modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 00:39:23
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 526
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 00:39:08
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
brresnic/ppo-LunarLander-v2
|
brresnic
| 2022-05-15T00:37:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T23:57:20Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: -150.86 +/- 74.20
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
smc/electric
|
smc
| 2022-05-15T00:19:16Z | 50 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-05-15T00:13:48Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: electric
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.9166666865348816
---
# electric
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
|
anas-awadalla/roberta-large-few-shot-k-1024-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T23:53:15Z | 9 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T23:32:52Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-1024-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-1024-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-1024-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T23:09:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:49:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-1024-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-1024-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
prashanth/mbart-large-cc25-ind_finetun-en-to-hi
|
prashanth
| 2022-05-14T22:51:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:hindi_english_machine_translation",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T22:06:44Z |
---
tags:
- generated_from_trainer
datasets:
- hindi_english_machine_translation
metrics:
- bleu
model-index:
- name: mbart-large-cc25-ind_finetun-en-to-hi
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: hindi_english_machine_translation
type: hindi_english_machine_translation
args: hi-en
metrics:
- name: Bleu
type: bleu
value: 7.8242
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-cc25-ind_finetun-en-to-hi
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8148
- Bleu: 7.8242
- Gen Len: 75.28
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| 3.3247 | 1.0 | 620 | 1.8148 | 7.8242 | 75.28 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu102
- Datasets 1.18.0
- Tokenizers 0.12.1
|
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T22:32:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:19:24Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-512-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-512-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-512-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T22:18:10Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:04:57Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-512-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-512-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-512-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T22:17:30Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T22:04:23Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-512-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-512-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
prashanth/mbart-large-cc25-ind_finetun-hi-to-en
|
prashanth
| 2022-05-14T22:03:05Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"mbart",
"text2text-generation",
"generated_from_trainer",
"dataset:hindi_english_machine_translation",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-14T21:33:51Z |
---
tags:
- generated_from_trainer
datasets:
- hindi_english_machine_translation
metrics:
- bleu
model-index:
- name: mbart-large-cc25-ind_finetun-hi-to-en
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: hindi_english_machine_translation
type: hindi_english_machine_translation
args: hi-en
metrics:
- name: Bleu
type: bleu
value: 15.9135
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-large-cc25-ind_finetun-hi-to-en
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the hindi_english_machine_translation dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4042
- Bleu: 15.9135
- Gen Len: 70.155
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 2.3854 | 1.0 | 620 | 1.4042 | 15.9135 | 70.155 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu102
- Datasets 1.18.0
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-few-shot-k-256-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T21:52:18Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:41:55Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-256-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-256-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T21:51:44Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:41:56Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-256-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-256-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
ruselkomp/sber-full-test
|
ruselkomp
| 2022-05-14T21:47:33Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T12:57:24Z |
---
tags:
- generated_from_trainer
model-index:
- name: sber-full-test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sber-full-test
This model is a fine-tuned version of [sberbank-ai/sbert_large_nlu_ru](https://huggingface.co/sberbank-ai/sbert_large_nlu_ru) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4148
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.0779 | 1.0 | 9046 | 1.3850 |
| 0.7429 | 2.0 | 18092 | 1.1795 |
| 0.446 | 3.0 | 27138 | 1.4148 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.2.dev0
- Tokenizers 0.12.1
|
anas-awadalla/roberta-large-few-shot-k-256-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T21:40:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:30:14Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-256-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-256-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T21:28:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T21:10:06Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-128-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-128-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-128-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:58:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:48:33Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-128-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-128-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:46:57Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:35:59Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T20:35:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:25:43Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-2
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-64-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:28:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:19:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-64-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-64-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-64-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T20:24:34Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:15:19Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-64-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-64-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:18:03Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:08:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-32-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-32-finetuned-squad-seed-4
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-32-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T20:13:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T20:04:35Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-32-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-32-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T20:07:26Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:58:04Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-32-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-32-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-32-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T19:56:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:47:36Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-32-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-32-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-32-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T19:53:09Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:43:48Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-32-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-32-finetuned-squad-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/roberta-large-few-shot-k-16-finetuned-squad-seed-4
|
anas-awadalla
| 2022-05-14T19:42:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:33:24Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-few-shot-k-16-finetuned-squad-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-few-shot-k-16-finetuned-squad-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Xiaoman/NER-CoNLL2003-V4
|
Xiaoman
| 2022-05-14T19:37:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-14T18:52:51Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: NER-CoNLL2003-V4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# NER-CoNLL2003-V4
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2095
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.961395091713594e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 27
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 14 | 0.3630 |
| No log | 2.0 | 28 | 0.2711 |
| No log | 3.0 | 42 | 0.2407 |
| No log | 4.0 | 56 | 0.2057 |
| No log | 5.0 | 70 | 0.2095 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
anas-awadalla/splinter-large-few-shot-k-16-finetuned-squad-seed-2
|
anas-awadalla
| 2022-05-14T19:36:09Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:27:14Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-16-finetuned-squad-seed-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-16-finetuned-squad-seed-2
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
anas-awadalla/splinter-large-few-shot-k-16-finetuned-squad-seed-0
|
anas-awadalla
| 2022-05-14T19:26:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"splinter",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-14T19:17:23Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: splinter-large-few-shot-k-16-finetuned-squad-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# splinter-large-few-shot-k-16-finetuned-squad-seed-0
This model is a fine-tuned version of [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 200
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
claytonsamples/xlm-roberta-base-finetuned-panx-de
|
claytonsamples
| 2022-05-14T19:19:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"dataset:xtreme",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-14T18:40:01Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
model-index:
- name: xlm-roberta-base-finetuned-panx-de
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.de
metrics:
- name: F1
type: f1
value: 0.8620945214069894
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1372
- F1: 0.8621
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2575 | 1.0 | 525 | 0.1621 | 0.8292 |
| 0.1287 | 2.0 | 1050 | 0.1378 | 0.8526 |
| 0.0831 | 3.0 | 1575 | 0.1372 | 0.8621 |
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
kangaroo927/en_pipeline
|
kangaroo927
| 2022-05-14T18:04:29Z | 0 | 0 |
spacy
|
[
"spacy",
"text-classification",
"en",
"region:us"
] |
text-classification
| 2022-05-14T04:29:58Z |
---
tags:
- spacy
- text-classification
language:
- en
model-index:
- name: en_pipeline
results: []
---
| Feature | Description |
| --- | --- |
| **Name** | `en_pipeline` |
| **Version** | `0.0.0` |
| **spaCy** | `>=3.1.4,<3.2.0` |
| **Default Pipeline** | `transformer`, `textcat` |
| **Components** | `transformer`, `textcat` |
| **Vectors** | 0 keys, 0 unique vectors (0 dimensions) |
| **Sources** | n/a |
| **License** | n/a |
| **Author** | [n/a]() |
### Label Scheme
<details>
<summary>View label scheme (22 labels for 1 components)</summary>
| Component | Labels |
| --- | --- |
| **`textcat`** | `Acute Bleed/Mesenteric Ischemia`, `Adrenal Mass Abdomen/Pelvis`, `Aortic Aneurysm Post EVT`, `Aortic Aneurysm Pre EVT`, `Aortic Dissection`, `Cystogram`, `Dual Phase Abdomen/Pelvis`, `Enterography IBD`, `NON Contrast Abdomen/Pelvis`, `Oral & IV Abdomen Pelvis`, `Oral Contrast Abdomen/Pelvis`, `Pancreas Mass Abdomen/Pelvis`, `Pelvis Only`, `Rectal Contrast Abdomen/Pelvis`, `Renal Donor`, `Renal Mass Abdomen/Pelvis`, `Renal Stone Abdomen/Pelvis`, `Routine Abdomen/Pelvis`, `Trauma Abdomen/Pelvis`, `Urogram Post Treatment/Follow Up`, `Urogram Pre Treatment Initial`, `Venogram` |
</details>
### Accuracy
| Type | Score |
| --- | --- |
| `CATS_SCORE` | 76.67 |
| `CATS_MICRO_P` | 85.89 |
| `CATS_MICRO_R` | 85.19 |
| `CATS_MICRO_F` | 85.54 |
| `CATS_MACRO_P` | 74.35 |
| `CATS_MACRO_R` | 80.69 |
| `CATS_MACRO_F` | 76.67 |
| `CATS_MACRO_AUC` | 97.57 |
| `CATS_MACRO_AUC_PER_TYPE` | 0.00 |
| `TRANSFORMER_LOSS` | 19.80 |
| `TEXTCAT_LOSS` | 504.30 |
|
memorysaver/TEST2ppo-LunarLander-v2
|
memorysaver
| 2022-05-14T17:02:04Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T17:01:33Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 192.42 +/- 91.58
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
nadirbekovnadir/LunarLander-280_20
|
nadirbekovnadir
| 2022-05-14T16:54:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T16:52:45Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 275.05 +/- 18.08
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
meln1k/ppo-CartPole-v1
|
meln1k
| 2022-05-14T16:37:49Z | 3 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CartPole-v1",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T16:37:31Z |
---
library_name: stable-baselines3
tags:
- CartPole-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
---
# **PPO** Agent playing **CartPole-v1**
This is a trained model of a **PPO** agent playing **CartPole-v1** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
DBusAI/RPPO-CarRacing-v0
|
DBusAI
| 2022-05-14T16:00:15Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T22:52:43Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: RPPO
results:
- metrics:
- type: mean_reward
value: 614.78 +/- 160.84
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **RPPO** Agent playing **CarRacing-v0**
This is a trained model of a **RPPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
nadirbekovnadir/LunarLander-283_19
|
nadirbekovnadir
| 2022-05-14T13:25:49Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T13:25:08Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 283.38 +/- 17.68
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
huggingtweets/vrsoloviev
|
huggingtweets
| 2022-05-14T13:25:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-14T13:21:58Z |
---
language: en
thumbnail: http://www.huggingtweets.com/vrsoloviev/1652534655103/predictions.png
tags:
- huggingtweets
widget:
- text: "My dream is"
---
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1170975520458203136/4eDVAZZa_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Vladimir Soloviev</div>
<div style="text-align: center; font-size: 14px;">@vrsoloviev</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Vladimir Soloviev.
| Data | Vladimir Soloviev |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 9 |
| Short tweets | 29 |
| Tweets kept | 3212 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/elfi2jwn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @vrsoloviev's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m2arnt6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/vrsoloviev')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
FumaNet/TEST1PPO-LunarLander-v2
|
FumaNet
| 2022-05-14T11:53:46Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T11:53:17Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 228.88 +/- 19.90
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
nadirbekovnadir/LunarLander-276_21
|
nadirbekovnadir
| 2022-05-14T11:41:56Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T11:41:16Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 278.41 +/- 17.89
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
nadirbekovnadir/LunarLander-278_18
|
nadirbekovnadir
| 2022-05-14T11:40:41Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T11:40:01Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 278.68 +/- 16.88
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
buehlpa/bert-finetuned-ner
|
buehlpa
| 2022-05-14T11:06:59Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-14T10:38:18Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9308580858085809
- name: Recall
type: recall
value: 0.9493436553349041
- name: F1
type: f1
value: 0.9400099983336112
- name: Accuracy
type: accuracy
value: 0.9862541943839407
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0607
- Precision: 0.9309
- Recall: 0.9493
- F1: 0.9400
- Accuracy: 0.9863
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0855 | 1.0 | 1756 | 0.0632 | 0.9191 | 0.9386 | 0.9287 | 0.9832 |
| 0.0414 | 2.0 | 3512 | 0.0572 | 0.9264 | 0.9475 | 0.9368 | 0.9855 |
| 0.0198 | 3.0 | 5268 | 0.0607 | 0.9309 | 0.9493 | 0.9400 | 0.9863 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
danieleV9H/hubert-base-timit-demo-google-colab-ft30ep_v4
|
danieleV9H
| 2022-05-14T10:32:13Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"hubert",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-11T14:05:20Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: hubert-base-timit-demo-google-colab-ft30ep_v4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hubert-base-timit-demo-google-colab-ft35ep
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the timit-asr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4602
- Wer: 0.3466
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.825 | 0.87 | 500 | 2.9521 | 1.0 |
| 2.431 | 1.73 | 1000 | 0.9760 | 0.8013 |
| 1.0089 | 2.6 | 1500 | 0.5934 | 0.5968 |
| 0.6859 | 3.46 | 2000 | 0.5132 | 0.5356 |
| 0.5302 | 4.33 | 2500 | 0.4506 | 0.4894 |
| 0.44 | 5.19 | 3000 | 0.4340 | 0.4670 |
| 0.3926 | 6.06 | 3500 | 0.4506 | 0.4528 |
| 0.3326 | 6.92 | 4000 | 0.4197 | 0.4486 |
| 0.2937 | 7.79 | 4500 | 0.4093 | 0.4193 |
| 0.2568 | 8.65 | 5000 | 0.4098 | 0.4229 |
| 0.2473 | 9.52 | 5500 | 0.4090 | 0.4141 |
| 0.2233 | 10.38 | 6000 | 0.4152 | 0.4125 |
| 0.2108 | 11.25 | 6500 | 0.4586 | 0.4189 |
| 0.2086 | 12.11 | 7000 | 0.4284 | 0.3969 |
| 0.1858 | 12.98 | 7500 | 0.4028 | 0.3946 |
| 0.1641 | 13.84 | 8000 | 0.4679 | 0.4002 |
| 0.1686 | 14.71 | 8500 | 0.4441 | 0.3936 |
| 0.1489 | 15.57 | 9000 | 0.4897 | 0.3828 |
| 0.1541 | 16.44 | 9500 | 0.4953 | 0.3783 |
| 0.1417 | 17.3 | 10000 | 0.4500 | 0.3758 |
| 0.1428 | 18.17 | 10500 | 0.4533 | 0.3796 |
| 0.1306 | 19.03 | 11000 | 0.4474 | 0.3792 |
| 0.1185 | 19.9 | 11500 | 0.4762 | 0.3743 |
| 0.1081 | 20.76 | 12000 | 0.4770 | 0.3699 |
| 0.1253 | 21.63 | 12500 | 0.4749 | 0.3629 |
| 0.1087 | 22.49 | 13000 | 0.4577 | 0.3534 |
| 0.1172 | 23.36 | 13500 | 0.4819 | 0.3525 |
| 0.1086 | 24.22 | 14000 | 0.4709 | 0.3623 |
| 0.089 | 25.09 | 14500 | 0.4852 | 0.3544 |
| 0.086 | 25.95 | 15000 | 0.4602 | 0.3555 |
| 0.086 | 26.82 | 15500 | 0.4861 | 0.3497 |
| 0.086 | 27.68 | 16000 | 0.4527 | 0.3473 |
| 0.0919 | 28.55 | 16500 | 0.4607 | 0.3487 |
| 0.0792 | 29.41 | 17000 | 0.4602 | 0.3466 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
conan1024hao/cjkbert-small
|
conan1024hao
| 2022-05-14T10:18:04Z | 5 | 2 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"fill-mask",
"ja",
"zh",
"ko",
"dataset:wikipedia",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-14T09:07:12Z |
---
language:
- ja
- zh
- ko
license: cc-by-sa-4.0
datasets:
- wikipedia
mask_token: "[MASK]"
widget:
- text: "早稲田大学で自然言語処理を[MASK]ぶ。"
- text: "李白是[MASK]朝人。"
- text: "불고기[MASK] 먹겠습니다."
---
### Model description
- This model was trained on **ZH, JA, KO**'s Wikipedia (5 epochs).
### How to use
```python
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("conan1024hao/cjkbert-small")
model = AutoModelForMaskedLM.from_pretrained("conan1024hao/cjkbert-small")
```
- Before you fine-tune downstream tasks, you don't need any text segmentation.
- (Though you may obtain better results if you applied morphological analysis to the data before fine-tuning)
### Morphological analysis tools
- ZH: For Chinese, we use [LTP](https://github.com/HIT-SCIR/ltp).
- JA: For Japanese, we use [Juman++](https://github.com/ku-nlp/jumanpp).
- KO: For Korean, we use [KoNLPy](https://github.com/konlpy/konlpy)(Kkma class).
### Tokenization
- We use character-based tokenization with **whole-word-masking** strategy.
### Model size
- vocab_size: 15015
- num_hidden_layers: 4
- hidden_size: 512
- num_attention_heads: 8
- param_num: 25M
|
BitanBiswas/wav2vec2-base-timit-demo-google-colab
|
BitanBiswas
| 2022-05-14T07:46:48Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-14T05:46:49Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-timit-demo-google-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4770
- Wer: 0.3360
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.6401 | 1.0 | 500 | 2.4138 | 1.0 |
| 0.9717 | 2.01 | 1000 | 0.6175 | 0.5531 |
| 0.4393 | 3.01 | 1500 | 0.4309 | 0.4414 |
| 0.2976 | 4.02 | 2000 | 0.4167 | 0.4162 |
| 0.2345 | 5.02 | 2500 | 0.4273 | 0.3927 |
| 0.1919 | 6.02 | 3000 | 0.3983 | 0.3886 |
| 0.1565 | 7.03 | 3500 | 0.5581 | 0.3928 |
| 0.1439 | 8.03 | 4000 | 0.4509 | 0.3821 |
| 0.1266 | 9.04 | 4500 | 0.4733 | 0.3774 |
| 0.1091 | 10.04 | 5000 | 0.4755 | 0.3808 |
| 0.1001 | 11.04 | 5500 | 0.4435 | 0.3689 |
| 0.0911 | 12.05 | 6000 | 0.4962 | 0.3897 |
| 0.0813 | 13.05 | 6500 | 0.5031 | 0.3622 |
| 0.0729 | 14.06 | 7000 | 0.4853 | 0.3597 |
| 0.0651 | 15.06 | 7500 | 0.5180 | 0.3577 |
| 0.0608 | 16.06 | 8000 | 0.5251 | 0.3630 |
| 0.0592 | 17.07 | 8500 | 0.4915 | 0.3591 |
| 0.0577 | 18.07 | 9000 | 0.4724 | 0.3656 |
| 0.0463 | 19.08 | 9500 | 0.4536 | 0.3546 |
| 0.0475 | 20.08 | 10000 | 0.5107 | 0.3546 |
| 0.0464 | 21.08 | 10500 | 0.4829 | 0.3464 |
| 0.0369 | 22.09 | 11000 | 0.4844 | 0.3448 |
| 0.0327 | 23.09 | 11500 | 0.4865 | 0.3437 |
| 0.0337 | 24.1 | 12000 | 0.4825 | 0.3488 |
| 0.0271 | 25.1 | 12500 | 0.4824 | 0.3445 |
| 0.0236 | 26.1 | 13000 | 0.4747 | 0.3397 |
| 0.0243 | 27.11 | 13500 | 0.4840 | 0.3397 |
| 0.0226 | 28.11 | 14000 | 0.4716 | 0.3354 |
| 0.0235 | 29.12 | 14500 | 0.4770 | 0.3360 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
fgaim/tielectra-small-sentiment
|
fgaim
| 2022-05-14T06:49:29Z | 15 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"text-classification",
"ti",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: tielectra-small-sentiment
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: F1
type: f1
value: 0.8228962818003914
- name: Precision
type: precision
value: 0.8055555555555556
- name: Recall
type: recall
value: 0.841
- name: Accuracy
type: accuracy
value: 0.819
---
# Sentiment Analysis for Tigrinya with TiELECTRA small
This model is a fine-tuned version of [TiELECTRA small](https://huggingface.co/fgaim/tielectra-small) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).
## Basic usage
```python
from transformers import pipeline
ti_sent = pipeline("sentiment-analysis", model="fgaim/tielectra-small-sentiment")
ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር")
```
## Training
### Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Results
The model achieves the following results on the evaluation set:
- F1: 0.8229
- Precision: 0.8056
- Recall: 0.841
- Accuracy: 0.819
- Loss: 0.4299
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.1
## Citation
If you use this model in your product or research, please cite as follows:
```
@article{Fitsum2021TiPLMs,
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title={Monolingual Pre-trained Language Models for Tigrinya},
year=2021,
publisher= {WiNLP 2021/EMNLP 2021}
}
```
## References
```
Tela, A., Woubie, A. and Hautamäki, V. 2020.
Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya.
ArXiv, abs/2006.07698.
```
|
fgaim/tielectra-small-pos
|
fgaim
| 2022-05-14T06:48:42Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"electra",
"token-classification",
"ti",
"dataset:TLMD",
"dataset:NTC",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-03-02T23:29:05Z |
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
datasets:
- TLMD
- NTC
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: tielectra-small-pos
results:
- task:
name: Token Classification
type: token-classification
metrics:
- name: F1
type: f1
value: 0.9456
- name: Precision
type: precision
value: 0.9456
- name: Recall
type: recall
value: 0.9456
- name: Accuracy
type: accuracy
value: 0.9456
---
# Tigrinya POS tagging with TiELECTRA
This model is a fine-tuned version of [TiELECTRA](https://huggingface.co/fgaim/tielectra-small) on the NTC-v1 dataset (Tedla et al. 2016).
## Basic usage
```python
from transformers import pipeline
ti_pos = pipeline("token-classification", model="fgaim/tielectra-small-pos")
ti_pos("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር")
```
## Training
### Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Results
The model achieves the following results on the test set:
- Loss: 0.2236
- Adj Precision: 0.9148
- Adj Recall: 0.9192
- Adj F1: 0.9170
- Adj Number: 1670
- Adv Precision: 0.8228
- Adv Recall: 0.8058
- Adv F1: 0.8142
- Adv Number: 484
- Con Precision: 0.9793
- Con Recall: 0.9743
- Con F1: 0.9768
- Con Number: 972
- Fw Precision: 0.5
- Fw Recall: 0.3214
- Fw F1: 0.3913
- Fw Number: 28
- Int Precision: 0.64
- Int Recall: 0.6154
- Int F1: 0.6275
- Int Number: 26
- N Precision: 0.9525
- N Recall: 0.9587
- N F1: 0.9556
- N Number: 3992
- Num Precision: 0.9825
- Num Recall: 0.9372
- Num F1: 0.9593
- Num Number: 239
- N Prp Precision: 0.9132
- N Prp Recall: 0.9404
- N Prp F1: 0.9266
- N Prp Number: 470
- N V Precision: 0.9667
- N V Recall: 0.9760
- N V F1: 0.9713
- N V Number: 416
- Pre Precision: 0.9645
- Pre Recall: 0.9592
- Pre F1: 0.9619
- Pre Number: 907
- Pro Precision: 0.9395
- Pro Recall: 0.9079
- Pro F1: 0.9234
- Pro Number: 445
- Pun Precision: 1.0
- Pun Recall: 0.9994
- Pun F1: 0.9997
- Pun Number: 1607
- Unc Precision: 0.9286
- Unc Recall: 0.8125
- Unc F1: 0.8667
- Unc Number: 16
- V Precision: 0.7609
- V Recall: 0.8974
- V F1: 0.8235
- V Number: 78
- V Aux Precision: 0.9581
- V Aux Recall: 0.9786
- V Aux F1: 0.9682
- V Aux Number: 654
- V Ger Precision: 0.9183
- V Ger Recall: 0.9415
- V Ger F1: 0.9297
- V Ger Number: 513
- V Imf Precision: 0.9473
- V Imf Recall: 0.9442
- V Imf F1: 0.9458
- V Imf Number: 914
- V Imv Precision: 0.8163
- V Imv Recall: 0.5714
- V Imv F1: 0.6723
- V Imv Number: 70
- V Prf Precision: 0.8927
- V Prf Recall: 0.8776
- V Prf F1: 0.8851
- V Prf Number: 294
- V Rel Precision: 0.9535
- V Rel Recall: 0.9485
- V Rel F1: 0.9510
- V Rel Number: 757
- Overall Precision: 0.9456
- Overall Recall: 0.9456
- Overall F1: 0.9456
- Overall Accuracy: 0.9456
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.1
## Citation
If you use this model in your product or research, please cite as follows:
```
@article{Fitsum2021TiPLMs,
author= {Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title= {Monolingual Pre-trained Language Models for Tigrinya},
year= 2021,
publisher= {WiNLP 2021/EMNLP 2021}
}
```
## References
```
Tedla, Y., Yamamoto, K. & Marasinghe, A. 2016.
Tigrinya Part-of-Speech Tagging with Morphological Patterns and the New Nagaoka Tigrinya Corpus.
International Journal Of Computer Applications 146 pp. 33-41 (2016).
```
|
fgaim/tiroberta-sentiment
|
fgaim
| 2022-05-14T06:47:23Z | 4 | 2 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"ti",
"dataset:TLMD",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
datasets:
- TLMD
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: tiroberta-sentiment
results:
- task:
name: Text Classification
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.828
- name: F1
type: f1
value: 0.8476527900797165
- name: Precision
type: precision
value: 0.760731319554849
- name: Recall
type: recall
value: 0.957
---
# Sentiment Analysis for Tigrinya with TiRoBERTa
This model is a fine-tuned version of [TiRoBERTa](https://huggingface.co/fgaim/roberta-base-tigrinya) on a YouTube comments Sentiment Analysis dataset for Tigrinya (Tela et al. 2020).
## Basic usage
```python
from transformers import pipeline
ti_sent = pipeline("sentiment-analysis", model="fgaim/tiroberta-sentiment")
ti_sent("ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር")
```
## Training
### Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Results
It achieves the following results on the evaluation set:
- F1: 0.8477
- Precision: 0.7607
- Recall: 0.957
- Accuracy: 0.828
- Loss: 0.6796
### Framework versions
- Transformers 4.10.3
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.1
## Citation
If you use this model in your product or research, please cite as follows:
```
@article{Fitsum2021TiPLMs,
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
title={Monolingual Pre-trained Language Models for Tigrinya},
year=2021,
publisher={WiNLP 2021/EMNLP 2021}
}
```
## References
```
Tela, A., Woubie, A. and Hautamäki, V. 2020.
Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya.
ArXiv, abs/2006.07698.
```
|
CogComp/ZeroShotWiki
|
CogComp
| 2022-05-14T04:00:26Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-13T04:04:45Z |
---
license: apache-2.0
---
# Model description
A BertForSequenceClassification model that is finetuned on Wikipedia for zero-shot text classification. For details, see our NAACL'22 paper.
# Usage
Concatenate the text sentence with each of the candidate labels as input to the model. The model will output a score for each label. Below is an example.
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("CogComp/ZeroShotWiki")
model = AutoModelForSequenceClassification.from_pretrained("CogComp/ZeroShotWiki")
labels = ["sports", "business", "politics"]
texts = ["As of the 2018 FIFA World Cup, twenty-one final tournaments have been held and a total of 79 national teams have competed."]
with torch.no_grad():
for text in texts:
label_score = {}
for label in labels:
inputs = tokenizer(text, label, return_tensors='pt')
out = model(**inputs)
label_score[label]=float(torch.nn.functional.softmax(out[0], dim=-1)[0][0])
print(label_score) # Predict the label with the highest score
```
|
anwesham/imdb-sentiment-baseline-distilbert
|
anwesham
| 2022-05-14T03:58:39Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"distilbert",
"text-classification",
"unk",
"dataset:anwesham/autotrain-data-imdb-sentiment-analysis",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-14T03:06:07Z |
---
language: unk
datasets:
- anwesham/autotrain-data-imdb-sentiment-analysis
---
## Description
- Problem type: Binary Classification
## Validation Metrics
- Loss: 0.17481304705142975
- Accuracy: 0.936
- Precision: 0.9526578073089701
- Recall: 0.9176
- AUC: 0.9841454399999999
- F1: 0.93480032599837
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/anwesham/autotrain-imdb-sentiment-analysis-864927555
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("anwesham/autotrain-imdb-sentiment-analysis-864927555", use_auth_token=True)
inputs = tokenizer("I love to eat good food and watch Moana.", return_tensors="pt")
outputs = model(**inputs)
```
|
gregtozzi/ppo-LunarLander-v2-4
|
gregtozzi
| 2022-05-14T02:51:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T02:51:00Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 295.25 +/- 17.66
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
gregtozzi/ppo-LunarLander-v2-3
|
gregtozzi
| 2022-05-14T02:15:41Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T02:15:16Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 292.99 +/- 18.45
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
gregtozzi/ppo-LunarLander-v2-2
|
gregtozzi
| 2022-05-14T02:10:40Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-14T02:10:13Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 288.74 +/- 16.79
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
describeai/gemini
|
describeai
| 2022-05-14T00:46:52Z | 765 | 41 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"Explain code",
"Code Summarization",
"Summarization",
"en",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-03-02T23:29:05Z |
---
language: en
tags:
- Explain code
- Code Summarization
- Summarization
license: mit
---
# Gemini
For in-depth understanding of our model and methods, please see our blog [here](https://www.describe-ai.com/gemini)
## Model description
Gemini is a transformer based on Google's T5 model. The model is pre-trained on approximately 800k code/description pairs and then fine-tuned on 10k higher-level explanations that were synthetically generated. Gemini is capable of summarization/explaining short to medium code snippets in:
- Python
- Javascript (mostly vanilla JS, however, it can handle frameworks like React as well)
- Java
- Ruby
- Go
And outputs a description in English.
## Intended uses
Gemini without any additional fine-tuning is capable of explaining code in a sentence or two and typically performs best in Python and Javascript. We recommend using Gemini for either simple code explanation, documentation or producing more synthetic data to improve its explanations.
### How to use
You can use this model directly with a pipeline for Text2Text generation, as shown below:
```python
from transformers import pipeline, set_seed
summarizer = pipeline('text2text-generation', model='describeai/gemini')
code = "print('hello world!')"
response = summarizer(code, max_length=100, num_beams=3)
print("Summarized code: " + response[0]['generated_text'])
```
Which should yield something along the lines of:
```
Summarized code: The following code is greeting the world.
```
### Model sizes
- Gemini (this repo): 770 Million Parameters
- Gemini-Small - 220 Million Parameters
### Limitations
Typically, Gemini may produce overly simplistic descriptions that don't encompass the entire code snippet. We suspect with more training data, this could be circumvented and will produce better results.
### About Us
A Describe.ai, we are focused on building Artificial Intelligence systems that can understand language as well as humans. While a long path, we plan to contribute our findings to our API to the Open Source community.
|
itsroadtrip/test-pull-requests
|
itsroadtrip
| 2022-05-13T23:50:46Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-05-13T23:50:13Z |
---
license: mit
---
[click me](https://www.youtube.com/watch?v=dQw4w9WgXcQ)
|
bstad/ppo-LunarLander-v2-n_envs-32-steps-2e6
|
bstad
| 2022-05-13T23:30:52Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T23:30:28Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 274.57 +/- 19.54
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
grunty/ppo-LunarLander-v2
|
grunty
| 2022-05-13T22:59:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T22:58:57Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 225.45 +/- 14.86
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
SebastianS/codeparrot-ds
|
SebastianS
| 2022-05-13T22:28:22Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-13T20:46:53Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: codeparrot-ds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codeparrot-ds
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4905
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7149 | 0.85 | 1000 | 2.4905 |
### Framework versions
- Transformers 4.19.1
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
subhasisj/en-finetuned-squad-qa-minilmv2-32
|
subhasisj
| 2022-05-13T21:50:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T19:47:17Z |
---
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: en-finetuned-squad-qa-minilmv2-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en-finetuned-squad-qa-minilmv2-32
This model is a fine-tuned version of [subhasisj/en-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/en-TAPT-MLM-MiniLM) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1955
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 350 | 2.1514 |
| 2.9587 | 2.0 | 700 | 1.4819 |
| 1.3873 | 3.0 | 1050 | 1.2724 |
| 1.3873 | 4.0 | 1400 | 1.2039 |
| 1.0438 | 5.0 | 1750 | 1.1955 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
anas-awadalla/roberta-large-initialization-seed-4
|
anas-awadalla
| 2022-05-13T21:07:51Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T19:00:31Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-initialization-seed-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-initialization-seed-4
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 4
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 24
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
eslamxm/mt5-base-finetuned-english-finetuned-english-arabic
|
eslamxm
| 2022-05-13T19:39:26Z | 14 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mt5",
"text2text-generation",
"summarization",
"arabic",
"ar",
"en",
"Abstractive Summarization",
"generated_from_trainer",
"dataset:xlsum",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
summarization
| 2022-05-13T11:40:25Z |
---
license: apache-2.0
tags:
- summarization
- arabic
- ar
- en
- mt5
- Abstractive Summarization
- generated_from_trainer
datasets:
- xlsum
model-index:
- name: mt5-base-finetuned-english-finetuned-english-arabic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-english-finetuned-english-arabic
This model is a fine-tuned version of [eslamxm/mt5-base-finetuned-english](https://huggingface.co/eslamxm/mt5-base-finetuned-english) on the xlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 3.4788
- Rouge-1: 22.55
- Rouge-2: 9.84
- Rouge-l: 20.5
- Gen Len: 19.0
- Bertscore: 71.39
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|
| 4.999 | 1.0 | 1172 | 3.9343 | 17.67 | 5.93 | 15.86 | 19.0 | 69.69 |
| 4.008 | 2.0 | 2344 | 3.6655 | 19.48 | 7.67 | 17.67 | 19.0 | 70.49 |
| 3.7463 | 3.0 | 3516 | 3.5503 | 20.47 | 8.24 | 18.6 | 19.0 | 70.86 |
| 3.5924 | 4.0 | 4688 | 3.4942 | 20.95 | 8.45 | 19.05 | 19.0 | 71.0 |
| 3.4979 | 5.0 | 5860 | 3.4788 | 21.34 | 8.75 | 19.39 | 19.0 | 71.11 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
subhasisj/en-TAPT-MLM-MiniLM
|
subhasisj
| 2022-05-13T19:35:12Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-13T18:46:52Z |
---
tags:
- generated_from_trainer
model-index:
- name: en-TAPT-MLM-MiniLM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# en-TAPT-MLM-MiniLM
This model is a fine-tuned version of [subhasisj/MiniLMv2-qa-encoder](https://huggingface.co/subhasisj/MiniLMv2-qa-encoder) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
fgaim/tiroberta-geezswitch
|
fgaim
| 2022-05-13T18:27:38Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"geezlab",
"ti",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-04-30T22:41:38Z |
---
language: ti
widget:
- text: "ድምጻዊ ኣብርሃም ኣፈወርቂ ንዘልኣለም ህያው ኮይኑ ኣብ ልብና ይነብር"
- text: "ወአመ ሳብዕት ዕለት ቦዘወፅአ እምውስተ ሕዝብ ከመ ያስተጋብእ ወኢረከበ።"
- text: "እሊ እግል ኖሱ አሳስ ተጠውር ወዐቦት ክምሰልቱ ሸክ ኢወትውዴ።"
- text: "ኣኩኽር ፡ ልሽክክ ናው ጀረቢነዅስክ ክሙኑኽር ክራውል ሕበርሲድኖ ገረሰነኵ።"
- text: "ነገ ለግማሽ ፍፃሜ ያለፉትን አሳውቀንና አስመርጠናችሁ እንሸልማለን።"
tags:
- geezlab
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: geezswitch-tiroberta
results: []
license: cc-by-4.0
---
# TiRoBERTa-GeezSwitch
This model is a fine-tuned version of [fgaim/tiroberta-base](https://huggingface.co/fgaim/tiroberta-base) on the [GeezSwitch](https://github.com/fgaim/geezswitch-data) dataset.
It achieves the following results on the test set:
- F1: 0.9948
- Recall: 0.9948
- Precision: 0.9948
- Accuracy: 0.9948
- Loss: 0.0222
## Training
### Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- seed: 42
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.1.0
- Tokenizers 0.12.1
### Citation
If you use this model or the GeezSwitch model in your research, please cite as follows:
```markdown
@inproceedings{fgaim2022geezswitch,
title={GeezSwitch: Language Identification in Typologically Related Low-resourced East African Languages},
author={Fitsum Gaim and Wonsuk Yang and Jong C. Park},
booktitle={Proceedings of the 13th Language Resources and Evaluation Conference},
year={2022}
}
```
|
subhasisj/vi-finetuned-squad-qa-minilmv2-8
|
subhasisj
| 2022-05-13T17:04:48Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T11:30:59Z |
---
tags:
- generated_from_trainer
model-index:
- name: vi-finetuned-squad-qa-minilmv2-8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vi-finetuned-squad-qa-minilmv2-8
This model is a fine-tuned version of [subhasisj/vi-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/vi-TAPT-MLM-MiniLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1669 | 1.0 | 1424 | 1.4979 |
| 1.2377 | 2.0 | 2848 | 1.3259 |
| 1.0536 | 3.0 | 4272 | 1.3133 |
| 0.9568 | 4.0 | 5696 | 1.3103 |
| 0.8859 | 5.0 | 7120 | 1.3335 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.2
- Datasets 2.0.0
- Tokenizers 0.11.0
|
DBusAI/PPO-BipedalWalker-v3-v2_1_same_submit
|
DBusAI
| 2022-05-13T16:55:00Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"BipedalWalker-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T16:54:12Z |
---
library_name: stable-baselines3
tags:
- BipedalWalker-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 304.88 +/- 2.29
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BipedalWalker-v3
type: BipedalWalker-v3
---
# **PPO** Agent playing **BipedalWalker-v3**
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
DBusAI/PPO-BipedalWalker-v3-v2
|
DBusAI
| 2022-05-13T16:46:30Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"BipedalWalker-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T16:40:07Z |
---
library_name: stable-baselines3
tags:
- BipedalWalker-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 303.47 +/- 1.90
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BipedalWalker-v3
type: BipedalWalker-v3
---
# **PPO** Agent playing **BipedalWalker-v3**
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
ogpat23/Jules-Chatbot
|
ogpat23
| 2022-05-13T16:43:30Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-03-02T23:29:05Z |
---
tags:
- conversational
---
# Chat bot based on Pulp fiction Character Jules
# Model trained on Pytorch framework uisng Pulp fiction dialogue script dataset from kaggle
|
DBusAI/PPO-BipedalWalker-v3
|
DBusAI
| 2022-05-13T16:39:16Z | 1 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"BipedalWalker-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T13:36:41Z |
---
library_name: stable-baselines3
tags:
- BipedalWalker-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 303.05 +/- 1.79
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: BipedalWalker-v3
type: BipedalWalker-v3
---
# **PPO** Agent playing **BipedalWalker-v3**
This is a trained model of a **PPO** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
karthiksv/vit-base-patch16-224-in21k-finetuned-cifar10
|
karthiksv
| 2022-05-13T16:25:11Z | 55 | 0 |
transformers
|
[
"transformers",
"pytorch",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:cifar10",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-05-13T16:21:13Z |
---
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- cifar10
model-index:
- name: vit-base-patch16-224-in21k-finetuned-cifar10
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-cifar10
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar10 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.10.1
- Datasets 2.1.0
- Tokenizers 0.12.1
|
aleks0309/PPO-LunarLander-v2
|
aleks0309
| 2022-05-13T15:55:18Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T15:38:50Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 268.04 +/- 17.85
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
N18/lunar-lander
|
N18
| 2022-05-13T15:30:26Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T15:10:49Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 54.0 +/- 5.10
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
tobyych/ppo-LunarLander-v2
|
tobyych
| 2022-05-13T15:12:21Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T13:35:32Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 254.64 +/- 22.65
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Davincilee/door_inner_with_SA-bert-base-uncased
|
Davincilee
| 2022-05-13T14:56:11Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"fill-mask",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-03T06:38:19Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: door_inner_with_SA-bert-base-uncased
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# door_inner_with_SA-bert-base-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1513
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.5492 | 1.0 | 96 | 2.3831 |
| 2.4031 | 2.0 | 192 | 2.2963 |
| 2.3391 | 3.0 | 288 | 2.2000 |
| 2.2951 | 4.0 | 384 | 2.2505 |
| 2.2151 | 5.0 | 480 | 2.1691 |
| 2.2237 | 6.0 | 576 | 2.1855 |
| 2.1984 | 7.0 | 672 | 2.2558 |
| 2.1749 | 8.0 | 768 | 2.2019 |
| 2.1475 | 9.0 | 864 | 2.1310 |
| 2.1446 | 10.0 | 960 | 2.1334 |
| 2.1374 | 11.0 | 1056 | 2.1909 |
| 2.1117 | 12.0 | 1152 | 2.2028 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
vukpetar/ppo-CarRacing-v0
|
vukpetar
| 2022-05-13T14:56:01Z | 4 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T14:53:49Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 353.69 +/- 172.01
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **PPO** Agent playing **CarRacing-v0**
This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Davincilee/closure_system_door_inne-roberta-base
|
Davincilee
| 2022-05-13T14:24:57Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"fill-mask",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-05-13T13:57:50Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: closure_system_door_inne-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# closure_system_door_inne-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6038
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3302 | 1.0 | 3 | 1.6837 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
Narsil/nolicense
|
Narsil
| 2022-05-13T14:23:29Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2022-05-13T14:20:50Z |
---
license: mit
commercial: false
---
|
GhadeerElmkaiel/LunarLander-v2-Test
|
GhadeerElmkaiel
| 2022-05-13T13:24:02Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T10:02:34Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 263.94 +/- 19.22
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
michojan/bert-finetuned-ner
|
michojan
| 2022-05-13T13:14:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"token-classification",
"generated_from_trainer",
"dataset:conll2003",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2022-05-13T12:43:22Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9324078664683524
- name: Recall
type: recall
value: 0.9495119488387749
- name: F1
type: f1
value: 0.9408821812724089
- name: Accuracy
type: accuracy
value: 0.9864308000235474
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0622
- Precision: 0.9324
- Recall: 0.9495
- F1: 0.9409
- Accuracy: 0.9864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0862 | 1.0 | 1756 | 0.0649 | 0.9193 | 0.9371 | 0.9281 | 0.9831 |
| 0.0406 | 2.0 | 3512 | 0.0576 | 0.9235 | 0.9472 | 0.9352 | 0.9850 |
| 0.0197 | 3.0 | 5268 | 0.0622 | 0.9324 | 0.9495 | 0.9409 | 0.9864 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
DBusAI/PPO-CarRacing-v0
|
DBusAI
| 2022-05-13T12:55:40Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"CarRacing-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T12:53:48Z |
---
library_name: stable-baselines3
tags:
- CarRacing-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 81.28 +/- 82.32
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CarRacing-v0
type: CarRacing-v0
---
# **PPO** Agent playing **CarRacing-v0**
This is a trained model of a **PPO** agent playing **CarRacing-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
alk/t5-small-finetuned-cnn_dailymail-en-es
|
alk
| 2022-05-13T11:11:01Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"t5",
"text2text-generation",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-12T20:51:21Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: alk/t5-small-finetuned-cnn_dailymail-en-es
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# alk/t5-small-finetuned-cnn_dailymail-en-es
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.9163
- Validation Loss: 1.7610
- Epoch: 3
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5.6e-05, 'decay_steps': 71776, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.9945 | 1.7837 | 0 |
| 1.9478 | 1.7694 | 1 |
| 1.9278 | 1.7646 | 2 |
| 1.9163 | 1.7610 | 3 |
### Framework versions
- Transformers 4.19.0
- TensorFlow 2.8.0
- Datasets 2.2.1
- Tokenizers 0.12.1
|
jkhan447/language-detection-RoBert-base
|
jkhan447
| 2022-05-13T10:19:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-13T06:37:04Z |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: language-detection-RoBert-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# language-detection-RoBert-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1398
- Accuracy: 0.9865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
gaganpathre/amgerindaf
|
gaganpathre
| 2022-05-13T10:06:53Z | 53 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"vit",
"image-classification",
"huggingpics",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
image-classification
| 2022-05-13T10:06:41Z |
---
tags:
- image-classification
- pytorch
- huggingpics
metrics:
- accuracy
model-index:
- name: amgerindaf
results:
- task:
name: Image Classification
type: image-classification
metrics:
- name: Accuracy
type: accuracy
value: 0.8469750881195068
---
# amgerindaf
Autogenerated by HuggingPics🤗🖼️
Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics).
## Example Images
#### african

#### american

#### german

#### indian

|
shenyi/gpt2-wikitext2
|
shenyi
| 2022-05-13T07:21:52Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-13T07:00:51Z |
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: gpt2-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-wikitext2
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.7.1+cu110
- Datasets 2.2.1
- Tokenizers 0.12.1
|
misawann/bert-base-jaquad-ffn2150-head-10
|
misawann
| 2022-05-13T07:11:54Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T05:50:42Z |
---
widget:
- text: "ドクウツボはインド洋とどの海域の熱帯域に分布しますか?"
context: "ドクウツボ(毒鱓)Gymnothoraxjavanicus(Bleeker,1859)は体長3メートルの記録がある大型種で、鰓孔が黒いことで近縁種と区別できる。 インド洋と太平洋の熱帯域に広く分布し、日本では琉球列島で見られる。 "
---
## モデル詳細
- [cl-tohoku/bert-base-japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) を JaQuAD で fine-tuning した [SkelterLabsInc/bert-base-japanese-jaquad](https://huggingface.co/SkelterLabsInc/bert-base-japanese-jaquad) に対して [TextPruner](https://github.com/airaria/TextPruner) を使って
Transformer Pruning したモデル。
- 枝刈りには,JaQuAD の訓練データのうち1024件を使用し,10イテレーションで実施。
- FFNのサイズを30%,attention head の数を 10 % 削減 (ffn: 3072, head: 12 -> ffn: 2150, head: 10)。
- ※ [JaQuAD の実験コード](https://github.com/SkelterLabsInc/JaQuAD/blob/main/JaQuAD.ipynb)と同じ前処理をした上で使用してください。
- ※ 上記の理由で, hf hub の Hosted inference API 上では適切な予測が出力されません。
## JaQuAD の validation データでの性能
- フルモデル
- F1 score: 0.779
- Exact Match: 0.614
- 枝刈り後のモデル
- F1 score: 0.756
- Exact Match: 0.587
|
Khalsuu/filipino-wav2vec2-l-xls-r-300m-official
|
Khalsuu
| 2022-05-13T05:58:50Z | 14,622 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"dataset:filipino_voice",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-05-13T03:24:53Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- filipino_voice
model-index:
- name: filipino-wav2vec2-l-xls-r-300m-official
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# filipino-wav2vec2-l-xls-r-300m-official
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the filipino_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4672
- Wer: 0.2922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3671 | 2.09 | 400 | 0.5584 | 0.5987 |
| 0.48 | 4.19 | 800 | 0.4244 | 0.4195 |
| 0.2796 | 6.28 | 1200 | 0.3742 | 0.3765 |
| 0.1916 | 8.38 | 1600 | 0.4291 | 0.3667 |
| 0.1463 | 10.47 | 2000 | 0.3745 | 0.3415 |
| 0.1165 | 12.57 | 2400 | 0.4472 | 0.3407 |
| 0.0955 | 14.66 | 2800 | 0.4269 | 0.3290 |
| 0.0823 | 16.75 | 3200 | 0.4608 | 0.3475 |
| 0.0709 | 18.85 | 3600 | 0.4706 | 0.3281 |
| 0.0603 | 20.94 | 4000 | 0.4380 | 0.3183 |
| 0.0527 | 23.04 | 4400 | 0.4473 | 0.3067 |
| 0.0449 | 25.13 | 4800 | 0.4550 | 0.3029 |
| 0.041 | 27.23 | 5200 | 0.4671 | 0.3020 |
| 0.0358 | 29.32 | 5600 | 0.4672 | 0.2922 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.10.3
|
anas-awadalla/roberta-large-data-seed-0
|
anas-awadalla
| 2022-05-13T04:07:24Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:mit",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-13T01:47:50Z |
---
license: mit
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: roberta-large-data-seed-0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-large-data-seed-0
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 24
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.20.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|
Nurr/wav2vec2-base-finetuned-ks
|
Nurr
| 2022-05-13T04:03:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:superb",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-05-13T03:48:07Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- superb
model-index:
- name: wav2vec2-base-finetuned-ks
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-ks
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Framework versions
- Transformers 4.11.3
- Pytorch 1.11.0+cu113
- Datasets 1.14.0
- Tokenizers 0.10.3
|
tomhavy/t5-small-finetuned-spider
|
tomhavy
| 2022-05-13T03:55:38Z | 38 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"t5",
"text2text-generation",
"generated_from_trainer",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-05-13T02:16:29Z |
---
tags:
- generated_from_trainer
model-index:
- name: t5-small-finetuned-spider
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-spider
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1914
- Rouge2 Precision: 0.6349
- Rouge2 Recall: 0.3964
- Rouge2 Fmeasure: 0.4619
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 5
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 0.2912 | 1.0 | 1120 | 0.2631 | 0.5653 | 0.3537 | 0.4118 |
| 0.2967 | 2.0 | 2240 | 0.2465 | 0.5758 | 0.363 | 0.4209 |
| 0.3106 | 3.0 | 3360 | 0.2372 | 0.5858 | 0.367 | 0.427 |
| 0.2993 | 4.0 | 4480 | 0.2340 | 0.5995 | 0.3791 | 0.4403 |
| 0.2702 | 5.0 | 5600 | 0.2204 | 0.6035 | 0.3786 | 0.4401 |
| 0.2624 | 6.0 | 6720 | 0.2159 | 0.6094 | 0.3807 | 0.4435 |
| 0.2463 | 7.0 | 7840 | 0.2121 | 0.6207 | 0.3911 | 0.4544 |
| 0.2427 | 8.0 | 8960 | 0.2053 | 0.6198 | 0.3886 | 0.452 |
| 0.2336 | 9.0 | 10080 | 0.2014 | 0.6217 | 0.3871 | 0.4518 |
| 0.2256 | 10.0 | 11200 | 0.1980 | 0.6298 | 0.394 | 0.4589 |
| 0.2212 | 11.0 | 12320 | 0.1960 | 0.6304 | 0.3936 | 0.4589 |
| 0.2141 | 12.0 | 13440 | 0.1962 | 0.63 | 0.3939 | 0.4586 |
| 0.2069 | 13.0 | 14560 | 0.1921 | 0.6328 | 0.3942 | 0.4594 |
| 0.2096 | 14.0 | 15680 | 0.1915 | 0.632 | 0.3953 | 0.46 |
| 0.2115 | 15.0 | 16800 | 0.1914 | 0.6349 | 0.3964 | 0.4619 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
cj-mills/ppo-LunarLander-v2
|
cj-mills
| 2022-05-13T02:10:27Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-05T01:07:01Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: ppo
results:
- metrics:
- type: mean_reward
value: 268.12 +/- 21.13
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **ppo** Agent playing **LunarLander-v2**
This is a trained model of a **ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
manthan40/wav2vec2-base-finetuned-manthan-gujarati-digits
|
manthan40
| 2022-05-13T02:03:31Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:new_dataset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-05-13T01:47:31Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- new_dataset
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-manthan-gujarati-digits
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-manthan-gujarati-digits
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5613
- Accuracy: 0.9923
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3392 | 0.98 | 12 | 1.1315 | 0.9665 |
| 1.2319 | 1.98 | 24 | 0.9487 | 0.9716 |
| 1.0824 | 2.98 | 36 | 0.8338 | 0.9820 |
| 0.9995 | 3.98 | 48 | 0.7533 | 0.9845 |
| 0.8175 | 4.98 | 60 | 0.6759 | 0.9923 |
| 0.8015 | 5.98 | 72 | 0.6425 | 0.9845 |
| 0.7417 | 6.98 | 84 | 0.6048 | 0.9871 |
| 0.7181 | 7.98 | 96 | 0.5850 | 0.9923 |
| 0.6907 | 8.98 | 108 | 0.5687 | 0.9897 |
| 0.6511 | 9.98 | 120 | 0.5613 | 0.9923 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 1.14.0
- Tokenizers 0.12.1
|
Sidahmed/RLcourse
|
Sidahmed
| 2022-05-13T01:55:28Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-13T01:54:54Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 206.50 +/- 47.55
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
manthan40/wav2vec2-base-finetuned-manthan_base
|
manthan40
| 2022-05-13T01:39:46Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:new_dataset",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
audio-classification
| 2022-05-13T01:24:01Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- new_dataset
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-manthan_base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-finetuned-manthan_base
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the new_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2246
- Accuracy: 0.9691
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.4725 | 0.98 | 12 | 2.4222 | 0.1057 |
| 2.4501 | 1.98 | 24 | 2.2420 | 0.2784 |
| 2.2977 | 2.98 | 36 | 2.0155 | 0.7603 |
| 2.1331 | 3.98 | 48 | 1.8193 | 0.8582 |
| 1.7927 | 4.98 | 60 | 1.6376 | 0.9459 |
| 1.7226 | 5.98 | 72 | 1.4940 | 0.9613 |
| 1.6036 | 6.98 | 84 | 1.3632 | 0.9665 |
| 1.5181 | 7.98 | 96 | 1.2963 | 0.9562 |
| 1.4384 | 8.98 | 108 | 1.2406 | 0.9742 |
| 1.3339 | 9.98 | 120 | 1.2246 | 0.9691 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 1.14.0
- Tokenizers 0.12.1
|
Shashidhar/distilbert-base-uncased-finetuned-squad
|
Shashidhar
| 2022-05-13T00:57:08Z | 40 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-04-24T23:23:47Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1080
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.1205 | 1.0 | 5533 | 1.1080 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
kathywu/DialoGPT-medium-kathy
|
kathywu
| 2022-05-13T00:41:24Z | 5 | 4 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2022-05-13T00:12:36Z |
---
tags:
- conversational
---
|
subhasisj/es-finetuned-squad-qa-minilmv2-16
|
subhasisj
| 2022-05-12T22:52:07Z | 7 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-12T20:30:11Z |
---
tags:
- generated_from_trainer
model-index:
- name: es-finetuned-squad-qa-minilmv2-16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# es-finetuned-squad-qa-minilmv2-16
This model is a fine-tuned version of [subhasisj/es-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/es-TAPT-MLM-MiniLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2304
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.485 | 1.0 | 711 | 1.7377 |
| 1.6984 | 2.0 | 1422 | 1.3005 |
| 1.0772 | 3.0 | 2133 | 1.2348 |
| 0.9997 | 4.0 | 2844 | 1.2231 |
| 0.8976 | 5.0 | 3555 | 1.2304 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
subhasisj/de-finetuned-squad-qa-minilmv2-16
|
subhasisj
| 2022-05-12T22:27:23Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"question-answering",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-12T20:12:50Z |
---
tags:
- generated_from_trainer
model-index:
- name: de-finetuned-squad-qa-minilmv2-16
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# de-finetuned-squad-qa-minilmv2-16
This model is a fine-tuned version of [subhasisj/de-TAPT-MLM-MiniLM](https://huggingface.co/subhasisj/de-TAPT-MLM-MiniLM) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5756
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.6022 | 1.0 | 671 | 2.0770 |
| 1.9783 | 2.0 | 1342 | 1.6511 |
| 1.4059 | 3.0 | 2013 | 1.5939 |
| 1.2989 | 4.0 | 2684 | 1.5772 |
| 1.2522 | 5.0 | 3355 | 1.5756 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
eijnuhs/TEST2ppo-LunarLander-v2
|
eijnuhs
| 2022-05-12T21:34:05Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-12T21:33:28Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 152.07 +/- 77.48
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
eduardopds/distilbert-base-uncased-imdb
|
eduardopds
| 2022-05-12T21:30:26Z | 4 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"text-classification",
"generated_from_keras_callback",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-12T19:40:15Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: eduardopds/distilbert-base-uncased-imdb
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# eduardopds/distilbert-base-uncased-imdb
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0638
- Validation Loss: 0.2317
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7810, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.2514 | 0.1886 | 0 |
| 0.1340 | 0.1921 | 1 |
| 0.0638 | 0.2317 | 2 |
### Framework versions
- Transformers 4.19.0
- TensorFlow 2.8.0
- Tokenizers 0.12.1
|
sismetanin/rubert-rusentitweet
|
sismetanin
| 2022-05-12T20:53:24Z | 9 | 1 |
transformers
|
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-05-11T16:07:24Z |
precision recall f1-score support
negative 0.681957 0.675758 0.678843 660
neutral 0.707845 0.735019 0.721176 1068
positive 0.596591 0.652174 0.623145 483
skip 0.583062 0.485095 0.529586 369
speech 0.827160 0.676768 0.744444 99
accuracy 0.668906 2679
macro avg 0.679323 0.644963 0.659439 2679
w avg 0.668631 0.668906 0.667543 2679
3 Runs:
Avg macro Precision 0.6747772329026972
Avg macro Recall 0.6436866944877477
Avg macro F1 0.654867154097531
Avg weighted F1 0.6649503767906553
|
RaphaelReinauer/TEST-6-LunarLander-v2
|
RaphaelReinauer
| 2022-05-12T20:46:57Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-12T20:46:44Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 286.74 +/- 15.07
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
SherlockGuo/distilbert-base-uncased-finetuned-squad
|
SherlockGuo
| 2022-05-12T19:32:44Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"dataset:squad",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-12T04:42:39Z |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- squad
model-index:
- name: distilbert-base-uncased-finetuned-squad
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7677
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 63 | 4.1121 |
| No log | 2.0 | 126 | 3.8248 |
| No log | 3.0 | 189 | 3.7677 |
### Framework versions
- Transformers 4.19.0
- Pytorch 1.11.0+cu113
- Datasets 2.2.1
- Tokenizers 0.12.1
|
robsoneng/TEST2ppo-LunarLander-v2
|
robsoneng
| 2022-05-12T18:00:43Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2022-05-12T18:00:00Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 173.17 +/- 30.58
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.