modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
Dnyaneshwar/hing-mbert-finetuned-code-mixed-DS
Dnyaneshwar
2022-09-13T14:19:07Z
102
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T13:46:40Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-mbert-finetuned-code-mixed-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-finetuned-code-mixed-DS This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0518 - Accuracy: 0.7545 - Precision: 0.7041 - Recall: 0.7076 - F1: 0.7053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.7277800745684633e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8338 | 1.0 | 497 | 0.6922 | 0.7163 | 0.6697 | 0.6930 | 0.6686 | | 0.5744 | 2.0 | 994 | 0.7872 | 0.7324 | 0.6786 | 0.6967 | 0.6845 | | 0.36 | 3.0 | 1491 | 1.0518 | 0.7545 | 0.7041 | 0.7076 | 0.7053 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SiddharthaM/bert-engonly-sentiment-test
SiddharthaM
2022-09-13T14:16:50Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T13:54:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: bert-engonly-sentiment-test results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8966666666666666 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-engonly-sentiment-test This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4479 - Accuracy: 0.8967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
vamsibanda/sbert-all-MiniLM-L12-with-pooler
vamsibanda
2022-09-13T14:02:58Z
4
0
sentence-transformers
[ "sentence-transformers", "onnx", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-23T04:04:24Z
--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - onnx --- # ONNX convert all-MiniLM-L12-v2 ## Conversion of [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) This is a [sentence-transformers](https://www.SBERT.net) ONNX model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This custom model takes `last_hidden_state` and `pooler_output` whereas the sentence-transformers exported with default ONNX config only contains `last_hidden_state` as output. ## Usage (HuggingFace Optimum) Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed: ``` python -m pip install optimum ``` Then you can use the model like this: ```python from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks model = ORTModelForCustomTasks.from_pretrained("vamsibanda/sbert-all-MiniLM-L12-with-pooler") tokenizer = AutoTokenizer.from_pretrained("vamsibanda/sbert-all-MiniLM-L12-with-pooler") inputs = tokenizer("I love burritos!", return_tensors="pt") pred = model(**inputs) embedding = pred['pooler_output'] ```
vamsibanda/sbert-all-roberta-large-v1-with-pooler
vamsibanda
2022-09-13T14:00:40Z
3
1
sentence-transformers
[ "sentence-transformers", "onnx", "roberta", "feature-extraction", "sentence-similarity", "transformers", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-19T00:43:14Z
--- pipeline_tag: sentence-similarity language: en license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - onnx --- # ONNX convert all-roberta-large-v1 ## Conversion of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) ## Usage (HuggingFace Optimum) Using this model becomes easy when you have [optimum](https://github.com/huggingface/optimum) installed: ``` python -m pip install optimum ``` Then you can use the model like this: ```python from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks model = ORTModelForCustomTasks.from_pretrained("vamsibanda/sbert-all-roberta-large-v1-with-pooler") tokenizer = AutoTokenizer.from_pretrained("vamsibanda/sbert-all-roberta-large-v1-with-pooler") inputs = tokenizer("I love burritos!", return_tensors="pt") pred = model(**inputs) embedding = pred['pooler_output'] ```
sd-concepts-library/a-tale-of-two-empires
sd-concepts-library
2022-09-13T13:35:14Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-13T13:19:38Z
--- license: mit --- ### A Tale of Two Empires on Stable Diffusion This is the `<two-empires>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<two-empires> 0](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/2.jpeg) ![<two-empires> 1](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/3.jpeg) ![<two-empires> 2](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/1.jpeg) ![<two-empires> 3](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/5.jpeg) ![<two-empires> 4](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/4.jpeg) ![<two-empires> 5](https://huggingface.co/sd-concepts-library/a-tale-of-two-empires/resolve/main/concept_images/0.jpeg) Source: Reddit [u/mandal0re](https://www.reddit.com/r/StarWars/comments/kg6ovv/i_like_to_photoshop_old_paintings_heres_my_a_tale/)
DelinteNicolas/SDG_classifier_v0.0.4
DelinteNicolas
2022-09-13T13:13:45Z
165
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-12T14:34:34Z
--- license: gpl-3.0 --- Fined-tuned BERT trained on 6500+ labeled data, including control sentences from SuperGLUE.
MJ199999/gpt3_model
MJ199999
2022-09-13T12:42:18Z
9
1
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-09T05:19:15Z
--- tags: - generated_from_keras_callback model-index: - name: gpt3_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # gpt3_model This model is a fine-tuned version of [MJ199999/gpt3_model](https://huggingface.co/MJ199999/gpt3_model) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4905 - Train Lr: 0.0009999999 - Epoch: 199 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adagrad', 'learning_rate': 0.0009999999, 'decay': 0.0, 'initial_accumulator_value': 0.1, 'epsilon': 1e-07} - training_precision: float32 ### Training results | Train Loss | Train Lr | Epoch | |:----------:|:------------:|:-----:| | 5.1583 | 0.01 | 0 | | 3.9477 | 0.01 | 1 | | 2.9332 | 0.01 | 2 | | 2.1581 | 0.01 | 3 | | 1.6918 | 0.01 | 4 | | 1.3929 | 0.01 | 5 | | 1.2062 | 0.01 | 6 | | 1.0955 | 0.01 | 7 | | 1.0068 | 0.01 | 8 | | 0.9528 | 0.01 | 9 | | 0.9051 | 0.01 | 10 | | 0.8710 | 0.01 | 11 | | 0.8564 | 0.01 | 12 | | 0.8094 | 0.01 | 13 | | 0.8143 | 0.01 | 14 | | 0.7853 | 0.01 | 15 | | 0.7625 | 0.01 | 16 | | 0.7508 | 0.01 | 17 | | 0.7449 | 0.01 | 18 | | 0.7319 | 0.01 | 19 | | 0.7144 | 0.01 | 20 | | 0.7045 | 0.01 | 21 | | 0.7029 | 0.01 | 22 | | 0.6937 | 0.01 | 23 | | 0.6898 | 0.01 | 24 | | 0.6745 | 0.01 | 25 | | 0.6767 | 0.01 | 26 | | 0.6692 | 0.01 | 27 | | 0.6604 | 0.01 | 28 | | 0.6573 | 0.01 | 29 | | 0.6524 | 0.01 | 30 | | 0.6508 | 0.01 | 31 | | 0.6443 | 0.01 | 32 | | 0.6452 | 0.01 | 33 | | 0.6371 | 0.01 | 34 | | 0.6362 | 0.01 | 35 | | 0.6304 | 0.01 | 36 | | 0.6317 | 0.01 | 37 | | 0.6270 | 0.01 | 38 | | 0.6257 | 0.01 | 39 | | 0.6208 | 0.01 | 40 | | 0.6227 | 0.01 | 41 | | 0.6154 | 0.01 | 42 | | 0.6126 | 0.01 | 43 | | 0.6149 | 0.01 | 44 | | 0.6075 | 0.01 | 45 | | 0.6084 | 0.01 | 46 | | 0.6078 | 0.01 | 47 | | 0.6057 | 0.01 | 48 | | 0.6033 | 0.01 | 49 | | 0.6040 | 0.01 | 50 | | 0.5989 | 0.01 | 51 | | 0.5967 | 0.01 | 52 | | 0.5952 | 0.01 | 53 | | 0.5911 | 0.01 | 54 | | 0.5904 | 0.01 | 55 | | 0.5888 | 0.01 | 56 | | 0.5886 | 0.01 | 57 | | 0.5883 | 0.01 | 58 | | 0.5838 | 0.01 | 59 | | 0.5856 | 0.01 | 60 | | 0.5850 | 0.01 | 61 | | 0.5801 | 0.01 | 62 | | 0.5821 | 0.01 | 63 | | 0.5781 | 0.01 | 64 | | 0.5786 | 0.01 | 65 | | 0.5835 | 0.01 | 66 | | 0.5808 | 0.01 | 67 | | 0.5754 | 0.01 | 68 | | 0.5742 | 0.01 | 69 | | 0.5733 | 0.01 | 70 | | 0.5700 | 0.01 | 71 | | 0.5738 | 0.01 | 72 | | 0.5678 | 0.01 | 73 | | 0.5695 | 0.01 | 74 | | 0.5684 | 0.01 | 75 | | 0.5696 | 0.01 | 76 | | 0.5688 | 0.01 | 77 | | 0.5648 | 0.01 | 78 | | 0.5592 | 0.01 | 79 | | 0.5622 | 0.01 | 80 | | 0.5660 | 0.01 | 81 | | 0.5636 | 0.01 | 82 | | 0.5602 | 0.01 | 83 | | 0.5613 | 0.01 | 84 | | 0.5608 | 0.01 | 85 | | 0.5589 | 0.01 | 86 | | 0.5580 | 0.01 | 87 | | 0.5566 | 0.01 | 88 | | 0.5531 | 0.01 | 89 | | 0.5571 | 0.01 | 90 | | 0.5541 | 0.01 | 91 | | 0.5576 | 0.01 | 92 | | 0.5560 | 0.01 | 93 | | 0.5517 | 0.01 | 94 | | 0.5508 | 0.01 | 95 | | 0.5554 | 0.01 | 96 | | 0.5539 | 0.01 | 97 | | 0.5493 | 0.01 | 98 | | 0.5499 | 0.01 | 99 | | 0.4999 | 0.0009999999 | 100 | | 0.4981 | 0.0009999999 | 101 | | 0.4983 | 0.0009999999 | 102 | | 0.4984 | 0.0009999999 | 103 | | 0.4974 | 0.0009999999 | 104 | | 0.4957 | 0.0009999999 | 105 | | 0.4966 | 0.0009999999 | 106 | | 0.4975 | 0.0009999999 | 107 | | 0.4962 | 0.0009999999 | 108 | | 0.4932 | 0.0009999999 | 109 | | 0.4983 | 0.0009999999 | 110 | | 0.4937 | 0.0009999999 | 111 | | 0.4926 | 0.0009999999 | 112 | | 0.4944 | 0.0009999999 | 113 | | 0.4947 | 0.0009999999 | 114 | | 0.4953 | 0.0009999999 | 115 | | 0.4934 | 0.0009999999 | 116 | | 0.4929 | 0.0009999999 | 117 | | 0.4925 | 0.0009999999 | 118 | | 0.4948 | 0.0009999999 | 119 | | 0.4947 | 0.0009999999 | 120 | | 0.4936 | 0.0009999999 | 121 | | 0.4909 | 0.0009999999 | 122 | | 0.4960 | 0.0009999999 | 123 | | 0.4952 | 0.0009999999 | 124 | | 0.4923 | 0.0009999999 | 125 | | 0.4930 | 0.0009999999 | 126 | | 0.4942 | 0.0009999999 | 127 | | 0.4927 | 0.0009999999 | 128 | | 0.4917 | 0.0009999999 | 129 | | 0.4926 | 0.0009999999 | 130 | | 0.4927 | 0.0009999999 | 131 | | 0.4932 | 0.0009999999 | 132 | | 0.4925 | 0.0009999999 | 133 | | 0.4928 | 0.0009999999 | 134 | | 0.4936 | 0.0009999999 | 135 | | 0.4908 | 0.0009999999 | 136 | | 0.4936 | 0.0009999999 | 137 | | 0.4916 | 0.0009999999 | 138 | | 0.4906 | 0.0009999999 | 139 | | 0.4904 | 0.0009999999 | 140 | | 0.4920 | 0.0009999999 | 141 | | 0.4924 | 0.0009999999 | 142 | | 0.4902 | 0.0009999999 | 143 | | 0.4903 | 0.0009999999 | 144 | | 0.4903 | 0.0009999999 | 145 | | 0.4924 | 0.0009999999 | 146 | | 0.4889 | 0.0009999999 | 147 | | 0.4896 | 0.0009999999 | 148 | | 0.4919 | 0.0009999999 | 149 | | 0.4896 | 0.0009999999 | 150 | | 0.4906 | 0.0009999999 | 151 | | 0.4923 | 0.0009999999 | 152 | | 0.4899 | 0.0009999999 | 153 | | 0.4925 | 0.0009999999 | 154 | | 0.4901 | 0.0009999999 | 155 | | 0.4910 | 0.0009999999 | 156 | | 0.4904 | 0.0009999999 | 157 | | 0.4912 | 0.0009999999 | 158 | | 0.4937 | 0.0009999999 | 159 | | 0.4894 | 0.0009999999 | 160 | | 0.4913 | 0.0009999999 | 161 | | 0.4899 | 0.0009999999 | 162 | | 0.4894 | 0.0009999999 | 163 | | 0.4904 | 0.0009999999 | 164 | | 0.4900 | 0.0009999999 | 165 | | 0.4890 | 0.0009999999 | 166 | | 0.4919 | 0.0009999999 | 167 | | 0.4909 | 0.0009999999 | 168 | | 0.4891 | 0.0009999999 | 169 | | 0.4900 | 0.0009999999 | 170 | | 0.4910 | 0.0009999999 | 171 | | 0.4901 | 0.0009999999 | 172 | | 0.4914 | 0.0009999999 | 173 | | 0.4913 | 0.0009999999 | 174 | | 0.4897 | 0.0009999999 | 175 | | 0.4892 | 0.0009999999 | 176 | | 0.4929 | 0.0009999999 | 177 | | 0.4881 | 0.0009999999 | 178 | | 0.4920 | 0.0009999999 | 179 | | 0.4888 | 0.0009999999 | 180 | | 0.4901 | 0.0009999999 | 181 | | 0.4875 | 0.0009999999 | 182 | | 0.4930 | 0.0009999999 | 183 | | 0.4867 | 0.0009999999 | 184 | | 0.4890 | 0.0009999999 | 185 | | 0.4898 | 0.0009999999 | 186 | | 0.4880 | 0.0009999999 | 187 | | 0.4899 | 0.0009999999 | 188 | | 0.4881 | 0.0009999999 | 189 | | 0.4897 | 0.0009999999 | 190 | | 0.4876 | 0.0009999999 | 191 | | 0.4873 | 0.0009999999 | 192 | | 0.4901 | 0.0009999999 | 193 | | 0.4898 | 0.0009999999 | 194 | | 0.4898 | 0.0009999999 | 195 | | 0.4861 | 0.0009999999 | 196 | | 0.4878 | 0.0009999999 | 197 | | 0.4880 | 0.0009999999 | 198 | | 0.4905 | 0.0009999999 | 199 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-0front-1body-7rear
Padomin
2022-09-13T12:15:31Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-13T02:28:03Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-7rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-7rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4666 - Wer: 0.1780 - Mer: 0.1718 - Wil: 0.2607 - Wip: 0.7393 - Hits: 55410 - Substitutions: 6566 - Deletions: 2611 - Insertions: 2321 - Cer: 0.1388 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6424 | 1.0 | 1457 | 0.4944 | 0.1980 | 0.1893 | 0.2798 | 0.7202 | 54775 | 6748 | 3064 | 2975 | 0.1603 | | 0.5444 | 2.0 | 2914 | 0.4496 | 0.1799 | 0.1740 | 0.2619 | 0.7381 | 55175 | 6480 | 2932 | 2207 | 0.1400 | | 0.4975 | 3.0 | 4371 | 0.4451 | 0.1773 | 0.1713 | 0.2586 | 0.7414 | 55399 | 6429 | 2759 | 2266 | 0.1397 | | 0.4312 | 4.0 | 5828 | 0.4417 | 0.1758 | 0.1701 | 0.2572 | 0.7428 | 55408 | 6407 | 2772 | 2178 | 0.1378 | | 0.3846 | 5.0 | 7285 | 0.4445 | 0.1753 | 0.1696 | 0.2573 | 0.7427 | 55409 | 6453 | 2725 | 2142 | 0.1367 | | 0.3501 | 6.0 | 8742 | 0.4482 | 0.1792 | 0.1727 | 0.2609 | 0.7391 | 55453 | 6522 | 2612 | 2439 | 0.1401 | | 0.381 | 7.0 | 10199 | 0.4531 | 0.1770 | 0.1711 | 0.2592 | 0.7408 | 55380 | 6498 | 2709 | 2223 | 0.1378 | | 0.313 | 8.0 | 11656 | 0.4585 | 0.1775 | 0.1716 | 0.2599 | 0.7401 | 55371 | 6516 | 2700 | 2250 | 0.1383 | | 0.2976 | 9.0 | 13113 | 0.4646 | 0.1778 | 0.1717 | 0.2603 | 0.7397 | 55387 | 6537 | 2663 | 2284 | 0.1402 | | 0.3152 | 10.0 | 14570 | 0.4666 | 0.1780 | 0.1718 | 0.2607 | 0.7393 | 55410 | 6566 | 2611 | 2321 | 0.1388 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-0front-1body-6rear
Padomin
2022-09-13T11:59:57Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-13T02:30:38Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-6rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-6rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4688 - Wer: 0.1755 - Mer: 0.1695 - Wil: 0.2577 - Wip: 0.7423 - Hits: 55504 - Substitutions: 6505 - Deletions: 2578 - Insertions: 2249 - Cer: 0.1373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6426 | 1.0 | 1457 | 0.4936 | 0.2128 | 0.2007 | 0.2903 | 0.7097 | 54742 | 6734 | 3111 | 3899 | 0.1791 | | 0.5519 | 2.0 | 2914 | 0.4535 | 0.1970 | 0.1876 | 0.2747 | 0.7253 | 55096 | 6467 | 3024 | 3233 | 0.1567 | | 0.5007 | 3.0 | 4371 | 0.4465 | 0.1819 | 0.1751 | 0.2628 | 0.7372 | 55359 | 6481 | 2747 | 2522 | 0.1435 | | 0.4374 | 4.0 | 5828 | 0.4417 | 0.1761 | 0.1703 | 0.2582 | 0.7418 | 55399 | 6471 | 2717 | 2184 | 0.1373 | | 0.3831 | 5.0 | 7285 | 0.4459 | 0.1755 | 0.1697 | 0.2570 | 0.7430 | 55465 | 6429 | 2693 | 2214 | 0.1383 | | 0.352 | 6.0 | 8742 | 0.4496 | 0.1755 | 0.1697 | 0.2573 | 0.7427 | 55452 | 6450 | 2685 | 2202 | 0.1374 | | 0.3955 | 7.0 | 10199 | 0.4527 | 0.1766 | 0.1707 | 0.2580 | 0.7420 | 55429 | 6429 | 2729 | 2251 | 0.1392 | | 0.3132 | 8.0 | 11656 | 0.4629 | 0.1764 | 0.1703 | 0.2580 | 0.7420 | 55522 | 6472 | 2593 | 2329 | 0.1380 | | 0.3116 | 9.0 | 13113 | 0.4652 | 0.1755 | 0.1695 | 0.2577 | 0.7423 | 55517 | 6505 | 2565 | 2264 | 0.1371 | | 0.313 | 10.0 | 14570 | 0.4688 | 0.1755 | 0.1695 | 0.2577 | 0.7423 | 55504 | 6505 | 2578 | 2249 | 0.1373 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
IIIT-L/hing-mbert-finetuned-TRAC-DS
IIIT-L
2022-09-13T11:50:24Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-13T11:15:49Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-mbert-finetuned-TRAC-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-finetuned-TRAC-DS This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3580 - Accuracy: 0.7018 - Precision: 0.6759 - Recall: 0.6722 - F1: 0.6737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.824279936868144e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7111 | 2.0 | 1224 | 0.7772 | 0.6683 | 0.6695 | 0.6793 | 0.6558 | | 0.3026 | 3.99 | 2448 | 1.3580 | 0.7018 | 0.6759 | 0.6722 | 0.6737 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
sd-concepts-library/zaney
sd-concepts-library
2022-09-13T10:39:57Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T10:39:54Z
--- license: mit --- ### zaney on Stable Diffusion This is the `<zaney>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<zaney> 0](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/8.jpeg) ![<zaney> 1](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/2.jpeg) ![<zaney> 2](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/3.jpeg) ![<zaney> 3](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/6.jpeg) ![<zaney> 4](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/1.jpeg) ![<zaney> 5](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/9.jpeg) ![<zaney> 6](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/5.jpeg) ![<zaney> 7](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/4.jpeg) ![<zaney> 8](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/7.jpeg) ![<zaney> 9](https://huggingface.co/sd-concepts-library/zaney/resolve/main/concept_images/0.jpeg)
SetFit/MiniLM_L3_clinc_oos_plus_distilled
SetFit
2022-09-13T10:39:03Z
5
5
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-09-13T10:38:58Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # SetFit/MiniLM_L3_clinc_oos_plus_distilled This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('SetFit/MiniLM_L3_clinc_oos_plus_distilled') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('SetFit/MiniLM_L3_clinc_oos_plus_distilled') model = AutoModel.from_pretrained('SetFit/MiniLM_L3_clinc_oos_plus_distilled') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=SetFit/MiniLM_L3_clinc_oos_plus_distilled) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 190625 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
sd-concepts-library/bada-club
sd-concepts-library
2022-09-13T09:35:45Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-13T09:35:32Z
--- license: mit --- ### bada club on Stable Diffusion This is the `<bada-club>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<bada-club> 0](https://huggingface.co/sd-concepts-library/bada-club/resolve/main/concept_images/2.jpeg) ![<bada-club> 1](https://huggingface.co/sd-concepts-library/bada-club/resolve/main/concept_images/3.jpeg) ![<bada-club> 2](https://huggingface.co/sd-concepts-library/bada-club/resolve/main/concept_images/1.jpeg) ![<bada-club> 3](https://huggingface.co/sd-concepts-library/bada-club/resolve/main/concept_images/0.jpeg)
sd-concepts-library/dullboy-caricature
sd-concepts-library
2022-09-13T08:14:36Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T08:14:29Z
--- license: mit --- ### Dullboy Caricature on Stable Diffusion This is the `<dullboy-cari>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dullboy-cari> 0](https://huggingface.co/sd-concepts-library/dullboy-caricature/resolve/main/concept_images/2.jpeg) ![<dullboy-cari> 1](https://huggingface.co/sd-concepts-library/dullboy-caricature/resolve/main/concept_images/1.jpeg) ![<dullboy-cari> 2](https://huggingface.co/sd-concepts-library/dullboy-caricature/resolve/main/concept_images/0.jpeg)
Sebabrata/lmv2-g-passport-197-doc-09-13
Sebabrata
2022-09-13T04:54:38Z
90
3
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-09-13T04:10:33Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer model-index: - name: lmv2-g-passport-197-doc-09-13 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lmv2-g-passport-197-doc-09-13 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0438 - Country Code Precision: 0.9412 - Country Code Recall: 0.9697 - Country Code F1: 0.9552 - Country Code Number: 33 - Date Of Birth Precision: 0.9714 - Date Of Birth Recall: 1.0 - Date Of Birth F1: 0.9855 - Date Of Birth Number: 34 - Date Of Expiry Precision: 1.0 - Date Of Expiry Recall: 1.0 - Date Of Expiry F1: 1.0 - Date Of Expiry Number: 36 - Date Of Issue Precision: 1.0 - Date Of Issue Recall: 1.0 - Date Of Issue F1: 1.0 - Date Of Issue Number: 36 - Given Name Precision: 0.9444 - Given Name Recall: 1.0 - Given Name F1: 0.9714 - Given Name Number: 34 - Nationality Precision: 0.9714 - Nationality Recall: 1.0 - Nationality F1: 0.9855 - Nationality Number: 34 - Passport No Precision: 0.9118 - Passport No Recall: 0.9688 - Passport No F1: 0.9394 - Passport No Number: 32 - Place Of Birth Precision: 1.0 - Place Of Birth Recall: 0.9730 - Place Of Birth F1: 0.9863 - Place Of Birth Number: 37 - Place Of Issue Precision: 1.0 - Place Of Issue Recall: 0.9722 - Place Of Issue F1: 0.9859 - Place Of Issue Number: 36 - Sex Precision: 0.9655 - Sex Recall: 0.9333 - Sex F1: 0.9492 - Sex Number: 30 - Surname Precision: 0.9259 - Surname Recall: 1.0 - Surname F1: 0.9615 - Surname Number: 25 - Type Precision: 1.0 - Type Recall: 1.0 - Type F1: 1.0 - Type Number: 27 - Overall Precision: 0.97 - Overall Recall: 0.9848 - Overall F1: 0.9773 - Overall Accuracy: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Country Code Precision | Country Code Recall | Country Code F1 | Country Code Number | Date Of Birth Precision | Date Of Birth Recall | Date Of Birth F1 | Date Of Birth Number | Date Of Expiry Precision | Date Of Expiry Recall | Date Of Expiry F1 | Date Of Expiry Number | Date Of Issue Precision | Date Of Issue Recall | Date Of Issue F1 | Date Of Issue Number | Given Name Precision | Given Name Recall | Given Name F1 | Given Name Number | Nationality Precision | Nationality Recall | Nationality F1 | Nationality Number | Passport No Precision | Passport No Recall | Passport No F1 | Passport No Number | Place Of Birth Precision | Place Of Birth Recall | Place Of Birth F1 | Place Of Birth Number | Place Of Issue Precision | Place Of Issue Recall | Place Of Issue F1 | Place Of Issue Number | Sex Precision | Sex Recall | Sex F1 | Sex Number | Surname Precision | Surname Recall | Surname F1 | Surname Number | Type Precision | Type Recall | Type F1 | Type Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:--------------:|:--------------:|:-----------:|:-------:|:-----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 1.6757 | 1.0 | 157 | 1.2569 | 0.0 | 0.0 | 0.0 | 33 | 0.0 | 0.0 | 0.0 | 34 | 0.2466 | 1.0 | 0.3956 | 36 | 0.0 | 0.0 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 34 | 0.0 | 0.0 | 0.0 | 34 | 0.0 | 0.0 | 0.0 | 32 | 0.0 | 0.0 | 0.0 | 37 | 0.0 | 0.0 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.2466 | 0.0914 | 0.1333 | 0.8446 | | 0.9214 | 2.0 | 314 | 0.5683 | 0.9394 | 0.9394 | 0.9394 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.5625 | 0.5294 | 0.5455 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.6098 | 0.7812 | 0.6849 | 32 | 0.9394 | 0.8378 | 0.8857 | 37 | 0.8293 | 0.9444 | 0.8831 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.6129 | 0.76 | 0.6786 | 25 | 1.0 | 0.8889 | 0.9412 | 27 | 0.8642 | 0.8883 | 0.8761 | 0.9777 | | 0.4452 | 3.0 | 471 | 0.3266 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.5556 | 0.4412 | 0.4918 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.625 | 0.7812 | 0.6944 | 32 | 1.0 | 0.8108 | 0.8955 | 37 | 0.7556 | 0.9444 | 0.8395 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.5556 | 0.8 | 0.6557 | 25 | 1.0 | 0.7037 | 0.8261 | 27 | 0.8532 | 0.8706 | 0.8618 | 0.9784 | | 0.2823 | 4.0 | 628 | 0.2215 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.75 | 0.8824 | 0.8108 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.8378 | 0.9118 | 37 | 0.9459 | 0.9722 | 0.9589 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.75 | 0.96 | 0.8421 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 0.9569 | 0.9425 | 0.9885 | | 0.2092 | 5.0 | 785 | 0.1633 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.8889 | 0.9412 | 0.9143 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.8857 | 0.9688 | 0.9254 | 32 | 1.0 | 0.8649 | 0.9275 | 37 | 0.8974 | 0.9722 | 0.9333 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.8889 | 0.96 | 0.9231 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9525 | 0.9670 | 0.9597 | 0.9918 | | 0.1593 | 6.0 | 942 | 0.1331 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9722 | 0.9459 | 0.9589 | 37 | 0.9722 | 0.9722 | 0.9722 | 36 | 1.0 | 0.9 | 0.9474 | 30 | 0.8571 | 0.96 | 0.9057 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9549 | 0.9670 | 0.9609 | 0.9908 | | 0.1288 | 7.0 | 1099 | 0.1064 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.92 | 0.92 | 0.92 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9723 | 0.9797 | 0.9760 | 0.9941 | | 0.1035 | 8.0 | 1256 | 0.1043 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9231 | 0.9730 | 0.9474 | 37 | 0.75 | 1.0 | 0.8571 | 36 | 0.9032 | 0.9333 | 0.9180 | 30 | 0.6486 | 0.96 | 0.7742 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9085 | 0.9822 | 0.9439 | 0.9856 | | 0.0843 | 9.0 | 1413 | 0.0823 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9143 | 0.9412 | 0.9275 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9394 | 0.9688 | 0.9538 | 32 | 0.9032 | 0.7568 | 0.8235 | 37 | 0.9211 | 0.9722 | 0.9459 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.7059 | 0.96 | 0.8136 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9355 | 0.9569 | 0.9460 | 0.9905 | | 0.0733 | 10.0 | 1570 | 0.0738 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9444 | 0.9714 | 36 | 0.8485 | 0.9333 | 0.8889 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9484 | 0.9797 | 0.9638 | 0.9911 | | 0.0614 | 11.0 | 1727 | 0.0661 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9673 | 0.9772 | 0.9722 | 0.9934 | | 0.0548 | 12.0 | 1884 | 0.0637 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9167 | 0.9706 | 0.9429 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9507 | 0.9797 | 0.965 | 0.9921 | | 0.0515 | 13.0 | 2041 | 0.0562 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8621 | 1.0 | 0.9259 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9605 | 0.9873 | 0.9737 | 0.9931 | | 0.0431 | 14.0 | 2198 | 0.0513 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9724 | 0.9822 | 0.9773 | 0.9944 | | 0.0413 | 15.0 | 2355 | 0.0582 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9429 | 0.9706 | 0.9565 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9627 | 0.9822 | 0.9724 | 0.9934 | | 0.035 | 16.0 | 2512 | 0.0556 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9722 | 0.9859 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8621 | 1.0 | 0.9259 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9552 | 0.9746 | 0.9648 | 0.9915 | | 0.0316 | 17.0 | 2669 | 0.0517 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9167 | 0.9706 | 0.9429 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9579 | 0.9822 | 0.9699 | 0.9928 | | 0.027 | 18.0 | 2826 | 0.0502 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9032 | 0.9333 | 0.9180 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9628 | 0.9848 | 0.9737 | 0.9931 | | 0.026 | 19.0 | 2983 | 0.0481 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9189 | 1.0 | 0.9577 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9581 | 0.9873 | 0.9725 | 0.9928 | | 0.026 | 20.0 | 3140 | 0.0652 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.8611 | 0.9688 | 0.9118 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 0.9730 | 1.0 | 0.9863 | 36 | 0.8235 | 0.9333 | 0.8750 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9419 | 0.9873 | 0.9641 | 0.9882 | | 0.0311 | 21.0 | 3297 | 0.0438 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.97 | 0.9848 | 0.9773 | 0.9941 | | 0.0216 | 22.0 | 3454 | 0.0454 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9699 | 0.9822 | 0.9760 | 0.9941 | | 0.0196 | 23.0 | 3611 | 0.0510 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.8718 | 0.9189 | 0.8947 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9602 | 0.9797 | 0.9698 | 0.9934 | | 0.0176 | 24.0 | 3768 | 0.0457 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9676 | 0.9848 | 0.9761 | 0.9938 | | 0.0141 | 25.0 | 3925 | 0.0516 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9722 | 0.9459 | 0.9589 | 37 | 0.9730 | 1.0 | 0.9863 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9579 | 0.9822 | 0.9699 | 0.9928 | | 0.0129 | 26.0 | 4082 | 0.0508 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9629 | 0.9873 | 0.9749 | 0.9934 | | 0.0125 | 27.0 | 4239 | 0.0455 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 0.8710 | 1.0 | 0.9310 | 27 | 0.9652 | 0.9848 | 0.9749 | 0.9934 | | 0.0131 | 28.0 | 4396 | 0.0452 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9429 | 0.9706 | 0.9565 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9722 | 0.9772 | 0.9747 | 0.9941 | | 0.0112 | 29.0 | 4553 | 0.0465 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 0.9722 | 0.9722 | 0.9722 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.9583 | 0.92 | 0.9388 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9649 | 0.9772 | 0.9710 | 0.9931 | | 0.0152 | 30.0 | 4710 | 0.0510 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9648 | 0.9746 | 0.9697 | 0.9931 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-0front-1body-8rear
Padomin
2022-09-13T04:49:39Z
24
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T18:14:02Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-8rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-8rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4672 - Wer: 0.1759 - Mer: 0.1698 - Wil: 0.2574 - Wip: 0.7426 - Hits: 55537 - Substitutions: 6457 - Deletions: 2593 - Insertions: 2312 - Cer: 0.1383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6417 | 1.0 | 1457 | 0.4928 | 0.2086 | 0.1973 | 0.2873 | 0.7127 | 54805 | 6751 | 3031 | 3693 | 0.1746 | | 0.5435 | 2.0 | 2914 | 0.4511 | 0.1814 | 0.1751 | 0.2634 | 0.7366 | 55192 | 6518 | 2877 | 2322 | 0.1452 | | 0.4914 | 3.0 | 4371 | 0.4424 | 0.1762 | 0.1704 | 0.2572 | 0.7428 | 55389 | 6383 | 2815 | 2180 | 0.1390 | | 0.427 | 4.0 | 5828 | 0.4388 | 0.1751 | 0.1695 | 0.2569 | 0.7431 | 55408 | 6431 | 2748 | 2129 | 0.1366 | | 0.3762 | 5.0 | 7285 | 0.4465 | 0.1747 | 0.1689 | 0.2561 | 0.7439 | 55533 | 6424 | 2630 | 2230 | 0.1361 | | 0.3562 | 6.0 | 8742 | 0.4505 | 0.1761 | 0.1700 | 0.2581 | 0.7419 | 55558 | 6507 | 2522 | 2348 | 0.1402 | | 0.3884 | 7.0 | 10199 | 0.4550 | 0.1750 | 0.1691 | 0.2564 | 0.7436 | 55548 | 6439 | 2600 | 2264 | 0.1364 | | 0.3144 | 8.0 | 11656 | 0.4616 | 0.1760 | 0.1698 | 0.2572 | 0.7428 | 55571 | 6447 | 2569 | 2352 | 0.1373 | | 0.3075 | 9.0 | 13113 | 0.4660 | 0.1761 | 0.1700 | 0.2572 | 0.7428 | 55547 | 6431 | 2609 | 2336 | 0.1400 | | 0.3152 | 10.0 | 14570 | 0.4672 | 0.1759 | 0.1698 | 0.2574 | 0.7426 | 55537 | 6457 | 2593 | 2312 | 0.1383 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-0front-1body-9rear
Padomin
2022-09-13T04:02:42Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T16:56:47Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-9rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-9rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4673 - Wer: 0.1766 - Mer: 0.1707 - Wil: 0.2594 - Wip: 0.7406 - Hits: 55410 - Substitutions: 6552 - Deletions: 2625 - Insertions: 2229 - Cer: 0.1386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.641 | 1.0 | 1457 | 0.4913 | 0.2084 | 0.1972 | 0.2875 | 0.7125 | 54788 | 6785 | 3014 | 3658 | 0.1743 | | 0.5415 | 2.0 | 2914 | 0.4483 | 0.1818 | 0.1759 | 0.2643 | 0.7357 | 55033 | 6514 | 3040 | 2190 | 0.1447 | | 0.4835 | 3.0 | 4371 | 0.4427 | 0.1785 | 0.1722 | 0.2595 | 0.7405 | 55442 | 6443 | 2702 | 2386 | 0.1402 | | 0.4267 | 4.0 | 5828 | 0.4376 | 0.1769 | 0.1711 | 0.2587 | 0.7413 | 55339 | 6446 | 2802 | 2177 | 0.1399 | | 0.3752 | 5.0 | 7285 | 0.4414 | 0.1756 | 0.1698 | 0.2571 | 0.7429 | 55467 | 6432 | 2688 | 2223 | 0.1374 | | 0.3471 | 6.0 | 8742 | 0.4497 | 0.1761 | 0.1704 | 0.2585 | 0.7415 | 55379 | 6494 | 2714 | 2166 | 0.1380 | | 0.3841 | 7.0 | 10199 | 0.4535 | 0.1769 | 0.1710 | 0.2589 | 0.7411 | 55383 | 6482 | 2722 | 2220 | 0.1394 | | 0.3139 | 8.0 | 11656 | 0.4604 | 0.1753 | 0.1696 | 0.2577 | 0.7423 | 55462 | 6502 | 2623 | 2199 | 0.1367 | | 0.3012 | 9.0 | 13113 | 0.4628 | 0.1766 | 0.1708 | 0.2597 | 0.7403 | 55391 | 6571 | 2625 | 2210 | 0.1388 | | 0.3087 | 10.0 | 14570 | 0.4673 | 0.1766 | 0.1707 | 0.2594 | 0.7406 | 55410 | 6552 | 2625 | 2229 | 0.1386 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/tubby
sd-concepts-library
2022-09-13T03:01:07Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T03:01:00Z
--- license: mit --- ### tubby on Stable Diffusion This is the `<tubby>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<tubby> 0](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/2.jpeg) ![<tubby> 1](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/3.jpeg) ![<tubby> 2](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/1.jpeg) ![<tubby> 3](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/5.jpeg) ![<tubby> 4](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/4.jpeg) ![<tubby> 5](https://huggingface.co/sd-concepts-library/tubby/resolve/main/concept_images/0.jpeg)
sd-concepts-library/irasutoya
sd-concepts-library
2022-09-13T02:20:17Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T02:20:14Z
--- license: mit --- ### irasutoya on Stable Diffusion This is the `<irasutoya>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<irasutoya> 0](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/2.jpeg) ![<irasutoya> 1](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/3.jpeg) ![<irasutoya> 2](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/1.jpeg) ![<irasutoya> 3](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/5.jpeg) ![<irasutoya> 4](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/4.jpeg) ![<irasutoya> 5](https://huggingface.co/sd-concepts-library/irasutoya/resolve/main/concept_images/0.jpeg)
sd-concepts-library/bad_Hub_Hugh
sd-concepts-library
2022-09-13T02:13:39Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T02:13:33Z
--- license: mit --- ### Hub Hugh on Stable Diffusion This is the `<HubHugh>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<HubHugh> 0](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/2.jpeg) ![<HubHugh> 1](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/3.jpeg) ![<HubHugh> 2](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/1.jpeg) ![<HubHugh> 3](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/5.jpeg) ![<HubHugh> 4](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/4.jpeg) ![<HubHugh> 5](https://huggingface.co/sd-concepts-library/hub-hugh/resolve/main/concept_images/0.jpeg)
sd-concepts-library/zoroark
sd-concepts-library
2022-09-13T01:42:13Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-13T01:42:00Z
--- license: mit --- ### zoroark on Stable Diffusion This is the `<zoroark>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<zoroark> 0](https://huggingface.co/sd-concepts-library/zoroark/resolve/main/concept_images/2.jpeg) ![<zoroark> 1](https://huggingface.co/sd-concepts-library/zoroark/resolve/main/concept_images/3.jpeg) ![<zoroark> 2](https://huggingface.co/sd-concepts-library/zoroark/resolve/main/concept_images/1.jpeg) ![<zoroark> 3](https://huggingface.co/sd-concepts-library/zoroark/resolve/main/concept_images/4.jpeg) ![<zoroark> 4](https://huggingface.co/sd-concepts-library/zoroark/resolve/main/concept_images/0.jpeg)
sd-concepts-library/centaur
sd-concepts-library
2022-09-13T01:41:40Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-13T01:41:35Z
--- license: mit --- ### Centaur on Stable Diffusion This is the `<centaur>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<centaur> 0](https://huggingface.co/sd-concepts-library/centaur/resolve/main/concept_images/2.jpeg) ![<centaur> 1](https://huggingface.co/sd-concepts-library/centaur/resolve/main/concept_images/3.jpeg) ![<centaur> 2](https://huggingface.co/sd-concepts-library/centaur/resolve/main/concept_images/1.jpeg) ![<centaur> 3](https://huggingface.co/sd-concepts-library/centaur/resolve/main/concept_images/0.jpeg)
sd-concepts-library/illustration-style
sd-concepts-library
2022-09-13T01:38:47Z
0
25
null
[ "license:mit", "region:us" ]
null
2022-09-13T01:38:43Z
--- license: mit --- ### Illustration style on Stable Diffusion This is the `<illustration-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<illustration-style> 0](https://huggingface.co/sd-concepts-library/illustration-style/resolve/main/concept_images/2.jpeg) ![<illustration-style> 1](https://huggingface.co/sd-concepts-library/illustration-style/resolve/main/concept_images/3.jpeg) ![<illustration-style> 2](https://huggingface.co/sd-concepts-library/illustration-style/resolve/main/concept_images/1.jpeg) ![<illustration-style> 3](https://huggingface.co/sd-concepts-library/illustration-style/resolve/main/concept_images/0.jpeg)
sd-concepts-library/ggplot2
sd-concepts-library
2022-09-13T00:00:14Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-13T00:00:10Z
--- license: mit --- ### ggplot2 on Stable Diffusion This is the `<ggplot2>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<ggplot2> 0](https://huggingface.co/sd-concepts-library/ggplot2/resolve/main/concept_images/geom_density-9.png) ![<ggplot2> 1](https://huggingface.co/sd-concepts-library/ggplot2/resolve/main/concept_images/geom_bin_2d-2.png) ![<ggplot2> 2](https://huggingface.co/sd-concepts-library/ggplot2/resolve/main/concept_images/geom_ribbon-4.png) ![<ggplot2> 3](https://huggingface.co/sd-concepts-library/ggplot2/resolve/main/concept_images/geom_contour-3.png) ![<ggplot2> 4](https://huggingface.co/sd-concepts-library/ggplot2/resolve/main/concept_images/geom_bar-4.png)
sd-concepts-library/metagabe
sd-concepts-library
2022-09-12T23:56:54Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T23:56:50Z
--- license: mit --- ### metagabe on Stable Diffusion This is the `<metagabe>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<metagabe> 0](https://huggingface.co/sd-concepts-library/metagabe/resolve/main/concept_images/2.jpeg) ![<metagabe> 1](https://huggingface.co/sd-concepts-library/metagabe/resolve/main/concept_images/3.jpeg) ![<metagabe> 2](https://huggingface.co/sd-concepts-library/metagabe/resolve/main/concept_images/1.jpeg) ![<metagabe> 3](https://huggingface.co/sd-concepts-library/metagabe/resolve/main/concept_images/4.jpeg) ![<metagabe> 4](https://huggingface.co/sd-concepts-library/metagabe/resolve/main/concept_images/0.jpeg)
YilinWang42/autotrain-trial-run-1444253725
YilinWang42
2022-09-12T23:54:52Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "token-classification", "unk", "dataset:YilinWang42/autotrain-data-trial-run", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
token-classification
2022-09-12T23:53:31Z
--- tags: - autotrain - token-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - YilinWang42/autotrain-data-trial-run co2_eq_emissions: emissions: 0.00977392698077684 --- # Model Trained Using AutoTrain - Problem type: Entity Extraction - Model ID: 1444253725 - CO2 Emissions (in grams): 0.0098 ## Validation Metrics - Loss: 0.082 - Accuracy: 0.980 - Precision: 0.743 - Recall: 0.778 - F1: 0.760 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/YilinWang42/autotrain-trial-run-1444253725 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("YilinWang42/autotrain-trial-run-1444253725", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("YilinWang42/autotrain-trial-run-1444253725", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
Padomin/t5-base-TEDxJP-9front-1body-0rear
Padomin
2022-09-12T21:46:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T10:24:05Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-9front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-9front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4576 - Wer: 0.1728 - Mer: 0.1669 - Wil: 0.2543 - Wip: 0.7457 - Hits: 55705 - Substitutions: 6444 - Deletions: 2438 - Insertions: 2281 - Cer: 0.1351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.649 | 1.0 | 1457 | 0.4844 | 0.2290 | 0.2126 | 0.3015 | 0.6985 | 54758 | 6748 | 3081 | 4959 | 0.2080 | | 0.5319 | 2.0 | 2914 | 0.4385 | 0.1804 | 0.1741 | 0.2614 | 0.7386 | 55298 | 6437 | 2852 | 2364 | 0.1465 | | 0.4819 | 3.0 | 4371 | 0.4338 | 0.1760 | 0.1698 | 0.2569 | 0.7431 | 55558 | 6419 | 2610 | 2336 | 0.1389 | | 0.4307 | 4.0 | 5828 | 0.4328 | 0.1759 | 0.1696 | 0.2569 | 0.7431 | 55649 | 6454 | 2484 | 2424 | 0.1390 | | 0.3735 | 5.0 | 7285 | 0.4331 | 0.1740 | 0.1680 | 0.2549 | 0.7451 | 55652 | 6398 | 2537 | 2306 | 0.1367 | | 0.3495 | 6.0 | 8742 | 0.4380 | 0.1740 | 0.1681 | 0.2552 | 0.7448 | 55619 | 6420 | 2548 | 2267 | 0.1356 | | 0.3679 | 7.0 | 10199 | 0.4437 | 0.1741 | 0.1682 | 0.2556 | 0.7444 | 55621 | 6441 | 2525 | 2281 | 0.1354 | | 0.3035 | 8.0 | 11656 | 0.4494 | 0.1727 | 0.1669 | 0.2542 | 0.7458 | 55672 | 6433 | 2482 | 2237 | 0.1350 | | 0.3041 | 9.0 | 13113 | 0.4541 | 0.1736 | 0.1677 | 0.2550 | 0.7450 | 55674 | 6441 | 2472 | 2302 | 0.1383 | | 0.2948 | 10.0 | 14570 | 0.4576 | 0.1728 | 0.1669 | 0.2543 | 0.7457 | 55705 | 6444 | 2438 | 2281 | 0.1351 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/type
sd-concepts-library
2022-09-12T21:18:54Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T21:18:51Z
--- license: mit --- ### type on Stable Diffusion This is the `<typeface>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<typeface> 0](https://huggingface.co/sd-concepts-library/type/resolve/main/concept_images/2.jpeg) ![<typeface> 1](https://huggingface.co/sd-concepts-library/type/resolve/main/concept_images/3.jpeg) ![<typeface> 2](https://huggingface.co/sd-concepts-library/type/resolve/main/concept_images/1.jpeg) ![<typeface> 3](https://huggingface.co/sd-concepts-library/type/resolve/main/concept_images/4.jpeg) ![<typeface> 4](https://huggingface.co/sd-concepts-library/type/resolve/main/concept_images/0.jpeg)
sd-concepts-library/doge-pound
sd-concepts-library
2022-09-12T21:08:14Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-12T21:08:03Z
--- license: mit --- ### Doge Pound on Stable Diffusion This is the `<doge-pound>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<doge-pound> 0](https://huggingface.co/sd-concepts-library/doge-pound/resolve/main/concept_images/2.jpeg) ![<doge-pound> 1](https://huggingface.co/sd-concepts-library/doge-pound/resolve/main/concept_images/3.jpeg) ![<doge-pound> 2](https://huggingface.co/sd-concepts-library/doge-pound/resolve/main/concept_images/1.jpeg) ![<doge-pound> 3](https://huggingface.co/sd-concepts-library/doge-pound/resolve/main/concept_images/0.jpeg)
sd-concepts-library/alien-avatar
sd-concepts-library
2022-09-12T20:47:15Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-12T20:47:10Z
--- license: mit --- ### alien avatar on Stable Diffusion This is the `<alien-avatar>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<alien-avatar> 0](https://huggingface.co/sd-concepts-library/alien-avatar/resolve/main/concept_images/2.jpeg) ![<alien-avatar> 1](https://huggingface.co/sd-concepts-library/alien-avatar/resolve/main/concept_images/3.jpeg) ![<alien-avatar> 2](https://huggingface.co/sd-concepts-library/alien-avatar/resolve/main/concept_images/1.jpeg) ![<alien-avatar> 3](https://huggingface.co/sd-concepts-library/alien-avatar/resolve/main/concept_images/4.jpeg) ![<alien-avatar> 4](https://huggingface.co/sd-concepts-library/alien-avatar/resolve/main/concept_images/0.jpeg)
sd-concepts-library/dragonborn
sd-concepts-library
2022-09-12T20:22:04Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T20:21:58Z
--- license: mit --- ### Dragonborn on Stable Diffusion This is the `<dragonborn>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<dragonborn> 0](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/5.jpeg) ![<dragonborn> 1](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/6.jpeg) ![<dragonborn> 2](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/3.jpeg) ![<dragonborn> 3](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/0.jpeg) ![<dragonborn> 4](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/2.jpeg) ![<dragonborn> 5](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/1.jpeg) ![<dragonborn> 6](https://huggingface.co/sd-concepts-library/dragonborn/resolve/main/concept_images/4.jpeg)
waltwang441/ddpm-butterflies-128
waltwang441
2022-09-12T20:10:52Z
3
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-12T19:03:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/waltwang441/ddpm-butterflies-128/tensorboard?#scalars)
sd-concepts-library/xatu2
sd-concepts-library
2022-09-12T19:11:15Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T19:11:08Z
--- license: mit --- ### xatu2 on Stable Diffusion This is the `<xatu-test>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<xatu-test> 0](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/63.jpeg) ![<xatu-test> 1](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/80.jpeg) ![<xatu-test> 2](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/43.jpeg) ![<xatu-test> 3](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/56.jpeg) ![<xatu-test> 4](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/30.jpeg) ![<xatu-test> 5](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/88.jpeg) ![<xatu-test> 6](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/24.jpeg) ![<xatu-test> 7](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/85.jpeg) ![<xatu-test> 8](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/37.jpeg) ![<xatu-test> 9](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/19.jpeg) ![<xatu-test> 10](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/54.jpeg) ![<xatu-test> 11](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/5.jpeg) ![<xatu-test> 12](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/75.jpeg) ![<xatu-test> 13](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/55.jpeg) ![<xatu-test> 14](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/66.jpeg) ![<xatu-test> 15](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/49.jpeg) ![<xatu-test> 16](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/45.jpeg) ![<xatu-test> 17](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/58.jpeg) ![<xatu-test> 18](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/39.jpeg) ![<xatu-test> 19](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/6.jpeg) ![<xatu-test> 20](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/38.jpeg) ![<xatu-test> 21](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/15.jpeg) ![<xatu-test> 22](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/20.jpeg) ![<xatu-test> 23](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/35.jpeg) ![<xatu-test> 24](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/62.jpeg) ![<xatu-test> 25](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/14.jpeg) ![<xatu-test> 26](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/9.jpeg) ![<xatu-test> 27](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/3.jpeg) ![<xatu-test> 28](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/47.jpeg) ![<xatu-test> 29](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/0.jpeg) ![<xatu-test> 30](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/42.jpeg) ![<xatu-test> 31](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/36.jpeg) ![<xatu-test> 32](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/33.jpeg) ![<xatu-test> 33](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/17.jpeg) ![<xatu-test> 34](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/12.jpeg) ![<xatu-test> 35](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/86.jpeg) ![<xatu-test> 36](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/13.jpeg) ![<xatu-test> 37](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/2.jpeg) ![<xatu-test> 38](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/44.jpeg) ![<xatu-test> 39](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/68.jpeg) ![<xatu-test> 40](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/16.jpeg) ![<xatu-test> 41](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/65.jpeg) ![<xatu-test> 42](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/52.jpeg) ![<xatu-test> 43](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/59.jpeg) ![<xatu-test> 44](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/25.jpeg) ![<xatu-test> 45](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/50.jpeg) ![<xatu-test> 46](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/48.jpeg) ![<xatu-test> 47](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/18.jpeg) ![<xatu-test> 48](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/78.jpeg) ![<xatu-test> 49](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/22.jpeg) ![<xatu-test> 50](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/10.jpeg) ![<xatu-test> 51](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/53.jpeg) ![<xatu-test> 52](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/46.jpeg) ![<xatu-test> 53](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/41.jpeg) ![<xatu-test> 54](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/72.jpeg) ![<xatu-test> 55](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/31.jpeg) ![<xatu-test> 56](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/7.jpeg) ![<xatu-test> 57](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/51.jpeg) ![<xatu-test> 58](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/84.jpeg) ![<xatu-test> 59](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/1.jpeg) ![<xatu-test> 60](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/27.jpeg) ![<xatu-test> 61](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/70.jpeg) ![<xatu-test> 62](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/87.jpeg) ![<xatu-test> 63](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/32.jpeg) ![<xatu-test> 64](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/81.jpeg) ![<xatu-test> 65](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/76.jpeg) ![<xatu-test> 66](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/34.jpeg) ![<xatu-test> 67](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/79.jpeg) ![<xatu-test> 68](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/69.jpeg) ![<xatu-test> 69](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/26.jpeg) ![<xatu-test> 70](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/82.jpeg) ![<xatu-test> 71](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/21.jpeg) ![<xatu-test> 72](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/23.jpeg) ![<xatu-test> 73](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/67.jpeg) ![<xatu-test> 74](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/61.jpeg) ![<xatu-test> 75](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/29.jpeg) ![<xatu-test> 76](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/60.jpeg) ![<xatu-test> 77](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/40.jpeg) ![<xatu-test> 78](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/64.jpeg) ![<xatu-test> 79](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/74.jpeg) ![<xatu-test> 80](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/83.jpeg) ![<xatu-test> 81](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/73.jpeg) ![<xatu-test> 82](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/11.jpeg) ![<xatu-test> 83](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/57.jpeg) ![<xatu-test> 84](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/28.jpeg) ![<xatu-test> 85](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/71.jpeg) ![<xatu-test> 86](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/4.jpeg) ![<xatu-test> 87](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/8.jpeg) ![<xatu-test> 88](https://huggingface.co/sd-concepts-library/xatu2/resolve/main/concept_images/77.jpeg)
iqbalc/stt_de_conformer_transducer_large
iqbalc
2022-09-12T18:26:26Z
3
0
nemo
[ "nemo", "automatic-speech-recognition", "speech", "audio", "CTC", "Conformer", "Transformer", "NeMo", "pytorch", "de", "license:cc-by-4.0", "model-index", "region:us" ]
automatic-speech-recognition
2022-09-12T17:19:29Z
--- language: - de license: cc-by-4.0 library_name: nemo datasets: - mozilla-foundation/common_voice_7_0 - Multilingual LibriSpeech (2000 hours) thumbnail: null tags: - automatic-speech-recognition - speech - audio - CTC - Conformer - Transformer - NeMo - pytorch model-index: - name: stt_de_conformer_transducer_large results: - task: type: automatic-speech-recognition dataset: type: common_voice_7_0 name: mozilla-foundation/common_voice_7_0 config: other split: test args: lageangu: de metrics: - type: wer value: 4.93 name: WER --- ## Model Overview <DESCRIBE IN ONE LINE THE MODEL AND ITS USE> ## NVIDIA NeMo: Training To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version. ``` pip install nemo_toolkit['all'] ``` ## How to Use this Model The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. ### Automatically instantiate the model ```python import nemo.collections.asr as nemo_asr asr_model = nemo_asr.models.ASRModel.from_pretrained("iqbalc/stt_de_conformer_transducer_large") ``` ### Transcribing using Python ``` asr_model.transcribe(['filename.wav']) ``` ### Transcribing many audio files ```shell python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py pretrained_name="iqbalc/stt_de_conformer_transducer_large" audio_dir="<DIRECTORY CONTAINING AUDIO FILES>" ``` ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture Conformer-Transducer model is an autoregressive variant of Conformer model for Automatic Speech Recognition which uses Transducer loss/decoding ## Training The NeMo toolkit was used for training the models. These models are fine-tuned with this example script and this base config. The tokenizers for these models were built using the text transcripts of the train set with this script. ### Datasets All the models in this collection are trained on a composite dataset comprising of over two thousand hours of cleaned German speech: 1. MCV7.0 567 hours 2. MLS 1524 hours 3. VoxPopuli 214 hours ## Performance Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding. MCV7.0 test = 4.93 ## Limitations The model might perform worse for accented speech ## References [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
Padomin/t5-base-TEDxJP-4front-1body-0rear
Padomin
2022-09-12T18:11:13Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T09:08:31Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-4front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-4front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4643 - Wer: 0.1751 - Mer: 0.1690 - Wil: 0.2562 - Wip: 0.7438 - Hits: 55598 - Substitutions: 6434 - Deletions: 2555 - Insertions: 2317 - Cer: 0.1374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6492 | 1.0 | 1457 | 0.4952 | 0.2272 | 0.2114 | 0.3015 | 0.6985 | 54739 | 6847 | 3001 | 4827 | 0.2013 | | 0.5556 | 2.0 | 2914 | 0.4456 | 0.1899 | 0.1818 | 0.2686 | 0.7314 | 55189 | 6420 | 2978 | 2864 | 0.1558 | | 0.4942 | 3.0 | 4371 | 0.4423 | 0.1814 | 0.1743 | 0.2614 | 0.7386 | 55493 | 6437 | 2657 | 2623 | 0.1457 | | 0.4326 | 4.0 | 5828 | 0.4361 | 0.1749 | 0.1690 | 0.2561 | 0.7439 | 55542 | 6419 | 2626 | 2249 | 0.1362 | | 0.3867 | 5.0 | 7285 | 0.4395 | 0.1752 | 0.1692 | 0.2559 | 0.7441 | 55542 | 6378 | 2667 | 2270 | 0.1374 | | 0.3501 | 6.0 | 8742 | 0.4487 | 0.1751 | 0.1691 | 0.2565 | 0.7435 | 55598 | 6448 | 2541 | 2323 | 0.1366 | | 0.3835 | 7.0 | 10199 | 0.4494 | 0.1744 | 0.1685 | 0.2556 | 0.7444 | 55594 | 6416 | 2577 | 2274 | 0.1378 | | 0.3013 | 8.0 | 11656 | 0.4580 | 0.1744 | 0.1685 | 0.2563 | 0.7437 | 55570 | 6467 | 2550 | 2248 | 0.1366 | | 0.3126 | 9.0 | 13113 | 0.4598 | 0.1749 | 0.1689 | 0.2564 | 0.7436 | 55571 | 6447 | 2569 | 2281 | 0.1376 | | 0.3089 | 10.0 | 14570 | 0.4643 | 0.1751 | 0.1690 | 0.2562 | 0.7438 | 55598 | 6434 | 2555 | 2317 | 0.1374 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
vedantam/distilbert-base-uncased-finetuned-emotion
vedantam
2022-09-12T18:00:26Z
100
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-12T17:06:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9255338486363142 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2208 - Accuracy: 0.9255 - F1: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8403 | 1.0 | 250 | 0.3183 | 0.91 | 0.9078 | | 0.2569 | 2.0 | 500 | 0.2208 | 0.9255 | 0.9255 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.0.0 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-2front-1body-0rear
Padomin
2022-09-12T16:49:45Z
34
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T09:08:24Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-2front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-2front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4717 - Wer: 0.1762 - Mer: 0.1701 - Wil: 0.2575 - Wip: 0.7425 - Hits: 55549 - Substitutions: 6453 - Deletions: 2585 - Insertions: 2345 - Cer: 0.1398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6666 | 1.0 | 1457 | 0.5030 | 0.2075 | 0.1970 | 0.2883 | 0.7117 | 54622 | 6855 | 3110 | 3434 | 0.1720 | | 0.567 | 2.0 | 2914 | 0.4611 | 0.1950 | 0.1859 | 0.2750 | 0.7250 | 55142 | 6648 | 2797 | 3148 | 0.1598 | | 0.5029 | 3.0 | 4371 | 0.4463 | 0.1832 | 0.1762 | 0.2640 | 0.7360 | 55317 | 6492 | 2778 | 2564 | 0.1445 | | 0.443 | 4.0 | 5828 | 0.4452 | 0.1791 | 0.1728 | 0.2606 | 0.7394 | 55375 | 6482 | 2730 | 2354 | 0.1408 | | 0.3979 | 5.0 | 7285 | 0.4473 | 0.1782 | 0.1719 | 0.2592 | 0.7408 | 55434 | 6438 | 2715 | 2355 | 0.1400 | | 0.3745 | 6.0 | 8742 | 0.4521 | 0.1757 | 0.1698 | 0.2573 | 0.7427 | 55501 | 6450 | 2636 | 2264 | 0.1373 | | 0.3889 | 7.0 | 10199 | 0.4572 | 0.1775 | 0.1713 | 0.2586 | 0.7414 | 55458 | 6438 | 2691 | 2334 | 0.1398 | | 0.3247 | 8.0 | 11656 | 0.4650 | 0.1752 | 0.1693 | 0.2564 | 0.7436 | 55516 | 6409 | 2662 | 2245 | 0.1372 | | 0.3207 | 9.0 | 13113 | 0.4693 | 0.1766 | 0.1703 | 0.2580 | 0.7420 | 55549 | 6474 | 2564 | 2367 | 0.1400 | | 0.3264 | 10.0 | 14570 | 0.4717 | 0.1762 | 0.1701 | 0.2575 | 0.7425 | 55549 | 6453 | 2585 | 2345 | 0.1398 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
qalover/chinese-pert-large-open-domain-mrc
qalover
2022-09-12T15:36:56Z
105
4
transformers
[ "transformers", "pytorch", "bert", "question-answering", "zh", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
question-answering
2022-05-28T09:31:16Z
--- language: - zh license: gpl-3.0 --- ## 基于 chinese-pert-large 训练的面向开放领域MRC 模型 使用中文MRC数据(cmrc2018, webqa与laisi的训练集)训练的chinese-pert-large模型 ## 训练过程 使用了[UER-py](https://github.com/dbiir/UER-py/) 进行fine-tuned 加入了包括但不限于摘要、负采样、混淆等数据加强方法 并转换为Huggingface进行上传 | | CMRC 2018 Dev | DRCD Dev | SQuAD-Zen Dev (Answerable) | AVG | | :-------: | :-----------: | :-------: | :------------------------: | :-------: | | PERT-large | 74.4/89.8 | 90.3/94.| 62.8/78.8 | 75.9/87.8 |
sd-concepts-library/larrette
sd-concepts-library
2022-09-12T15:30:48Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-12T15:30:43Z
--- license: mit --- ### Larrette on Stable Diffusion This is the `<larrette>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<larrette> 0](https://huggingface.co/sd-concepts-library/larrette/resolve/main/concept_images/3.jpeg) ![<larrette> 1](https://huggingface.co/sd-concepts-library/larrette/resolve/main/concept_images/0.jpeg) ![<larrette> 2](https://huggingface.co/sd-concepts-library/larrette/resolve/main/concept_images/2.jpeg) ![<larrette> 3](https://huggingface.co/sd-concepts-library/larrette/resolve/main/concept_images/1.jpeg)
google/ncsnpp-ffhq-1024
google
2022-09-12T15:00:39Z
152
11
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "arxiv:2011.13456", "license:apache-2.0", "diffusers:ScoreSdeVePipeline", "region:us" ]
unconditional-image-generation
2022-07-19T08:50:21Z
--- license: apache-2.0 tags: - pytorch - diffusers - unconditional-image-generation --- # Score-Based Generative Modeling through Stochastic Differential Equations (SDE) **Paper**: [Score-Based Generative Modeling through Stochastic Differential Equations](https://arxiv.org/abs/2011.13456) **Authors**: Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole **Abstract**: *Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (\aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.* ## Inference *SDE* models can use **continuous** noise schedulers such as: - [scheduling_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_sde_ve.py) for inference. See the following code: ```python # !pip install diffusers from diffusers import DiffusionPipeline model_id = "google/ncsnpp-ffhq-1024" # load model and scheduler sde_ve = DiffusionPipeline.from_pretrained(model_id) # run pipeline in inference (sample random noise and denoise) image = sde_ve()["sample"] # save image image[0].save("sde_ve_generated_image.png") ``` Please take a look at [pipeline_score_sde_ve](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/score_sde_ve/pipeline_score_sde_ve.py) for more details on how to write your own denoising loop. For more information generally on how to use `diffusers` for inference, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Samples 1. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_0.png" alt="drawing" width="512"/> 2. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_1.png" alt="drawing" width="512"/> 3. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_2.png" alt="drawing" width="512"/> 4. <img src="https://huggingface.co/google/ncsnpp-ffhq-1024/resolve/main/images/generated_image_3.png" alt="drawing" width="512"/>
1ucky40nc3/wav2vec2-large-xls-r-300m-turkish-colab
1ucky40nc3
2022-09-12T14:46:14Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-09-12T09:55:29Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-large-xls-r-300m-turkish-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-turkish-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4409 - Wer: 0.3676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9829 | 3.67 | 400 | 0.7245 | 0.7504 | | 0.4544 | 7.34 | 800 | 0.4710 | 0.5193 | | 0.2201 | 11.01 | 1200 | 0.4801 | 0.4815 | | 0.1457 | 14.68 | 1600 | 0.4397 | 0.4324 | | 0.1079 | 18.35 | 2000 | 0.4770 | 0.4287 | | 0.0877 | 22.02 | 2400 | 0.4583 | 0.3813 | | 0.0698 | 25.69 | 2800 | 0.4421 | 0.3892 | | 0.0554 | 29.36 | 3200 | 0.4409 | 0.3676 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
sd-concepts-library/wlop-style
sd-concepts-library
2022-09-12T14:30:46Z
0
41
null
[ "license:mit", "region:us" ]
null
2022-09-12T14:30:33Z
--- license: mit --- ### wlop-style on Stable Diffusion This is the `<wlop-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<wlop-style> 0](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/5.jpeg) ![<wlop-style> 1](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/6.jpeg) ![<wlop-style> 2](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/3.jpeg) ![<wlop-style> 3](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/0.jpeg) ![<wlop-style> 4](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/2.jpeg) ![<wlop-style> 5](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/7.jpeg) ![<wlop-style> 6](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/1.jpeg) ![<wlop-style> 7](https://huggingface.co/sd-concepts-library/wlop-style/resolve/main/concept_images/4.jpeg)
Vasanth/eng-hin-translator
Vasanth
2022-09-12T14:12:23Z
117
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-12T14:01:43Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: eng-hin-translator results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-hin-translator This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-hi](https://huggingface.co/Helsinki-NLP/opus-mt-en-hi) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4143 - Bleu Score: 34.2532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | |:-------------:|:-----:|:----:|:---------------:|:----------:| | 1.7332 | 1.0 | 548 | 1.5131 | 31.6167 | | 1.3588 | 2.0 | 1096 | 1.4463 | 33.0225 | | 1.1651 | 3.0 | 1644 | 1.4209 | 34.0514 | | 1.042 | 4.0 | 2192 | 1.4139 | 34.0137 | | 0.9686 | 5.0 | 2740 | 1.4143 | 34.2532 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/mikako-methodi2i
sd-concepts-library
2022-09-12T13:48:40Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-12T06:17:47Z
--- license: mit --- ### mikako-methodi2i on Stable Diffusion This is the `<m-mi2i>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<m-mi2i> 0](https://i.imgur.com/LwK1msL.png)
Jinchen/roberta-base-finetuned-wikitext2
Jinchen
2022-09-12T13:08:47Z
168
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-10T15:02:17Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-wikitext2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5020 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6689 | 1.0 | 300 | 1.5518 | | 1.7525 | 2.0 | 600 | 1.5078 | | 1.5267 | 3.0 | 900 | 1.4971 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
FrostAura/gpt-neo-1.3B-fiction-novel-generation
FrostAura
2022-09-12T12:50:56Z
22
7
transformers
[ "transformers", "pytorch", "jax", "rust", "gpt_neo", "text-generation", "novel-generation", "fiction", "gpt-neo", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-20T13:31:36Z
--- language: - en thumbnail: "https://github.com/faGH/fa.creative/blob/master/Icons/FrostAura/FA%20Logo/FrostAura.Logo.Complex.png?raw=true" tags: - text-generation - novel-generation - fiction - gpt-neo - pytorch license: "mit" --- <p align="center"> <img src="https://github.com/faGH/fa.creative/blob/master/Icons/FrostAura/FA%20Logo/FrostAura.Logo.Complex.png?raw=true" width="75" title="hover text"> </p> # fa.intelligence.models.generative.novels.fiction ## Description This FrostAura Intelligence model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) for fictional text content generation. ## Getting Started ### PIP Installation ``` pip install -U --no-cache-dir transformers ``` ### Usage ``` from transformers import pipeline model_name: str = 'FrostAura/gpt-neo-1.3B-fiction-novel-generation' generator: pipeline = pipeline('text-generation', model=model_name) prompt: str = 'So far my day has been ' gen_text: str = generator(prompt, do_sample=True, min_length=50) print(f'Result: {gen_text}') ``` ## Further Fine-Tuning [in development](https://github.com/dredwardhyde/gpt-neo-fine-tuning-example/blob/main/gpt_neo.py) ## Support If you enjoy FrostAura open-source content and would like to support us in continuous delivery, please consider a donation via a platform of your choice. | Supported Platforms | Link | | ------------------- | ---- | | PayPal | [Donate via Paypal](https://www.paypal.com/donate/?hosted_button_id=SVEXJC9HFBJ72) | For any queries, contact dean.martin@frostaura.net.
sd-concepts-library/cologne
sd-concepts-library
2022-09-12T12:47:21Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T12:47:18Z
--- license: mit --- ### cologne on Stable Diffusion This is the `<cologne-dom>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cologne-dom> 0](https://huggingface.co/sd-concepts-library/cologne/resolve/main/concept_images/3.jpeg) ![<cologne-dom> 1](https://huggingface.co/sd-concepts-library/cologne/resolve/main/concept_images/0.jpeg) ![<cologne-dom> 2](https://huggingface.co/sd-concepts-library/cologne/resolve/main/concept_images/2.jpeg) ![<cologne-dom> 3](https://huggingface.co/sd-concepts-library/cologne/resolve/main/concept_images/1.jpeg) ![<cologne-dom> 4](https://huggingface.co/sd-concepts-library/cologne/resolve/main/concept_images/4.jpeg)
GItaf/roberta-base-roberta-base-finetuned-mbti-0912-weight0
GItaf
2022-09-12T12:31:55Z
52
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-12T06:46:46Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-finetuned-mbti-0912-weight0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-finetuned-mbti-0912-weight0 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.1338 - eval_runtime: 25.6249 - eval_samples_per_second: 67.708 - eval_steps_per_second: 8.468 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
GItaf/roberta-base-roberta-base-finetuned-mbti-0911
GItaf
2022-09-12T12:20:34Z
49
0
transformers
[ "transformers", "pytorch", "roberta", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-11T12:27:55Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-finetuned-mbti-0911 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-finetuned-mbti-0911 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.1338 - eval_runtime: 25.7058 - eval_samples_per_second: 67.495 - eval_steps_per_second: 8.442 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/a-female-hero-from-the-legend-of-mir
sd-concepts-library
2022-09-12T12:19:24Z
0
6
null
[ "license:mit", "region:us" ]
null
2022-09-12T12:19:18Z
--- license: mit --- ### a female hero from The Legend of Mir on Stable Diffusion This is the `a <female-hero> from The Legend of Mir` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![a <female-hero> from The Legend of Mir 0](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/5.jpeg) ![a <female-hero> from The Legend of Mir 1](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/3.jpeg) ![a <female-hero> from The Legend of Mir 2](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/0.jpeg) ![a <female-hero> from The Legend of Mir 3](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/2.jpeg) ![a <female-hero> from The Legend of Mir 4](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/1.jpeg) ![a <female-hero> from The Legend of Mir 5](https://huggingface.co/sd-concepts-library/a-female-hero-from-the-legend-of-mir/resolve/main/concept_images/4.jpeg)
santiviquez/q-FrozenLake-v1-4x4-noSlippery
santiviquez
2022-09-12T12:14:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-09-12T12:14:52Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="santiviquez/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
misterneil/distilbert-base-uncased-finetuned-emotion
misterneil
2022-09-12T12:14:24Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T21:20:30Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.929332697530698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2116 - Accuracy: 0.9295 - F1: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8487 | 1.0 | 250 | 0.3135 | 0.909 | 0.9051 | | 0.2515 | 2.0 | 500 | 0.2116 | 0.9295 | 0.9293 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jakka/Bert_Classifier
jakka
2022-09-12T11:05:06Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:yelp_review_full", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-12T10:49:17Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: Bert_Classifier results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.43 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.9851 - Accuracy: 0.43 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.5585 | 0.45 | | No log | 2.0 | 250 | 1.7005 | 0.51 | | No log | 3.0 | 375 | 1.9851 | 0.43 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-8front-1body-0rear
Padomin
2022-09-12T09:58:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T20:58:48Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-8front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-8front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4589 - Wer: 0.1739 - Mer: 0.1679 - Wil: 0.2545 - Wip: 0.7455 - Hits: 55667 - Substitutions: 6385 - Deletions: 2535 - Insertions: 2309 - Cer: 0.1363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6586 | 1.0 | 1457 | 0.4812 | 0.2110 | 0.1994 | 0.2888 | 0.7112 | 54745 | 6712 | 3130 | 3789 | 0.1784 | | 0.5246 | 2.0 | 2914 | 0.4383 | 0.1839 | 0.1770 | 0.2641 | 0.7359 | 55251 | 6428 | 2908 | 2544 | 0.1481 | | 0.4795 | 3.0 | 4371 | 0.4327 | 0.1811 | 0.1740 | 0.2610 | 0.7390 | 55523 | 6438 | 2626 | 2631 | 0.1458 | | 0.4224 | 4.0 | 5828 | 0.4328 | 0.1754 | 0.1693 | 0.2555 | 0.7445 | 55577 | 6338 | 2672 | 2318 | 0.1397 | | 0.3755 | 5.0 | 7285 | 0.4351 | 0.1723 | 0.1668 | 0.2529 | 0.7471 | 55607 | 6326 | 2654 | 2150 | 0.1362 | | 0.3538 | 6.0 | 8742 | 0.4413 | 0.1728 | 0.1670 | 0.2531 | 0.7469 | 55696 | 6341 | 2550 | 2271 | 0.1372 | | 0.3686 | 7.0 | 10199 | 0.4455 | 0.1715 | 0.1659 | 0.2519 | 0.7481 | 55692 | 6319 | 2576 | 2180 | 0.1354 | | 0.3004 | 8.0 | 11656 | 0.4518 | 0.1727 | 0.1668 | 0.2537 | 0.7463 | 55712 | 6400 | 2475 | 2281 | 0.1371 | | 0.2914 | 9.0 | 13113 | 0.4564 | 0.1739 | 0.1678 | 0.2544 | 0.7456 | 55681 | 6378 | 2528 | 2323 | 0.1370 | | 0.297 | 10.0 | 14570 | 0.4589 | 0.1739 | 0.1679 | 0.2545 | 0.7455 | 55667 | 6385 | 2535 | 2309 | 0.1363 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/hermelatv
huggingtweets
2022-09-12T09:40:48Z
105
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-12T09:40:11Z
--- language: en thumbnail: http://www.huggingtweets.com/hermelatv/1662975644554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1565103698845478912/FeReio7F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hermela aregawi</div> <div style="text-align: center; font-size: 14px;">@hermelatv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hermela aregawi. | Data | hermela aregawi | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 1527 | | Short tweets | 145 | | Tweets kept | 1573 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23qpqb0p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hermelatv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3hget9jv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3hget9jv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hermelatv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd-concepts-library/kaleido
sd-concepts-library
2022-09-12T09:31:25Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-12T09:31:14Z
--- license: mit --- ### kaleido on Stable Diffusion This is the `<kaleido>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kaleido> 0](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/3.jpeg) ![<kaleido> 1](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/0.jpeg) ![<kaleido> 2](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/2.jpeg) ![<kaleido> 3](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/1.jpeg) ![<kaleido> 4](https://huggingface.co/sd-concepts-library/kaleido/resolve/main/concept_images/4.jpeg)
aisuneko/kyubey-ai
aisuneko
2022-09-12T08:51:35Z
105
1
transformers
[ "transformers", "pytorch", "gpt2", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-09-11T11:15:00Z
--- license: mit --- Model for generating custom Magia Record unit designs, inspired by [this reddit post](https://www.reddit.com/r/magiarecord/comments/x63rm9/ive_got_a_fun_little_game_who_is_ready_to_make_a/). Made with GPT-2 retrained with an extremely small dataset (<= 250 entries, contains official characters in the game and the custom ones in the above post (authorized for use by its original author)). It's currently quite buggy due to the humble dataset and is only capable of randomly generating a unit; support for custom prompts (wishes) will be added in the future.
Padomin/t5-base-TEDxJP-5front-1body-0rear
Padomin
2022-09-12T08:41:18Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T20:53:40Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-5front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-5front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4633 - Wer: 0.1756 - Mer: 0.1693 - Wil: 0.2562 - Wip: 0.7438 - Hits: 55657 - Substitutions: 6415 - Deletions: 2515 - Insertions: 2414 - Cer: 0.1382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6441 | 1.0 | 1457 | 0.4872 | 0.2061 | 0.1954 | 0.2850 | 0.7150 | 54813 | 6709 | 3065 | 3540 | 0.1823 | | 0.543 | 2.0 | 2914 | 0.4422 | 0.1832 | 0.1765 | 0.2641 | 0.7359 | 55188 | 6458 | 2941 | 2432 | 0.1491 | | 0.4896 | 3.0 | 4371 | 0.4373 | 0.1811 | 0.1739 | 0.2612 | 0.7388 | 55568 | 6464 | 2555 | 2679 | 0.1450 | | 0.4299 | 4.0 | 5828 | 0.4326 | 0.1745 | 0.1685 | 0.2553 | 0.7447 | 55604 | 6391 | 2592 | 2288 | 0.1367 | | 0.3853 | 5.0 | 7285 | 0.4390 | 0.1758 | 0.1693 | 0.2561 | 0.7439 | 55696 | 6406 | 2485 | 2462 | 0.1375 | | 0.357 | 6.0 | 8742 | 0.4433 | 0.1835 | 0.1757 | 0.2619 | 0.7381 | 55609 | 6386 | 2592 | 2871 | 0.1438 | | 0.3735 | 7.0 | 10199 | 0.4479 | 0.1799 | 0.1729 | 0.2598 | 0.7402 | 55582 | 6425 | 2580 | 2617 | 0.1411 | | 0.302 | 8.0 | 11656 | 0.4554 | 0.1770 | 0.1702 | 0.2569 | 0.7431 | 55725 | 6408 | 2454 | 2568 | 0.1386 | | 0.2992 | 9.0 | 13113 | 0.4614 | 0.1784 | 0.1715 | 0.2581 | 0.7419 | 55672 | 6405 | 2510 | 2606 | 0.1404 | | 0.2972 | 10.0 | 14570 | 0.4633 | 0.1756 | 0.1693 | 0.2562 | 0.7438 | 55657 | 6415 | 2515 | 2414 | 0.1382 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Padomin/t5-base-TEDxJP-3front-1body-0rear
Padomin
2022-09-12T08:04:27Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:te_dx_jp", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T20:57:48Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-3front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-3front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4641 - Wer: 0.1743 - Mer: 0.1684 - Wil: 0.2557 - Wip: 0.7443 - Hits: 55594 - Substitutions: 6428 - Deletions: 2565 - Insertions: 2267 - Cer: 0.1368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6567 | 1.0 | 1457 | 0.4959 | 0.2072 | 0.1966 | 0.2877 | 0.7123 | 54688 | 6836 | 3063 | 3486 | 0.1936 | | 0.5486 | 2.0 | 2914 | 0.4504 | 0.1870 | 0.1796 | 0.2677 | 0.7323 | 55158 | 6518 | 2911 | 2647 | 0.1528 | | 0.4957 | 3.0 | 4371 | 0.4410 | 0.1764 | 0.1705 | 0.2578 | 0.7422 | 55412 | 6429 | 2746 | 2216 | 0.1375 | | 0.4371 | 4.0 | 5828 | 0.4379 | 0.1761 | 0.1702 | 0.2572 | 0.7428 | 55447 | 6407 | 2733 | 2232 | 0.1377 | | 0.387 | 5.0 | 7285 | 0.4408 | 0.1756 | 0.1696 | 0.2562 | 0.7438 | 55510 | 6372 | 2705 | 2263 | 0.1399 | | 0.3589 | 6.0 | 8742 | 0.4466 | 0.1737 | 0.1681 | 0.2552 | 0.7448 | 55532 | 6406 | 2649 | 2165 | 0.1359 | | 0.3876 | 7.0 | 10199 | 0.4532 | 0.1746 | 0.1689 | 0.2563 | 0.7437 | 55491 | 6436 | 2660 | 2179 | 0.1363 | | 0.3199 | 8.0 | 11656 | 0.4591 | 0.1738 | 0.1681 | 0.2554 | 0.7446 | 55568 | 6431 | 2588 | 2208 | 0.1362 | | 0.3079 | 9.0 | 13113 | 0.4625 | 0.1743 | 0.1685 | 0.2557 | 0.7443 | 55579 | 6425 | 2583 | 2252 | 0.1366 | | 0.3124 | 10.0 | 14570 | 0.4641 | 0.1743 | 0.1684 | 0.2557 | 0.7443 | 55594 | 6428 | 2565 | 2267 | 0.1368 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
north/demo-nynorsk-base
north
2022-09-12T07:58:28Z
111
1
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "t5", "text2text-generation", "translation", "no", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2022-05-29T12:14:07Z
--- language: no tags: - translation widget: - text: "En av de vanskeligste oppgavene når man oversetter fra bokmål til nynorsk, er å passe på at man bruker riktige pronomen. Man kan for eksempel si at man eier en bil og at den er rød." - text: "Arbeidsmiljøloven har også som formål å sikre et arbeidsmiljø som gir grunnlag for en helsefremmende og meningsfylt arbeidssituasjon, og bidra til et inkluderende arbeidsliv." - text: "Alle søknader behandles konfidensielt." - text: "Kommunens nettsider henviser til kommunens vedtak." license: cc-by-nc-nd-4.0 --- # Nynorsk Translator This demo translates text for Norwegian Bokmål to Norwegian Nynorsk. The Nynorsk Translator is finetuned from North-T5. It is a simple base model just for demo purposes. Please do not use it for translating larger amounts of text.
sd-concepts-library/cute-cat
sd-concepts-library
2022-09-12T07:14:55Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-12T07:14:42Z
--- license: mit --- ### cute cat on Stable Diffusion This is the `<cute-bear>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cute-bear> 0](https://huggingface.co/sd-concepts-library/cute-cat/resolve/main/concept_images/3.jpeg) ![<cute-bear> 1](https://huggingface.co/sd-concepts-library/cute-cat/resolve/main/concept_images/0.jpeg) ![<cute-bear> 2](https://huggingface.co/sd-concepts-library/cute-cat/resolve/main/concept_images/2.jpeg) ![<cute-bear> 3](https://huggingface.co/sd-concepts-library/cute-cat/resolve/main/concept_images/1.jpeg) ![<cute-bear> 4](https://huggingface.co/sd-concepts-library/cute-cat/resolve/main/concept_images/4.jpeg)
sd-concepts-library/aj-fosik
sd-concepts-library
2022-09-12T06:58:41Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-12T06:58:37Z
--- license: mit --- ### AJ Fosik on Stable Diffusion This is the `<AJ-Fosik>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<AJ-Fosik> 0](https://huggingface.co/sd-concepts-library/aj-fosik/resolve/main/concept_images/3.jpeg) ![<AJ-Fosik> 1](https://huggingface.co/sd-concepts-library/aj-fosik/resolve/main/concept_images/0.jpeg) ![<AJ-Fosik> 2](https://huggingface.co/sd-concepts-library/aj-fosik/resolve/main/concept_images/2.jpeg) ![<AJ-Fosik> 3](https://huggingface.co/sd-concepts-library/aj-fosik/resolve/main/concept_images/1.jpeg) ![<AJ-Fosik> 4](https://huggingface.co/sd-concepts-library/aj-fosik/resolve/main/concept_images/4.jpeg)
tau/bart-base-sled-govreport
tau
2022-09-12T06:50:01Z
52
1
transformers
[ "transformers", "pytorch", "tau/sled", "en", "arxiv:2104.02112", "arxiv:2208.00748", "arxiv:1910.13461", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-09-12T06:40:14Z
--- license: mit language: en --- # BART-SLED (SLiding-Encoder and Decoder, base-sized model) SLED models use pretrained, short-range encoder-decoder models, and apply them over long-text inputs by splitting the input into multiple overlapping chunks, encoding each independently and perform fusion-in-decoder ## Model description This SLED model is based on the BART model, which is described in its [model card](https://huggingface.co/facebook/bart-base). BART is particularly effective when fine-tuned for text generation (e.g. summarization, translation) but also works well for comprehension tasks (e.g. text classification, question answering). When used as a BART-SLED model, it can be applied on long text tasks. This model was finetuned on the [GovReport](https://arxiv.org/abs/2104.02112) ## Intended uses & limitations You can use the raw model for text infilling. However, the model is mostly meant to be fine-tuned on a supervised dataset. ### How to use To use the model, you first need to install `py-sled` in your environment (or clone the code from the [official repository](https://github.com/Mivg/SLED/blob/main/README.md)) ``` pip install py-sled ``` For more installation instructions, see [here](https://github.com/Mivg/SLED#Installation). Once installed, SLED is fully compatible with HuggingFace's AutoClasses (AutoTokenizer, AutoConfig, AutoModel and AutoModelForCausalLM) and can be loaded using the from_pretrained methods ```python import sled # *** required so that SledModels will be registered for the AutoClasses *** model = AutoModel.from_pretrained('tau/bart-base-sled') ``` Here is how to use this model in PyTorch: ```python from sled import SledTokenizer, SledModel tokenizer = SledTokenizer.from_pretrained('tau/bart-base-sled') model = SledModel.from_pretrained('tau/bart-base-sled') inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") outputs = model(**inputs) last_hidden_states = outputs.last_hidden_state ``` You can also replace SledModel by SledModelForConditionalGeneration for Seq2Seq generation ```python model = SledModelForConditionalGeneration.from_pretrained('tau/bart-base-sled') ``` In case you wish to apply SLED on a task containing a prefix (e.g. question) which should be given as a context to every chunk, you can pass the `prefix_length` tensor input as well (A LongTensor in the length of the batch size). ```python import torch import sled # *** required so that SledModels will be registered for the AutoClasses *** tokenizer = AutoTokenizer.from_pretrained('tau/bart-base-sled') model = AutoModel.from_pretrained('tau/bart-base-sled') document_input_ids = tokenizer("Dogs are great for you.", return_tensors="pt").input_ids prefix_input_ids = tokenizer("Are dogs good for you?", return_tensors="pt").input_ids input_ids = torch.cat((prefix_input_ids, document_input_ids), dim=-1) attention_mask = torch.ones_like(input_ids) prefix_length = torch.LongTensor([[prefix_input_ids.size(1)]]) outputs = model(input_ids=input_ids, attention_mask=attention_mask, prefix_length=prefix_length) last_hidden_states = outputs.last_hidden_state ``` ### BibTeX entry and citation info Please cite both the SLED [paper](https://arxiv.org/abs/2208.00748.pdf) and the BART [paper](https://arxiv.org/abs/1910.13461) by Lewis et al as well as GovReport by Huang et al ```bibtex @inproceedings{Ivgi2022EfficientLU, title={Efficient Long-Text Understanding with Short-Text Models}, author={Maor Ivgi and Uri Shaham and Jonathan Berant}, year={2022} } ``` ```bibtex @article{DBLP:journals/corr/abs-1910-13461, author = {Mike Lewis and Yinhan Liu and Naman Goyal and Marjan Ghazvininejad and Abdelrahman Mohamed and Omer Levy and Veselin Stoyanov and Luke Zettlemoyer}, title = {{BART:} Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension}, journal = {CoRR}, volume = {abs/1910.13461}, year = {2019}, url = {http://arxiv.org/abs/1910.13461}, eprinttype = {arXiv}, eprint = {1910.13461}, timestamp = {Thu, 31 Oct 2019 14:02:26 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1910-13461.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ```bibtex @inproceedings{huang2021govreport, title = "Efficient Attentions for Long Document Summarization", author = "Huang, Luyang and Cao, Shuyang and Parulian, Nikolaus and Ji, Heng and Wang, Lu", booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.naacl-main.112", doi = "10.18653/v1/2021.naacl-main.112", pages = "1419--1436" } ```
prathap-reddy/autotrain-climate-text-classification-1437253674
prathap-reddy
2022-09-12T06:11:45Z
100
0
transformers
[ "transformers", "pytorch", "autotrain", "text-classification", "en", "dataset:prathap-reddy/autotrain-data-climate-text-classification", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
text-classification
2022-09-12T06:10:09Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - prathap-reddy/autotrain-data-climate-text-classification co2_eq_emissions: emissions: 2.621274122165296 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1437253674 - CO2 Emissions (in grams): 2.6213 ## Validation Metrics - Loss: 0.300 - Accuracy: 0.884 - Precision: 0.844 - Recall: 0.596 - AUC: 0.885 - F1: 0.699 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/prathap-reddy/autotrain-climate-text-classification-1437253674 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("prathap-reddy/autotrain-climate-text-classification-1437253674", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("prathap-reddy/autotrain-climate-text-classification-1437253674", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
inarikami/japanese-opt-2.7b
inarikami
2022-09-12T05:43:21Z
5
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-09-12T02:48:52Z
--- license: other model-index: - name: output_2 results: [] --- # Japanese-opt-2.7b Model ***Disclaimer: This model is a work in progress!*** This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on the japanese wikipedia dataset. ## Quick start ```python from transformers import pipeline generator = pipeline('text-generation', model="tensorcat/japanese-opt-2.7b" , device=0, use_fast=False) generator("今日は", min_length=80, max_length=200, do_sample=True, early_stopping=True, temperature=.98, top_k=50, top_p=1.0) ``` ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Pytorch 1.13.0+cu116
huijian222/dqn-SpaceInvadersNoFrameskip-v4
huijian222
2022-09-12T05:42:47Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-09-12T05:42:04Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 697.00 +/- 193.32 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga huijian222 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga huijian222 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
sd-concepts-library/doose-s-realistic-art-style
sd-concepts-library
2022-09-12T03:18:51Z
0
16
null
[ "license:mit", "region:us" ]
null
2022-09-12T03:18:47Z
--- license: mit --- ### Doose's Realistic Art Style on Stable Diffusion This is the `<doose-realistic>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<doose-realistic> 0](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/5.jpeg) ![<doose-realistic> 1](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/6.jpeg) ![<doose-realistic> 2](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/9.jpeg) ![<doose-realistic> 3](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/3.jpeg) ![<doose-realistic> 4](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/0.jpeg) ![<doose-realistic> 5](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/12.jpeg) ![<doose-realistic> 6](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/2.jpeg) ![<doose-realistic> 7](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/10.jpeg) ![<doose-realistic> 8](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/7.jpeg) ![<doose-realistic> 9](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/1.jpeg) ![<doose-realistic> 10](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/11.jpeg) ![<doose-realistic> 11](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/4.jpeg) ![<doose-realistic> 12](https://huggingface.co/sd-concepts-library/doose-s-realistic-art-style/resolve/main/concept_images/8.jpeg)
sd-concepts-library/retropixelart-pinguin
sd-concepts-library
2022-09-12T02:28:27Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-12T02:28:21Z
--- license: mit --- ### retropixelart pinguin on Stable Diffusion This is the `<retropixelart-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<retropixelart-style> 0](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/5.jpeg) ![<retropixelart-style> 1](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/6.jpeg) ![<retropixelart-style> 2](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/3.jpeg) ![<retropixelart-style> 3](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/0.jpeg) ![<retropixelart-style> 4](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/2.jpeg) ![<retropixelart-style> 5](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/7.jpeg) ![<retropixelart-style> 6](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/1.jpeg) ![<retropixelart-style> 7](https://huggingface.co/sd-concepts-library/retropixelart-pinguin/resolve/main/concept_images/4.jpeg)
sd-concepts-library/tcirle
sd-concepts-library
2022-09-12T02:07:11Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-12T02:07:07Z
--- license: mit --- ### tcirle on Stable Diffusion This is the `<tcircle>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<tcircle> 0](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/5.jpeg) ![<tcircle> 1](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/6.jpeg) ![<tcircle> 2](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/3.jpeg) ![<tcircle> 3](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/0.jpeg) ![<tcircle> 4](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/2.jpeg) ![<tcircle> 5](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/1.jpeg) ![<tcircle> 6](https://huggingface.co/sd-concepts-library/tcirle/resolve/main/concept_images/4.jpeg)
TastyOs/swin-tiny-patch4-window7-224-finetuned-eurosat
TastyOs
2022-09-12T01:42:25Z
219
0
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-12T00:25:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9733333333333334 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0765 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2745 | 1.0 | 190 | 0.1439 | 0.9485 | | 0.1689 | 2.0 | 380 | 0.0851 | 0.9711 | | 0.1593 | 3.0 | 570 | 0.0765 | 0.9733 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/baldi
sd-concepts-library
2022-09-12T01:35:36Z
0
2
null
[ "license:mit", "region:us" ]
null
2022-09-12T01:35:24Z
--- license: mit --- ### Baldi on Stable Diffusion This is the `<baldi>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<baldi> 0](https://huggingface.co/sd-concepts-library/baldi/resolve/main/concept_images/3.jpeg) ![<baldi> 1](https://huggingface.co/sd-concepts-library/baldi/resolve/main/concept_images/0.jpeg) ![<baldi> 2](https://huggingface.co/sd-concepts-library/baldi/resolve/main/concept_images/2.jpeg) ![<baldi> 3](https://huggingface.co/sd-concepts-library/baldi/resolve/main/concept_images/1.jpeg)
sd-concepts-library/spritual-monsters
sd-concepts-library
2022-09-12T01:26:17Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-12T01:26:13Z
--- license: mit --- ### Spritual monsters on Stable Diffusion This is the `<spritual-monsters>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<spritual-monsters> 0](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/3.jpeg) ![<spritual-monsters> 1](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/0.jpeg) ![<spritual-monsters> 2](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/2.jpeg) ![<spritual-monsters> 3](https://huggingface.co/sd-concepts-library/spritual-monsters/resolve/main/concept_images/1.jpeg)
sd-concepts-library/huckleberry
sd-concepts-library
2022-09-12T00:46:16Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-12T00:46:10Z
--- license: mit --- ### huckleberry on Stable Diffusion This is the `<huckleberry>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<huckleberry> 0](https://huggingface.co/sd-concepts-library/huckleberry/resolve/main/concept_images/3.jpeg) ![<huckleberry> 1](https://huggingface.co/sd-concepts-library/huckleberry/resolve/main/concept_images/0.jpeg) ![<huckleberry> 2](https://huggingface.co/sd-concepts-library/huckleberry/resolve/main/concept_images/2.jpeg) ![<huckleberry> 3](https://huggingface.co/sd-concepts-library/huckleberry/resolve/main/concept_images/1.jpeg) ![<huckleberry> 4](https://huggingface.co/sd-concepts-library/huckleberry/resolve/main/concept_images/4.jpeg)
rttl-ai/yelpy-bert
rttl-ai
2022-09-12T00:37:35Z
119
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-09-11T20:03:41Z
--- license: bigscience-bloom-rail-1.0 --- # Yelpy BERT A bert-base-uncased fine-tuned on yelp reviews (https://www.yelp.com/dataset)
sd-concepts-library/nixeu
sd-concepts-library
2022-09-11T23:59:13Z
0
17
null
[ "license:mit", "region:us" ]
null
2022-09-11T08:48:00Z
--- license: mit --- ### nixeu on Stable Diffusion This is the `<nixeu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<nixeu> 6](https://cdn.discordapp.com/attachments/1004159122335354970/1018669275361329202/unknown.png) Here is the new concept you will be able to use as a `style`: ![<nixeu> 0](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/5.jpeg) ![<nixeu> 1](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/3.jpeg) ![<nixeu> 2](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/0.jpeg) ![<nixeu> 3](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/2.jpeg) ![<nixeu> 4](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/1.jpeg) ![<nixeu> 5](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/4.jpeg)
Imene/vit-base-patch16-224-wi2
Imene
2022-09-11T23:42:32Z
79
0
transformers
[ "transformers", "tf", "tensorboard", "vit", "image-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-09-10T10:43:38Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Imene/vit-base-patch16-224-wi2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Imene/vit-base-patch16-224-wi2 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3098 - Train Accuracy: 0.9821 - Train Top-5-accuracy: 0.9971 - Validation Loss: 3.0737 - Validation Accuracy: 0.2491 - Validation Top-5-accuracy: 0.4476 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0003, 'decay_steps': 1750, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.001}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Train Accuracy | Train Top-5-accuracy | Validation Loss | Validation Accuracy | Validation Top-5-accuracy | Epoch | |:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:| | 4.4859 | 0.0195 | 0.0579 | 4.2995 | 0.0368 | 0.0865 | 0 | | 4.1729 | 0.0355 | 0.0987 | 4.0916 | 0.0472 | 0.1266 | 1 | | 3.9541 | 0.0666 | 0.1641 | 3.8050 | 0.0781 | 0.2035 | 2 | | 3.5823 | 0.1247 | 0.2615 | 3.4015 | 0.1429 | 0.2950 | 3 | | 3.0156 | 0.1913 | 0.3987 | 3.0598 | 0.1880 | 0.3916 | 4 | | 2.4618 | 0.3077 | 0.5572 | 2.9869 | 0.2056 | 0.4129 | 5 | | 1.8979 | 0.4541 | 0.7165 | 2.9507 | 0.2298 | 0.4425 | 6 | | 1.2075 | 0.6914 | 0.8886 | 3.0106 | 0.2394 | 0.4425 | 7 | | 0.6026 | 0.9097 | 0.9810 | 3.0739 | 0.2428 | 0.4413 | 8 | | 0.3098 | 0.9821 | 0.9971 | 3.0737 | 0.2491 | 0.4476 | 9 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/glow-forest
sd-concepts-library
2022-09-11T23:16:45Z
0
17
null
[ "license:mit", "region:us" ]
null
2022-09-11T23:16:39Z
--- license: mit --- ### glow forest on Stable Diffusion This is the `<dark-forest>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<dark-forest> 0](https://huggingface.co/sd-concepts-library/glow-forest/resolve/main/concept_images/3.jpeg) ![<dark-forest> 1](https://huggingface.co/sd-concepts-library/glow-forest/resolve/main/concept_images/0.jpeg) ![<dark-forest> 2](https://huggingface.co/sd-concepts-library/glow-forest/resolve/main/concept_images/2.jpeg) ![<dark-forest> 3](https://huggingface.co/sd-concepts-library/glow-forest/resolve/main/concept_images/1.jpeg) ![<dark-forest> 4](https://huggingface.co/sd-concepts-library/glow-forest/resolve/main/concept_images/4.jpeg)
fxmarty/20220911-h13m58s53_squad_qa_distilbert_dynamic
fxmarty
2022-09-11T22:21:43Z
0
0
null
[ "tensorboard", "onnx", "distilbert", "question-answering", "dataset:squad", "region:us" ]
question-answering
2022-09-11T22:20:48Z
--- pipeline_tag: question-answering datasets: - squad metrics: - exact_match - f1 - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `question-answering` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'squad', 'eval_split': 'validation', 'data_keys': {'question': 'question', 'context': 'context'}, 'ref_keys': ['answers'], 'name': None, 'calibration_split': None}] * **name_or_path**: `distilbert-base-uncased-distilled-squad` * **from_transformers**: `True` * **quantization_approach**: `dynamic` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **reduce_range**: `True`, `False` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | exact_match | | f1 | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------: | :-: | :----: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 76.764 | \| | 85.053 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 69.622 | \| | 79.914 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.435 | \| | 5.887 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.165 | \| | 85.973 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 76.764 | \| | 85.053 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 69.622 | \| | 79.914 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.435 | \| | 5.887 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.165 | \| | 85.973 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 78.884 | \| | 86.690 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.26 | \| | 70.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.08 | \| | 99.20 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.60 | \| | 94.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.88 | \| | 91.93 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.84 | \| | 92.27 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.34 | \| | 96.73 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.41 | \| | 96.07 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.96 | \| | 91.27 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.69 | \| | 93.53 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.43 | \| | 69.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.52 | \| | 68.87 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.35 | \| | 69.73 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.50 | \| | 69.00 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.20 | \| | 70.47 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.24 | \| | 70.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.58 | \| | 68.67 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.73 | \| | 67.87 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.49 | \| | 31.80 | Below, time metrics for batch size = 1, input length = 64. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.83 | \| | 40.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.49 | \| | 54.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.87 | \| | 53.00 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.17 | \| | 52.20 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.92 | \| | 52.87 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.13 | \| | 52.33 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.95 | \| | 52.80 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.08 | \| | 52.47 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.14 | \| | 52.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.83 | \| | 40.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.84 | \| | 40.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.66 | \| | 40.60 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.76 | \| | 40.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 25.07 | \| | 39.93 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.27 | \| | 39.60 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.76 | \| | 40.40 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.70 | \| | 40.53 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.26 | \| | 24.27 | Below, time metrics for batch size = 1, input length = 128. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.89 | \| | 21.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 34.84 | \| | 28.73 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.88 | \| | 27.93 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 36.92 | \| | 27.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.25 | \| | 27.60 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 36.17 | \| | 27.67 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.59 | \| | 28.13 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 37.36 | \| | 26.80 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.97 | \| | 27.87 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 46.94 | \| | 21.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.19 | \| | 21.20 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.05 | \| | 21.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 46.79 | \| | 21.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 46.87 | \| | 21.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.04 | \| | 21.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.08 | \| | 21.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.05 | \| | 21.27 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 54.61 | \| | 18.33 |
IIIT-L/hing-mbert-finetuned-ours-DS
IIIT-L
2022-09-11T22:03:32Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T21:57:43Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-mbert-finetuned-ours-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-finetuned-ours-DS This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1569 - Accuracy: 0.71 - Precision: 0.6665 - Recall: 0.6668 - F1: 0.6658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.824279936868144e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7704 | 1.99 | 199 | 0.7093 | 0.68 | 0.6679 | 0.6463 | 0.6309 | | 0.2597 | 3.98 | 398 | 1.1569 | 0.71 | 0.6665 | 0.6668 | 0.6658 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
theojolliffe/T5-model-1-feedback-1109
theojolliffe
2022-09-11T20:29:13Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T16:04:15Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: T5-model-1-feedback-1109 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # T5-model-1-feedback-1109 This model is a fine-tuned version of [theojolliffe/T5-model-1-d-6](https://huggingface.co/theojolliffe/T5-model-1-d-6) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2841 - Rouge1: 91.4494 - Rouge2: 86.4303 - Rougel: 89.9713 - Rougelsum: 90.045 - Gen Len: 15.2875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 359 | 0.3270 | 91.5397 | 86.6427 | 90.0821 | 90.1433 | 15.2875 | | 0.2963 | 2.0 | 718 | 0.2847 | 91.4494 | 86.4303 | 89.9713 | 90.045 | 15.2875 | | 0.2697 | 3.0 | 1077 | 0.2841 | 91.4494 | 86.4303 | 89.9713 | 90.045 | 15.2875 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
sd-concepts-library/glass-pipe
sd-concepts-library
2022-09-11T20:14:10Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-11T20:14:06Z
--- license: mit --- ### glass pipe on Stable Diffusion This is the `<glass-sherlock>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<glass-sherlock> 0](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/5.jpeg) ![<glass-sherlock> 1](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/6.jpeg) ![<glass-sherlock> 2](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/3.jpeg) ![<glass-sherlock> 3](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/0.jpeg) ![<glass-sherlock> 4](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/2.jpeg) ![<glass-sherlock> 5](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/1.jpeg) ![<glass-sherlock> 6](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/4.jpeg)
sd-concepts-library/eye-of-agamotto
sd-concepts-library
2022-09-11T19:53:41Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-11T19:53:37Z
--- license: mit --- ### Eye of Agamotto on Stable Diffusion This is the `<eye-aga>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<eye-aga> 0](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/30.jpeg) ![<eye-aga> 1](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/24.jpeg) ![<eye-aga> 2](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/19.jpeg) ![<eye-aga> 3](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/5.jpeg) ![<eye-aga> 4](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/6.jpeg) ![<eye-aga> 5](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/15.jpeg) ![<eye-aga> 6](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/20.jpeg) ![<eye-aga> 7](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/14.jpeg) ![<eye-aga> 8](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/9.jpeg) ![<eye-aga> 9](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/3.jpeg) ![<eye-aga> 10](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/0.jpeg) ![<eye-aga> 11](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/33.jpeg) ![<eye-aga> 12](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/17.jpeg) ![<eye-aga> 13](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/12.jpeg) ![<eye-aga> 14](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/13.jpeg) ![<eye-aga> 15](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/2.jpeg) ![<eye-aga> 16](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/16.jpeg) ![<eye-aga> 17](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/25.jpeg) ![<eye-aga> 18](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/18.jpeg) ![<eye-aga> 19](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/22.jpeg) ![<eye-aga> 20](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/10.jpeg) ![<eye-aga> 21](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/31.jpeg) ![<eye-aga> 22](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/7.jpeg) ![<eye-aga> 23](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/1.jpeg) ![<eye-aga> 24](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/27.jpeg) ![<eye-aga> 25](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/32.jpeg) ![<eye-aga> 26](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/26.jpeg) ![<eye-aga> 27](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/21.jpeg) ![<eye-aga> 28](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/23.jpeg) ![<eye-aga> 29](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/29.jpeg) ![<eye-aga> 30](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/11.jpeg) ![<eye-aga> 31](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/28.jpeg) ![<eye-aga> 32](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/4.jpeg) ![<eye-aga> 33](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/8.jpeg)
sd-concepts-library/rickyart
sd-concepts-library
2022-09-11T18:21:52Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-11T18:21:47Z
--- license: mit --- ### RickyArt on Stable Diffusion This is the `<RickyArt>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<RickyArt> 0](https://huggingface.co/sd-concepts-library/rickyart/resolve/main/concept_images/3.jpeg) ![<RickyArt> 1](https://huggingface.co/sd-concepts-library/rickyart/resolve/main/concept_images/0.jpeg) ![<RickyArt> 2](https://huggingface.co/sd-concepts-library/rickyart/resolve/main/concept_images/2.jpeg) ![<RickyArt> 3](https://huggingface.co/sd-concepts-library/rickyart/resolve/main/concept_images/1.jpeg)
sd-concepts-library/garfield-pizza-plush-v2
sd-concepts-library
2022-09-11T17:59:08Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-11T17:59:02Z
--- license: mit --- ### Garfield-Pizza-Plush-v2 on Stable Diffusion This is the `<garfield-plushy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<garfield-plushy> 0](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/3.jpeg) ![<garfield-plushy> 1](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/0.jpeg) ![<garfield-plushy> 2](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/2.jpeg) ![<garfield-plushy> 3](https://huggingface.co/sd-concepts-library/garfield-pizza-plush-v2/resolve/main/concept_images/1.jpeg)
sd-concepts-library/swamp-choe-2
sd-concepts-library
2022-09-11T16:42:37Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-11T16:42:30Z
--- license: mit --- ### swamp-choe-2 on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/0.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/2.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/1.jpeg)
sbatova/ddpm-butterflies-128
sbatova
2022-09-11T16:35:41Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:full", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-09-11T11:27:20Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: full metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `full` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/sbatova/ddpm-butterflies-128/tensorboard?#scalars)
orhanxakarsu/turkish-poem-generation-1
orhanxakarsu
2022-09-11T16:06:00Z
107
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-09-11T13:43:58Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: orhanxakarsu/turkish-poem-generation-1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # orhanxakarsu/turkish-poem-generation-1 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.0761 - Validation Loss: 7.0393 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2.380655430044305e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2.380655430044305e-05, 'decay_steps': 3221, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.05} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.5133 | 7.0394 | 0 | | 7.0763 | 7.0388 | 1 | | 7.0762 | 7.0389 | 2 | | 7.0761 | 7.0393 | 3 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
fxmarty/20220911-h13m58s49_sst2_distilbert_quantization
fxmarty
2022-09-11T15:55:26Z
0
0
null
[ "tensorboard", "onnx", "distilbert", "text-classification", "dataset:glue", "region:us" ]
text-classification
2022-09-11T15:52:09Z
--- pipeline_tag: text-classification datasets: - glue metrics: - accuracy - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `text-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'glue', 'eval_split': 'validation', 'data_keys': {'primary': 'sentence'}, 'ref_keys': ['label'], 'name': 'sst2', 'calibration_split': 'train'}] * **name_or_path**: `distilbert-base-uncased-finetuned-sst-2-english` * **from_transformers**: `True` * **calibration**: * **method**: `percentile` * **num_calibration_samples**: `128` * **calibration_histogram_percentile**: `99.999` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **reduce_range**: `True`, `False` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | accuracy | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.491 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.908 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.499 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.900 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 0.911 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.50 | \| | 69.00 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.19 | \| | 98.13 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.66 | \| | 93.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.45 | \| | 95.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.72 | \| | 93.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.16 | \| | 98.40 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.86 | \| | 92.07 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.43 | \| | 69.33 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.68 | \| | 68.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.40 | \| | 69.47 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.79 | \| | 67.60 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.80 | \| | 67.60 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.13 | \| | 70.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.54 | \| | 68.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.60 | \| | 68.53 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.23 | \| | 89.13 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.18 | \| | 89.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.39 | \| | 87.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.31 | \| | 88.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 13.73 | \| | 72.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.42 | \| | 69.40 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.09 | \| | 71.00 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 13.78 | \| | 72.60 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 16.11 | \| | 62.13 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.97 | \| | 62.67 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 15.82 | \| | 63.27 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.94 | \| | 62.73 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.03 | \| | 52.60 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.99 | \| | 52.67 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.93 | \| | 52.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.65 | \| | 53.67 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.28 | \| | 32.00 | Below, time metrics for batch size = 1, input length = 64. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.59 | \| | 40.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.67 | \| | 53.60 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.16 | \| | 52.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.97 | \| | 52.73 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.29 | \| | 51.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.13 | \| | 52.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.64 | \| | 53.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.01 | \| | 52.60 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.96 | \| | 52.80 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.63 | \| | 40.67 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.28 | \| | 39.60 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.75 | \| | 40.47 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.97 | \| | 40.07 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 25.16 | \| | 39.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.49 | \| | 40.87 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.88 | \| | 40.20 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.05 | \| | 49.93 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.76 | \| | 48.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.75 | \| | 48.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.23 | \| | 49.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.79 | \| | 40.40 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.14 | \| | 41.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.27 | \| | 39.60 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 27.97 | \| | 35.80 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 27.43 | \| | 36.47 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 28.17 | \| | 35.53 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 28.16 | \| | 35.53 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 33.24 | \| | 30.13 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.46 | \| | 30.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 32.39 | \| | 30.93 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.75 | \| | 30.53 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.25 | \| | 24.27 | Below, time metrics for batch size = 1, input length = 128. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.51 | \| | 21.53 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.33 | \| | 28.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.92 | \| | 27.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.56 | \| | 28.13 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.32 | \| | 27.53 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.53 | \| | 28.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.96 | \| | 27.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.42 | \| | 28.27 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.06 | \| | 27.80 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.40 | \| | 21.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.14 | \| | 21.27 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.46 | \| | 21.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.26 | \| | 21.20 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.48 | \| | 21.07 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.08 | \| | 21.27 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.02 | \| | 21.33 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.05 | \| | 21.27 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.63 | \| | 25.27 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 39.52 | \| | 25.33 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.78 | \| | 25.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 40.01 | \| | 25.00 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 44.24 | \| | 22.67 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.55 | \| | 22.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 45.74 | \| | 21.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.12 | \| | 22.67 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.41 | \| | 19.47 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 52.52 | \| | 19.07 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.25 | \| | 19.53 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 51.51 | \| | 19.47 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 53.72 | \| | 18.67 |
fxmarty/20220911-h15m48s16_
fxmarty
2022-09-11T15:52:34Z
0
0
null
[ "tensorboard", "onnx", "distilbert", "text-classification", "dataset:glue", "region:us" ]
text-classification
2022-09-11T15:52:12Z
--- pipeline_tag: text-classification datasets: - glue metrics: - accuracy - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `text-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'glue', 'eval_split': 'validation', 'data_keys': {'primary': 'sentence'}, 'ref_keys': ['label'], 'name': 'sst2', 'calibration_split': None}] * **name_or_path**: `distilbert-base-uncased-finetuned-sst-2-english` * **from_transformers**: `True` * **quantization_approach**: `dynamic` * **node_exclusion**: `[]` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | operators_to_quantize | per_channel | framework_args | apply_quantization | | accuracy | | :-----------: | :-------------------: | :---------: | :-----------------------------------------------------------------: | :----------------: | :-: | :------: | | `onnxruntime` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | \| | 0.911 | | `onnxruntime` | `['Add', 'MatMul']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 0.898 | | `onnxruntime` | `['Add', 'MatMul']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 0.490 | | `onnxruntime` | `['Add']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 0.911 | | `onnxruntime` | `['Add']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 0.911 | | `pytorch` | `None` | `None` | `{}` | `None` | \| | 0.911 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 224. | framework | operators_to_quantize | per_channel | framework_args | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :---------: | :-----------------------------------------------------------------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | \| | 83.23 | \| | 12.07 | | `onnxruntime` | `['Add', 'MatMul']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 64.31 | \| | 15.60 | | `onnxruntime` | `['Add', 'MatMul']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 64.78 | \| | 15.47 | | `onnxruntime` | `['Add']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 82.63 | \| | 12.13 | | `onnxruntime` | `['Add']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | \| | 83.82 | \| | 11.93 | | `pytorch` | `None` | `None` | `{}` | `None` | \| | 84.34 | \| | 11.87 |
SushantGautam/SportsSum
SushantGautam
2022-09-11T15:45:13Z
106
0
transformers
[ "transformers", "pytorch", "led", "text2text-generation", "generated_from_trainer", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T02:56:47Z
--- language: - en tags: - generated_from_trainer metrics: - rouge model-index: - name: SportsSum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SportsSum This model is a fine-tuned version of [allenai/led-base-16384-ms2](https://huggingface.co/allenai/led-base-16384-ms2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5344 - Rouge1: 55.5224 - Rouge2: 28.1394 - Rougel: 31.9521 - Rougelsum: 53.0848 - Gen Len: 312.3902 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
sd-concepts-library/sculptural-style
sd-concepts-library
2022-09-11T15:26:38Z
0
1
null
[ "license:mit", "region:us" ]
null
2022-09-11T15:26:31Z
--- license: mit --- ### sculptural style on Stable Diffusion This is the `<diaosu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<diaosu> 0](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/5.jpeg) ![<diaosu> 1](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/3.jpeg) ![<diaosu> 2](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/0.jpeg) ![<diaosu> 3](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/2.jpeg) ![<diaosu> 4](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/1.jpeg) ![<diaosu> 5](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/4.jpeg)
unfinity/Reinforce-CartPole-v1
unfinity
2022-09-11T14:55:25Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-09-11T14:51:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 463.35 +/- 98.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
sd-concepts-library/mikako-method
sd-concepts-library
2022-09-11T14:52:25Z
0
3
null
[ "license:mit", "region:us" ]
null
2022-09-11T14:42:53Z
--- license: mit --- ### mikako-method on Stable Diffusion This is the `<m-m>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<m-m> 0](https://i.imgur.com/XadVMwk.png)
IIIT-L/albert-base-v2-finetuned-combined-DS
IIIT-L
2022-09-11T13:00:12Z
103
0
transformers
[ "transformers", "pytorch", "albert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T11:18:16Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: albert-base-v2-finetuned-combined-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-combined-DS This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8777 - Accuracy: 0.6103 - Precision: 0.6156 - Recall: 0.5964 - F1: 0.5942 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.2531528713821575e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0726 | 0.5 | 711 | 1.0355 | 0.5028 | 0.3964 | 0.4551 | 0.3812 | | 1.0367 | 1.0 | 1422 | 1.1449 | 0.3357 | 0.4627 | 0.3504 | 0.2166 | | 1.0691 | 1.5 | 2133 | 1.0749 | 0.4993 | 0.4595 | 0.4282 | 0.3865 | | 0.9844 | 2.0 | 2844 | 0.9458 | 0.5351 | 0.5383 | 0.5383 | 0.5249 | | 0.9318 | 2.5 | 3555 | 0.9372 | 0.5569 | 0.5740 | 0.5596 | 0.5508 | | 0.9313 | 3.0 | 4266 | 0.9221 | 0.5274 | 0.5772 | 0.5326 | 0.5222 | | 0.8692 | 3.5 | 4977 | 0.9099 | 0.5611 | 0.5764 | 0.5585 | 0.5520 | | 0.853 | 3.99 | 5688 | 0.8999 | 0.5990 | 0.6089 | 0.5840 | 0.5814 | | 0.7954 | 4.49 | 6399 | 0.8821 | 0.6152 | 0.6177 | 0.6017 | 0.5988 | | 0.8015 | 4.99 | 7110 | 0.8777 | 0.6103 | 0.6156 | 0.5964 | 0.5942 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
pedramyamini/distilbert-base-multilingual-cased-finetuned-mobile-banks-cafebazaar2lr-10epochs
pedramyamini
2022-09-11T12:17:49Z
61
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-11T10:56:19Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: pedramyamini/distilbert-base-multilingual-cased-finetuned-mobile-banks-cafebazaar2lr-10epochs results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # pedramyamini/distilbert-base-multilingual-cased-finetuned-mobile-banks-cafebazaar2lr-10epochs This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2307 - Validation Loss: 1.2090 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 4e-05, 'decay_steps': 26740, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.7428 | 0.7046 | 0 | | 0.6810 | 0.6903 | 1 | | 0.6372 | 0.6907 | 2 | | 0.5881 | 0.6988 | 3 | | 0.5246 | 0.7630 | 4 | | 0.4511 | 0.8687 | 5 | | 0.3801 | 0.9356 | 6 | | 0.3200 | 1.0440 | 7 | | 0.2676 | 1.1470 | 8 | | 0.2307 | 1.2090 | 9 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
sd-concepts-library/garfield-pizza-plush
sd-concepts-library
2022-09-11T11:56:12Z
0
0
null
[ "license:mit", "region:us" ]
null
2022-09-11T11:56:06Z
--- license: mit --- ### Garfield-Pizza-Plush on Stable Diffusion This is the `<garfield-plushy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<garfield-plushy> 0](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/5.jpeg) ![<garfield-plushy> 1](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/3.jpeg) ![<garfield-plushy> 2](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/0.jpeg) ![<garfield-plushy> 3](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/2.jpeg) ![<garfield-plushy> 4](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/1.jpeg) ![<garfield-plushy> 5](https://huggingface.co/sd-concepts-library/garfield-pizza-plush/resolve/main/concept_images/4.jpeg)
Mohammad-basheer/bart-large-cnn-finetuned-qmsum-2-4
Mohammad-basheer
2022-09-11T11:51:34Z
100
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "qmsum-summarization", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-09-11T10:39:16Z
--- license: mit tags: - qmsum-summarization - generated_from_trainer metrics: - rouge model-index: - name: bart-large-cnn-finetuned-qmsum-2-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-qmsum-2-4 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0277 - Rouge1: 0.3053 - Rouge2: 0.0660 - Rougel: 0.1903 - Rougelsum: 0.2598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| | 3.3773 | 1.0 | 629 | 3.2522 | 0.2964 | 0.0713 | 0.1958 | 0.2593 | | 2.3656 | 2.0 | 1258 | 3.2001 | 0.2942 | 0.0694 | 0.1921 | 0.2540 | | 1.5843 | 3.0 | 1887 | 3.4248 | 0.3086 | 0.0687 | 0.1938 | 0.2648 | | 0.9854 | 4.0 | 2516 | 4.0277 | 0.3053 | 0.0660 | 0.1903 | 0.2598 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Eksperymenty/testpyramidsrnd
Eksperymenty
2022-09-11T11:43:46Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-09-11T11:43:41Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Eksperymenty/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sd-concepts-library/anime-boy
sd-concepts-library
2022-09-11T11:26:14Z
0
5
null
[ "license:mit", "region:us" ]
null
2022-09-11T11:26:01Z
--- license: mit --- ### anime boy on Stable Diffusion This is the `<myAItestShota>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<myAItestShota> 0](https://huggingface.co/sd-concepts-library/anime-boy/resolve/main/concept_images/3.jpeg) ![<myAItestShota> 1](https://huggingface.co/sd-concepts-library/anime-boy/resolve/main/concept_images/0.jpeg) ![<myAItestShota> 2](https://huggingface.co/sd-concepts-library/anime-boy/resolve/main/concept_images/2.jpeg) ![<myAItestShota> 3](https://huggingface.co/sd-concepts-library/anime-boy/resolve/main/concept_images/1.jpeg) ![<myAItestShota> 4](https://huggingface.co/sd-concepts-library/anime-boy/resolve/main/concept_images/4.jpeg)
sd-concepts-library/leica
sd-concepts-library
2022-09-11T11:11:44Z
0
4
null
[ "license:mit", "region:us" ]
null
2022-09-11T11:11:40Z
--- license: mit --- ### leica on Stable Diffusion This is the `<leica>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<leica> 0](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/3.jpeg) ![<leica> 1](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/0.jpeg) ![<leica> 2](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/2.jpeg) ![<leica> 3](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/1.jpeg)