modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-30 18:26:50
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-30 18:26:48
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
jonatasgrosman/exp_w2v2t_ru_no-pretraining_s895
|
jonatasgrosman
| 2022-07-11T08:30:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:29:32Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_no-pretraining_s895
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_no-pretraining_s727
|
jonatasgrosman
| 2022-07-11T08:26:08Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:25:25Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_no-pretraining_s727
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
ybelkada/japanese-dummy-tokenizer
|
ybelkada
| 2022-07-11T08:24:32Z | 4 | 1 |
transformers
|
[
"transformers",
"ja",
"japanese",
"tokenizer",
"en",
"dataset:snow_simplified_japanese_corpus",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2022-04-06T12:31:37Z |
---
language:
- en
- ja
license: mit
datasets:
- snow_simplified_japanese_corpus
tags:
- ja
- japanese
- tokenizer
widget:
- text: "誰が一番に着くか私には分かりません。"
---
# Japanese Dummy Tokenizer
Repository containing a dummy Japanese Tokenizer trained on ```snow_simplified_japanese_corpus``` dataset. The tokenizer has been trained using Hugging Face datasets in a streaming manner.
## Intended uses & limitations
You can use this tokenizer to tokenize Japanese sentences.
## How to use it
```
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ybelkada/japanese-dummy-tokenizer")
```
## How to train the tokenizer
Check the file ```tokenizer.py```, you can freely adapt it to other datasets. This tokenizer is based on the tokenizer from ```csebuetnlp/mT5_multilingual_XLSum```.
|
jonatasgrosman/exp_w2v2t_ru_vp-sv_s658
|
jonatasgrosman
| 2022-07-11T08:21:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:20:56Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_vp-sv_s658
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_vp-sv_s515
|
jonatasgrosman
| 2022-07-11T08:14:49Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:14:00Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_vp-sv_s515
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_hubert_s732
|
jonatasgrosman
| 2022-07-11T08:10:54Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:10:28Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_hubert_s732
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_hubert_s451
|
jonatasgrosman
| 2022-07-11T08:04:23Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:03:58Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_hubert_s451
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_unispeech_s607
|
jonatasgrosman
| 2022-07-11T08:01:24Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T08:00:59Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_unispeech_s607
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_unispeech_s132
|
jonatasgrosman
| 2022-07-11T07:58:18Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:57:53Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_unispeech_s132
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_xlsr-53_s911
|
jonatasgrosman
| 2022-07-11T07:52:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:51:37Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_xlsr-53_s911
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_vp-100k_s732
|
jonatasgrosman
| 2022-07-11T07:39:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:38:17Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_vp-100k_s732
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_vp-100k_s69
|
jonatasgrosman
| 2022-07-11T07:35:45Z | 5 | 1 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:35:04Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_vp-100k_s69
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s904
|
jonatasgrosman
| 2022-07-11T07:32:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:31:43Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_wav2vec2_s904
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
infinitejoy/MLAgents-PushBlock
|
infinitejoy
| 2022-07-11T07:26:44Z | 11 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"unity-ml-agents",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-PushBlock",
"region:us"
] |
reinforcement-learning
| 2022-07-11T07:26:25Z |
---
tags:
- unity-ml-agents
- ml-agents
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-PushBlock
library_name: ml-agents
---
# **ppo** Agent playing **PushBlock**
This is a trained model of a **ppo** agent playing **PushBlock** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-PushBlock
2. Step 1: Write your model_id: infinitejoy/MLAgents-PushBlock
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
jonatasgrosman/exp_w2v2t_ru_wav2vec2_s108
|
jonatasgrosman
| 2022-07-11T07:25:26Z | 4 | 1 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"ru",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:24:42Z |
---
language:
- ru
license: apache-2.0
tags:
- automatic-speech-recognition
- ru
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_ru_wav2vec2_s108
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (ru)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-it_s449
|
jonatasgrosman
| 2022-07-11T07:20:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:19:25Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-it_s449
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-it_s149
|
jonatasgrosman
| 2022-07-11T07:16:32Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:15:48Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-it_s149
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_r-wav2vec2_s925
|
jonatasgrosman
| 2022-07-11T07:09:56Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:09:27Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_r-wav2vec2_s925
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_r-wav2vec2_s170
|
jonatasgrosman
| 2022-07-11T07:01:02Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T07:00:22Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_r-wav2vec2_s170
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_xls-r_s79
|
jonatasgrosman
| 2022-07-11T06:57:53Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:57:05Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xls-r_s79
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_xls-r_s831
|
jonatasgrosman
| 2022-07-11T06:54:35Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:53:49Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xls-r_s831
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_xls-r_s133
|
jonatasgrosman
| 2022-07-11T06:51:13Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:50:31Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xls-r_s133
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_unispeech-sat_s715
|
jonatasgrosman
| 2022-07-11T06:47:42Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech-sat",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:47:15Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_unispeech-sat_s715
Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
hellennamulinda/eng-lug
|
hellennamulinda
| 2022-07-11T06:45:00Z | 10 | 0 |
transformers
|
[
"transformers",
"pytorch",
"marian",
"text2text-generation",
"autotrain",
"unk",
"co2_eq_emissions",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-07-01T13:10:28Z |
---
tags: autotrain
language: unk
widget:
- text: "I love AutoTrain 🤗"
co2_eq_emissions: 0.04087910671538076
---
# Model Trained Using AutoTrain
- Problem type: Translation
- Model ID: 1026034854
- CO2 Emissions (in grams): 0.04087910671538076
## Validation Metrics
- Loss: 1.0871405601501465
- Rouge1: 55.8225
- Rouge2: 34.1547
- RougeL: 54.4274
- RougeLsum: 54.408
- Gen Len: 23.178
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/hellennamulinda/autotrain-eng-lug-1070637495
```
|
jonatasgrosman/exp_w2v2t_nl_vp-nl_s158
|
jonatasgrosman
| 2022-07-11T06:26:19Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:25:51Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-nl_s158
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-nl_s424
|
jonatasgrosman
| 2022-07-11T06:23:18Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:22:52Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-nl_s424
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-es_s576
|
jonatasgrosman
| 2022-07-11T06:17:18Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:16:52Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-es_s576
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-fr_s417
|
jonatasgrosman
| 2022-07-11T06:08:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:07:50Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-fr_s417
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-fr_s156
|
jonatasgrosman
| 2022-07-11T06:05:18Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:04:52Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-fr_s156
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_unispeech-ml_s911
|
jonatasgrosman
| 2022-07-11T06:02:17Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T06:01:52Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_unispeech-ml_s911
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_unispeech-ml_s498
|
jonatasgrosman
| 2022-07-11T05:58:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T05:57:58Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_unispeech-ml_s498
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_unispeech-ml_s23
|
jonatasgrosman
| 2022-07-11T05:55:28Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T05:55:01Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_unispeech-ml_s23
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
AndyChiang/bert-test
|
AndyChiang
| 2022-07-11T05:50:10Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"bert",
"fill-mask",
"generated_from_keras_callback",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-07-11T03:34:14Z |
---
tags:
- generated_from_keras_callback
model-index:
- name: bert-test
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# bert-test
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: None
- training_precision: float32
### Training results
### Framework versions
- Transformers 4.20.1
- TensorFlow 2.8.2
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_nl_wavlm_s784
|
jonatasgrosman
| 2022-07-11T05:46:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T05:45:51Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_wavlm_s784
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_no-pretraining_s512
|
jonatasgrosman
| 2022-07-11T05:43:20Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T05:42:54Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_no-pretraining_s512
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_no-pretraining_s461
|
jonatasgrosman
| 2022-07-11T05:37:02Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T05:36:36Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_no-pretraining_s461
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_hubert_s319
|
jonatasgrosman
| 2022-07-11T04:36:03Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T04:35:38Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_hubert_s319
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_unispeech_s493
|
jonatasgrosman
| 2022-07-11T04:15:55Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T04:15:16Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_unispeech_s493
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s948
|
jonatasgrosman
| 2022-07-11T03:52:19Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T03:51:53Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xlsr-53_s948
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
emegona/finetuning-pysentimiento-war-tweets
|
emegona
| 2022-07-11T03:33:41Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-30T13:03:38Z |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-pysentimiento-war-tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-pysentimiento-war-tweets
This model is a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) on a dataset of 1500 tweets from Peruvian accounts. It achieves the following results on the evaluation set:
- Loss: 1.7689
- Accuracy: 0.7378
- F1: 0.7456
## Model description
This model in a fine-tuned version of [finiteautomata/beto-sentiment-analysis](https://huggingface.co/finiteautomata/beto-sentiment-analysis) using five labels: **pro_russia**, **against_ukraine**, **neutral**, **against_russia**, **pro_ukraine**.
## Intended uses & limitations
This model shall be used to classify text (more specifically, Spanish tweets) as expressing a position concerning the Russo-Ukrainian war.
## Training and evaluation data
We used an 80/20 training/test split on the aforementioned dataset.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s972
|
jonatasgrosman
| 2022-07-11T03:31:44Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T03:31:17Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xlsr-53_s972
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_xlsr-53_s799
|
jonatasgrosman
| 2022-07-11T03:28:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T03:27:38Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_xlsr-53_s799
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-100k_s772
|
jonatasgrosman
| 2022-07-11T03:19:21Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T03:18:34Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-100k_s772
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_nl_vp-100k_s899
|
jonatasgrosman
| 2022-07-11T03:12:37Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T03:11:52Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_vp-100k_s899
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
Lvxue/finetuned-mbart-large-10epoch
|
Lvxue
| 2022-07-11T03:11:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"mbart",
"text2text-generation",
"generated_from_trainer",
"en",
"ro",
"dataset:wmt16",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2022-07-08T07:40:58Z |
---
language:
- en
- ro
tags:
- generated_from_trainer
datasets:
- wmt16
model-index:
- name: finetuned-mbart-large-10epoch
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-mbart-large-10epoch
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on the wmt16 ro-en dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_nl_wav2vec2_s754
|
jonatasgrosman
| 2022-07-11T02:56:30Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"nl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T02:56:05Z |
---
language:
- nl
license: apache-2.0
tags:
- automatic-speech-recognition
- nl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_nl_wav2vec2_s754
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-it_s222
|
jonatasgrosman
| 2022-07-11T02:38:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T02:38:02Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-it_s222
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-it_s992
|
jonatasgrosman
| 2022-07-11T02:32:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T02:32:18Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-it_s992
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_xls-r_s662
|
jonatasgrosman
| 2022-07-11T01:42:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T01:41:33Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_xls-r_s662
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_xls-r_s107
|
jonatasgrosman
| 2022-07-11T01:33:16Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T01:32:51Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_xls-r_s107
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_xls-r_s448
|
jonatasgrosman
| 2022-07-11T01:23:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T01:22:44Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_xls-r_s448
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-nl_s797
|
jonatasgrosman
| 2022-07-11T00:49:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T00:48:59Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-nl_s797
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-nl_s354
|
jonatasgrosman
| 2022-07-11T00:31:29Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T00:31:05Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-nl_s354
Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-es_s95
|
jonatasgrosman
| 2022-07-11T00:13:50Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T00:13:09Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-es_s95
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-es_s3
|
jonatasgrosman
| 2022-07-11T00:07:58Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T00:07:13Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-es_s3
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-fr_s600
|
jonatasgrosman
| 2022-07-11T00:03:53Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-11T00:03:29Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-fr_s600
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_wavlm_s455
|
jonatasgrosman
| 2022-07-10T23:23:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T23:22:52Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_wavlm_s455
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_wavlm_s887
|
jonatasgrosman
| 2022-07-10T23:17:52Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T23:17:06Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_wavlm_s887
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_wavlm_s753
|
jonatasgrosman
| 2022-07-10T23:09:20Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T23:08:50Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_wavlm_s753
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_no-pretraining_s663
|
jonatasgrosman
| 2022-07-10T23:04:46Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T23:04:22Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_no-pretraining_s663
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_no-pretraining_s568
|
jonatasgrosman
| 2022-07-10T22:59:15Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:58:48Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_no-pretraining_s568
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_no-pretraining_s211
|
jonatasgrosman
| 2022-07-10T22:56:22Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:55:57Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_no-pretraining_s211
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-sv_s445
|
jonatasgrosman
| 2022-07-10T22:53:24Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:53:00Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-sv_s445
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
NimaBoscarino/STPushToHub-test
|
NimaBoscarino
| 2022-07-10T22:48:43Z | 1 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"distilbert",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2022-07-10T22:46:54Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# NimaBoscarino/STPushToHub-test
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('NimaBoscarino/STPushToHub-test')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('NimaBoscarino/STPushToHub-test')
model = AutoModel.from_pretrained('NimaBoscarino/STPushToHub-test')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=NimaBoscarino/STPushToHub-test)
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 360 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 4,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 144,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
jonatasgrosman/exp_w2v2t_et_vp-sv_s953
|
jonatasgrosman
| 2022-07-10T22:47:21Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:46:56Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-sv_s953
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_hubert_s390
|
jonatasgrosman
| 2022-07-10T22:44:26Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:44:02Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_hubert_s390
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_hubert_s507
|
jonatasgrosman
| 2022-07-10T22:41:25Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:40:39Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_hubert_s507
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_hubert_s118
|
jonatasgrosman
| 2022-07-10T22:38:12Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:37:32Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_hubert_s118
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_unispeech_s86
|
jonatasgrosman
| 2022-07-10T22:34:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:34:24Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_unispeech_s86
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
malinoori/wav2vec2-base-2
|
malinoori
| 2022-07-10T22:33:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:17:40Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-2
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.5953
- eval_wer: 0.3621
- eval_runtime: 54.4895
- eval_samples_per_second: 30.832
- eval_steps_per_second: 3.854
- epoch: 22.61
- step: 22500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_et_unispeech_s177
|
jonatasgrosman
| 2022-07-10T22:31:56Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:31:32Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_unispeech_s177
Fine-tuned [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
malinoori/wav2vec2-base-superb-demo-google-colab
|
malinoori
| 2022-07-10T22:23:31Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T21:31:43Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-base-superb-demo-google-colab
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-superb-demo-google-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.3795
- eval_wer: 0.3148
- eval_runtime: 26.4914
- eval_samples_per_second: 10.23
- eval_steps_per_second: 1.283
- epoch: 2.47
- step: 1500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.3
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_et_xlsr-53_s952
|
jonatasgrosman
| 2022-07-10T22:14:42Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:14:16Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_xlsr-53_s952
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_xlsr-53_s474
|
jonatasgrosman
| 2022-07-10T22:11:50Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T22:11:24Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_xlsr-53_s474
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-100k_s377
|
jonatasgrosman
| 2022-07-10T21:58:55Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T21:58:31Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-100k_s377
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_et_vp-100k_s756
|
jonatasgrosman
| 2022-07-10T21:23:08Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T21:22:43Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_vp-100k_s756
Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
elonmuskceo/tfjs-mobilenet-yay
|
elonmuskceo
| 2022-07-10T20:57:54Z | 0 | 0 | null |
[
"image-classification",
"tfjs",
"license:mit",
"region:us"
] |
image-classification
| 2022-07-10T20:57:46Z |
---
license: mit
tags:
- image-classification
- tfjs
---
## TensorFlow.js version of Mobilenet
Pushed from Web

|
jonatasgrosman/exp_w2v2t_et_wav2vec2_s112
|
jonatasgrosman
| 2022-07-10T20:49:17Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"et",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:48:53Z |
---
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- et
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_et_wav2vec2_s112
Fine-tuned [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) for speech recognition using the train split of [Common Voice 7.0 (et)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-it_s474
|
jonatasgrosman
| 2022-07-10T20:46:17Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:45:30Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-it_s474
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-it_s157
|
jonatasgrosman
| 2022-07-10T20:42:40Z | 8 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:42:16Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-it_s157
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-it_s265
|
jonatasgrosman
| 2022-07-10T20:39:45Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:39:20Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-it_s265
Fine-tuned [facebook/wav2vec2-large-it-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-it-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_r-wav2vec2_s72
|
jonatasgrosman
| 2022-07-10T20:29:31Z | 6 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:28:44Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_r-wav2vec2_s72
Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_xls-r_s471
|
jonatasgrosman
| 2022-07-10T20:25:56Z | 5 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:25:13Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_xls-r_s471
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_xls-r_s235
|
jonatasgrosman
| 2022-07-10T20:19:07Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T20:18:19Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_xls-r_s235
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-es_s187
|
jonatasgrosman
| 2022-07-10T19:55:58Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:55:34Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-es_s187
Fine-tuned [facebook/wav2vec2-large-es-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-es-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
charlieoneill/distilbert-base-uncased-gradient-clinic
|
charlieoneill
| 2022-07-10T19:52:13Z | 8 | 1 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"question-answering",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2022-05-09T08:06:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-uncased-gradient-clinic
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-gradient-clinic
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 36
- eval_batch_size: 36
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 24 | 0.8576 |
| No log | 2.0 | 48 | 0.3439 |
| No log | 3.0 | 72 | 0.2807 |
| No log | 4.0 | 96 | 0.2653 |
| No log | 5.0 | 120 | 0.2601 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.10.2
- Datasets 2.1.0
- Tokenizers 0.12.1
|
jonatasgrosman/exp_w2v2t_pl_vp-fr_s807
|
jonatasgrosman
| 2022-07-10T19:46:59Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:46:33Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-fr_s807
Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_unispeech-ml_s240
|
jonatasgrosman
| 2022-07-10T19:38:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:37:33Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_unispeech-ml_s240
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_unispeech-ml_s362
|
jonatasgrosman
| 2022-07-10T19:34:49Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:34:25Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_unispeech-ml_s362
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_unispeech-ml_s463
|
jonatasgrosman
| 2022-07-10T19:31:43Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"unispeech",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:31:11Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_unispeech-ml_s463
Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_wavlm_s859
|
jonatasgrosman
| 2022-07-10T19:28:38Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:28:13Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_wavlm_s859
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_wavlm_s515
|
jonatasgrosman
| 2022-07-10T19:25:40Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:25:15Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_wavlm_s515
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_wavlm_s250
|
jonatasgrosman
| 2022-07-10T19:22:48Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wavlm",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:22:24Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_wavlm_s250
Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_no-pretraining_s450
|
jonatasgrosman
| 2022-07-10T19:19:47Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:19:21Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_no-pretraining_s450
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_no-pretraining_s20
|
jonatasgrosman
| 2022-07-10T19:13:55Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:13:30Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_no-pretraining_s20
Fine-tuned randomly initialized wav2vec2 model for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-sv_s571
|
jonatasgrosman
| 2022-07-10T19:11:04Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:10:40Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-sv_s571
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-sv_s507
|
jonatasgrosman
| 2022-07-10T19:08:05Z | 3 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:07:40Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-sv_s507
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_vp-sv_s187
|
jonatasgrosman
| 2022-07-10T19:05:03Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T19:04:39Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_vp-sv_s187
Fine-tuned [facebook/wav2vec2-large-sv-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-sv-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
jonatasgrosman/exp_w2v2t_pl_hubert_s484
|
jonatasgrosman
| 2022-07-10T18:56:13Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"hubert",
"automatic-speech-recognition",
"pl",
"dataset:mozilla-foundation/common_voice_7_0",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2022-07-10T18:55:48Z |
---
language:
- pl
license: apache-2.0
tags:
- automatic-speech-recognition
- pl
datasets:
- mozilla-foundation/common_voice_7_0
---
# exp_w2v2t_pl_hubert_s484
Fine-tuned [facebook/hubert-large-ll60k](https://huggingface.co/facebook/hubert-large-ll60k) for speech recognition using the train split of [Common Voice 7.0 (pl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
|
ychenNLP/arabic-relation-extraction
|
ychenNLP
| 2022-07-10T18:47:45Z | 11 | 2 |
transformers
|
[
"transformers",
"pytorch",
"tf",
"tensorboard",
"bert",
"text-classification",
"BERT",
"Text Classification",
"relation",
"ar",
"en",
"dataset:ACE2005",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-06-29T19:45:34Z |
---
tags:
- BERT
- Text Classification
- relation
language:
- ar
- en
license: mit
datasets:
- ACE2005
---
# Arabic Relation Extraction Model
- [Github repo](https://github.com/edchengg/GigaBERT)
- Relation Extraction model based on [GigaBERTv4](https://huggingface.co/lanwuwei/GigaBERT-v4-Arabic-and-English).
- Model detail: mark two entities in the sentence with special markers (e.g., ```XXXX <PER> entity1 </PER> XXXXXXX <ORG> entity2 </ORG> XXXXX```). Then we use the BERT [CLS] representation to make a prediction.
- ACE2005 Training data: Arabic
- [Relation tags](https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/arabic-relations-guidelines-v6.5.pdf) including: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact, Gen-Affiliation
## Hyperparameters
- learning_rate=2e-5
- num_train_epochs=10
- weight_decay=0.01
## How to use
Workflow of a relation extraction model:
1. Input --> NER model --> Entities
2. Input sentence + Entity 1 + Entity 2 --> Relation Classification Model --> Relation Type
```python
>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AuotoModelForSequenceClassification
>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)
>>> re_model = AutoModelForSequenceClassification.from_pretrained("ychenNLP/arabic-relation-extraction")
>>> re_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-relation-extraction")
>>> re_pip = pipeline("text-classification", model=re_model, tokenizer=re_tokenizer)
def process_ner_output(entity_mention, inputs):
re_input = []
for idx1 in range(len(entity_mention) - 1):
for idx2 in range(idx1 + 1, len(entity_mention)):
ent_1 = entity_mention[idx1]
ent_2 = entity_mention[idx2]
ent_1_type = ent_1['entity_group']
ent_2_type = ent_2['entity_group']
ent_1_s = ent_1['start']
ent_1_e = ent_1['end']
ent_2_s = ent_2['start']
ent_2_e = ent_2['end']
new_re_input = ""
for c_idx, c in enumerate(inputs):
if c_idx == ent_1_s:
new_re_input += "<{}>".format(ent_1_type)
elif c_idx == ent_1_e:
new_re_input += "</{}>".format(ent_1_type)
elif c_idx == ent_2_s:
new_re_input += "<{}>".format(ent_2_type)
elif c_idx == ent_2_e:
new_re_input += "</{}>".format(ent_2_type)
new_re_input += c
re_input.append({"re_input": new_re_input, "arg1": ent_1, "arg2": ent_2, "input": inputs})
return re_input
def post_process_re_output(re_output, text_input, ner_output):
final_output = []
for idx, out in enumerate(re_output):
if out["label"] != 'O':
tmp = re_input[idx]
tmp['relation_type'] = out
tmp.pop('re_input', None)
final_output.append(tmp)
template = {"input": text_input,
"entity": ner_output,
"relation": final_output}
return template
text_input = """ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد."""
ner_output = ner_pip(text_input) # inference NER tags
re_input = process_ner_output(ner_output, text_input) # prepare a pair of entity and predict relation type
re_output = []
for idx in range(len(re_input)):
tmp_re_output = re_pip(re_input[idx]["re_input"]) # for each pair of entity, predict relation
re_output.append(tmp_re_output[0])
re_ner_output = post_process_re_output(re_output, text_input, ner_output) # post process NER and relation predictions
print("Sentence: ",re_ner_output["input"])
print('====Entity====')
for ent in re_ner_output["entity"]:
print('{}--{}'.format(ent["word"], ent["entity_group"]))
print('====Relation====')
for rel in re_ner_output["relation"]:
print('{}--{}:{}'.format(rel['arg1']['word'], rel['arg2']['word'], rel['relation_type']['label']))
Sentence: ويتزامن ذلك مع اجتماع بايدن مع قادة الدول الأعضاء في الناتو في قمة موسعة في العاصمة الإسبانية، مدريد.
====Entity====
بايدن--PER
قادة--PER
الدول--GPE
الناتو--ORG
العاصمة--GPE
الاسبانية--GPE
مدريد--GPE
====Relation====
قادة--الدول:ORG-AFF
الدول--الناتو:ORG-AFF
العاصمة--الاسبانية:PART-WHOLE
```
### BibTeX entry and citation info
```bibtex
@inproceedings{lan2020gigabert,
author = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
title = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic},
booktitle = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
year = {2020}
}
```
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.