modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 12:27:52
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
528 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 12:27:19
card
stringlengths
11
1.01M
jthetzel/swin-tiny-patch4-window7-224-finetuned-eurosat
jthetzel
2023-07-16T20:01:23Z
213
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-16T19:41:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9822222222222222 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Accuracy: 0.9822 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2326 | 1.0 | 190 | 0.1175 | 0.9604 | | 0.1789 | 2.0 | 380 | 0.0765 | 0.9763 | | 0.1414 | 3.0 | 570 | 0.0604 | 0.9822 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
anindya64/alpaca-bank-issue-summarization-20b-EthurAI
anindya64
2023-07-16T20:00:19Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T20:00:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
DarwinAnim8or/Something-V2.2-OpenVINO
DarwinAnim8or
2023-07-16T20:00:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T19:16:43Z
--- license: creativeml-openrail-m --- # Something V2.2 OpenVINO This is a conversion of [NoCrypt's Something V2.2 model](https://huggingface.co/NoCrypt/SomethingV2_2) to OpenVINO format. The original model is a stable diffusion model that can generate realistic images from text input. ## What is OpenVINO? OpenVINO (Open Visual Inference and Neural network Optimization) is a free toolkit that facilitates the optimization and deployment of deep learning models on Intel hardware. It supports models trained with popular frameworks like TensorFlow, PyTorch, and more. It also provides a common API to run inference on various devices, such as CPU, GPU, VPU, FPGA, etc. ## Why use OpenVINO? OpenVINO can make it possible to run Stable Diffusion models (and others) on simply the CPU, rather than requiring a GPU, which can be expensive. The time to generate a 512x512 image, on HuggingFace's "CPU Upgrade" space, takes about 21~ seconds after warmup. For more details, see [this blogpost](https://huggingface.co/blog/stable-diffusion-inference-intel) ## Usage example TODO
s-nlp/ruRoberta-large-RuCoLa-v1
s-nlp
2023-07-16T19:56:06Z
9,059
0
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "fluency", "ru", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-28T12:46:04Z
--- language: - ru tags: - fluency --- This is a [ruRoberta-large](https://huggingface.co/sberbank-ai/ruRoberta-large) model trained on the [RuCoLa](https://rucola-benchmark.com/) dataset. It can be used to classify Russian sentences into fluent or non-fluent ones, where fluency is understood as linguistic acceptability. Training notebook: `task_oriented_TST/fluency/rucola_classifier_v1.ipynb` (in a private repo). Training parameters: * optimizer: Adam * `lr=2e-6` * `batch_size=32` * `epochs=10` * `clip_grad_norm=1.0` Test accuracy (on the [leaderboard](https://rucola-benchmark.com/leaderboard) this model is submitted as `ruroberta-base-cased-rucola-v1`): 0.81.
Meina/MeinaMix_V11
Meina
2023-07-16T19:53:46Z
6,643
35
diffusers
[ "diffusers", "safetensors", "art", "anime", "stable diffusion", "text-to-image", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T19:11:15Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image tags: - art - anime - stable diffusion --- MeinaMix Objective is to be able to do good art with little prompting. For examples and prompts, please checkout: https://civitai.com/models/7240/meinamix I have a discord server where you can post images that you generated, discuss prompt and/or ask for help. https://discord.gg/XC9nGZNDUd If you like one of my models and want to support their updates I've made a ko-fi page; https://ko-fi.com/meina where you can pay me a coffee <3 And a Patreon page; https://www.patreon.com/MeinaMix where you can support me and get acess to beta of my models! You may also try this model using Sinkin.ai: https://sinkin.ai/m/vln8Nwr MeinaMix and the other of Meinas will ALWAYS be FREE. Recommendations of use: Enable Quantization in K samplers. Hires.fix is needed for prompts where the character is far away in order to make decent images, it drastically improve the quality of face and eyes! Recommended parameters: Sampler: Euler a: 40 to 60 steps. Sampler: DPM++ SDE Karras: 20 to 30 steps. Sampler: DPM++ 2M Karras: 20 to 40 steps. CFG Scale: 7. Resolutions: 512x768, 512x1024 for Portrait! Resolutions: 768x512, 1024x512, 1536x512 for Landscape! Hires.fix: R-ESRGAN 4x+Anime6b, with 10 steps at 0.3 up to 0.5 denoising. Clip Skip: 2. Negatives: ' (worst quality, low quality:1.4), (zombie, sketch, interlocked fingers, comic) '
Talha185/speecht5_finetuned_urdu_TTS
Talha185
2023-07-16T19:53:22Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_13_0", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-14T10:59:46Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4799 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.558 | 8.61 | 1000 | 0.4964 | | 0.5232 | 17.22 | 2000 | 0.4879 | | 0.5114 | 25.83 | 3000 | 0.4811 | | 0.5009 | 34.45 | 4000 | 0.4799 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
rshrott/falcon-7b-instruct-ft-adapters
rshrott
2023-07-16T19:48:46Z
5
0
peft
[ "peft", "pytorch", "RefinedWebModel", "custom_code", "region:us" ]
null
2023-07-16T13:37:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
ailabturkiye/Sancak
ailabturkiye
2023-07-16T19:42:49Z
0
0
null
[ "region:us" ]
null
2023-07-16T19:38:41Z
--- license: openrail language: - tr tags: - music --- Yalnızca akustik ve canlı performanslar kullanılarak oluşturulan 16-17 dakikalık dataset ile yapıldı, 300 Epoch kullanıldı.
Dlychan/Tokyolagi
Dlychan
2023-07-16T19:42:33Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T19:41:10Z
--- license: creativeml-openrail-m ---
bskang/bskang8
bskang
2023-07-16T19:39:22Z
0
0
null
[ "en", "license:openrail", "region:us" ]
null
2023-07-16T12:18:21Z
--- language: - en license: openrail ---
ailabturkiye/CagriMertBakirci
ailabturkiye
2023-07-16T19:38:00Z
0
0
null
[ "region:us" ]
null
2023-07-16T19:31:12Z
--- license: openrail language: - tr tags: - music ---300 Epoch kullanılarak 20 dakikalık dataset ile oluşturuldu.
Araki/airoboros-33b-gpt4-1.4.1-PI-8192-GGML
Araki
2023-07-16T19:23:42Z
0
2
null
[ "llama", "ggml", "text-generation", "region:us" ]
text-generation
2023-07-16T00:08:31Z
--- pipeline_tag: text-generation tags: - llama - ggml --- **Quantization from:** [bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16](https://huggingface.co/bhenrym14/airoboros-33b-gpt4-1.4.1-PI-8192-fp16) **Converted to the GGML format with:** [llama.cpp master-6e7cca4 (JUL 15, 2023)](https://github.com/ggerganov/llama.cpp/releases/tag/master-6e7cca4) **Tested with:** [koboldcpp 1.35](https://github.com/LostRuins/koboldcpp/releases/tag/v1.35) **Example usage:** ``` koboldcpp.exe airoboros-33b-gpt4-1.4.1-PI-8192-ggmlv3.Q2_K.bin --threads 6 --linearrope --contextsize 8192 --stream --smartcontext --unbantokens --noblas ```
0sunfire0/poca-SoccerTwos_01
0sunfire0
2023-07-16T19:23:36Z
28
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-16T19:22:19Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 0sunfire0/poca-SoccerTwos_01 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
uraskargi/Reinforce-CartPole-v1
uraskargi
2023-07-16T19:19:02Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-04T14:20:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ailabturkiye/garbarius
ailabturkiye
2023-07-16T19:16:45Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T19:08:19Z
--- license: openrail language: - tr tags: - music --- Garbarius(Cem Saraç) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Garbarius(Cem Saraç) - RVC V2 200 Epoch **YouTuber Garbarius`un ses modelidir, Rvc V2 200 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: Bif-Tek#0505 ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
YojitShinde/ppo-Pyramids
YojitShinde
2023-07-16T19:13:01Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-16T19:11:49Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: YojitShinde/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ailabturkiye/umitozdag
ailabturkiye
2023-07-16T19:11:50Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T18:57:55Z
--- license: openrail language: - tr tags: - music --- Ümit Özdağ 200 Epochs [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Ümit Özdağ - RVC V2 200 Epoch **Zafer Partisi Başkanı Ümit Özdağ`nın ses modelidir, Rvc V2 200 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: Bif-Tek#0505 ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
0sunfire0/poca-SoccerTwos_00
0sunfire0
2023-07-16T19:10:43Z
433
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SoccerTwos", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-07-16T19:08:00Z
--- library_name: ml-agents tags: - SoccerTwos - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 0sunfire0/poca-SoccerTwos_00 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
PhysHunter/codeparrot-ds
PhysHunter
2023-07-16T18:57:05Z
142
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-15T08:41:52Z
--- license: mit tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 4.3352 | 0.31 | 1000 | 2.9747 | | 2.417 | 0.62 | 2000 | 2.3979 | | 2.0098 | 0.93 | 3000 | 2.1771 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
harithapliyal/distilbert-base-uncased-finetuned-ner
harithapliyal
2023-07-16T18:26:04Z
62
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-16T17:06:57Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: harithapliyal/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # harithapliyal/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1975 - Validation Loss: 0.0734 - Train Precision: 0.9049 - Train Recall: 0.9116 - Train F1: 0.9083 - Train Accuracy: 0.9793 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1975 | 0.0734 | 0.9049 | 0.9116 | 0.9083 | 0.9793 | 0 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4
hafidikhsan
2023-07-16T18:23:13Z
101
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T18:22:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v4 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7777 - Accuracy: 0.656 - F1: 0.6292 - Precision: 0.6618 - Recall: 0.656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.9582 | 1.0 | 500 | 0.9629 | 0.544 | 0.4585 | 0.5657 | 0.544 | | 0.8052 | 2.0 | 1000 | 0.8512 | 0.624 | 0.5916 | 0.6247 | 0.624 | | 0.8939 | 3.0 | 1500 | 0.8313 | 0.638 | 0.6071 | 0.6384 | 0.638 | | 0.6153 | 4.0 | 2000 | 0.8035 | 0.67 | 0.6442 | 0.6833 | 0.67 | | 0.5782 | 5.0 | 2500 | 0.8024 | 0.67 | 0.6458 | 0.6788 | 0.67 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
nastassja-bellisario/whisper-large-v2-15-07-2023
nastassja-bellisario
2023-07-16T18:13:57Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-15T14:45:57Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
NasimB/bnc-rarity-guten-rarity-all-shuffled
NasimB
2023-07-16T18:11:15Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T16:19:40Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: bnc-rarity-guten-rarity-all-shuffled results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bnc-rarity-guten-rarity-all-shuffled This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3339 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7139 | 0.29 | 500 | 5.6422 | | 5.3578 | 0.59 | 1000 | 5.2231 | | 5.0089 | 0.88 | 1500 | 4.9567 | | 4.734 | 1.17 | 2000 | 4.8207 | | 4.5784 | 1.46 | 2500 | 4.6900 | | 4.4685 | 1.76 | 3000 | 4.5924 | | 4.344 | 2.05 | 3500 | 4.5070 | | 4.1509 | 2.34 | 4000 | 4.4584 | | 4.1171 | 2.63 | 4500 | 4.3995 | | 4.0807 | 2.93 | 5000 | 4.3476 | | 3.8719 | 3.22 | 5500 | 4.3435 | | 3.8224 | 3.51 | 6000 | 4.3126 | | 3.8074 | 3.8 | 6500 | 4.2818 | | 3.6977 | 4.1 | 7000 | 4.2817 | | 3.5355 | 4.39 | 7500 | 4.2763 | | 3.5304 | 4.68 | 8000 | 4.2618 | | 3.5163 | 4.97 | 8500 | 4.2503 | | 3.3531 | 5.27 | 9000 | 4.2646 | | 3.341 | 5.56 | 9500 | 4.2625 | | 3.3401 | 5.85 | 10000 | 4.2622 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
mete12e3/123
mete12e3
2023-07-16T18:02:03Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-16T18:02:03Z
--- license: bigscience-openrail-m ---
NasimB/children_bnc_rarity_all_no_cut
NasimB
2023-07-16T17:50:30Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T15:57:37Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: children_bnc_rarity_all_no_cut results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # children_bnc_rarity_all_no_cut This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.7047 | 0.29 | 500 | 5.6398 | | 5.3501 | 0.58 | 1000 | 5.2066 | | 5.0056 | 0.88 | 1500 | 4.9588 | | 4.7258 | 1.17 | 2000 | 4.8173 | | 4.5734 | 1.46 | 2500 | 4.6948 | | 4.4663 | 1.75 | 3000 | 4.5804 | | 4.3402 | 2.05 | 3500 | 4.5071 | | 4.1471 | 2.34 | 4000 | 4.4576 | | 4.1137 | 2.63 | 4500 | 4.4027 | | 4.0777 | 2.92 | 5000 | 4.3468 | | 3.8629 | 3.22 | 5500 | 4.3449 | | 3.8078 | 3.51 | 6000 | 4.3108 | | 3.8044 | 3.8 | 6500 | 4.2763 | | 3.7029 | 4.09 | 7000 | 4.2803 | | 3.5324 | 4.39 | 7500 | 4.2741 | | 3.5239 | 4.68 | 8000 | 4.2585 | | 3.5091 | 4.97 | 8500 | 4.2454 | | 3.3521 | 5.26 | 9000 | 4.2592 | | 3.3357 | 5.56 | 9500 | 4.2584 | | 3.3348 | 5.85 | 10000 | 4.2573 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
nishchalprasad/lunar_lander_v2-PPO
nishchalprasad
2023-07-16T17:44:18Z
4
1
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T17:43:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO-MLP results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.46 +/- 24.94 name: mean_reward verified: false --- # **PPO-MLP** Agent playing **LunarLander-v2** This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
kanu03/my-cat
kanu03
2023-07-16T17:44:02Z
107
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T17:39:19Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-cat Dreambooth model trained by kanu03 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: OPJU101 Sample pictures of this concept: ![0](https://huggingface.co/kanu03/my-cat/resolve/main/sample_images/01.jpg)
Za88yes/Afriana
Za88yes
2023-07-16T17:43:07Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-07-16T17:41:00Z
--- license: bigscience-openrail-m ---
quangnguyennn/pokemon-lora-xformer
quangnguyennn
2023-07-16T17:29:24Z
2
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T13:08:13Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - quangnguyennn/pokemon-lora-xformer These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
ailabturkiye/thecihan
ailabturkiye
2023-07-16T17:29:03Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T17:24:11Z
--- license: openrail language: - tr tags: - music ---
odunola/transcriber-t5-v8-new
odunola
2023-07-16T17:23:29Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T16:37:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: transcriber-t5-v8-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # transcriber-t5-v8-new This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0818 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1008 | 0.72 | 500 | 0.1306 | | 0.069 | 1.43 | 1000 | 0.1227 | | 0.1052 | 2.15 | 1500 | 0.1209 | | 0.1017 | 2.86 | 2000 | 0.0992 | | 0.0828 | 3.58 | 2500 | 0.0919 | | 0.0471 | 4.29 | 3000 | 0.0927 | | 0.0769 | 5.01 | 3500 | 0.0849 | | 0.0732 | 5.72 | 4000 | 0.0862 | | 0.0801 | 6.44 | 4500 | 0.0857 | | 0.0428 | 7.15 | 5000 | 0.0815 | | 0.1119 | 7.87 | 5500 | 0.0790 | | 0.0692 | 8.58 | 6000 | 0.0780 | | 0.0684 | 9.3 | 6500 | 0.0818 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
magicsword/wy-mt-en-zh-3
magicsword
2023-07-16T17:21:53Z
111
1
transformers
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:magicsword/autotrain-data-wy-mt-en-zh", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2023-07-16T15:15:50Z
--- tags: - autotrain - translation language: - unk - unk datasets: - magicsword/autotrain-data-wy-mt-en-zh co2_eq_emissions: emissions: 61.92129308371724 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 74981139784 - CO2 Emissions (in grams): 61.9213 ## Validation Metrics - Loss: 2.222 - SacreBLEU: 12.575 - Gen len: 16.299
DanGalt/speecht5_finetuned_voxpopuli_fi
DanGalt
2023-07-16T17:11:18Z
82
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "text-to-speech", "fi", "dataset:facebook/voxpopuli", "license:mit", "endpoints_compatible", "region:us" ]
text-to-speech
2023-07-16T17:07:04Z
--- language: - fi license: mit tags: - generated_from_trainer - text-to-speech datasets: - facebook/voxpopuli model-index: - name: speecht5_finetuned_voxpopuli_fi results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_fi This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4436 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 150 - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.504 | 5.05 | 250 | 0.4645 | | 0.4882 | 10.1 | 500 | 0.4499 | | 0.467 | 15.15 | 750 | 0.4450 | | 0.4651 | 20.2 | 1000 | 0.4436 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_prompt_tuning_500_10_3000_8_e-1_s55555_v3_manual
KingKazma
2023-07-16T17:02:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T17:02:55Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0
gioca91/ppo-Huggy
gioca91
2023-07-16T17:00:31Z
10
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-16T17:00:21Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: gioca91/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ailabturkiye/azizyildirim
ailabturkiye
2023-07-16T16:47:56Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:37:16Z
--- license: openrail language: - tr tags: - music ---
iworeushankaonce/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
iworeushankaonce
2023-07-16T16:35:53Z
164
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "license:bsd-3-clause", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T15:19:49Z
--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3882 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4932 | 1.0 | 112 | 0.5325 | 0.86 | | 0.3541 | 2.0 | 225 | 0.6068 | 0.77 | | 0.5743 | 3.0 | 337 | 0.6356 | 0.83 | | 0.6256 | 4.0 | 450 | 0.4878 | 0.86 | | 0.0619 | 5.0 | 562 | 0.4262 | 0.88 | | 0.0044 | 6.0 | 675 | 0.3266 | 0.91 | | 0.0018 | 7.0 | 787 | 0.4827 | 0.87 | | 0.001 | 8.0 | 900 | 0.9245 | 0.82 | | 0.1854 | 9.0 | 1012 | 0.4256 | 0.89 | | 0.0001 | 10.0 | 1125 | 0.3898 | 0.9 | | 0.0001 | 11.0 | 1237 | 0.3873 | 0.9 | | 0.0001 | 12.0 | 1350 | 0.4064 | 0.91 | | 0.0 | 13.0 | 1462 | 0.3910 | 0.9 | | 0.0 | 14.0 | 1575 | 0.3924 | 0.9 | | 0.0001 | 15.0 | 1687 | 0.3917 | 0.91 | | 0.0 | 16.0 | 1800 | 0.3903 | 0.9 | | 0.0 | 17.0 | 1912 | 0.3900 | 0.89 | | 0.0 | 18.0 | 2025 | 0.3894 | 0.89 | | 0.0 | 19.0 | 2137 | 0.3886 | 0.9 | | 0.0 | 19.91 | 2240 | 0.3882 | 0.9 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ailabturkiye/ruhicenet
ailabturkiye
2023-07-16T16:33:36Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:23:27Z
--- license: openrail language: - tr tags: - music --- Ruhi Çenet'in "Kanunun Olmadığı Bir Şehirde 48 SAAT Geçirmek: Slab City" ve "Bu şehirdeki herkes neden aynı binada yaşıyor? Dünyanın En Tuhaf Şehri: Whittier/Alaska" videosuyla dakikalık dataset yaptığım model.
WasuratS/whisper-tiny-en-finetune-minds14
WasuratS
2023-07-16T16:33:30Z
90
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:PolyAI/minds14", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-16T13:49:35Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en-finetune-minds14 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3382526564344746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-tiny-en-finetune-minds14 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6541 - Wer Ortho: 0.3399 - Wer: 0.3383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.3136 | 3.57 | 100 | 0.4883 | 0.3640 | 0.3524 | | 0.0417 | 7.14 | 200 | 0.5146 | 0.3560 | 0.3442 | | 0.0066 | 10.71 | 300 | 0.5736 | 0.3411 | 0.3353 | | 0.0017 | 14.29 | 400 | 0.6040 | 0.3455 | 0.3418 | | 0.0013 | 17.86 | 500 | 0.6226 | 0.3393 | 0.3365 | | 0.0009 | 21.43 | 600 | 0.6352 | 0.3393 | 0.3365 | | 0.0007 | 25.0 | 700 | 0.6436 | 0.3399 | 0.3371 | | 0.0006 | 28.57 | 800 | 0.6492 | 0.3399 | 0.3383 | | 0.0006 | 32.14 | 900 | 0.6530 | 0.3399 | 0.3383 | | 0.0006 | 35.71 | 1000 | 0.6541 | 0.3399 | 0.3383 | ### Framework versions - Transformers 4.29.2 - Pytorch 1.13.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
Mehmetakif/Astra
Mehmetakif
2023-07-16T16:30:37Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:45:50Z
--- license: openrail language: - tr tags: - music ---
cassandraqs/shan_homework1
cassandraqs
2023-07-16T16:29:28Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T16:29:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0
casque/LactationV.1.1
casque
2023-07-16T16:25:30Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:23:40Z
--- license: creativeml-openrail-m ---
localmodels/LLaMA-65B-ggml
localmodels
2023-07-16T16:22:41Z
0
1
null
[ "region:us" ]
null
2023-07-16T16:22:41Z
--- duplicated_from: localmodels/LLM --- # LLaMA 65B ggml From Meta: https://ai.meta.com/blog/large-language-model-llama-meta-ai --- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0` Quantized using an older version of llama.cpp and compatible with llama.cpp from May 19, commit 2d5db48. ### k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K` Quantization methods compatible with latest llama.cpp from June 6, commit 2d43387. --- ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | llama-65b.ggmlv3.q2_K.bin | q2_K | 2 | 27.33 GB| 29.83 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. | | llama-65b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 34.55 GB| 37.05 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 31.40 GB| 33.90 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K | | llama-65b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 28.06 GB| 30.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors | | llama-65b.ggmlv3.q4_0.bin | q4_0 | 4 | 36.73 GB| 39.23 GB | Original quant method, 4-bit. | | llama-65b.ggmlv3.q4_1.bin | q4_1 | 4 | 40.81 GB| 43.31 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. | | llama-65b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 39.28 GB| 41.78 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K | | llama-65b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 36.73 GB| 39.23 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors | | llama-65b.ggmlv3.q5_0.bin | q5_0 | 5 | 44.89 GB| 47.39 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. | | llama-65b.ggmlv3.q5_1.bin | q5_1 | 5 | 48.97 GB| 51.47 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. | | llama-65b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 46.20 GB| 48.70 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K | | llama-65b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 44.89 GB| 47.39 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors | | llama-65b.ggmlv3.q6_K.bin | q6_K |6 | 53.56 GB| 56.06 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors | | llama-65b.ggmlv3.q8_0.bin | q8_0 | 8 | 69.370 GB | 71.87 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
ailabturkiye/KadirMisiroglu
ailabturkiye
2023-07-16T16:17:02Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:13:31Z
--- license: openrail language: - tr tags: - music --- Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
casque/Ultimate_ahegao
casque
2023-07-16T16:16:47Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:14:24Z
--- license: creativeml-openrail-m ---
ailabturkiye/Contra
ailabturkiye
2023-07-16T16:12:24Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-07-16T15:40:13Z
--- license: openrail --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Contra - RVC V2 300 Epoch **Rapper Contra'nın ses modelidir, Rvc V2 300 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: barisdark0 - YouTube: Barış (https://www.youtube.com/@barisdark) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
ailabturkiye/AliErbas
ailabturkiye
2023-07-16T16:11:53Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T16:09:33Z
--- license: openrail language: - tr tags: - music --- Diyanet İşleri Başkanı Sayın Ali Erbaş. Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
casque/AfterSexMS
casque
2023-07-16T16:09:39Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:07:19Z
--- license: creativeml-openrail-m ---
n0n1m/rvc-krosh
n0n1m
2023-07-16T16:08:15Z
0
0
null
[ "audio-to-audio", "license:openrail", "region:us" ]
audio-to-audio
2023-07-15T17:45:37Z
--- license: openrail pipeline_tag: audio-to-audio --- Just a model of Krash from Kikoriki/Gogoriki or Krosh from Smeshariki
ailabturkiye/deepturkishemre
ailabturkiye
2023-07-16T16:07:00Z
0
0
null
[ "region:us" ]
null
2023-07-16T16:06:04Z
--- license: openrail language: - tr tags: - music deepturkishemre 500 epoch
tyavika/Bert-QA-Pytorch-FULL
tyavika
2023-07-16T16:05:57Z
7
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-28T02:19:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Bert-QA-Pytorch-FULL results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert-QA-Pytorch-FULL This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1633 | 1.0 | 3290 | 1.0515 | | 0.8061 | 2.0 | 6580 | 1.0593 | | 0.533 | 3.0 | 9870 | 1.2154 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
casque/Creampie_v11
casque
2023-07-16T16:05:41Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T16:03:25Z
--- license: creativeml-openrail-m ---
ailabturkiye/deepturkisherdi
ailabturkiye
2023-07-16T16:05:24Z
0
0
null
[ "region:us" ]
null
2023-07-16T16:04:08Z
--- license: openrail language: - tr tags: - music deepturkisherdi 500 epoch
tyavika/lr1e5_bs16_layer1_Bert_CNN256LSTM128NoBid
tyavika
2023-07-16T16:04:21Z
77
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-11T10:51:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lr1e5_bs16_layer1_Bert_CNN256LSTM128NoBid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lr1e5_bs16_layer1_Bert_CNN256LSTM128NoBid This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2674 | 1.0 | 3290 | 1.1183 | | 0.8735 | 2.0 | 6580 | 1.0579 | | 0.6019 | 3.0 | 9870 | 1.1703 | | 0.3919 | 4.0 | 13160 | 1.3453 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
ailabturkiye/orkundk
ailabturkiye
2023-07-16T16:03:20Z
0
0
null
[ "region:us" ]
null
2023-07-16T16:02:09Z
--- license: openrail language: - tr tags: - music Orkundk (500 Epoch)
tyavika/lr1e5_bs16_layer1_Bert_CNN128LSTM64NoBid
tyavika
2023-07-16T16:02:27Z
7
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T15:52:35Z
--- tags: - generated_from_trainer model-index: - name: lr1e5_bs16_layer1_Bert_CNN128LSTM64NoBid results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lr1e5_bs16_layer1_Bert_CNN128LSTM64NoBid This model is a fine-tuned version of [tyavika/lr1e5_bs16_layer1_Bert_CNN128LSTM64NoBid](https://huggingface.co/tyavika/lr1e5_bs16_layer1_Bert_CNN128LSTM64NoBid) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
casque/CheekBulgeFellatioMS
casque
2023-07-16T15:58:04Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T15:56:44Z
--- license: creativeml-openrail-m ---
ailabturkiye/MehmetAliErbil
ailabturkiye
2023-07-16T15:57:00Z
0
1
null
[ "region:us" ]
null
2023-07-16T15:23:06Z
--- Lisans: openrail **Sunucu ve oyuncu Mehmet Ali Erbil'in Türkçe sesidir, Rvc V2 500 epoch olarak eğitilmiştir.** _Dataset ve train jawbone0 tarafından yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: jawbone0 - YouTube: JawBone0 (https://www.youtube.com/@JawBone0) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
ailabturkiye/muratabigf
ailabturkiye
2023-07-16T15:56:37Z
0
0
null
[ "region:us" ]
null
2023-07-16T15:54:53Z
--- license: openrail language: - tr tags: - music MuratAbiGF (600 Epoch)
NasimB/rarity-all-guten-2p5k-cbt-p5k-mixed
NasimB
2023-07-16T15:56:16Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T14:02:13Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: rarity-all-guten-2p5k-cbt-p5k-mixed results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # rarity-all-guten-2p5k-cbt-p5k-mixed This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 6.6916 | 0.29 | 500 | 5.6242 | | 5.3287 | 0.59 | 1000 | 5.1956 | | 4.9961 | 0.88 | 1500 | 4.9421 | | 4.7198 | 1.17 | 2000 | 4.8015 | | 4.5643 | 1.47 | 2500 | 4.6835 | | 4.4523 | 1.76 | 3000 | 4.5745 | | 4.3273 | 2.06 | 3500 | 4.4993 | | 4.1372 | 2.35 | 4000 | 4.4498 | | 4.1052 | 2.64 | 4500 | 4.3880 | | 4.0721 | 2.94 | 5000 | 4.3409 | | 3.8586 | 3.23 | 5500 | 4.3325 | | 3.8079 | 3.52 | 6000 | 4.3061 | | 3.7897 | 3.82 | 6500 | 4.2690 | | 3.678 | 4.11 | 7000 | 4.2702 | | 3.5266 | 4.4 | 7500 | 4.2641 | | 3.5165 | 4.7 | 8000 | 4.2488 | | 3.5069 | 4.99 | 8500 | 4.2361 | | 3.3367 | 5.28 | 9000 | 4.2512 | | 3.3295 | 5.58 | 9500 | 4.2494 | | 3.3275 | 5.87 | 10000 | 4.2480 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
casque/licking_my_dick.sd.v1.2
casque
2023-07-16T15:51:07Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T15:48:28Z
--- license: creativeml-openrail-m ---
ailabturkiye/baso
ailabturkiye
2023-07-16T15:50:27Z
0
1
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:36:49Z
--- license: openrail language: - tr tags: - music --- Başo'nun "KAÇIRILAN YOUTUBER MARINA JOYCE'UN HİKAYESİ GERÇEK MİYDİ?" videosuyla yaptığım ses modeli.
localmodels/WizardCoder-15B-V1.0-GPTQ
localmodels
2023-07-16T15:44:39Z
7
0
transformers
[ "transformers", "gpt_bigcode", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T15:44:39Z
--- duplicated_from: localmodels/LLM --- # WizardCoder 15B 1.0 GPTQ From: https://huggingface.co/WizardLM/WizardCoder-15B-V1.0 --- ## Prompt template ``` Below is an instruction that describes a task. Write a response that appropriately completes the request ### Instruction: prompt ### Response: ``` --- ## Model * gptq_model-4bit--1g.safetensors * Works with AutoGPTQ in CUDA or Triton modes. * Does not work with GPTQ-for-LLaMa. * Parameters: Groupsize = -1. --act-order. --- # WizardCoder: Empowering Code Large Language Models with Evol-Instruct To develop our WizardCoder model, we begin by adapting the Evol-Instruct method specifically for coding tasks. This involves tailoring the prompt to the domain of code-related instructions. Subsequently, we fine-tune the Code LLM, StarCoder, utilizing the newly created instruction-following training set. ## News - 🔥 Our **WizardCoder-15B-v1.0** model achieves the **57.3 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval), which is **22.3** points higher than the SOTA open-source Code LLMs. - 🔥 We released **WizardCoder-15B-v1.0** trained with **78k** evolved code instructions. Please checkout the [Model Weights](https://huggingface.co/WizardLM/WizardCoder-15B-V1.0), and [Paper](). - &#x1F4E3; Please refer to our Twitter account https://twitter.com/WizardLM_AI and HuggingFace Repo https://huggingface.co/WizardLM . We will use them to announce any new release at the 1st time. ## Comparing WizardCoder with the Closed-Source Models. 🔥 The following figure shows that our **WizardCoder attains the third position in this benchmark**, surpassing Claude-Plus (59.8 vs. 53.0) and Bard (59.8 vs. 44.5). Notably, our model exhibits a substantially smaller size compared to these models. <p align="center" width="100%"> <a ><img src="https://raw.githubusercontent.com/nlpxucan/WizardLM/main/WizardCoder/imgs/pass1.png" alt="WizardCoder" style="width: 86%; min-width: 300px; display: block; margin: auto;"></a> </p> ❗**Note: In this study, we copy the scores for HumanEval and HumanEval+ from the [LLM-Humaneval-Benchmarks](https://github.com/my-other-github-account/llm-humaneval-benchmarks). Notably, all the mentioned models generate code solutions for each problem utilizing a **single attempt**, and the resulting pass rate percentage is reported. Our **WizardCoder** generates answers using greedy decoding and tests with the same [code](https://github.com/evalplus/evalplus).** ## Comparing WizardCoder with the Open-Source Models. The following table clearly demonstrates that our **WizardCoder** exhibits a substantial performance advantage over all the open-source models. ❗**If you are confused with the different scores of our model (57.3 and 59.8), please check the Notes.** | Model | HumanEval Pass@1 | MBPP Pass@1 | |------------------|------------------|-------------| | CodeGen-16B-Multi| 18.3 |20.9 | | CodeGeeX | 22.9 |24.4 | | LLaMA-33B | 21.7 |30.2 | | LLaMA-65B | 23.7 |37.7 | | PaLM-540B | 26.2 |36.8 | | PaLM-Coder-540B | 36.0 |47.0 | | PaLM 2-S | 37.6 |50.0 | | CodeGen-16B-Mono | 29.3 |35.3 | | Code-Cushman-001 | 33.5 |45.9 | | StarCoder-15B | 33.6 |43.6* | | InstructCodeT5+ | 35.0 |-- | | WizardLM-30B 1.0| 37.8 |-- | | WizardCoder-15B 1.0 | **57.3** |**51.8** | ❗**Note: The reproduced result of StarCoder on MBPP.** ❗**Note: The above table conducts a comprehensive comparison of our **WizardCoder** with other models on the HumanEval and MBPP benchmarks. We adhere to the approach outlined in previous studies by generating **20 samples** for each problem to estimate the pass@1 score and evaluate with the same [code](https://github.com/openai/human-eval/tree/master). The scores of GPT4 and GPT3.5 reported by [OpenAI](https://openai.com/research/gpt-4) are 67.0 and 48.1 (maybe these are the early version GPT4&3.5).** ## Call for Feedbacks We welcome everyone to use your professional and difficult instructions to evaluate WizardCoder, and show us examples of poor performance and your suggestions in the [issue discussion](https://github.com/nlpxucan/WizardLM/issues) area. We are focusing on improving the Evol-Instruct now and hope to relieve existing weaknesses and issues in the the next version of WizardCoder. After that, we will open the code and pipeline of up-to-date Evol-Instruct algorithm and work with you together to improve it. ## Fine-tuning We fine-tune WizardCoder using the modified code `train.py` from [Llama-X](https://github.com/AetherCortex/Llama-X). We fine-tune StarCoder-15B with the following hyperparameters: | Hyperparameter | StarCoder-15B | |----------------|---------------| | Batch size | 512 | | Learning rate | 2e-5 | | Epochs | 3 | | Max length | 2048 | | Warmup step | 30 | | LR scheduler | cosine | To reproduce our fine-tuning of WizardCoder, please follow the following steps: 1. According to the instructions of [Llama-X](https://github.com/AetherCortex/Llama-X), install the environment, download the training code, and deploy. (Note: `deepspeed==0.9.2` and `transformers==4.29.2`) 2. Replace the `train.py` with the `train_wizardcoder.py` in our repo (`src/train_wizardcoder.py`) 3. Login Huggingface: ```bash huggingface-cli login ``` 4. Execute the following training command: ```bash deepspeed train_wizardcoder.py \ --model_name_or_path "bigcode/starcoder" \ --data_path "/your/path/to/code_instruction_data.json" \ --output_dir "/your/path/to/ckpt" \ --num_train_epochs 3 \ --model_max_length 2048 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 50 \ --save_total_limit 2 \ --learning_rate 2e-5 \ --warmup_steps 30 \ --logging_steps 2 \ --lr_scheduler_type "cosine" \ --report_to "tensorboard" \ --gradient_checkpointing True \ --deepspeed configs/deepspeed_config.json \ --fp16 True ``` ## Inference We provide the decoding script for WizardCoder, which reads a input file and generates corresponding responses for each sample, and finally consolidates them into an output file. You can specify `base_model`, `input_data_path` and `output_data_path` in `src\inference_wizardcoder.py` to set the decoding model, path of input file and path of output file. ```bash pip install jsonlines ``` The decoding command is: ``` python src\inference_wizardcoder.py \ --base_model "/your/path/to/ckpt" \ --input_data_path "/your/path/to/input/data.jsonl" \ --output_data_path "/your/path/to/output/result.jsonl" ``` The format of `data.jsonl` should be: ``` {"idx": 11, "Instruction": "Write a Python code to count 1 to 10."} {"idx": 12, "Instruction": "Write a Jave code to sum 1 to 10."} ``` The prompt for our WizardCoder in `src\inference_wizardcoder.py` is: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response: ``` ## Evaluation We provide the evaluation script on HumanEval for WizardCoder. 1. According to the instructions of [HumanEval](https://github.com/openai/human-eval), install the environment. 2. Run the following script to generate the answer. ```bash model="/path/to/your/model" temp=0.2 max_len=2048 pred_num=200 num_seqs_per_iter=2 output_path=preds/T${temp}_N${pred_num} mkdir -p ${output_path} echo 'Output path: '$output_path echo 'Model to eval: '$model # 164 problems, 21 per GPU if GPU=8 index=0 gpu_num=8 for ((i = 0; i < $gpu_num; i++)); do start_index=$((i * 21)) end_index=$(((i + 1) * 21)) gpu=$((i)) echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu} ((index++)) ( CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \ --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \ --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} ) & if (($index % $gpu_num == 0)); then wait; fi done ``` 3. Run the post processing code `src/process_humaneval.py` to collect the code completions from all answer files. ```bash output_path=preds/T${temp}_N${pred_num} echo 'Output path: '$output_path python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt evaluate_functional_correctness ${output_path}.jsonl ``` ## Citation Please cite the repo if you use the data or code in this repo. ``` @misc{luo2023wizardcoder, title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct}, author={Ziyang Luo and Can Xu and Pu Zhao and Qingfeng Sun and Xiubo Geng and Wenxiang Hu and Chongyang Tao and Jing Ma and Qingwei Lin and Daxin Jiang}, year={2023}, } ``` ## Disclaimer The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of WizardCoder is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.
Mi-ya/lumine1.5
Mi-ya
2023-07-16T15:44:11Z
0
0
null
[ "region:us" ]
null
2023-07-16T15:24:12Z
原神の蛍のlocon。花飾りの向きが逆になったり、衣装も細部が崩れるのはご愛敬ということで。 各種トレーニングパラメータが知りたいなら、webuiのadditional networkから見てくれ。 生成した画像も貼ってあるのでぜひ。 This is a model trained on the character "Lumine" from Genshin Impact. It's possible that the floral decorations might have a reversed orientation or that there could be minor flaws in the costumes. If you want to know about various training parameters, please check them on the additional network of the web UI.
ailabturkiye/DevletBahceli
ailabturkiye
2023-07-16T15:42:33Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:36:37Z
--- license: openrail language: - tr tags: - music --- Devlet Bahçeli.Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
ByteExplorer/dqn-SpaceInvadersNoFrameskip-v4
ByteExplorer
2023-07-16T15:35:29Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T15:34:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 652.50 +/- 292.48 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ByteExplorer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ByteExplorer -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ByteExplorer ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
PJ02/ppo-LunarLander-v2
PJ02
2023-07-16T15:34:40Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T15:33:44Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 222.29 +/- 46.53 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
lxyuan/distilbart-finetuned-summarization
lxyuan
2023-07-16T15:32:42Z
159
5
transformers
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "distilbart", "en", "dataset:cnn_dailymail", "dataset:xsum", "dataset:samsum", "dataset:ccdv/pubmed-summarization", "arxiv:2010.13002", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-09T05:23:35Z
--- tags: - generated_from_trainer - distilbart model-index: - name: distilbart-finetuned-summarization results: [] license: apache-2.0 datasets: - cnn_dailymail - xsum - samsum - ccdv/pubmed-summarization language: - en metrics: - rouge --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-finetuned-summarization This model is a further fine-tuned version of [distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the the combination of 4 different summarisation datasets: - [cnn_dailymail](https://huggingface.co/datasets/cnn_dailymail) - [samsum](https://huggingface.co/datasets/samsum) - [xsum](https://huggingface.co/datasets/xsum) - [ccdv/pubmed-summarization](https://huggingface.co/datasets/ccdv/pubmed-summarization) Please check out the offical model page and paper: - [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) - [Pre-trained Summarization Distillation](https://arxiv.org/abs/2010.13002) ## Training and evaluation data One can reproduce the dataset using the following code: ```python from datasets import DatasetDict, load_dataset from datasets import concatenate_datasets xsum_dataset = load_dataset("xsum") pubmed_dataset = load_dataset("ccdv/pubmed-summarization").rename_column("article", "document").rename_column("abstract", "summary") cnn_dataset = load_dataset("cnn_dailymail", '3.0.0').rename_column("article", "document").rename_column("highlights", "summary") samsum_dataset = load_dataset("samsum").rename_column("dialogue", "document") summary_train = concatenate_datasets([xsum_dataset["train"], pubmed_dataset["train"], cnn_dataset["train"], samsum_dataset["train"]]) summary_validation = concatenate_datasets([xsum_dataset["validation"], pubmed_dataset["validation"], cnn_dataset["validation"], samsum_dataset["validation"]]) summary_test = concatenate_datasets([xsum_dataset["test"], pubmed_dataset["test"], cnn_dataset["test"], samsum_dataset["test"]]) raw_datasets = DatasetDict() raw_datasets["train"] = summary_train raw_datasets["validation"] = summary_validation raw_datasets["test"] = summary_test ``` ## Inference example ```python from transformers import pipeline pipe = pipeline("text2text-generation", model="lxyuan/distilbart-finetuned-summarization") text = """SINGAPORE: The Singapore Police Force on Sunday (Jul 16) issued a warning over a fake SMS impersonating as its "anti-scam centre (ASC)". "In this scam variant, members of the public would receive a scam SMS from 'ASC', requesting them to download and install an “anti-scam” app to ensure the security of their devices," said the police. "The fake SMS would direct members of the public to a URL link leading to an Android Package Kit (APK) file, an application created for Android’s operating system purportedly from 'ASC'." The fake website has an icon to download the “anti-scam” app and once downloaded, Android users are asked to allow accessibility services to enable the service. While the fake app purportedly claims to help identify and prevent scams by providing comprehensive protection and security, downloading it may enable scammers to gain remote access to devices. "Members of the public are advised not to download any suspicious APK files on their devices as they may contain malware which will allow scammers to access and take control of the device remotely as well as to steal passwords stored in the device," said the police. Members of the public are advised to adopt the following precautionary measures, including adding anti-virus or anti-malware apps to their devices. They should also disable “install unknown app” or “unknown sources” in their phone settings. Users should check the developer information on the app listing as well as the number of downloads and user reviews to ensure it is a reputable and legitimate app, the police said. Any fraudulent transactions should be immediately reported to the banks. """ pipe(text) >>>"""The Singapore Police Force has issued a warning over a fake SMS impersonating as its "anti-scam centre" that asks members of the public to download an Android app to ensure the security of their devices, the force said on Sunday. The fake SMS would direct people to a URL link leading to an Android Package Kit (APK) file, an application created for Android’s operating system purportedly from "ASC". """ ``` ## Training procedure Notebook link: [here](https://github.com/LxYuan0420/nlp/blob/main/notebooks/distilbart-finetune-summarisation.ipynb) ### Training hyperparameters The following hyperparameters were used during training: - evaluation_strategy="epoch", - save_strategy="epoch", - logging_strategy="epoch", - learning_rate=2e-5, - per_device_train_batch_size=2, - per_device_eval_batch_size=2, - gradient_accumulation_steps=64, - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - weight_decay=0.01, - save_total_limit=2, - num_train_epochs=4, - predict_with_generate=True, - fp16=True, - push_to_hub=True ### Training results _Training is still in progress_ | Epoch | Training Loss | Validation Loss | Rouge1 | Rouge2 | RougeL | RougeLsum | Gen Len | |-------|---------------|-----------------|--------|--------|--------|-----------|---------| | 0 | 1.779700 | 1.719054 | 40.003900 | 17.907100 | 27.882500 | 34.888600 | 88.893600 | | 1 | 1.633800 | 1.710876 | 40.628800 | 18.470200 | 28.428100 | 35.577500 | 88.885000 | | 2 | 1.566100 | 1.694476 | 40.928500 | 18.695300 | 28.613300 | 35.813300 | 88.993700 | | 3 | 1.515700 | 1.691141 | 40.860500 | 18.696500 | 28.672700 | 35.734600 | 88.457300 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
manuu01/taxi_first_implementation
manuu01
2023-07-16T15:32:02Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T15:01:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi_first_implementation results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="manuu01/taxi_first_implementation", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ailabturkiye/CavsKarahanli
ailabturkiye
2023-07-16T15:31:16Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:27:29Z
--- license: openrail language: - tr tags: - music --- Yayıncı Cavs Karahanli.Modeli kullanarak oluşturulan hiç bir ses hakkında sorumluluk bana ait değildir.
gioca91/ppo-LunarLander-v2
gioca91
2023-07-16T15:21:24Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T15:20:46Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 267.75 +/- 28.15 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ailabturkiye/OnurNaciOzturkler
ailabturkiye
2023-07-16T15:19:53Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:16:32Z
--- license: openrail language: - tr tags: - music --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Onur Naci Öztürkler - RVC V2 425 Epoch **YouTuber Onur Naci Öztürkler`in ses modelidir, Rvc V2 420 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: TLLH - Reddit: u/TLLHu - YouTube: AiVerseC (https://www.youtube.com/@AiVerseC) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
ailabturkiye/Porcay
ailabturkiye
2023-07-16T15:13:40Z
0
0
null
[ "music", "tr", "license:openrail", "region:us" ]
null
2023-07-16T15:08:01Z
--- license: openrail language: - tr tags: - music --- [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Porçay - RVC V2 300 Epoch **YouTuber Porçay`ın ses modelidir, Rvc V2 300 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: TLLH - Reddit: u/TLLHu - YouTube: AiVerseC (https://www.youtube.com/@AiVerseC) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
eddyyeo/dqn-SpaceInvadersNoFrameskip-v
eddyyeo
2023-07-16T15:05:32Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T15:04:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 611.50 +/- 127.42 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eddyyeo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eddyyeo -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga eddyyeo ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
TommasoBendinelli/ControllableNeuralSymbolicRegressionWeights
TommasoBendinelli
2023-07-16T15:03:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2023-07-16T14:45:22Z
--- license: mit --- Weights for demo of the paper "Controllable Neural Symbolic Regression": https://github.com/SymposiumOrganization/ControllableNeuralSymbolicRegression
hafidikhsan/wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v3
hafidikhsan
2023-07-16T15:00:06Z
103
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T14:58:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-english-pronunciation-evaluation-lr-v3 This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0729 - Accuracy: 0.774 - F1: 0.7738 - Precision: 0.7764 - Recall: 0.774 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8144 | 1.0 | 500 | 0.8235 | 0.598 | 0.5550 | 0.5856 | 0.598 | | 0.8264 | 2.0 | 1000 | 0.6951 | 0.682 | 0.6716 | 0.6805 | 0.682 | | 0.5219 | 3.0 | 1500 | 0.7580 | 0.742 | 0.7384 | 0.7395 | 0.742 | | 0.2354 | 4.0 | 2000 | 1.0238 | 0.75 | 0.7443 | 0.7453 | 0.75 | | 0.1291 | 5.0 | 2500 | 1.0922 | 0.762 | 0.7598 | 0.7604 | 0.762 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
manuu01/q-FrozenLake-v1-4x4-noSlippery
manuu01
2023-07-16T14:57:47Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T14:57:25Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="manuu01/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Jonathaniu/alpaca-breast-cancer-13b-mix_data_2
Jonathaniu
2023-07-16T14:52:46Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-16T14:52:26Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False ### Framework versions - PEFT 0.4.0.dev0
rushi777/falcon-7b-qlora-chat-support-test-1
rushi777
2023-07-16T14:42:29Z
2
0
peft
[ "peft", "region:us" ]
null
2023-07-16T14:01:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0.dev0
Saideva/title_generation
Saideva
2023-07-16T14:38:55Z
107
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-16T14:10:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: title_generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # title_generation This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 41.5236 - Rouge2: 17.5894 - Rougel: 37.2852 - Rougelsum: 37.2749 - Gen Len: 13.3542 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0 | 1.0 | 3748 | nan | 41.5236 | 17.5894 | 37.2852 | 37.2749 | 13.3542 | | 0.0 | 2.0 | 7496 | nan | 41.5236 | 17.5894 | 37.2852 | 37.2749 | 13.3542 | | 0.0 | 3.0 | 11244 | nan | 41.5236 | 17.5894 | 37.2852 | 37.2749 | 13.3542 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
margosabry/food_classifier
margosabry
2023-07-16T14:28:12Z
63
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-16T13:50:22Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: margosabry/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # margosabry/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3853 - Validation Loss: 0.3150 - Train Accuracy: 0.928 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 2.8055 | 1.6705 | 0.808 | 0 | | 1.2418 | 0.8233 | 0.883 | 1 | | 0.7004 | 0.5248 | 0.912 | 2 | | 0.5037 | 0.3802 | 0.926 | 3 | | 0.3853 | 0.3150 | 0.928 | 4 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Datasets 2.13.1 - Tokenizers 0.13.3
SwampMan/a2c-PandaReachDense-v2
SwampMan
2023-07-16T14:22:23Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T14:19:26Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.61 +/- 0.69 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
atiiisham988/speecht5_finetuned_voxpopuli_nl
atiiisham988
2023-07-16T14:16:09Z
75
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_13_0", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-16T05:30:30Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5583 | 8.61 | 1000 | 0.4978 | | 0.5238 | 17.22 | 2000 | 0.4833 | | 0.5075 | 25.83 | 3000 | 0.4763 | | 0.5026 | 34.45 | 4000 | 0.4763 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
huggingFacing/ddpm-butterflies-128
huggingFacing
2023-07-16T14:11:21Z
0
0
diffusers
[ "diffusers", "en", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2023-07-16T14:09:03Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: /content/drive/MyDrive/image_and_text metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `/content/drive/MyDrive/image_and_text` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/Tian7/ddpm-butterflies-128/tensorboard?#scalars)
olegs/distil-ast-audioset-finetuned-gtzan
olegs
2023-07-16T14:09:35Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:bookbot/distil-ast-audioset", "base_model:finetune:bookbot/distil-ast-audioset", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-07-16T13:02:16Z
--- license: apache-2.0 base_model: bookbot/distil-ast-audioset tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distil-ast-audioset-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-ast-audioset-finetuned-gtzan This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5022 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8727 | 1.0 | 113 | 0.6650 | 0.81 | | 0.6665 | 2.0 | 226 | 0.7639 | 0.74 | | 0.5306 | 3.0 | 339 | 0.6683 | 0.76 | | 0.2793 | 4.0 | 452 | 0.7423 | 0.82 | | 0.0867 | 5.0 | 565 | 0.6301 | 0.85 | | 0.0156 | 6.0 | 678 | 0.8905 | 0.83 | | 0.2298 | 7.0 | 791 | 0.4492 | 0.92 | | 0.0073 | 8.0 | 904 | 0.9028 | 0.83 | | 0.0664 | 9.0 | 1017 | 0.6387 | 0.85 | | 0.0001 | 10.0 | 1130 | 0.5022 | 0.87 | | 0.0001 | 11.0 | 1243 | 0.4047 | 0.91 | | 0.0 | 12.0 | 1356 | 0.3988 | 0.92 | | 0.0 | 13.0 | 1469 | 0.6225 | 0.91 | | 0.0 | 14.0 | 1582 | 0.6075 | 0.86 | | 0.0 | 15.0 | 1695 | 0.5259 | 0.89 | | 0.0 | 16.0 | 1808 | 0.5014 | 0.92 | | 0.0 | 17.0 | 1921 | 0.5004 | 0.93 | | 0.0 | 18.0 | 2034 | 0.5008 | 0.93 | | 0.0 | 19.0 | 2147 | 0.5022 | 0.93 | | 0.0 | 20.0 | 2260 | 0.5022 | 0.93 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
lucasbertola/ppo-SnowballTarget
lucasbertola
2023-07-16T14:08:18Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-16T14:08:12Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: lucasbertola/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
arham061/speecht5_finetuned_voxpopuli_nl
arham061
2023-07-16T14:04:23Z
82
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "dataset:common_voice_13_0", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-14T07:08:15Z
--- license: mit tags: - generated_from_trainer datasets: - common_voice_13_0 model-index: - name: speecht5_finetuned_voxpopuli_nl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # speecht5_finetuned_voxpopuli_nl This model is a fine-tuned version of [arham061/speecht5_finetuned_voxpopuli_nl](https://huggingface.co/arham061/speecht5_finetuned_voxpopuli_nl) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5058 | 7.74 | 1000 | 0.5431 | | 0.4938 | 15.49 | 2000 | 0.5487 | | 0.4909 | 23.23 | 3000 | 0.5508 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
antoniodee/fin-tench
antoniodee
2023-07-16T13:48:41Z
0
0
null
[ "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-16T13:43:49Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### fin_tench Dreambooth model trained by antoniodee with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
NasimB/all-base-log-rarity-all-iorder-6p6k-mostf
NasimB
2023-07-16T13:35:19Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-16T11:47:28Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: all-base-log-rarity-all-iorder-6p6k-mostf results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-base-log-rarity-all-iorder-6p6k-mostf This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.3355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.7617 | 0.31 | 500 | 5.6560 | | 5.4151 | 0.63 | 1000 | 5.2202 | | 5.053 | 0.94 | 1500 | 4.9736 | | 4.7741 | 1.25 | 2000 | 4.8215 | | 4.6209 | 1.56 | 2500 | 4.6901 | | 4.5193 | 1.88 | 3000 | 4.5791 | | 4.3095 | 2.19 | 3500 | 4.5212 | | 4.2051 | 2.5 | 4000 | 4.4594 | | 4.1681 | 2.82 | 4500 | 4.3972 | | 4.0255 | 3.13 | 5000 | 4.3774 | | 3.8818 | 3.44 | 5500 | 4.3445 | | 3.8727 | 3.75 | 6000 | 4.3065 | | 3.794 | 4.07 | 6500 | 4.3009 | | 3.5892 | 4.38 | 7000 | 4.2905 | | 3.5866 | 4.69 | 7500 | 4.2762 | | 3.5698 | 5.01 | 8000 | 4.2626 | | 3.3916 | 5.32 | 8500 | 4.2744 | | 3.393 | 5.63 | 9000 | 4.2730 | | 3.3874 | 5.94 | 9500 | 4.2723 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
AnandSingh/Wizard-Vicuna-13B-Uncensored-HF_QnA
AnandSingh
2023-07-16T13:29:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T13:28:53Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
zfz/Cuteyukimix
zfz
2023-07-16T13:27:33Z
0
0
null
[ "region:us" ]
null
2023-06-29T12:17:48Z
https://civitai.com/user/newlifezfztty761/models My personal space on civitai.com
WALIDALI/lyrieldiff
WALIDALI
2023-07-16T12:55:45Z
2
1
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-16T12:50:56Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### LyrielDiff Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
asedmammad/Vicuna-7B-vanilla-1.1-GGML
asedmammad
2023-07-16T12:50:47Z
0
1
null
[ "llama", "vicuna", "text-generation-inference", "region:us" ]
null
2023-07-16T09:47:34Z
--- inference: false tags: - llama - vicuna - text-generation-inference --- # Ejafa's Vicuna Vanilla 1.1 7B GGML These files are GGML format model files for [Ejafa's Vicuna Vanilla 1.1 7B](https://huggingface.co/Ejafa/vicuna_7B_vanilla_1.1). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 8 -ngl 32 -m vicuna_7B_vanilla_1.1.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "prompt goes here" ``` Change `-t 8` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` ## Compatibility I have uploded bothe the original llama.cpp quant methods (`q4_0, q4_1, q5_0, q5_1, q8_0`) as well as the new k-quant methods (`q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`). Please refer to [llama.cpp](https://github.com/ggerganov/llama.cpp) and [TheBloke](https://huggingface.co/TheBloke)'s GGML models for further explanation. ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). <!-- footer start --> ## Thanks Thanks to [TheBloke](https://huggingface.co/TheBloke) for inspiration and providing almost all of the readme here! Thanks to [Ejafa](https://huggingface.co/Ejafa) for providing checkpoints of the model. Thanks to [Georgi Gerganov](https://github.com/ggerganov) and all of the awesome people in the AI community.
larry-jiang/RL
larry-jiang
2023-07-16T12:48:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T12:47:54Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.32 +/- 20.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
headflame02/AchaxV5
headflame02
2023-07-16T12:37:19Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-16T12:37:16Z
--- license: creativeml-openrail-m ---
Rihong/ppo-LunarLander-v2
Rihong
2023-07-16T12:20:44Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T12:19:16Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 272.93 +/- 18.31 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
joserodr68/Reinforce-cartpole
joserodr68
2023-07-16T12:12:28Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-16T12:11:19Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
sjdata/speecht5_finetuned_single_speaker_en_test_librivox
sjdata
2023-07-16T12:09:19Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "speecht5", "text-to-audio", "generated_from_trainer", "en", "dataset:speecht5_finetuned_single_speaker_en_test_librivox", "license:mit", "endpoints_compatible", "region:us" ]
text-to-audio
2023-07-13T12:31:39Z
--- language: - en license: mit tags: - generated_from_trainer datasets: - speecht5_finetuned_single_speaker_en_test_librivox model-index: - name: SpeechT5 Single Speaker test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SpeechT5 Single Speaker test This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the single_speaker_en_test_librivox dataset. It achieves the following results on the evaluation set: - Loss: 0.4215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4809 | 1.78 | 1000 | 0.4215 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3
indiaLLMs/dolly-llama-3b
indiaLLMs
2023-07-16T11:42:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-16T11:42:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0.dev0
chrishoertnagl/dolly-v2-3b-chris
chrishoertnagl
2023-07-16T11:20:19Z
4
0
peft
[ "peft", "region:us" ]
null
2023-07-15T10:45:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0