modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 18:27:28
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 18:27:19
card
stringlengths
11
1.01M
Manishkalra/discourse_classification
Manishkalra
2022-07-20T09:48:11Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-07T11:13:57Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: discourse_classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # discourse_classification This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7639 - Accuracy: 0.6649 - F1: 0.6649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7565 | 1.0 | 1839 | 0.7589 | 0.6635 | 0.6635 | | 0.6693 | 2.0 | 3678 | 0.7639 | 0.6649 | 0.6649 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bigmorning/distilbert_oscarth_0080
bigmorning
2022-07-20T09:29:02Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-20T09:28:43Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_oscarth_0080 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0080 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.1236 - Validation Loss: 1.0821 - Epoch: 79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | | 1.2818 | 1.2236 | 40 | | 1.2751 | 1.2168 | 41 | | 1.2691 | 1.2126 | 42 | | 1.2644 | 1.2044 | 43 | | 1.2583 | 1.2008 | 44 | | 1.2529 | 1.1962 | 45 | | 1.2473 | 1.1919 | 46 | | 1.2416 | 1.1857 | 47 | | 1.2365 | 1.1812 | 48 | | 1.2318 | 1.1765 | 49 | | 1.2273 | 1.1738 | 50 | | 1.2224 | 1.1672 | 51 | | 1.2177 | 1.1673 | 52 | | 1.2132 | 1.1595 | 53 | | 1.2084 | 1.1564 | 54 | | 1.2033 | 1.1518 | 55 | | 1.1993 | 1.1481 | 56 | | 1.1966 | 1.1445 | 57 | | 1.1924 | 1.1412 | 58 | | 1.1876 | 1.1378 | 59 | | 1.1834 | 1.1340 | 60 | | 1.1806 | 1.1329 | 61 | | 1.1783 | 1.1289 | 62 | | 1.1739 | 1.1251 | 63 | | 1.1705 | 1.1223 | 64 | | 1.1669 | 1.1192 | 65 | | 1.1628 | 1.1172 | 66 | | 1.1599 | 1.1140 | 67 | | 1.1570 | 1.1084 | 68 | | 1.1526 | 1.1081 | 69 | | 1.1496 | 1.1043 | 70 | | 1.1463 | 1.0999 | 71 | | 1.1438 | 1.1006 | 72 | | 1.1397 | 1.0964 | 73 | | 1.1378 | 1.0918 | 74 | | 1.1347 | 1.0917 | 75 | | 1.1319 | 1.0889 | 76 | | 1.1296 | 1.0855 | 77 | | 1.1271 | 1.0848 | 78 | | 1.1236 | 1.0821 | 79 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
jordyvl/biobert-base-cased-v1.2_ncbi_disease-sm-first-ner
jordyvl
2022-07-20T09:26:17Z
8
2
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:ncbi_disease", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-13T09:18:48Z
--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model-index: - name: biobert-base-cased-v1.2_ncbi_disease-sm-first-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metrics: - name: Precision type: precision value: 0.8522139160437032 - name: Recall type: recall value: 0.8826682549136391 - name: F1 type: f1 value: 0.8671737858396723 - name: Accuracy type: accuracy value: 0.9826972482743678 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.2_ncbi_disease-sm-first-ner This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0865 - Precision: 0.8522 - Recall: 0.8827 - F1: 0.8672 - Accuracy: 0.9827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0858 | 1.0 | 1359 | 0.0985 | 0.7929 | 0.8005 | 0.7967 | 0.9730 | | 0.042 | 2.0 | 2718 | 0.0748 | 0.8449 | 0.8856 | 0.8648 | 0.9820 | | 0.0124 | 3.0 | 4077 | 0.0865 | 0.8522 | 0.8827 | 0.8672 | 0.9827 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.2+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Ecosmob555/t5-small-finetuned-on-800-records-samsum
Ecosmob555
2022-07-20T09:21:32Z
3
0
transformers
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-20T07:03:47Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: kapuska/t5-small-finetuned-on-800-records-samsum results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # kapuska/t5-small-finetuned-on-800-records-samsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7883 - Validation Loss: 2.3752 - Train Rouge1: 24.8093 - Train Rouge2: 8.8889 - Train Rougel: 22.6817 - Train Rougelsum: 22.6817 - Train Gen Len: 19.0 - Epoch: 99 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 1.9252 | 1.9205 | 19.5556 | 2.3256 | 15.1111 | 15.1111 | 19.0 | 0 | | 1.9005 | 1.9227 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 1 | | 1.8769 | 1.9228 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 2 | | 1.8463 | 1.9192 | 17.5579 | 2.3810 | 15.2852 | 15.2852 | 19.0 | 3 | | 1.8251 | 1.9132 | 17.4786 | 2.3256 | 13.0342 | 13.0342 | 19.0 | 4 | | 1.8148 | 1.9147 | 15.5594 | 2.3810 | 13.2867 | 13.2867 | 19.0 | 5 | | 1.7980 | 1.9142 | 15.5594 | 2.3810 | 13.2867 | 13.2867 | 19.0 | 6 | | 1.7684 | 1.9158 | 15.6772 | 2.3810 | 13.4045 | 13.4045 | 19.0 | 7 | | 1.7571 | 1.9161 | 17.5964 | 2.3256 | 13.1519 | 13.1519 | 19.0 | 8 | | 1.7345 | 1.9221 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 9 | | 1.7136 | 1.9141 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 10 | | 1.6935 | 1.9249 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 11 | | 1.6685 | 1.9226 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 12 | | 1.6571 | 1.9258 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 13 | | 1.6327 | 1.9308 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 14 | | 1.6295 | 1.9271 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 15 | | 1.6112 | 1.9314 | 19.5556 | 2.3256 | 15.1111 | 15.1111 | 19.0 | 16 | | 1.6008 | 1.9357 | 19.6372 | 2.3256 | 15.1927 | 15.1927 | 19.0 | 17 | | 1.5826 | 1.9277 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 18 | | 1.5784 | 1.9342 | 21.3913 | 2.2727 | 17.0435 | 17.0435 | 19.0 | 19 | | 1.5553 | 1.9364 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 20 | | 1.5292 | 1.9461 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 21 | | 1.5114 | 1.9505 | 19.3913 | 2.2727 | 15.0435 | 15.0435 | 19.0 | 22 | | 1.5042 | 1.9540 | 17.5964 | 2.3256 | 13.1519 | 13.1519 | 19.0 | 23 | | 1.4964 | 1.9494 | 19.0621 | 4.4444 | 16.9344 | 16.9344 | 19.0 | 24 | | 1.4736 | 1.9569 | 24.7136 | 4.4444 | 20.6628 | 22.5859 | 19.0 | 25 | | 1.4644 | 1.9618 | 24.7136 | 4.4444 | 20.6628 | 22.5859 | 19.0 | 26 | | 1.4562 | 1.9693 | 18.9821 | 4.4444 | 16.8544 | 16.8544 | 19.0 | 27 | | 1.4339 | 1.9597 | 22.7905 | 4.4444 | 18.7398 | 20.6628 | 19.0 | 28 | | 1.4204 | 1.9702 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 29 | | 1.4182 | 1.9715 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 30 | | 1.4014 | 1.9768 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 31 | | 1.3845 | 1.9847 | 20.9428 | 4.4444 | 18.8152 | 18.8152 | 19.0 | 32 | | 1.3756 | 1.9790 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 33 | | 1.3611 | 1.9936 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 34 | | 1.3495 | 1.9900 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 35 | | 1.3403 | 1.9998 | 20.9428 | 4.4444 | 18.8152 | 18.8152 | 19.0 | 36 | | 1.3253 | 2.0060 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 37 | | 1.3109 | 2.0088 | 18.9821 | 4.4444 | 16.8544 | 16.8544 | 19.0 | 38 | | 1.3106 | 2.0121 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 39 | | 1.2903 | 2.0142 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 40 | | 1.2795 | 2.0239 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 41 | | 1.2788 | 2.0322 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 42 | | 1.2629 | 2.0284 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 43 | | 1.2525 | 2.0423 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 44 | | 1.2373 | 2.0424 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 45 | | 1.2242 | 2.0454 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 46 | | 1.2214 | 2.0541 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 47 | | 1.2066 | 2.0567 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 48 | | 1.1866 | 2.0632 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 49 | | 1.1976 | 2.0684 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 50 | | 1.1806 | 2.0725 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 51 | | 1.1662 | 2.0803 | 27.0458 | 11.1111 | 22.9951 | 24.9182 | 19.0 | 52 | | 1.1626 | 2.0840 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 53 | | 1.1464 | 2.0855 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 54 | | 1.1298 | 2.0956 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 55 | | 1.1300 | 2.1050 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 56 | | 1.1255 | 2.1025 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 57 | | 1.1005 | 2.1188 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 58 | | 1.1002 | 2.1261 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 59 | | 1.0806 | 2.1318 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 60 | | 1.0869 | 2.1425 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 61 | | 1.0768 | 2.1492 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 62 | | 1.0681 | 2.1473 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 63 | | 1.0594 | 2.1440 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 64 | | 1.0411 | 2.1461 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 65 | | 1.0342 | 2.1727 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 66 | | 1.0306 | 2.1677 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 67 | | 1.0163 | 2.1753 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 68 | | 1.0139 | 2.1767 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 69 | | 1.0036 | 2.1929 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 70 | | 1.0049 | 2.1902 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 71 | | 0.9947 | 2.1936 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 72 | | 0.9803 | 2.2084 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 73 | | 0.9791 | 2.2106 | 19.3144 | 4.5455 | 17.1405 | 17.1405 | 19.0 | 74 | | 0.9655 | 2.2172 | 20.8674 | 4.4444 | 18.7398 | 18.7398 | 19.0 | 75 | | 0.9640 | 2.2215 | 22.6817 | 4.4444 | 20.5540 | 20.5540 | 19.0 | 76 | | 0.9456 | 2.2341 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 77 | | 0.9396 | 2.2414 | 23.0705 | 8.8889 | 20.9428 | 20.9428 | 19.0 | 78 | | 0.9335 | 2.2455 | 18.9444 | 4.4444 | 16.8167 | 16.8167 | 19.0 | 79 | | 0.9261 | 2.2560 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 80 | | 0.9075 | 2.2642 | 23.1997 | 11.1111 | 21.0720 | 21.0720 | 19.0 | 81 | | 0.9023 | 2.2763 | 22.9951 | 8.8889 | 20.8674 | 20.8674 | 19.0 | 82 | | 0.9044 | 2.2782 | 21.0720 | 8.8889 | 18.9444 | 18.9444 | 19.0 | 83 | | 0.8961 | 2.2812 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 84 | | 0.8813 | 2.2794 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 85 | | 0.8731 | 2.2886 | 21.0720 | 8.8889 | 18.9444 | 18.9444 | 19.0 | 86 | | 0.8751 | 2.2930 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 87 | | 0.8652 | 2.3024 | 25.2256 | 6.8182 | 23.0517 | 23.0517 | 19.0 | 88 | | 0.8605 | 2.3131 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 89 | | 0.8571 | 2.3070 | 22.9951 | 8.8889 | 20.8674 | 20.8674 | 19.0 | 90 | | 0.8473 | 2.3123 | 25.1227 | 11.1111 | 22.9951 | 22.9951 | 19.0 | 91 | | 0.8456 | 2.3272 | 25.1227 | 11.1111 | 22.9951 | 22.9951 | 19.0 | 92 | | 0.8329 | 2.3427 | 26.9370 | 11.1111 | 24.8093 | 24.8093 | 19.0 | 93 | | 0.8294 | 2.3419 | 25.1982 | 11.1111 | 23.0705 | 23.0705 | 19.0 | 94 | | 0.8243 | 2.3507 | 25.1982 | 11.1111 | 23.0705 | 23.0705 | 19.0 | 95 | | 0.8132 | 2.3600 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 96 | | 0.8153 | 2.3501 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 97 | | 0.8005 | 2.3579 | 20.8778 | 2.2727 | 18.7039 | 18.7039 | 19.0 | 98 | | 0.7883 | 2.3752 | 24.8093 | 8.8889 | 22.6817 | 22.6817 | 19.0 | 99 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
tokeron/alephbert-finetuned-metaphor-detection
tokeron
2022-07-20T09:21:13Z
13
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "he", "dataset:Piyutim", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-20T07:06:57Z
--- license: afl-3.0 language: - he tags: - token-classification datasets: - Piyutim model: - onlplab/alephbert-base metrics: - f1 widget: - text: "נשבר לי הגב" example_title: "Broken back" - text: "ש לו לב זהב" example_title: "Golden heart" --- This is a token-classification model. This model is AlephBert fine-tuned on detecting metaphors from Hebrew Piyutim model-index: - name: tokeron/alephbert-finetuned-metaphor-detection results: [] # model This model fine-tunes onlplab/alephbert-base model on Piyutim dataset. ### About Us Created by Michael Toker in collaboration with Yonatan Belinkov, Benny Kornfeld, Oren Mishali, and Ophir Münz-Manor. For more cooperation, please contact email: tok@campus.technion.ac.il
workRL/DQNTest-LunarLander-v2
workRL
2022-07-20T09:05:04Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-20T09:04:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -95.66 +/- 35.41 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
workRL/DQN-LunarLander-v2
workRL
2022-07-20T08:59:39Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-20T08:41:15Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -116.80 +/- 16.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **DQN** Agent playing **LunarLander-v2** This is a trained model of a **DQN** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
knkarthick/bart-large-xsum-samsum
knkarthick
2022-07-20T08:29:15Z
49
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "seq2seq", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: "Hannah: Hey, do you have Betty's number?\nAmanda: Lemme check\nAmanda: Sorry,\ \ can't find it.\nAmanda: Ask Larry\nAmanda: He called her last time we were at\ \ the park together\nHannah: I don't know him well\nAmanda: Don't be shy, he's\ \ very nice\nHannah: If you say so..\nHannah: I'd rather you texted him\nAmanda:\ \ Just text him \U0001F642\nHannah: Urgh.. Alright\nHannah: Bye\nAmanda: Bye bye\n" model-index: - name: bart-large-xsum-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: 'SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization' type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 54.3921 - name: Validation ROUGE-2 type: rouge-2 value: 29.8078 - name: Validation ROUGE-L type: rouge-l value: 45.1543 - name: Test ROUGE-1 type: rouge-1 value: 53.3059 - name: Test ROUGE-2 type: rouge-2 value: 28.355 - name: Test ROUGE-L type: rouge-l value: 44.0953 - task: type: summarization name: Summarization dataset: name: samsum type: samsum config: samsum split: train metrics: - name: ROUGE-1 type: rouge value: 46.2492 verified: true - name: ROUGE-2 type: rouge value: 21.346 verified: true - name: ROUGE-L type: rouge value: 37.2787 verified: true - name: ROUGE-LSUM type: rouge value: 42.1317 verified: true - name: loss type: loss value: 1.6859958171844482 verified: true - name: gen_len type: gen_len value: 23.7103 verified: true --- ## `bart-large-xsum-samsum` This model was obtained by fine-tuning `facebook/bart-large-xsum` on [Samsum](https://huggingface.co/datasets/samsum) dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="knkarthick/bart-large-xsum-samsum") conversation = '''Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye ''' summarizer(conversation) ```
knkarthick/meeting-summary-samsum
knkarthick
2022-07-20T08:28:58Z
43
8
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "seq2seq", "summarization", "en", "dataset:samsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en tags: - bart - seq2seq - summarization license: apache-2.0 datasets: - samsum widget: - text: | Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye model-index: - name: bart-large-xsum-samsum results: - task: name: Abstractive Text Summarization type: abstractive-text-summarization dataset: name: "SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization" type: samsum metrics: - name: Validation ROUGE-1 type: rouge-1 value: 54.3921 - name: Validation ROUGE-2 type: rouge-2 value: 29.8078 - name: Validation ROUGE-L type: rouge-l value: 45.1543 - name: Test ROUGE-1 type: rouge-1 value: 53.3059 - name: Test ROUGE-2 type: rouge-2 value: 28.355 - name: Test ROUGE-L type: rouge-l value: 44.0953 --- ## `bart-large-xsum-samsum` This model was obtained by fine-tuning `facebook/bart-large-xsum` on [Samsum](https://huggingface.co/datasets/samsum) dataset. ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="knkarthick/bart-large-xsum-samsum") conversation = '''Hannah: Hey, do you have Betty's number? Amanda: Lemme check Amanda: Sorry, can't find it. Amanda: Ask Larry Amanda: He called her last time we were at the park together Hannah: I don't know him well Amanda: Don't be shy, he's very nice Hannah: If you say so.. Hannah: I'd rather you texted him Amanda: Just text him 🙂 Hannah: Urgh.. Alright Hannah: Bye Amanda: Bye bye ''' summarizer(conversation) ```
notmaineyy/distilbert-base-uncased-finetuned-ner
notmaineyy
2022-07-20T08:02:41Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-20T07:55:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: notmaineyy/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # notmaineyy/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0344 - Validation Loss: 0.0633 - Train Precision: 0.9181 - Train Recall: 0.9322 - Train F1: 0.9251 - Train Accuracy: 0.9823 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.2048 | 0.0749 | 0.8898 | 0.9129 | 0.9012 | 0.9784 | 0 | | 0.0556 | 0.0621 | 0.9150 | 0.9300 | 0.9224 | 0.9819 | 1 | | 0.0344 | 0.0633 | 0.9181 | 0.9322 | 0.9251 | 0.9823 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
auriolar/testpyramidsrnd
auriolar
2022-07-20T07:55:41Z
3
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-20T07:55:36Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: auriolar/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
FAICAM/distilbert-base-uncased-finetuned-cola
FAICAM
2022-07-20T07:54:29Z
5
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "text-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-20T07:47:13Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: FAICAM/distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FAICAM/distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1871 - Validation Loss: 0.4889 - Train Matthews Correlation: 0.5644 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2670, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Matthews Correlation | Epoch | |:----------:|:---------------:|:--------------------------:|:-----:| | 0.5111 | 0.5099 | 0.4325 | 0 | | 0.3227 | 0.4561 | 0.5453 | 1 | | 0.1871 | 0.4889 | 0.5644 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
wenkai-li/distilbert-base-uncased-finetuned-wikiandmark_epoch20
wenkai-li
2022-07-20T07:33:19Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-20T02:43:58Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-wikiandmark_epoch20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-wikiandmark_epoch20 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0561 - Accuracy: 0.9944 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0224 | 1.0 | 1859 | 0.0277 | 0.9919 | | 0.0103 | 2.0 | 3718 | 0.0298 | 0.9925 | | 0.0047 | 3.0 | 5577 | 0.0429 | 0.9924 | | 0.0038 | 4.0 | 7436 | 0.0569 | 0.9922 | | 0.0019 | 5.0 | 9295 | 0.0554 | 0.9936 | | 0.0028 | 6.0 | 11154 | 0.0575 | 0.9928 | | 0.002 | 7.0 | 13013 | 0.0544 | 0.9926 | | 0.0017 | 8.0 | 14872 | 0.0553 | 0.9935 | | 0.001 | 9.0 | 16731 | 0.0498 | 0.9924 | | 0.0001 | 10.0 | 18590 | 0.0398 | 0.9934 | | 0.0 | 11.0 | 20449 | 0.0617 | 0.9935 | | 0.0002 | 12.0 | 22308 | 0.0561 | 0.9944 | | 0.0002 | 13.0 | 24167 | 0.0755 | 0.9934 | | 0.0 | 14.0 | 26026 | 0.0592 | 0.9941 | | 0.0 | 15.0 | 27885 | 0.0572 | 0.9939 | | 0.0 | 16.0 | 29744 | 0.0563 | 0.9941 | | 0.0 | 17.0 | 31603 | 0.0587 | 0.9936 | | 0.0005 | 18.0 | 33462 | 0.0673 | 0.9937 | | 0.0 | 19.0 | 35321 | 0.0651 | 0.9933 | | 0.0 | 20.0 | 37180 | 0.0683 | 0.9936 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
RajSang/ppo-LunarLander-v2
RajSang
2022-07-20T07:06:10Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-20T07:05:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 182.38 +/- 36.42 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bigmorning/distilgpt_oscarth_0040
bigmorning
2022-07-20T03:34:29Z
5
0
transformers
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-07-20T03:34:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilgpt_oscarth_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt_oscarth_0040 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.0004 - Validation Loss: 2.8864 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 5.6021 | 4.5759 | 0 | | 4.4536 | 4.1235 | 1 | | 4.1386 | 3.9013 | 2 | | 3.9546 | 3.7563 | 3 | | 3.8255 | 3.6477 | 4 | | 3.7271 | 3.5617 | 5 | | 3.6488 | 3.4936 | 6 | | 3.5844 | 3.4379 | 7 | | 3.5301 | 3.3891 | 8 | | 3.4833 | 3.3448 | 9 | | 3.4427 | 3.3098 | 10 | | 3.4068 | 3.2750 | 11 | | 3.3749 | 3.2425 | 12 | | 3.3462 | 3.2211 | 13 | | 3.3202 | 3.1941 | 14 | | 3.2964 | 3.1720 | 15 | | 3.2749 | 3.1512 | 16 | | 3.2548 | 3.1322 | 17 | | 3.2363 | 3.1141 | 18 | | 3.2188 | 3.0982 | 19 | | 3.2025 | 3.0818 | 20 | | 3.1871 | 3.0678 | 21 | | 3.1724 | 3.0533 | 22 | | 3.1583 | 3.0376 | 23 | | 3.1446 | 3.0256 | 24 | | 3.1318 | 3.0122 | 25 | | 3.1195 | 3.0016 | 26 | | 3.1079 | 2.9901 | 27 | | 3.0968 | 2.9826 | 28 | | 3.0863 | 2.9711 | 29 | | 3.0761 | 2.9593 | 30 | | 3.0665 | 2.9514 | 31 | | 3.0572 | 2.9432 | 32 | | 3.0483 | 2.9347 | 33 | | 3.0396 | 2.9250 | 34 | | 3.0313 | 2.9160 | 35 | | 3.0232 | 2.9095 | 36 | | 3.0153 | 2.9028 | 37 | | 3.0078 | 2.8949 | 38 | | 3.0004 | 2.8864 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Siyong/MT_RN_LM
Siyong
2022-07-20T03:25:42Z
5
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-20T01:38:19Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: run1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # run1 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6666 - Wer: 0.6375 - Cer: 0.3170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.0564 | 2.36 | 2000 | 2.3456 | 0.9628 | 0.5549 | | 0.5071 | 4.73 | 4000 | 2.0652 | 0.9071 | 0.5115 | | 0.3952 | 7.09 | 6000 | 2.3649 | 0.9108 | 0.4628 | | 0.3367 | 9.46 | 8000 | 1.7615 | 0.8253 | 0.4348 | | 0.2765 | 11.82 | 10000 | 1.6151 | 0.7937 | 0.4087 | | 0.2493 | 14.18 | 12000 | 1.4976 | 0.7881 | 0.3905 | | 0.2318 | 16.55 | 14000 | 1.6731 | 0.8160 | 0.3925 | | 0.2074 | 18.91 | 16000 | 1.5822 | 0.7658 | 0.3913 | | 0.1825 | 21.28 | 18000 | 1.5442 | 0.7361 | 0.3704 | | 0.1824 | 23.64 | 20000 | 1.5988 | 0.7621 | 0.3711 | | 0.1699 | 26.0 | 22000 | 1.4261 | 0.7119 | 0.3490 | | 0.158 | 28.37 | 24000 | 1.7482 | 0.7658 | 0.3648 | | 0.1385 | 30.73 | 26000 | 1.4103 | 0.6784 | 0.3348 | | 0.1199 | 33.1 | 28000 | 1.5214 | 0.6636 | 0.3273 | | 0.116 | 35.46 | 30000 | 1.4288 | 0.7212 | 0.3486 | | 0.1071 | 37.83 | 32000 | 1.5344 | 0.7138 | 0.3411 | | 0.1007 | 40.19 | 34000 | 1.4501 | 0.6691 | 0.3237 | | 0.0943 | 42.55 | 36000 | 1.5367 | 0.6859 | 0.3265 | | 0.0844 | 44.92 | 38000 | 1.5321 | 0.6599 | 0.3273 | | 0.0762 | 47.28 | 40000 | 1.6721 | 0.6264 | 0.3142 | | 0.0778 | 49.65 | 42000 | 1.6666 | 0.6375 | 0.3170 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.0+cu113 - Datasets 2.0.0 - Tokenizers 0.12.1
Willaim/Bl00m
Willaim
2022-07-20T02:53:53Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2022-07-20T02:32:19Z
--- license: bigscience-bloom-rail-1.0 --- import requests API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom" headers = {"Authorization": "Bearer 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"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Can you please let us know more details about your ", })
commanderstrife/bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner
commanderstrife
2022-07-20T02:51:04Z
17
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:bc2gm_corpus", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-20T02:00:12Z
--- license: mit tags: - generated_from_trainer datasets: - bc2gm_corpus metrics: - precision - recall - f1 - accuracy model-index: - name: bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: bc2gm_corpus type: bc2gm_corpus args: bc2gm_corpus metrics: - name: Precision type: precision value: 0.7853881278538812 - name: Recall type: recall value: 0.8158102766798419 - name: F1 type: f1 value: 0.8003101977510663 - name: Accuracy type: accuracy value: 0.9758965601366187 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bc2gm_corpus-Bio_ClinicalBERT-finetuned-ner This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the bc2gm_corpus dataset. It achieves the following results on the evaluation set: - Loss: 0.1505 - Precision: 0.7854 - Recall: 0.8158 - F1: 0.8003 - Accuracy: 0.9759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0981 | 1.0 | 782 | 0.0712 | 0.7228 | 0.7948 | 0.7571 | 0.9724 | | 0.0509 | 2.0 | 1564 | 0.0687 | 0.7472 | 0.8199 | 0.7818 | 0.9746 | | 0.0121 | 3.0 | 2346 | 0.0740 | 0.7725 | 0.8011 | 0.7866 | 0.9747 | | 0.0001 | 4.0 | 3128 | 0.1009 | 0.7618 | 0.8251 | 0.7922 | 0.9741 | | 0.0042 | 5.0 | 3910 | 0.1106 | 0.7757 | 0.8185 | 0.7965 | 0.9754 | | 0.0015 | 6.0 | 4692 | 0.1182 | 0.7812 | 0.8111 | 0.7958 | 0.9758 | | 0.0001 | 7.0 | 5474 | 0.1283 | 0.7693 | 0.8275 | 0.7973 | 0.9753 | | 0.0072 | 8.0 | 6256 | 0.1376 | 0.7863 | 0.8158 | 0.8008 | 0.9762 | | 0.0045 | 9.0 | 7038 | 0.1468 | 0.7856 | 0.8180 | 0.8015 | 0.9761 | | 0.0 | 10.0 | 7820 | 0.1505 | 0.7854 | 0.8158 | 0.8003 | 0.9759 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Sily/ppo-LunarLander-v2
Sily
2022-07-20T02:49:00Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-20T02:48:20Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 162.88 +/- 38.54 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
luomingshuang/icefall_asr_tedlium3_transducer_stateless
luomingshuang
2022-07-20T02:44:48Z
0
0
null
[ "region:us" ]
null
2022-03-03T02:56:02Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/233 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604. # Pre-trained Transducer-Stateless models for the TEDLium3 dataset with icefall. The model was trained on full [TEDLium3](https://www.openslr.org/51) with the scripts in [icefall](https://github.com/k2-fsa/icefall). ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/tedlium3/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1,2,3" ./transducer_stateless/train.py \ --world-size 4 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir transducer_stateless/exp \ --max-duration 300 ``` ## Evaluation results The decoding results (WER%) on TEDLium3 (dev and test) are listed below, we got this result by averaging models from epoch 19 to 29. The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 7.19 | 6.70 | --epoch 29, --avg 11, --max-duration 100 | | beam search (beam size 4) | 7.02 | 6.36 | --epoch 29, --avg 11, --max-duration 100 | | modified beam search (beam size 4) | 6.91 | 6.33 | --epoch 29, --avg 11, --max-duration 100 |
bigmorning/distilbert_oscarth_0040
bigmorning
2022-07-20T01:27:25Z
3
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-20T01:27:11Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: distilbert_oscarth_0040 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_oscarth_0040 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.2890 - Validation Loss: 1.2296 - Epoch: 39 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1327 | 2.9983 | 0 | | 2.7813 | 2.4562 | 1 | | 2.4194 | 2.2066 | 2 | | 2.2231 | 2.0562 | 3 | | 2.0894 | 1.9450 | 4 | | 1.9905 | 1.8621 | 5 | | 1.9148 | 1.7941 | 6 | | 1.8508 | 1.7363 | 7 | | 1.7976 | 1.6909 | 8 | | 1.7509 | 1.6488 | 9 | | 1.7126 | 1.6124 | 10 | | 1.6764 | 1.5835 | 11 | | 1.6450 | 1.5521 | 12 | | 1.6175 | 1.5282 | 13 | | 1.5919 | 1.5045 | 14 | | 1.5679 | 1.4833 | 15 | | 1.5476 | 1.4627 | 16 | | 1.5271 | 1.4498 | 17 | | 1.5098 | 1.4270 | 18 | | 1.4909 | 1.4161 | 19 | | 1.4760 | 1.3995 | 20 | | 1.4609 | 1.3864 | 21 | | 1.4475 | 1.3717 | 22 | | 1.4333 | 1.3590 | 23 | | 1.4203 | 1.3478 | 24 | | 1.4093 | 1.3403 | 25 | | 1.3980 | 1.3296 | 26 | | 1.3875 | 1.3176 | 27 | | 1.3773 | 1.3094 | 28 | | 1.3674 | 1.3011 | 29 | | 1.3579 | 1.2920 | 30 | | 1.3497 | 1.2826 | 31 | | 1.3400 | 1.2764 | 32 | | 1.3326 | 1.2694 | 33 | | 1.3236 | 1.2635 | 34 | | 1.3169 | 1.2536 | 35 | | 1.3096 | 1.2477 | 36 | | 1.3024 | 1.2408 | 37 | | 1.2957 | 1.2364 | 38 | | 1.2890 | 1.2296 | 39 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
steven123/Check_Aligned_Teeth
steven123
2022-07-20T00:59:05Z
57
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-07-20T00:58:54Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: Check_Aligned_Teeth results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.9473684430122375 --- # Check_Aligned_Teeth Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### Aligned Teeth ![Aligned Teeth](images/Aligned_Teeth.jpg) #### Crooked Teeth ![Crooked Teeth](images/Crooked_Teeth.jpg)
frgfm/cspdarknet53_mish
frgfm
2022-07-20T00:57:54Z
31
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1911.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # CSP-Darknet-53 Mish model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 Mish architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture and replace activations with Mish. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53_mish").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/cspdarknet53
frgfm
2022-07-20T00:57:40Z
30
0
transformers
[ "transformers", "pytorch", "image-classification", "dataset:frgfm/imagenette", "arxiv:1911.11929", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch datasets: - frgfm/imagenette --- # CSP-Darknet-53 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The CSP-Darknet-53 architecture was introduced in [this paper](https://arxiv.org/pdf/1911.11929.pdf). ## Model description The core idea of the author is to change the convolutional stage by adding cross stage partial blocks in the architecture. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/cspdarknet53").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1911-11929, author = {Chien{-}Yao Wang and Hong{-}Yuan Mark Liao and I{-}Hau Yeh and Yueh{-}Hua Wu and Ping{-}Yang Chen and Jun{-}Wei Hsieh}, title = {CSPNet: {A} New Backbone that can Enhance Learning Capability of {CNN}}, journal = {CoRR}, volume = {abs/1911.11929}, year = {2019}, url = {http://arxiv.org/abs/1911.11929}, eprinttype = {arXiv}, eprint = {1911.11929}, timestamp = {Tue, 03 Dec 2019 20:41:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1911-11929.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/resnet34
frgfm
2022-07-20T00:57:04Z
47
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ResNet-34 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/resnet18
frgfm
2022-07-20T00:56:53Z
40
1
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ResNet-18 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ResNet architecture was introduced in [this paper](https://arxiv.org/pdf/1512.03385.pdf). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/resnet18").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/repvgg_a1
frgfm
2022-07-20T00:56:06Z
35
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # RepVGG-A1 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a1").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/repvgg_a0
frgfm
2022-07-20T00:55:54Z
52
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2101.03697", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # RepVGG-A0 model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The RepVGG architecture was introduced in [this paper](https://arxiv.org/pdf/2101.03697.pdf). ## Model description The core idea of the author is to distinguish the training architecture (with shortcut connections), from the inference one (a pure highway network). By designing the residual block, the training architecture can be reparametrized into a simple sequence of convolutions and non-linear activations. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/repvgg_a0").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2101-03697, author = {Xiaohan Ding and Xiangyu Zhang and Ningning Ma and Jungong Han and Guiguang Ding and Jian Sun}, title = {RepVGG: Making VGG-style ConvNets Great Again}, journal = {CoRR}, volume = {abs/2101.03697}, year = {2021}, url = {https://arxiv.org/abs/2101.03697}, eprinttype = {arXiv}, eprint = {2101.03697}, timestamp = {Tue, 09 Feb 2021 15:29:34 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2101-03697.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/rexnet2_0x
frgfm
2022-07-20T00:55:41Z
32
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-2.0x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet2_0x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/rexnet1_5x
frgfm
2022-07-20T00:54:55Z
63
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.5x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_5x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/rexnet1_3x
frgfm
2022-07-20T00:54:33Z
31
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.3x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_3x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
frgfm/rexnet1_0x
frgfm
2022-07-20T00:53:57Z
40
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:frgfm/imagenette", "arxiv:2007.00992", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - frgfm/imagenette --- # ReXNet-1.0x model Pretrained on [ImageNette](https://github.com/fastai/imagenette). The ReXNet architecture was introduced in [this paper](https://arxiv.org/pdf/2007.00992.pdf). ## Model description The core idea of the author is to add a customized Squeeze-Excitation layer in the residual blocks that will prevent channel redundancy. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install Holocron. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pylocron/) as follows: ```shell pip install pylocron ``` or using [conda](https://anaconda.org/frgfm/pylocron): ```shell conda install -c frgfm pylocron ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/frgfm/Holocron.git pip install -e Holocron/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from holocron.models import model_from_hf_hub model = model_from_hf_hub("frgfm/rexnet1_0x").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-2007-00992, author = {Dongyoon Han and Sangdoo Yun and Byeongho Heo and Young Joon Yoo}, title = {ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, journal = {CoRR}, volume = {abs/2007.00992}, year = {2020}, url = {https://arxiv.org/abs/2007.00992}, eprinttype = {arXiv}, eprint = {2007.00992}, timestamp = {Mon, 06 Jul 2020 15:26:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2007-00992.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{Fernandez_Holocron_2020, author = {Fernandez, François-Guillaume}, month = {5}, title = {{Holocron}}, url = {https://github.com/frgfm/Holocron}, year = {2020} } ```
aalogan/bert-ner-nsm1
aalogan
2022-07-19T22:45:43Z
3
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-19T14:00:30Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: aalogan/bert-ner-nsm1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aalogan/bert-ner-nsm1 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0366 - Validation Loss: 0.1607 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2694, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.4732 | 0.1911 | 0 | | 0.1551 | 0.1756 | 1 | | 0.0931 | 0.1747 | 2 | | 0.0679 | 0.1732 | 3 | | 0.0477 | 0.1603 | 4 | | 0.0366 | 0.1607 | 5 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.8.0 - Datasets 2.1.0 - Tokenizers 0.12.1
jonaskoenig/topic_classification_03
jonaskoenig
2022-07-19T20:57:39Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T19:33:22Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: topic_classification_03 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # topic_classification_03 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0459 - Train Sparse Categorical Accuracy: 0.6535 - Validation Loss: 1.1181 - Validation Sparse Categorical Accuracy: 0.6354 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 1.2710 | 0.5838 | 1.1683 | 0.6156 | 0 | | 1.1546 | 0.6193 | 1.1376 | 0.6259 | 1 | | 1.1163 | 0.6314 | 1.1247 | 0.6292 | 2 | | 1.0888 | 0.6400 | 1.1253 | 0.6323 | 3 | | 1.0662 | 0.6473 | 1.1182 | 0.6344 | 4 | | 1.0459 | 0.6535 | 1.1181 | 0.6354 | 5 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
t-bank-ai/ruDialoGPT-small
t-bank-ai
2022-07-19T20:27:35Z
1,187
5
transformers
[ "transformers", "pytorch", "gpt2", "conversational", "text-generation", "ru", "arxiv:2001.09977", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-12T14:24:39Z
--- license: mit pipeline_tag: text-generation widget: - text: "@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@" example_title: "how r u" - text: "@@ПЕРВЫЙ@@ что ты делал на выходных? @@ВТОРОЙ@@" example_title: "wyd" language: - ru tags: - conversational --- This generation model is based on [sberbank-ai/rugpt3small_based_on_gpt2](https://huggingface.co/sberbank-ai/rugpt3small_based_on_gpt2). It's trained on large corpus of dialog data and can be used for buildning generative conversational agents The model was trained with context size 3 On a private validation set we calculated metrics introduced in [this paper](https://arxiv.org/pdf/2001.09977.pdf): - Sensibleness: Crowdsourcers were asked whether model's response makes sense given the context - Specificity: Crowdsourcers were asked whether model's response is specific for given context, in other words we don't want our model to give general and boring responses - SSA which is the average of two metrics above (Sensibleness Specificity Average) | | sensibleness | specificity | SSA | |:----------------------------------------------------|---------------:|--------------:|------:| | [tinkoff-ai/ruDialoGPT-small](https://huggingface.co/tinkoff-ai/ruDialoGPT-small) | 0.64 | 0.5 | 0.57 | | [tinkoff-ai/ruDialoGPT-medium](https://huggingface.co/tinkoff-ai/ruDialoGPT-medium) | 0.78 | 0.69 | 0.735 | How to use: ```python import torch from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained('tinkoff-ai/ruDialoGPT-small') model = AutoModelWithLMHead.from_pretrained('tinkoff-ai/ruDialoGPT-small') inputs = tokenizer('@@ПЕРВЫЙ@@ привет @@ВТОРОЙ@@ привет @@ПЕРВЫЙ@@ как дела? @@ВТОРОЙ@@', return_tensors='pt') generated_token_ids = model.generate( **inputs, top_k=10, top_p=0.95, num_beams=3, num_return_sequences=3, do_sample=True, no_repeat_ngram_size=2, temperature=1.2, repetition_penalty=1.2, length_penalty=1.0, eos_token_id=50257, max_new_tokens=40 ) context_with_response = [tokenizer.decode(sample_token_ids) for sample_token_ids in generated_token_ids] context_with_response ```
QuickSilver007/MLAgents-Pyramids_v2
QuickSilver007
2022-07-19T19:59:09Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-19T19:59:03Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: QuickSilver007/MLAgents-Pyramids_v2 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
kamangir/image-classifier
kamangir
2022-07-19T18:45:03Z
0
0
tf-keras
[ "tf-keras", "license:cc", "region:us" ]
null
2022-07-12T19:36:45Z
--- license: cc --- # Image Classifier `image-classifier` is an extendable TensorFlow image classifier w/ a Bash cli and Hugging Face integration - to see the list of `image-classifier` commands complete [installation](#Installation) and type in: ``` image_classifier ? ``` ## Installation To install `image-classifier` first [install and configure awesome-bash-cli](https://github.com/kamangir/awesome-bash-cli) then run: ``` abcli huggingface clone image-classifier ``` To see the list of `image-classifier` saved models type in ``` image_classifier list ``` You should see the following items: 1. [fashion-mnist](#fashion-mnist) 1. intel-image-classifier 🚧 1. vegetable-classifier 🚧 ## fashion-mnist ![image](./saved_model/fashion-mnist/image_classifier/prediction/00000.jpg) `fashion-mnist` is an `image-classifier` trained on [Fashion-MNIST](https://github.com/zalandoresearch/fashion-mnist). To retrain `fashion-mnist` type in: ``` abcli select fashion_mnist train abcli upload image_classifier list . browser=1,model=object ``` You should now see the structure of the network (left) and the [content of the model](https://github.com/kamangir/browser) (right). | ![image](./abcli/assets/fashion_mnist_list.png) | ![image](./abcli/assets/fashion_mnist_browsed.png) | |---|---| You can save this model under a new name by typing in: ``` fashion_mnist save new_name_1 ``` / END
bigmorning/oscarth_54321
bigmorning
2022-07-19T16:15:29Z
4
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-19T15:49:28Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: oscarth_54321 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # oscarth_54321 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.5784 - Validation Loss: 4.5266 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.6206 | 4.5583 | 0 | | 4.5784 | 4.5266 | 1 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Rocketknight1/bert-base-cased-finetuned-wikitext2
Rocketknight1
2022-07-19T14:14:15Z
6
0
transformers
[ "transformers", "tf", "tensorboard", "bert", "fill-mask", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: Rocketknight1/bert-base-cased-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rocketknight1/bert-base-cased-finetuned-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 6.3982 - Validation Loss: 6.2664 - Epoch: 1 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.0679 | 6.4768 | 0 | | 6.3982 | 6.2664 | 1 | ### Framework versions - Transformers 4.21.0.dev0 - TensorFlow 2.9.1 - Datasets 2.3.3.dev0 - Tokenizers 0.11.0
Tahsin-Mayeesha/t5-end2end-questions-generation
Tahsin-Mayeesha
2022-07-19T13:52:43Z
7
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "dataset:squad_modified_for_t5_qg", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-19T11:58:20Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_modified_for_t5_qg model-index: - name: t5-end2end-questions-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-end2end-questions-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the squad_modified_for_t5_qg dataset. It achieves the following results on the evaluation set: - eval_loss: 1.6143 - eval_runtime: 96.0898 - eval_samples_per_second: 21.511 - eval_steps_per_second: 5.38 - epoch: 2.03 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Eleven/bart-large-mnli-finetuned-emotion
Eleven
2022-07-19T13:17:53Z
5
1
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T19:19:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: bart-large-mnli-finetuned-emotion results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-mnli-finetuned-emotion This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Tokenizers 0.12.1
saadob12/t5_C2T_autochart
saadob12
2022-07-19T13:03:11Z
18
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2108.06897", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-08T15:50:39Z
# Training Data **Autochart:** Zhu, J., Ran, J., Lee, R. K. W., Choo, K., & Li, Z. (2021). AutoChart: A Dataset for Chart-to-Text Generation Task. arXiv preprint arXiv:2108.06897. **Gitlab Link for the data**: https://gitlab.com/bottle_shop/snlg/chart/autochart Train split for this model: Train 8000, Validation 1297, Test 1296 # Example use: Append ```C2T: ``` before every input to the model ``` tokenizer = AutoTokenizer.from_pretrained(saadob12/t5_C2T_autochart) model = AutoModelForSeq2SeqLM.from_pretrained(saadob12/t5_C2T_autochart) data = 'Trade statistics of Qatar with developing economies in North Africa bar_chart Year-Trade with economies of Middle East & North Africa(%)(Merchandise exports,Merchandise imports) x-y1-y2 values 2000 0.591869968616745 3.59339030672154 , 2001 0.53415012207203 3.25371165779341 , 2002 3.07769793440318 1.672796364224 , 2003 0.6932513078579471 1.62522475477827 , 2004 1.17635914189321 1.80540331396412' prefix = 'C2T: ' tokens = tokenizer.encode(prefix + data, truncation=True, padding='max_length', return_tensors='pt') generated = model.generate(tokens, num_beams=4, max_length=256) tgt_text = tokenizer.decode(generated[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) summary = str(tgt_text).strip('[]""') #Summary: This barchart shows the number of trade statistics of qatar with developing economies in north africa from 2000 through 2004. The unit of measurement in this graph is Trade with economies of Middle East & North Africa(%) as shown on the y-axis. The first group data denotes the change of Merchandise exports. There is a go up and down trend of the number. The peak of the number is found in 2002 and the lowest number is found in 2001. The changes in the number may be related to the conuntry's national policies. The second group data denotes the change of Merchandise imports. There is a go up and down trend of the number. The number in 2000 being the peak, and the lowest number is found in 2003. The changes in the number may be related to the conuntry's national policies. ``` # Limitations You can use the model to generate summaries of data files. Works well for general statistics like the following: | Year | Children born per woman | |:---:|:---:| | 2018 | 1.14 | | 2017 | 1.45 | | 2016 | 1.49 | | 2015 | 1.54 | | 2014 | 1.6 | | 2013 | 1.65 | May or may not generate an **okay** summary at best for the following kind of data: | Model | BLEU score | BLEURT| |:---:|:---:|:---:| | t5-small | 25.4 | -0.11 | | t5-base | 28.2 | 0.12 | | t5-large | 35.4 | 0.34 | # Citation Kindly cite my work. Thank you. ``` @misc{obaid ul islam_2022, title={saadob12/t5_C2T_autochart Hugging Face}, url={https://huggingface.co/saadob12/t5_C2T_autochart}, journal={Huggingface.co}, author={Obaid ul Islam, Saad}, year={2022} } ```
raisinbl/distilbert-base-uncased-finetuned-squad_2_512_1
raisinbl
2022-07-19T12:38:16Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T16:03:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad_2_512_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad_2_512_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.3225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2681 | 1.0 | 4079 | 1.2434 | | 1.0223 | 2.0 | 8158 | 1.3153 | | 0.865 | 3.0 | 12237 | 1.3225 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
spacestar1705/testpyramidsrnd
spacestar1705
2022-07-19T12:20:07Z
4
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-07-19T12:20:02Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: spacestar1705/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
luomingshuang/icefall_asr_aidatatang-200zh_pruned_transducer_stateless2
luomingshuang
2022-07-19T11:56:33Z
0
0
null
[ "region:us" ]
null
2022-05-16T08:24:41Z
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/355 And the SpecAugment codes from this PR https://github.com/lhotse-speech/lhotse/pull/604. # Pre-trained Transducer-Stateless2 models for the Aidatatang_200zh dataset with icefall. The model was trained on full [Aidatatang_200zh](https://www.openslr.org/62) with the scripts in [icefall](https://github.com/k2-fsa/icefall) based on the latest version k2. ## Training procedure The main repositories are list below, we will update the training and decoding scripts with the update of version. k2: https://github.com/k2-fsa/k2 icefall: https://github.com/k2-fsa/icefall lhotse: https://github.com/lhotse-speech/lhotse * Install k2 and lhotse, k2 installation guide refers to https://k2.readthedocs.io/en/latest/installation/index.html, lhotse refers to https://lhotse.readthedocs.io/en/latest/getting-started.html#installation. I think the latest version would be ok. And please also install the requirements listed in icefall. * Clone icefall(https://github.com/k2-fsa/icefall) and check to the commit showed above. ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` * Preparing data. ``` cd egs/aidatatang_200zh/ASR bash ./prepare.sh ``` * Training ``` export CUDA_VISIBLE_DEVICES="0,1" ./pruned_transducer_stateless2/train.py \ --world-size 2 \ --num-epochs 30 \ --start-epoch 0 \ --exp-dir pruned_transducer_stateless2/exp \ --lang-dir data/lang_char \ --max-duration 250 ``` ## Evaluation results The decoding results (WER%) on Aidatatang_200zh(dev and test) are listed below, we got this result by averaging models from epoch 11 to 29. The WERs are | | dev | test | comment | |------------------------------------|------------|------------|------------------------------------------| | greedy search | 5.53 | 6.59 | --epoch 29, --avg 19, --max-duration 100 | | modified beam search (beam size 4) | 5.28 | 6.32 | --epoch 29, --avg 19, --max-duration 100 | | fast beam search (set as default) | 5.29 | 6.33 | --epoch 29, --avg 19, --max-duration 1500|
kabelomalapane/Nso-En_update
kabelomalapane
2022-07-19T11:40:40Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "translation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-07-19T11:31:18Z
--- license: apache-2.0 tags: - translation - generated_from_trainer metrics: - bleu model-index: - name: Nso-En_update results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Nso-En_update This model is a fine-tuned version of [kabelomalapane/En-Nso](https://huggingface.co/kabelomalapane/En-Nso) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9219 - Bleu: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:----:| | No log | 1.0 | 108 | 2.0785 | 0.0 | | No log | 2.0 | 216 | 1.9015 | 0.0 | | No log | 3.0 | 324 | 1.8730 | 0.0 | | No log | 4.0 | 432 | 1.8626 | 0.0 | | 2.1461 | 5.0 | 540 | 1.8743 | 0.0 | | 2.1461 | 6.0 | 648 | 1.8903 | 0.0 | | 2.1461 | 7.0 | 756 | 1.9018 | 0.0 | | 2.1461 | 8.0 | 864 | 1.9236 | 0.0 | | 2.1461 | 9.0 | 972 | 1.9210 | 0.0 | | 1.2781 | 10.0 | 1080 | 1.9219 | 0.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384
robingeibel
2022-07-19T10:13:35Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "reformer", "fill-mask", "generated_from_trainer", "dataset:wikipedia", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T15:11:09Z
--- tags: - generated_from_trainer datasets: - wikipedia model-index: - name: reformer-finetuned-big_patent-wikipedia-arxiv-16384 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # reformer-finetuned-big_patent-wikipedia-arxiv-16384 This model is a fine-tuned version of [robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384](https://huggingface.co/robingeibel/reformer-finetuned-big_patent-wikipedia-arxiv-16384) on the wikipedia dataset. It achieves the following results on the evaluation set: - Loss: 6.5256 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 8.0368 | 1.0 | 3785 | 6.7392 | | 6.7992 | 2.0 | 7570 | 6.5576 | | 6.6926 | 3.0 | 11355 | 6.5256 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
Malanga/finetuning-sentiment-model-3000-samples
Malanga
2022-07-19T09:49:05Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T09:30:43Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87 - name: F1 type: f1 value: 0.8712871287128714 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3104 - Accuracy: 0.87 - F1: 0.8713 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
spacestar1705/dqn-SpaceInvadersNoFrameskip-v4
spacestar1705
2022-07-19T09:41:56Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-19T09:41:17Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 508.50 +/- 105.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga spacestar1705 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga spacestar1705 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 10000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 100), ('train_freq', 4), ('normalize', False)]) ```
ArthurZ/jukebox-1b-lyrics
ArthurZ
2022-07-19T09:40:53Z
17
4
transformers
[ "transformers", "pytorch", "jukebox", "feature-extraction", "MusicGeneration", "arxiv:2005.00341", "endpoints_compatible", "region:us" ]
feature-extraction
2022-05-30T08:11:09Z
--- tags: - MusicGeneration - jukebox --- <!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Jukebox ## Overview The Jukebox model was proposed in [Jukebox: A generative model for music](https://arxiv.org/pdf/2005.00341.pdf) by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever. This model proposes a generative music model which can be produce minute long samples which can bne conditionned on artist, genre and lyrics. The abstract from the paper is the following: We introduce Jukebox, a model that generates music with singing in the raw audio domain. We tackle the long context of raw audio using a multiscale VQ-VAE to compress it to discrete codes, and modeling those using autoregressive Transformers. We show that the combined model at scale can generate high-fidelity and diverse songs with coherence up to multiple minutes. We can condition on artist and genre to steer the musical and vocal style, and on unaligned lyrics to make the singing more controllable. We are releasing thousands of non cherry-picked samples, along with model weights and code. Tips: This model is very slow for now, and takes 18h to generate a minute long audio. This model was contributed by [Arthur Zucker](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/openai/jukebox).
AliMMZ/q-Taxi-v3
AliMMZ
2022-07-19T08:20:57Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-19T08:00:13Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="AliMMZ/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
hirohiroz/wav2vec2-base-timit-demo-google-colab-tryjpn
hirohiroz
2022-07-19T08:16:37Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-14T03:11:46Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-google-colab-tryjpn results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-google-colab-tryjpn This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset. It achieves the following results on the evaluation set: - Loss: 5.1527 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 48.3474 | 6.67 | 100 | 68.0887 | 1.0 | | 7.601 | 13.33 | 200 | 8.3667 | 1.0 | | 4.9107 | 20.0 | 300 | 5.6991 | 1.0 | | 4.379 | 26.67 | 400 | 5.1527 | 1.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu102 - Datasets 1.18.3 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-256
Kayvane
2022-07-19T06:29:12Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T05:06:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-256 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8234544620559604 - name: F1 type: f1 value: 0.8176243580045963 - name: Recall type: recall value: 0.8234544620559604 - name: Precision type: precision value: 0.8171438106054644 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-256 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5453 - Accuracy: 0.8235 - F1: 0.8176 - Recall: 0.8235 - Precision: 0.8171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.097565552226687e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 256 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6691 | 0.61 | 1500 | 0.6475 | 0.7962 | 0.7818 | 0.7962 | 0.7875 | | 0.5361 | 1.22 | 3000 | 0.5794 | 0.8161 | 0.8080 | 0.8161 | 0.8112 | | 0.4659 | 1.83 | 4500 | 0.5453 | 0.8235 | 0.8176 | 0.8235 | 0.8171 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
jonaskoenig/topic_classification_01
jonaskoenig
2022-07-19T06:15:47Z
5
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T17:58:13Z
--- license: mit tags: - generated_from_keras_callback model-index: - name: topic_classification_01 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # topic_classification_01 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0306 - Train Binary Crossentropy: 0.5578 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Binary Crossentropy | Epoch | |:----------:|:-------------------------:|:-----:| | 0.0397 | 0.7274 | 0 | | 0.0352 | 0.6392 | 1 | | 0.0339 | 0.6142 | 2 | | 0.0330 | 0.5989 | 3 | | 0.0324 | 0.5882 | 4 | | 0.0319 | 0.5799 | 5 | | 0.0315 | 0.5730 | 6 | | 0.0312 | 0.5672 | 7 | | 0.0309 | 0.5623 | 8 | | 0.0306 | 0.5578 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
fqw/t5-pegasus-finetuned_test
fqw
2022-07-19T06:14:16Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-19T03:32:58Z
--- tags: - generated_from_trainer metrics: - sacrebleu model-index: - name: t5-pegasus-finetuned_test results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-pegasus-finetuned_test This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 6.0045 - Sacrebleu: 0.8737 - Rouge 1: 0.0237 - Rouge 2: 0.0 - Rouge L: 0.0232 - Bleu 1: 0.1444 - Bleu 2: 0.0447 - Bleu 3: 0.0175 - Bleu 4: 0.0083 - Meteor: 0.0609 - Gen Len: 15.098 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Sacrebleu | Rouge 1 | Rouge 2 | Rouge L | Bleu 1 | Bleu 2 | Bleu 3 | Bleu 4 | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|:-------:|:-------:|:------:|:------:|:------:|:------:|:------:|:-------:| | No log | 52.5 | 210 | 5.9818 | 0.9114 | 0.0229 | 0.0 | 0.0225 | 0.1424 | 0.0436 | 0.0183 | 0.0091 | 0.06 | 15.126 | | No log | 70.0 | 280 | 6.0072 | 0.876 | 0.0233 | 0.0 | 0.0228 | 0.1437 | 0.0452 | 0.0177 | 0.0083 | 0.0607 | 15.088 | | No log | 87.5 | 350 | 6.0017 | 0.8695 | 0.0229 | 0.0 | 0.0225 | 0.1445 | 0.0443 | 0.0175 | 0.0082 | 0.0609 | 15.12 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
dafraile/Clini-dialog-sum-BART
dafraile
2022-07-19T05:12:30Z
6
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-13T03:49:10Z
--- license: mit tags: - generated_from_trainer metrics: - rouge model-index: - name: tst-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tst-summarization This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9975 - Rouge1: 56.239 - Rouge2: 28.9873 - Rougel: 38.5242 - Rougelsum: 53.7902 - Gen Len: 105.2973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0 - Datasets 1.18.4 - Tokenizers 0.11.6
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-512
Kayvane
2022-07-19T05:04:51Z
6
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-19T03:40:55Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-512 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8038326283064064 - name: F1 type: f1 value: 0.791857014338201 - name: Recall type: recall value: 0.8038326283064064 - name: Precision type: precision value: 0.7922430702228043 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wandb-week-3-complaints-classifier-512 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.6004 - Accuracy: 0.8038 - F1: 0.7919 - Recall: 0.8038 - Precision: 0.7922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.7835312622444155e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 512 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7559 | 0.61 | 1500 | 0.7307 | 0.7733 | 0.7411 | 0.7733 | 0.7286 | | 0.6361 | 1.22 | 3000 | 0.6559 | 0.7846 | 0.7699 | 0.7846 | 0.7718 | | 0.5774 | 1.83 | 4500 | 0.6004 | 0.8038 | 0.7919 | 0.8038 | 0.7922 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DsVuin/Flower
DsVuin
2022-07-19T03:46:46Z
0
0
null
[ "region:us" ]
null
2022-07-19T03:45:37Z
Field blue flowers and bright stars ethereal in holy lighting
gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1
gary109
2022-07-19T03:23:28Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "gary109/AI_Light_Dance", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-08T00:35:14Z
--- license: apache-2.0 tags: - automatic-speech-recognition - gary109/AI_Light_Dance - generated_from_trainer model-index: - name: ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1 This model is a fine-tuned version of [gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1](https://huggingface.co/gary109/ai-light-dance_singing3_ft_wav2vec2-large-xlsr-53-v1) on the GARY109/AI_LIGHT_DANCE - ONSET-SINGING3 dataset. It achieves the following results on the evaluation set: - Loss: 0.5459 - Wer: 0.2463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:------:|:---------------:|:------:| | 0.3909 | 1.0 | 2309 | 0.5615 | 0.2459 | | 0.4094 | 2.0 | 4618 | 0.5654 | 0.2439 | | 0.326 | 3.0 | 6927 | 0.5568 | 0.2470 | | 0.4577 | 4.0 | 9236 | 0.5795 | 0.2474 | | 0.3628 | 5.0 | 11545 | 0.5459 | 0.2463 | | 0.3135 | 6.0 | 13854 | 0.5582 | 0.2473 | | 0.5058 | 7.0 | 16163 | 0.5677 | 0.2439 | | 0.3188 | 8.0 | 18472 | 0.5646 | 0.2445 | | 0.3589 | 9.0 | 20781 | 0.5626 | 0.2479 | | 0.4021 | 10.0 | 23090 | 0.5722 | 0.2452 | | 0.4362 | 11.0 | 25399 | 0.5659 | 0.2431 | | 0.3215 | 12.0 | 27708 | 0.5658 | 0.2445 | | 0.3646 | 13.0 | 30017 | 0.5785 | 0.2459 | | 0.3757 | 14.0 | 32326 | 0.5757 | 0.2418 | | 0.3311 | 15.0 | 34635 | 0.5672 | 0.2455 | | 0.3709 | 16.0 | 36944 | 0.5669 | 0.2434 | | 0.3342 | 17.0 | 39253 | 0.5610 | 0.2455 | | 0.3236 | 18.0 | 41562 | 0.5652 | 0.2436 | | 0.3566 | 19.0 | 43871 | 0.5773 | 0.2407 | | 0.2912 | 20.0 | 46180 | 0.5764 | 0.2453 | | 0.3652 | 21.0 | 48489 | 0.5732 | 0.2423 | | 0.3785 | 22.0 | 50798 | 0.5696 | 0.2423 | | 0.3968 | 23.0 | 53107 | 0.5690 | 0.2429 | | 0.2968 | 24.0 | 55416 | 0.5800 | 0.2427 | | 0.428 | 25.0 | 57725 | 0.5704 | 0.2441 | | 0.383 | 26.0 | 60034 | 0.5739 | 0.2450 | | 0.3694 | 27.0 | 62343 | 0.5791 | 0.2437 | | 0.3449 | 28.0 | 64652 | 0.5780 | 0.2451 | | 0.3008 | 29.0 | 66961 | 0.5749 | 0.2418 | | 0.3939 | 30.0 | 69270 | 0.5737 | 0.2424 | | 0.3451 | 31.0 | 71579 | 0.5805 | 0.2402 | | 0.3513 | 32.0 | 73888 | 0.5670 | 0.2379 | | 0.3866 | 33.0 | 76197 | 0.5706 | 0.2389 | | 0.3831 | 34.0 | 78506 | 0.5635 | 0.2401 | | 0.3641 | 35.0 | 80815 | 0.5708 | 0.2405 | | 0.3345 | 36.0 | 83124 | 0.5699 | 0.2405 | | 0.2902 | 37.0 | 85433 | 0.5711 | 0.2373 | | 0.2868 | 38.0 | 87742 | 0.5713 | 0.2389 | | 0.3232 | 39.0 | 90051 | 0.5702 | 0.2392 | | 0.3277 | 40.0 | 92360 | 0.5658 | 0.2393 | | 0.3234 | 41.0 | 94669 | 0.5732 | 0.2412 | | 0.3625 | 42.0 | 96978 | 0.5740 | 0.2396 | | 0.4075 | 43.0 | 99287 | 0.5733 | 0.2389 | | 0.3473 | 44.0 | 101596 | 0.5735 | 0.2394 | | 0.3157 | 45.0 | 103905 | 0.5721 | 0.2391 | | 0.3866 | 46.0 | 106214 | 0.5715 | 0.2381 | | 0.4062 | 47.0 | 108523 | 0.5711 | 0.2380 | | 0.3871 | 48.0 | 110832 | 0.5716 | 0.2380 | | 0.2924 | 49.0 | 113141 | 0.5723 | 0.2374 | | 0.3655 | 50.0 | 115450 | 0.5709 | 0.2379 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.9.1+cu102 - Datasets 2.3.3.dev0 - Tokenizers 0.12.1
shivaniNK8/t5-small-finetuned-cnn-news
shivaniNK8
2022-07-19T02:37:27Z
30
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "summarization", "generated_from_trainer", "dataset:cnn_dailymail", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-07-19T01:48:34Z
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail metrics: - rouge model-index: - name: t5-small-finetuned-cnn-news results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: cnn_dailymail type: cnn_dailymail args: 3.0.0 metrics: - name: Rouge1 type: rouge value: 24.7231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-cnn-news This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.8412 - Rouge1: 24.7231 - Rouge2: 12.292 - Rougel: 20.5347 - Rougelsum: 23.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00056 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.0318 | 1.0 | 718 | 1.8028 | 24.5415 | 12.0907 | 20.5343 | 23.3386 | | 1.8307 | 2.0 | 1436 | 1.8028 | 24.0965 | 11.6367 | 20.2078 | 22.8138 | | 1.6881 | 3.0 | 2154 | 1.8136 | 25.0822 | 12.6509 | 20.9523 | 23.8303 | | 1.5778 | 4.0 | 2872 | 1.8269 | 24.4271 | 11.8443 | 20.2281 | 23.0941 | | 1.501 | 5.0 | 3590 | 1.8412 | 24.7231 | 12.292 | 20.5347 | 23.4668 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
KaliYuga/lapelpindiffusion
KaliYuga
2022-07-19T01:50:20Z
0
0
null
[ "license:other", "region:us" ]
null
2022-07-10T04:59:13Z
--- license: other --- NOT FOR PUBLIC USE RIGHT NOW If you have found this model, I'd prefer you not use it at the moment--it's not ready for public release and I'm probably going to be releasing it for real as a patrons-only model. It's just hosted here so I can port it into the test notebook I'm running, since hosting private models doesnt work with colab! Thanks, guys!!
helpmefindaname/mini-sequence-tagger-conll03
helpmefindaname
2022-07-19T00:53:03Z
4
0
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "region:us" ]
token-classification
2022-07-14T23:30:10Z
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2003 widget: - text: "George Washington went to Washington" --- This is a very small model I use for testing my [ner eval dashboard](https://github.com/helpmefindaname/ner-eval-dashboard) F1-Score: **48,73** (CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on huggingface minimal testing embeddings --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("helpmefindaname/mini-sequence-tagger-conll03") # make example sentence sentence = Sentence("George Washington went to Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (1.0)] Span [5]: "Washington" [− Labels: LOC (1.0)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*". --- ### Training: Script to train this model The following command was used to train this model: where `examples\ner\run_ner.py` refers to [this script](https://github.com/flairNLP/flair/blob/master/examples/ner/run_ner.py) ``` python examples\ner\run_ner.py --model_name_or_path hf-internal-testing/tiny-random-bert --dataset_name CONLL_03 --learning_rate 0.002 --mini_batch_chunk_size 1024 --batch_size 64 --num_epochs 100 ``` ---
Kayvane/distilroberta-base-wandb-week-3-complaints-classifier-1024
Kayvane
2022-07-19T00:52:23Z
8
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T17:43:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints metrics: - accuracy - f1 - recall - precision model-index: - name: distilroberta-base-wandb-week-3-complaints-classifier-1024 results: - task: name: Text Classification type: text-classification dataset: name: consumer-finance-complaints type: consumer-finance-complaints args: default metrics: - name: Accuracy type: accuracy value: 0.8279904184292339 - name: F1 type: f1 value: 0.8236604095677945 - name: Recall type: recall value: 0.8279904184292339 - name: Precision type: precision value: 0.8235526237070518 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-wandb-week-3-complaints-classifier-1024 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the consumer-finance-complaints dataset. It achieves the following results on the evaluation set: - Loss: 0.5351 - Accuracy: 0.8280 - F1: 0.8237 - Recall: 0.8280 - Precision: 0.8236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9.027176214786854e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1024 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.7756 | 0.61 | 1500 | 0.7411 | 0.7647 | 0.7375 | 0.7647 | 0.7606 | | 0.5804 | 1.22 | 3000 | 0.6140 | 0.8088 | 0.8052 | 0.8088 | 0.8077 | | 0.5008 | 1.83 | 4500 | 0.5351 | 0.8280 | 0.8237 | 0.8280 | 0.8236 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Evelyn18/roberta-base-spanish-squades-becas1
Evelyn18
2022-07-18T23:21:45Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T23:14:18Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-becas1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-becas1 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.4402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 1.8851 | | No log | 2.0 | 12 | 1.7681 | | No log | 3.0 | 18 | 2.0453 | | No log | 4.0 | 24 | 2.2795 | | No log | 5.0 | 30 | 2.4024 | | No log | 6.0 | 36 | 2.4402 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50
ronanki
2022-07-18T22:16:18Z
7
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-07-18T22:16:09Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=ronanki/ml_use_512_MNR_10-2022-07-17_14-22-50) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 22 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 22, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
rahuldebdas79/finetuning-sentiment-model-3000-samples
rahuldebdas79
2022-07-18T18:40:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-08T09:05:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8666666666666667 - name: F1 type: f1 value: 0.8684210526315789 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3157 - Accuracy: 0.8667 - F1: 0.8684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
ChuVN/bart-base-finetuned-squad2
ChuVN
2022-07-18T17:00:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T04:13:07Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bart-base-finetuned-squad2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-squad2 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.0446 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.9981 | 1.0 | 16319 | 0.9607 | | 0.7521 | 2.0 | 32638 | 1.0446 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
elliotthwang/mt5-small-finetuned-tradition-zh
elliotthwang
2022-07-18T16:44:21Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "mt5", "text2text-generation", "generated_from_trainer", "dataset:xlsum", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-29T13:09:13Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xlsum metrics: - rouge model-index: - name: mt5-small-finetuned-tradition-zh results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xlsum type: xlsum args: chinese_traditional metrics: - name: Rouge1 type: rouge value: 5.7806 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-tradition-zh This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 2.9218 - Rouge1: 5.7806 - Rouge2: 1.266 - Rougel: 5.761 - Rougelsum: 5.7833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 4.542 | 1.0 | 2336 | 3.1979 | 4.8334 | 1.025 | 4.8142 | 4.8326 | | 3.7542 | 2.0 | 4672 | 3.0662 | 5.2155 | 1.0978 | 5.2025 | 5.2158 | | 3.5706 | 3.0 | 7008 | 3.0070 | 5.5471 | 1.3397 | 5.5386 | 5.5391 | | 3.4668 | 4.0 | 9344 | 2.9537 | 5.5865 | 1.1558 | 5.5816 | 5.5964 | | 3.4082 | 5.0 | 11680 | 2.9391 | 5.8061 | 1.3462 | 5.7944 | 5.812 | | 3.375 | 6.0 | 14016 | 2.9218 | 5.7806 | 1.266 | 5.761 | 5.7833 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
bothrajat/CartPole
bothrajat
2022-07-18T16:19:35Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-07-18T16:19:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole results: - metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
AliMMZ/q-FrozenLake-v1-4x4-noSlippery
AliMMZ
2022-07-18T16:07:18Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-18T16:07:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Evelyn18/roberta-base-spanish-squades-modelo-robertav0
Evelyn18
2022-07-18T16:01:20Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:becasv2", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T15:52:15Z
--- tags: - generated_from_trainer datasets: - becasv2 model-index: - name: roberta-base-spanish-squades-modelo-robertav0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-spanish-squades-modelo-robertav0 This model is a fine-tuned version of [IIC/roberta-base-spanish-squades](https://huggingface.co/IIC/roberta-base-spanish-squades) on the becasv2 dataset. It achieves the following results on the evaluation set: - Loss: 2.7628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 11 - eval_batch_size: 11 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 6 | 2.1175 | | No log | 2.0 | 12 | 1.7427 | | No log | 3.0 | 18 | 2.0810 | | No log | 4.0 | 24 | 2.3820 | | No log | 5.0 | 30 | 2.5007 | | No log | 6.0 | 36 | 2.6782 | | No log | 7.0 | 42 | 2.7578 | | No log | 8.0 | 48 | 2.7703 | | No log | 9.0 | 54 | 2.7654 | | No log | 10.0 | 60 | 2.7628 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
silviacamplani/distilbert-uncase-finetuned-ai-ner
silviacamplani
2022-07-18T15:56:55Z
8
0
transformers
[ "transformers", "tf", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-08T09:55:39Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-uncase-finetuned-ai-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-uncase-finetuned-ai-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.5704 - Validation Loss: 2.5380 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2918 | 3.0479 | 0 | | 2.8526 | 2.6902 | 1 | | 2.5704 | 2.5380 | 2 | ### Framework versions - Transformers 4.18.0 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
domenicrosati/pegasus-xsum-finetuned-paws-parasci
domenicrosati
2022-07-18T15:35:07Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "paraphrasing", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-18T12:24:37Z
--- tags: - paraphrasing - generated_from_trainer metrics: - rouge model-index: - name: pegasus-xsum-finetuned-paws-parasci results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-finetuned-paws-parasci This model is a fine-tuned version of [domenicrosati/pegasus-xsum-finetuned-paws](https://huggingface.co/domenicrosati/pegasus-xsum-finetuned-paws) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2256 - Rouge1: 61.8854 - Rouge2: 43.1061 - Rougel: 57.421 - Rougelsum: 57.4417 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 0.05 | 1000 | 3.8024 | 49.471 | 24.8024 | 43.4857 | 43.5552 | | No log | 0.09 | 2000 | 3.6533 | 49.1046 | 24.4038 | 43.0189 | 43.002 | | No log | 0.14 | 3000 | 3.5867 | 49.5026 | 24.748 | 43.3059 | 43.2923 | | No log | 0.19 | 4000 | 3.5613 | 49.4319 | 24.5444 | 43.2225 | 43.1965 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Kayvane/distilbert-base-uncased-wandb-week-3-complaints-classifier-1500
Kayvane
2022-07-18T15:32:30Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:consumer-finance-complaints", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T08:15:34Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - consumer-finance-complaints model-index: - name: distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-wandb-week-3-complaints-classifier-1500 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the consumer-finance-complaints dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
OATML-Markslab/Tranception_Large
OATML-Markslab
2022-07-18T15:25:35Z
10
6
transformers
[ "transformers", "pytorch", "tranception", "fill-mask", "arxiv:2205.13760", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-14T08:54:44Z
# Tranception model This Hugging Face Hub repo contains the model checkpoint for the Tranception model as described in our paper ["Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval"](https://arxiv.org/abs/2205.13760). The official GitHub repository can be accessed [here](https://github.com/OATML-Markslab/Tranception). This project is a joint collaboration between the [Marks lab](https://www.deboramarkslab.com/) and the [OATML group](https://oatml.cs.ox.ac.uk/). ## Abstract The ability to accurately model the fitness landscape of protein sequences is critical to a wide range of applications, from quantifying the effects of human variants on disease likelihood, to predicting immune-escape mutations in viruses and designing novel biotherapeutic proteins. Deep generative models of protein sequences trained on multiple sequence alignments have been the most successful approaches so far to address these tasks. The performance of these methods is however contingent on the availability of sufficiently deep and diverse alignments for reliable training. Their potential scope is thus limited by the fact many protein families are hard, if not impossible, to align. Large language models trained on massive quantities of non-aligned protein sequences from diverse families address these problems and show potential to eventually bridge the performance gap. We introduce Tranception, a novel transformer architecture leveraging autoregressive predictions and retrieval of homologous sequences at inference to achieve state-of-the-art fitness prediction performance. Given its markedly higher performance on multiple mutants, robustness to shallow alignments and ability to score indels, our approach offers significant gain of scope over existing approaches. To enable more rigorous model testing across a broader range of protein families, we develop ProteinGym -- an extensive set of multiplexed assays of variant effects, substantially increasing both the number and diversity of assays compared to existing benchmarks. ## License This project is available under the MIT license. ## Reference If you use Tranception or other files provided through our GitHub repository, please cite the following paper: ``` Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J., Gomez, A., Marks, D.S., Gal, Y. (2022). Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval. ICML. ``` ## Links Pre-print: https://arxiv.org/abs/2205.13760 GitHub: https://github.com/OATML-Markslab/Tranception
yixi/bert-finetuned-ner
yixi
2022-07-18T13:42:24Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-17T23:09:39Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.934260639178672 - name: Recall type: recall value: 0.9495119488387749 - name: F1 type: f1 value: 0.9418245555462816 - name: Accuracy type: accuracy value: 0.9868281627126626 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0573 - Precision: 0.9343 - Recall: 0.9495 - F1: 0.9418 - Accuracy: 0.9868 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0854 | 1.0 | 1756 | 0.0639 | 0.9148 | 0.9329 | 0.9238 | 0.9822 | | 0.0403 | 2.0 | 3512 | 0.0542 | 0.9370 | 0.9512 | 0.9440 | 0.9866 | | 0.0204 | 3.0 | 5268 | 0.0573 | 0.9343 | 0.9495 | 0.9418 | 0.9868 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
svenstahlmann/finetuned-distilbert-needmining
svenstahlmann
2022-07-18T13:15:23Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "needmining", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-18T12:50:37Z
--- language: en tags: - distilbert - needmining license: apache-2.0 metric: - f1 --- # Finetuned-Distilbert-needmining (uncased) This model is a finetuned version of the [Distilbert base model](https://huggingface.co/distilbert-base-uncased). It was trained to predict need-containing sentences from amazon product reviews. ## Model description This mode is part of ongoing research, after the publication of the research more information will be added. ## Intended uses & limitations You can use this model to identify sentences that contain customer needs in user-generated content. This can act as a filtering process to remove uninformative content for market research. ### How to use You can use this model directly with a pipeline for text classification: ```python >>> from transformers import pipeline >>> classifier = pipeline("text-classification", model="svenstahlmann/finetuned-distilbert-needmining") >>> classifier("the plasic feels super cheap.") [{'label': 'contains need', 'score': 0.9397542476654053}] ``` ### Limitations and bias We are not aware of any bias in the training data. ## Training data The training was done on a dataset of 6400 sentences. The sentences were taken from product reviews off amazon and coded if they express customer needs. ## Training procedure For the training, we used [Population Based Training (PBT)](https://www.deepmind.com/blog/population-based-training-of-neural-networks) and optimized for f1 score on a validation set of 1600 sentences. ### Preprocessing The preprocessing follows the [Distilbert base model](https://huggingface.co/distilbert-base-uncased). ### Pretraining The model was trained on a titan RTX for 1 hour. ## Evaluation results Results on the validation set: | F1 | |:----:| | 76.0 | ### BibTeX entry and citation info coming soon
MMVos/distilbert-base-uncased-finetuned-squad
MMVos
2022-07-18T12:16:01Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad_v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-07-18T09:52:16Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset. It achieves the following results on the evaluation set: - Loss: 1.4214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1814 | 1.0 | 8235 | 1.2488 | | 0.9078 | 2.0 | 16470 | 1.3127 | | 0.7439 | 3.0 | 24705 | 1.4214 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
pritoms/opt-350m-finetuned-stack
pritoms
2022-07-18T11:14:18Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "opt", "text-generation", "generated_from_trainer", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-18T10:53:56Z
--- license: other tags: - generated_from_trainer model-index: - name: opt-350m-finetuned-stack results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-350m-finetuned-stack This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
julmarti/ppo-LunarLander-v2
julmarti
2022-07-18T11:06:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-07-18T11:06:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 246.73 +/- 23.48 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dpovedano/distilbert-base-uncased-finetuned-ner
dpovedano
2022-07-18T10:13:45Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T10:05:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dpovedano/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dpovedano/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0285 - Validation Loss: 0.0612 - Train Precision: 0.9222 - Train Recall: 0.9358 - Train F1: 0.9289 - Train Accuracy: 0.9834 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.0289 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 0 | | 0.0284 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 1 | | 0.0285 | 0.0612 | 0.9222 | 0.9358 | 0.9289 | 0.9834 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
Livingwithmachines/bert_1875_1890
Livingwithmachines
2022-07-18T09:37:54Z
76
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T09:35:12Z
# Neural Language Models for Nineteenth-Century English: bert_1875_1890 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1875-1890 and comprised of ~1.3 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
Livingwithmachines/bert_1760_1900
Livingwithmachines
2022-07-18T09:30:32Z
74
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T09:28:01Z
# Neural Language Models for Nineteenth-Century English: bert_1760_1900 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1760-1900 and comprised of ~5.1 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
Livingwithmachines/bert_1760_1850
Livingwithmachines
2022-07-18T09:27:11Z
67
1
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-18T09:22:18Z
# Neural Language Models for Nineteenth-Century English: bert_1760_1850 ## Introduction BERT model trained on a large historical dataset of books in English, published between 1760-1850 and comprised of ~1.3 billion tokens. - Data paper: http://doi.org/10.5334/johd.48 - Github repository: https://github.com/Living-with-machines/histLM ## License The models are released under open license CC BY 4.0, available at https://creativecommons.org/licenses/by/4.0/legalcode. ## Funding Statement This work was supported by Living with Machines (AHRC grant AH/S01179X/1) and The Alan Turing Institute (EPSRC grant EP/N510129/1). ## Dataset creators Kasra Hosseini, Kaspar Beelen and Mariona Coll Ardanuy (The Alan Turing Institute) preprocessed the text, created a database, trained and fine-tuned language models as described in the accompanying paper. Giovanni Colavizza (University of Amsterdam), David Beavan (The Alan Turing Institute) and James Hetherington (University College London) helped with planning, accessing the datasets and designing the experiments.
rsuwaileh/IDRISI-LMR-HD-TB-partition
rsuwaileh
2022-07-18T09:17:11Z
3
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:32:05Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (only the training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-based LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition/) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
rsuwaileh/IDRISI-LMR-HD-TL
rsuwaileh
2022-07-18T09:16:29Z
5
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:30:24Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training, development, and test data are used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-less LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL-partition) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
rsuwaileh/IDRISI-LMR-HD-TL-partition
rsuwaileh
2022-07-18T09:16:12Z
4
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-11T20:30:51Z
This model is a BERT-based Location Mention Recognition model that is adopted from the [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). The model is trained using Hurricane Dorian 2019 event (training data is used for training) from [IDRISI-R dataset](https://github.com/rsuwaileh/IDRISI) under the Type-less LMR mode and using the random version of the data. You can download this data in BILOU format from [here](https://github.com/rsuwaileh/IDRISI/tree/main/data/LMR/EN/gold-random-bilou/hurricane_dorian_2019). * Different variants of the model are available through HuggingFace: - [rsuwaileh/IDRISI-LMR-HD-TB](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB) - [rsuwaileh/IDRISI-LMR-HD-TB-partition](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TB-partition/) - [rsuwaileh/IDRISI-LMR-HD-TL](https://huggingface.co/rsuwaileh/IDRISI-LMR-HD-TL) * Larger models are available at [TLLMR4CM GitHub](https://github.com/rsuwaileh/TLLMR4CM/). * Models trained on the entire IDRISI-R dataset: - [rsuwaileh/IDRISI-LMR-EN-random-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typeless/) - [rsuwaileh/IDRISI-LMR-EN-random-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-random-typebased/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typeless](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typeless/) - [rsuwaileh/IDRISI-LMR-EN-timebased-typebased](https://huggingface.co/rsuwaileh/IDRISI-LMR-EN-timebased-typebased/) To cite this model: ``` @article{suwaileh2022tlLMR4disaster, title={When a Disaster Happens, We Are Ready: Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad and Sajjad, Hassan}, journal={International Journal of Disaster Risk Reduction}, year={2022} } @inproceedings{suwaileh2020tlLMR4disaster, title={Are We Ready for this Disaster? Towards Location Mention Recognition from Crisis Tweets}, author={Suwaileh, Reem and Imran, Muhammad and Elsayed, Tamer and Sajjad, Hassan}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6252--6263}, year={2020} } ``` To cite the IDRISI-R dataset: ``` @article{rsuwaileh2022Idrisi-r, title={IDRISI-R: Large-scale English and Arabic Location Mention Recognition Datasets for Disaster Response over Twitter}, author={Suwaileh, Reem and Elsayed, Tamer and Imran, Muhammad}, journal={...}, volume={...}, pages={...}, year={2022}, publisher={...} } ```
Jimmie/identify-this-insect
Jimmie
2022-07-18T07:17:00Z
0
3
fastai
[ "fastai", "region:us" ]
null
2022-07-17T14:06:07Z
--- tags: - fastai --- # Identify This Insect ## Model description This is a model used to differentiate between three types of insects: - Millipede - Centipede - Caterpillar It was created as part of the end-to-end Deep Learning Project learning process. The model is a pretrained `convnext_tiny_in22k` from the [timm library](https://github.com/rwightman/pytorch-image-models) fine-tuned on the new dataset. ## Intended uses & limitations This model was trained on roughly 150 pictures of each category and performed well. However, it was not vigorously tested and so may perform badly on some edge cases images and may contain bias e.g. when training, I noticed that most images of caterpillars were next to leaves and plantation, so it may have learned to associate that environment with a caterpillar. If you notice any weird behavior, leave a comment on the `Community Tab`. ## Training and evaluation data I scrapped the internet for pictures of the three categories to train this model. Duckduckgo was used. To learn how the model was trained, read [this notebook](https://github.com/jimmiemunyi/deeplearning-experiments/blob/main/notebooks/Centipede_vs_Millipede_vs_Caterpillar.ipynb).
namwoo/distilbert-base-uncased-finetuned-ner
namwoo
2022-07-18T00:38:09Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-07-18T00:35:17Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: namwoo/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # namwoo/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0339 - Validation Loss: 0.0623 - Train Precision: 0.9239 - Train Recall: 0.9335 - Train F1: 0.9287 - Train Accuracy: 0.9829 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1982 | 0.0715 | 0.9040 | 0.9218 | 0.9128 | 0.9799 | 0 | | 0.0537 | 0.0618 | 0.9202 | 0.9305 | 0.9254 | 0.9827 | 1 | | 0.0339 | 0.0623 | 0.9239 | 0.9335 | 0.9287 | 0.9829 | 2 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.8.2 - Datasets 2.3.2 - Tokenizers 0.12.1
pyronear/mobilenet_v3_small
pyronear
2022-07-17T23:48:39Z
29
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1905.02244", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-13T23:53:41Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # MobileNet V3 - Small model Pretrained on a dataset for wildfire binary classification (soon to be shared). The MobileNet V3 architecture was introduced in [this paper](https://arxiv.org/pdf/1905.02244.pdf). ## Model description The core idea of the author is to simplify the final stage, while using SiLU as activations and making Squeeze-and-Excite blocks larger. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/mobilenet_v3_small").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, eprinttype = {arXiv}, eprint = {1905.02244}, timestamp = {Thu, 27 May 2021 16:20:51 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
pyronear/resnet34
pyronear
2022-07-17T23:48:22Z
25
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T21:07:12Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ResNet-34 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet34").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
pyronear/resnet18
pyronear
2022-07-17T23:48:06Z
53
0
transformers
[ "transformers", "pytorch", "onnx", "image-classification", "dataset:pyronear/openfire", "arxiv:1512.03385", "license:apache-2.0", "endpoints_compatible", "region:us" ]
image-classification
2022-07-17T21:06:58Z
--- license: apache-2.0 tags: - image-classification - pytorch - onnx datasets: - pyronear/openfire --- # ResNet-18 model Pretrained on a dataset for wildfire binary classification (soon to be shared). ## Model description The core idea of the author is to help the gradient propagation through numerous layers by adding a skip connection. ## Installation ### Prerequisites Python 3.6 (or higher) and [pip](https://pip.pypa.io/en/stable/)/[conda](https://docs.conda.io/en/latest/miniconda.html) are required to install PyroVision. ### Latest stable release You can install the last stable release of the package using [pypi](https://pypi.org/project/pyrovision/) as follows: ```shell pip install pyrovision ``` or using [conda](https://anaconda.org/pyronear/pyrovision): ```shell conda install -c pyronear pyrovision ``` ### Developer mode Alternatively, if you wish to use the latest features of the project that haven't made their way to a release yet, you can install the package from source *(install [Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) first)*: ```shell git clone https://github.com/pyronear/pyro-vision.git pip install -e pyro-vision/. ``` ## Usage instructions ```python from PIL import Image from torchvision.transforms import Compose, ConvertImageDtype, Normalize, PILToTensor, Resize from torchvision.transforms.functional import InterpolationMode from pyrovision.models import model_from_hf_hub model = model_from_hf_hub("pyronear/resnet18").eval() img = Image.open(path_to_an_image).convert("RGB") # Preprocessing config = model.default_cfg transform = Compose([ Resize(config['input_shape'][1:], interpolation=InterpolationMode.BILINEAR), PILToTensor(), ConvertImageDtype(torch.float32), Normalize(config['mean'], config['std']) ]) input_tensor = transform(img).unsqueeze(0) # Inference with torch.inference_mode(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ## Citation Original paper ```bibtex @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, eprinttype = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Source of this implementation ```bibtex @software{chintala_torchvision_2017, author = {Chintala, Soumith}, month = {4}, title = {{Torchvision}}, url = {https://github.com/pytorch/vision}, year = {2017} } ```
alanwang8/default-longformer-base-4096-finetuned-cola
alanwang8
2022-07-17T23:19:21Z
4
0
transformers
[ "transformers", "pytorch", "longformer", "text-classification", "generated_from_trainer", "dataset:glue", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-11T17:58:47Z
--- tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: longformer-base-4096-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-base-4096-finetuned-cola This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7005 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 268 | 0.7005 | 0.0 | | 0.6995 | 2.0 | 536 | 0.6960 | -0.0043 | | 0.6995 | 3.0 | 804 | 0.6976 | -0.0057 | | 0.6962 | 4.0 | 1072 | 0.6983 | -0.0123 | | 0.6962 | 5.0 | 1340 | 0.6977 | -0.0529 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
crdealme/q-FrozenLake-v1-4x4-noSlippery
crdealme
2022-07-17T18:09:52Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-07-17T18:09:46Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="crdealme/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese
Edresson
2022-07-17T17:39:10Z
6
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 33.96 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian
Edresson
2022-07-17T17:37:45Z
20
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "Russian-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - Russian-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 19.46 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion. # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese
Edresson
2022-07-17T17:37:08Z
9
1
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pt", "portuguese-speech-corpus", "PyTorch", "arxiv:2204.00618", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-07-17T17:18:45Z
--- language: pt datasets: - Common Voice metrics: - wer tags: - audio - speech - wav2vec2 - pt - portuguese-speech-corpus - automatic-speech-recognition - speech - PyTorch license: apache-2.0 model-index: - name: Edresson Casanova Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset in Portuguese results: - task: name: Speech Recognition type: automatic-speech-recognition metrics: - name: Test Common Voice 7.0 WER type: wer value: 63.90 --- # Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese [Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset (TTS-Portuguese Corpus). # Use this model ```python from transformers import AutoTokenizer, Wav2Vec2ForCTC tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-portuguese") ``` # Results For the results check the [paper](https://arxiv.org/abs/2204.00618) # Example test with Common Voice Dataset ```python dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21") resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) def map_to_array(batch): speech, _ = torchaudio.load(batch["path"]) batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() batch["sampling_rate"] = resampler.new_freq batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'") return batch ``` ```python ds = dataset.map(map_to_array) result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys())) print(wer.compute(predictions=result["predicted"], references=result["target"])) ```
domenicrosati/pegasus-xsum-finetuned-paws
domenicrosati
2022-07-17T17:20:35Z
6
0
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "paraphrasing", "generated_from_trainer", "dataset:paws", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-07-17T16:58:16Z
--- tags: - paraphrasing - generated_from_trainer datasets: - paws metrics: - rouge model-index: - name: pegasus-xsum-finetuned-paws results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: paws type: paws args: labeled_final metrics: - name: Rouge1 type: rouge value: 92.4371 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-xsum-finetuned-paws This model is a fine-tuned version of [google/pegasus-xsum](https://huggingface.co/google/pegasus-xsum) on the paws dataset. It achieves the following results on the evaluation set: - Loss: 2.1199 - Rouge1: 92.4371 - Rouge2: 75.4061 - Rougel: 84.1519 - Rougelsum: 84.1958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 2.1481 | 1.46 | 1000 | 2.0112 | 93.7727 | 73.3021 | 84.2963 | 84.2506 | | 2.0113 | 2.93 | 2000 | 2.0579 | 93.813 | 73.4119 | 84.3674 | 84.2693 | | 2.054 | 4.39 | 3000 | 2.0890 | 93.3926 | 73.3727 | 84.2814 | 84.1649 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
lkm2835/distilbert-imdb
lkm2835
2022-07-17T14:47:59Z
13
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-28T04:29:26Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 391 | 0.1849 | 0.9281 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cu113 - Datasets 2.0.0 - Tokenizers 0.11.6
ranrinat/distilbert-base-uncased-finetuned-emotion
ranrinat
2022-07-17T14:28:45Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-17T12:46:24Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9246080819022496 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2158 - Accuracy: 0.9245 - F1: 0.9246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8152 | 1.0 | 250 | 0.2994 | 0.9095 | 0.9072 | | 0.2424 | 2.0 | 500 | 0.2158 | 0.9245 | 0.9246 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3