modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 12:32:32
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 12:31:20
card
stringlengths
11
1.01M
TirathP/Classifier
TirathP
2023-08-10T11:44:52Z
65
0
transformers
[ "transformers", "tf", "vit", "image-classification", "generated_from_keras_callback", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-10T11:42:51Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_keras_callback model-index: - name: TirathP/food_classifier results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # TirathP/food_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6822 - Validation Loss: 0.6966 - Train Accuracy: 1.0 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.0773 | 0.9665 | 1.0 | 0 | | 0.9585 | 0.8375 | 1.0 | 1 | | 0.8571 | 0.7712 | 1.0 | 2 | | 0.7833 | 0.7278 | 1.0 | 3 | | 0.6822 | 0.6966 | 1.0 | 4 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
Pietro995/bloomz-560m_PROMPT_TUNING_CAUSAL_LMPROVA
Pietro995
2023-08-10T11:43:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T11:43:42Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
ryand1234/llama2-testing
ryand1234
2023-08-10T11:19:06Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T11:19:00Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
esantiago/llama2-qlora-finetunned-french
esantiago
2023-08-10T11:08:45Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T11:08:38Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
yezune/distilbert-base-uncased-distilled-clinc
yezune
2023-08-10T11:04:08Z
109
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T11:00:46Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9490322580645161 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.2988 - Accuracy: 0.9490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0983 | 1.0 | 318 | 2.2883 | 0.7423 | | 1.7658 | 2.0 | 636 | 1.1722 | 0.8590 | | 0.9156 | 3.0 | 954 | 0.6499 | 0.9177 | | 0.5211 | 4.0 | 1272 | 0.4488 | 0.9326 | | 0.3488 | 5.0 | 1590 | 0.3661 | 0.9455 | | 0.267 | 6.0 | 1908 | 0.3309 | 0.9481 | | 0.226 | 7.0 | 2226 | 0.3132 | 0.9487 | | 0.2024 | 8.0 | 2544 | 0.3046 | 0.9487 | | 0.191 | 9.0 | 2862 | 0.3014 | 0.9487 | | 0.1853 | 10.0 | 3180 | 0.2988 | 0.9490 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
morell23/kaelakovalskia
morell23
2023-08-10T11:02:17Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-10T11:01:48Z
--- license: creativeml-openrail-m ---
skshreyas714/lora-trained-xl-colab
skshreyas714
2023-08-10T11:01:49Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T08:58:39Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - skshreyas714/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
shajahan123/my-pet-cat
shajahan123
2023-08-10T10:52:52Z
0
0
null
[ "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T10:49:39Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat Dreambooth model trained by shajahan123 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET91 Sample pictures of this concept: ![0](https://huggingface.co/shajahan123/my-pet-cat/resolve/main/sample_images/xgz_(1).jpg)
MrD05/otherhalf-pt
MrD05
2023-08-10T10:47:56Z
7
0
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "text generation", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T10:20:35Z
--- license: creativeml-openrail-m language: - en thumbnail: null tags: - text generation ---
Ian-14/model_test
Ian-14
2023-08-10T10:46:45Z
156
0
transformers
[ "transformers", "pytorch", "chatglm", "text-generation", "custom_code", "zh", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T01:03:03Z
--- pipeline_tag: text-generation license: apache-2.0 language: - zh widget: - text: "你好啊,O(∩_∩)O哈哈~" example_title: "Sentiment analysis" - text: "Barack Obama nominated Hilary Clinton as his secretary of state on Monday. He chose her because she had ..." example_title: "向量化" - text: "On a shelf, there are five books: a gray book, a red book, a purple book, a blue book, and a black book ..." example_title: "Logic puzzles" - text: "The two men running to become New York City's next mayor will face off in their first debate Wednesday night ..." example_title: "Reading comprehension" --- ### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True) model = AutoModel.from_pretrained("THUDM/chatglm2-6b-int4", trust_remote_code=True).half().cuda() model = model.eval() text = "你好" response, history = model.chat(tokenizer, text, history=[]) response ```
oussama/layoutlmv3-finetuned-invoice
oussama
2023-08-10T10:40:12Z
107
4
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "layoutlmv3", "token-classification", "generated_from_trainer", "dataset:sroie", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-06-23T21:29:16Z
--- tags: - generated_from_trainer datasets: - sroie metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice results: - task: name: Token Classification type: token-classification dataset: name: sroie type: sroie args: sroie metrics: - name: Precision type: precision value: 1.0 - name: Recall type: recall value: 1.0 - name: F1 type: f1 value: 1.0 - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0018 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 2.0 | 100 | 0.0967 | 0.958 | 0.9716 | 0.9648 | 0.9956 | | No log | 4.0 | 200 | 0.0222 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 6.0 | 300 | 0.0171 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | No log | 8.0 | 400 | 0.0136 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.1307 | 10.0 | 500 | 0.0117 | 0.964 | 0.9777 | 0.9708 | 0.9962 | | 0.1307 | 12.0 | 600 | 0.0099 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.1307 | 14.0 | 700 | 0.0094 | 0.972 | 0.9858 | 0.9789 | 0.9971 | | 0.1307 | 16.0 | 800 | 0.0071 | 0.9918 | 0.9838 | 0.9878 | 0.9983 | | 0.1307 | 18.0 | 900 | 0.0026 | 0.9980 | 0.9980 | 0.9980 | 0.9998 | | 0.0089 | 20.0 | 1000 | 0.0018 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0089 | 22.0 | 1100 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0089 | 24.0 | 1200 | 0.0015 | 1.0 | 0.9980 | 0.9990 | 0.9998 | | 0.0089 | 26.0 | 1300 | 0.0015 | 0.9980 | 0.9980 | 0.9980 | 0.9998 | | 0.0089 | 28.0 | 1400 | 0.0014 | 0.9980 | 0.9980 | 0.9980 | 0.9998 | | 0.0025 | 30.0 | 1500 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0025 | 32.0 | 1600 | 0.0012 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0025 | 34.0 | 1700 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0025 | 36.0 | 1800 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0025 | 38.0 | 1900 | 0.0010 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0019 | 40.0 | 2000 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
morell23/ghblistloff
morell23
2023-08-10T10:38:02Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-10T10:35:45Z
--- license: creativeml-openrail-m ---
pssubitha/llama2-qlora-finetune-QA
pssubitha
2023-08-10T10:34:30Z
3
0
peft
[ "peft", "region:us" ]
null
2023-08-10T10:34:22Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0
jules654/a2c-PandaReachDense-v3
jules654
2023-08-10T10:33:48Z
1
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-09T21:03:00Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.25 +/- 0.11 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
aura-tfn/q-FrozenLake-v1-4x4-noSlippery
aura-tfn
2023-08-10T10:27:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T10:27:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="aura-tfn/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tamiti1610001/bert-finetuned-squad
tamiti1610001
2023-08-10T10:19:39Z
115
0
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:squad_bn", "endpoints_compatible", "region:us" ]
question-answering
2023-08-10T07:22:35Z
--- tags: - generated_from_trainer datasets: - squad_bn model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the squad_bn dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
abin-regi/my-pet-dog-xzk
abin-regi
2023-08-10T10:18:50Z
19
0
diffusers
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T10:14:54Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Dog-xzk Dreambooth model trained by abin-regi following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET421 Sample pictures of this concept: ![0](https://huggingface.co/abin-regi/my-pet-dog-xzk/resolve/main/sample_images/vbcnl.jpg) ![1](https://huggingface.co/abin-regi/my-pet-dog-xzk/resolve/main/sample_images/yuggugb.jpg)
yezune/distilbert-base-uncased-finetuned-clinc
yezune
2023-08-10T10:16:42Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T10:14:49Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9141935483870968 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7816 - Accuracy: 0.9142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.2905 | 1.0 | 318 | 3.2788 | 0.7281 | | 2.6269 | 2.0 | 636 | 1.8736 | 0.8297 | | 1.5485 | 3.0 | 954 | 1.1619 | 0.8913 | | 1.0177 | 4.0 | 1272 | 0.8662 | 0.9061 | | 0.8035 | 5.0 | 1590 | 0.7816 | 0.9142 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
pknayak/whisper-small-dv
pknayak
2023-08-10T10:06:47Z
74
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-09T14:31:45Z
--- language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - pkn results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: 'Common Voice 13 - pkn ' type: mozilla-foundation/common_voice_13_0 config: dv split: test args: dv metrics: - name: Wer type: wer value: 13.290677052543728 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - pkn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 - pkn dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Wer Ortho: 62.8317 - Wer: 13.2907 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1252 | 1.63 | 500 | 0.1689 | 62.8317 | 13.2907 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yezune/xlm-roberta-base-finetuned-panx-all
yezune
2023-08-10T10:05:00Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T09:59:43Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1732 - F1: 0.8570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.3046 | 1.0 | 835 | 0.1930 | 0.8058 | | 0.157 | 2.0 | 1670 | 0.1765 | 0.8397 | | 0.1022 | 3.0 | 2505 | 0.1732 | 0.8570 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
norkart/mt5-large-no-info-extraction-3000
norkart
2023-08-10T09:56:11Z
91
0
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "no", "nb", "en", "dataset:squad_v2", "dataset:alexandrainst/scandi-qa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T08:34:22Z
--- license: apache-2.0 datasets: - squad_v2 - alexandrainst/scandi-qa language: - 'no' - nb - en widget: - text: >- question: In what country is Normandy located? context: The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave their name to Normandy, a region in France. They were descended from Norse ('Norman' comes from 'Norseman') raiders and pirates from Denmark, Iceland and Norway who, under their leader Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations of assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would gradually merge with the Carolingian-based cultures of West Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the succeeding centuries. - text: >- question: Hvem er best i Foosball av Team AI og Team Arealplaner? context: question: Hvem er best i Foosball av Team AI og Team Arealplaner? context: Team AI har vist seg å være en bemerkelsesverdig sterk kandidat i Foosball, og flere faktorer bidrar til deres overlegenhet over Team Arealplaner. Den mest fremtredende faktoren er den avanserte evnen til maskinlæring og kunstig intelligens som Team AI benytter seg av. Dette gjør Team AI best. Denne evnen gjør at de kan analysere motstanderens spillmønstre i sanntid, tilpasse sin egen strategi og ta raske beslutninger for å maksimere sjansene for suksess. Dette gir dem en betydelig fordel når det gjelder å forutsi og reagere på motstanderens trekk, noe som resulterer i mer presise skudd og bedre forsvar. I tillegg har Team AI den utrolige evnen til å samhandle sømløst og koordinere handlingene sine. Deres nøyaktige timing og perfekte synkronisering i spillet gjør dem i stand til å utnytte hver mulighet til det fulle, uansett om de angriper eller forsvarer. Denne konsistente samhandlingen mellom spillerne deres gir dem en ekstra dimensjon av effektivitet og nøyaktighet, noe som er avgjørende i et høyhastighetsspill som Foosball. Videre har Team AI den fordelen av å kunne analysere og tilpasse seg ulike motstanderstiler. Uansett om Team Arealplaner bruker en defensiv eller offensiv tilnærming, er Team AI i stand til å tilpasse seg raskt og utnytte svakheter i motstanderens strategi. Dette gjør dem til en allsidig og krevende motstander å stå overfor, da de kan tilpasse seg og overvinne ulike utfordringer som Team Arealplaner kan presentere. I sum viser Team AI en imponerende kombinasjon av avansert teknologi, nøyaktig samhandling og tilpasningsevne som gir dem en tydelig fordel over Team Arealplaner i Foosball. Deres evne til å forutsi, tilpasse seg og koordinere gir dem en uovertruffen effektivitet og suksessrate, noe som gjør dem til et overlegent lag i denne spennende sporten. --- This model is based on the ```norkart/mt5-large-no``` checkpoint and then trained for another 2000 steps on the squad_v2 dataset, then 1000 steps on the norwegian split of alexandrainst/scandi-qa. Given a question and a context, the model can find the answer in the context. The answer does not need to be stated verbatim in the context. Format: "question: 'your question' context: 'context to the question'"
iliyaML/t5-small-billsum
iliyaML
2023-08-10T09:52:25Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:billsum", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-10T09:42:37Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: t5-small-billsum results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1528 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-billsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5246 - Rouge1: 0.1528 - Rouge2: 0.0586 - Rougel: 0.1291 - Rougelsum: 0.1292 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8551 | 0.1284 | 0.0348 | 0.1081 | 0.1085 | 19.0 | | No log | 2.0 | 124 | 2.6404 | 0.1373 | 0.0453 | 0.1147 | 0.1147 | 19.0 | | No log | 3.0 | 186 | 2.5665 | 0.1423 | 0.0494 | 0.1195 | 0.1192 | 19.0 | | No log | 4.0 | 248 | 2.5342 | 0.149 | 0.055 | 0.1259 | 0.1257 | 19.0 | | No log | 5.0 | 310 | 2.5246 | 0.1528 | 0.0586 | 0.1291 | 0.1292 | 19.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yezune/xlm-roberta-base-finetuned-panx-de-fr
yezune
2023-08-10T09:49:34Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T09:44:57Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1627 - F1: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.291 | 1.0 | 715 | 0.1809 | 0.8299 | | 0.1468 | 2.0 | 1430 | 0.1512 | 0.8516 | | 0.0936 | 3.0 | 2145 | 0.1627 | 0.8586 | ### Framework versions - Transformers 4.30.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.2 - Tokenizers 0.13.3
rossevine/wav2vec2_Indonesia_4
rossevine
2023-08-10T09:29:52Z
3
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-06T15:39:57Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_Indonesia_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_Indonesia_4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.3147 - Wer: 0.5914 ## Model description Model yang dilatih dengan data train common voice dan data test data perkuliahan ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.9949 | 3.23 | 400 | 1.3340 | 0.8916 | | 0.4469 | 6.45 | 800 | 1.0507 | 0.6859 | | 0.2003 | 9.68 | 1200 | 1.1115 | 0.6369 | | 0.1432 | 12.9 | 1600 | 1.1307 | 0.6297 | | 0.1138 | 16.13 | 2000 | 1.2157 | 0.6369 | | 0.089 | 19.35 | 2400 | 1.2834 | 0.6058 | | 0.0712 | 22.58 | 2800 | 1.3283 | 0.5947 | | 0.057 | 25.81 | 3200 | 1.3345 | 0.5827 | | 0.0467 | 29.03 | 3600 | 1.3147 | 0.5914 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
WinSenX/sd-class-butterflies-32
WinSenX
2023-08-10T09:27:17Z
30
0
diffusers
[ "diffusers", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2023-08-10T09:26:59Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('WinSenX/sd-class-butterflies-32') image = pipeline().images[0] image ```
mardrake/lora-trained-xl-colab
mardrake
2023-08-10T09:23:38Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T08:05:54Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - mardrake/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
tmeskuti/distilbase-trained-sts-uncased
tmeskuti
2023-08-10T09:23:28Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "distilbert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2023-08-10T09:18:44Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
chargoddard/ypotryll-22b-gptq
chargoddard
2023-08-10T09:17:25Z
4
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:jondurbin/airoboros-gpt4-1.4.1", "dataset:ehartford/wizard_vicuna_70k_unfiltered", "dataset:ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split", "dataset:openai/summarize_from_feedback", "dataset:ehartford/dolphin", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T09:04:43Z
--- datasets: - jondurbin/airoboros-gpt4-1.4.1 - ehartford/wizard_vicuna_70k_unfiltered - ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split - openai/summarize_from_feedback - ehartford/dolphin tags: - llama --- Merged and quantized version of [ypotryll-22b-qlora](https://huggingface.co/chargoddard/ypotryll-22b-qlora). Trained for instruction-following, roleplay, and chat on a patchwork of datasets to match the [base model](https://huggingface.co/chargoddard/llama2-22b-blocktriangular). Uses the following prompt format: ``` ***System:You are a helpful assistant, who always gives a response to any request. ***Query:Here is a riddle: 5 sisters are busy. Ann is reading, Rose is cooking, Lorraine is playing chess and Mary is doing laundry. What is the fifth sister doing? ***Response:The fifth sister is sleeping. ***Query:Well, you tried. ***Response:I did my best! ``` A little bit dumb, but good for creative scenarios. Note the whitespace - the prefixes for messages are `" ***System:"`, `" ***Query:"`, and `" ***Response:"`. This is important as `"***"` and `" ***"` are two entirely different tokens. [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
cuixing/textual_inversion_object_style_vangoghsingle08101439
cuixing
2023-08-10T09:03:40Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T06:40:34Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - cuixing/textual_inversion_object_style_vangoghsingle08101439 These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
chriskim2273/IOTNation_Classification_Model_0.1
chriskim2273
2023-08-10T08:56:10Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-cased", "base_model:finetune:distilbert/distilbert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T05:38:20Z
--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: IOTNation_Classification_Model_0.1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IOTNation_Classification_Model_0.1 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0105 - Accuracy: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
prudhvirazz/t5-small-modified
prudhvirazz
2023-08-10T08:54:44Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
question-answering
2023-08-10T08:40:17Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - squad model-index: - name: t5-small-modified results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-modified This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 4.8251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 250 | 5.2728 | | 5.4402 | 2.0 | 500 | 4.9298 | | 5.4402 | 3.0 | 750 | 4.8251 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
hedong/distilhubert-finetuned-gtzan
hedong
2023-08-10T08:50:56Z
160
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-08-10T01:31:59Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6340 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9747 | 1.0 | 112 | 1.7879 | 0.56 | | 1.322 | 1.99 | 224 | 1.2554 | 0.67 | | 1.0047 | 3.0 | 337 | 0.9381 | 0.73 | | 0.8037 | 4.0 | 449 | 0.8347 | 0.77 | | 0.5617 | 4.99 | 561 | 0.7889 | 0.76 | | 0.4773 | 6.0 | 674 | 0.6480 | 0.84 | | 0.2749 | 6.99 | 786 | 0.6533 | 0.79 | | 0.1649 | 8.0 | 899 | 0.6974 | 0.79 | | 0.1132 | 9.0 | 1011 | 0.6771 | 0.81 | | 0.1243 | 9.97 | 1120 | 0.6340 | 0.83 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 2.13.1 - Tokenizers 0.13.3
dvs/videomae-base-finetuned-kinetics-finetuned-movienet
dvs
2023-08-10T08:50:52Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "videomae", "video-classification", "generated_from_trainer", "base_model:MCG-NJU/videomae-base-finetuned-kinetics", "base_model:finetune:MCG-NJU/videomae-base-finetuned-kinetics", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
video-classification
2023-08-10T06:13:15Z
--- license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base-finetuned-kinetics tags: - generated_from_trainer model-index: - name: videomae-base-finetuned-kinetics-finetuned-movienet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # videomae-base-finetuned-kinetics-finetuned-movienet This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.8737 - eval_accuracy: 0.7865 - eval_runtime: 124.9385 - eval_samples_per_second: 1.537 - eval_steps_per_second: 0.192 - epoch: 4.1 - step: 930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - training_steps: 1850 ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
smangrul/peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab
smangrul
2023-08-10T08:35:19Z
15
0
peft
[ "peft", "generated_from_trainer", "base_model:bigcode/starcoderbase-3b", "base_model:adapter:bigcode/starcoderbase-3b", "license:bigcode-openrail-m", "region:us" ]
null
2023-08-09T20:17:40Z
--- license: bigcode-openrail-m base_model: bigcode/starcoderbase-3b tags: - generated_from_trainer model-index: - name: peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab results: [] library_name: peft --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # peft-lora-starcoderbase3b-personal-copilot-A100-40GB-colab This model is a fine-tuned version of [bigcode/starcoderbase-3b](https://huggingface.co/bigcode/starcoderbase-3b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_steps: 30 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8168 | 0.05 | 100 | 0.7807 | | 0.7961 | 0.1 | 200 | 0.7197 | | 0.7837 | 0.15 | 300 | 0.6603 | | 0.7053 | 0.2 | 400 | 0.6371 | | 0.6132 | 0.25 | 500 | 0.6282 | | 0.6584 | 0.3 | 600 | 0.6107 | | 0.621 | 0.35 | 700 | 0.5934 | | 0.6961 | 0.4 | 800 | 0.5877 | | 0.592 | 0.45 | 900 | 0.5833 | | 0.6967 | 0.5 | 1000 | 0.5746 | | 0.6382 | 0.55 | 1100 | 0.5563 | | 0.6815 | 0.6 | 1200 | 0.5436 | | 0.5483 | 0.65 | 1300 | 0.5439 | | 0.7172 | 0.7 | 1400 | 0.5401 | | 0.5479 | 0.75 | 1500 | 0.5390 | | 0.9422 | 0.8 | 1600 | 0.5357 | | 0.5503 | 0.85 | 1700 | 0.5303 | | 0.5928 | 0.9 | 1800 | 0.5322 | | 0.5513 | 0.95 | 1900 | 0.5176 | | 0.6314 | 1.0 | 2000 | 0.5038 | ### Framework versions - PEFT 0.5.0.dev0 - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Hemanth-thunder/stable_diffusion_lora
Hemanth-thunder
2023-08-10T08:21:14Z
3
1
diffusers
[ "diffusers", "tensorboard", "text-to-image", "autotrain", "base_model:SG161222/Realistic_Vision_V1.4", "base_model:finetune:SG161222/Realistic_Vision_V1.4", "region:us" ]
text-to-image
2023-08-06T05:52:45Z
--- base_model: SG161222/Realistic_Vision_V1.4 instance_prompt: hmat tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was trained.
MochaPixel/Lia
MochaPixel
2023-08-10T08:19:50Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-06-18T11:55:18Z
--- license: creativeml-openrail-m ---
TheTravellingEngineer/llama2-7b-chat-hf-v4
TheTravellingEngineer
2023-08-10T08:18:44Z
1,547
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T07:28:43Z
The base model is meta's Llama-2-7b-chat-hf. It was finetuned using SFT and the openassistant/oasst1 dataset and the model prompt is similar to the original Guanaco model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.** --- - license: - llama2 <br> - datasets: - openassistant/oasst1 <br> - language: - en <br> - reference: https://gist.github.com/younesbelkada/9f7f75c94bdc1981c8ca5cc937d4a4da ---
ThuyNT03/distilbert-base-uncased-multil-cls-legal
ThuyNT03
2023-08-10T08:05:47Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-10T00:09:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-multil-cls-legal results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-multil-cls-legal This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5448 - Accuracy: 0.9022 - F1: 0.9015 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.67 | 1.0 | 396 | 1.9327 | 0.5209 | 0.4806 | | 1.5362 | 2.0 | 792 | 1.0998 | 0.7061 | 0.6869 | | 0.8991 | 3.0 | 1188 | 0.7546 | 0.8013 | 0.7975 | | 0.5899 | 4.0 | 1584 | 0.6136 | 0.8403 | 0.8392 | | 0.4082 | 5.0 | 1980 | 0.5527 | 0.8601 | 0.8589 | | 0.2874 | 6.0 | 2376 | 0.5200 | 0.8736 | 0.8731 | | 0.2136 | 7.0 | 2772 | 0.4991 | 0.8831 | 0.8815 | | 0.1564 | 8.0 | 3168 | 0.4946 | 0.8853 | 0.8843 | | 0.1123 | 9.0 | 3564 | 0.4814 | 0.8928 | 0.8920 | | 0.0866 | 10.0 | 3960 | 0.4959 | 0.8912 | 0.8908 | | 0.0685 | 11.0 | 4356 | 0.5060 | 0.8928 | 0.8923 | | 0.0508 | 12.0 | 4752 | 0.5114 | 0.8997 | 0.8989 | | 0.037 | 13.0 | 5148 | 0.5199 | 0.8978 | 0.8971 | | 0.0316 | 14.0 | 5544 | 0.5236 | 0.9003 | 0.8993 | | 0.0243 | 15.0 | 5940 | 0.5253 | 0.9022 | 0.9015 | | 0.021 | 16.0 | 6336 | 0.5385 | 0.9025 | 0.9019 | | 0.0177 | 17.0 | 6732 | 0.5396 | 0.9038 | 0.9032 | | 0.014 | 18.0 | 7128 | 0.5449 | 0.9025 | 0.9018 | | 0.014 | 19.0 | 7524 | 0.5467 | 0.9010 | 0.9002 | | 0.0103 | 20.0 | 7920 | 0.5448 | 0.9022 | 0.9015 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jubanbhura/lora-trained-xl-colab
jubanbhura
2023-08-10T08:02:11Z
2
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T06:14:27Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: digital badge designs tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - jubanbhura/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on digital badge designs using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Geotrend/distilbert-base-en-es-zh-cased
Geotrend
2023-08-10T08:02:08Z
142
0
transformers
[ "transformers", "pytorch", "safetensors", "distilbert", "fill-mask", "multilingual", "en", "es", "zh", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: - multilingual - en - es - zh datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-es-zh-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-zh-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Rida06/bert-finetuned-ner
Rida06
2023-08-10T07:57:30Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-08T08:29:16Z
--- license: apache-2.0 base_model: Bert-base-cased tags: - generated_from_keras_callback model-index: - name: Rida06/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Rida06/bert-finetuned-ner This model is a fine-tuned version of [Bert-base-cased](https://huggingface.co/Bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1762 - Validation Loss: 0.0705 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.1} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1762 | 0.0705 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.13.0 - Datasets 2.14.2 - Tokenizers 0.11.0
perion/ai-avatar
perion
2023-08-10T07:55:27Z
11
5
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-22T16:05:50Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- Test prompt: Portrait of perion man as thomas shelby in peaky blinders, highly detailed digital painting, artstation, concept art, smooth, sharp focus, illustration Sample images: ![banner-large.jpeg](https://cdn-uploads.huggingface.co/production/uploads/63ba89ded90985e7acd775df/k-WNzB5XMlVvHj9afE1Y6.jpeg)
thisiskeithkwan/cantomed-base
thisiskeithkwan
2023-08-10T07:53:41Z
76
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "yue", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T04:18:46Z
--- language: - yue license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 model-index: - name: Whisper medium 12 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper medium 12 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.3270 - Cer: 42.0122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 8000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.8931 | 1.52 | 1000 | 1.0926 | 48.9439 | | 0.3041 | 3.03 | 2000 | 1.1069 | 49.5474 | | 0.1319 | 4.55 | 3000 | 1.1925 | 45.4016 | | 0.0324 | 6.06 | 4000 | 1.2592 | 44.3186 | | 0.0245 | 7.58 | 5000 | 1.3014 | 44.2359 | | 0.0061 | 9.09 | 6000 | 1.3185 | 43.3472 | | 0.0031 | 10.61 | 7000 | 1.3266 | 42.2767 | | 0.0007 | 12.12 | 8000 | 1.3270 | 42.0122 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jakezou/rl_course_vizdoom_health_gathering_supreme
jakezou
2023-08-10T07:41:19Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T07:41:13Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 10.63 +/- 5.23 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r jakezou/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.ipykernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
newronai/llama-2-7b-Chat-QLoRA-Trial1
newronai
2023-08-10T07:32:04Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-10T07:31:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
rossevine/wav2vec2_indonesia_6
rossevine
2023-08-10T07:27:07Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-10T05:34:45Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2_Indonesia_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2_Indonesia_6 This model is a fine-tuned version of [facebook/wav2vec2-base-100h](https://huggingface.co/facebook/wav2vec2-base-100h) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.7559 - Wer: 1.0232 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1807 | 3.23 | 400 | 1.3655 | 1.0052 | | 0.5608 | 6.45 | 800 | 1.3604 | 1.0312 | | 0.3302 | 9.68 | 1200 | 1.3724 | 1.0355 | | 0.2405 | 12.9 | 1600 | 1.4350 | 1.0142 | | 0.1883 | 16.13 | 2000 | 1.5079 | 1.0213 | | 0.1535 | 19.35 | 2400 | 1.5038 | 1.0251 | | 0.1307 | 22.58 | 2800 | 1.7026 | 1.0189 | | 0.1104 | 25.81 | 3200 | 1.7072 | 1.0090 | | 0.0921 | 29.03 | 3600 | 1.7559 | 1.0232 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.18.3 - Tokenizers 0.10.3
hashu/my-pet-cat-xyz
hashu
2023-08-10T07:12:37Z
0
0
null
[ "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T07:09:43Z
--- license: creativeml-openrail-m tags: - NxtWave-GenAI-Webinar - text-to-image - stable-diffusion --- ### My-Pet-Cat-xyz Dreambooth model trained by hashu following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: VJCET527 Sample pictures of this concept: ![0](https://huggingface.co/hashu/my-pet-cat-xyz/resolve/main/sample_images/xyz_(2).jpg)
yyyy1992/my_awesome_wnut_model
yyyy1992
2023-08-10T06:58:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:wnut_17", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-10T06:51:33Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - wnut_17 metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model results: - task: name: Token Classification type: token-classification dataset: name: wnut_17 type: wnut_17 config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.5096660808435852 - name: Recall type: recall value: 0.26876737720111216 - name: F1 type: f1 value: 0.35194174757281554 - name: Accuracy type: accuracy value: 0.9392501389423282 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.0772 - Precision: 0.5097 - Recall: 0.2688 - F1: 0.3519 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 213 | 0.0816 | 0.4192 | 0.1779 | 0.2498 | 0.9351 | | No log | 2.0 | 426 | 0.0772 | 0.5097 | 0.2688 | 0.3519 | 0.9393 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1 - Datasets 2.11.0 - Tokenizers 0.13.3
weiren119/traditional_chinese_qlora_llama2_13b_adapter
weiren119
2023-08-10T06:57:43Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:56:58Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
cuixing/textual_inversion_object_style_vangogh08101212-newstyle
cuixing
2023-08-10T06:51:27Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "textual_inversion", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T04:12:51Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - textual_inversion inference: true --- # Textual inversion text2image fine-tuning - cuixing/textual_inversion_object_style_vangogh08101212-newstyle These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
tanviraumi/q-FrozenLake-v1-4x4-noSlippery
tanviraumi
2023-08-10T06:40:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T06:40:08Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tanviraumi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
dminhk/dog-example-sdxl-lora
dminhk
2023-08-10T06:35:42Z
5
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-10T05:43:30Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - dminhk/dog-example-sdxl-lora These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: None. Data set: https://huggingface.co/datasets/diffusers/dog-example Example images: ![sks dog sample 1](./sks_dog_example_1.png) ![sks dog sample 2](./sks_dog_example_2.png) ![sks dog sample 3](./sks_dog_example_3.png) ![sks dog sample 4](./sks_dog_example_4.png)
deepvk/bert-base-uncased
deepvk
2023-08-10T06:23:07Z
756
1
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "ru", "en", "license:apache-2.0", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2023-02-07T14:51:11Z
--- license: apache-2.0 language: - ru - en library_name: transformers pipeline_tag: feature-extraction --- # BERT-base <!-- Provide a quick summary of what the model is/does. --> Pretrained bidirectional encoder for russian language. The model was trained using standard MLM objective on large text corpora including open social data. See `Training Details` section for more information. ⚠️ This model contains only the encoder part without any pretrained head. - **Developed by:** [deepvk](https://vk.com/deepvk) - **Model type:** BERT - **Languages:** Mostly russian and small fraction of other languages - **License:** Apache 2.0 ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("deepvk/bert-base-uncased") model = AutoModel.from_pretrained("deepvk/bert-base-uncased") text = "Привет, мир!" inputs = tokenizer(text, return_tensors='pt') predictions = model(**inputs) ``` ## Training Details The model was trained using the NVIDIA source code. See the [pretraining documentation](https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md#training-process) for details. ### Training Data 250 GB of filtered texts in total. A mix of the following data: Wikipedia, Books and Social corpus. ### Architecture details | Argument | Value | |-------------------------|----------------| |Encoder layers | 12 | |Encoder attention heads | 12 | |Encoder embed dim | 768 | |Encoder ffn embed dim | 3,072 | |Activation function | GeLU | |Attention dropout | 0.1 | |Dropout | 0.1 | |Max positions | 512 | |Vocab size | 36000 | |Tokenizer type | BertTokenizer | ## Evaluation We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set. The best result in each task is marked in bold. All models have the same size except the distilled version of DeBERTa. | Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score | |------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------| | [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 | | [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 | | [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** | | [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 | | [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
nullday/immersiveL-exp
nullday
2023-08-10T06:21:53Z
64
4
transformers
[ "transformers", "pytorch", "safetensors", "bloom", "text-generation", "translation", "gpt-style", "chinese", "english", "zh", "en", "license:bigscience-bloom-rail-1.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-07T07:30:25Z
--- language: - zh - en tags: - translation - gpt-style - chinese - english license: "bigscience-bloom-rail-1.0" --- ## English: ### ImmersiveL Model on Hugging Face This model, available on Hugging Face under `funstoryai/immersiveL-exp`, is a GPT-like model designed specifically for English-Chinese and Chinese-English translations. **Recommended Prompts:** For English to Chinese: ``` 下面是一段英文文本,请将它翻译成中文。 {terms} #英文文本: {input} #中文翻译: ``` For Chinese to English: ``` 下面是一段中文文本,请将它翻译成英文。 {terms} #中文文本: {input} #英文翻译: ``` For the corresponding GitHub project, please visit: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL). <https://github.com/immersive-translate/ImmersiveL> --- ## 中文: ### Hugging Face 上的 ImmersiveL 模型 此模型在 Hugging Face 的 `funstoryai/immersiveL-exp` 下可用,是专为英汉和汉英翻译设计的类GPT模型。 **推荐提示词:** 英译中: ``` 下面是一段英文文本,请将它翻译成中文。 {terms} #英文文本: {input} #中文翻译: ``` 中译英: ``` 下面是一段中文文本,请将它翻译成英文。 {terms} #中文文本: {input} #英文翻译: ``` 对应的 GitHub 项目地址为: [ImmersiveL on GitHub](https://github.com/immersive-translate/ImmersiveL). <https://github.com/immersive-translate/ImmersiveL>
HG7/ReQLoRA_QKVO8
HG7
2023-08-10T06:01:24Z
2
0
peft
[ "peft", "region:us" ]
null
2023-08-10T06:01:20Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
deepvk/deberta-v1-distill
deepvk
2023-08-10T05:57:02Z
4,361
3
transformers
[ "transformers", "pytorch", "safetensors", "deberta", "feature-extraction", "ru", "en", "arxiv:1910.01108", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
2023-03-17T11:20:51Z
--- license: apache-2.0 language: - ru - en library_name: transformers pipeline_tag: feature-extraction --- # DeBERTa-distill <!-- Provide a quick summary of what the model is/does. --> Pretrained bidirectional encoder for russian language. The model was trained using standard MLM objective on large text corpora including open social data. See `Training Details` section for more information. ⚠️ This model contains only the encoder part without any pretrained head. - **Developed by:** [deepvk](https://vk.com/deepvk) - **Model type:** DeBERTa - **Languages:** Mostly russian and small fraction of other languages - **License:** Apache 2.0 ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("deepvk/deberta-v1-distill") model = AutoModel.from_pretrained("deepvk/deberta-v1-distill") text = "Привет, мир!" inputs = tokenizer(text, return_tensors='pt') predictions = model(**inputs) ``` ## Training Details ### Training Data 400 GB of filtered and deduplicated texts in total. A mix of the following data: Wikipedia, Books, Twitter comments, Pikabu, Proza.ru, Film subtitles, News websites, and Social corpus. #### Deduplication procedure 1. Calculate shingles with size of 5 2. Calculate MinHash with 100 seeds → for every sample (text) have a hash of size 100 3. Split every hash into 10 buckets → every bucket, which contains (100 / 10) = 10 numbers, get hashed into 1 hash → we have 10 hashes for every sample 4. For each bucket find duplicates: find samples which have the same hash → calculate pair-wise jaccard similarity → if the similarity is >0.7 than it's a duplicate 5. Gather duplicates from all the buckets and filter ### Training Hyperparameters | Argument | Value | |--------------------|----------------------| | Training regime | fp16 mixed precision | | Optimizer | AdamW | | Adam betas | 0.9,0.98 | | Adam eps | 1e-6 | | Weight decay | 1e-2 | | Batch size | 3840 | | Num training steps | 100k | | Num warm-up steps | 5k | | LR scheduler | Cosine | | LR | 5e-4 | | Gradient norm | 1.0 | The model was trained on a machine with 8xA100 for approximately 15 days. ### Architecture details | Argument | Value | |-------------------------|----------------| |Encoder layers | 6 | |Encoder attention heads | 12 | |Encoder embed dim | 768 | |Encoder ffn embed dim | 3,072 | |Activation function | GeLU | |Attention dropout | 0.1 | |Dropout | 0.1 | |Max positions | 512 | |Vocab size | 50266 | |Tokenizer type | Byte-level BPE | ### Distilation In our distillation procedure, we follow [SANH et al.](https://arxiv.org/abs/1910.01108). The student is initialized from the [teacher](https://huggingface.co/deepvk/deberta-v1-base) by taking only every second layer. We use the MLM loss and CE loss with coefficients of 0.5. ## Evaluation We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set. The best result in each task is marked in bold. All models have the same size except the distilled version of DeBERTa. | Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score | |------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------| | [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 | | [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 | | [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** | | [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 | | [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |
Bastian1111/dqn-SpaceInvadersNoFrameskip-v4
Bastian1111
2023-08-10T05:52:53Z
1
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-06T04:19:13Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 762.50 +/- 300.08 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Bastian1111 -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Bastian1111 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
DAMO-NLP-MT/polylm-13b
DAMO-NLP-MT
2023-08-10T05:50:39Z
1,615
53
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "custom_code", "zh", "en", "es", "fr", "pt", "ru", "de", "it", "ar", "ja", "ko", "th", "vi", "id", "nl", "pl", "tr", "he", "arxiv:2307.06018", "arxiv:2104.09864", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-13T13:48:44Z
--- language: - zh - en - es - fr - pt - ru - de - it - ar - ja - ko - th - vi - id - nl - pl - tr - he tags: - text-generation license: apache-2.0 --- # Model Card for PolyLM (a polyglot large language model) ## Table of Contents 1. [Model Details](#model-details) 2. [Usage](#usage) 3. [Uses](#uses) 4. [Bias, Risks, and Limitations](#bias-risks-and-limitations) 5. [Next Steps](#next-steps) 6. [Citation](#citation) # Model Details ## Abstract > Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. ## Model Description - **Model type:** Decoder-only Language model - **Language(s) (NLP):** Chinese, English, Spanish, German, French, Portuguese, Russian, Italian, Arabic, Japanese, Korean, Thai, Vietnamese, Indonesian, Polish, Turkish, Dutch, Hebrew - **License:** Apache 2.0 - **Original Checkpoints:** [Modelscope DAMO PolyLM-13B](https://www.modelscope.cn/models/damo/nlp_polylm_13b_text_generation/summary) - **Link to paper:** [here](https://arxiv.org/pdf/2307.06018.pdf) - **Number fotmat:** bf16 - **Total seen tokens:** 640 billion tokens - **Version:** Version 1.0 / 12 July 2023 # Usage Find below some example scripts on how to use the model in `transformers`: <details> <summary> Click to expand </summary> ```python # pip install accelerate from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("DAMO-NLP-MT/polylm-13b", legacy=False, use_fast=False) model = AutoModelForCausalLM.from_pretrained("DAMO-NLP-MT/polylm-13b", device_map="auto", trust_remote_code=True) model.eval() input_doc = f"Beijing is the capital of China.\nTranslate this sentence from English to Chinese." inputs = tokenizer(input_doc, return_tensors="pt") generate_ids = model.generate( inputs.input_ids, attention_mask=inputs.attention_mask, do_sample=False, num_beams=4, max_length=128, early_stopping=True ) decoded = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print(f">>> {decoded}") ### results ### Beijing is the capital of China.\nTranslate this sentence from English to Chinese.\\n北京是中华人民共和国的首都。\n ... ``` </details> # Uses ## Direct Use and Downstream Use > The primary use is research on language models, including: research on zero-shot NLP tasks and in-context few-shot learning NLP tasks, such as reasoning, and question answering; advancing fairness and safety research, and understanding limitations of current large language models See the [research paper](https://arxiv.org/pdf/2307.06018.pdf) for further details. ## Out-of-Scope Use More information needed. # Bias, Risks, and Limitations The information below in this section are copied from the model's [official model card](https://arxiv.org/pdf/2307.06018.pdf): > Our contributions are fully methodological: adding the support of multilingualism to LLM during training and SFT phases. It is unavoidable that PolyLM might exhibit several common deficiencies of language models, e.g. hallucination and toxicity. PolyLM should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application. # Next Steps We are continuously enhancing the capabilities of PolyLM by focusing on the following aspects: 1. Replacement of absolute position embeddings with RoPE, as outlined in the research paper [here](https://arxiv.org/abs/2104.09864). 2. Expansion of window size to more than 10,000. 3. Verification of lightweight techniques to quickly enhance multilingual quality, especially for low-resource languages. # Citation **BibTeX:** ```bibtex @misc{wei2023polylm, title={PolyLM: An Open Source Polyglot Large Language Model}, author={Xiangpeng Wei and Haoran Wei and Huan Lin and Tianhao Li and Pei Zhang and Xingzhang Ren and Mei Li and Yu Wan and Zhiwei Cao and Binbin Xie and Tianxiang Hu and Shangjie Li and Binyuan Hui and Bowen Yu and Dayiheng Liu and Baosong Yang and Fei Huang and Jun Xie}, year={2023}, eprint={2307.06018}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
mchablani/Llama-2-7b-chat-hf-mini-lawyer-chat
mchablani
2023-08-10T05:36:12Z
2
0
peft
[ "peft", "pytorch", "llama", "region:us" ]
null
2023-08-05T03:54:19Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0
JacobAshwin/donut-base-slips
JacobAshwin
2023-08-10T05:26:01Z
49
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-25T22:15:27Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-slips results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-slips This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jonalkw/Reinforce-pixelcopter
jonalkw
2023-08-10T05:25:14Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T05:25:11Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixelcopter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 9.60 +/- 12.56 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nicbull/DialoGPT-medium-leric
nicbull
2023-08-10T04:37:18Z
150
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "chat", "conversational", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T04:25:26Z
--- language: - en pipeline_tag: conversational tags: - chat ---
Pixel390/NEWKAYV2
Pixel390
2023-08-10T04:29:35Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T04:09:28Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/NEWKAYV2 These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
chunwoolee0/keti-air-ke-t5-base-en-to-ko
chunwoolee0
2023-08-10T04:00:42Z
114
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:KETI-AIR/ke-t5-base", "base_model:finetune:KETI-AIR/ke-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2023-08-10T03:27:30Z
--- license: apache-2.0 base_model: KETI-AIR/ke-t5-base tags: - translation - generated_from_trainer datasets: - kde4 model-index: - name: keti-air-ke-t5-base-en-to-ko results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # keti-air-ke-t5-base-en-to-ko This model is a fine-tuned version of [KETI-AIR/ke-t5-base](https://huggingface.co/KETI-AIR/ke-t5-base) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
yasndr/dqn-SpaceInvadersNoFrameskip-v4
yasndr
2023-08-10T03:54:03Z
3
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T03:53:19Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 550.50 +/- 135.14 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yasndr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga yasndr -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga yasndr ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
IHaveNoClueAndIMustPost/orca_mini_v3_13b-GGML
IHaveNoClueAndIMustPost
2023-08-10T03:52:59Z
0
1
transformers
[ "transformers", "en", "endpoints_compatible", "region:us" ]
null
2023-08-10T02:39:13Z
--- language: - en library_name: transformers --- orca_mini_v3_13b by [psmathur](https://huggingface.co/psmathur) in a couple of GGML formats. Please see the original model card here [here](https://huggingface.co/psmathur/orca_mini_v3_13b) for more information.
debjxt/tlx-bzx-btz
debjxt
2023-08-10T03:45:14Z
1
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-10T03:32:22Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### tlx_bzx_btz Dreambooth model trained by debjxt with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
dangkhoadl/AudioResNet
dangkhoadl
2023-08-10T03:21:17Z
38
0
transformers
[ "transformers", "pytorch", "resnet", "endpoints_compatible", "region:us" ]
null
2023-08-08T01:50:29Z
# Input tensor shape [batch_size, Cin, num_feats, num_frames]
jordyvl/dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd
jordyvl
2023-08-10T03:06:31Z
164
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-27T12:16:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-finetuned-rvlcdip-tiny_rvl_cdip-NK1000_kd This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5815 - Accuracy: 0.8055 - Brier Loss: 0.2836 - Nll: 1.6135 - F1 Micro: 0.8055 - F1 Macro: 0.8061 - Ece: 0.0597 - Aurc: 0.0526 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:| | No log | 1.0 | 125 | 1.2844 | 0.5403 | 0.5889 | 3.0582 | 0.5403 | 0.5275 | 0.0742 | 0.2209 | | No log | 2.0 | 250 | 0.9687 | 0.655 | 0.4587 | 2.4358 | 0.655 | 0.6414 | 0.0559 | 0.1296 | | No log | 3.0 | 375 | 0.8401 | 0.7063 | 0.4019 | 2.2308 | 0.7063 | 0.7008 | 0.0588 | 0.0990 | | 1.234 | 4.0 | 500 | 0.8080 | 0.7145 | 0.3874 | 2.1628 | 0.7145 | 0.7163 | 0.0487 | 0.0951 | | 1.234 | 5.0 | 625 | 0.7772 | 0.7238 | 0.3755 | 2.0380 | 0.7237 | 0.7167 | 0.0421 | 0.0914 | | 1.234 | 6.0 | 750 | 0.7530 | 0.7498 | 0.3484 | 2.1346 | 0.7498 | 0.7464 | 0.0477 | 0.0774 | | 1.234 | 7.0 | 875 | 0.7034 | 0.7652 | 0.3267 | 2.0596 | 0.7652 | 0.7664 | 0.0467 | 0.0678 | | 0.3976 | 8.0 | 1000 | 0.7390 | 0.7715 | 0.3350 | 2.0568 | 0.7715 | 0.7704 | 0.0448 | 0.0763 | | 0.3976 | 9.0 | 1125 | 0.7019 | 0.7762 | 0.3209 | 2.0168 | 0.7762 | 0.7768 | 0.0556 | 0.0769 | | 0.3976 | 10.0 | 1250 | 0.7318 | 0.7668 | 0.3346 | 2.1148 | 0.7668 | 0.7699 | 0.0529 | 0.0792 | | 0.3976 | 11.0 | 1375 | 0.7083 | 0.7782 | 0.3213 | 2.0671 | 0.7782 | 0.7775 | 0.0452 | 0.0756 | | 0.1591 | 12.0 | 1500 | 0.7535 | 0.7668 | 0.3424 | 2.1407 | 0.7668 | 0.7636 | 0.0564 | 0.0845 | | 0.1591 | 13.0 | 1625 | 0.7117 | 0.775 | 0.3288 | 2.0935 | 0.775 | 0.7766 | 0.0525 | 0.0785 | | 0.1591 | 14.0 | 1750 | 0.6421 | 0.785 | 0.3039 | 1.9939 | 0.785 | 0.7860 | 0.0512 | 0.0643 | | 0.1591 | 15.0 | 1875 | 0.6475 | 0.7865 | 0.3050 | 1.9301 | 0.7865 | 0.7867 | 0.0552 | 0.0636 | | 0.1125 | 16.0 | 2000 | 0.6477 | 0.7893 | 0.3064 | 1.9442 | 0.7893 | 0.7920 | 0.0556 | 0.0684 | | 0.1125 | 17.0 | 2125 | 0.6509 | 0.7883 | 0.3113 | 1.8957 | 0.7883 | 0.7907 | 0.0498 | 0.0710 | | 0.1125 | 18.0 | 2250 | 0.6291 | 0.7925 | 0.3038 | 1.8697 | 0.7925 | 0.7963 | 0.0512 | 0.0677 | | 0.1125 | 19.0 | 2375 | 0.6279 | 0.7963 | 0.2992 | 1.8155 | 0.7963 | 0.7950 | 0.0478 | 0.0647 | | 0.095 | 20.0 | 2500 | 0.6246 | 0.7937 | 0.3008 | 1.7925 | 0.7937 | 0.7946 | 0.0595 | 0.0659 | | 0.095 | 21.0 | 2625 | 0.6149 | 0.7953 | 0.2962 | 1.8237 | 0.7953 | 0.7951 | 0.0547 | 0.0590 | | 0.095 | 22.0 | 2750 | 0.6196 | 0.7953 | 0.3000 | 1.8031 | 0.7953 | 0.7969 | 0.0567 | 0.0643 | | 0.095 | 23.0 | 2875 | 0.6023 | 0.798 | 0.2932 | 1.7663 | 0.798 | 0.7983 | 0.0497 | 0.0616 | | 0.0829 | 24.0 | 3000 | 0.6107 | 0.7943 | 0.2951 | 1.7755 | 0.7943 | 0.7958 | 0.0564 | 0.0581 | | 0.0829 | 25.0 | 3125 | 0.5986 | 0.8015 | 0.2930 | 1.7243 | 0.8015 | 0.8027 | 0.0565 | 0.0574 | | 0.0829 | 26.0 | 3250 | 0.5899 | 0.8005 | 0.2886 | 1.7304 | 0.8005 | 0.8021 | 0.0546 | 0.0560 | | 0.0829 | 27.0 | 3375 | 0.5836 | 0.8023 | 0.2846 | 1.6865 | 0.8023 | 0.8024 | 0.0479 | 0.0561 | | 0.074 | 28.0 | 3500 | 0.5824 | 0.8047 | 0.2850 | 1.6817 | 0.8047 | 0.8060 | 0.0524 | 0.0559 | | 0.074 | 29.0 | 3625 | 0.5760 | 0.8063 | 0.2822 | 1.6505 | 0.8062 | 0.8065 | 0.0500 | 0.0546 | | 0.074 | 30.0 | 3750 | 0.5819 | 0.8065 | 0.2843 | 1.6667 | 0.8065 | 0.8079 | 0.0563 | 0.0544 | | 0.074 | 31.0 | 3875 | 0.5800 | 0.8045 | 0.2841 | 1.6658 | 0.8045 | 0.8059 | 0.0511 | 0.0548 | | 0.0668 | 32.0 | 4000 | 0.5828 | 0.8053 | 0.2841 | 1.6883 | 0.8053 | 0.8054 | 0.0559 | 0.0547 | | 0.0668 | 33.0 | 4125 | 0.5802 | 0.8037 | 0.2838 | 1.6669 | 0.8037 | 0.8038 | 0.0572 | 0.0545 | | 0.0668 | 34.0 | 4250 | 0.5772 | 0.8067 | 0.2821 | 1.6588 | 0.8067 | 0.8083 | 0.0520 | 0.0525 | | 0.0668 | 35.0 | 4375 | 0.5745 | 0.807 | 0.2812 | 1.6524 | 0.807 | 0.8072 | 0.0528 | 0.0528 | | 0.0631 | 36.0 | 4500 | 0.5770 | 0.8063 | 0.2826 | 1.6433 | 0.8062 | 0.8071 | 0.0559 | 0.0528 | | 0.0631 | 37.0 | 4625 | 0.5782 | 0.8007 | 0.2837 | 1.5953 | 0.8007 | 0.8021 | 0.0581 | 0.0541 | | 0.0631 | 38.0 | 4750 | 0.5780 | 0.8047 | 0.2829 | 1.6275 | 0.8047 | 0.8052 | 0.0540 | 0.0521 | | 0.0631 | 39.0 | 4875 | 0.5759 | 0.8055 | 0.2817 | 1.6162 | 0.8055 | 0.8065 | 0.0528 | 0.0529 | | 0.0612 | 40.0 | 5000 | 0.5770 | 0.8047 | 0.2825 | 1.6131 | 0.8047 | 0.8051 | 0.0575 | 0.0524 | | 0.0612 | 41.0 | 5125 | 0.5771 | 0.8043 | 0.2819 | 1.6015 | 0.8043 | 0.8048 | 0.0562 | 0.0519 | | 0.0612 | 42.0 | 5250 | 0.5776 | 0.8043 | 0.2825 | 1.6152 | 0.8043 | 0.8047 | 0.0566 | 0.0527 | | 0.0612 | 43.0 | 5375 | 0.5793 | 0.8057 | 0.2830 | 1.6196 | 0.8057 | 0.8065 | 0.0538 | 0.0527 | | 0.06 | 44.0 | 5500 | 0.5801 | 0.8053 | 0.2835 | 1.6183 | 0.8053 | 0.8060 | 0.0618 | 0.0527 | | 0.06 | 45.0 | 5625 | 0.5800 | 0.805 | 0.2831 | 1.6057 | 0.805 | 0.8055 | 0.0568 | 0.0530 | | 0.06 | 46.0 | 5750 | 0.5812 | 0.805 | 0.2836 | 1.6034 | 0.805 | 0.8056 | 0.0577 | 0.0529 | | 0.06 | 47.0 | 5875 | 0.5809 | 0.805 | 0.2834 | 1.6164 | 0.805 | 0.8056 | 0.0580 | 0.0526 | | 0.0593 | 48.0 | 6000 | 0.5810 | 0.8057 | 0.2834 | 1.6108 | 0.8057 | 0.8064 | 0.0617 | 0.0525 | | 0.0593 | 49.0 | 6125 | 0.5812 | 0.8053 | 0.2836 | 1.6140 | 0.8053 | 0.8058 | 0.0570 | 0.0527 | | 0.0593 | 50.0 | 6250 | 0.5815 | 0.8055 | 0.2836 | 1.6135 | 0.8055 | 0.8061 | 0.0597 | 0.0526 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
sshh12/sdxl-lora-pokemon
sshh12
2023-08-10T03:05:05Z
2
0
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-07T02:37:13Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-1.0 dataset: lambdalabs/pokemon-blip-captions tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: false --- These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. | | | | | | ------------------------------------------------------- | ---------------------------------------------------------------------------------- | ----------------------------------------------------- | ------------------------------------------------------------- | | ![img_1](./imgs/img_aspider_ckpt8000_gs5.0_seed100.png) | ![img_2](./imgs/img_roboticcatwithwingsabrahamlincoln_ckpt3000_gs10.0_seed100.png) | ![img_3](./imgs/img_yoda_ckpt3000_gs10.0_seed100.png) | ![img_4](./imgs/img_abrahamlincoln_ckpt3000_gs10.0_seed0.png) | ## 🧨 Diffusers Usage ```py import torch from diffusers import DiffusionPipeline, AutoencoderKL vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.load_lora_weights("sshh12/sdxl-lora-pokemon") pipe.to("cuda") prompt = "..." image = pipe(prompt=prompt).images[0] image ``` ## Training ```py MODEL_NAME="stabilityai/stable-diffusion-xl-base-1.0" DATASET_NAME="lambdalabs/pokemon-blip-captions" !accelerate launch train_text_to_image_lora_sdxl.py \ --pretrained_model_name_or_path="$MODEL_NAME" \ --pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix" \ --dataset_name="$DATASET_NAME" \ --caption_column="text" \ --resolution=1024 \ --random_flip \ --mixed_precision="fp16" \ --use_8bit_adam \ --train_batch_size=1 \ --gradient_accumulation_steps=8 \ --num_train_epochs=200 \ --checkpointing_steps=500 \ --learning_rate=1e-04 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --seed=0 \ --validation_prompt="cute dragon creature" \ --enable_xformers_memory_efficient_attention \ --report_to="wandb" ```
rriverar75/vit-model
rriverar75
2023-08-10T02:34:32Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "dataset:beans", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-10T02:08:37Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - beans metrics: - accuracy widget: - src: >- https://huggingface.co/rriverar75/vit-model/resolve/main/healthy.jpeg example_title: Healthy - src: >- https://huggingface.co/rriverar75/vit-model/resolve/main/bean_rust.jpeg example_title: Bean Rust model-index: - name: vit-model results: - task: name: Image Classification type: image-classification dataset: name: beans type: beans config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 1.0 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 0.0189 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1527 | 3.85 | 500 | 0.0189 | 1.0 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
Pixel390/NEWKAY
Pixel390
2023-08-10T02:29:53Z
0
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-10T02:12:50Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz green haired girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/NEWKAY These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz green haired girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
dtthanh/llama-2-7b-und-lora-2.7
dtthanh
2023-08-10T02:20:10Z
3
1
peft
[ "peft", "vi", "license:cc-by-sa-4.0", "region:us" ]
null
2023-08-06T10:41:24Z
--- library_name: peft license: cc-by-sa-4.0 language: - vi --- ### Adapter info - This is an Lora adapter using dataset contains only 360 Vietnamese sentences and the "text" column in a format like: - ```python > \<s\>\[INST\] "Bạn bè có phúc cùng chia."\[\/INST\] Bạn bè có phúc cùng chia. Có họa trốn sạch chạy đi phương nào? Tay trắng làm nên… mấy chục ngàn bạc nợ. \<\/s\> or > \<s\>\[INST\] Ai bảo chăn trâu là khổ. \[\/INST\] Ai bảo chăn trâu là khổ. Tôi chăn chồng còn khổ hơn trâu. Trâu đi trâu biêt đường về. Chồng đi không biết dường về như trâu. \<\/s\> ## Training procedure - The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Usage - ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer model_name = "NousResearch/llama-2-7b-chat-hf" adapters_name = "dtthanh/llama-2-7b-und-lora-2.7" print(f"Starting to load the model {model_name} into memory") m = AutoModelForCausalLM.from_pretrained( model_name, # base_model_name_or_path # NousResearch/llama-2-7b-chat-hf #load_in_4bit=True, torch_dtype=torch.bfloat16, device_map={"": 0} ) m = PeftModel.from_pretrained(m, adapters_name) m = m.merge_and_unload() tok = AutoTokenizer.from_pretrained(model_name) tok.pad_token_id = 18610 # _*** print(f"Successfully loaded the model {model_name} into memory") - PEFT 0.4.0
ScottShao/llama2-7b-200steps-finetunined-sxl
ScottShao
2023-08-10T02:11:23Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T02:11:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
wangxso/q-FrozenLake-v1-4x4-noSlippery
wangxso
2023-08-10T02:01:58Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T02:01:55Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="wangxso/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
TheTravellingEngineer/bloom-1b1-RLHF-v2
TheTravellingEngineer
2023-08-10T01:39:33Z
1,662
0
transformers
[ "transformers", "pytorch", "bloom", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-10T01:30:21Z
The base model is bigscience/bloom-1b1. It was finetuned using RLHF and the dataset and the model prompt is similar to the original model. This repo contains the merged fp16 model. **Legal Disclaimer: This model is bound by the usage restrictions of the original BLOOM model. And comes with no warranty or gurantees of any kind.** --- - license: - bigscience-bloom-rail-1.0 <br> - datasets: - Anthropic/hh-rlhf <br> - language: - en <br> - reference: https://github.com/hiyouga/LLaMA-Efficient-Tuning/tree/main ---
tianpf/llama2-qlora-finetunined-law
tianpf
2023-08-10T01:38:54Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T01:38:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
jaykei/Zuko
jaykei
2023-08-10T01:17:21Z
0
1
null
[ "en", "license:openrail", "region:us" ]
null
2023-07-05T05:16:36Z
--- license: openrail language: - en ---
dana11235/ppo-Huggy
dana11235
2023-08-10T01:16:01Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-08-10T01:15:51Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dana11235/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
toastedshibe/lora-trained-xl-colab
toastedshibe
2023-08-10T01:04:48Z
5
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2023-08-09T23:49:50Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - toastedshibe/lora-trained-xl-colab These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
junikeda/Reinforce-PolicyGradient-CartPole-v1
junikeda
2023-08-10T01:01:08Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T01:00:57Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-PolicyGradient-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Jiuzhouh/flan-t5-xxl-lora-t2g-webnlg
Jiuzhouh
2023-08-10T00:35:01Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-10T00:34:49Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0.dev0 - PEFT 0.4.0.dev0
Caiquejajaja/Sla
Caiquejajaja
2023-08-10T00:28:06Z
0
0
null
[ "region:us" ]
null
2023-08-10T00:27:45Z
git lfs install git clone https://huggingface.co/facebook/bart-large-mnli
allenbc/q-FrozenLake-v1-4x4-noSlippery
allenbc
2023-08-10T00:26:14Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-08-10T00:26:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="allenbc/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
asenella/mhd_config_1_MMVAE_beta_5_scale_True_seed_1
asenella
2023-08-10T00:03:06Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-08-10T00:02:56Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Pixel390/GIRLKAY
Pixel390
2023-08-09T23:53:42Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:Meina/MeinaMix_V10", "base_model:adapter:Meina/MeinaMix_V10", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-08-09T23:09:34Z
--- license: creativeml-openrail-m base_model: Meina/MeinaMix_V10 instance_prompt: a uxz girl tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - Pixel390/GIRLKAY These are LoRA adaption weights for Meina/MeinaMix_V10. The weights were trained on a uxz girl using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. LoRA for the text encoder was enabled: True.
tingchih/pretrain_doc_concat
tingchih
2023-08-09T23:38:40Z
105
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-31T05:04:43Z
This is a pre-train baseline model for summarization. Input is to concatenate all articles in one cluster. the example.json is the example result. pipeline: input -> sum tokenizer -> perceiver -> sum model -> summary
good-gaming/distilbert-base-uncased-finetuned-emotion
good-gaming
2023-08-09T23:21:58Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-08-09T22:48:26Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 - name: F1 type: f1 value: 0.9272353554627635 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2133 - Accuracy: 0.927 - F1: 0.9272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8118 | 1.0 | 250 | 0.3108 | 0.905 | 0.9056 | | 0.2485 | 2.0 | 500 | 0.2133 | 0.927 | 0.9272 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.12.1 - Datasets 1.16.1 - Tokenizers 0.13.3
omersen/omer_trained_model
omersen
2023-08-09T23:16:45Z
2
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T22:51:44Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of person tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - omersen/omer_trained_model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
knvarad/t5
knvarad
2023-08-09T22:41:08Z
59
0
transformers
[ "transformers", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-08T23:29:01Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: dummy-model-varad1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dummy-model-varad1 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8679 - Validation Loss: 3.5523 - Train Rougel: tf.Tensor(0.11994212, shape=(), dtype=float32) - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rougel | Epoch | |:----------:|:---------------:|:----------------------------------------------:|:-----:| | 3.8679 | 3.5523 | tf.Tensor(0.11994212, shape=(), dtype=float32) | 0 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.10.1 - Datasets 2.13.1 - Tokenizers 0.12.1
theojolliffe/flan-recipes
theojolliffe
2023-08-09T22:39:32Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-08-09T22:03:11Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-recipes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-recipes This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 71.0741 - Rouge2: 34.937 - Rougel: 71.129 - Rougelsum: 71.0758 - Gen Len: 4.0103 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 0.0 | 1.0 | 873 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 2.0 | 1746 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 3.0 | 2619 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | | 0.0 | 4.0 | 3492 | nan | 71.0741 | 34.937 | 71.129 | 71.0758 | 4.0103 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gang21/llama2-icd10-peft
gang21
2023-08-09T22:33:20Z
0
0
peft
[ "peft", "region:us" ]
null
2023-08-09T22:05:35Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
jucaro/donut-base-sroie
jucaro
2023-08-09T22:19:48Z
46
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:naver-clova-ix/donut-base", "base_model:finetune:naver-clova-ix/donut-base", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-08-09T19:07:50Z
--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-sroie results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-sroie This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
agustinl/ppo-SnowballTarget
agustinl
2023-08-09T22:18:40Z
9
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-08-09T22:18:36Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: agustinl/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
sergeindamix/anciano_pendejo
sergeindamix
2023-08-09T22:11:22Z
2
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-09T22:11:17Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks person tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Test enoder was not trained.
rizquuula/RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5
rizquuula
2023-08-09T22:04:20Z
101
0
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
question-answering
2023-08-09T14:51:09Z
--- license: mit tags: - generated_from_trainer model-index: - name: RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # RoBERTa-IndoSQuADv2_1691592486-16-2e-05-0.01-5 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 2.2457 | 1.0 | 8145 | 2.1159 | | 1.7442 | 2.0 | 16290 | 2.0275 | | 1.4963 | 3.0 | 24435 | 2.0147 | | 1.301 | 4.0 | 32580 | 2.0607 | | 1.1569 | 5.0 | 40725 | 2.1516 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
ittailup/lallama-13b-alpha
ittailup
2023-08-09T21:56:02Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:meta-llama/Llama-2-13b-hf", "base_model:finetune:meta-llama/Llama-2-13b-hf", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-08-07T21:10:18Z
--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer model-index: - name: lallama-13b-alpha results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lallama-13b-alpha This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.3 - Tokenizers 0.13.3
muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet
muhtasham
2023-08-09T21:39:47Z
111
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-11-16T16:28:58Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.87168 - name: F1 type: f1 value: 0.8716747437975058 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet This model is a fine-tuned version of [muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion](https://huggingface.co/muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.4004 - Accuracy: 0.8717 - F1: 0.8717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4751 | 1.28 | 500 | 0.3880 | 0.828 | 0.8277 | | 0.3453 | 2.56 | 1000 | 0.3282 | 0.8608 | 0.8607 | | 0.2973 | 3.84 | 1500 | 0.3140 | 0.8695 | 0.8695 | | 0.26 | 5.12 | 2000 | 0.3154 | 0.8736 | 0.8735 | | 0.2218 | 6.39 | 2500 | 0.3144 | 0.8756 | 0.8756 | | 0.1977 | 7.67 | 3000 | 0.3197 | 0.876 | 0.8760 | | 0.1656 | 8.95 | 3500 | 0.3526 | 0.8737 | 0.8735 | | 0.1404 | 10.23 | 4000 | 0.3865 | 0.8691 | 0.8689 | | 0.121 | 11.51 | 4500 | 0.4004 | 0.8717 | 0.8717 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
mandeepbagga/llama-2-13b-infyGPT
mandeepbagga
2023-08-09T21:38:55Z
1
0
peft
[ "peft", "region:us" ]
null
2023-08-09T21:38:32Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
omersen/path-to-save-model
omersen
2023-08-09T21:29:59Z
3
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-09T20:58:14Z
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 instance_prompt: a photo of sks dog tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - dreambooth inference: true --- # DreamBooth - omersen/path-to-save-model This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.