69 | | 4.008 | 2.0 | 2344 | 3.6655 | 19.48 | 7.67 | 17.67 | 19.0 | 70.49 | | 3.7463 | 3.0 | 3516 | 3.5503 | 20.47 | 8.24 | 18.6 | 19.0 | 70.86 | | 3.5924 | 4.0 | 4688 | 3.4942 | 20.95 | 8.45 | 19.05 | 19.0 | 71.0 | | 3.4979 | 5.0 | 5860 | 3.4788 | 21.34 | 8.75 | 19.39 | 19.0 | 71.11 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/en-TAPT-MLM-MiniLM
subhasisj
2022-05-13T19:35:12Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-13T18:46:52Z
--- tags: - generated_from_trainer model-index: - name: en-TAPT-MLM-MiniLM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-TAPT-MLM-MiniLM This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
fgaim/tiroberta-geezswitch
fgaim
2022-05-13T18:27:38Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "geezlab", "ti", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-04-30T22:41:38Z
--- language: ti widget: - text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር" - text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።" - text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።" - text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።" - text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።" tags: - geezlab metrics: - accuracy - f1 - precision - recall model-index: - name: geezswitch-tiroberta results: [] license: cc-by-4.0 --- # TiRoBERTa-GeezSwitch This model is a fine-tuned version of [fgaim/tiroberta-base](https://huggingface.co/fgaim/tiroberta-base) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset. It achieves the following results on the test set: - F1: 0.9948 - Recall: 0.9948 - Precision: 0.9948 - Accuracy: 0.9948 - Loss: 0.0222 ## Training ### Hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - seed: 42 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1 ### Citation If you use this model or the GeezSwitch model in your research, please cite as follows: ```markdown @inproceedings{fgaim2022geezswitch, title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages}, author={Fitsum Gaim and Wonsuk Yang and Jong C. Park}, booktitle={Proceedings of the 13th Language Resources and Evaluation Conference}, year={2022} } ```
subhasisj/vi-finetuned-squad-qa-minilmv2-8
subhasisj
2022-05-13T17:04:48Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T11:30:59Z
--- tags: - generated_from_trainer model-index: - name: vi-finetuned-squad-qa-minilmv2-8 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-finetuned-squad-qa-minilmv2-8 This model is a fine-tuned version of [subhasisj/vi-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/vi-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1669 | 1.0 | 1424 | 1.4979 | | 1.2377 | 2.0 | 2848 | 1.3259 | | 1.0536 | 3.0 | 4272 | 1.3133 | | 0.9568 | 4.0 | 5696 | 1.3103 | | 0.8859 | 5.0 | 7120 | 1.3335 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2 - Datasets 2.0.0 - Tokenizers 0.11.0
DBusAI/PPO-BipedalWalker-v3-v2_1_same_submit
DBusAI
2022-05-13T16:55:00Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T16:54:12Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 304.88 +/- 2.29 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
DBusAI/PPO-BipedalWalker-v3-v2
DBusAI
2022-05-13T16:46:30Z
0
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T16:40:07Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 303.47 +/- 1.90 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
ogpat23/Jules-Chatbot
ogpat23
2022-05-13T16:43:30Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # Chat bot based on Pulp fiction Character Jules # Model trained on Pytorch framework uisng Pulp fiction dialogue script dataset from kaggle
DBusAI/PPO-BipedalWalker-v3
DBusAI
2022-05-13T16:39:16Z
1
0
stable-baselines3
[ "stable-baselines3", "BipedalWalker-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T13:36:41Z
--- library_name: stable-baselines3 tags: - BipedalWalker-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 303.05 +/- 1.79 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: BipedalWalker-v3 type: BipedalWalker-v3 --- # **PPO** Agent playing **BipedalWalker-v3** This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
karthiksv/vit-base-patch16-224-in21k-finetuned-cifar10
karthiksv
2022-05-13T16:25:11Z
55
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:cifar10", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-13T16:21:13Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - cifar10 model-index: - name: vit-base-patch16-224-in21k-finetuned-cifar10 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-finetuned-cifar10 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.1 - Datasets 2.1.0 - Tokenizers 0.12.1
aleks0309/PPO-LunarLander-v2
aleks0309
2022-05-13T15:55:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T15:38:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 268.04 +/- 17.85 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
N18/lunar-lander
N18
2022-05-13T15:30:26Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T15:10:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 54.0 +/- 5.10 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
tobyych/ppo-LunarLander-v2
tobyych
2022-05-13T15:12:21Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T13:35:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 254.64 +/- 22.65 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Davincilee/door_inner_with_SA-bert-base-uncased
Davincilee
2022-05-13T14:56:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-03T06:38:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: door_inner_with_SA-bert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # door_inner_with_SA-bert-base-uncased This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.5492 | 1.0 | 96 | 2.3831 | | 2.4031 | 2.0 | 192 | 2.2963 | | 2.3391 | 3.0 | 288 | 2.2000 | | 2.2951 | 4.0 | 384 | 2.2505 | | 2.2151 | 5.0 | 480 | 2.1691 | | 2.2237 | 6.0 | 576 | 2.1855 | | 2.1984 | 7.0 | 672 | 2.2558 | | 2.1749 | 8.0 | 768 | 2.2019 | | 2.1475 | 9.0 | 864 | 2.1310 | | 2.1446 | 10.0 | 960 | 2.1334 | | 2.1374 | 11.0 | 1056 | 2.1909 | | 2.1117 | 12.0 | 1152 | 2.2028 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
vukpetar/ppo-CarRacing-v0
vukpetar
2022-05-13T14:56:01Z
4
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T14:53:49Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 353.69 +/- 172.01 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
Davincilee/closure_system_door_inne-roberta-base
Davincilee
2022-05-13T14:24:57Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-05-13T13:57:50Z
--- license: mit tags: - generated_from_trainer model-index: - name: closure_system_door_inne-roberta-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # closure_system_door_inne-roberta-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3302 | 1.0 | 3 | 1.6837 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
Narsil/nolicense
Narsil
2022-05-13T14:23:29Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-05-13T14:20:50Z
--- license: mit commercial: false ---
GhadeerElmkaiel/LunarLander-v2-Test
GhadeerElmkaiel
2022-05-13T13:24:02Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T10:02:34Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 263.94 +/- 19.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
michojan/bert-finetuned-ner
michojan
2022-05-13T13:14:15Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-05-13T12:43:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9324078664683524 - name: Recall type: recall value: 0.9495119488387749 - name: F1 type: f1 value: 0.9408821812724089 - name: Accuracy type: accuracy value: 0.9864308000235474 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0622 - Precision: 0.9324 - Recall: 0.9495 - F1: 0.9409 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0862 | 1.0 | 1756 | 0.0649 | 0.9193 | 0.9371 | 0.9281 | 0.9831 | | 0.0406 | 2.0 | 3512 | 0.0576 | 0.9235 | 0.9472 | 0.9352 | 0.9850 | | 0.0197 | 3.0 | 5268 | 0.0622 | 0.9324 | 0.9495 | 0.9409 | 0.9864 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
DBusAI/PPO-CarRacing-v0
DBusAI
2022-05-13T12:55:40Z
2
0
stable-baselines3
[ "stable-baselines3", "CarRacing-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T12:53:48Z
--- library_name: stable-baselines3 tags: - CarRacing-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 81.28 +/- 82.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CarRacing-v0 type: CarRacing-v0 --- # **PPO** Agent playing **CarRacing-v0** This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
alk/t5-small-finetuned-cnn_dailymail-en-es
alk
2022-05-13T11:11:01Z
4
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-12T20:51:21Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: alk/t5-small-finetuned-cnn_dailymail-en-es results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alk/t5-small-finetuned-cnn_dailymail-en-es This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.9163 - Validation Loss: 1.7610 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 71776, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.9945 | 1.7837 | 0 | | 1.9478 | 1.7694 | 1 | | 1.9278 | 1.7646 | 2 | | 1.9163 | 1.7610 | 3 | ### Framework versions - Transformers 4.19.0 - TensorFlow 2.8.0 - Datasets 2.2.1 - Tokenizers 0.12.1
jkhan447/language-detection-RoBert-base
jkhan447
2022-05-13T10:19:59Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-13T06:37:04Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: language-detection-RoBert-base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # language-detection-RoBert-base This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1398 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
gaganpathre/amgerindaf
gaganpathre
2022-05-13T10:06:53Z
53
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-05-13T10:06:41Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: amgerindaf results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.8469750881195068 --- # amgerindaf Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### african ![african](images/african.png) #### american ![american](images/american.jpg) #### german ![german](images/german.jpg) #### indian ![indian](images/indian.jpg)
shenyi/gpt2-wikitext2
shenyi
2022-05-13T07:21:52Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T07:00:51Z
--- license: mit tags: - generated_from_trainer model-index: - name: gpt2-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-wikitext2 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.7.1+cu110 - Datasets 2.2.1 - Tokenizers 0.12.1
misawann/bert-base-jaquad-ffn2150-head-10
misawann
2022-05-13T07:11:54Z
4
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T05:50:42Z
--- widget: - text: "ドクウツボはインド洋とどの海域の熱帯域に分布しますか?" context: "ドクウツボ(毒鱓)Gymnothoraxjavanicus(Bleeker,1859)は体長3メートルの記録がある大型種で、鰓孔が黒いことで近縁種と区別できる。 インド洋と太平洋の熱帯域に広く分布し、日本では琉球列島で見られる。 " --- ## モデル詳細 - [cl-tohoku/bert-base-japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) を JaQuAD で fine-tuning した [SkelterLabsInc/bert-base-japanese-jaquad](https://huggingface.co/SkelterLabsInc/bert-base-japanese-jaquad) に対して [TextPruner](https://github.com/airaria/TextPruner) を使って Transformer Pruning したモデル。 - 枝刈りには,JaQuAD の訓練データのうち1024件を使用し,10イテレーションで実施。 - FFNのサイズを30%,attention head の数を 10 % 削減 (ffn: 3072, head: 12 -> ffn: 2150, head: 10)。 - ※ [JaQuAD の実験コード](https://github.com/SkelterLabsInc/JaQuAD/blob/main/JaQuAD.ipynb)と同じ前処理をした上で使用してください。 - ※ 上記の理由で, hf hub の Hosted inference API 上では適切な予測が出力されません。 ## JaQuAD の validation データでの性能 - フルモデル - F1 score: 0.779 - Exact Match: 0.614 - 枝刈り後のモデル - F1 score: 0.756 - Exact Match: 0.587
Khalsuu/filipino-wav2vec2-l-xls-r-300m-official
Khalsuu
2022-05-13T05:58:50Z
14,622
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:filipino_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-05-13T03:24:53Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - filipino_voice model-index: - name: filipino-wav2vec2-l-xls-r-300m-official results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # filipino-wav2vec2-l-xls-r-300m-official This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the filipino_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4672 - Wer: 0.2922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3671 | 2.09 | 400 | 0.5584 | 0.5987 | | 0.48 | 4.19 | 800 | 0.4244 | 0.4195 | | 0.2796 | 6.28 | 1200 | 0.3742 | 0.3765 | | 0.1916 | 8.38 | 1600 | 0.4291 | 0.3667 | | 0.1463 | 10.47 | 2000 | 0.3745 | 0.3415 | | 0.1165 | 12.57 | 2400 | 0.4472 | 0.3407 | | 0.0955 | 14.66 | 2800 | 0.4269 | 0.3290 | | 0.0823 | 16.75 | 3200 | 0.4608 | 0.3475 | | 0.0709 | 18.85 | 3600 | 0.4706 | 0.3281 | | 0.0603 | 20.94 | 4000 | 0.4380 | 0.3183 | | 0.0527 | 23.04 | 4400 | 0.4473 | 0.3067 | | 0.0449 | 25.13 | 4800 | 0.4550 | 0.3029 | | 0.041 | 27.23 | 5200 | 0.4671 | 0.3020 | | 0.0358 | 29.32 | 5600 | 0.4672 | 0.2922 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
anas-awadalla/roberta-large-data-seed-0
anas-awadalla
2022-05-13T04:07:24Z
5
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2022-05-13T01:47:50Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: roberta-large-data-seed-0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-data-seed-0 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 24 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
Nurr/wav2vec2-base-finetuned-ks
Nurr
2022-05-13T04:03:38Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-13T03:48:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - superb model-index: - name: wav2vec2-base-finetuned-ks results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.10.3
tomhavy/t5-small-finetuned-spider
tomhavy
2022-05-13T03:55:38Z
38
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-13T02:16:29Z
--- tags: - generated_from_trainer model-index: - name: t5-small-finetuned-spider results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-spider This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1914 - Rouge2 Precision: 0.6349 - Rouge2 Recall: 0.3964 - Rouge2 Fmeasure: 0.4619 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 5 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.2912 | 1.0 | 1120 | 0.2631 | 0.5653 | 0.3537 | 0.4118 | | 0.2967 | 2.0 | 2240 | 0.2465 | 0.5758 | 0.363 | 0.4209 | | 0.3106 | 3.0 | 3360 | 0.2372 | 0.5858 | 0.367 | 0.427 | | 0.2993 | 4.0 | 4480 | 0.2340 | 0.5995 | 0.3791 | 0.4403 | | 0.2702 | 5.0 | 5600 | 0.2204 | 0.6035 | 0.3786 | 0.4401 | | 0.2624 | 6.0 | 6720 | 0.2159 | 0.6094 | 0.3807 | 0.4435 | | 0.2463 | 7.0 | 7840 | 0.2121 | 0.6207 | 0.3911 | 0.4544 | | 0.2427 | 8.0 | 8960 | 0.2053 | 0.6198 | 0.3886 | 0.452 | | 0.2336 | 9.0 | 10080 | 0.2014 | 0.6217 | 0.3871 | 0.4518 | | 0.2256 | 10.0 | 11200 | 0.1980 | 0.6298 | 0.394 | 0.4589 | | 0.2212 | 11.0 | 12320 | 0.1960 | 0.6304 | 0.3936 | 0.4589 | | 0.2141 | 12.0 | 13440 | 0.1962 | 0.63 | 0.3939 | 0.4586 | | 0.2069 | 13.0 | 14560 | 0.1921 | 0.6328 | 0.3942 | 0.4594 | | 0.2096 | 14.0 | 15680 | 0.1915 | 0.632 | 0.3953 | 0.46 | | 0.2115 | 15.0 | 16800 | 0.1914 | 0.6349 | 0.3964 | 0.4619 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
cj-mills/ppo-LunarLander-v2
cj-mills
2022-05-13T02:10:27Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-05T01:07:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: ppo results: - metrics: - type: mean_reward value: 268.12 +/- 21.13 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **ppo** Agent playing **LunarLander-v2** This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
manthan40/wav2vec2-base-finetuned-manthan-gujarati-digits
manthan40
2022-05-13T02:03:31Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-13T01:47:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-manthan-gujarati-digits results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-manthan-gujarati-digits This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.5613 - Accuracy: 0.9923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3392 | 0.98 | 12 | 1.1315 | 0.9665 | | 1.2319 | 1.98 | 24 | 0.9487 | 0.9716 | | 1.0824 | 2.98 | 36 | 0.8338 | 0.9820 | | 0.9995 | 3.98 | 48 | 0.7533 | 0.9845 | | 0.8175 | 4.98 | 60 | 0.6759 | 0.9923 | | 0.8015 | 5.98 | 72 | 0.6425 | 0.9845 | | 0.7417 | 6.98 | 84 | 0.6048 | 0.9871 | | 0.7181 | 7.98 | 96 | 0.5850 | 0.9923 | | 0.6907 | 8.98 | 108 | 0.5687 | 0.9897 | | 0.6511 | 9.98 | 120 | 0.5613 | 0.9923 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
Sidahmed/RLcourse
Sidahmed
2022-05-13T01:55:28Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-13T01:54:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 206.50 +/- 47.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
manthan40/wav2vec2-base-finetuned-manthan_base
manthan40
2022-05-13T01:39:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:new_dataset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2022-05-13T01:24:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - new_dataset metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-manthan_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-manthan_base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.2246 - Accuracy: 0.9691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4725 | 0.98 | 12 | 2.4222 | 0.1057 | | 2.4501 | 1.98 | 24 | 2.2420 | 0.2784 | | 2.2977 | 2.98 | 36 | 2.0155 | 0.7603 | | 2.1331 | 3.98 | 48 | 1.8193 | 0.8582 | | 1.7927 | 4.98 | 60 | 1.6376 | 0.9459 | | 1.7226 | 5.98 | 72 | 1.4940 | 0.9613 | | 1.6036 | 6.98 | 84 | 1.3632 | 0.9665 | | 1.5181 | 7.98 | 96 | 1.2963 | 0.9562 | | 1.4384 | 8.98 | 108 | 1.2406 | 0.9742 | | 1.3339 | 9.98 | 120 | 1.2246 | 0.9691 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
Shashidhar/distilbert-base-uncased-finetuned-squad
Shashidhar
2022-05-13T00:57:08Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-04-24T23:23:47Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1205 | 1.0 | 5533 | 1.1080 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
kathywu/DialoGPT-medium-kathy
kathywu
2022-05-13T00:41:24Z
5
4
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-05-13T00:12:36Z
--- tags: - conversational ---
subhasisj/es-finetuned-squad-qa-minilmv2-16
subhasisj
2022-05-12T22:52:07Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-12T20:30:11Z
--- tags: - generated_from_trainer model-index: - name: es-finetuned-squad-qa-minilmv2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # es-finetuned-squad-qa-minilmv2-16 This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.485 | 1.0 | 711 | 1.7377 | | 1.6984 | 2.0 | 1422 | 1.3005 | | 1.0772 | 3.0 | 2133 | 1.2348 | | 0.9997 | 4.0 | 2844 | 1.2231 | | 0.8976 | 5.0 | 3555 | 1.2304 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
subhasisj/de-finetuned-squad-qa-minilmv2-16
subhasisj
2022-05-12T22:27:23Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2022-05-12T20:12:50Z
--- tags: - generated_from_trainer model-index: - name: de-finetuned-squad-qa-minilmv2-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # de-finetuned-squad-qa-minilmv2-16 This model is a fine-tuned version of [subhasisj/de-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/de-TAPT-MLM-MiniLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.6022 | 1.0 | 671 | 2.0770 | | 1.9783 | 2.0 | 1342 | 1.6511 | | 1.4059 | 3.0 | 2013 | 1.5939 | | 1.2989 | 4.0 | 2684 | 1.5772 | | 1.2522 | 5.0 | 3355 | 1.5756 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
eijnuhs/TEST2ppo-LunarLander-v2
eijnuhs
2022-05-12T21:34:05Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T21:33:28Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 152.07 +/- 77.48 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
eduardopds/distilbert-base-uncased-imdb
eduardopds
2022-05-12T21:30:26Z
4
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-12T19:40:15Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: eduardopds/distilbert-base-uncased-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eduardopds/distilbert-base-uncased-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0638 - Validation Loss: 0.2317 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.2514 | 0.1886 | 0 | | 0.1340 | 0.1921 | 1 | | 0.0638 | 0.2317 | 2 | ### Framework versions - Transformers 4.19.0 - TensorFlow 2.8.0 - Tokenizers 0.12.1
sismetanin/rubert-rusentitweet
sismetanin
2022-05-12T20:53:24Z
9
1
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-11T16:07:24Z
precision recall f1-score support negative 0.681957 0.675758 0.678843 660 neutral 0.707845 0.735019 0.721176 1068 positive 0.596591 0.652174 0.623145 483 skip 0.583062 0.485095 0.529586 369 speech 0.827160 0.676768 0.744444 99 accuracy 0.668906 2679 macro avg 0.679323 0.644963 0.659439 2679 w avg 0.668631 0.668906 0.667543 2679 3 Runs: Avg macro Precision 0.6747772329026972 Avg macro Recall 0.6436866944877477 Avg macro F1 0.654867154097531 Avg weighted F1 0.6649503767906553
RaphaelReinauer/TEST-6-LunarLander-v2
RaphaelReinauer
2022-05-12T20:46:57Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T20:46:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 286.74 +/- 15.07 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code
SherlockGuo/distilbert-base-uncased-finetuned-squad
SherlockGuo
2022-05-12T19:32:44Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-12T04:42:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 3.7677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 63 | 4.1121 | | No log | 2.0 | 126 | 3.8248 | | No log | 3.0 | 189 | 3.7677 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
robsoneng/TEST2ppo-LunarLander-v2
robsoneng
2022-05-12T18:00:43Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-05-12T18:00:00Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 173.17 +/- 30.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code