modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 06:30:45
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
533 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 06:30:39
card
stringlengths
11
1.01M
thammarat-th/distilbert-base-uncased-finetuned-imdb
thammarat-th
2022-08-31T04:46:34Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:01:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.2591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.4216 | 1.0 | 782 | 2.2803 | | 2.3719 | 2.0 | 1564 | 2.2577 | | 2.3407 | 3.0 | 2346 | 2.2320 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
ayameRushia/wav2vec2-large-xls-r-300m-el
ayameRushia
2022-08-31T04:43:27Z
24
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "el", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - el license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - robust-speech-event - hf-asr-leaderboard - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-el results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: el metrics: - name: Test WER using LM type: wer value: 20.9 - name: Test CER using LM type: cer value: 6.0466 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - EL dataset. It achieves the following results on the evaluation set: - Loss: 0.3218 - Wer: 0.3095 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_el.ipynb" Test WER without LM wer = 31.1294 % cer = 7.9509 % Test WER using LM wer = 20.7340 % cer = 6.0466 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test # running without LM !python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-el --dataset mozilla-foundation/common_voice_8_0 --config el --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.3683 | 8.77 | 500 | 3.1280 | 1.0 | | 1.9915 | 17.54 | 1000 | 0.6600 | 0.6444 | | 0.6565 | 26.32 | 1500 | 0.4208 | 0.4486 | | 0.4484 | 35.09 | 2000 | 0.3885 | 0.4006 | | 0.3573 | 43.86 | 2500 | 0.3548 | 0.3626 | | 0.3063 | 52.63 | 3000 | 0.3375 | 0.3430 | | 0.2751 | 61.4 | 3500 | 0.3359 | 0.3241 | | 0.2511 | 70.18 | 4000 | 0.3222 | 0.3108 | | 0.2361 | 78.95 | 4500 | 0.3205 | 0.3084 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
ayameRushia/wav2vec2-large-xls-r-300m-mn
ayameRushia
2022-08-31T04:43:06Z
16
0
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "robust-speech-event", "mozilla-foundation/common_voice_8_0", "mn", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - mn license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event - mozilla-foundation/common_voice_8_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_8_0 model-index: - name: wav2vec2-large-xls-r-300m-mn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: mn metrics: - name: Test WER using LM type: wer value: 31.3919 - name: Test CER using LM type: cer value: 10.2565 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: mn metrics: - name: Test WER type: wer value: 65.26 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: mn metrics: - name: Test WER type: wer value: 63.09 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MN dataset. It achieves the following results on the evaluation set: - Loss: 0.5502 - Wer: 0.4042 ## Training and evaluation data Evaluation is conducted in Notebook, you can see within the repo "notebook_evaluation_wav2vec2_mn.ipynb" Test WER without LM wer = 58.2171 % cer = 16.0670 % Test WER using wer = 31.3919 % cer = 10.2565 % How to use eval.py ``` huggingface-cli login #login to huggingface for getting auth token to access the common voice v8 #running with LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test # running without LM python eval.py --model_id ayameRushia/wav2vec2-large-xls-r-300m-mn --dataset mozilla-foundation/common_voice_8_0 --config mn --split test --greedy ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 6.35 | 400 | 0.9380 | 0.7902 | | 3.2674 | 12.7 | 800 | 0.5794 | 0.5309 | | 0.7531 | 19.05 | 1200 | 0.5749 | 0.4815 | | 0.5382 | 25.4 | 1600 | 0.5530 | 0.4447 | | 0.4293 | 31.75 | 2000 | 0.5709 | 0.4237 | | 0.4293 | 38.1 | 2400 | 0.5476 | 0.4059 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Prang9/distilbert-base-uncased-finetuned-imdb
Prang9
2022-08-31T04:37:28Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:30:38Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
Pawaret717/distilbert-base-uncased-finetuned-imdb
Pawaret717
2022-08-31T04:15:16Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:04:15Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
earthanan/distilbert-base-uncased-finetuned-imdb
earthanan
2022-08-31T04:13:43Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-31T04:05:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4721 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7086 | 1.0 | 157 | 2.4898 | | 2.5796 | 2.0 | 314 | 2.4230 | | 2.5269 | 3.0 | 471 | 2.4354 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
mooface/xlm-roberta-base-finetuned-panx-de
mooface
2022-08-31T02:07:15Z
116
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-31T01:43:13Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
DylanJHJ/monot5m-large-msmarco-100k
DylanJHJ
2022-08-31T01:20:45Z
9
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T02:09:46Z
Check our SIGIR2021 short paper: https://dl.acm.org/doi/10.1145/3404835.3463048 This checkpoint is a variant of monot5 (T5 pointwise re-ranking model). Specifically, we fuse the "P2Q (i.e. doc2query)" and "Rank (i.e. passage ranking)" to learn the **discriminative** view (Rank) and **geneartive** view (P2Q). We found that under the specific **mixing ratio** of these two task, the effectiveness of passage re-ranking improves on par with monot5-3B models. Hence, you can try to do both the task with this checkpoint by the following input format: - P2Q: Document: *\<here is a document or a passage\>* Translate Document to Query: - Rank: Query: *\<here is a query\>* Document: *\<here is a document or a passage\>* Relevant: which the outputs will be like: - P2Q: *\<relevant query of the given text\>* - Rank: *true* or *false* ``` Note that we usually use the logit values of *true*/ *false* token from T5 reranker as our query-passage relevant scores Note the above tokens are all case-sensitive. ```
npc-engine/t5-small-mse-summarization
npc-engine
2022-08-30T23:43:58Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T21:24:56Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-small-mse-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mse-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1108 - Rouge1: 43.1145 - Rouge2: 23.2262 - Rougel: 37.218 - Rougelsum: 41.0897 - Bleurt: -0.8051 - Gen Len: 18.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleurt | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 1.5207 | 1.0 | 267 | 1.2922 | 38.8738 | 19.1958 | 32.8458 | 36.9993 | -0.9061 | 18.668 | | 1.363 | 2.0 | 534 | 1.2340 | 39.8466 | 20.0452 | 33.9101 | 37.7708 | -0.8925 | 18.657 | | 1.3062 | 3.0 | 801 | 1.2057 | 40.5536 | 20.8249 | 34.5221 | 38.4648 | -0.8625 | 18.602 | | 1.272 | 4.0 | 1068 | 1.1782 | 41.0078 | 21.2186 | 35.0101 | 38.9186 | -0.8595 | 18.602 | | 1.2312 | 5.0 | 1335 | 1.1688 | 41.521 | 21.7934 | 35.704 | 39.4718 | -0.842 | 18.486 | | 1.2052 | 6.0 | 1602 | 1.1557 | 42.1037 | 22.4291 | 36.3554 | 40.1124 | -0.8432 | 18.533 | | 1.1842 | 7.0 | 1869 | 1.1440 | 42.4438 | 22.6456 | 36.5729 | 40.3134 | -0.8288 | 18.553 | | 1.1643 | 8.0 | 2136 | 1.1408 | 42.245 | 22.4859 | 36.3637 | 40.2193 | -0.8284 | 18.622 | | 1.1495 | 9.0 | 2403 | 1.1320 | 42.5362 | 22.5034 | 36.5092 | 40.4552 | -0.8211 | 18.57 | | 1.1368 | 10.0 | 2670 | 1.1301 | 42.5159 | 22.462 | 36.4646 | 40.3968 | -0.819 | 18.538 | | 1.1203 | 11.0 | 2937 | 1.1243 | 42.2803 | 22.5963 | 36.3454 | 40.2987 | -0.8242 | 18.522 | | 1.1116 | 12.0 | 3204 | 1.1197 | 42.8078 | 22.8409 | 36.7344 | 40.8186 | -0.821 | 18.565 | | 1.099 | 13.0 | 3471 | 1.1193 | 42.7423 | 22.9397 | 36.7894 | 40.7298 | -0.8125 | 18.552 | | 1.0976 | 14.0 | 3738 | 1.1176 | 42.9002 | 23.2394 | 37.0215 | 40.9211 | -0.8156 | 18.568 | | 1.0816 | 15.0 | 4005 | 1.1133 | 43.0007 | 23.3093 | 37.2037 | 40.9719 | -0.8059 | 18.519 | | 1.084 | 16.0 | 4272 | 1.1146 | 42.9053 | 23.2391 | 37.0542 | 40.8826 | -0.8104 | 18.533 | | 1.0755 | 17.0 | 4539 | 1.1124 | 43.0429 | 23.2773 | 37.1389 | 41.0755 | -0.8086 | 18.544 | | 1.0748 | 18.0 | 4806 | 1.1121 | 43.2243 | 23.4179 | 37.2039 | 41.143 | -0.8048 | 18.548 | | 1.072 | 19.0 | 5073 | 1.1106 | 43.1776 | 23.3061 | 37.3105 | 41.1392 | -0.8039 | 18.549 | | 1.0671 | 20.0 | 5340 | 1.1108 | 43.1145 | 23.2262 | 37.218 | 41.0897 | -0.8051 | 18.549 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
microsoft/bloom-deepspeed-inference-int8
microsoft
2022-08-30T23:01:17Z
7
28
transformers
[ "transformers", "bloom", "feature-extraction", "license:bigscience-bloom-rail-1.0", "endpoints_compatible", "region:us" ]
feature-extraction
2022-08-18T18:26:43Z
--- license: bigscience-bloom-rail-1.0 --- This is a custom INT8 version of the original [BLOOM weights](https://huggingface.co/bigscience/bloom) to make it fast to use with the [DeepSpeed-Inference](https://www.deepspeed.ai/tutorials/inference-tutorial/) engine which uses Tensor Parallelism. In this repo the tensors are split into 8 shards to target 8 GPUs. The full BLOOM documentation is [here](https://huggingface.co/bigscience/bloom). To use the weights in repo, you can adapt to your needs the scripts found [here](https://github.com/bigscience-workshop/Megatron-DeepSpeed/tree/main/scripts/inference) (XXX: they are going to migrate soon to HF Transformers code base, so will need to update the link once moved).
ruse40folly/distilbert-base-uncased-finetuned-emotion
ruse40folly
2022-08-30T22:15:45Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T21:58:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9235 - name: F1 type: f1 value: 0.9235310384339321 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2236 - Accuracy: 0.9235 - F1: 0.9235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8521 | 1.0 | 250 | 0.3251 | 0.9085 | 0.9063 | | 0.2489 | 2.0 | 500 | 0.2236 | 0.9235 | 0.9235 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingtweets/joped
huggingtweets
2022-08-30T21:55:26Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-30T21:55:18Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/916403716210569216/C0_SAn42_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">joped</div> <div style="text-align: center; font-size: 14px;">@joped</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from joped. | Data | joped | | --- | --- | | Tweets downloaded | 3216 | | Retweets | 505 | | Short tweets | 117 | | Tweets kept | 2594 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/116whcxp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @joped's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24oibz3y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24oibz3y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/joped') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
nawage/ddpm-butterflies-128
nawage
2022-08-30T20:43:21Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-30T19:29:51Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/nawage/ddpm-butterflies-128/tensorboard?#scalars)
RussianNLP/ruRoBERTa-large-rucola
RussianNLP
2022-08-30T20:23:10Z
586
5
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T19:54:51Z
--- language: ru license: apache-2.0 tags: - transformers thumbnail: "https://github.com/RussianNLP/RuCoLA/blob/main/logo.png" widget: - text: "Он решил ту или иную сложную задачу." --- This is a finetuned version of [RuRoBERTa-large](https://huggingface.co/sberbank-ai/ruRoberta-large) for the task of linguistic acceptability classification on the [RuCoLA](https://rucola-benchmark.com/) benchmark. The hyperparameters used for finetuning are as follows: * 5 training epochs (with early stopping based on validation MCC) * Peak learning rate: 1e-5, linear warmup for 10% of total training time * Weight decay: 1e-4 * Batch size: 32 * Random seed: 5 * Optimizer: [torch.optim.AdamW](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html)
Asma-Kehila/finetuning-sentiment-model-3000-samples
Asma-Kehila
2022-08-30T19:57:49Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T13:16:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3175 - Accuracy: 0.8733 - F1: 0.8733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
vendorabc/modeltest
vendorabc
2022-08-30T19:01:03Z
0
0
sklearn
[ "sklearn", "skops", "tabular-classification", "license:mit", "region:us" ]
tabular-classification
2022-08-30T19:00:59Z
--- license: mit library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description This is a HistGradientBoostingClassifier model trained on breast cancer dataset. It's trained with Halving Grid Search Cross Validation, with parameter grids on max_leaf_nodes and max_depth. ## Intended uses & limitations This model is not ready to be used in production. ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------------------|----------------------------------------------------------| | aggressive_elimination | False | | cv | 5 | | error_score | nan | | estimator__categorical_features | | | estimator__early_stopping | auto | | estimator__l2_regularization | 0.0 | | estimator__learning_rate | 0.1 | | estimator__loss | auto | | estimator__max_bins | 255 | | estimator__max_depth | | | estimator__max_iter | 100 | | estimator__max_leaf_nodes | 31 | | estimator__min_samples_leaf | 20 | | estimator__monotonic_cst | | | estimator__n_iter_no_change | 10 | | estimator__random_state | | | estimator__scoring | loss | | estimator__tol | 1e-07 | | estimator__validation_fraction | 0.1 | | estimator__verbose | 0 | | estimator__warm_start | False | | estimator | HistGradientBoostingClassifier() | | factor | 3 | | max_resources | auto | | min_resources | exhaust | | n_jobs | -1 | | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} | | random_state | 42 | | refit | True | | resource | n_samples | | return_train_score | True | | scoring | | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 {color: black;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 pre{padding: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable {background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-item {z-index: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:only-child::after {width: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-text-repr-fallback {display: none;}</style><div id="sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ab167486-be7e-4eb5-be01-ba21adbd7469" type="checkbox" ><label for="ab167486-be7e-4eb5-be01-ba21adbd7469" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e9df9f06-8d9e-4379-ad72-52f461408663" type="checkbox" ><label for="e9df9f06-8d9e-4379-ad72-52f461408663" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div> ## Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|----------| | accuracy | 0.959064 | | f1 score | 0.959064 | # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python import pickle with open(pkl_filename, 'rb') as file: clf = pickle.load(file) ``` </details> # Model Card Authors This model card is written by following authors: skops_user # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` bibtex @inproceedings{...,year={2020}} ``` # Additional Content ## Confusion matrix ![Confusion matrix](confusion_matrix.png) ## Hyperparameter search results <details> <summary> Click to expand </summary> | iter | n_resources | mean_fit_time | std_fit_time | mean_score_time | std_score_time | param_max_depth | param_max_leaf_nodes | params | split0_test_score | split1_test_score | split2_test_score | split3_test_score | split4_test_score | mean_test_score | std_test_score | rank_test_score | split0_train_score | split1_train_score | split2_train_score | split3_train_score | split4_train_score | mean_train_score | std_train_score | |--------|---------------|-----------------|----------------|-------------------|------------------|-------------------|------------------------|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|-------------------| | 0 | 44 | 0.0498069 | 0.0107112 | 0.0121156 | 0.0061838 | 2 | 5 | {'max_depth': 2, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0492636 | 0.0187271 | 0.00738611 | 0.00245441 | 2 | 10 | {'max_depth': 2, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0572055 | 0.0153176 | 0.0111395 | 0.0010297 | 2 | 15 | {'max_depth': 2, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0498482 | 0.0177091 | 0.00857358 | 0.00415935 | 5 | 5 | {'max_depth': 5, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0500658 | 0.00992094 | 0.00998321 | 0.00527031 | 5 | 10 | {'max_depth': 5, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0525903 | 0.0151616 | 0.00874681 | 0.00462998 | 5 | 15 | {'max_depth': 5, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0512018 | 0.0130152 | 0.00881834 | 0.00500514 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.0566921 | 0.0186051 | 0.00513492 | 0.000498488 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 0 | 44 | 0.060587 | 0.04041 | 0.00987453 | 0.00529624 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 | | 1 | 132 | 0.232459 | 0.0479878 | 0.0145514 | 0.00856422 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.272297 | 0.0228833 | 0.011561 | 0.0068272 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 1 | 132 | 0.239161 | 0.0330412 | 0.0116591 | 0.003554 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 2 | 396 | 0.920334 | 0.18198 | 0.0166654 | 0.00776263 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.962025 | 0.911392 | 0.987342 | 0.974359 | 0.935897 | 0.954203 | 0.0273257 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | </details> ## Classification report <details> <summary> Click to expand </summary> | index | precision | recall | f1-score | support | |--------------|-------------|----------|------------|-----------| | malignant | 0.951613 | 0.936508 | 0.944 | 63 | | benign | 0.963303 | 0.972222 | 0.967742 | 108 | | macro avg | 0.957458 | 0.954365 | 0.955871 | 171 | | weighted avg | 0.958996 | 0.959064 | 0.958995 | 171 | </details>
agustina/museo
agustina
2022-08-30T18:25:36Z
0
0
null
[ "region:us" ]
null
2022-08-30T18:24:37Z
museo de mariposis y insectos moderno, con muebles blancos yiluminados
VioletaMG/ddpm-butterflies-128_50epochs
VioletaMG
2022-08-30T18:09:04Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-30T17:38:43Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128_50epochs ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/VioletaMG/ddpm-butterflies-128_50epochs/tensorboard?#scalars)
epsil/Health_Psychology_Analysis
epsil
2022-08-30T17:49:10Z
0
1
null
[ "region:us" ]
null
2022-08-30T15:49:29Z
### TO BE ADDED widget: - text: "I am going through lot of stress"
Laksitha/autotrain-enhanced-tosdr-summariser-1339851272
Laksitha
2022-08-30T16:40:01Z
12
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:Laksitha/autotrain-data-enhanced-tosdr-summariser", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-08-30T16:38:01Z
--- tags: - autotrain - summarization language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - Laksitha/autotrain-data-enhanced-tosdr-summariser co2_eq_emissions: emissions: 0.011960118277424782 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 1339851272 - CO2 Emissions (in grams): 0.0120 ## Validation Metrics - Loss: 2.416 - Rouge1: 34.945 - Rouge2: 12.533 - RougeL: 19.876 - RougeLsum: 31.821 - Gen Len: 92.917 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Laksitha/autotrain-enhanced-tosdr-summariser-1339851272 ```
yasuaki0406/distilbert-base-uncased-finetuned-emotion
yasuaki0406
2022-08-30T16:01:46Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T15:51:54Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9245 - name: F1 type: f1 value: 0.9244242594868723 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2123 - Accuracy: 0.9245 - F1: 0.9244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8144 | 1.0 | 250 | 0.3129 | 0.9055 | 0.9027 | | 0.2457 | 2.0 | 500 | 0.2123 | 0.9245 | 0.9244 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1
maxpe
2022-08-30T15:33:52Z
10
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "doi:10.57967/hf/0033", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T14:26:53Z
# Twitter-roBERTa-base-jun2022_sem_eval_2018_task1 This model was trained on ~7000 tweets in English annotated for 11 emotion categories in [SemEval-2018 Task 1: Affect in Tweets: SubTask 5: Emotion Classification](https://competitions.codalab.org/competitions/17751) (also available on the [Hugging Face Dataset Hub](https://huggingface.co/datasets/sem_eval_2018_task_1)). The underlying model is a RoBERTa-base model trained on 132.26M tweets until the end of June 2022. Fore more details check out the [model page](https://huggingface.co/cardiffnlp/twitter-roberta-base-jun2022). To quickly test it locally, use a pipeline: ```python from transformers import pipeline pipe = pipeline("text-classification",model="maxpe/twitter-roberta-base-jun2022_sem_eval_2018_task_1") pipe("I couldn't see any seafood for a year after I went to that restaurant that they send all the tourists to!",top_k=11) ```
muhtasham/bert-small-finer-longer
muhtasham
2022-08-30T14:26:44Z
180
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-29T12:21:01Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-small-finer-longer results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-small-finer-longer This model is a fine-tuned version of [muhtasham/bert-small-finer](https://huggingface.co/muhtasham/bert-small-finer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.49 | 500 | 1.6683 | | 1.5941 | 0.97 | 1000 | 1.6569 | | 1.5941 | 1.46 | 1500 | 1.6436 | | 1.5605 | 1.94 | 2000 | 1.6173 | | 1.5605 | 2.43 | 2500 | 1.6073 | | 1.5297 | 2.91 | 3000 | 1.6001 | | 1.5297 | 3.4 | 3500 | 1.5815 | | 1.5022 | 3.89 | 4000 | 1.5756 | | 1.5022 | 4.37 | 4500 | 1.5568 | | 1.4753 | 4.86 | 5000 | 1.5458 | | 1.4753 | 5.34 | 5500 | 1.5399 | | 1.4537 | 5.83 | 6000 | 1.5273 | | 1.4537 | 6.32 | 6500 | 1.5192 | | 1.433 | 6.8 | 7000 | 1.5099 | | 1.433 | 7.29 | 7500 | 1.5083 | | 1.4169 | 7.77 | 8000 | 1.4957 | | 1.4169 | 8.26 | 8500 | 1.4914 | | 1.3982 | 8.75 | 9000 | 1.4859 | | 1.3982 | 9.23 | 9500 | 1.4697 | | 1.3877 | 9.72 | 10000 | 1.4711 | | 1.3877 | 10.2 | 10500 | 1.4608 | | 1.3729 | 10.69 | 11000 | 1.4583 | | 1.3729 | 11.18 | 11500 | 1.4513 | | 1.3627 | 11.66 | 12000 | 1.4498 | | 1.3627 | 12.15 | 12500 | 1.4396 | | 1.357 | 12.63 | 13000 | 1.4415 | | 1.357 | 13.12 | 13500 | 1.4347 | | 1.3484 | 13.61 | 14000 | 1.4316 | | 1.3484 | 14.09 | 14500 | 1.4319 | | 1.3442 | 14.58 | 15000 | 1.4268 | | 1.3442 | 15.06 | 15500 | 1.4293 | | 1.3387 | 15.55 | 16000 | 1.4217 | | 1.3387 | 16.03 | 16500 | 1.4241 | | 1.3358 | 16.52 | 17000 | 1.4250 | | 1.3358 | 17.01 | 17500 | 1.4196 | | 1.3344 | 17.49 | 18000 | 1.4193 | | 1.3344 | 17.98 | 18500 | 1.4200 | | 1.3274 | 18.46 | 19000 | 1.4250 | | 1.3274 | 18.95 | 19500 | 1.4168 | | 1.3348 | 19.44 | 20000 | 1.4164 | | 1.3348 | 19.92 | 20500 | 1.4264 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
turhancan97/a2c-AntBulletEnv-v0
turhancan97
2022-08-30T13:21:48Z
1
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T13:20:42Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 1619.40 +/- 156.98 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
adelgalu/wav2vec2-base-klay-demo-google-colab
adelgalu
2022-08-30T12:48:07Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-30T11:13:49Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-klay-demo-google-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-klay-demo-google-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0060 - Wer: 0.1791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 15.0 | 300 | 2.4020 | 0.9889 | | 2.4596 | 30.0 | 600 | 1.3773 | 0.9833 | | 2.4596 | 45.0 | 900 | 0.5241 | 0.7253 | | 1.1148 | 60.0 | 1200 | 0.2260 | 0.4472 | | 0.3637 | 75.0 | 1500 | 0.1474 | 0.3682 | | 0.3637 | 90.0 | 1800 | 0.0742 | 0.2848 | | 0.1874 | 105.0 | 2100 | 0.0563 | 0.2681 | | 0.1874 | 120.0 | 2400 | 0.0535 | 0.2436 | | 0.1273 | 135.0 | 2700 | 0.0335 | 0.2258 | | 0.0914 | 150.0 | 3000 | 0.0336 | 0.2214 | | 0.0914 | 165.0 | 3300 | 0.0323 | 0.2136 | | 0.0733 | 180.0 | 3600 | 0.0225 | 0.2069 | | 0.0733 | 195.0 | 3900 | 0.0953 | 0.2314 | | 0.0678 | 210.0 | 4200 | 0.0122 | 0.1902 | | 0.0428 | 225.0 | 4500 | 0.0104 | 0.1869 | | 0.0428 | 240.0 | 4800 | 0.0120 | 0.1791 | | 0.0291 | 255.0 | 5100 | 0.0110 | 0.1835 | | 0.0291 | 270.0 | 5400 | 0.0062 | 0.1802 | | 0.0235 | 285.0 | 5700 | 0.0061 | 0.1802 | | 0.0186 | 300.0 | 6000 | 0.0060 | 0.1791 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.12.1
jcmc/reinforce-Pixelcopter
jcmc
2022-08-30T12:36:49Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T12:07:22Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-Pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 8.80 +/- 7.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
huggingbase/xlm-roberta-base-finetuned-panx-all
huggingbase
2022-08-30T12:29:00Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:59:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1745 - F1: 0.8505 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3055 | 1.0 | 835 | 0.1842 | 0.8099 | | 0.1561 | 2.0 | 1670 | 0.1711 | 0.8452 | | 0.1016 | 3.0 | 2505 | 0.1745 | 0.8505 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
jcmc/reinforce-carpole-op
jcmc
2022-08-30T11:58:30Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T11:56:44Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: reinforce-carpole-op results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 81.40 +/- 25.41 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
abdoutony207/m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2
abdoutony207
2022-08-30T11:49:54Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "generated_from_trainer", "dataset:un_multi", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-30T10:50:49Z
--- license: mit tags: - generated_from_trainer datasets: - un_multi metrics: - bleu model-index: - name: m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: un_multi type: un_multi args: ar-en metrics: - name: Bleu type: bleu value: 40.8245 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # m2m100_418M-evaluated-en-to-ar-2000instancesUNMULTI-leaningRate2e-05-batchSize8-regu2 This model is a fine-tuned version of [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) on the un_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3642 - Bleu: 40.8245 - Meteor: 0.4272 - Gen Len: 41.8075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 11 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:| | 5.1584 | 0.5 | 100 | 3.2518 | 30.3723 | 0.3633 | 41.5 | | 2.1351 | 1.0 | 200 | 0.9929 | 32.9915 | 0.3833 | 41.8225 | | 0.568 | 1.5 | 300 | 0.4312 | 33.705 | 0.3896 | 42.6225 | | 0.3749 | 2.0 | 400 | 0.3697 | 36.9316 | 0.4084 | 40.57 | | 0.2376 | 2.5 | 500 | 0.3587 | 37.6782 | 0.4124 | 41.99 | | 0.2435 | 3.0 | 600 | 0.3529 | 37.9931 | 0.4128 | 42.02 | | 0.1706 | 3.5 | 700 | 0.3531 | 39.9972 | 0.4252 | 41.8025 | | 0.165 | 4.0 | 800 | 0.3514 | 39.3155 | 0.42 | 41.0275 | | 0.1273 | 4.5 | 900 | 0.3606 | 40.0765 | 0.4234 | 41.6175 | | 0.1307 | 5.0 | 1000 | 0.3550 | 40.4468 | 0.428 | 41.72 | | 0.0926 | 5.5 | 1100 | 0.3603 | 40.5454 | 0.4307 | 41.765 | | 0.1096 | 6.0 | 1200 | 0.3613 | 40.5691 | 0.4298 | 42.31 | | 0.0826 | 6.5 | 1300 | 0.3642 | 40.8245 | 0.4272 | 41.8075 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
huggingbase/xlm-roberta-base-finetuned-panx-it
huggingbase
2022-08-30T11:42:25Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T11:24:40Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
huggingbase/xlm-roberta-base-finetuned-panx-de-fr
huggingbase
2022-08-30T11:03:59Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T10:35:53Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Applemoon/bert-finetuned-ner
Applemoon
2022-08-30T10:49:29Z
6
2
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T10:02:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9512644448166137 - name: Recall type: recall value: 0.9559071019858634 - name: F1 type: f1 value: 0.9535801225551919 - name: Accuracy type: accuracy value: 0.9921732019781161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0399 - Precision: 0.9513 - Recall: 0.9559 - F1: 0.9536 - Accuracy: 0.9922 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0548 | 1.0 | 1756 | 0.0438 | 0.9368 | 0.9411 | 0.9390 | 0.9900 | | 0.021 | 2.0 | 3512 | 0.0395 | 0.9446 | 0.9519 | 0.9482 | 0.9914 | | 0.0108 | 3.0 | 5268 | 0.0399 | 0.9513 | 0.9559 | 0.9536 | 0.9922 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingbase/xlm-roberta-base-finetuned-panx-de
huggingbase
2022-08-30T10:28:31Z
101
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T10:03:25Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
igpaub/q-FrozenLake-v1-8x8-noSlippery
igpaub
2022-08-30T09:15:32Z
0
0
null
[ "FrozenLake-v1-8x8-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-30T09:15:24Z
--- tags: - FrozenLake-v1-8x8-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-8x8-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-8x8-no_slippery type: FrozenLake-v1-8x8-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="igpaub/q-FrozenLake-v1-8x8-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
cynthiachan/finetuned-electra-base-10pct
cynthiachan
2022-08-30T08:01:17Z
105
0
transformers
[ "transformers", "pytorch", "electra", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-30T07:58:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.1520 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 1.0 - Cve Recall: 1.0 - Cve F1: 1.0 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 0.6154 - Domain Recall: 0.6957 - Domain F1: 0.6531 - Domain Number: 23 - Email Precision: 0.5 - Email Recall: 0.6667 - Email F1: 0.5714 - Email Number: 3 - Filepath Precision: 0.7010 - Filepath Recall: 0.8242 - Filepath F1: 0.7577 - Filepath Number: 165 - Hostname Precision: 0.9231 - Hostname Recall: 1.0 - Hostname F1: 0.9600 - Hostname Number: 12 - Ipv4 Precision: 0.7143 - Ipv4 Recall: 0.8333 - Ipv4 F1: 0.7692 - Ipv4 Number: 12 - Md5 Precision: 0.6528 - Md5 Recall: 0.9038 - Md5 F1: 0.7581 - Md5 Number: 52 - Sha1 Precision: 0.0 - Sha1 Recall: 0.0 - Sha1 F1: 0.0 - Sha1 Number: 7 - Sha256 Precision: 0.7692 - Sha256 Recall: 0.9091 - Sha256 F1: 0.8333 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.6897 - Overall Recall: 0.8284 - Overall F1: 0.7527 - Overall Accuracy: 0.9589 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.5093 | 0.37 | 500 | 0.3512 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.2024 | 0.5091 | 0.2897 | 165 | 0.0 | 0.0 | 0.0 | 12 | 0.0 | 0.0 | 0.0 | 12 | 0.1724 | 0.4808 | 0.2538 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.3797 | 0.6818 | 0.4878 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.1844 | 0.4112 | 0.2546 | 0.9163 | | 0.2742 | 0.75 | 1000 | 0.2719 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.4444 | 0.5217 | 0.48 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.4211 | 0.5333 | 0.4706 | 165 | 0.1111 | 0.25 | 0.1538 | 12 | 0.5 | 0.8333 | 0.625 | 12 | 0.6290 | 0.75 | 0.6842 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4444 | 0.8182 | 0.5760 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.4322 | 0.5562 | 0.4864 | 0.9340 | | 0.2072 | 1.12 | 1500 | 0.2008 | 0.0 | 0.0 | 0.0 | 6 | 0.2308 | 0.2727 | 0.2500 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6842 | 0.5652 | 0.6190 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.4885 | 0.7758 | 0.5995 | 165 | 0.7857 | 0.9167 | 0.8462 | 12 | 0.75 | 0.75 | 0.75 | 12 | 0.6026 | 0.9038 | 0.7231 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5970 | 0.9091 | 0.7207 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5363 | 0.7426 | 0.6228 | 0.9484 | | 0.1861 | 1.5 | 2000 | 0.2101 | 0.0 | 0.0 | 0.0 | 6 | 0.9091 | 0.9091 | 0.9091 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.5926 | 0.6957 | 0.6400 | 23 | 0.5 | 0.3333 | 0.4 | 3 | 0.6345 | 0.7576 | 0.6906 | 165 | 0.7333 | 0.9167 | 0.8148 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.6618 | 0.8654 | 0.75 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.525 | 0.9545 | 0.6774 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6181 | 0.7663 | 0.6843 | 0.9495 | | 0.1888 | 1.87 | 2500 | 0.1689 | 1.0 | 1.0 | 1.0 | 6 | 0.8182 | 0.8182 | 0.8182 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6818 | 0.6522 | 0.6667 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.5806 | 0.7636 | 0.6597 | 165 | 0.8462 | 0.9167 | 0.8800 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.6486 | 0.9231 | 0.7619 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6667 | 0.8636 | 0.7525 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6329 | 0.7751 | 0.6968 | 0.9487 | | 0.1409 | 2.25 | 3000 | 0.1520 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.6154 | 0.6957 | 0.6531 | 23 | 0.5 | 0.6667 | 0.5714 | 3 | 0.7010 | 0.8242 | 0.7577 | 165 | 0.9231 | 1.0 | 0.9600 | 12 | 0.7143 | 0.8333 | 0.7692 | 12 | 0.6528 | 0.9038 | 0.7581 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7692 | 0.9091 | 0.8333 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.6897 | 0.8284 | 0.7527 | 0.9589 | | 0.1248 | 2.62 | 3500 | 0.1716 | 0.8571 | 1.0 | 0.9231 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.84 | 0.9130 | 0.8750 | 23 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.8155 | 0.8303 | 0.8228 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.75 | 1.0 | 0.8571 | 12 | 0.7031 | 0.8654 | 0.7759 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7593 | 0.9318 | 0.8367 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7928 | 0.8491 | 0.82 | 0.9583 | | 0.1073 | 3.0 | 4000 | 0.1532 | 0.8571 | 1.0 | 0.9231 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.84 | 0.9130 | 0.8750 | 23 | 0.6667 | 0.6667 | 0.6667 | 3 | 0.7705 | 0.8545 | 0.8103 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.7059 | 1.0 | 0.8276 | 12 | 0.7313 | 0.9423 | 0.8235 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.7241 | 0.9545 | 0.8235 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7688 | 0.8757 | 0.8188 | 0.9618 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
HIT-TMG/GlyphBERT
HIT-TMG
2022-08-30T07:15:12Z
7
5
transformers
[ "transformers", "bert", "fill-mask", "bert-base-chinese", "zh", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-24T03:05:34Z
--- language: - zh tags: - bert-base-chinese license: afl-3.0 --- This project page is about the pytorch code implementation of GlyphBERT by the HITsz-TMG research group. ![img.png](https://s3.amazonaws.com/moonup/production/uploads/1661697350102-621a2b96100edd793f521ab6.png) GlyphBERT is a Chinese pre-training model that includes Chinese character glyph features.It renders the input characters into images and designs them in the form of multi-channel location feature maps, and designs a two-layer residual convolutional neural network module to extract the image features of the characters for training. The experimental results show that the performance of the pre-training model can be well improved by fusing the features of Chinese glyphs. GlyphBERT is much better than BERT in multiple downstream tasks, and has strong transferability. For more details about using it, you can check the [github repo](https://github.com/HITsz-TMG/GlyphBERT)
philschmid/custom-handler-distilbert
philschmid
2022-08-30T06:58:57Z
107
0
transformers
[ "transformers", "pytorch", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T06:52:47Z
--- pipeline_tag: text-classification ---
cynthiachan/finetuned-roberta-base-10pct
cynthiachan
2022-08-30T06:49:09Z
105
0
transformers
[ "transformers", "pytorch", "roberta", "token-classification", "generated_from_trainer", "dataset:cynthiachan/FeedRef_10pct", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T03:56:32Z
--- license: mit tags: - generated_from_trainer datasets: - cynthiachan/FeedRef_10pct model-index: - name: training results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # training This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the cynthiachan/FeedRef_10pct dataset. It achieves the following results on the evaluation set: - Loss: 0.1033 - Attackid Precision: 1.0 - Attackid Recall: 1.0 - Attackid F1: 1.0 - Attackid Number: 6 - Cve Precision: 1.0 - Cve Recall: 1.0 - Cve F1: 1.0 - Cve Number: 11 - Defenderthreat Precision: 0.0 - Defenderthreat Recall: 0.0 - Defenderthreat F1: 0.0 - Defenderthreat Number: 2 - Domain Precision: 0.8636 - Domain Recall: 0.8261 - Domain F1: 0.8444 - Domain Number: 23 - Email Precision: 1.0 - Email Recall: 1.0 - Email F1: 1.0 - Email Number: 3 - Filepath Precision: 0.8108 - Filepath Recall: 0.9091 - Filepath F1: 0.8571 - Filepath Number: 165 - Hostname Precision: 0.9231 - Hostname Recall: 1.0 - Hostname F1: 0.9600 - Hostname Number: 12 - Ipv4 Precision: 0.9167 - Ipv4 Recall: 0.9167 - Ipv4 F1: 0.9167 - Ipv4 Number: 12 - Md5 Precision: 0.875 - Md5 Recall: 0.9423 - Md5 F1: 0.9074 - Md5 Number: 52 - Sha1 Precision: 0.75 - Sha1 Recall: 0.8571 - Sha1 F1: 0.8000 - Sha1 Number: 7 - Sha256 Precision: 0.8 - Sha256 Recall: 1.0 - Sha256 F1: 0.8889 - Sha256 Number: 44 - Uri Precision: 0.0 - Uri Recall: 0.0 - Uri F1: 0.0 - Uri Number: 1 - Overall Precision: 0.8383 - Overall Recall: 0.9201 - Overall F1: 0.8773 - Overall Accuracy: 0.9816 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Attackid Precision | Attackid Recall | Attackid F1 | Attackid Number | Cve Precision | Cve Recall | Cve F1 | Cve Number | Defenderthreat Precision | Defenderthreat Recall | Defenderthreat F1 | Defenderthreat Number | Domain Precision | Domain Recall | Domain F1 | Domain Number | Email Precision | Email Recall | Email F1 | Email Number | Filepath Precision | Filepath Recall | Filepath F1 | Filepath Number | Hostname Precision | Hostname Recall | Hostname F1 | Hostname Number | Ipv4 Precision | Ipv4 Recall | Ipv4 F1 | Ipv4 Number | Md5 Precision | Md5 Recall | Md5 F1 | Md5 Number | Sha1 Precision | Sha1 Recall | Sha1 F1 | Sha1 Number | Sha256 Precision | Sha256 Recall | Sha256 F1 | Sha256 Number | Uri Precision | Uri Recall | Uri F1 | Uri Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:-------------:|:----------:|:------:|:----------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------:|:------------:|:--------:|:------------:|:------------------:|:---------------:|:-----------:|:---------------:|:------------------:|:---------------:|:-----------:|:---------------:|:--------------:|:-----------:|:-------:|:-----------:|:-------------:|:----------:|:------:|:----------:|:--------------:|:-----------:|:-------:|:-----------:|:----------------:|:-------------:|:---------:|:-------------:|:-------------:|:----------:|:------:|:----------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.4353 | 0.37 | 500 | 0.3525 | 0.0 | 0.0 | 0.0 | 6 | 0.0 | 0.0 | 0.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.0 | 0.0 | 0.0 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.3984 | 0.6182 | 0.4846 | 165 | 0.0714 | 0.3333 | 0.1176 | 12 | 0.0 | 0.0 | 0.0 | 12 | 0.8936 | 0.8077 | 0.8485 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.4937 | 0.8864 | 0.6341 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.4156 | 0.5533 | 0.4746 | 0.9459 | | 0.2089 | 0.75 | 1000 | 0.1812 | 0.0 | 0.0 | 0.0 | 6 | 0.9 | 0.8182 | 0.8571 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.15 | 0.2609 | 0.1905 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6432 | 0.7758 | 0.7033 | 165 | 0.0 | 0.0 | 0.0 | 12 | 0.6471 | 0.9167 | 0.7586 | 12 | 0.7143 | 0.8654 | 0.7826 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.5286 | 0.8409 | 0.6491 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.5315 | 0.6982 | 0.6036 | 0.9626 | | 0.1453 | 1.12 | 1500 | 0.1374 | 0.75 | 0.5 | 0.6 | 6 | 0.9167 | 1.0 | 0.9565 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.5135 | 0.8261 | 0.6333 | 23 | 0.0 | 0.0 | 0.0 | 3 | 0.6863 | 0.8485 | 0.7588 | 165 | 0.7 | 0.5833 | 0.6364 | 12 | 0.6667 | 0.6667 | 0.6667 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8333 | 0.9091 | 0.8696 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7048 | 0.8195 | 0.7579 | 0.9745 | | 0.1277 | 1.5 | 2000 | 0.1400 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.7273 | 0.6957 | 0.7111 | 23 | 0.2 | 0.3333 | 0.25 | 3 | 0.7181 | 0.8182 | 0.7649 | 165 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.7857 | 0.9167 | 0.8462 | 12 | 0.8167 | 0.9423 | 0.8750 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.8302 | 1.0 | 0.9072 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7634 | 0.8402 | 0.8000 | 0.9735 | | 0.1074 | 1.87 | 2500 | 0.1101 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.72 | 0.7826 | 0.7500 | 23 | 0.2857 | 0.6667 | 0.4 | 3 | 0.7554 | 0.8424 | 0.7966 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 0.8182 | 0.75 | 0.7826 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 0.0 | 0.0 | 0.0 | 7 | 0.6833 | 0.9318 | 0.7885 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.7660 | 0.8521 | 0.8067 | 0.9762 | | 0.0758 | 2.25 | 3000 | 0.1161 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.9091 | 0.8696 | 0.8889 | 23 | 0.5 | 0.6667 | 0.5714 | 3 | 0.8251 | 0.9152 | 0.8678 | 165 | 1.0 | 1.0 | 1.0 | 12 | 1.0 | 0.6667 | 0.8 | 12 | 0.9259 | 0.9615 | 0.9434 | 52 | 1.0 | 0.5714 | 0.7273 | 7 | 0.8958 | 0.9773 | 0.9348 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8722 | 0.9083 | 0.8899 | 0.9814 | | 0.064 | 2.62 | 3500 | 0.1275 | 1.0 | 1.0 | 1.0 | 6 | 0.8333 | 0.9091 | 0.8696 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8947 | 0.7391 | 0.8095 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8418 | 0.9030 | 0.8713 | 165 | 0.8571 | 1.0 | 0.9231 | 12 | 1.0 | 0.75 | 0.8571 | 12 | 0.9245 | 0.9423 | 0.9333 | 52 | 0.6667 | 0.5714 | 0.6154 | 7 | 0.8113 | 0.9773 | 0.8866 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8580 | 0.8935 | 0.8754 | 0.9793 | | 0.0522 | 3.0 | 4000 | 0.1033 | 1.0 | 1.0 | 1.0 | 6 | 1.0 | 1.0 | 1.0 | 11 | 0.0 | 0.0 | 0.0 | 2 | 0.8636 | 0.8261 | 0.8444 | 23 | 1.0 | 1.0 | 1.0 | 3 | 0.8108 | 0.9091 | 0.8571 | 165 | 0.9231 | 1.0 | 0.9600 | 12 | 0.9167 | 0.9167 | 0.9167 | 12 | 0.875 | 0.9423 | 0.9074 | 52 | 0.75 | 0.8571 | 0.8000 | 7 | 0.8 | 1.0 | 0.8889 | 44 | 0.0 | 0.0 | 0.0 | 1 | 0.8383 | 0.9201 | 0.8773 | 0.9816 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
Mcy/distilbert-base-uncased-finetuned-cola
Mcy
2022-08-30T06:47:24Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-29T09:31:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6550 - Matthews Correlation: 0.2820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 1.7255 | 1.0 | 712 | 1.6687 | 0.1995 | | 1.3584 | 2.0 | 1424 | 1.6550 | 0.2820 | | 1.024 | 3.0 | 2136 | 1.7990 | 0.2564 | | 0.8801 | 4.0 | 2848 | 2.1304 | 0.2657 | | 0.7138 | 5.0 | 3560 | 2.1946 | 0.2584 | | 0.5799 | 6.0 | 4272 | 2.4351 | 0.2660 | | 0.5385 | 7.0 | 4984 | 2.6819 | 0.2539 | | 0.4088 | 8.0 | 5696 | 2.8667 | 0.2436 | | 0.3722 | 9.0 | 6408 | 2.9077 | 0.2612 | | 0.3173 | 10.0 | 7120 | 2.9795 | 0.2542 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
philschmid/custom-pipeline-text-classification
philschmid
2022-08-30T06:43:39Z
0
1
generic
[ "generic", "text-classification", "region:us" ]
text-classification
2022-07-18T12:21:29Z
--- tags: - text-classification library_name: generic --- # Text Classification repository template This is a template repository for Text Classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-classification cd text-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
jaynlp/t5-large-samsum
jaynlp
2022-08-30T02:47:51Z
5
2
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2203.01552", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
We pre-trained `t5-large` on SAMSum Dialogue Summarization corpus. If you use this work for your research, please cite our work [Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking](https://arxiv.org/abs/2203.01552) ### Citation ``` @inproceedings{shin-etal-2022-dialogue, title = "Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking", author = "Shin, Jamin and Yu, Hangyeol and Moon, Hyeongdon and Madotto, Andrea and Park, Juneyoung", booktitle = "Findings of the Association for Computational Linguistics: ACL 2022", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-acl.302", pages = "3824--3846", abstract = "Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once.Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.", } ``` We used the following prompt for training ``` Summarize this dialogue: <DIALOGUE> ... ```
JAlexis/modelv2
JAlexis
2022-08-30T02:38:24Z
12
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-08-30T02:20:27Z
--- widget: - text: "How can I protect myself against covid-19?" context: "Preventative measures consist of recommendations to wear a mask in public, maintain social distancing of at least six feet, wash hands regularly, and use hand sanitizer. To facilitate this aim, we adapt the conceptual model and measures of Liao et al. " - text: "What are the risk factors for covid-19?" context: "To identify risk factors for hospital deaths from COVID-19, the OpenSAFELY platform examined electronic health records from 17.4 million UK adults. The authors used multivariable Cox proportional hazards model to identify the association of risk of death with older age, lower socio-economic status, being male, non-white ethnic background and certain clinical conditions (diabetes, obesity, cancer, respiratory diseases, heart, kidney, liver, neurological and autoimmune conditions). Notably, asthma was identified as a risk factor, despite prior suggestion of a potential protective role. Interestingly, higher risks due to ethnicity or lower socio-economic status could not be completely attributed to pre-existing health conditions." ---
Sandeepanie/clinical-finetunedNew
Sandeepanie
2022-08-30T01:41:17Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-30T01:18:21Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: clinical-finetunedNew results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical-finetunedNew This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0423 - Accuracy: 0.84 - Precision: 0.8562 - Recall: 0.9191 - F1: 0.8865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0707 | 1.0 | 50 | 0.9997 | 0.86 | 0.86 | 0.9485 | 0.9021 | | 0.0593 | 2.0 | 100 | 0.9293 | 0.845 | 0.8777 | 0.8971 | 0.8873 | | 0.0273 | 3.0 | 150 | 0.9836 | 0.83 | 0.8643 | 0.8897 | 0.8768 | | 0.039 | 4.0 | 200 | 1.0028 | 0.85 | 0.8732 | 0.9118 | 0.8921 | | 0.0121 | 5.0 | 250 | 1.0423 | 0.84 | 0.8562 | 0.9191 | 0.8865 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
fabriceyhc/bert-base-uncased-imdb
fabriceyhc
2022-08-30T00:40:47Z
1,156
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "sibyl", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer - sibyl datasets: - imdb metrics: - accuracy model-index: - name: bert-base-uncased-imdb results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb args: plain_text metrics: - name: Accuracy type: accuracy value: 0.91264 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-imdb This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4942 - Accuracy: 0.9126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1546 - training_steps: 15468 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3952 | 0.65 | 2000 | 0.4012 | 0.86 | | 0.2954 | 1.29 | 4000 | 0.4535 | 0.892 | | 0.2595 | 1.94 | 6000 | 0.4320 | 0.892 | | 0.1516 | 2.59 | 8000 | 0.5309 | 0.896 | | 0.1167 | 3.23 | 10000 | 0.4070 | 0.928 | | 0.0624 | 3.88 | 12000 | 0.5055 | 0.908 | | 0.0329 | 4.52 | 14000 | 0.4342 | 0.92 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.7.1 - Datasets 1.6.1 - Tokenizers 0.10.3
Einmalumdiewelt/DistilBART_CNN_GNAD_V2
Einmalumdiewelt
2022-08-29T23:21:34Z
14
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T15:01:52Z
--- language: - de tags: - generated_from_trainer metrics: - rouge model-index: - name: DistilBART_CNN_GNAD_V2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DistilBART_CNN_GNAD_V2 This model is a fine-tuned version of [Einmalumdiewelt/DistilBART_CNN_GNAD_V2](https://huggingface.co/Einmalumdiewelt/DistilBART_CNN_GNAD_V2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.7281 - Rouge1: 27.7253 - Rouge2: 8.4647 - Rougel: 18.2059 - Rougelsum: 23.238 - Gen Len: 91.6827 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
daviddaubner/q-FrozenLake-v1-4x4-noSlippery
daviddaubner
2022-08-29T22:39:12Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T22:39:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="daviddaubner/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
skr1125/pegasus-samsum
skr1125
2022-08-29T21:18:03Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-16T20:21:38Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7003 | 0.54 | 500 | 1.4859 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 2.0.0 - Tokenizers 0.10.3
theunnecessarythings/ddpm-butterflies-128
theunnecessarythings
2022-08-29T19:31:24Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T18:19:26Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/sreerajr000/ddpm-butterflies-128/tensorboard?#scalars)
salmujaiwel/wav2vec2-large-xls-r-300m-arabic-saudi-colab
salmujaiwel
2022-08-29T19:30:47Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-29T19:13:10Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-arabic-saudi-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-arabic-saudi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ish97/bert-finetuned-chunking-for-echo-reading
ish97
2022-08-29T19:27:28Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-29T18:07:22Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-chunking-for-echo-reading results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-chunking-for-echo-reading This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3411 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 2 | 0.4490 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 2.0 | 4 | 0.3668 | 0.0 | 0.0 | 0.0 | 0.875 | | No log | 3.0 | 6 | 0.3411 | 0.0 | 0.0 | 0.0 | 0.875 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
fractalego/creak-sense
fractalego
2022-08-29T19:24:27Z
13
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "arxiv:2109.01653", "doi:10.57967/hf/0008", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-27T16:51:07Z
# Testing whether a sentence is consistent with the CREAK dataset This framework is trained on the [CREAK dataset](https://arxiv.org/abs/2109.01653). # Install pip install creak-sense # Example ```python from creak_sense import CreakSense sense = CreakSense("fractalego/creak-sense") claim = "Bananas can be found in a grocery list" sense.make_sense(claim) ``` with output "True". # Example with explanation ```python from creak_sense import CreakSense sense = CreakSense("fractalego/creak-sense") claim = "Bananas can be found in a grocery list" sense.get_reason(claim) ``` with output "Bananas are a staple food".
ntinosmg/dqn-SpaceInvadersNoFrameskip-v4
ntinosmg
2022-08-29T19:21:48Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T19:21:07Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 555.50 +/- 234.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ntinosmg -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ntinosmg ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Dizzykong/Aristotle-8-29
Dizzykong
2022-08-29T17:46:28Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T16:31:34Z
--- license: mit tags: - generated_from_trainer model-index: - name: Aristotle-8-29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Aristotle-8-29 This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/chrishildabrant
huggingtweets
2022-08-29T17:19:30Z
107
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-29T17:19:20Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1367991702523437062/x5beyUQ-_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Chris Hildabrant</div> <div style="text-align: center; font-size: 14px;">@chrishildabrant</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Chris Hildabrant. | Data | Chris Hildabrant | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 243 | | Tweets kept | 3007 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3dagd4ww/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @chrishildabrant's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ctoe6ys/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/chrishildabrant') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
GItaf/bart-base-finetuned-mbti
GItaf
2022-08-29T17:08:37Z
17
0
transformers
[ "transformers", "pytorch", "bart", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-28T15:05:18Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-base-finetuned-mbti results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-mbti This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0025 | 1.0 | 9920 | 0.0000 | | 0.0005 | 2.0 | 19840 | 0.0000 | | 0.0002 | 3.0 | 29760 | 0.0000 | | 0.0001 | 4.0 | 39680 | 0.0000 | | 0.0001 | 5.0 | 49600 | 0.0000 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive
Atharvgarg
2022-08-29T15:47:39Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T15:10:50Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news-on-abstractive This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6549 - Rouge1: 38.9186 - Rouge2: 30.2223 - Rougel: 32.6201 - Rougelsum: 37.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 1.3838 | 1.0 | 445 | 1.4841 | 39.1621 | 30.4379 | 32.6613 | 37.9963 | | 1.0077 | 2.0 | 890 | 1.5173 | 39.388 | 30.9125 | 33.099 | 38.2442 | | 0.7983 | 3.0 | 1335 | 1.5726 | 38.7913 | 30.0766 | 32.6092 | 37.5953 | | 0.6681 | 4.0 | 1780 | 1.6549 | 38.9186 | 30.2223 | 32.6201 | 37.7502 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AliMMZ/Reinforce-model1000
AliMMZ
2022-08-29T12:48:31Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T12:48:23Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-model1000 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 87.00 +/- 31.38 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
Atharvgarg/distilbart-xsum-6-6-finetuned-bbc-news
Atharvgarg
2022-08-29T12:38:44Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "summarisation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T11:36:02Z
--- license: apache-2.0 tags: - summarisation - generated_from_trainer metrics: - rouge model-index: - name: distilbart-xsum-6-6-finetuned-bbc-news results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-xsum-6-6-finetuned-bbc-news This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2624 - Rouge1: 62.1927 - Rouge2: 54.4754 - Rougel: 55.868 - Rougelsum: 60.9345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | 0.4213 | 1.0 | 445 | 0.2005 | 59.4886 | 51.7791 | 53.5126 | 58.3405 | | 0.1355 | 2.0 | 890 | 0.1887 | 61.7474 | 54.2823 | 55.7324 | 60.5787 | | 0.0891 | 3.0 | 1335 | 0.1932 | 61.1312 | 53.103 | 54.6992 | 59.8923 | | 0.0571 | 4.0 | 1780 | 0.2141 | 60.8797 | 52.6195 | 54.4402 | 59.5298 | | 0.0375 | 5.0 | 2225 | 0.2318 | 61.7875 | 53.8753 | 55.5068 | 60.5448 | | 0.0251 | 6.0 | 2670 | 0.2484 | 62.3535 | 54.6029 | 56.2804 | 61.031 | | 0.0175 | 7.0 | 3115 | 0.2542 | 61.6351 | 53.8248 | 55.6399 | 60.3765 | | 0.0133 | 8.0 | 3560 | 0.2624 | 62.1927 | 54.4754 | 55.868 | 60.9345 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
mayjul/t5-small-finetuned-xsum
mayjul
2022-08-29T11:52:46Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-28T14:36:56Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum config: default split: train args: default metrics: - name: Rouge1 type: rouge value: 28.2727 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4789 - Rouge1: 28.2727 - Rouge2: 7.7068 - Rougel: 22.1993 - Rougelsum: 22.2071 - Gen Len: 18.8238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7189 | 1.0 | 12753 | 2.4789 | 28.2727 | 7.7068 | 22.1993 | 22.2071 | 18.8238 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
muhtasham/bert-small-finer
muhtasham
2022-08-29T11:42:58Z
163
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-28T21:44:50Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | No log | 0.49 | 500 | 3.5536 | | 3.752 | 0.97 | 1000 | 3.0406 | | 3.752 | 1.46 | 1500 | 2.7601 | | 2.6844 | 1.94 | 2000 | 2.5655 | | 2.6844 | 2.43 | 2500 | 2.4174 | | 2.3487 | 2.91 | 3000 | 2.3163 | | 2.3487 | 3.4 | 3500 | 2.2146 | | 2.1554 | 3.89 | 4000 | 2.1560 | | 2.1554 | 4.37 | 4500 | 2.0935 | | 2.019 | 4.86 | 5000 | 2.0375 | | 2.019 | 5.34 | 5500 | 1.9942 | | 1.9254 | 5.83 | 6000 | 1.9530 | | 1.9254 | 6.32 | 6500 | 1.9215 | | 1.8506 | 6.8 | 7000 | 1.8908 | | 1.8506 | 7.29 | 7500 | 1.8693 | | 1.793 | 7.77 | 8000 | 1.8399 | | 1.793 | 8.26 | 8500 | 1.8191 | | 1.7425 | 8.75 | 9000 | 1.8016 | | 1.7425 | 9.23 | 9500 | 1.7760 | | 1.7093 | 9.72 | 10000 | 1.7668 | | 1.7093 | 10.2 | 10500 | 1.7474 | | 1.6754 | 10.69 | 11000 | 1.7365 | | 1.6754 | 11.18 | 11500 | 1.7229 | | 1.6501 | 11.66 | 12000 | 1.7145 | | 1.6501 | 12.15 | 12500 | 1.7029 | | 1.633 | 12.63 | 13000 | 1.6965 | | 1.633 | 13.12 | 13500 | 1.6878 | | 1.6153 | 13.61 | 14000 | 1.6810 | | 1.6153 | 14.09 | 14500 | 1.6775 | | 1.6043 | 14.58 | 15000 | 1.6720 | | 1.6043 | 15.06 | 15500 | 1.6719 | | 1.5942 | 15.55 | 16000 | 1.6602 | | 1.5942 | 16.03 | 16500 | 1.6643 | | 1.5869 | 16.52 | 17000 | 1.6632 | | 1.5869 | 17.01 | 17500 | 1.6551 | | 1.5834 | 17.49 | 18000 | 1.6557 | | 1.5834 | 17.98 | 18500 | 1.6561 | | 1.5755 | 18.46 | 19000 | 1.6620 | | 1.5755 | 18.95 | 19500 | 1.6524 | | 1.5823 | 19.44 | 20000 | 1.6536 | | 1.5823 | 19.92 | 20500 | 1.6627 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
PKM230/Lunar_lander
PKM230
2022-08-29T11:32:51Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-29T11:31:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 14.50 +/- 141.88 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
hhffxx/pegasus-samsum
hhffxx
2022-08-29T10:52:44Z
11
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-29T06:48:07Z
--- tags: - generated_from_trainer datasets: - samsum model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [stas/pegasus-cnn_dailymail-tiny-random](https://huggingface.co/stas/pegasus-cnn_dailymail-tiny-random) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 7.5735 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6148 | 0.54 | 500 | 7.5735 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
autoevaluate/summarization
autoevaluate
2022-08-29T10:12:08Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "summarization", "dataset:xsum", "dataset:autoevaluate/xsum-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
summarization
2022-05-28T12:27:47Z
--- license: apache-2.0 tags: - generated_from_trainer - summarization datasets: - xsum - autoevaluate/xsum-sample metrics: - rouge model-index: - name: summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 23.9405 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.6690 - Rouge1: 23.9405 - Rouge2: 5.0879 - Rougel: 18.4981 - Rougelsum: 18.5032 - Gen Len: 18.7376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.9249 | 0.08 | 1000 | 2.6690 | 23.9405 | 5.0879 | 18.4981 | 18.5032 | 18.7376 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
autoevaluate/image-multi-class-classification
autoevaluate
2022-08-29T10:11:22Z
118
1
transformers
[ "transformers", "pytorch", "tensorboard", "swin", "image-classification", "generated_from_trainer", "dataset:mnist", "dataset:autoevaluate/mnist-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-21T08:52:36Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - mnist - autoevaluate/mnist-sample metrics: - accuracy model-index: - name: image-classification results: - task: name: Image Classification type: image-classification dataset: name: mnist type: mnist args: mnist metrics: - name: Accuracy type: accuracy value: 0.9833333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image-classification This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the mnist dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3743 | 1.0 | 422 | 0.0556 | 0.9833 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
autoevaluate/translation
autoevaluate
2022-08-29T10:08:28Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "dataset:autoevaluate/wmt16-sample", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-05-28T14:14:40Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 - autoevaluate/wmt16-sample metrics: - bleu model-index: - name: translation results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: wmt16 type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 28.5866 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # translation This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.3170 - Bleu: 28.5866 - Gen Len: 33.9575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.8302 | 0.03 | 1000 | 1.3170 | 28.5866 | 33.9575 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
artfrontier/ddpm-butterflies-128
artfrontier
2022-08-29T09:07:51Z
1
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T07:14:18Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/artfrontier/ddpm-butterflies-128/tensorboard?#scalars)
pinot/wav2vec2-large-xls-r-300m-ja-colab-new
pinot
2022-08-29T07:21:29Z
107
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_10_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-28T16:18:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_10_0 model-index: - name: wav2vec2-large-xls-r-300m-ja-colab-new results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ja-colab-new This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_10_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.1931 - Wer: 0.2584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 637 | 5.3089 | 0.9670 | | No log | 2.0 | 1274 | 3.2716 | 0.6123 | | No log | 3.0 | 1911 | 2.1797 | 0.4708 | | No log | 4.0 | 2548 | 1.8331 | 0.4113 | | 6.3938 | 5.0 | 3185 | 1.5111 | 0.3460 | | 6.3938 | 6.0 | 3822 | 1.3575 | 0.3132 | | 6.3938 | 7.0 | 4459 | 1.2946 | 0.2957 | | 6.3938 | 8.0 | 5096 | 1.2346 | 0.2762 | | 1.023 | 9.0 | 5733 | 1.2053 | 0.2653 | | 1.023 | 10.0 | 6370 | 1.1931 | 0.2584 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
akrisroof/ddpm-butterflies-128
akrisroof
2022-08-29T04:18:07Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-29T03:37:31Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/akrisroof/ddpm-butterflies-128/tensorboard?#scalars)
Shengyu/Evaluation_of_NER_models
Shengyu
2022-08-29T03:03:59Z
0
1
null
[ "region:us" ]
null
2022-08-29T02:58:44Z
# **Evaluation of the NER models in medical dataset** The goal of the whole project is to compare the NER models and feature evaluation in the medical dataset, and the program of model comparison needs to be executed in the GPU environment. Here are the instructions for the two project. ## 1. Model Comparison ### 1.1 Environment setting: (1) Python 3 environment (Python 3.6 and above) The user can click the link (https://www.python.org/) to select the appropriate python version and download. (2) Some related package in python The version of the package we used is as follows: ```shell Transformers: 4.8.2 NERDA: 0.9.5 Pytorch: 1.8.1+cu101 Tensorflow: 2.3.0 ``` The user can execute the following command in python environment. ```shell pip install tensorflow-gpu==2.3.0 -i https://pypi.doubanio.com/simple pip install transformers==4.8.2 pip install NERDA pip install sentencepiece pip install torch==1.8.1+cu101 torchvision==0.9.1+cu101 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html ``` ### 1.2 The process of implementation (1) Training and testing Users can check the "training&testing.ipynb" file. The user can load the models to be trained and download them locally, or directly import it into the internal model of transformers website. For example: ```python # Model loading in the "training&testing.ipynb" file transformer = '../../Model/bigbird-roberta-base/' or transformer = 'google/bigbird-roberta-base' ``` Address of model download: ```http https://huggingface.co/dmis-lab/biobert-base-cased-v1.1 https://huggingface.co/roberta-base https://huggingface.co/google/bigbird-roberta-base https://huggingface.co/microsoft/deberta-base ``` The user can download models through the above websites and put them in the "model" folder. (2) Prediction program Users can load the trained models and input new text to make that the model recognize the entities in the text. We give five trained models with the best training effect for RoBERTa, BigBird, DeBERTa, and BioBERT NER models ( The suffix of the five models ends with ". bin" ). These models is saved in "Trained model" file. For example: ```python import torch model = torch.load('../../trained_model/trained_models_by_Revised_JNLPBA_dataset/deberta.bin') model.predict_text('Number of glucocorticoid receptors in lymphocytes and their sensitivity to hormone action.') ->> ([['Number', 'of', 'glucocorticoid', 'receptors', 'in', 'lymphocytes', 'and', 'their', 'sensitivity', 'to', 'hormone','action','.']], [['O', 'O', 'B-protein','I-protein','o','B-cell_type','O','O','O','O','O','O','O']]) ``` ## 2. Feature Evaluation ### 2.1 Environment setting: (1) Some related package in python Packages we used is as follows, users can download the latest packages by ”pip install package name“ commend. ```shell 1. warnings 2. matplotlib 3. pandas 4. seaborn 5. statsmodels 6. sklearn ``` ### 2.2 The process of implementation Users can check the "feature_selection.ipynb" and "feature_evaluation.ipynb"file. Due to the privacy of the data, we did not upload the feature data, so users can view different methods of feature selection in this file. ### 3. Contact If user have any questions, please contact us. (1) Sizhu Wu - [wu.sizhu@imicams.ac.cn] (2) Shengyu Liu - [liu.shengyu@imicams.ac.cn]
rajistics/layoutlmv3-finetuned-cord_500
rajistics
2022-08-28T21:29:04Z
15
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T20:35:21Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_500 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9509293680297398 - name: Recall type: recall value: 0.9573353293413174 - name: F1 type: f1 value: 0.9541215964192465 - name: Accuracy type: accuracy value: 0.9609507640067911 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_500 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2339 - Precision: 0.9509 - Recall: 0.9573 - F1: 0.9541 - Accuracy: 0.9610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.5 | 250 | 0.9950 | 0.7114 | 0.7784 | 0.7434 | 0.7903 | | 1.3831 | 5.0 | 500 | 0.5152 | 0.8483 | 0.8787 | 0.8632 | 0.8816 | | 1.3831 | 7.5 | 750 | 0.3683 | 0.9013 | 0.9154 | 0.9083 | 0.9240 | | 0.3551 | 10.0 | 1000 | 0.3051 | 0.9201 | 0.9304 | 0.9252 | 0.9363 | | 0.3551 | 12.5 | 1250 | 0.2636 | 0.9375 | 0.9424 | 0.9399 | 0.9457 | | 0.1562 | 15.0 | 1500 | 0.2498 | 0.9385 | 0.9476 | 0.9430 | 0.9508 | | 0.1562 | 17.5 | 1750 | 0.2380 | 0.9414 | 0.9499 | 0.9456 | 0.9559 | | 0.0863 | 20.0 | 2000 | 0.2355 | 0.9400 | 0.9491 | 0.9445 | 0.9542 | | 0.0863 | 22.5 | 2250 | 0.2268 | 0.9451 | 0.9536 | 0.9493 | 0.9601 | | 0.0512 | 25.0 | 2500 | 0.2277 | 0.9429 | 0.9513 | 0.9471 | 0.9588 | | 0.0512 | 27.5 | 2750 | 0.2315 | 0.9473 | 0.9551 | 0.9512 | 0.9593 | | 0.0358 | 30.0 | 3000 | 0.2294 | 0.9509 | 0.9573 | 0.9541 | 0.9605 | | 0.0358 | 32.5 | 3250 | 0.2330 | 0.9458 | 0.9543 | 0.9501 | 0.9593 | | 0.028 | 35.0 | 3500 | 0.2374 | 0.9487 | 0.9558 | 0.9523 | 0.9597 | | 0.028 | 37.5 | 3750 | 0.2374 | 0.9501 | 0.9558 | 0.9530 | 0.9593 | | 0.0244 | 40.0 | 4000 | 0.2339 | 0.9509 | 0.9573 | 0.9541 | 0.9610 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
rajistics/layoutlmv3-finetuned-cord_800
rajistics
2022-08-28T20:21:22Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:24:26Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_800 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: train args: cord metrics: - name: Precision type: precision value: 0.9445266272189349 - name: Recall type: recall value: 0.9558383233532934 - name: F1 type: f1 value: 0.9501488095238095 - name: Accuracy type: accuracy value: 0.9605263157894737 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-cord_800 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.2042 - Precision: 0.9445 - Recall: 0.9558 - F1: 0.9501 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.56 | 250 | 0.9737 | 0.7787 | 0.8166 | 0.7972 | 0.8188 | | 1.3706 | 3.12 | 500 | 0.5489 | 0.8480 | 0.8645 | 0.8562 | 0.8680 | | 1.3706 | 4.69 | 750 | 0.3857 | 0.8913 | 0.9087 | 0.8999 | 0.9147 | | 0.3693 | 6.25 | 1000 | 0.3192 | 0.9117 | 0.9274 | 0.9195 | 0.9317 | | 0.3693 | 7.81 | 1250 | 0.2816 | 0.9189 | 0.9326 | 0.9257 | 0.9355 | | 0.1903 | 9.38 | 1500 | 0.2521 | 0.9277 | 0.9409 | 0.9342 | 0.9465 | | 0.1903 | 10.94 | 1750 | 0.2353 | 0.9357 | 0.9476 | 0.9416 | 0.9550 | | 0.1231 | 12.5 | 2000 | 0.2361 | 0.9293 | 0.9446 | 0.9369 | 0.9516 | | 0.1231 | 14.06 | 2250 | 0.2194 | 0.9402 | 0.9528 | 0.9465 | 0.9576 | | 0.0766 | 15.62 | 2500 | 0.2133 | 0.9416 | 0.9528 | 0.9472 | 0.9580 | | 0.0766 | 17.19 | 2750 | 0.2117 | 0.9438 | 0.9558 | 0.9498 | 0.9597 | | 0.0585 | 18.75 | 3000 | 0.2152 | 0.9417 | 0.9551 | 0.9483 | 0.9605 | | 0.0585 | 20.31 | 3250 | 0.2070 | 0.9431 | 0.9551 | 0.9491 | 0.9588 | | 0.0454 | 21.88 | 3500 | 0.2093 | 0.9489 | 0.9588 | 0.9538 | 0.9622 | | 0.0454 | 23.44 | 3750 | 0.2034 | 0.9453 | 0.9566 | 0.9509 | 0.9610 | | 0.0409 | 25.0 | 4000 | 0.2042 | 0.9445 | 0.9558 | 0.9501 | 0.9605 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ChaoLi/xlm-roberta-base-finetuned-panx-all
ChaoLi
2022-08-28T20:09:13Z
118
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:58:55Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1728 - F1: 0.8554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3009 | 1.0 | 835 | 0.1857 | 0.8082 | | 0.1578 | 2.0 | 1670 | 0.1733 | 0.8416 | | 0.1026 | 3.0 | 2505 | 0.1728 | 0.8554 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-it
ChaoLi
2022-08-28T19:55:33Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:52:28Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8224755700325732 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2521 - F1: 0.8225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8088 | 1.0 | 70 | 0.3423 | 0.7009 | | 0.2844 | 2.0 | 140 | 0.2551 | 0.8027 | | 0.1905 | 3.0 | 210 | 0.2521 | 0.8225 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-fr
ChaoLi
2022-08-28T19:52:12Z
107
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:47:35Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8325761399966348 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2978 - F1: 0.8326 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.574 | 1.0 | 191 | 0.3495 | 0.7889 | | 0.2649 | 2.0 | 382 | 0.2994 | 0.8242 | | 0.1716 | 3.0 | 573 | 0.2978 | 0.8326 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
ChaoLi/xlm-roberta-base-finetuned-panx-de-fr
ChaoLi
2022-08-28T19:46:37Z
106
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T19:37:01Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1643 - F1: 0.8626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2891 | 1.0 | 715 | 0.1780 | 0.8288 | | 0.1472 | 2.0 | 1430 | 0.1633 | 0.8488 | | 0.0948 | 3.0 | 2145 | 0.1643 | 0.8626 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.11.0 - Datasets 1.16.1 - Tokenizers 0.10.3
baudm/crnn
baudm
2022-08-28T19:06:36Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T19:03:22Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # CRNN v1.0 CRNN model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @article{shi2016end, title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition}, author={Shi, Baoguang and Bai, Xiang and Yao, Cong}, journal={IEEE transactions on pattern analysis and machine intelligence}, volume={39}, number={11}, pages={2298--2304}, year={2016}, publisher={IEEE} } ```
baudm/trba
baudm
2022-08-28T19:03:01Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T19:01:11Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # TRBA v1.0 TRBA model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32. Disclaimer: this model card was not written by the original authors. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{Baek_2019_ICCV, author = {Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, title = {What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {10}, year = {2019} } ```
baudm/vitstr-small
baudm
2022-08-28T18:47:40Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:41:54Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # ViTSTR small v1.0 ViTSTR model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. Disclaimer: this model card was not written by the original author. ## Model description *TODO* ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{atienza2021vision, title={Vision transformer for fast and efficient scene text recognition}, author={Atienza, Rowel}, booktitle={International Conference on Document Analysis and Recognition}, pages={319--334}, year={2021}, organization={Springer} } ```
caffsean/t5-base-finetuned-keyword-to-text-generation
caffsean
2022-08-28T18:36:02Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-27T23:29:01Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: t5-base-finetuned-keyword-to-text-generation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-keyword-to-text-generation This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4643 - Rouge1: 2.1108 - Rouge2: 0.3331 - Rougel: 1.7368 - Rougelsum: 1.7391 - Gen Len: 16.591 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 375 | 3.4862 | 2.0718 | 0.326 | 1.7275 | 1.7308 | 16.7995 | | 3.5928 | 2.0 | 750 | 3.4761 | 2.0829 | 0.3253 | 1.7192 | 1.7224 | 16.773 | | 3.5551 | 3.0 | 1125 | 3.4701 | 2.1028 | 0.3272 | 1.7274 | 1.7296 | 16.6505 | | 3.5225 | 4.0 | 1500 | 3.4671 | 2.11 | 0.3305 | 1.7343 | 1.7362 | 16.699 | | 3.5225 | 5.0 | 1875 | 3.4653 | 2.1134 | 0.3319 | 1.7418 | 1.7437 | 16.5485 | | 3.4987 | 6.0 | 2250 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.4939 | 7.0 | 2625 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | | 3.498 | 8.0 | 3000 | 3.4643 | 2.1108 | 0.3331 | 1.7368 | 1.7391 | 16.591 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
baudm/parseq-small
baudm
2022-08-28T18:35:24Z
0
3
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:31:18Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # PARSeq small v1.0 PARSeq model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. ## Model description PARSeq (Permuted Autoregressive Sequence) models unify the prevailing modeling/decoding schemes in Scene Text Recognition (STR). In particular, with a single model, it allows for context-free non-autoregressive inference (like CRNN and ViTSTR), context-aware autoregressive inference (like TRBA), and bidirectional iterative refinement (like ABINet). ![model image](https://github.com/baudm/parseq/raw/main/.github/system.png) ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{bautista2022parseq, author={Bautista, Darwin and Atienza, Rowel}, title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, booktitle={Proceedings of the 17th European Conference on Computer Vision (ECCV)}, month={10}, year={2022}, publisher={Springer International Publishing}, address={Cham} } ```
baudm/parseq-tiny
baudm
2022-08-28T18:31:35Z
0
2
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T18:31:35Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # PARSeq tiny v1.0 PARSeq model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 128x32 with a patch size of 8x4. ## Model description PARSeq (Permuted Autoregressive Sequence) models unify the prevailing modeling/decoding schemes in Scene Text Recognition (STR). In particular, with a single model, it allows for context-free non-autoregressive inference (like CRNN and ViTSTR), context-aware autoregressive inference (like TRBA), and bidirectional iterative refinement (like ABINet). ![model image](https://github.com/baudm/parseq/raw/main/.github/system.png) ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{bautista2022parseq, author={Bautista, Darwin and Atienza, Rowel}, title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, booktitle={Proceedings of the 17th European Conference on Computer Vision (ECCV)}, month={10}, year={2022}, publisher={Springer International Publishing}, address={Cham} } ```
baudm/parseq-small-patch16-224
baudm
2022-08-28T18:30:34Z
0
0
null
[ "pytorch", "image-to-text", "en", "license:apache-2.0", "region:us" ]
image-to-text
2022-08-28T17:54:13Z
--- language: - en license: apache-2.0 tags: - image-to-text --- # PARSeq small v1.0 PARSeq model pre-trained on various real [STR datasets](https://github.com/baudm/parseq/blob/main/Datasets.md) at image size 224x224 with a patch size of 16x16. ## Model description PARSeq (Permuted Autoregressive Sequence) models unify the prevailing modeling/decoding schemes in Scene Text Recognition (STR). In particular, with a single model, it allows for context-free non-autoregressive inference (like CRNN and ViTSTR), context-aware autoregressive inference (like TRBA), and bidirectional iterative refinement (like ABINet). ![model image](https://github.com/baudm/parseq/raw/main/.github/system.png) ## Intended uses & limitations You can use the model for STR on images containing Latin characters (62 case-sensitive alphanumeric + 32 punctuation marks). ### How to use *TODO* ### BibTeX entry and citation info ```bibtex @InProceedings{bautista2022parseq, author={Bautista, Darwin and Atienza, Rowel}, title={Scene Text Recognition with Permuted Autoregressive Sequence Models}, booktitle={Proceedings of the 17th European Conference on Computer Vision (ECCV)}, month={10}, year={2022}, publisher={Springer International Publishing}, address={Cham} } ```
silviacamplani/distilbert-finetuned-tapt-ner-music
silviacamplani
2022-08-28T16:35:05Z
63
1
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T16:29:09Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-tapt-ner-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-tapt-ner-music This model is a fine-tuned version of [silviacamplani/distilbert-finetuned-tapt-lm-ai](https://huggingface.co/silviacamplani/distilbert-finetuned-tapt-lm-ai) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6932 - Validation Loss: 0.7886 - Train Precision: 0.5347 - Train Recall: 0.5896 - Train F1: 0.5608 - Train Accuracy: 0.8078 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.7047 | 2.0137 | 0.0 | 0.0 | 0.0 | 0.5482 | 0 | | 1.7222 | 1.5112 | 0.0 | 0.0 | 0.0 | 0.5561 | 1 | | 1.3564 | 1.2817 | 0.2382 | 0.2592 | 0.2483 | 0.6686 | 2 | | 1.1641 | 1.1378 | 0.3605 | 0.3816 | 0.3708 | 0.7043 | 3 | | 1.0188 | 1.0187 | 0.4583 | 0.4950 | 0.4760 | 0.7409 | 4 | | 0.8983 | 0.9267 | 0.4946 | 0.5383 | 0.5155 | 0.7638 | 5 | | 0.8117 | 0.8649 | 0.5152 | 0.5653 | 0.5391 | 0.7816 | 6 | | 0.7550 | 0.8206 | 0.5283 | 0.5806 | 0.5532 | 0.8007 | 7 | | 0.7132 | 0.7964 | 0.5326 | 0.5887 | 0.5592 | 0.8049 | 8 | | 0.6932 | 0.7886 | 0.5347 | 0.5896 | 0.5608 | 0.8078 | 9 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
silviacamplani/distilbert-finetuned-dapt-ner-music
silviacamplani
2022-08-28T16:17:41Z
63
0
transformers
[ "transformers", "tf", "tensorboard", "distilbert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T16:05:49Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: silviacamplani/distilbert-finetuned-dapt-ner-music results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # silviacamplani/distilbert-finetuned-dapt-ner-music This model is a fine-tuned version of [silviacamplani/distilbert-finetuned-dapt-lm-ai](https://huggingface.co/silviacamplani/distilbert-finetuned-dapt-lm-ai) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7656 - Validation Loss: 0.8288 - Train Precision: 0.5590 - Train Recall: 0.5968 - Train F1: 0.5773 - Train Accuracy: 0.7761 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 2.5668 | 1.9780 | 0.0 | 0.0 | 0.0 | 0.5482 | 0 | | 1.7189 | 1.4888 | 0.1152 | 0.0396 | 0.0589 | 0.5905 | 1 | | 1.3060 | 1.2236 | 0.3797 | 0.3564 | 0.3677 | 0.6839 | 2 | | 1.0982 | 1.0637 | 0.4716 | 0.4635 | 0.4675 | 0.7155 | 3 | | 0.9450 | 0.9504 | 0.5176 | 0.5167 | 0.5171 | 0.7385 | 4 | | 0.8398 | 0.8775 | 0.5474 | 0.5671 | 0.5570 | 0.7579 | 5 | | 0.7656 | 0.8288 | 0.5590 | 0.5968 | 0.5773 | 0.7761 | 6 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
aware-ai/wav2vec2-xls-r-300m-english
aware-ai
2022-08-28T16:15:04Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_10_0", "generated_from_trainer", "de", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-26T12:31:54Z
--- language: - de license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_10_0 - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m-english results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-english This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_10_0 - DE dataset. It achieves the following results on the evaluation set: - Loss: 0.5577 - Wer: 0.3864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.317 | 1.0 | 7194 | 0.5577 | 0.3864 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
rajistics/layoutlmv2-finetuned-cord_100
rajistics
2022-08-28T15:48:40Z
79
0
transformers
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:cord-layoutlmv3", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T01:37:57Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 model-index: - name: layoutlmv2-finetuned-cord_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the cord-layoutlmv3 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.21.2 - Pytorch 1.10.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
buddhist-nlp/sanstib
buddhist-nlp
2022-08-28T15:02:42Z
104
2
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "license:lgpl-lr", "endpoints_compatible", "region:us" ]
feature-extraction
2022-04-22T08:35:32Z
--- license: lgpl-lr --- This model creates Sanskrit and Tibetan sentence embeddings and can be used for semantic similarity tasks. Sanskrit needs to be segmented first and converted into internal transliteration (I will upload the according script here soon). The Tibetan needs to be converted into wylie transliteration.
Mcy/t5-small-finetuned-xsum
Mcy
2022-08-28T12:40:36Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-26T08:59:52Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 178 | 1.9530 | 9.1314 | 1.226 | 9.1213 | 9.1047 | 14.4473 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/bmrf_alerts
huggingtweets
2022-08-28T11:57:30Z
106
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-25T15:42:06Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/947480106469023744/dxcygpaz_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Black Mesa Announcement System</div> <div style="text-align: center; font-size: 14px;">@bmrf_alerts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Black Mesa Announcement System. | Data | Black Mesa Announcement System | | --- | --- | | Tweets downloaded | 3251 | | Retweets | 0 | | Short tweets | 2 | | Tweets kept | 3249 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c177htj1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bmrf_alerts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19dwnb8u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19dwnb8u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bmrf_alerts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ritog/PPO-LunarLander-v2
ritog
2022-08-28T11:52:27Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T11:51:57Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 187.69 +/- 76.55 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Shivus/q-Taxi-v3
Shivus
2022-08-28T11:28:44Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T11:28:36Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Shivus/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Shivus/q-FrozenLake-v1-4x4-noSlippery
Shivus
2022-08-28T11:25:26Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-28T11:25:18Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Shivus/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
codeparrot/codeparrot-small-code-to-text
codeparrot
2022-08-28T10:00:57Z
57
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "code", "generation", "dataset:codeparrot/codeparrot-clean", "dataset:codeparrot/github-jupyter-code-to-text", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-07-19T15:34:24Z
--- language: - code license: apache-2.0 tags: - code - gpt2 - generation datasets: - codeparrot/codeparrot-clean - codeparrot/github-jupyter-code-to-text --- # CodeParrot 🦜 small for text-t-code generation This model is [CodeParrot-small](https://huggingface.co/codeparrot/codeparrot-small) (from `branch megatron`) fine-tuned on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text), a dataset where the samples are a succession of Python code and its explanation as a docstring, originally extracted from Jupyter notebooks parsed in this [dataset](https://huggingface.co/datasets/codeparrot/github-jupyter-parsed).
paola-md/recipe-lr1e05-wd0.02-bs32
paola-md
2022-08-28T08:41:28Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T08:13:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.02-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.02-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.1-bs32
paola-md
2022-08-28T08:13:25Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T07:45:57Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.1-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.1-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.005-bs32
paola-md
2022-08-28T07:45:24Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T07:17:41Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.005-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.005-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4281 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4153 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr1e05-wd0.01-bs32
paola-md
2022-08-28T07:17:08Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T06:49:39Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr1e05-wd0.01-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr1e05-wd0.01-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2756 - Rmse: 0.5250 - Mse: 0.2756 - Mae: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2768 | 0.5261 | 0.2768 | 0.4282 | | 0.2743 | 2.0 | 1246 | 0.2739 | 0.5234 | 0.2739 | 0.4152 | | 0.2732 | 3.0 | 1869 | 0.2760 | 0.5253 | 0.2760 | 0.4229 | | 0.2719 | 4.0 | 2492 | 0.2749 | 0.5243 | 0.2749 | 0.4041 | | 0.271 | 5.0 | 3115 | 0.2761 | 0.5255 | 0.2761 | 0.4238 | | 0.2699 | 6.0 | 3738 | 0.2756 | 0.5250 | 0.2756 | 0.4181 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipe-lr8e06-wd0.02-bs32
paola-md
2022-08-28T06:49:07Z
163
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-28T06:21:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-lr8e06-wd0.02-bs32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-lr8e06-wd0.02-bs32 This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2752 - Rmse: 0.5246 - Mse: 0.2752 - Mae: 0.4184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2769 | 1.0 | 623 | 0.2773 | 0.5266 | 0.2773 | 0.4296 | | 0.2745 | 2.0 | 1246 | 0.2739 | 0.5233 | 0.2739 | 0.4144 | | 0.2733 | 3.0 | 1869 | 0.2752 | 0.5246 | 0.2752 | 0.4215 | | 0.2722 | 4.0 | 2492 | 0.2744 | 0.5238 | 0.2744 | 0.4058 | | 0.2714 | 5.0 | 3115 | 0.2758 | 0.5251 | 0.2758 | 0.4232 | | 0.2705 | 6.0 | 3738 | 0.2752 | 0.5246 | 0.2752 | 0.4184 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
ajtamayoh/NER_ehealth_Spanish_mBERT_fine_tuned
ajtamayoh
2022-08-28T06:21:18Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T05:42:53Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: NER_ehealth_Spanish_mBERT_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NER_ehealth_Spanish_mBERT_fine_tuned This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6563 - Precision: 0.8094 - Recall: 0.8330 - F1: 0.8210 - Accuracy: 0.9051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 100 | 0.5335 | 0.8018 | 0.8307 | 0.8160 | 0.9047 | | No log | 2.0 | 200 | 0.5034 | 0.8110 | 0.8253 | 0.8181 | 0.9067 | | No log | 3.0 | 300 | 0.5632 | 0.7932 | 0.8230 | 0.8078 | 0.9038 | | No log | 4.0 | 400 | 0.5904 | 0.8004 | 0.8299 | 0.8149 | 0.9027 | | 0.017 | 5.0 | 500 | 0.5958 | 0.7993 | 0.8330 | 0.8158 | 0.9071 | | 0.017 | 6.0 | 600 | 0.6168 | 0.7980 | 0.8352 | 0.8162 | 0.9022 | | 0.017 | 7.0 | 700 | 0.6219 | 0.8079 | 0.8314 | 0.8195 | 0.9062 | | 0.017 | 8.0 | 800 | 0.6441 | 0.8046 | 0.8299 | 0.8171 | 0.9038 | | 0.017 | 9.0 | 900 | 0.6338 | 0.8086 | 0.8253 | 0.8168 | 0.9051 | | 0.0066 | 10.0 | 1000 | 0.6482 | 0.8021 | 0.8261 | 0.8139 | 0.9029 | | 0.0066 | 11.0 | 1100 | 0.6578 | 0.8039 | 0.8291 | 0.8163 | 0.9038 | | 0.0066 | 12.0 | 1200 | 0.6563 | 0.8094 | 0.8330 | 0.8210 | 0.9051 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
yoyoyo1118/xlm-roberta-base-finetuned-panx-de
yoyoyo1118
2022-08-28T06:05:49Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-28T05:45:44Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.863677639046538 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1343 - F1: 0.8637 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2578 | 1.0 | 525 | 0.1562 | 0.8273 | | 0.1297 | 2.0 | 1050 | 0.1330 | 0.8474 | | 0.0809 | 3.0 | 1575 | 0.1343 | 0.8637 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3