modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-06 18:27:02
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
544 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-06 18:26:43
card
stringlengths
11
1.01M
sungwoo1/xlm-roberta-base-finetuned-panx-fr
sungwoo1
2023-03-28T04:58:39Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-03-27T07:48:29Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8430085815244825 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2719 - F1: 0.8430 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5444 | 1.0 | 191 | 0.3215 | 0.7772 | | 0.2604 | 2.0 | 382 | 0.2840 | 0.8366 | | 0.1756 | 3.0 | 573 | 0.2719 | 0.8430 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
KtheFISH/q-Taxi-v3
KtheFISH
2023-03-28T04:47:41Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T04:47:38Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.76 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="KtheFISH/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
juanmi1234/rl_course_vizdoom_health_gathering_supreme
juanmi1234
2023-03-28T04:42:59Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T04:33:01Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 19.83 +/- 3.52 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r juanmi1234/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.9.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
madoe001/dqn-SpaceInvadersNoFrameskip-v4
madoe001
2023-03-28T04:37:24Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T04:35:10Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 677.00 +/- 167.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga madoe001 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga madoe001 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga madoe001 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es
vocabtrimmer
2023-03-28T04:28:51Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T02:22:12Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-30000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-30000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 66.44 | 66.44 | 66.44 | 65.86 | 66.44 | 65.8 | 66.44 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-30000-tweet-sentiment-es/raw/main/eval.json).
OttoYu/Tree-ConditionHK
OttoYu
2023-03-28T04:17:47Z
62
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "vision", "object-detection", "zh", "en", "dataset:OttoYu/Tree-ConditionHK", "doi:10.57967/hf/0481", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
object-detection
2023-03-24T05:55:34Z
--- tags: - vision - image-classification datasets: - OttoYu/Tree-ConditionHK widget: license: afl-3.0 language: - zh - en pipeline_tag: object-detection --- # 🌳 Tree Condition Classification 樹況分類 (bilingual) ### Model Description This online application covers 22 most typical tree disease over 290+ images. If you find any trees that has hidden injures, you can classifies with our model and report the tree condition via this form (https://rb.gy/c1sfja). 此在線程式涵蓋22種官方部門樹況分類的標準,超過290張圖像。如果您發現任何樹木有隱傷,您可以使用我們的模型進行分類並通過此表格報告樹木狀況。 - **Developed by:** Yu Kai Him Otto - **Shared via:** Huggingface.co - **Model type:** Opensource ## Uses You can use the this model for tree condition image classification. ## Training Details ### Training Data - Loss: 0.355 - Accuracy: 0.852 - Macro F1: 0.787 - Micro F1: 0.852 - Weighted F1: 0.825 - Macro Precision: 0.808 - Micro Precision: 0.852 - Weighted Precision: 0.854 - Macro Recall: 0.811 - Micro Recall: 0.852 - Weighted Recall: 0.852
YiYiXu/fill-circle-controlnet
YiYiXu
2023-03-28T04:00:25Z
0
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-03-27T20:16:08Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet inference: true --- # controlnet- yiyixu/fill-circle-controlnet These are controlnet weights trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. You can find some example images in the following. prompt: red circle with blue background ![images_0)](./images_0.png) prompt: cyan circle with brown floral background ![images_1)](./images_1.png)
Ganu3010/Taxi-v3
Ganu3010
2023-03-28T03:53:39Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T03:53:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.62 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Ganu3010/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es
vocabtrimmer
2023-03-28T03:47:54Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T01:43:57Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-10000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-10000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 66.09 | 66.09 | 66.09 | 65.62 | 66.09 | 65.64 | 66.09 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-10000-tweet-sentiment-es/raw/main/eval.json).
Chattiori/BeryllMix
Chattiori
2023-03-28T03:45:04Z
0
1
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T06:59:41Z
--- license: creativeml-openrail-m --- (Chilloutmix-Ni-pruned-fp32-fix (0.5) + LOFI V2 (0.5) Weighted Sum) (0.6) + RetMix (0.4) Weighted Sum
Furuhata-du/alpaca-classify
Furuhata-du
2023-03-28T03:43:20Z
0
0
null
[ "dataset:alpaca_data.json", "region:us" ]
null
2023-03-28T03:25:46Z
--- datasets: - alpaca_data.json ---
vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es
vocabtrimmer
2023-03-28T03:28:09Z
115
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T01:25:19Z
# `vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-es-5000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (spanish). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(spanish). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 61.61 | 61.61 | 61.61 | 60.38 | 61.61 | 61.51 | 61.61 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-es-5000-tweet-sentiment-es/raw/main/eval.json).
alaahussein/t5-small-finetuned-subset-billsum-tutorial
alaahussein
2023-03-28T03:23:45Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T03:18:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: my_awesome_billsum_model results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1436 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5578 - Rouge1: 0.1436 - Rouge2: 0.0514 - Rougel: 0.1188 - Rougelsum: 0.119 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8555 | 0.1281 | 0.0376 | 0.1074 | 0.1075 | 19.0 | | No log | 2.0 | 124 | 2.6410 | 0.137 | 0.0468 | 0.113 | 0.1131 | 19.0 | | No log | 3.0 | 186 | 2.5749 | 0.141 | 0.0496 | 0.116 | 0.1163 | 19.0 | | No log | 4.0 | 248 | 2.5578 | 0.1436 | 0.0514 | 0.1188 | 0.119 | 19.0 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
MinMan85/Kanpiro_v10
MinMan85
2023-03-28T03:20:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-28T03:01:17Z
--- license: creativeml-openrail-m ---
Echefa/AI-TEST
Echefa
2023-03-28T03:18:00Z
0
0
null
[ "es", "en", "dataset:fka/awesome-chatgpt-prompts", "license:openrail", "region:us" ]
null
2023-03-28T03:17:10Z
--- license: openrail datasets: - fka/awesome-chatgpt-prompts language: - es - en ---
jasmeeetsingh/twitter-depression-classification-sentiment140
jasmeeetsingh
2023-03-28T02:59:37Z
107
2
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "twitter", "depression", "sentiment140", "en", "dataset:sentiment140", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T06:46:30Z
--- datasets: - sentiment140 metrics: - f1 license: apache-2.0 language: - en pipeline_tag: text-classification tags: - twitter - depression - sentiment140 --- # Model Card for Model ID jasmeeetsingh/twitter-depression-classification-sentiment140 is a deep learning model trained to classify whether a given tweet is suicidal or not. The model is based on a transformer architecture and fine-tuned on a large corpus of tweets annotated as suicidal or non-suicidal. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Jasmeet Singh Sandhu - **Finetuned from model:** paulagarciaserrano/roberta-depression-detection ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> The model is intended to be used to classify tweets automatically as suicidal or non-suicidal. It can be used to analyze large volumes of tweets and identify users who may be at risk of depression, as well as to monitor the prevalence of depression-related discussions on social media platforms. <!-- This section describes the evaluation protocols and provides the results. --> #### Metrics <img src=""> ## Technical Specifications The model was trained on a 6GB RTX 3060
swl-models/Anything-v5.0-PRT
swl-models
2023-03-28T02:58:54Z
0
10
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T04:09:28Z
--- license: creativeml-openrail-m ---
artbreguez/a2c-PandaReachDense-v2
artbreguez
2023-03-28T02:12:22Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:38:40Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -2.65 +/- 0.67 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sohm/ppo-LunarLander-v2-Lunar200Kv6
sohm
2023-03-28T02:03:07Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T02:02:51Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -117.72 +/- 67.14 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Senka1/hhhgy
Senka1
2023-03-28T01:59:16Z
0
0
nemo
[ "nemo", "not_for_all_eyes", "text-classification", "ru", "dataset:nyanko7/LLaMA-65B", "license:wtfpl", "region:us" ]
text-classification
2023-03-28T01:56:11Z
--- license: wtfpl datasets: - nyanko7/LLaMA-65B language: - ru metrics: - character library_name: nemo pipeline_tag: text-classification tags: - not_for_all_eyes ---
sauriopqno/autotrain-enfermedadespt2-44370111920
sauriopqno
2023-03-28T01:57:12Z
191
0
transformers
[ "transformers", "pytorch", "swin", "image-classification", "autotrain", "vision", "medical", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-28T01:44:49Z
--- tags: - autotrain - vision - image-classification - medical widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 0.7148635752326786 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44370111920 - CO2 Emissions (in grams): 0.7149 ## Validation Metrics - Loss: 0.180 - Accuracy: 0.950 - Macro F1: 0.950 - Micro F1: 0.950 - Weighted F1: 0.950 - Macro Precision: 0.950 - Micro Precision: 0.950 - Weighted Precision: 0.950 - Macro Recall: 0.950 - Micro Recall: 0.950 - Weighted Recall: 0.950
vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg
vocabtrimmer
2023-03-28T01:52:19Z
103
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "question generation", "ru", "dataset:lmqg/qg_ruquad", "arxiv:2210.03992", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-17T09:12:57Z
--- license: cc-by-4.0 metrics: - bleu4 - meteor - rouge-l - bertscore - moverscore language: ru datasets: - lmqg/qg_ruquad pipeline_tag: text2text-generation tags: - question generation widget: - text: "Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов." example_title: "Question Generation Example 1" - text: "Однако, франкоязычный <hl> Квебек <hl> практически никогда не включается в состав Латинской Америки." example_title: "Question Generation Example 2" - text: "Классическим примером международного синдиката XX века была группа компаний <hl> Де Бирс <hl> , которая в 1980-е годы контролировала до 90 % мировой торговли алмазами." example_title: "Question Generation Example 3" model-index: - name: vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg results: - task: name: Text2text Generation type: text2text-generation dataset: name: lmqg/qg_ruquad type: default args: default metrics: - name: BLEU4 (Question Generation) type: bleu4_question_generation value: 18.11 - name: ROUGE-L (Question Generation) type: rouge_l_question_generation value: 33.73 - name: METEOR (Question Generation) type: meteor_question_generation value: 28.94 - name: BERTScore (Question Generation) type: bertscore_question_generation value: 86.01 - name: MoverScore (Question Generation) type: moverscore_question_generation value: 64.61 --- # Model Card of `vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg` This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-ru-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000) for question generation task on the [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation). ### Overview - **Language model:** [vocabtrimmer/mt5-small-trimmed-ru-120000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000) - **Language:** ru - **Training data:** [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) (default) - **Online Demo:** [https://autoqg.net/](https://autoqg.net/) - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation) - **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992) ### Usage - With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-) ```python from lmqg import TransformersQG # initialize model model = TransformersQG(language="ru", model="vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg") # model prediction questions = model.generate_q(list_context="Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, в мае 1860 года провёл серию опытов.", list_answer="в мае 1860 года") ``` - With `transformers` ```python from transformers import pipeline pipe = pipeline("text2text-generation", "vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg") output = pipe("Нелишним будет отметить, что, развивая это направление, Д. И. Менделеев, поначалу априорно выдвинув идею о температуре, при которой высота мениска будет нулевой, <hl> в мае 1860 года <hl> провёл серию опытов.") ``` ## Evaluation - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_ruquad.default.json) | | Score | Type | Dataset | |:-----------|--------:|:--------|:-----------------------------------------------------------------| | BERTScore | 86.01 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_1 | 33.64 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_2 | 26.89 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_3 | 21.94 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | Bleu_4 | 18.11 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | METEOR | 28.94 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | MoverScore | 64.61 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | | ROUGE_L | 33.73 | default | [lmqg/qg_ruquad](https://huggingface.co/datasets/lmqg/qg_ruquad) | ## Training hyperparameters The following hyperparameters were used during fine-tuning: - dataset_path: lmqg/qg_ruquad - dataset_name: default - input_types: paragraph_answer - output_types: question - prefix_types: None - model: vocabtrimmer/mt5-small-trimmed-ru-120000 - max_length: 512 - max_length_output: 32 - epoch: 14 - batch: 16 - lr: 0.0005 - fp16: False - random_seed: 1 - gradient_accumulation_steps: 4 - label_smoothing: 0.15 The full configuration can be found at [fine-tuning config file](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-ru-120000-ruquad-qg/raw/main/trainer_config.json). ## Citation ``` @inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```
sohm/ppo-LunarLander-v2-Lunar200Kv5
sohm
2023-03-28T01:50:36Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:50:29Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -172.05 +/- 24.86 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
PolyRocketMatt/polyrocketmatt_irse_model_2
PolyRocketMatt
2023-03-28T01:47:24Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-28T01:35:34Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: polyrocketmatt_irse_model_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # polyrocketmatt_irse_model_2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
ryanaspen/ppo-SnowballTarget
ryanaspen
2023-03-28T01:43:30Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-03-28T01:43:25Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Find your model_id: ryanaspen/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
artem9k/alpaca-lora-7b
artem9k
2023-03-28T01:42:05Z
0
0
null
[ "license:other", "region:us" ]
null
2023-03-28T01:39:14Z
--- license: other --- #### Trained on Monday Mar 27 #### ALPACA LORA model #### Trained on alpaca-data-cleaned for 3 epochs #### micro_batch_size 10 #### all other params default #### https://github.com/tloen/alpaca-lora
nan2/clbenben
nan2
2023-03-28T01:37:55Z
31
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T01:32:00Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### clbenben Dreambooth model trained by nan2 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(2).png) ![1](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(5).png) ![2](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(4).png) ![3](https://huggingface.co/nan2/clbenben/resolve/main/sample_images/benben_(3).png)
sohm/ppo-LunarLander-v2-Lunar200Kv4
sohm
2023-03-28T01:34:30Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:34:21Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -154.66 +/- 38.62 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ryanaspen/reinforce-pixelcopter
ryanaspen
2023-03-28T01:18:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-17T22:38:37Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 26.10 +/- 12.37 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
vocabtrimmer/xlm-roberta-base-trimmed-it-15000-tweet-sentiment-it
vocabtrimmer
2023-03-28T01:18:32Z
114
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T10:43:57Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-15000-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-15000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-15000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 68.39 | 68.39 | 68.39 | 68.11 | 68.39 | 71.02 | 68.39 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-15000-tweet-sentiment-it/raw/main/eval.json).
sohm/ppo-LunarLander-v2-Lunar200Kv2
sohm
2023-03-28T01:18:04Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T01:17:58Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -144.59 +/- 24.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000
vocabtrimmer
2023-03-28T01:16:05Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:52:35Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,267,264 | | parameter_size_embedding | 512,057,344 | 122,886,144 | | vocab_size | 250,028 | 60,003 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 60000 | 2 |
artbreguez/a2c-AntBulletEnv-v0
artbreguez
2023-03-28T01:04:19Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-28T00:13:54Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 2077.10 +/- 45.05 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000
vocabtrimmer
2023-03-28T00:50:19Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:28:05Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 30000 | 2 |
vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it
vocabtrimmer
2023-03-28T00:49:43Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T10:15:25Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-10000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-10000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 67.7 | 67.7 | 67.7 | 67.09 | 67.7 | 69.61 | 67.7 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-10000-tweet-sentiment-it/raw/main/eval.json).
ryanaspen/reinforce-cartpole
ryanaspen
2023-03-28T00:48:23Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-17T20:18:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
GraymanMedia/test
GraymanMedia
2023-03-28T00:46:04Z
33
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-28T00:16:39Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### test Dreambooth model trained by GraymanMedia with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
makdong/bert-finetuned-squad22
makdong
2023-03-28T00:42:43Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-03-27T23:47:07Z
--- license: mit tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad22 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad22 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
Unggi/hate_speech_classifier_KcElectra
Unggi
2023-03-28T00:39:25Z
143
0
transformers
[ "transformers", "pytorch", "electra", "text-classification", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-23T22:17:59Z
--- license: cc-by-nc-sa-4.0 ---
Neurogen/neurogen
Neurogen
2023-03-28T00:28:01Z
25
8
diffusers
[ "diffusers", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T16:19:59Z
--- license: other --- According to the tests, this model gives a very good detail of skin and textures. Great for close-up photorealistic portraits as well as various characters and models. UPD 26.03.2023: v1.1: The new version has taken a step forward in the direction of versatility. The detail of the half body planes and full body planes has been improved (don't forget to use the Hires fix). In addition to photorealism, you can use this model for digital art and anime as well. Texture detailing has been improved, and new colors have been added.
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-15000
vocabtrimmer
2023-03-28T00:26:48Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-28T00:04:58Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-15000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-15000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 370,188,288 | | parameter_size_embedding | 512,057,344 | 30,728,192 | | vocab_size | 250,028 | 15,004 | | compression_rate_full | 100.0 | 60.6 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 15000 | 2 |
braedennorris/consumer_enterprise_fintech
braedennorris
2023-03-28T00:21:53Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-01-25T02:07:19Z
For anyone looking at consumer v enterprise fintech rankings I'd refer to this model: braedennorris/autotrain-enterprise_v_consumer-3052187265. It was trained on dberta2 and has higher accuracy than this model.
vocabtrimmer/xlm-roberta-base-trimmed-it-5000-tweet-sentiment-it
vocabtrimmer
2023-03-28T00:20:14Z
122
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-20T09:46:36Z
# `vocabtrimmer/xlm-roberta-base-trimmed-it-5000-tweet-sentiment-it` This model is a fine-tuned version of [/home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-5000](https://huggingface.co//home/asahi/lm-vocab-trimmer/ckpts/xlm-roberta-base-trimmed-it-5000) on the [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) (italian). Following metrics are computed on the `test` split of [cardiffnlp/tweet_sentiment_multilingual](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual)(italian). | | eval_f1_micro | eval_recall_micro | eval_precision_micro | eval_f1_macro | eval_recall_macro | eval_precision_macro | eval_accuracy | |---:|----------------:|--------------------:|-----------------------:|----------------:|--------------------:|-----------------------:|----------------:| | 0 | 66.32 | 66.32 | 66.32 | 66.2 | 66.32 | 67.33 | 66.32 | Check the result file [here](https://huggingface.co/vocabtrimmer/xlm-roberta-base-trimmed-it-5000-tweet-sentiment-it/raw/main/eval.json).
PhilSad/q-taxi-v3
PhilSad
2023-03-27T23:50:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:50:56Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Tavy/Weight_Control_AI
Tavy
2023-03-27T23:50:17Z
0
0
null
[ "region:us" ]
null
2023-03-27T23:49:30Z
The body gets energy from food. If this energy is not used, it will be stored. If the energy input from food continuously exceeds the energy outputs of the body, this energy will be stored in the form of fat under the skin and around the organs. This project is about designing a program (maybe an Android App for extra credits) that takes the consumed food as its input, and then provides the user with certain practical exercises that will burn off the extra energy. --- license: openrail ---
jakub014/ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl
jakub014
2023-03-27T23:50:10Z
106
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T23:48:35Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ColD-Fusion-bert-base-uncased-itr23-seed0-finetuned-effectiveness-dagstuhl This model is a fine-tuned version of [ibm/ColD-Fusion-bert-base-uncased-itr23-seed0](https://huggingface.co/ibm/ColD-Fusion-bert-base-uncased-itr23-seed0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6548 - Accuracy: 0.6508 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 16 | 0.6548 | 0.6508 | | No log | 2.0 | 32 | 0.6502 | 0.6190 | | No log | 3.0 | 48 | 0.6451 | 0.6190 | | No log | 4.0 | 64 | 0.6436 | 0.6349 | | No log | 5.0 | 80 | 0.6482 | 0.6190 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000
vocabtrimmer
2023-03-27T23:41:48Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T23:19:47Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa): `vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000` This model is a trimmed version of [lmqg/mbart-large-cc25-ruquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-ruquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-ruquad-qa | vocabtrimmer/mbart-large-cc25-ruquad-qa-trimmed-ru-5000 | |:---------------------------|:----------------------------------|:----------------------------------------------------------| | parameter_size_full | 610,852,864 | 359,949,312 | | parameter_size_embedding | 512,057,344 | 10,250,240 | | vocab_size | 250,028 | 5,005 | | compression_rate_full | 100.0 | 58.93 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ru | vocabtrimmer/mc4_validation | text | ru | validation | 5000 | 2 |
PhilSad/q-FrozenLake-v1-4x4-noSlippery
PhilSad
2023-03-27T23:41:13Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:41:12Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
PhilSad/q-FrozenLake-v1-4x4-noSlippery-5
PhilSad
2023-03-27T23:41:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:41:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery-5 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="PhilSad/q-FrozenLake-v1-4x4-noSlippery-5", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
huggingtweets/ordinarygamers
huggingtweets
2023-03-27T23:23:58Z
121
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T23:23:50Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1403763529036046336/NTGmV9nb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mutahar</div> <div style="text-align: center; font-size: 14px;">@ordinarygamers</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mutahar. | Data | Mutahar | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 87 | | Short tweets | 306 | | Tweets kept | 2853 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6ezo4cbs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ordinarygamers's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1dmhrus4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1dmhrus4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ordinarygamers') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-60000
vocabtrimmer
2023-03-27T23:19:20Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T22:31:10Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,267,264 | | parameter_size_embedding | 512,057,344 | 122,886,144 | | vocab_size | 250,028 | 60,003 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 60000 | 2 |
BoschAI/dqn-SpaceInvadersNoFrameskip-v4
BoschAI
2023-03-27T23:07:41Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T23:06:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 543.50 +/- 234.19 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga BoschAI -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga BoschAI ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
adamluc/neoxt
adamluc
2023-03-27T23:02:18Z
22
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T16:13:08Z
--- license: apache-2.0 language: - en duplicated_from: togethercomputer/GPT-NeoXT-Chat-Base-20B --- ***<p style="font-size: 24px">Feel free to try out our [OpenChatKit feedback app](https://huggingface.co/spaces/togethercomputer/OpenChatKit)!</p>*** # GPT-NeoXT-Chat-Base-20B > TLDR: As part of OpenChatKit (codebase available [here](https://github.com/togethercomputer/OpenChaT)), > GPT-NeoXT-Chat-Base-20B is a 20B parameter language model, fine-tuned from EleutherAI’s GPT-NeoX with over 40 million instructions on 100% carbon negative compute. GPT-NeoXT-Chat-Base-20B is based on ElutherAI’s GPT-NeoX model, and is fine-tuned with data focusing on dialog-style interactions. We focused the tuning on several tasks such as question answering, classification, extraction, and summarization. We’ve fine-tuned the model with a collection of 43 million high-quality instructions. Together partnered with LAION and Ontocord.ai, who both helped curate the dataset the model is based on. You can read more about this process and the availability of this dataset in LAION’s blog post [here](https://laion.ai/blog/oig-dataset/). ## Model Details - **Developed by**: Together Computer. - **Model type**: Language Model - **Language(s)**: English - **License**: Apache 2.0 - **Model Description**: A 20B parameter open source chat model, fine-tuned from EleutherAI’s NeoX with over 40M instructions on 100% carbon negative compute - **Resources for more information**: [GitHub Repository](https://github.com/togethercomputer/OpenChaT). # Quick Start ```python from transformers import pipeline pipe = pipeline(model='togethercomputer/GPT-NeoXT-Chat-Base-20B') pipe('''<human>: Hello!\n<bot>:''') ``` or ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B") model = AutoModelForCausalLM.from_pretrained("togethercomputer/GPT-NeoXT-Chat-Base-20B") ``` ## Strengths of the model There are several tasks that OpenChatKit excels at out of the box. This includes: - Example 1: Summarization and question answering within context. ```markdown **Summarize a long document into a single sentence and conduct question answering related to the document, with multiple rounds** <human>: Last year, the travel industry saw a big rebound in demand — and that demand is showing no signs of slowing down this spring break travel season. Planes and hotels will be full, travelers will likely face long queues, cancellations, massive crowds and plenty of other travel nightmares. But perhaps the most frustrating thing you’ll have to prepare for this spring break is if your luggage goes missing. You’ve got to somehow track down your belongings that were in the airline’s care and then wait to be reunited — all while trying to enjoy the start of your long-awaited vacation. As far as travel nightmares go, lost luggage is up there as one of the worst. To be honest up front, I am great at strategically losing things — or rather, losing stuff with style. (I hope you appreciate the “Toy Story” reference.) So when a product comes along that’s a perfect way to keep track of my belongings — especially when traveling — I’m adding it to my travel bag. I’ve been a big fan of Apple’s $29 item tracker, dubbed AirTag. The long-rumored AirTag product finally launched in 2021, and while it’s not the first item tracker to exist, it has two key features that set it apart from the rest to make it the ultimate travel companion: access to the Find My network and Precision Finding technology. The Federal Aviation Administration has even ruled that having an AirTag in your luggage is permitted and, in fact, not a safety hazard. The devices only contain 0.1 grams of lithium, which falls below the FAA’s limit. “Luggage tracking devices powered by lithium metal cells that have 0.3 grams or less of lithium can be used on checked baggage,” the FAA said in a statement. “Apple AirTags meet this threshold; other luggage tracking devices may not.” But, you may be wondering what makes them so special and why you should carry one in your checked luggage this spring break? Let’s explain why. Summarize the above into a single paragraph. <bot>: If you're traveling this spring break, you might want to consider investing in an item tracker to help you find your lost luggage. Apple's AirTag is the best option, according to a new report. <human>: But isn't it unsafe to put AirTag in a luggage? <bot>: The Federal Aviation Administration has ruled that having an AirTag in your luggage is permitted and, in fact, not a safety hazard. <human>: Ah, why is that? <bot>: The devices only contain 0.1 grams of lithium, which falls below the FAA’s limit. ``` - Example 2: Extraction. ```markdown **Extract structured information from unstructured documents, as illustrated in the following example.** <human>: Generate a table summarizing the options outlined in this email. Team, we have to make a decision on the product plan for Goocrux v2. The first option will take us 3 weeks of development, and will achieve performance of 80ms, but means that the UI has to change. The second option will take us 4 weeks of development, and will achieve performance of 60ms, without any UI change. The third option will take the longest -- 6 weeks of development, will achieve performance of 30ms, without any UI change. A markdown table with four columns: (1) Option ID, (2) Development time, (3) Performance, (4) UI Change: <bot>: #. | ID | Option ID | Development time | Performance | UI Change | | --------- | --------- | --------- | --------- | --------- | | 1 | 1 | 3 weeks | 80ms | Yes | | 2 | 2 | 4 weeks | 60ms | No | | 3 | 3 | 6 weeks | 30ms | No | ``` - Example 3: Classification. ```markdown **Classifying a sentence or paragraph into different categories.** <human>: Classify the sentiment of the following sentence into Positive, Neutral, or Negative: Super excited about teaching Stanford’s first course on Large Language Models! Check the syllabus out here <bot>: Positive <human>: Classify the sentiment of the following sentence into Positive, Neutral, or Negative: How about the following sentence: It is raining outside and I feel so blue <bot>: Negative ``` In addition, the model does well on few-shot prompts. For both classification and extraction, the model performs even better with few shots, as in most HELM tasks. [Contact us](https://www.together.xyz/contact) if you’re interested in trying few-shot prompts with the model. ## Weaknesses of the model That said, there are several areas where we have more work to do, and we need your help! Some of these include: - Knowledge-based closed question and answering: The chatbot may hallucinate and give incorrect results. Be sure to fact check, and if possible provide feedback with the corrected information. - Coding tasks: The chatbot was not trained on a large enough corpus of source code to excel at writing code. We welcome contributions of additional datasets to improve this! - Repetition: Sometimes the chatbot will repeat its response. We’re working to improve this, but in the meantime you can click the refresh button to start a new conversation. - Context switching: If you change the topic in the middle of a conversation the chatbot often cannot make the switch automatically and will continue to give answers related to the prior topic. - Creative writing and longer answers: The chatbot does not generate long, creative text such as an essay or story. We are excited to work with you to address these weaknesses by getting your feedback, bolstering data sets, and improving accuracy. # Uses ## Direct Use The model is intended for research purposes. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of dialogue models or language models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on dialogue models or language models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use The OpenChatKit community provides GPT-NeoXT-Chat-Base-20B as an open source tool for building chatbots. The community is not responsible for any misuse, malicious use, or out-of-scope use of the model. It is the responsibility of the end user to ensure that the model is used in a responsible and ethical manner. #### Out-of-Scope Use GPT-NeoXT-Chat-Base-20B is designed for use in chatbot applications and may not perform well for other use cases outside of its intended scope. For example, it may not be suitable for use in safety-critical applications or for making decisions that have a significant impact on individuals or society. It is important to consider the limitations of the model and to only use it for its intended purpose. #### Misuse and Malicious Use GPT-NeoXT-Chat-Base-20B is designed for use in chatbot applications and should not be used for any other purpose. Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the OpenChatKit community project. Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating fake news, misinformation, or propaganda - Promoting hate speech, discrimination, or violence against individuals or groups - Impersonating individuals or organizations without their consent - Engaging in cyberbullying or harassment - Defamatory content - Spamming or scamming - Sharing confidential or sensitive information without proper authorization - Violating the terms of use of the model or the data used to train it - Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming ## Limitations GPT-NeoXT-Chat-Base-20B, like other language model-based chatbots, has limitations that should be taken into consideration. For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot. ## Training **Training Data** Please refer to [togethercomputer/OpenDataHub](https://github.com/togethercomputer/OpenDataHub) **Training Procedure** - **Hardware:** 2 x 8 x A100 GPUs - **Optimizer:** [8bit-AdamW](https://github.com/TimDettmers/bitsandbytes) - **Gradient Accumulations**: 2 - **Batch:** 2 x 2 x 64 x 2048 = 524288 tokens - **Learning rate:** warmup to 1e-6 for 100 steps and then kept constant ## Community Join us on [Together Discord](https://discord.gg/6ZVDU8tTD4)
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000
vocabtrimmer
2023-03-27T22:46:36Z
99
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T22:24:17Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-60000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 416,268,288 | | parameter_size_embedding | 512,057,344 | 122,888,192 | | vocab_size | 250,028 | 60,004 | | compression_rate_full | 100.0 | 68.15 | | compression_rate_embedding | 100.0 | 24.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 60000 | 2 |
yemoncad/distilbert-base-uncased-finetuned-clinc
yemoncad
2023-03-27T22:34:16Z
112
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T22:28:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos args: plus metrics: - name: Accuracy type: accuracy value: 0.9183870967741935 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7721 - Accuracy: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2896 | 1.0 | 318 | 3.2890 | 0.7432 | | 2.6284 | 2.0 | 636 | 1.8756 | 0.8377 | | 1.5483 | 3.0 | 954 | 1.1572 | 0.8961 | | 1.015 | 4.0 | 1272 | 0.8573 | 0.9132 | | 0.7953 | 5.0 | 1590 | 0.7721 | 0.9184 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.1+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
tcvrishank/histo_train_swin
tcvrishank
2023-03-27T22:31:54Z
166
0
transformers
[ "transformers", "pytorch", "tensorboard", "swinv2", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-25T03:42:06Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: histo_train_swin results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # histo_train_swin This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0305 | 16.67 | 100 | 0.2654 | 0.9 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000
vocabtrimmer
2023-03-27T22:28:45Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:19:50Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 30000 | 2 |
Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
Muennighoff
2023-03-27T22:26:36Z
466
23
sentence-transformers
[ "sentence-transformers", "pytorch", "gptj", "feature-extraction", "sentence-similarity", "mteb", "arxiv:2202.08904", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:04Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: 2d8a100785abf0ae21420d2a55b0c56e3e1ea996 metrics: - type: accuracy value: 69.22388059701493 - type: ap value: 32.04724673950256 - type: f1 value: 63.25719825770428 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: 80714f8dcf8cefc218ef4f8c5a966dd83f75a0e1 metrics: - type: accuracy value: 71.26109999999998 - type: ap value: 66.16336378255403 - type: f1 value: 70.89719145825303 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: c379a6705fec24a2493fa68e011692605f44e119 metrics: - type: accuracy value: 39.19199999999999 - type: f1 value: 38.580766731113826 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: 5b3e3697907184a9b77a3c99ee9ea1a9cbb1e4e3 metrics: - type: map_at_1 value: 27.311999999999998 - type: map_at_10 value: 42.620000000000005 - type: map_at_100 value: 43.707 - type: map_at_1000 value: 43.714999999999996 - type: map_at_3 value: 37.624 - type: map_at_5 value: 40.498 - type: mrr_at_1 value: 27.667 - type: mrr_at_10 value: 42.737 - type: mrr_at_100 value: 43.823 - type: mrr_at_1000 value: 43.830999999999996 - type: mrr_at_3 value: 37.743 - type: mrr_at_5 value: 40.616 - type: ndcg_at_1 value: 27.311999999999998 - type: ndcg_at_10 value: 51.37500000000001 - type: ndcg_at_100 value: 55.778000000000006 - type: ndcg_at_1000 value: 55.96600000000001 - type: ndcg_at_3 value: 41.087 - type: ndcg_at_5 value: 46.269 - type: precision_at_1 value: 27.311999999999998 - type: precision_at_10 value: 7.945 - type: precision_at_100 value: 0.9820000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 17.046 - type: precision_at_5 value: 12.745000000000001 - type: recall_at_1 value: 27.311999999999998 - type: recall_at_10 value: 79.445 - type: recall_at_100 value: 98.151 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 51.13799999999999 - type: recall_at_5 value: 63.727000000000004 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: 0bbdb47bcbe3a90093699aefeed338a0f28a7ee8 metrics: - type: v_measure value: 45.59037428592033 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: b73bd54100e5abfa6e3a23dcafb46fe4d2438dc3 metrics: - type: v_measure value: 38.86371701986363 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 4d853f94cd57d85ec13805aeeac3ae3e5eb4c49c metrics: - type: map value: 61.625568691427766 - type: mrr value: 75.83256386580486 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: 9ee918f184421b6bd48b78f6c714d86546106103 metrics: - type: cos_sim_pearson value: 89.96074355094802 - type: cos_sim_spearman value: 86.2501580394454 - type: euclidean_pearson value: 82.18427440380462 - type: euclidean_spearman value: 80.14760935017947 - type: manhattan_pearson value: 82.24621578156392 - type: manhattan_spearman value: 80.00363016590163 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 44fa15921b4c889113cc5df03dd4901b49161ab7 metrics: - type: accuracy value: 84.49350649350649 - type: f1 value: 84.4249343233736 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 11d0121201d1f1f280e8cc8f3d98fb9c4d9f9c55 metrics: - type: v_measure value: 36.551459722989385 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: c0fab014e1bcb8d3a5e31b2088972a1e01547dc1 metrics: - type: v_measure value: 33.69901851846774 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.499 - type: map_at_10 value: 41.208 - type: map_at_100 value: 42.638 - type: map_at_1000 value: 42.754 - type: map_at_3 value: 37.506 - type: map_at_5 value: 39.422000000000004 - type: mrr_at_1 value: 37.339 - type: mrr_at_10 value: 47.051 - type: mrr_at_100 value: 47.745 - type: mrr_at_1000 value: 47.786 - type: mrr_at_3 value: 44.086999999999996 - type: mrr_at_5 value: 45.711 - type: ndcg_at_1 value: 37.339 - type: ndcg_at_10 value: 47.666 - type: ndcg_at_100 value: 52.994 - type: ndcg_at_1000 value: 54.928999999999995 - type: ndcg_at_3 value: 41.982 - type: ndcg_at_5 value: 44.42 - type: precision_at_1 value: 37.339 - type: precision_at_10 value: 9.127 - type: precision_at_100 value: 1.4749999999999999 - type: precision_at_1000 value: 0.194 - type: precision_at_3 value: 20.076 - type: precision_at_5 value: 14.449000000000002 - type: recall_at_1 value: 30.499 - type: recall_at_10 value: 60.328 - type: recall_at_100 value: 82.57900000000001 - type: recall_at_1000 value: 95.074 - type: recall_at_3 value: 44.17 - type: recall_at_5 value: 50.94 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 30.613 - type: map_at_10 value: 40.781 - type: map_at_100 value: 42.018 - type: map_at_1000 value: 42.132999999999996 - type: map_at_3 value: 37.816 - type: map_at_5 value: 39.389 - type: mrr_at_1 value: 38.408 - type: mrr_at_10 value: 46.631 - type: mrr_at_100 value: 47.332 - type: mrr_at_1000 value: 47.368 - type: mrr_at_3 value: 44.384 - type: mrr_at_5 value: 45.661 - type: ndcg_at_1 value: 38.408 - type: ndcg_at_10 value: 46.379999999999995 - type: ndcg_at_100 value: 50.81 - type: ndcg_at_1000 value: 52.663000000000004 - type: ndcg_at_3 value: 42.18 - type: ndcg_at_5 value: 43.974000000000004 - type: precision_at_1 value: 38.408 - type: precision_at_10 value: 8.656 - type: precision_at_100 value: 1.3860000000000001 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 20.276 - type: precision_at_5 value: 14.241999999999999 - type: recall_at_1 value: 30.613 - type: recall_at_10 value: 56.44 - type: recall_at_100 value: 75.044 - type: recall_at_1000 value: 86.426 - type: recall_at_3 value: 43.766 - type: recall_at_5 value: 48.998000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 37.370999999999995 - type: map_at_10 value: 49.718 - type: map_at_100 value: 50.737 - type: map_at_1000 value: 50.79 - type: map_at_3 value: 46.231 - type: map_at_5 value: 48.329 - type: mrr_at_1 value: 42.884 - type: mrr_at_10 value: 53.176 - type: mrr_at_100 value: 53.81700000000001 - type: mrr_at_1000 value: 53.845 - type: mrr_at_3 value: 50.199000000000005 - type: mrr_at_5 value: 52.129999999999995 - type: ndcg_at_1 value: 42.884 - type: ndcg_at_10 value: 55.826 - type: ndcg_at_100 value: 59.93000000000001 - type: ndcg_at_1000 value: 61.013 - type: ndcg_at_3 value: 49.764 - type: ndcg_at_5 value: 53.025999999999996 - type: precision_at_1 value: 42.884 - type: precision_at_10 value: 9.046999999999999 - type: precision_at_100 value: 1.212 - type: precision_at_1000 value: 0.135 - type: precision_at_3 value: 22.131999999999998 - type: precision_at_5 value: 15.524 - type: recall_at_1 value: 37.370999999999995 - type: recall_at_10 value: 70.482 - type: recall_at_100 value: 88.425 - type: recall_at_1000 value: 96.03399999999999 - type: recall_at_3 value: 54.43 - type: recall_at_5 value: 62.327999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.875999999999998 - type: map_at_10 value: 31.715 - type: map_at_100 value: 32.847 - type: map_at_1000 value: 32.922000000000004 - type: map_at_3 value: 29.049999999999997 - type: map_at_5 value: 30.396 - type: mrr_at_1 value: 24.52 - type: mrr_at_10 value: 33.497 - type: mrr_at_100 value: 34.455000000000005 - type: mrr_at_1000 value: 34.510000000000005 - type: mrr_at_3 value: 30.791 - type: mrr_at_5 value: 32.175 - type: ndcg_at_1 value: 24.52 - type: ndcg_at_10 value: 36.95 - type: ndcg_at_100 value: 42.238 - type: ndcg_at_1000 value: 44.147999999999996 - type: ndcg_at_3 value: 31.435000000000002 - type: ndcg_at_5 value: 33.839000000000006 - type: precision_at_1 value: 24.52 - type: precision_at_10 value: 5.9319999999999995 - type: precision_at_100 value: 0.901 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 13.446 - type: precision_at_5 value: 9.469 - type: recall_at_1 value: 22.875999999999998 - type: recall_at_10 value: 51.38 - type: recall_at_100 value: 75.31099999999999 - type: recall_at_1000 value: 89.718 - type: recall_at_3 value: 36.26 - type: recall_at_5 value: 42.248999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 14.984 - type: map_at_10 value: 23.457 - type: map_at_100 value: 24.723 - type: map_at_1000 value: 24.846 - type: map_at_3 value: 20.873 - type: map_at_5 value: 22.357 - type: mrr_at_1 value: 18.159 - type: mrr_at_10 value: 27.431 - type: mrr_at_100 value: 28.449 - type: mrr_at_1000 value: 28.52 - type: mrr_at_3 value: 24.979000000000003 - type: mrr_at_5 value: 26.447 - type: ndcg_at_1 value: 18.159 - type: ndcg_at_10 value: 28.627999999999997 - type: ndcg_at_100 value: 34.741 - type: ndcg_at_1000 value: 37.516 - type: ndcg_at_3 value: 23.902 - type: ndcg_at_5 value: 26.294 - type: precision_at_1 value: 18.159 - type: precision_at_10 value: 5.485 - type: precision_at_100 value: 0.985 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 11.774 - type: precision_at_5 value: 8.731 - type: recall_at_1 value: 14.984 - type: recall_at_10 value: 40.198 - type: recall_at_100 value: 67.11500000000001 - type: recall_at_1000 value: 86.497 - type: recall_at_3 value: 27.639000000000003 - type: recall_at_5 value: 33.595000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 29.067 - type: map_at_10 value: 39.457 - type: map_at_100 value: 40.83 - type: map_at_1000 value: 40.94 - type: map_at_3 value: 35.995 - type: map_at_5 value: 38.159 - type: mrr_at_1 value: 34.937000000000005 - type: mrr_at_10 value: 44.755 - type: mrr_at_100 value: 45.549 - type: mrr_at_1000 value: 45.589 - type: mrr_at_3 value: 41.947 - type: mrr_at_5 value: 43.733 - type: ndcg_at_1 value: 34.937000000000005 - type: ndcg_at_10 value: 45.573 - type: ndcg_at_100 value: 51.266999999999996 - type: ndcg_at_1000 value: 53.184 - type: ndcg_at_3 value: 39.961999999999996 - type: ndcg_at_5 value: 43.02 - type: precision_at_1 value: 34.937000000000005 - type: precision_at_10 value: 8.296000000000001 - type: precision_at_100 value: 1.32 - type: precision_at_1000 value: 0.167 - type: precision_at_3 value: 18.8 - type: precision_at_5 value: 13.763 - type: recall_at_1 value: 29.067 - type: recall_at_10 value: 58.298 - type: recall_at_100 value: 82.25099999999999 - type: recall_at_1000 value: 94.476 - type: recall_at_3 value: 42.984 - type: recall_at_5 value: 50.658 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 25.985999999999997 - type: map_at_10 value: 35.746 - type: map_at_100 value: 37.067 - type: map_at_1000 value: 37.191 - type: map_at_3 value: 32.599000000000004 - type: map_at_5 value: 34.239000000000004 - type: mrr_at_1 value: 31.735000000000003 - type: mrr_at_10 value: 40.515 - type: mrr_at_100 value: 41.459 - type: mrr_at_1000 value: 41.516 - type: mrr_at_3 value: 37.938 - type: mrr_at_5 value: 39.25 - type: ndcg_at_1 value: 31.735000000000003 - type: ndcg_at_10 value: 41.484 - type: ndcg_at_100 value: 47.047 - type: ndcg_at_1000 value: 49.427 - type: ndcg_at_3 value: 36.254999999999995 - type: ndcg_at_5 value: 38.375 - type: precision_at_1 value: 31.735000000000003 - type: precision_at_10 value: 7.66 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.16 - type: precision_at_3 value: 17.427999999999997 - type: precision_at_5 value: 12.328999999999999 - type: recall_at_1 value: 25.985999999999997 - type: recall_at_10 value: 53.761 - type: recall_at_100 value: 77.149 - type: recall_at_1000 value: 93.342 - type: recall_at_3 value: 39.068000000000005 - type: recall_at_5 value: 44.693 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.949749999999998 - type: map_at_10 value: 34.04991666666667 - type: map_at_100 value: 35.26825 - type: map_at_1000 value: 35.38316666666667 - type: map_at_3 value: 31.181333333333335 - type: map_at_5 value: 32.77391666666667 - type: mrr_at_1 value: 29.402833333333334 - type: mrr_at_10 value: 38.01633333333333 - type: mrr_at_100 value: 38.88033333333334 - type: mrr_at_1000 value: 38.938500000000005 - type: mrr_at_3 value: 35.5175 - type: mrr_at_5 value: 36.93808333333333 - type: ndcg_at_1 value: 29.402833333333334 - type: ndcg_at_10 value: 39.403166666666664 - type: ndcg_at_100 value: 44.66408333333333 - type: ndcg_at_1000 value: 46.96283333333333 - type: ndcg_at_3 value: 34.46633333333334 - type: ndcg_at_5 value: 36.78441666666667 - type: precision_at_1 value: 29.402833333333334 - type: precision_at_10 value: 6.965833333333333 - type: precision_at_100 value: 1.1330833333333334 - type: precision_at_1000 value: 0.15158333333333335 - type: precision_at_3 value: 15.886666666666665 - type: precision_at_5 value: 11.360416666666667 - type: recall_at_1 value: 24.949749999999998 - type: recall_at_10 value: 51.29325 - type: recall_at_100 value: 74.3695 - type: recall_at_1000 value: 90.31299999999999 - type: recall_at_3 value: 37.580083333333334 - type: recall_at_5 value: 43.529666666666664 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 22.081999999999997 - type: map_at_10 value: 29.215999999999998 - type: map_at_100 value: 30.163 - type: map_at_1000 value: 30.269000000000002 - type: map_at_3 value: 26.942 - type: map_at_5 value: 28.236 - type: mrr_at_1 value: 24.847 - type: mrr_at_10 value: 31.918999999999997 - type: mrr_at_100 value: 32.817 - type: mrr_at_1000 value: 32.897 - type: mrr_at_3 value: 29.831000000000003 - type: mrr_at_5 value: 31.019999999999996 - type: ndcg_at_1 value: 24.847 - type: ndcg_at_10 value: 33.4 - type: ndcg_at_100 value: 38.354 - type: ndcg_at_1000 value: 41.045 - type: ndcg_at_3 value: 29.236 - type: ndcg_at_5 value: 31.258000000000003 - type: precision_at_1 value: 24.847 - type: precision_at_10 value: 5.353 - type: precision_at_100 value: 0.853 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 12.679000000000002 - type: precision_at_5 value: 8.988 - type: recall_at_1 value: 22.081999999999997 - type: recall_at_10 value: 43.505 - type: recall_at_100 value: 66.45400000000001 - type: recall_at_1000 value: 86.378 - type: recall_at_3 value: 32.163000000000004 - type: recall_at_5 value: 37.059999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 15.540000000000001 - type: map_at_10 value: 22.362000000000002 - type: map_at_100 value: 23.435 - type: map_at_1000 value: 23.564 - type: map_at_3 value: 20.143 - type: map_at_5 value: 21.324 - type: mrr_at_1 value: 18.892 - type: mrr_at_10 value: 25.942999999999998 - type: mrr_at_100 value: 26.883000000000003 - type: mrr_at_1000 value: 26.968999999999998 - type: mrr_at_3 value: 23.727 - type: mrr_at_5 value: 24.923000000000002 - type: ndcg_at_1 value: 18.892 - type: ndcg_at_10 value: 26.811 - type: ndcg_at_100 value: 32.066 - type: ndcg_at_1000 value: 35.166 - type: ndcg_at_3 value: 22.706 - type: ndcg_at_5 value: 24.508 - type: precision_at_1 value: 18.892 - type: precision_at_10 value: 4.942 - type: precision_at_100 value: 0.878 - type: precision_at_1000 value: 0.131 - type: precision_at_3 value: 10.748000000000001 - type: precision_at_5 value: 7.784000000000001 - type: recall_at_1 value: 15.540000000000001 - type: recall_at_10 value: 36.742999999999995 - type: recall_at_100 value: 60.525 - type: recall_at_1000 value: 82.57600000000001 - type: recall_at_3 value: 25.252000000000002 - type: recall_at_5 value: 29.872 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.453 - type: map_at_10 value: 33.363 - type: map_at_100 value: 34.579 - type: map_at_1000 value: 34.686 - type: map_at_3 value: 30.583 - type: map_at_5 value: 32.118 - type: mrr_at_1 value: 28.918 - type: mrr_at_10 value: 37.675 - type: mrr_at_100 value: 38.567 - type: mrr_at_1000 value: 38.632 - type: mrr_at_3 value: 35.260999999999996 - type: mrr_at_5 value: 36.576 - type: ndcg_at_1 value: 28.918 - type: ndcg_at_10 value: 38.736 - type: ndcg_at_100 value: 44.261 - type: ndcg_at_1000 value: 46.72 - type: ndcg_at_3 value: 33.81 - type: ndcg_at_5 value: 36.009 - type: precision_at_1 value: 28.918 - type: precision_at_10 value: 6.586 - type: precision_at_100 value: 1.047 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.360999999999999 - type: precision_at_5 value: 10.857999999999999 - type: recall_at_1 value: 24.453 - type: recall_at_10 value: 50.885999999999996 - type: recall_at_100 value: 75.03 - type: recall_at_1000 value: 92.123 - type: recall_at_3 value: 37.138 - type: recall_at_5 value: 42.864999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 24.57 - type: map_at_10 value: 33.672000000000004 - type: map_at_100 value: 35.244 - type: map_at_1000 value: 35.467 - type: map_at_3 value: 30.712 - type: map_at_5 value: 32.383 - type: mrr_at_1 value: 29.644 - type: mrr_at_10 value: 38.344 - type: mrr_at_100 value: 39.219 - type: mrr_at_1000 value: 39.282000000000004 - type: mrr_at_3 value: 35.771 - type: mrr_at_5 value: 37.273 - type: ndcg_at_1 value: 29.644 - type: ndcg_at_10 value: 39.567 - type: ndcg_at_100 value: 45.097 - type: ndcg_at_1000 value: 47.923 - type: ndcg_at_3 value: 34.768 - type: ndcg_at_5 value: 37.122 - type: precision_at_1 value: 29.644 - type: precision_at_10 value: 7.5889999999999995 - type: precision_at_100 value: 1.478 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 16.337 - type: precision_at_5 value: 12.055 - type: recall_at_1 value: 24.57 - type: recall_at_10 value: 51.00900000000001 - type: recall_at_100 value: 75.423 - type: recall_at_1000 value: 93.671 - type: recall_at_3 value: 36.925999999999995 - type: recall_at_5 value: 43.245 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: 2b9f5791698b5be7bc5e10535c8690f20043c3db metrics: - type: map_at_1 value: 21.356 - type: map_at_10 value: 27.904 - type: map_at_100 value: 28.938000000000002 - type: map_at_1000 value: 29.036 - type: map_at_3 value: 25.726 - type: map_at_5 value: 26.935 - type: mrr_at_1 value: 22.551 - type: mrr_at_10 value: 29.259 - type: mrr_at_100 value: 30.272 - type: mrr_at_1000 value: 30.348000000000003 - type: mrr_at_3 value: 27.295 - type: mrr_at_5 value: 28.358 - type: ndcg_at_1 value: 22.551 - type: ndcg_at_10 value: 31.817 - type: ndcg_at_100 value: 37.164 - type: ndcg_at_1000 value: 39.82 - type: ndcg_at_3 value: 27.595999999999997 - type: ndcg_at_5 value: 29.568 - type: precision_at_1 value: 22.551 - type: precision_at_10 value: 4.917 - type: precision_at_100 value: 0.828 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 11.583 - type: precision_at_5 value: 8.133 - type: recall_at_1 value: 21.356 - type: recall_at_10 value: 42.489 - type: recall_at_100 value: 67.128 - type: recall_at_1000 value: 87.441 - type: recall_at_3 value: 31.165 - type: recall_at_5 value: 35.853 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: 392b78eb68c07badcd7c2cd8f39af108375dfcce metrics: - type: map_at_1 value: 12.306000000000001 - type: map_at_10 value: 21.523 - type: map_at_100 value: 23.358 - type: map_at_1000 value: 23.541 - type: map_at_3 value: 17.809 - type: map_at_5 value: 19.631 - type: mrr_at_1 value: 27.948 - type: mrr_at_10 value: 40.355000000000004 - type: mrr_at_100 value: 41.166000000000004 - type: mrr_at_1000 value: 41.203 - type: mrr_at_3 value: 36.819 - type: mrr_at_5 value: 38.958999999999996 - type: ndcg_at_1 value: 27.948 - type: ndcg_at_10 value: 30.462 - type: ndcg_at_100 value: 37.473 - type: ndcg_at_1000 value: 40.717999999999996 - type: ndcg_at_3 value: 24.646 - type: ndcg_at_5 value: 26.642 - type: precision_at_1 value: 27.948 - type: precision_at_10 value: 9.648 - type: precision_at_100 value: 1.7239999999999998 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 18.48 - type: precision_at_5 value: 14.293 - type: recall_at_1 value: 12.306000000000001 - type: recall_at_10 value: 37.181 - type: recall_at_100 value: 61.148 - type: recall_at_1000 value: 79.401 - type: recall_at_3 value: 22.883 - type: recall_at_5 value: 28.59 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: f097057d03ed98220bc7309ddb10b71a54d667d6 metrics: - type: map_at_1 value: 9.357 - type: map_at_10 value: 18.849 - type: map_at_100 value: 25.369000000000003 - type: map_at_1000 value: 26.950000000000003 - type: map_at_3 value: 13.625000000000002 - type: map_at_5 value: 15.956999999999999 - type: mrr_at_1 value: 67.75 - type: mrr_at_10 value: 74.734 - type: mrr_at_100 value: 75.1 - type: mrr_at_1000 value: 75.10900000000001 - type: mrr_at_3 value: 73.542 - type: mrr_at_5 value: 74.167 - type: ndcg_at_1 value: 55.375 - type: ndcg_at_10 value: 39.873999999999995 - type: ndcg_at_100 value: 43.098 - type: ndcg_at_1000 value: 50.69200000000001 - type: ndcg_at_3 value: 44.856 - type: ndcg_at_5 value: 42.138999999999996 - type: precision_at_1 value: 67.75 - type: precision_at_10 value: 31.1 - type: precision_at_100 value: 9.303 - type: precision_at_1000 value: 2.0060000000000002 - type: precision_at_3 value: 48.25 - type: precision_at_5 value: 40.949999999999996 - type: recall_at_1 value: 9.357 - type: recall_at_10 value: 23.832 - type: recall_at_100 value: 47.906 - type: recall_at_1000 value: 71.309 - type: recall_at_3 value: 14.512 - type: recall_at_5 value: 18.3 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 829147f8f75a25f005913200eb5ed41fae320aa1 metrics: - type: accuracy value: 49.655 - type: f1 value: 45.51976190938951 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: 1429cf27e393599b8b359b9b72c666f96b2525f9 metrics: - type: map_at_1 value: 62.739999999999995 - type: map_at_10 value: 73.07000000000001 - type: map_at_100 value: 73.398 - type: map_at_1000 value: 73.41 - type: map_at_3 value: 71.33800000000001 - type: map_at_5 value: 72.423 - type: mrr_at_1 value: 67.777 - type: mrr_at_10 value: 77.873 - type: mrr_at_100 value: 78.091 - type: mrr_at_1000 value: 78.094 - type: mrr_at_3 value: 76.375 - type: mrr_at_5 value: 77.316 - type: ndcg_at_1 value: 67.777 - type: ndcg_at_10 value: 78.24 - type: ndcg_at_100 value: 79.557 - type: ndcg_at_1000 value: 79.814 - type: ndcg_at_3 value: 75.125 - type: ndcg_at_5 value: 76.834 - type: precision_at_1 value: 67.777 - type: precision_at_10 value: 9.832 - type: precision_at_100 value: 1.061 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 29.433 - type: precision_at_5 value: 18.665000000000003 - type: recall_at_1 value: 62.739999999999995 - type: recall_at_10 value: 89.505 - type: recall_at_100 value: 95.102 - type: recall_at_1000 value: 96.825 - type: recall_at_3 value: 81.028 - type: recall_at_5 value: 85.28099999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: 41b686a7f28c59bcaaa5791efd47c67c8ebe28be metrics: - type: map_at_1 value: 18.467 - type: map_at_10 value: 30.020999999999997 - type: map_at_100 value: 31.739 - type: map_at_1000 value: 31.934 - type: map_at_3 value: 26.003 - type: map_at_5 value: 28.338 - type: mrr_at_1 value: 35.339999999999996 - type: mrr_at_10 value: 44.108999999999995 - type: mrr_at_100 value: 44.993 - type: mrr_at_1000 value: 45.042 - type: mrr_at_3 value: 41.667 - type: mrr_at_5 value: 43.14 - type: ndcg_at_1 value: 35.339999999999996 - type: ndcg_at_10 value: 37.202 - type: ndcg_at_100 value: 43.852999999999994 - type: ndcg_at_1000 value: 47.235 - type: ndcg_at_3 value: 33.5 - type: ndcg_at_5 value: 34.985 - type: precision_at_1 value: 35.339999999999996 - type: precision_at_10 value: 10.247 - type: precision_at_100 value: 1.7149999999999999 - type: precision_at_1000 value: 0.232 - type: precision_at_3 value: 22.222 - type: precision_at_5 value: 16.573999999999998 - type: recall_at_1 value: 18.467 - type: recall_at_10 value: 44.080999999999996 - type: recall_at_100 value: 68.72200000000001 - type: recall_at_1000 value: 89.087 - type: recall_at_3 value: 30.567 - type: recall_at_5 value: 36.982 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: 766870b35a1b9ca65e67a0d1913899973551fc6c metrics: - type: map_at_1 value: 35.726 - type: map_at_10 value: 50.207 - type: map_at_100 value: 51.05499999999999 - type: map_at_1000 value: 51.12799999999999 - type: map_at_3 value: 47.576 - type: map_at_5 value: 49.172 - type: mrr_at_1 value: 71.452 - type: mrr_at_10 value: 77.41900000000001 - type: mrr_at_100 value: 77.711 - type: mrr_at_1000 value: 77.723 - type: mrr_at_3 value: 76.39399999999999 - type: mrr_at_5 value: 77.00099999999999 - type: ndcg_at_1 value: 71.452 - type: ndcg_at_10 value: 59.260999999999996 - type: ndcg_at_100 value: 62.424 - type: ndcg_at_1000 value: 63.951 - type: ndcg_at_3 value: 55.327000000000005 - type: ndcg_at_5 value: 57.416999999999994 - type: precision_at_1 value: 71.452 - type: precision_at_10 value: 12.061 - type: precision_at_100 value: 1.455 - type: precision_at_1000 value: 0.166 - type: precision_at_3 value: 34.36 - type: precision_at_5 value: 22.266 - type: recall_at_1 value: 35.726 - type: recall_at_10 value: 60.304 - type: recall_at_100 value: 72.75500000000001 - type: recall_at_1000 value: 82.978 - type: recall_at_3 value: 51.54 - type: recall_at_5 value: 55.665 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 8d743909f834c38949e8323a8a6ce8721ea6c7f4 metrics: - type: accuracy value: 66.63759999999999 - type: ap value: 61.48938261286748 - type: f1 value: 66.35089269264965 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: validation revision: e6838a846e2408f22cf5cc337ebc83e0bcf77849 metrics: - type: map_at_1 value: 20.842 - type: map_at_10 value: 32.992 - type: map_at_100 value: 34.236 - type: map_at_1000 value: 34.286 - type: map_at_3 value: 29.049000000000003 - type: map_at_5 value: 31.391999999999996 - type: mrr_at_1 value: 21.375 - type: mrr_at_10 value: 33.581 - type: mrr_at_100 value: 34.760000000000005 - type: mrr_at_1000 value: 34.803 - type: mrr_at_3 value: 29.704000000000004 - type: mrr_at_5 value: 32.015 - type: ndcg_at_1 value: 21.375 - type: ndcg_at_10 value: 39.905 - type: ndcg_at_100 value: 45.843 - type: ndcg_at_1000 value: 47.083999999999996 - type: ndcg_at_3 value: 31.918999999999997 - type: ndcg_at_5 value: 36.107 - type: precision_at_1 value: 21.375 - type: precision_at_10 value: 6.393 - type: precision_at_100 value: 0.935 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 13.663 - type: precision_at_5 value: 10.324 - type: recall_at_1 value: 20.842 - type: recall_at_10 value: 61.17 - type: recall_at_100 value: 88.518 - type: recall_at_1000 value: 97.993 - type: recall_at_3 value: 39.571 - type: recall_at_5 value: 49.653999999999996 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: a7e2a951126a26fc8c6a69f835f33a346ba259e3 metrics: - type: accuracy value: 93.46557227542178 - type: f1 value: 92.87345917772146 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: 6299947a7777084cc2d4b64235bf7190381ce755 metrics: - type: accuracy value: 72.42134062927497 - type: f1 value: 55.03624810959269 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 072a486a144adf7f4479a4a0dddb2152e161e1ea metrics: - type: accuracy value: 70.3866845998655 - type: f1 value: 68.9674519872921 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.27774041694687 - type: f1 value: 76.72936190462792 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: dcefc037ef84348e49b0d29109e891c01067226b metrics: - type: v_measure value: 31.511745925773337 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 3cd0e71dfbe09d4de0f9e5ecba43e7ce280959dc metrics: - type: v_measure value: 28.764235987575365 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.29353136386601 - type: mrr value: 33.536774455851685 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: 7eb63cc0c1eb59324d709ebed25fcab851fa7610 metrics: - type: map_at_1 value: 5.702 - type: map_at_10 value: 13.642000000000001 - type: map_at_100 value: 17.503 - type: map_at_1000 value: 19.126 - type: map_at_3 value: 9.748 - type: map_at_5 value: 11.642 - type: mrr_at_1 value: 45.82 - type: mrr_at_10 value: 54.821 - type: mrr_at_100 value: 55.422000000000004 - type: mrr_at_1000 value: 55.452999999999996 - type: mrr_at_3 value: 52.373999999999995 - type: mrr_at_5 value: 53.937000000000005 - type: ndcg_at_1 value: 44.272 - type: ndcg_at_10 value: 36.213 - type: ndcg_at_100 value: 33.829 - type: ndcg_at_1000 value: 42.557 - type: ndcg_at_3 value: 40.814 - type: ndcg_at_5 value: 39.562000000000005 - type: precision_at_1 value: 45.511 - type: precision_at_10 value: 27.214 - type: precision_at_100 value: 8.941 - type: precision_at_1000 value: 2.1870000000000003 - type: precision_at_3 value: 37.874 - type: precision_at_5 value: 34.489 - type: recall_at_1 value: 5.702 - type: recall_at_10 value: 17.638 - type: recall_at_100 value: 34.419 - type: recall_at_1000 value: 66.41 - type: recall_at_3 value: 10.914 - type: recall_at_5 value: 14.032 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: 6062aefc120bfe8ece5897809fb2e53bfe0d128c metrics: - type: map_at_1 value: 30.567 - type: map_at_10 value: 45.01 - type: map_at_100 value: 46.091 - type: map_at_1000 value: 46.126 - type: map_at_3 value: 40.897 - type: map_at_5 value: 43.301 - type: mrr_at_1 value: 34.56 - type: mrr_at_10 value: 47.725 - type: mrr_at_100 value: 48.548 - type: mrr_at_1000 value: 48.571999999999996 - type: mrr_at_3 value: 44.361 - type: mrr_at_5 value: 46.351 - type: ndcg_at_1 value: 34.531 - type: ndcg_at_10 value: 52.410000000000004 - type: ndcg_at_100 value: 56.999 - type: ndcg_at_1000 value: 57.830999999999996 - type: ndcg_at_3 value: 44.734 - type: ndcg_at_5 value: 48.701 - type: precision_at_1 value: 34.531 - type: precision_at_10 value: 8.612 - type: precision_at_100 value: 1.118 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.307 - type: precision_at_5 value: 14.519000000000002 - type: recall_at_1 value: 30.567 - type: recall_at_10 value: 72.238 - type: recall_at_100 value: 92.154 - type: recall_at_1000 value: 98.375 - type: recall_at_3 value: 52.437999999999995 - type: recall_at_5 value: 61.516999999999996 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: 6205996560df11e3a3da9ab4f926788fc30a7db4 metrics: - type: map_at_1 value: 65.98 - type: map_at_10 value: 80.05600000000001 - type: map_at_100 value: 80.76299999999999 - type: map_at_1000 value: 80.786 - type: map_at_3 value: 76.848 - type: map_at_5 value: 78.854 - type: mrr_at_1 value: 75.86 - type: mrr_at_10 value: 83.397 - type: mrr_at_100 value: 83.555 - type: mrr_at_1000 value: 83.557 - type: mrr_at_3 value: 82.033 - type: mrr_at_5 value: 82.97 - type: ndcg_at_1 value: 75.88000000000001 - type: ndcg_at_10 value: 84.58099999999999 - type: ndcg_at_100 value: 86.151 - type: ndcg_at_1000 value: 86.315 - type: ndcg_at_3 value: 80.902 - type: ndcg_at_5 value: 82.953 - type: precision_at_1 value: 75.88000000000001 - type: precision_at_10 value: 12.986 - type: precision_at_100 value: 1.5110000000000001 - type: precision_at_1000 value: 0.156 - type: precision_at_3 value: 35.382999999999996 - type: precision_at_5 value: 23.555999999999997 - type: recall_at_1 value: 65.98 - type: recall_at_10 value: 93.716 - type: recall_at_100 value: 99.21799999999999 - type: recall_at_1000 value: 99.97 - type: recall_at_3 value: 83.551 - type: recall_at_5 value: 88.998 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: b2805658ae38990172679479369a78b86de8c390 metrics: - type: v_measure value: 40.45148482612238 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 metrics: - type: v_measure value: 55.749490673039126 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: 5c59ef3e437a0a9651c8fe6fde943e7dce59fba5 metrics: - type: map_at_1 value: 4.903 - type: map_at_10 value: 11.926 - type: map_at_100 value: 13.916999999999998 - type: map_at_1000 value: 14.215 - type: map_at_3 value: 8.799999999999999 - type: map_at_5 value: 10.360999999999999 - type: mrr_at_1 value: 24.099999999999998 - type: mrr_at_10 value: 34.482 - type: mrr_at_100 value: 35.565999999999995 - type: mrr_at_1000 value: 35.619 - type: mrr_at_3 value: 31.433 - type: mrr_at_5 value: 33.243 - type: ndcg_at_1 value: 24.099999999999998 - type: ndcg_at_10 value: 19.872999999999998 - type: ndcg_at_100 value: 27.606 - type: ndcg_at_1000 value: 32.811 - type: ndcg_at_3 value: 19.497999999999998 - type: ndcg_at_5 value: 16.813 - type: precision_at_1 value: 24.099999999999998 - type: precision_at_10 value: 10.08 - type: precision_at_100 value: 2.122 - type: precision_at_1000 value: 0.337 - type: precision_at_3 value: 18.2 - type: precision_at_5 value: 14.62 - type: recall_at_1 value: 4.903 - type: recall_at_10 value: 20.438000000000002 - type: recall_at_100 value: 43.043 - type: recall_at_1000 value: 68.41000000000001 - type: recall_at_3 value: 11.068 - type: recall_at_5 value: 14.818000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: 20a6d6f312dd54037fe07a32d58e5e168867909d metrics: - type: cos_sim_pearson value: 78.58086597995997 - type: cos_sim_spearman value: 69.63214182814991 - type: euclidean_pearson value: 72.76175489042691 - type: euclidean_spearman value: 67.84965161872971 - type: manhattan_pearson value: 72.73812689782592 - type: manhattan_spearman value: 67.83610439531277 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: fdf84275bb8ce4b49c971d02e84dd1abc677a50f metrics: - type: cos_sim_pearson value: 75.13970861325006 - type: cos_sim_spearman value: 67.5020551515597 - type: euclidean_pearson value: 66.33415412418276 - type: euclidean_spearman value: 66.82145056673268 - type: manhattan_pearson value: 66.55489484006415 - type: manhattan_spearman value: 66.95147433279057 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 1591bfcbe8c69d4bf7fe2a16e2451017832cafb9 metrics: - type: cos_sim_pearson value: 78.85850536483447 - type: cos_sim_spearman value: 79.1633350177206 - type: euclidean_pearson value: 72.74090561408477 - type: euclidean_spearman value: 73.57374448302961 - type: manhattan_pearson value: 72.92980654233226 - type: manhattan_spearman value: 73.72777155112588 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: e2125984e7df8b7871f6ae9949cf6b6795e7c54b metrics: - type: cos_sim_pearson value: 79.51125593897028 - type: cos_sim_spearman value: 74.46048326701329 - type: euclidean_pearson value: 70.87726087052985 - type: euclidean_spearman value: 67.7721470654411 - type: manhattan_pearson value: 71.05892792135637 - type: manhattan_spearman value: 67.93472619779037 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: 1cd7298cac12a96a373b6a2f18738bb3e739a9b6 metrics: - type: cos_sim_pearson value: 83.8299348880489 - type: cos_sim_spearman value: 84.47194637929275 - type: euclidean_pearson value: 78.68768462480418 - type: euclidean_spearman value: 79.80526323901917 - type: manhattan_pearson value: 78.6810718151946 - type: manhattan_spearman value: 79.7820584821254 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 360a0b2dff98700d09e634a01e1cc1624d3e42cd metrics: - type: cos_sim_pearson value: 79.99206664843005 - type: cos_sim_spearman value: 80.96089203722137 - type: euclidean_pearson value: 71.31216213716365 - type: euclidean_spearman value: 71.45258140049407 - type: manhattan_pearson value: 71.26140340402836 - type: manhattan_spearman value: 71.3896894666943 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: 9fc37e8c632af1c87a3d23e685d49552a02582a0 metrics: - type: cos_sim_pearson value: 87.35697089594868 - type: cos_sim_spearman value: 87.78202647220289 - type: euclidean_pearson value: 84.20969668786667 - type: euclidean_spearman value: 83.91876425459982 - type: manhattan_pearson value: 84.24429755612542 - type: manhattan_spearman value: 83.98826315103398 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 2de6ce8c1921b71a755b262c6b57fef195dd7906 metrics: - type: cos_sim_pearson value: 69.06962775868384 - type: cos_sim_spearman value: 69.34889515492327 - type: euclidean_pearson value: 69.28108180412313 - type: euclidean_spearman value: 69.6437114853659 - type: manhattan_pearson value: 69.39974983734993 - type: manhattan_spearman value: 69.69057284482079 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: 8913289635987208e6e7c72789e4be2fe94b6abd metrics: - type: cos_sim_pearson value: 82.42553734213958 - type: cos_sim_spearman value: 81.38977341532744 - type: euclidean_pearson value: 76.47494587945522 - type: euclidean_spearman value: 75.92794860531089 - type: manhattan_pearson value: 76.4768777169467 - type: manhattan_spearman value: 75.9252673228599 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: 56a6d0140cf6356659e2a7c1413286a774468d44 metrics: - type: map value: 80.78825425914722 - type: mrr value: 94.60017197762296 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: a75ae049398addde9b70f6b268875f5cbce99089 metrics: - type: map_at_1 value: 60.633 - type: map_at_10 value: 70.197 - type: map_at_100 value: 70.758 - type: map_at_1000 value: 70.765 - type: map_at_3 value: 67.082 - type: map_at_5 value: 69.209 - type: mrr_at_1 value: 63.333 - type: mrr_at_10 value: 71.17 - type: mrr_at_100 value: 71.626 - type: mrr_at_1000 value: 71.633 - type: mrr_at_3 value: 68.833 - type: mrr_at_5 value: 70.6 - type: ndcg_at_1 value: 63.333 - type: ndcg_at_10 value: 74.697 - type: ndcg_at_100 value: 76.986 - type: ndcg_at_1000 value: 77.225 - type: ndcg_at_3 value: 69.527 - type: ndcg_at_5 value: 72.816 - type: precision_at_1 value: 63.333 - type: precision_at_10 value: 9.9 - type: precision_at_100 value: 1.103 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.889000000000003 - type: precision_at_5 value: 18.2 - type: recall_at_1 value: 60.633 - type: recall_at_10 value: 87.36699999999999 - type: recall_at_100 value: 97.333 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 73.656 - type: recall_at_5 value: 82.083 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: 5a8256d0dff9c4bd3be3ba3e67e4e70173f802ea metrics: - type: cos_sim_accuracy value: 99.76633663366337 - type: cos_sim_ap value: 93.84024096781063 - type: cos_sim_f1 value: 88.08080808080808 - type: cos_sim_precision value: 88.9795918367347 - type: cos_sim_recall value: 87.2 - type: dot_accuracy value: 99.46336633663367 - type: dot_ap value: 75.78127156965245 - type: dot_f1 value: 71.41403865717193 - type: dot_precision value: 72.67080745341616 - type: dot_recall value: 70.19999999999999 - type: euclidean_accuracy value: 99.67524752475248 - type: euclidean_ap value: 88.61274955249769 - type: euclidean_f1 value: 82.30852211434735 - type: euclidean_precision value: 89.34426229508196 - type: euclidean_recall value: 76.3 - type: manhattan_accuracy value: 99.67722772277227 - type: manhattan_ap value: 88.77516158012779 - type: manhattan_f1 value: 82.36536430834212 - type: manhattan_precision value: 87.24832214765101 - type: manhattan_recall value: 78.0 - type: max_accuracy value: 99.76633663366337 - type: max_ap value: 93.84024096781063 - type: max_f1 value: 88.08080808080808 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 70a89468f6dccacc6aa2b12a6eac54e74328f235 metrics: - type: v_measure value: 59.20812266121527 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: d88009ab563dd0b16cfaf4436abaf97fa3550cf0 metrics: - type: v_measure value: 33.954248554638056 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: ef807ea29a75ec4f91b50fd4191cb4ee4589a9f9 metrics: - type: map value: 51.52800990025549 - type: mrr value: 52.360394915541974 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: 8753c2788d36c01fc6f05d03fe3f7268d63f9122 metrics: - type: cos_sim_pearson value: 30.737881131277356 - type: cos_sim_spearman value: 31.45979323917254 - type: dot_pearson value: 26.24686017962023 - type: dot_spearman value: 25.006732878791743 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: 2c8041b2c07a79b6f7ba8fe6acc72e5d9f92d217 metrics: - type: map_at_1 value: 0.253 - type: map_at_10 value: 2.1399999999999997 - type: map_at_100 value: 12.873000000000001 - type: map_at_1000 value: 31.002000000000002 - type: map_at_3 value: 0.711 - type: map_at_5 value: 1.125 - type: mrr_at_1 value: 96.0 - type: mrr_at_10 value: 98.0 - type: mrr_at_100 value: 98.0 - type: mrr_at_1000 value: 98.0 - type: mrr_at_3 value: 98.0 - type: mrr_at_5 value: 98.0 - type: ndcg_at_1 value: 94.0 - type: ndcg_at_10 value: 84.881 - type: ndcg_at_100 value: 64.694 - type: ndcg_at_1000 value: 56.85 - type: ndcg_at_3 value: 90.061 - type: ndcg_at_5 value: 87.155 - type: precision_at_1 value: 96.0 - type: precision_at_10 value: 88.8 - type: precision_at_100 value: 65.7 - type: precision_at_1000 value: 25.080000000000002 - type: precision_at_3 value: 92.667 - type: precision_at_5 value: 90.0 - type: recall_at_1 value: 0.253 - type: recall_at_10 value: 2.292 - type: recall_at_100 value: 15.78 - type: recall_at_1000 value: 53.015 - type: recall_at_3 value: 0.7270000000000001 - type: recall_at_5 value: 1.162 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: 527b7d77e16e343303e68cb6af11d6e18b9f7b3b metrics: - type: map_at_1 value: 2.116 - type: map_at_10 value: 9.625 - type: map_at_100 value: 15.641 - type: map_at_1000 value: 17.127 - type: map_at_3 value: 4.316 - type: map_at_5 value: 6.208 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 48.083999999999996 - type: mrr_at_100 value: 48.631 - type: mrr_at_1000 value: 48.649 - type: mrr_at_3 value: 42.857 - type: mrr_at_5 value: 46.224 - type: ndcg_at_1 value: 29.592000000000002 - type: ndcg_at_10 value: 25.430999999999997 - type: ndcg_at_100 value: 36.344 - type: ndcg_at_1000 value: 47.676 - type: ndcg_at_3 value: 26.144000000000002 - type: ndcg_at_5 value: 26.304 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 24.082 - type: precision_at_100 value: 7.714 - type: precision_at_1000 value: 1.5310000000000001 - type: precision_at_3 value: 26.531 - type: precision_at_5 value: 26.939 - type: recall_at_1 value: 2.116 - type: recall_at_10 value: 16.794 - type: recall_at_100 value: 47.452 - type: recall_at_1000 value: 82.312 - type: recall_at_3 value: 5.306 - type: recall_at_5 value: 9.306000000000001 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de metrics: - type: accuracy value: 67.709 - type: ap value: 13.541535578501716 - type: f1 value: 52.569619919446794 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: 62146448f05be9e52a36b8ee9936447ea787eede metrics: - type: accuracy value: 56.850594227504246 - type: f1 value: 57.233377364910574 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 091a54f9a36281ce7d6590ec8c75dd485e7e01d4 metrics: - type: v_measure value: 39.463722986090474 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 84.09131549144662 - type: cos_sim_ap value: 66.86677647503386 - type: cos_sim_f1 value: 62.94631710362049 - type: cos_sim_precision value: 59.73933649289099 - type: cos_sim_recall value: 66.51715039577837 - type: dot_accuracy value: 80.27656911247541 - type: dot_ap value: 54.291720398612085 - type: dot_f1 value: 54.77150537634409 - type: dot_precision value: 47.58660957571039 - type: dot_recall value: 64.5118733509235 - type: euclidean_accuracy value: 82.76211480002385 - type: euclidean_ap value: 62.430397690753296 - type: euclidean_f1 value: 59.191590539356774 - type: euclidean_precision value: 56.296119971435374 - type: euclidean_recall value: 62.401055408970976 - type: manhattan_accuracy value: 82.7561542588067 - type: manhattan_ap value: 62.41882051995577 - type: manhattan_f1 value: 59.32101002778785 - type: manhattan_precision value: 54.71361711611321 - type: manhattan_recall value: 64.77572559366754 - type: max_accuracy value: 84.09131549144662 - type: max_ap value: 66.86677647503386 - type: max_f1 value: 62.94631710362049 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.79574649745798 - type: cos_sim_ap value: 85.28960532524223 - type: cos_sim_f1 value: 77.98460043358001 - type: cos_sim_precision value: 75.78090948714224 - type: cos_sim_recall value: 80.32029565753002 - type: dot_accuracy value: 85.5939767920208 - type: dot_ap value: 76.14131706694056 - type: dot_f1 value: 72.70246298696868 - type: dot_precision value: 65.27012127894156 - type: dot_recall value: 82.04496458269172 - type: euclidean_accuracy value: 86.72332828812046 - type: euclidean_ap value: 80.84854809178995 - type: euclidean_f1 value: 72.47657499809551 - type: euclidean_precision value: 71.71717171717171 - type: euclidean_recall value: 73.25223283030489 - type: manhattan_accuracy value: 86.7563162184189 - type: manhattan_ap value: 80.87598895575626 - type: manhattan_f1 value: 72.54617892068092 - type: manhattan_precision value: 68.49268225960881 - type: manhattan_recall value: 77.10963966738528 - type: max_accuracy value: 88.79574649745798 - type: max_ap value: 85.28960532524223 - type: max_f1 value: 77.98460043358001 --- # SGPT-5.8B-weightedmean-msmarco-specb-bitfit ## Usage For usage instructions, refer to our codebase: https://github.com/Muennighoff/sgpt ## Evaluation Results For eval results, refer to our paper: https://arxiv.org/abs/2202.08904 ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 249592 with parameters: ``` {'batch_size': 2, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: GPTJModel (1): Pooling({'word_embedding_dimension': 4096, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False}) ) ``` ## Citing & Authors ```bibtex @article{muennighoff2022sgpt, title={SGPT: GPT Sentence Embeddings for Semantic Search}, author={Muennighoff, Niklas}, journal={arXiv preprint arXiv:2202.08904}, year={2022} } ```
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000
vocabtrimmer
2023-03-27T22:22:01Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:56:32Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-30000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 385,548,288 | | parameter_size_embedding | 512,057,344 | 61,448,192 | | vocab_size | 250,028 | 30,004 | | compression_rate_full | 100.0 | 63.12 | | compression_rate_embedding | 100.0 | 12.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 30000 | 2 |
SharpNLight/q-taxi-v3-simple
SharpNLight
2023-03-27T22:13:37Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T22:13:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-taxi-v3-simple results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.44 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="SharpNLight/q-taxi-v3-simple", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tcvrishank/histo_train_segformer
tcvrishank
2023-03-27T22:06:32Z
206
0
transformers
[ "transformers", "pytorch", "tensorboard", "segformer", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-25T03:34:01Z
--- license: other tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: histo_train_segformer results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.875 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # histo_train_segformer This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3830 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2234 | 16.67 | 100 | 0.3830 | 0.875 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
SAL83/poca-SoccerTwos
SAL83
2023-03-27T21:58:36Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SoccerTwos", "region:us" ]
reinforcement-learning
2023-03-27T21:58:18Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SoccerTwos library_name: ml-agents --- # **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: SAL83/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000
vocabtrimmer
2023-03-27T21:55:14Z
103
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:20:24Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-15000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 370,188,288 | | parameter_size_embedding | 512,057,344 | 30,728,192 | | vocab_size | 250,028 | 15,004 | | compression_rate_full | 100.0 | 60.6 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 15000 | 2 |
hongdoubao/flan-t5-base-samsum
hongdoubao
2023-03-27T21:53:07Z
164
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T21:26:32Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: flan-t5-base-samsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: test args: samsum metrics: - name: Rouge1 type: rouge value: 46.8948 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-samsum This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3794 - Rouge1: 46.8948 - Rouge2: 23.4445 - Rougel: 39.5763 - Rougelsum: 43.209 - Gen Len: 17.2540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 231 | 1.3935 | 46.6142 | 23.0937 | 39.1018 | 42.8696 | 17.2076 | | No log | 2.0 | 462 | 1.3848 | 46.5553 | 23.0122 | 39.1493 | 42.764 | 17.1465 | | 1.4249 | 3.0 | 693 | 1.3813 | 46.8705 | 23.5239 | 39.6689 | 43.2545 | 17.2930 | | 1.4249 | 4.0 | 924 | 1.3801 | 46.9726 | 23.6143 | 39.6028 | 43.3278 | 17.2112 | | 1.3528 | 5.0 | 1155 | 1.3794 | 46.8948 | 23.4445 | 39.5763 | 43.209 | 17.2540 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.10.0 - Datasets 2.10.1 - Tokenizers 0.13.2
vorcefulbeans/NeapGPT
vorcefulbeans
2023-03-27T21:25:11Z
0
0
null
[ "en", "dataset:tencups/gpt2", "dataset:pietrolesci/gpt3_nli", "region:us" ]
null
2023-03-27T21:19:04Z
--- datasets: - tencups/gpt2 - pietrolesci/gpt3_nli language: - en ---
Melanit/dreambooth_eighties_cars
Melanit
2023-03-27T21:24:40Z
5
0
keras
[ "keras", "tf-keras", "keras-dreambooth", "wildcard", "license:cc-by-nc-4.0", "region:us" ]
null
2023-03-27T20:19:31Z
--- library_name: keras tags: - keras-dreambooth - wildcard license: cc-by-nc-4.0 --- ## Model description This Stable-Diffusion Model has been fine-tuned on images of Cars from Start to End of the 1980s. Here are some examples using the following Hyperparameters: Prompt: photo of eighties_cars car, high quality, 8k Negative Prompt: bad, ugly, malformed, deformed, out of frame, blurry, cropped, noisy Denoising Steps: 50 Guidance Scale: 7.5 ![Example Image](examples/tmpy00t8dcv.png) ![Example Image](examples/tmpl2opz8ge.png) ![Example Image](examples/tmpfz8hgvyf.png) ![Example Image](examples/tmpemqvra3_.png) ![Example Image](examples/tmp870efxa6.png) ![Example Image](examples/tmp4zcmco8b.png) ![Example Image](examples/tmp4mg3h4sq.png) ![Example Image](examples/tmp3nd374rn.png) ## Intended uses & limitations Anyone may use this model for non-commercial usecases under the Linked License, as long as Paragraph 5 of the [Open RAIL-M License](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/LICENSE) are respected as well. The original Model adheres under Open RAIL-M. It was made solely as an experiment for keras_cv Dreambooth Training. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | inner_optimizer.class_name | Custom>RMSprop | | inner_optimizer.config.name | RMSprop | | inner_optimizer.config.weight_decay | None | | inner_optimizer.config.clipnorm | None | | inner_optimizer.config.global_clipnorm | None | | inner_optimizer.config.clipvalue | None | | inner_optimizer.config.use_ema | False | | inner_optimizer.config.ema_momentum | 0.99 | | inner_optimizer.config.ema_overwrite_frequency | 100 | | inner_optimizer.config.jit_compile | True | | inner_optimizer.config.is_legacy_optimizer | False | | inner_optimizer.config.learning_rate | 0.0010000000474974513 | | inner_optimizer.config.rho | 0.9 | | inner_optimizer.config.momentum | 0.0 | | inner_optimizer.config.epsilon | 1e-07 | | inner_optimizer.config.centered | False | | dynamic | True | | initial_scale | 32768.0 | | dynamic_growth_steps | 2000 | | training_precision | mixed_float16 |
vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-10000
vocabtrimmer
2023-03-27T21:19:37Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T20:56:54Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa): `vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-jaquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-jaquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-jaquad-qa | vocabtrimmer/mbart-large-cc25-jaquad-qa-trimmed-ja-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | ja | vocabtrimmer/mc4_validation | text | ja | validation | 10000 | 2 |
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-15000
vocabtrimmer
2023-03-27T21:18:32Z
106
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T20:22:28Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-15000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-15000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 370,188,288 | | parameter_size_embedding | 512,057,344 | 30,728,192 | | vocab_size | 250,028 | 15,004 | | compression_rate_full | 100.0 | 60.6 | | compression_rate_embedding | 100.0 | 6.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 15000 | 2 |
kingsley9494/ks
kingsley9494
2023-03-27T21:16:32Z
0
0
null
[ "license:bigscience-openrail-m", "region:us" ]
null
2023-03-27T21:16:32Z
--- license: bigscience-openrail-m ---
shi-labs/versatile-diffusion
shi-labs
2023-03-27T21:10:36Z
2,813
48
diffusers
[ "diffusers", "image-to-text", "image-to-image", "text-to-image", "text-to-text", "image-editing", "image-variation", "generation", "vision", "dataset:Laion2B-en", "arxiv:2211.08332", "license:mit", "diffusers:VersatileDiffusionPipeline", "region:us" ]
text-to-image
2022-11-22T22:47:21Z
--- license: mit tags: - image-to-text - image-to-image - text-to-image - text-to-text - image-editing - image-variation - generation - vision datasets: - Laion2B-en widget: - text: "A high tech solarpunk utopia in the Amazon rainforest" example_title: Amazon rainforest --- # Versatile Diffusion V1.0 Model Card We built **Versatile Diffusion (VD), the first unified multi-flow multimodal diffusion framework**, as a step towards **Universal Generative AI**. Versatile Diffusion can natively support image-to-text, image-variation, text-to-image, and text-variation, and can be further extended to other applications such as semantic-style disentanglement, image-text dual-guided generation, latent image-to-text-to-image editing, and more. Future versions will support more modalities such as speech, music, video and 3D. Resources for more information: [GitHub](https://github.com/SHI-Labs/Versatile-Diffusion), [arXiv](https://arxiv.org/abs/2211.08332). # Model Details One single flow of Versatile Diffusion contains a VAE, a diffuser, and a context encoder, and thus handles one task (e.g., text-to-image) under one data type (e.g., image) and one context type (e.g., text). The multi-flow structure of Versatile Diffusion shows in the following diagram: <p align="center"> <img src="https://huggingface.co/shi-labs/versatile-diffusion-model/resolve/main/assets/figures/vd_combined.png" width="99%"> </p> - **Developed by:** Xingqian Xu, Atlas Wang, Eric Zhang, Kai Wang, and Humphrey Shi - **Model type:** Diffusion-based multimodal generation model - **Language(s):** English - **License:** MIT - **Resources for more information:** [GitHub Repository](https://github.com/SHI-Labs/Versatile-Diffusion), [Paper](https://arxiv.org/abs/2211.08332). - **Cite as:** ``` @article{xu2022versatile, title = {Versatile Diffusion: Text, Images and Variations All in One Diffusion Model}, author = {Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, Humphrey Shi}, year = 2022, url = {https://arxiv.org/abs/2211.08332}, eprint = {2211.08332}, archiveprefix = {arXiv}, primaryclass = {cs.CV} } ``` # Usage You can use the model both with the [🧨Diffusers library](https://github.com/huggingface/diffusers) and the [SHI-Labs Versatile Diffusion codebase](https://github.com/SHI-Labs/Versatile-Diffusion). ## 🧨 Diffusers Diffusers let's you both use a unified and more memory-efficient, task-specific pipelines. **Make sure to install `transformers` from `"main"` in order to use this model.**: ``` pip install git+https://github.com/huggingface/transformers ``` ## VersatileDiffusionPipeline To use Versatile Diffusion for all tasks, it is recommend to use the [`VersatileDiffusionPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#diffusers.VersatileDiffusionPipeline) ```py #! pip install git+https://github.com/huggingface/transformers diffusers torch from diffusers import VersatileDiffusionPipeline import torch import requests from io import BytesIO from PIL import Image pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") # prompt prompt = "a red car" # initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") # text to image image = pipe.text_to_image(prompt).images[0] # image variation image = pipe.image_variation(image).images[0] # image variation image = pipe.dual_guided(prompt, image).images[0] ``` ### Task Specific The task specific pipelines load only the weights that are needed onto GPU. You can find all task specific pipelines [here](https://huggingface.co/docs/diffusers/main/en/api/pipelines/versatile_diffusion#versatilediffusion). You can use them as follows: ### Text to Image ```py from diffusers import VersatileDiffusionTextToImagePipeline import torch pipe = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe("an astronaut riding on a horse on mars", generator=generator).images[0] image.save("./astronaut.png") ``` #### Image variations ```py from diffusers import VersatileDiffusionImageVariationPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") pipe = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) image = pipe(image, generator=generator).images[0] image.save("./car_variation.png") ``` #### Dual-guided generation ```py from diffusers import VersatileDiffusionDualGuidedPipeline import torch import requests from io import BytesIO from PIL import Image # download an initial image url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" response = requests.get(url) image = Image.open(BytesIO(response.content)).convert("RGB") text = "a red car in the sun" pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.remove_unused_weights() pipe = pipe.to("cuda") generator = torch.Generator(device="cuda").manual_seed(0) text_to_image_strength = 0.75 image = pipe(prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator).images[0] image.save("./red_car.png") ``` ### Original GitHub Repository Follow the instructions [here](https://github.com/SHI-Labs/Versatile-Diffusion/#evaluation). # Cautions, Biases, and Content Acknowledgment We would like the raise the awareness of users of this demo of its potential issues and concerns. Like previous large foundation models, Versatile Diffusion could be problematic in some cases, partially due to the imperfect training data and pretrained network (VAEs / context encoders) with limited scope. In its future research phase, VD may do better on tasks such as text-to-image, image-to-text, etc., with the help of more powerful VAEs, more sophisticated network designs, and more cleaned data. So far, we have kept all features available for research testing both to show the great potential of the VD framework and to collect important feedback to improve the model in the future. We welcome researchers and users to report issues with the HuggingFace community discussion feature or email the authors. Beware that VD may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography, and violence. VD was trained on the LAION-2B dataset, which scraped non-curated online images and text, and may contain unintended exceptions as we removed illegal content. VD in this demo is meant only for research purposes.
jorgelzn/dqn-SpaceInvadersNoFrameskip-v4
jorgelzn
2023-03-27T20:57:31Z
6
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-02T12:59:51Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 403.00 +/- 148.73 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jorgelzn -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jorgelzn -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jorgelzn ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
joshnielsen876/LKD_Experience_CV5
joshnielsen876
2023-03-27T20:33:32Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T19:43:35Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LKD_Experience_CV5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LKD_Experience_CV5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1901 - Accuracy: 0.9328 - F1: 0.9306 - Precision: 0.9335 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 48 | 0.5064 | 0.6555 | 0.5380 | 0.8136 | 0.59 | | No log | 2.0 | 96 | 0.3327 | 0.9160 | 0.9114 | 0.9297 | 0.9028 | | No log | 3.0 | 144 | 0.2398 | 0.9244 | 0.9212 | 0.9305 | 0.9155 | | No log | 4.0 | 192 | 0.1995 | 0.9328 | 0.9306 | 0.9335 | 0.9283 | | No log | 5.0 | 240 | 0.1901 | 0.9328 | 0.9306 | 0.9335 | 0.9283 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2
drfdr/ProtogenNova_2GB
drfdr
2023-03-27T20:23:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T20:20:43Z
--- license: creativeml-openrail-m ---
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000
vocabtrimmer
2023-03-27T20:21:39Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T19:30:33Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-10000 | |:---------------------------|:----------------------------------|:-----------------------------------------------------------| | parameter_size_full | 610,852,864 | 365,068,288 | | parameter_size_embedding | 512,057,344 | 20,488,192 | | vocab_size | 250,028 | 10,004 | | compression_rate_full | 100.0 | 59.76 | | compression_rate_embedding | 100.0 | 4.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 10000 | 2 |
LarryAIDraw/SNKurskAzurLaneLora_beta
LarryAIDraw
2023-03-27T19:55:25Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:39:56Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24748/sn-kursk-or-azur-lane-or-lora
LarryAIDraw/projectSekaiMizuki_mizukiAkiyamaVer4
LarryAIDraw
2023-03-27T19:54:46Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:32:52Z
--- license: creativeml-openrail-m --- https://civitai.com/models/8047/project-sekai-mizuki-akiyama-loha
LarryAIDraw/chitandaEruHyouka_v1
LarryAIDraw
2023-03-27T19:54:32Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:33:14Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24787/chitanda-eru-hyouka
LarryAIDraw/morisakiAlesiaYuBlue_v10
LarryAIDraw
2023-03-27T19:53:22Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:34:03Z
--- license: creativeml-openrail-m --- https://civitai.com/models/24488/morisaki-alesia-yu-blue-reflection-sun
LarryAIDraw/SukoyaKana_v10
LarryAIDraw
2023-03-27T19:49:56Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-03-27T19:48:51Z
--- license: creativeml-openrail-m ---
kasseev/dqn-SpaceInvadersNoFrameskip-v4
kasseev
2023-03-27T19:38:01Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T19:37:25Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kasseev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kasseev -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kasseev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-5000
vocabtrimmer
2023-03-27T19:29:55Z
105
0
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-27T18:27:33Z
# Vocabulary Trimmed [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa): `vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-5000` This model is a trimmed version of [lmqg/mbart-large-cc25-esquad-qa](https://huggingface.co/lmqg/mbart-large-cc25-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mbart-large-cc25-esquad-qa | vocabtrimmer/mbart-large-cc25-esquad-qa-trimmed-es-5000 | |:---------------------------|:----------------------------------|:----------------------------------------------------------| | parameter_size_full | 610,852,864 | 359,948,288 | | parameter_size_embedding | 512,057,344 | 10,248,192 | | vocab_size | 250,028 | 5,004 | | compression_rate_full | 100.0 | 58.93 | | compression_rate_embedding | 100.0 | 2.0 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 5000 | 2 |
Zaleks/ppo-LunarLander-v2
Zaleks
2023-03-27T19:02:23Z
3
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T16:47:19Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 283.04 +/- 15.33 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Yureeh/ppo-Pyramids
Yureeh
2023-03-27T18:52:36Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-03-27T18:52:31Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Find your model_id: Yureeh/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Pranjalya/lunar-lander-v2-ppo
Pranjalya
2023-03-27T18:47:03Z
5
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T18:46:32Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 252.15 +/- 44.85 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
DeathReaper0965/Huggy-the-Puppo
DeathReaper0965
2023-03-27T18:46:40Z
19
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents", "Puppo", "region:us" ]
reinforcement-learning
2023-03-27T06:19:31Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents - Puppo --- # **PPO** Agent playing **Huggy** This is a trained model of a **PPO** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started ### Resume training Below code can be used to resume the Agent training: ``` mlagents-learn <your_configuration_file_path.yaml> --run-id="Huggy-the-Puppo" --resume ``` ### Watch Agent You can watch the agent playing by following the below steps mentioned below: 1. Go to: https://huggingface.co/spaces/ThomasSimonini/Huggy 2. Step 1: Find the model_id: `deathReaper0965/Huggy-the-Puppo` 3. Step 2: Select the *.onnx file 4. Click on `Play with Huggy`
emmuzoo/a2c-PandaReachDense-v2
emmuzoo
2023-03-27T18:30:03Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T14:01:19Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.69 +/- 0.51 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
FBM/a2c-PandaReachDense-v2
FBM
2023-03-27T18:25:04Z
5
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-01-24T12:43:35Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -0.87 +/- 0.22 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
miki030/PPO-Lunar-v5
miki030
2023-03-27T18:13:35Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T18:07:39Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 302.89 +/- 13.61 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
silentkebab/ppo-LunarLander-v2
silentkebab
2023-03-27T18:12:38Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T17:47:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 251.25 +/- 21.84 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
rickbox/test-c
rickbox
2023-03-27T18:00:24Z
30
0
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-03-27T17:55:43Z
--- license: creativeml-openrail-m ---
Noam-Shamir/rare-puppers
Noam-Shamir
2023-03-27T17:50:52Z
223
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-27T17:50:41Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: rare-puppers results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.939393937587738 --- # rare-puppers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### corgi ![corgi](images/corgi.jpg) #### samoyed ![samoyed](images/samoyed.jpg) #### shiba inu ![shiba inu](images/shiba_inu.jpg)
Cleighton071/autotrain-detection-for-product-location-44269111681
Cleighton071
2023-03-27T17:50:11Z
101
0
transformers
[ "transformers", "pytorch", "deberta", "text-classification", "autotrain", "en", "dataset:Cleighton071/autotrain-data-detection-for-product-location", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:44:20Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - Cleighton071/autotrain-data-detection-for-product-location co2_eq_emissions: emissions: 2.30199726014708 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 44269111681 - CO2 Emissions (in grams): 2.3020 ## Validation Metrics - Loss: 0.005 - Accuracy: 0.999 - Macro F1: 0.999 - Micro F1: 0.999 - Weighted F1: 0.999 - Macro Precision: 0.999 - Micro Precision: 0.999 - Weighted Precision: 0.999 - Macro Recall: 0.999 - Micro Recall: 0.999 - Weighted Recall: 0.999 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Cleighton071/autotrain-detection-for-product-location-44269111681 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111681", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Cleighton071/autotrain-detection-for-product-location-44269111681", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
murkasad/detr-resnet-50_finetuned_cppe5
murkasad
2023-03-27T17:44:58Z
188
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-03-27T16:21:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cppe-5 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
SpookyWooky5/Reinforce-v2
SpookyWooky5
2023-03-27T17:28:44Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T14:57:03Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-v2 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 33.60 +/- 27.26 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
AgentPublic/camembert-base-squadFR-fquad-piaf
AgentPublic
2023-03-27T17:24:27Z
2,250
28
transformers
[ "transformers", "pytorch", "tf", "safetensors", "camembert", "question-answering", "fr", "dataset:piaf", "dataset:FQuAD", "dataset:SQuAD-FR", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: fr datasets: - piaf - FQuAD - SQuAD-FR widget: - text: "Comment s'appelle le portail open data du gouvernement ?" context: "Etalab est une administration publique française qui fait notamment office de Chief Data Officer de l'État et coordonne la conception et la mise en œuvre de sa stratégie dans le domaine de la donnée (ouverture et partage des données publiques ou open data, exploitation des données et intelligence artificielle...). Ainsi, Etalab développe et maintient le portail des données ouvertes du gouvernement français data.gouv.fr. Etalab promeut également une plus grande ouverture l'administration sur la société (gouvernement ouvert) : transparence de l'action publique, innovation ouverte, participation citoyenne... elle promeut l’innovation, l’expérimentation, les méthodes de travail ouvertes, agiles et itératives, ainsi que les synergies avec la société civile pour décloisonner l’administration et favoriser l’adoption des meilleures pratiques professionnelles dans le domaine du numérique. À ce titre elle étudie notamment l’opportunité de recourir à des technologies en voie de maturation issues du monde de la recherche. Cette entité chargée de l'innovation au sein de l'administration doit contribuer à l'amélioration du service public grâce au numérique. Elle est rattachée à la Direction interministérielle du numérique, dont les missions et l’organisation ont été fixées par le décret du 30 octobre 2019.  Dirigé par Laure Lucchesi depuis 2016, elle rassemble une équipe pluridisciplinaire d'une trentaine de personnes." --- # camembert-base-squadFR-fquad-piaf ## Description Question-answering French model, using base [CamemBERT](https://camembert-model.fr/) fine-tuned on a combo of three French Q&A datasets: 1. [PIAFv1.1](https://www.data.gouv.fr/en/datasets/piaf-le-dataset-francophone-de-questions-reponses/) 2. [FQuADv1.0](https://fquad.illuin.tech/) 3. [SQuAD-FR (SQuAD automatically translated to French)](https://github.com/Alikabbadj/French-SQuAD) ## Training hyperparameters ```shell python run_squad.py \ --model_type camembert \ --model_name_or_path camembert-base \ --do_train --do_eval \ --train_file data/SQuAD+fquad+piaf.json \ --predict_file data/fquad_valid.json \ --per_gpu_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --save_steps 10000 ``` ## Evaluation results ### FQuAD v1.0 Evaluation ```shell {"f1": 79.81, "exact_match": 55.14} ``` ### SQuAD-FR Evaluation ```shell {"f1": 80.61, "exact_match": 59.54} ``` ## Usage ```python from transformers import pipeline nlp = pipeline('question-answering', model='etalab-ia/camembert-base-squadFR-fquad-piaf', tokenizer='etalab-ia/camembert-base-squadFR-fquad-piaf') nlp({ 'question': "Qui est Claude Monet?", 'context': "Claude Monet, né le 14 novembre 1840 à Paris et mort le 5 décembre 1926 à Giverny, est un peintre français et l’un des fondateurs de l'impressionnisme." }) ``` ## Acknowledgments This work was performed using HPC resources from GENCI–IDRIS (Grant 2020-AD011011224). ## Citations ### PIAF ``` @inproceedings{KeraronLBAMSSS20, author = {Rachel Keraron and Guillaume Lancrenon and Mathilde Bras and Fr{\'{e}}d{\'{e}}ric Allary and Gilles Moyse and Thomas Scialom and Edmundo{-}Pavel Soriano{-}Morales and Jacopo Staiano}, title = {Project {PIAF:} Building a Native French Question-Answering Dataset}, booktitle = {{LREC}}, pages = {5481--5490}, publisher = {European Language Resources Association}, year = {2020} } ``` ### FQuAD ``` @article{dHoffschmidt2020FQuADFQ, title={FQuAD: French Question Answering Dataset}, author={Martin d'Hoffschmidt and Maxime Vidal and Wacim Belblidia and Tom Brendl'e and Quentin Heinrich}, journal={ArXiv}, year={2020}, volume={abs/2002.06071} } ``` ### SQuAD-FR ``` @MISC{kabbadj2018, author = "Kabbadj, Ali", title = "Something new in French Text Mining and Information Extraction (Universal Chatbot): Largest Q&A French training dataset (110 000+) ", editor = "linkedin.com", month = "November", year = "2018", url = "\url{https://www.linkedin.com/pulse/something-new-french-text-mining-information-chatbot-largest-kabbadj/}", note = "[Online; posted 11-November-2018]", } ``` ### CamemBERT HF model card : [https://huggingface.co/camembert-base](https://huggingface.co/camembert-base) ``` @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
ghassenhannachi/Reinforce-Pixelcopter-PLE-v0
ghassenhannachi
2023-03-27T17:23:27Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-03-27T17:23:24Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 30.90 +/- 25.66 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
ViditRaj/XLM_Roberta_Hindi_Ads_Classifier
ViditRaj
2023-03-27T17:22:05Z
60
0
transformers
[ "transformers", "tf", "xlm-roberta", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-27T17:08:00Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: ViditRaj/XLM_Roberta_Hindi_Ads_Classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ViditRaj/XLM_Roberta_Hindi_Ads_Classifier This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3258 - Validation Loss: 0.2867 - Train Accuracy: 0.9149 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.3738 | 0.2117 | 0.9301 | 0 | | 0.2323 | 0.1927 | 0.9347 | 1 | | 0.2013 | 0.1739 | 0.9377 | 2 | | 0.4551 | 0.5800 | 0.7219 | 3 | | 0.3258 | 0.2867 | 0.9149 | 4 | ### Framework versions - Transformers 4.27.3 - TensorFlow 2.11.0 - Datasets 2.10.1 - Tokenizers 0.13.2
vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000
vocabtrimmer
2023-03-27T17:09:18Z
106
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-03-15T16:33:10Z
# Vocabulary Trimmed [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa): `vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000` This model is a trimmed version of [lmqg/mt5-small-esquad-qa](https://huggingface.co/lmqg/mt5-small-esquad-qa) by [`vocabtrimmer`](https://github.com/asahi417/lm-vocab-trimmer), a tool for trimming vocabulary of language models to compress the model size. Following table shows a summary of the trimming process. | | lmqg/mt5-small-esquad-qa | vocabtrimmer/mt5-small-esquad-qa-trimmed-es-120000 | |:---------------------------|:---------------------------|:-----------------------------------------------------| | parameter_size_full | 300,165,504 | 166,944,128 | | parameter_size_embedding | 256,103,424 | 122,882,048 | | vocab_size | 250,101 | 120,002 | | compression_rate_full | 100.0 | 55.62 | | compression_rate_embedding | 100.0 | 47.98 | Following table shows the parameter used to trim vocabulary. | language | dataset | dataset_column | dataset_name | dataset_split | target_vocab_size | min_frequency | |:-----------|:----------------------------|:-----------------|:---------------|:----------------|--------------------:|----------------:| | es | vocabtrimmer/mc4_validation | text | es | validation | 120000 | 2 |
huggingtweets/hackscsslife
huggingtweets
2023-03-27T17:03:53Z
117
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-03-27T15:54:43Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1636581917536468995/EbnzZvIL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gert {</div> <div style="text-align: center; font-size: 14px;">@hackscsslife</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gert {. | Data | gert { | | --- | --- | | Tweets downloaded | 1671 | | Retweets | 20 | | Short tweets | 374 | | Tweets kept | 1277 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/0k2h69dm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hackscsslife's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w5818qp8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w5818qp8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hackscsslife') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
joshnielsen876/LKD_Experience_CV4
joshnielsen876
2023-03-27T16:48:48Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-03-24T19:27:47Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: LKD_Experience_CV4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # LKD_Experience_CV4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2443 - Accuracy: 0.9244 - F1: 0.9158 - Precision: 0.9240 - Recall: 0.9091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 48 | 0.4809 | 0.7311 | 0.6063 | 0.8532 | 0.6190 | | No log | 2.0 | 96 | 0.3551 | 0.8908 | 0.8716 | 0.9157 | 0.8506 | | No log | 3.0 | 144 | 0.2712 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | | No log | 4.0 | 192 | 0.2508 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | | No log | 5.0 | 240 | 0.2443 | 0.9244 | 0.9158 | 0.9240 | 0.9091 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2