modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-02 00:39:05
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
532 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-02 00:38:59
card
stringlengths
11
1.01M
AdShenoy/Bart_summarizer
AdShenoy
2022-08-10T06:34:37Z
0
0
fastai
[ "fastai", "region:us" ]
null
2022-08-10T06:34:09Z
--- tags: - fastai --- # Amazing! 🥳 Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using 🤗 Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner 🤝! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
wannaphong/wav2vec2-large-xlsr-53-th-cv8-deepcut
wannaphong
2022-08-10T05:40:50Z
12
5
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:common_voice", "arxiv:2208.04799", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-07T08:11:41Z
--- language: - th tags: - automatic-speech-recognition license: apache-2.0 datasets: - common_voice metrics: - wer - cer --- # Thai Wav2Vec2 with CommonVoice V8 (deepcut tokenizer) + language model This model trained with CommonVoice V8 dataset by increase data from CommonVoice V7 dataset that It was use in [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). It was finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). ## Model description - Technical report: [Thai Wav2Vec2.0 with CommonVoice V8](https://arxiv.org/abs/2208.04799) ## Datasets It is increase new data from The Common Voice V8 dataset to Common Voice V7 dataset or remove all data in Common Voice V7 dataset before split Common Voice V8 then add CommonVoice V7 dataset back to dataset. It use [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) script for split Common Voice dataset. ## Models This model was finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model with Thai Common Voice V8 dataset and It use pre-tokenize with deepcut.tokenize. ## Evaluation **Test with CommonVoice V8 Testset** | Model | WER by newmm (%) | WER by deepcut (%) | CER | |-----------------------|------------------|--------------------|----------| | AIResearch.in.th and PyThaiNLP | 17.414503 | 11.923089 | 3.854153 | | wav2vec2 with deepcut | 16.354521 | 11.424476 | 3.684060 | | wav2vec2 with newmm | 16.698299 | 11.436941 | 3.737407 | | **wav2vec2 with deepcut + language model** | 12.630260 | 9.613886 | 3.292073 | | wav2vec2 with newmm + language model | 12.583706 | 9.598305 | 3.276610 | **Test with CommonVoice V7 Testset (same test by CV V7)** | Model | WER by newmm (%) | WER by deepcut (%) | CER | |-----------------------|------------------|--------------------|----------| | AIResearch.in.th and PyThaiNLP | 13.936698 | 9.347462 | 2.804787 | | wav2vec2 with deepcut | 12.776381 | 8.773006 | 2.628882 | | wav2vec2 with newmm | 12.750596 | 8.672616 | 2.623341 | | **wav2vec2 with deepcut + language model** | 9.940050 | 7.423313 | 2.344940 | | wav2vec2 with newmm + language model | 9.559724 | 7.339654 | 2.277071 | This is use same testset from [https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). **Links:** - GitHub Dataset: [https://github.com/wannaphong/thai_commonvoice_dataset](https://github.com/wannaphong/thai_commonvoice_dataset) - Technical report: [Thai Wav2Vec2.0 with CommonVoice V8](https://arxiv.org/abs/2208.04799) ## BibTeX entry and citation info ``` @misc{phatthiyaphaibun2022thai, title={Thai Wav2Vec2.0 with CommonVoice V8}, author={Wannaphong Phatthiyaphaibun and Chompakorn Chaksangchaichot and Peerat Limkonchotiwat and Ekapol Chuangsuwanich and Sarana Nutanong}, year={2022}, eprint={2208.04799}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
wannaphong/wav2vec2-large-xlsr-53-th-cv8-newmm
wannaphong
2022-08-10T05:40:25Z
11,178
2
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "th", "dataset:common_voice", "arxiv:2208.04799", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-06-06T09:01:59Z
--- language: - th tags: - automatic-speech-recognition license: apache-2.0 datasets: - common_voice metrics: - wer - cer --- # Thai Wav2Vec2 with CommonVoice V8 (newmm tokenizer) + language model This model trained with CommonVoice V8 dataset by increase data from CommonVoice V7 dataset that It was use in [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). It was finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53). ## Model description - Technical report: [Thai Wav2Vec2.0 with CommonVoice V8](https://arxiv.org/abs/2208.04799) ## Datasets It is increase new data from The Common Voice V8 dataset to Common Voice V7 dataset or remove all data in Common Voice V7 dataset before split Common Voice V8 then add CommonVoice V7 dataset back to dataset. It use [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) script for split Common Voice dataset. ## Models This model was finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) model with Thai Common Voice V8 dataset and It use pre-tokenize with `pythainlp.tokenize.word_tokenize`. ## Training I used many code from [vistec-AI/wav2vec2-large-xlsr-53-th](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th) and I fixed bug training code in [vistec-AI/wav2vec2-large-xlsr-53-th#2](https://github.com/vistec-AI/wav2vec2-large-xlsr-53-th/pull/2) ## Evaluation **Test with CommonVoice V8 Testset** | Model | WER by newmm (%) | WER by deepcut (%) | CER | |-----------------------|------------------|--------------------|----------| | AIResearch.in.th and PyThaiNLP | 17.414503 | 11.923089 | 3.854153 | | wav2vec2 with deepcut | 16.354521 | 11.424476 | 3.684060 | | wav2vec2 with newmm | 16.698299 | 11.436941 | 3.737407 | | wav2vec2 with deepcut + language model | 12.630260 | 9.613886 | 3.292073 | | **wav2vec2 with newmm + language model** | 12.583706 | 9.598305 | 3.276610 | **Test with CommonVoice V7 Testset (same test by CV V7)** | Model | WER by newmm (%) | WER by deepcut (%) | CER | |-----------------------|------------------|--------------------|----------| | AIResearch.in.th and PyThaiNLP | 13.936698 | 9.347462 | 2.804787 | | wav2vec2 with deepcut | 12.776381 | 8.773006 | 2.628882 | | wav2vec2 with newmm | 12.750596 | 8.672616 | 2.623341 | | wav2vec2 with deepcut + language model | 9.940050 | 7.423313 | 2.344940 | | **wav2vec2 with newmm + language model** | 9.559724 | 7.339654 | 2.277071 | This is use same testset from [https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th). **Links:** - GitHub Dataset: [https://github.com/wannaphong/thai_commonvoice_dataset](https://github.com/wannaphong/thai_commonvoice_dataset) - Technical report: [Thai Wav2Vec2.0 with CommonVoice V8](https://arxiv.org/abs/2208.04799) ## BibTeX entry and citation info ``` @misc{phatthiyaphaibun2022thai, title={Thai Wav2Vec2.0 with CommonVoice V8}, author={Wannaphong Phatthiyaphaibun and Chompakorn Chaksangchaichot and Peerat Limkonchotiwat and Ekapol Chuangsuwanich and Sarana Nutanong}, year={2022}, eprint={2208.04799}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
yokoe/xlm-roberta-base-finetuned-panx-de-fr
yokoe
2022-08-10T05:27:36Z
4
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T05:00:36Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - F1: 0.8593 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2888 | 1.0 | 715 | 0.1779 | 0.8233 | | 0.1437 | 2.0 | 1430 | 0.1570 | 0.8497 | | 0.0931 | 3.0 | 2145 | 0.1608 | 0.8593 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
jaybeeja/dqn-SpaceInvadersNoFrameskip-v4
jaybeeja
2022-08-10T05:15:18Z
2
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-10T05:14:20Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 666.50 +/- 129.83 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga jaybeeja -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga jaybeeja ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
domenicrosati/deberta-v3-large-finetuned-syndag-multiclass-not-gpt2-arxiv
domenicrosati
2022-08-10T04:59:02Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T22:13:21Z
--- license: mit tags: - text-classification - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: deberta-v3-large-finetuned-syndag-multiclass-not-gpt2-arxiv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large-finetuned-syndag-multiclass-not-gpt2-arxiv This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0272 - F1: 0.9941 - Precision: 0.9941 - Recall: 0.9941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:| | 0.0213 | 1.0 | 10853 | 0.0309 | 0.9945 | 0.9945 | 0.9945 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
yokoe/xlm-roberta-base-finetuned-panx-de
yokoe
2022-08-10T03:41:48Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-10T03:13:21Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme config: PAN-X.de split: train args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Lvxue/distilled-mt5-small-1b0000
Lvxue
2022-08-10T03:41:30Z
7
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-10T02:23:44Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-1b0000 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 1.1101 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-1b0000 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.7760 - Bleu: 1.1101 - Gen Len: 99.5898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Lvxue/distilled-mt5-small-010099_8
Lvxue
2022-08-10T03:32:16Z
6
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-10T02:24:27Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-010099_8 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 6.231 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-010099_8 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.9641 - Bleu: 6.231 - Gen Len: 50.1911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
Lvxue/distilled-mt5-small-010099_1
Lvxue
2022-08-10T03:29:07Z
6
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-10T02:20:53Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-010099_1 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 7.3454 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-010099_1 This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 2.8040 - Bleu: 7.3454 - Gen Len: 44.8149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
SmartPy/xlm-roberta-base-finetuned-my_dear_watson2
SmartPy
2022-08-10T03:10:11Z
95
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-10T02:49:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-my_dear_watson2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-my_dear_watson2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
sumba/covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess2
sumba
2022-08-10T02:05:51Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T08:49:30Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid-twitter-bert-v2-no_description-stance-loss-hyp-unprocess2 This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5816 - Accuracy: 0.0901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4275469935864394e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8511 | 1.0 | 700 | 0.6372 | 0.1478 | | 0.6146 | 2.0 | 1400 | 0.5816 | 0.0901 | | 0.365 | 3.0 | 2100 | 0.6170 | 0.0749 | | 0.2686 | 4.0 | 2800 | 0.7259 | 0.0688 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_10_ternary_v1
elopezlopez
2022-08-10T02:02:59Z
102
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-10T01:40:37Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_10_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_10_ternary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0706 - F1: 0.7748 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 290 | 0.6097 | 0.7290 | | 0.555 | 2.0 | 580 | 0.6106 | 0.7649 | | 0.555 | 3.0 | 870 | 0.6608 | 0.7847 | | 0.2449 | 4.0 | 1160 | 0.8894 | 0.7809 | | 0.2449 | 5.0 | 1450 | 1.1049 | 0.7760 | | 0.1055 | 6.0 | 1740 | 1.2951 | 0.7884 | | 0.0338 | 7.0 | 2030 | 1.4809 | 0.7760 | | 0.0338 | 8.0 | 2320 | 1.4751 | 0.7698 | | 0.0225 | 9.0 | 2610 | 1.6648 | 0.7809 | | 0.0225 | 10.0 | 2900 | 1.7174 | 0.7772 | | 0.006 | 11.0 | 3190 | 1.7872 | 0.7735 | | 0.006 | 12.0 | 3480 | 1.7803 | 0.7748 | | 0.0161 | 13.0 | 3770 | 1.9302 | 0.7735 | | 0.0005 | 14.0 | 4060 | 1.9853 | 0.7748 | | 0.0005 | 15.0 | 4350 | 2.0043 | 0.7735 | | 0.0062 | 16.0 | 4640 | 1.9969 | 0.7760 | | 0.0062 | 17.0 | 4930 | 2.0173 | 0.7760 | | 0.0068 | 18.0 | 5220 | 1.9891 | 0.7785 | | 0.0034 | 19.0 | 5510 | 1.9951 | 0.7797 | | 0.0034 | 20.0 | 5800 | 2.0283 | 0.7748 | | 0.0049 | 21.0 | 6090 | 1.9985 | 0.7834 | | 0.0049 | 22.0 | 6380 | 2.0131 | 0.7760 | | 0.0011 | 23.0 | 6670 | 2.0526 | 0.7748 | | 0.0011 | 24.0 | 6960 | 2.0662 | 0.7748 | | 0.001 | 25.0 | 7250 | 2.0706 | 0.7748 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_9_ternary_v1
elopezlopez
2022-08-10T01:39:59Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-10T01:16:55Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_9_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_9_ternary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0189 - F1: 0.7905 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 292 | 0.5758 | 0.7571 | | 0.5482 | 2.0 | 584 | 0.6282 | 0.7609 | | 0.5482 | 3.0 | 876 | 0.6823 | 0.7841 | | 0.2346 | 4.0 | 1168 | 0.9898 | 0.7776 | | 0.2346 | 5.0 | 1460 | 1.1397 | 0.7866 | | 0.1001 | 6.0 | 1752 | 1.3832 | 0.7751 | | 0.0447 | 7.0 | 2044 | 1.6002 | 0.7674 | | 0.0447 | 8.0 | 2336 | 1.7265 | 0.7584 | | 0.0171 | 9.0 | 2628 | 1.6650 | 0.7699 | | 0.0171 | 10.0 | 2920 | 1.7322 | 0.7661 | | 0.0156 | 11.0 | 3212 | 1.8071 | 0.7789 | | 0.012 | 12.0 | 3504 | 1.8322 | 0.7841 | | 0.012 | 13.0 | 3796 | 1.8948 | 0.7763 | | 0.01 | 14.0 | 4088 | 1.7667 | 0.7918 | | 0.01 | 15.0 | 4380 | 1.8538 | 0.7879 | | 0.0063 | 16.0 | 4672 | 1.9763 | 0.7776 | | 0.0063 | 17.0 | 4964 | 1.9970 | 0.7841 | | 0.0028 | 18.0 | 5256 | 1.9366 | 0.7931 | | 0.0003 | 19.0 | 5548 | 1.9709 | 0.7892 | | 0.0003 | 20.0 | 5840 | 1.9460 | 0.7879 | | 0.0044 | 21.0 | 6132 | 2.0280 | 0.7866 | | 0.0044 | 22.0 | 6424 | 1.9423 | 0.7918 | | 0.0013 | 23.0 | 6716 | 1.9618 | 0.7918 | | 0.004 | 24.0 | 7008 | 2.0241 | 0.7905 | | 0.004 | 25.0 | 7300 | 2.0189 | 0.7905 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ultra-coder54732/3-way-detection-prop-16
ultra-coder54732
2022-08-10T01:37:14Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T20:58:37Z
--- license: mit tags: - generated_from_trainer model-index: - name: 3-way-detection-prop-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 3-way-detection-prop-16 This model is a fine-tuned version of [ultra-coder54732/3-way-detection-prop-16](https://huggingface.co/ultra-coder54732/3-way-detection-prop-16) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
elopezlopez/Bio_ClinicalBERT_fold_7_ternary_v1
elopezlopez
2022-08-10T00:52:48Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-10T00:30:26Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_7_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_7_ternary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9612 - F1: 0.7939 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.5762 | 0.7593 | | 0.5434 | 2.0 | 582 | 0.5577 | 0.7939 | | 0.5434 | 3.0 | 873 | 0.6501 | 0.7951 | | 0.2198 | 4.0 | 1164 | 0.8661 | 0.7939 | | 0.2198 | 5.0 | 1455 | 1.1493 | 0.7900 | | 0.0953 | 6.0 | 1746 | 1.1999 | 0.7977 | | 0.0375 | 7.0 | 2037 | 1.4623 | 0.7759 | | 0.0375 | 8.0 | 2328 | 1.4526 | 0.7900 | | 0.0246 | 9.0 | 2619 | 1.6915 | 0.7734 | | 0.0246 | 10.0 | 2910 | 1.6097 | 0.7913 | | 0.0113 | 11.0 | 3201 | 1.7091 | 0.8015 | | 0.0113 | 12.0 | 3492 | 1.7252 | 0.7990 | | 0.0103 | 13.0 | 3783 | 1.7305 | 0.8015 | | 0.0079 | 14.0 | 4074 | 1.7932 | 0.8003 | | 0.0079 | 15.0 | 4365 | 1.7800 | 0.8028 | | 0.0071 | 16.0 | 4656 | 1.7000 | 0.7977 | | 0.0071 | 17.0 | 4947 | 1.8342 | 0.8003 | | 0.0077 | 18.0 | 5238 | 1.8517 | 0.7990 | | 0.0044 | 19.0 | 5529 | 1.8633 | 0.7964 | | 0.0044 | 20.0 | 5820 | 1.8813 | 0.7926 | | 0.0028 | 21.0 | 6111 | 1.8914 | 0.7964 | | 0.0028 | 22.0 | 6402 | 1.9412 | 0.7926 | | 0.0043 | 23.0 | 6693 | 1.9760 | 0.7939 | | 0.0043 | 24.0 | 6984 | 1.9509 | 0.7977 | | 0.0002 | 25.0 | 7275 | 1.9612 | 0.7939 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
johngiorgi/declutr-base
johngiorgi
2022-08-10T00:36:40Z
49
7
sentence-transformers
[ "sentence-transformers", "pytorch", "jax", "roberta", "feature-extraction", "sentence-similarity", "en", "dataset:openwebtext", "arxiv:2006.03659", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - openwebtext --- # DeCLUTR-base ## Model description The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-base") # Prepare some text to embed texts = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base") model = AutoModel.from_pretrained("johngiorgi/declutr-base") # Prepare some text to embed text = [ "A smiling costumed woman is holding an umbrella.", "A happy woman in a fairy costume holds an umbrella.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{giorgi-etal-2021-declutr, title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations}, author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary}, year = 2021, month = aug, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Online}, pages = {879--895}, doi = {10.18653/v1/2021.acl-long.72}, url = {https://aclanthology.org/2021.acl-long.72} } ```
johngiorgi/declutr-sci-base
johngiorgi
2022-08-10T00:35:23Z
65
9
sentence-transformers
[ "sentence-transformers", "pytorch", "jax", "bert", "feature-extraction", "sentence-similarity", "en", "dataset:s2orc", "arxiv:2006.03659", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity language: en license: apache-2.0 datasets: - s2orc --- # DeCLUTR-sci-base ## Model description This is the [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) model, with extended pretraining on over 2 million scientific papers from [S2ORC](https://github.com/allenai/s2orc/) using the self-supervised training strategy presented in [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659). ## Intended uses & limitations The model is intended to be used as a sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers). It is particularly suitable for scientific text. #### How to use Please see [our repo](https://github.com/JohnGiorgi/DeCLUTR) for full details. A simple example is shown below. ##### With [SentenceTransformers](https://www.sbert.net/) ```python from scipy.spatial.distance import cosine from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] # Embed the text embeddings = model.encode(texts) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ##### With 🤗 Transformers ```python import torch from scipy.spatial.distance import cosine from transformers import AutoModel, AutoTokenizer # Load the model tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-sci-base") model = AutoModel.from_pretrained("johngiorgi/declutr-sci-base") # Prepare some text to embed text = [ "Oncogenic KRAS mutations are common in cancer.", "Notably, c-Raf has recently been found essential for development of K-Ras-driven NSCLCs.", ] inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") # Embed the text with torch.no_grad(): sequence_output = model(**inputs)[0] # Mean pool the token-level embeddings to get sentence-level embeddings embeddings = torch.sum( sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1 ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9) # Compute a semantic similarity via the cosine distance semantic_sim = 1 - cosine(embeddings[0], embeddings[1]) ``` ### BibTeX entry and citation info ```bibtex @inproceedings{giorgi-etal-2021-declutr, title = {{D}e{CLUTR}: Deep Contrastive Learning for Unsupervised Textual Representations}, author = {Giorgi, John and Nitski, Osvald and Wang, Bo and Bader, Gary}, year = 2021, month = aug, booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Online}, pages = {879--895}, doi = {10.18653/v1/2021.acl-long.72}, url = {https://aclanthology.org/2021.acl-long.72} } ```
Tstarshak/testpyramidsrnd
Tstarshak
2022-08-10T00:20:31Z
6
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-10T00:20:23Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: Tstarshak/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
elopezlopez/Bio_ClinicalBERT_fold_5_ternary_v1
elopezlopez
2022-08-10T00:07:08Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T23:45:15Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_5_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_5_ternary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0233 - F1: 0.7849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 291 | 0.6352 | 0.7286 | | 0.5477 | 2.0 | 582 | 0.5965 | 0.7682 | | 0.5477 | 3.0 | 873 | 0.7696 | 0.7554 | | 0.2383 | 4.0 | 1164 | 1.0119 | 0.7631 | | 0.2383 | 5.0 | 1455 | 1.1300 | 0.7772 | | 0.1068 | 6.0 | 1746 | 1.3515 | 0.7734 | | 0.0401 | 7.0 | 2037 | 1.4935 | 0.7721 | | 0.0401 | 8.0 | 2328 | 1.5418 | 0.7875 | | 0.0213 | 9.0 | 2619 | 1.6902 | 0.7746 | | 0.0213 | 10.0 | 2910 | 1.7091 | 0.7721 | | 0.014 | 11.0 | 3201 | 1.7422 | 0.7836 | | 0.014 | 12.0 | 3492 | 1.8603 | 0.7772 | | 0.012 | 13.0 | 3783 | 1.8419 | 0.7734 | | 0.0104 | 14.0 | 4074 | 1.9616 | 0.7657 | | 0.0104 | 15.0 | 4365 | 1.9342 | 0.7823 | | 0.005 | 16.0 | 4656 | 1.9646 | 0.7746 | | 0.005 | 17.0 | 4947 | 1.9943 | 0.7772 | | 0.0075 | 18.0 | 5238 | 1.9882 | 0.7798 | | 0.0071 | 19.0 | 5529 | 1.9909 | 0.7849 | | 0.0071 | 20.0 | 5820 | 2.0568 | 0.7798 | | 0.0029 | 21.0 | 6111 | 2.0508 | 0.7759 | | 0.0029 | 22.0 | 6402 | 2.0267 | 0.7823 | | 0.0047 | 23.0 | 6693 | 2.0534 | 0.7785 | | 0.0047 | 24.0 | 6984 | 2.0336 | 0.7849 | | 0.0014 | 25.0 | 7275 | 2.0233 | 0.7849 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
BrianT/distilbert-base-uncased-finetuned-cola
BrianT
2022-08-09T23:23:41Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T21:45:10Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5474713423103301 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5254 - Matthews Correlation: 0.5475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5221 | 1.0 | 535 | 0.5360 | 0.4307 | | 0.3491 | 2.0 | 1070 | 0.5128 | 0.4972 | | 0.2382 | 3.0 | 1605 | 0.5254 | 0.5475 | | 0.1756 | 4.0 | 2140 | 0.7479 | 0.5330 | | 0.1248 | 5.0 | 2675 | 0.7978 | 0.5414 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
aujer/not_interested_v0
aujer
2022-08-09T22:30:28Z
102
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain", "en", "dataset:aujer/autotrain-data-not_interested_3", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T22:28:49Z
--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - aujer/autotrain-data-not_interested_3 co2_eq_emissions: emissions: 2.307650736568978 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1235146886 - CO2 Emissions (in grams): 2.3077 ## Validation Metrics - Loss: 0.802 - Accuracy: 0.788 - Macro F1: 0.743 - Micro F1: 0.788 - Weighted F1: 0.782 - Macro Precision: 0.818 - Micro Precision: 0.788 - Weighted Precision: 0.796 - Macro Recall: 0.722 - Micro Recall: 0.788 - Weighted Recall: 0.788 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/aujer/autotrain-not_interested_3-1235146886 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("aujer/autotrain-not_interested_3-1235146886", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("aujer/autotrain-not_interested_3-1235146886", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
ericntay/clinical_bio_bert_ft
ericntay
2022-08-09T21:56:28Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-09T21:25:48Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: clinical_bio_bert_ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clinical_bio_bert_ft This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2570 - F1: 0.8160 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.6327 | 1.0 | 95 | 0.2442 | 0.7096 | | 0.1692 | 2.0 | 190 | 0.2050 | 0.7701 | | 0.0878 | 3.0 | 285 | 0.1923 | 0.8002 | | 0.0493 | 4.0 | 380 | 0.2234 | 0.8079 | | 0.0302 | 5.0 | 475 | 0.2250 | 0.8090 | | 0.0191 | 6.0 | 570 | 0.2363 | 0.8145 | | 0.0132 | 7.0 | 665 | 0.2489 | 0.8178 | | 0.0102 | 8.0 | 760 | 0.2494 | 0.8152 | | 0.008 | 9.0 | 855 | 0.2542 | 0.8191 | | 0.0068 | 10.0 | 950 | 0.2570 | 0.8160 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city
Ammar-alhaj-ali
2022-08-09T21:04:32Z
586
10
transformers
[ "transformers", "pytorch", "bert", "text-classification", "text classification", "ar", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T19:10:53Z
--- language: - ar widget: - text: "ما شفت هدا العنوان هون" - text: "مبقدرش احافظ علي المستوى الدراسي بتاعي" - text: "منين تطلع بهاي السوالف كل يوم" tags: - text classification --- ## Arabic-MARBERT-dialect-Identification-City Model #### Model description **arabic-MARBERT-dialect-identification-city Model** is a dialect identification model that was built by fine-tuning the [MARBERT](https://huggingface.co/UBC-NLP/MARBERT) model. For the fine-tuning, I used [MADAR Corpus 26 dataset](https://camel.abudhabi.nyu.edu/madar-shared-task-2019/), which includes 26 labels(cities). #### How to use To use the model with a transformers pipeline: ```python >>>from transformers import pipeline >>>model = pipeline('text-classification', model='Ammar-alhaj-ali/arabic-MARBERT-dialect-identification-city') >>>sentences = ['ناطرين البرنامج', 'اكلنا هوا بهل شروة'] >>>model(sentences) [{'label': 'Beirut', 'score': 0.9731963276863098}, {'label': 'Aleppo', 'score': 0.4592577815055847}]
elopezlopez/Bio_ClinicalBERT_fold_2_ternary_v1
elopezlopez
2022-08-09T20:59:38Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-04T11:38:09Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: Bio_ClinicalBERT_fold_2_ternary_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT_fold_2_ternary_v1 This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8186 - F1: 0.8038 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 294 | 0.5629 | 0.7645 | | 0.5579 | 2.0 | 588 | 0.5078 | 0.8078 | | 0.5579 | 3.0 | 882 | 0.6622 | 0.7754 | | 0.2341 | 4.0 | 1176 | 0.8584 | 0.7943 | | 0.2341 | 5.0 | 1470 | 1.1953 | 0.7821 | | 0.0942 | 6.0 | 1764 | 1.3193 | 0.7876 | | 0.0338 | 7.0 | 2058 | 1.3324 | 0.7903 | | 0.0338 | 8.0 | 2352 | 1.5043 | 0.7930 | | 0.0202 | 9.0 | 2646 | 1.5255 | 0.7889 | | 0.0202 | 10.0 | 2940 | 1.5382 | 0.7916 | | 0.0119 | 11.0 | 3234 | 1.6377 | 0.7903 | | 0.0051 | 12.0 | 3528 | 1.7349 | 0.7835 | | 0.0051 | 13.0 | 3822 | 1.7297 | 0.7835 | | 0.0082 | 14.0 | 4116 | 1.7817 | 0.7808 | | 0.0082 | 15.0 | 4410 | 1.7105 | 0.7970 | | 0.0054 | 16.0 | 4704 | 1.7325 | 0.7984 | | 0.0054 | 17.0 | 4998 | 1.7919 | 0.7943 | | 0.0049 | 18.0 | 5292 | 1.8850 | 0.7876 | | 0.0045 | 19.0 | 5586 | 1.8237 | 0.7916 | | 0.0045 | 20.0 | 5880 | 1.8760 | 0.7970 | | 0.0024 | 21.0 | 6174 | 1.8544 | 0.7984 | | 0.0024 | 22.0 | 6468 | 1.7852 | 0.8011 | | 0.0005 | 23.0 | 6762 | 1.7795 | 0.8065 | | 0.0031 | 24.0 | 7056 | 1.7978 | 0.7997 | | 0.0031 | 25.0 | 7350 | 1.8186 | 0.8038 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Mozart-coder/dna_bert_3_2-finetuned
Mozart-coder
2022-08-09T20:08:04Z
157
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-09T18:50:04Z
--- tags: - generated_from_trainer model-index: - name: dna_bert_3_2-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dna_bert_3_2-finetuned This model is a fine-tuned version of [armheb/DNA_bert_3](https://huggingface.co/armheb/DNA_bert_3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8974 | 1.0 | 62 | 0.6160 | | 0.6057 | 2.0 | 124 | 0.6000 | | 0.5957 | 3.0 | 186 | 0.5897 | | 0.5883 | 4.0 | 248 | 0.5873 | | 0.5844 | 5.0 | 310 | 0.5843 | | 0.5812 | 6.0 | 372 | 0.5811 | | 0.5812 | 7.0 | 434 | 0.5832 | | 0.5769 | 8.0 | 496 | 0.5773 | | 0.5727 | 9.0 | 558 | 0.5771 | | 0.5702 | 10.0 | 620 | 0.5772 | | 0.5673 | 11.0 | 682 | 0.5771 | | 0.5663 | 12.0 | 744 | 0.5769 | | 0.5569 | 13.0 | 806 | 0.5731 | | 0.5518 | 14.0 | 868 | 0.5731 | | 0.5486 | 15.0 | 930 | 0.5728 | | 0.544 | 16.0 | 992 | 0.5683 | | 0.5336 | 17.0 | 1054 | 0.5694 | | 0.5245 | 18.0 | 1116 | 0.5639 | | 0.5162 | 19.0 | 1178 | 0.5641 | | 0.5057 | 20.0 | 1240 | 0.5626 | | 0.4966 | 21.0 | 1302 | 0.5612 | | 0.4859 | 22.0 | 1364 | 0.5492 | | 0.4781 | 23.0 | 1426 | 0.5470 | | 0.4601 | 24.0 | 1488 | 0.5399 | | 0.4523 | 25.0 | 1550 | 0.5424 | | 0.4432 | 26.0 | 1612 | 0.5328 | | 0.4341 | 27.0 | 1674 | 0.5336 | | 0.4183 | 28.0 | 1736 | 0.5315 | | 0.4133 | 29.0 | 1798 | 0.5268 | | 0.4111 | 30.0 | 1860 | 0.5256 | | 0.3919 | 31.0 | 1922 | 0.5155 | | 0.3899 | 32.0 | 1984 | 0.5179 | | 0.3804 | 33.0 | 2046 | 0.5145 | | 0.368 | 34.0 | 2108 | 0.5189 | | 0.3603 | 35.0 | 2170 | 0.5081 | | 0.3602 | 36.0 | 2232 | 0.5098 | | 0.352 | 37.0 | 2294 | 0.5054 | | 0.3468 | 38.0 | 2356 | 0.5024 | | 0.3359 | 39.0 | 2418 | 0.5053 | | 0.3342 | 40.0 | 2480 | 0.5031 | | 0.3294 | 41.0 | 2542 | 0.4978 | | 0.3158 | 42.0 | 2604 | 0.4923 | | 0.3191 | 43.0 | 2666 | 0.4944 | | 0.3122 | 44.0 | 2728 | 0.4970 | | 0.3084 | 45.0 | 2790 | 0.4910 | | 0.2978 | 46.0 | 2852 | 0.4898 | | 0.3012 | 47.0 | 2914 | 0.4880 | | 0.2938 | 48.0 | 2976 | 0.4924 | | 0.2932 | 49.0 | 3038 | 0.4879 | | 0.2842 | 50.0 | 3100 | 0.4847 | | 0.2828 | 51.0 | 3162 | 0.4849 | | 0.2793 | 52.0 | 3224 | 0.4767 | | 0.2753 | 53.0 | 3286 | 0.4796 | | 0.2725 | 54.0 | 3348 | 0.4829 | | 0.2695 | 55.0 | 3410 | 0.4831 | | 0.2671 | 56.0 | 3472 | 0.4791 | | 0.2664 | 57.0 | 3534 | 0.4791 | | 0.2563 | 58.0 | 3596 | 0.4765 | | 0.2583 | 59.0 | 3658 | 0.4742 | | 0.2535 | 60.0 | 3720 | 0.4766 | | 0.2496 | 61.0 | 3782 | 0.4741 | | 0.2489 | 62.0 | 3844 | 0.4766 | | 0.2444 | 63.0 | 3906 | 0.4748 | | 0.2417 | 64.0 | 3968 | 0.4768 | | 0.2422 | 65.0 | 4030 | 0.4727 | | 0.2404 | 66.0 | 4092 | 0.4729 | | 0.2405 | 67.0 | 4154 | 0.4744 | | 0.2353 | 68.0 | 4216 | 0.4729 | | 0.2307 | 69.0 | 4278 | 0.4705 | | 0.2281 | 70.0 | 4340 | 0.4717 | | 0.232 | 71.0 | 4402 | 0.4719 | | 0.2313 | 72.0 | 4464 | 0.4713 | | 0.2266 | 73.0 | 4526 | 0.4726 | | 0.2241 | 74.0 | 4588 | 0.4675 | | 0.2256 | 75.0 | 4650 | 0.4688 | | 0.2299 | 76.0 | 4712 | 0.4713 | | 0.2199 | 77.0 | 4774 | 0.4720 | | 0.2228 | 78.0 | 4836 | 0.4682 | | 0.2261 | 79.0 | 4898 | 0.4676 | | 0.2167 | 80.0 | 4960 | 0.4685 | | 0.2126 | 81.0 | 5022 | 0.4676 | | 0.2217 | 82.0 | 5084 | 0.4672 | | 0.216 | 83.0 | 5146 | 0.4672 | | 0.2152 | 84.0 | 5208 | 0.4682 | | 0.219 | 85.0 | 5270 | 0.4663 | | 0.2135 | 86.0 | 5332 | 0.4655 | | 0.2046 | 87.0 | 5394 | 0.4644 | | 0.2177 | 88.0 | 5456 | 0.4679 | | 0.2052 | 89.0 | 5518 | 0.4659 | | 0.2147 | 90.0 | 5580 | 0.4665 | | 0.211 | 91.0 | 5642 | 0.4668 | | 0.2089 | 92.0 | 5704 | 0.4649 | | 0.2149 | 93.0 | 5766 | 0.4651 | | 0.2034 | 94.0 | 5828 | 0.4689 | | 0.2071 | 95.0 | 5890 | 0.4659 | | 0.2145 | 96.0 | 5952 | 0.4664 | | 0.2036 | 97.0 | 6014 | 0.4661 | | 0.2092 | 98.0 | 6076 | 0.4676 | | 0.2079 | 99.0 | 6138 | 0.4667 | | 0.2081 | 100.0 | 6200 | 0.4668 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
KLeedrug/EMO_demo_00
KLeedrug
2022-08-09T19:17:22Z
0
0
null
[ "text-classification", "license:apache-2.0", "region:us" ]
text-classification
2022-08-09T16:26:58Z
--- license: apache-2.0 tags: - text-classification widget: - text: "This love has taken its toll on me" example_title: "sadness" --- # EMO demo 00 ## TODO ### incorporate with EMO_AI ### put pretrained weight here
asvs/qs-classifier
asvs
2022-08-09T18:54:13Z
4
1
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T18:00:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: qs-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qs-classifier This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 447 | 0.0416 | 0.9910 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
href/gpt2-schiappa
href
2022-08-09T17:51:47Z
104
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:unknown", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-09T17:30:28Z
--- license: unknown --- # Schiappa-Minelli GPT-2 Pourquoi pas ? ## Dataset - Marianne est déchainée, de Marlène Schiappa - Osez les sexfriends, Marie Minelli - Osez réussir votre divorce, Marie Minelli - Sexe, mensonge et banlieues chaudes, Marie Minelli ## Versions V1: - Fine-tunée avec [Max Woolf's "aitextgen — Train a GPT-2 (or GPT Neo)" colab](https://colab.research.google.com/drive/15qBZx5y9rdaQSyWpsreMDnTiZ5IlN0zD?usp=sharing) - Depuis le modèle gpt-2 124M [aquadzn/gpt2-french](https://github.com/aquadzn/gpt2-french/), version romans. - ~50 minutes on Colab Pro, P100 GPU, 3 batchs, 500 steps
NovelAI/genji-jp
NovelAI
2022-08-09T17:36:02Z
28
52
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "causal-lm", "ja", "en", "arxiv:2104.09864", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- language: - ja - en tags: - pytorch - causal-lm license: apache-2.0 --- # Genji-JP 6B Please check our blog post for more details, samples, evaluations and more: [Blogpost](https://blog.novelai.net/data-efficient-language-transfer-with-gpt-j-45daedaaf35a) ## Model Description Genji-JP 6B is a model finetuned on our Japanese storytelling dataset based on EleutherAI's GPT-J 6B model. This particular model is trained on Japanese web novels. | Hyperparameter | Value | |-------------------|--------| | n_parameters | 6,053,381,344 | | n_layers | 28* | | d_model | 4,096 | | d_ff | 16,384 | | n_heads | 16 | | d_head | 256 | | n_ctx | 2,048 | | n_vocab | 50,400 (same tokenizer as GPT-2/3) | | position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | `*` each layer consists of one feedforward block and one self attention block The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on our Japanese storytelling dataset. Check our blog post for more details. ### How to use ``` from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") model = AutoModelForCausalLM.from_pretrained("NovelAI/genji-jp", torch_dtype=torch.float16, low_cpu_mem_usage=True).eval().cuda() text = '''あらすじ:あなたは異世界に転生してしまいました。勇者となって、仲間を作り、異世界を冒険しよう! *** 転生すると、ある能力を手に入れていた。それは、''' tokens = tokenizer(text, return_tensors="pt").input_ids generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, temperature=1, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id) last_tokens = generated_tokens[0] generated_text = tokenizer.decode(last_tokens).replace("�", "") print("Generation:\n" + generated_text) ``` When run, produces output like this: ``` Generation: あらすじ:あなたは異世界に転生してしまいました。勇者となって、仲間を作り、異世界を冒険しよう! *** 転生すると、ある能力を手に入れていた。それは、『予知』だ。過去から未来のことを、誰も知らない出来事も含めて見通すことが出来る。 悪魔の欠片と呼ばれる小さな結晶を取り込んで、使役することが出来る。人を惹きつけ、堕落させる。何より、俺は男なんて居なかったし、女に興味もない。……そんなクズの片棒を担ぎ上げる奴が多くなると思うと、ちょっと苦しい。 だが、一部の人間には協力者を得ることが出来る。目立たない街にある寺の中で、常に家に引きこもっている老人。そんなヤツの魂をコントロールすることが出来るのだ。便利な能力だ。しかし、裏切り者は大勢いる。気を抜けば、狂う。だから注意が必要だ。 ――「やってやるよ」  アーロンは不敵に笑った。この ``` ## Acknowledgements This project was possible because of the compute provided by the [TPU Research Cloud](https://sites.research.google/trc/) Thanks [EleutherAI](https://eleuther.ai/) for pretraining the GPT-J 6B model. Thanks to everyone who contributed to this project! - [Finetune](https://github.com/finetuneanon) - [Aero](https://github.com/AeroScripts) - [Kurumuz](https://github.com/kurumuz)
LilOpa/LunarLanderPPO_new-2
LilOpa
2022-08-09T17:26:45Z
2
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T17:26:18Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 256.20 +/- 33.86 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Jinchen/bart-base-finetuned-en-to-ro
Jinchen
2022-08-09T17:21:22Z
12
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "bart", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-09T13:38:00Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 model-index: - name: bart-base-finetuned-en-to-ro results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-base-finetuned-en-to-ro This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.9912 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 128 - total_train_batch_size: 512 - total_eval_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5409 | 1.0 | 1192 | 1.9912 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.10.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1
SmartPy/xlm-roberta-base-finetuned-my_dear_watson
SmartPy
2022-08-09T17:19:29Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "fill-mask", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-09T16:57:36Z
--- license: mit tags: - generated_from_trainer model-index: - name: xlm-roberta-base-finetuned-my_dear_watson results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-my_dear_watson This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7977 | 1.0 | 240 | 1.9607 | | 2.0249 | 2.0 | 480 | 1.8608 | | 1.9661 | 3.0 | 720 | 1.8150 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
AG16/ppo-LunarLander-v2
AG16
2022-08-09T17:13:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T17:13:23Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 180.88 +/- 15.22 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
spacemanidol/esci-jp-mpnet-crossencoder
spacemanidol
2022-08-09T16:27:15Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-09T16:21:34Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 6369 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
spacemanidol/esci-es-mpnet-crossencoder
spacemanidol
2022-08-09T16:26:40Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-09T16:21:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4643 with parameters: ``` {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Rocketknight1/student_marian_en_ro_6_1
Rocketknight1
2022-08-09T15:46:13Z
15
0
transformers
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-09T15:42:56Z
--- tags: - generated_from_keras_callback model-index: - name: student_marian_en_ro_6_1 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # student_marian_en_ro_6_1 This model is a fine-tuned version of [sshleifer/student_marian_en_ro_6_1](https://huggingface.co/sshleifer/student_marian_en_ro_6_1) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.22.0.dev0 - TensorFlow 2.9.1 - Datasets 2.4.1.dev0 - Tokenizers 0.11.0
HUPD/hupd-distilroberta-base
HUPD
2022-08-09T15:22:00Z
31
2
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "hupd", "distilroberta", "patents", "en", "dataset:HUPD/hupd", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-07-05T07:41:29Z
--- language: - en thumbnail: "url to a thumbnail used in social sharing" tags: - hupd - roberta - distilroberta - patents license: cc-by-sa-4.0 datasets: - HUPD/hupd --- # HUPD DistilRoBERTa-Base Model This HUPD DistilRoBERTa model was fine-tuned on the HUPD dataset with a masked language modeling objective. It was originally introduced in [this paper](TBD). For more information about the Harvard USPTO Patent Dataset, please feel free to visit the [project website](https://patentdataset.org/) or the [project's GitHub repository](https://github.com/suzgunmirac/hupd). ### How to Use You can use this model directly with a pipeline for masked language modeling: ```python from transformers import pipeline model = pipeline(task="fill-mask", model="hupd/hupd-distilroberta-base") model("Improved <mask> for playing a game of thumb wrestling.") ``` Here is the output: ```python [{'score': 0.4274042248725891, 'sequence': 'Improved method for playing a game of thumb wrestling.', 'token': 5448, 'token_str': ' method'}, {'score': 0.06967400759458542, 'sequence': 'Improved system for playing a game of thumb wrestling.', 'token': 467, 'token_str': ' system'}, {'score': 0.06849079579114914, 'sequence': 'Improved device for playing a game of thumb wrestling.', 'token': 2187, 'token_str': ' device'}, {'score': 0.04544765502214432, 'sequence': 'Improved apparatus for playing a game of thumb wrestling.', 'token': 26529, 'token_str': ' apparatus'}, {'score': 0.025765646249055862, 'sequence': 'Improved means for playing a game of thumb wrestling.', 'token': 839, 'token_str': ' means'}] ``` Alternatively, you can load the model and use it as follows: ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM # cuda/cpu device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained("hupd/hupd-distilroberta-base") model = AutoModelForMaskedLM.from_pretrained("hupd/hupd-distilroberta-base").to(device) TEXT = "Improved <mask> for playing a game of thumb wrestling." inputs = tokenizer(TEXT, return_tensors="pt").to(device) with torch.no_grad(): logits = model(**inputs).logits # retrieve indices of <mask> mask_token_indxs = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] for mask_idx in mask_token_indxs: predicted_token_id = logits[0, mask_idx].argmax(axis=-1) output = tokenizer.decode(predicted_token_id) print(f'Prediction for the <mask> token at index {mask_idx}: "{output}"') ``` Here is the output: ```python Prediction for the <mask> token at index 2: " method" ``` ## Citation For more information, please take a look at the original paper. * Paper: [The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications](TBD) * Authors: *Mirac Suzgun, Luke Melas-Kyriazi, Suproteem K. Sarkar, Scott Duke Kominers, and Stuart M. Shieber* * BibTeX: ``` @article{suzgun2022hupd, title={The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and Multi-Purpose Corpus of Patent Applications}, author={Suzgun, Mirac and Melas-Kyriazi, Luke and Sarkar, Suproteem K and Kominers, Scott and Shieber, Stuart}, year={2022} } ```
workRL/cleanPPOLunar
workRL
2022-08-09T14:22:58Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T14:22:51Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: PPO results: - metrics: - type: mean_reward value: -121.56 +/- 32.57 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. To learn to code your own PPO agent and train it Unit 8 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit8 # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'workRL/cleanPPOLunar' 'batch_size': 512 'minibatch_size': 128} ```
scott-ml/ppo-lunarlander-v2
scott-ml
2022-08-09T13:15:20Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T12:44:02Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: MlpPolicy_ppo results: - metrics: - type: mean_reward value: 229.65 +/- 24.04 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **MlpPolicy_ppo** Agent playing **LunarLander-v2** This is a trained model of a **MlpPolicy_ppo** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
annahaz/xlm-roberta-base-misogyny-sexism-decay0.05-fr-indomain
annahaz
2022-08-09T12:08:11Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T11:09:06Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: xlm-roberta-base-misogyny-sexism-decay0.05-fr-indomain results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-misogyny-sexism-decay0.05-fr-indomain This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2200 - Accuracy: 0.8708 - F1: 0.0040 - Precision: 0.1 - Recall: 0.0021 - Mae: 0.1292 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.2085 | 1.0 | 2302 | 1.0000 | 0.8674 | 0.0212 | 0.1719 | 0.0113 | 0.1326 | | 0.18 | 2.0 | 4604 | 1.0566 | 0.8527 | 0.0157 | 0.0520 | 0.0093 | 0.1473 | | 0.1614 | 3.0 | 6906 | 1.1284 | 0.8673 | 0.0020 | 0.0222 | 0.0010 | 0.1327 | | 0.1428 | 4.0 | 9208 | 1.1329 | 0.8714 | 0.0020 | 0.0714 | 0.0010 | 0.1286 | | 0.1467 | 5.0 | 11510 | 1.1814 | 0.8708 | 0.0040 | 0.1 | 0.0021 | 0.1292 | | 0.1375 | 6.0 | 13812 | 1.2020 | 0.8706 | 0.0020 | 0.05 | 0.0010 | 0.1294 | | 0.1093 | 7.0 | 16114 | 1.2200 | 0.8708 | 0.0040 | 0.1 | 0.0021 | 0.1292 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
DennisSoemers/q-Taxi-v3
DennisSoemers
2022-08-09T11:54:06Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T11:54:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="DennisSoemers/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
DennisSoemers/q-FrozenLake-v1-4x4-noSlippery
DennisSoemers
2022-08-09T11:51:21Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T11:51:16Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="DennisSoemers/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
nvidia/segformer-b2-finetuned-cityscapes-1024-1024
nvidia
2022-08-09T11:34:43Z
2,153
1
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: Road --- # SegFormer (b2-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b2-finetuned-cityscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-cityscapes-1024-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/segformer-b0-finetuned-cityscapes-512-1024
nvidia
2022-08-09T11:34:31Z
679
0
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: road --- # SegFormer (b4-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 512x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-512-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-512-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/segformer-b0-finetuned-cityscapes-640-1280
nvidia
2022-08-09T11:33:34Z
57
0
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: road --- # SegFormer (b5-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 640x1280. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-640-1280") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/segformer-b0-finetuned-cityscapes-768-768
nvidia
2022-08-09T11:33:19Z
389
0
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: Road --- # SegFormer (b0-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 768x768. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-768-768") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-cityscapes-768-768") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
nvidia/segformer-b1-finetuned-cityscapes-1024-1024
nvidia
2022-08-09T11:33:04Z
10,511
13
transformers
[ "transformers", "pytorch", "tf", "segformer", "vision", "image-segmentation", "dataset:cityscapes", "arxiv:2105.15203", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2022-03-02T23:29:05Z
--- license: other tags: - vision - image-segmentation datasets: - cityscapes widget: - src: https://cdn-media.huggingface.co/Inference-API/Sample-results-on-the-Cityscapes-dataset-The-above-images-show-how-our-method-can-handle.png example_title: Road --- # SegFormer (b1-sized) model fine-tuned on CityScapes SegFormer model fine-tuned on CityScapes at resolution 1024x1024. It was introduced in the paper [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) by Xie et al. and first released in [this repository](https://github.com/NVlabs/SegFormer). Disclaimer: The team releasing SegFormer did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description SegFormer consists of a hierarchical Transformer encoder and a lightweight all-MLP decode head to achieve great results on semantic segmentation benchmarks such as ADE20K and Cityscapes. The hierarchical Transformer is first pre-trained on ImageNet-1k, after which a decode head is added and fine-tuned altogether on a downstream dataset. ## Intended uses & limitations You can use the raw model for semantic segmentation. See the [model hub](https://huggingface.co/models?other=segformer) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation from PIL import Image import requests feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024") model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b1-finetuned-cityscapes-1024-1024") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4) ``` For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/segformer.html#). ### License The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-15203, author = {Enze Xie and Wenhai Wang and Zhiding Yu and Anima Anandkumar and Jose M. Alvarez and Ping Luo}, title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers}, journal = {CoRR}, volume = {abs/2105.15203}, year = {2021}, url = {https://arxiv.org/abs/2105.15203}, eprinttype = {arXiv}, eprint = {2105.15203}, timestamp = {Wed, 02 Jun 2021 11:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500_aug2-3
dminiotas05
2022-08-09T11:07:30Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T10:06:41Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500_aug2-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500_aug2-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5766 - Mse: 5.1532 - Mae: 1.3526 - R2: -0.0072 - Accuracy: 0.4734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------:|:--------:| | 1.0562 | 1.0 | 15533 | 2.5766 | 5.1532 | 1.3526 | -0.0072 | 0.4734 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Mahmoud7/dqn-SpaceInvadersNoFrameskip-v4
Mahmoud7
2022-08-09T09:51:26Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T09:50:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 374.00 +/- 214.89 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga Mahmoud7 -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga Mahmoud7 ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
Jinchen/t5-small-finetuned-xsum
Jinchen
2022-08-09T09:05:05Z
11
0
transformers
[ "transformers", "pytorch", "optimum_graphcore", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T15:30:12Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: t5-small-finetuned-xsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8115 | 1.0 | 3188 | 2.5273 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+rocm4.2 - Datasets 2.3.2 - Tokenizers 0.12.1
apurva19/q-Taxi-v3
apurva19
2022-08-09T09:02:20Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T08:52:14Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="apurva19/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
apurva19/q-FrozenLake-v1-4x4-noSlippery
apurva19
2022-08-09T08:24:44Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T08:15:09Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="apurva19/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
zboxi7/finetuning-sentiment-model-3000-samples_fr
zboxi7
2022-08-09T07:01:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T06:50:17Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuning-sentiment-model-3000-samples_fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples_fr This model is a fine-tuned version of [zboxi7/finetuning-sentiment-model-3000-samples](https://huggingface.co/zboxi7/finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Accuracy: 0.7033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ultra-coder54732/relation-detection-prop-16-train-set
ultra-coder54732
2022-08-09T06:49:43Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-09T05:47:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: relation-detection-prop-16-train-set results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # relation-detection-prop-16-train-set This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
parnyanp/distilbert-base-uncased-finetuned-emotion
parnyanp
2022-08-09T06:31:38Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-06T06:44:22Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9275 - name: F1 type: f1 value: 0.9274815041868594 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2182 - Accuracy: 0.9275 - F1: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8403 | 1.0 | 250 | 0.3135 | 0.9065 | 0.9031 | | 0.2525 | 2.0 | 500 | 0.2182 | 0.9275 | 0.9275 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
zboxi7/finetuning-sentiment-model-3000-samples
zboxi7
2022-08-09T06:30:22Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-06T19:21:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuning-sentiment-model-3000-samples results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1460 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
apurva19/ppo-LunarLander-v2
apurva19
2022-08-09T06:24:55Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-03T16:45:50Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 257.16 +/- 17.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
xusysh/ppo-LunarLander-v2
xusysh
2022-08-09T06:08:34Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-09T06:06:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 182.89 +/- 52.91 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alex-apostolo/legal-bert-base-cuad
alex-apostolo
2022-08-09T04:46:44Z
25
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:cuad", "license:cc-by-sa-4.0", "endpoints_compatible", "region:us" ]
question-answering
2022-08-07T09:36:34Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - cuad model-index: - name: legal-bert-base-uncased-filtered-cuad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # legal-bert-base-uncased-filtered-cuad This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on the cuad dataset. It achieves the following results on the evaluation set: - Loss: 0.0259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.0394 | 1.0 | 31626 | 0.0265 | | 0.0272 | 2.0 | 63252 | 0.0237 | | 0.021 | 3.0 | 94878 | 0.0259 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Farshid/roberta-large-financial-phrasebank-allagree1
Farshid
2022-08-09T02:16:17Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T19:16:12Z
--- license: mit tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy - f1 model-index: - name: roberta-large-financial-phrasebank-allagree1 results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank config: sentences_allagree split: train args: sentences_allagree metrics: - name: Accuracy type: accuracy value: 0.9734513274336283 - name: F1 type: f1 value: 0.9736033872259027 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-financial-phrasebank-allagree1 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.1417 - Accuracy: 0.9735 - F1: 0.9736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.503 | 1.0 | 227 | 0.2774 | 0.9513 | 0.9517 | | 0.177 | 2.0 | 454 | 0.1518 | 0.9779 | 0.9778 | | 0.0789 | 3.0 | 681 | 0.1364 | 0.9823 | 0.9822 | | 0.0512 | 4.0 | 908 | 0.1131 | 0.9779 | 0.9778 | | 0.03 | 5.0 | 1135 | 0.1417 | 0.9735 | 0.9736 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
deploy-hf-tf-vit/vit-base16-extended
deploy-hf-tf-vit
2022-08-09T01:43:37Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2022-08-08T14:59:35Z
--- license: apache-2.0 --- This repository houses an extended version of the [ViT Base/16 model from 🤗 Transformers](https://huggingface.co/docs/transformers/main/en/model_doc/vit). In particular, it provides the following: * A `SavedModel` that has the preprocessing and postprocessing operations embedded inside the computation graph of the model. * A `tar` archive of the SavedModel. Please refer to the following blog post to know how the SavedModel was exported: [Deploying TensorFlow Vision Models in Hugging Face with TF Serving](https://huggingface.co/blog/tf-serving-vision).
SharpAI/mal-tls-t5-l12
SharpAI
2022-08-09T01:16:57Z
7
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T23:48:12Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-t5-l12 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-t5-l12 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
TheLitttleThings/clip-archdaily-5k
TheLitttleThings
2022-08-09T01:14:34Z
7
0
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "generated_from_trainer", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2022-08-05T12:31:23Z
--- tags: - generated_from_trainer model-index: - name: clip-archdaily-5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clip-archdaily-5k This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 56 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.533 | 0.34 | 200 | 2.4607 | | 2.1012 | 0.68 | 400 | 1.9922 | | 1.6059 | 1.02 | 600 | 1.7986 | | 1.4557 | 1.36 | 800 | 1.6130 | | 1.4268 | 1.7 | 1000 | 1.4073 | | 0.8588 | 2.04 | 1200 | 1.2657 | | 0.8191 | 2.38 | 1400 | 1.1214 | | 0.81 | 2.72 | 1600 | 1.0418 | | 0.5546 | 3.06 | 1800 | 0.9735 | | 0.4905 | 3.4 | 2000 | 0.9006 | | 0.5209 | 3.74 | 2200 | 0.8762 | | 0.3127 | 4.08 | 2400 | 0.8457 | | 0.3145 | 4.42 | 2600 | 0.7886 | | 0.3265 | 4.76 | 2800 | 0.7853 | | 0.2215 | 5.1 | 3000 | 0.7309 | | 0.2351 | 5.44 | 3200 | 0.7082 | | 0.2332 | 5.78 | 3400 | 0.6770 | | 0.1793 | 6.12 | 3600 | 0.6856 | | 0.1617 | 6.46 | 3800 | 0.6470 | | 0.1468 | 6.8 | 4000 | 0.6700 | | 0.1293 | 7.14 | 4200 | 0.6460 | | 0.1257 | 7.48 | 4400 | 0.6415 | | 0.0975 | 7.82 | 4600 | 0.6454 | | 0.0835 | 8.16 | 4800 | 0.6111 | | 0.0856 | 8.5 | 5000 | 0.6124 | | 0.0887 | 8.84 | 5200 | 0.5956 | | 0.069 | 9.18 | 5400 | 0.5877 | | 0.0625 | 9.52 | 5600 | 0.5798 | | 0.0599 | 9.86 | 5800 | 0.5681 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
theojolliffe/bart-paraphrase-v8-e1
theojolliffe
2022-08-09T00:31:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T21:40:00Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-v8-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v8-e1 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1597 - Rouge1: 73.0494 - Rouge2: 70.2389 - Rougel: 72.0086 - Rougelsum: 72.1 - Gen Len: 19.7365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0312 | 1.0 | 28370 | 0.1597 | 73.0494 | 70.2389 | 72.0086 | 72.1 | 19.7365 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
SharpAI/mal-tls-t5-l3
SharpAI
2022-08-08T22:55:45Z
11
0
transformers
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "generated_from_keras_callback", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T22:44:04Z
--- tags: - generated_from_keras_callback model-index: - name: mal-tls-t5-l3 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # mal-tls-t5-l3 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Training results ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
theojolliffe/bart-paraphrase-v4-e1
theojolliffe
2022-08-08T22:42:20Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-06T21:43:12Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-paraphrase-v4-e1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-v4-e1 This model is a fine-tuned version of [eugenesiow/bart-paraphrase](https://huggingface.co/eugenesiow/bart-paraphrase) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1318 - Rouge1: 73.1451 - Rouge2: 69.0788 - Rougel: 71.9928 - Rougelsum: 72.1526 - Gen Len: 19.3423 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.0476 | 1.0 | 14185 | 0.1318 | 73.1451 | 69.0788 | 71.9928 | 72.1526 | 19.3423 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
huggingtweets/apesahoy-dril-dril9999-dril_gpt2-gptmicrofic-tanakhbot
huggingtweets
2022-08-08T21:52:04Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-08T21:48:49Z
--- language: en thumbnail: http://www.huggingtweets.com/apesahoy-dril-dril9999-dril_gpt2-gptmicrofic-tanakhbot/1659995519837/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1326378564187529216/a9fuWw48_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1261895681561804800/r6vOZGoH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Humongous Ape MP & tanakhbot & GPT2-Microfic & MORTIMUS COWBOY: The Bastard of Diapers & wint & wint but Al</div> <div style="text-align: center; font-size: 14px;">@apesahoy-dril-dril9999-dril_gpt2-gptmicrofic-tanakhbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Humongous Ape MP & tanakhbot & GPT2-Microfic & MORTIMUS COWBOY: The Bastard of Diapers & wint & wint but Al. | Data | Humongous Ape MP | tanakhbot | GPT2-Microfic | MORTIMUS COWBOY: The Bastard of Diapers | wint | wint but Al | | --- | --- | --- | --- | --- | --- | --- | | Tweets downloaded | 3245 | 565 | 1158 | 3249 | 3226 | 3229 | | Retweets | 197 | 0 | 11 | 0 | 497 | 47 | | Short tweets | 610 | 1 | 9 | 143 | 287 | 57 | | Tweets kept | 2438 | 564 | 1138 | 3106 | 2442 | 3125 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rmkgg2i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-dril-dril9999-dril_gpt2-gptmicrofic-tanakhbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6iovvvgz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6iovvvgz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-dril-dril9999-dril_gpt2-gptmicrofic-tanakhbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Kowsher/bangla-bert
Kowsher
2022-08-08T21:21:38Z
20
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "Bert base Bangla", "Bengali Bert", "Bengali lm", "Bangla Base Bert", "Bangla Bert language model", "Bangla Bert", "bn", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: bn tags: - Bert base Bangla - Bengali Bert - Bengali lm - Bangla Base Bert - Bangla Bert language model - Bangla Bert datasets: - BanglaLM dataset --- # Bangla BERT Base Here we published a pretrained Bangla bert language model as **bangla-bert**! which is now available in huggingface model hub. Here we described [bangla-bert](https://github.com/Kowsher/bert-base-bangla) which is a pretrained Bangla language model based on mask language modeling described in [BERT](https://arxiv.org/abs/1810.04805) and the GitHub [repository](https://github.com/google-research/bert) ## Corpus Details We trained the Bangla bert language model using BanglaLM dataset from kaggle [BanglaLM](https://www.kaggle.com/gakowsher/bangla-language-model-dataset). There is 3 version of dataset which is almost 40GB. After downloading the dataset, we went on the way to mask LM. **bangla-bert Tokenizer** ```py from transformers import AutoTokenizer, AutoModel bnbert_tokenizer = AutoTokenizer.from_pretrained("Kowsher/bangla-bert") text = "খাঁটি সোনার চাইতে খাঁটি আমার দেশের মাটি" bnbert_tokenizer.tokenize(text) # output: ['খাটি', 'সে', '##ানার', 'চাইতে', 'খাটি', 'আমার', 'দেশের', 'মাটি'] ``` **MASK Generation** here, we can use bert base bangla model as for masked language modeling: ```py from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained("Kowsher/bangla-bert") tokenizer = BertTokenizer.from_pretrained("Kowsher/bangla-bert") nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"আমি বাংলার গান {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'আমি বাংলার গান লিখি', 'score': 0.17955434322357178, 'token': 24749, 'token_str': 'লিখি'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"তুই রাজাকার তুই {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'তুই রাজাকার তুই রাজাকার', 'score': 0.9975168704986572, 'token': 13401, 'token_str': 'রাজাকার'} nlp = pipeline('fill-mask', model=model, tokenizer=tokenizer) for pred in nlp(f"বাংলা আমার {nlp.tokenizer.mask_token}"): print(pred) # {'sequence': 'বাংলা আমার অহংকার', 'score': 0.5679506063461304, 'token': 19009, 'token_str': 'অহংকার'} ``` **Cite this work** M. Kowsher, A. A. Sami, N. J. Prottasha, M. S. Arefin, P. K. Dhar and T. Koshiba, "Bangla-BERT: Transformer-based Efficient Model for Transfer Learning and Language Understanding," in IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3197662. ## Author [Kowsher](http://kowsher.org/)
DavidNovikov/ddpm-butterflies-128
DavidNovikov
2022-08-08T21:05:11Z
0
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-08T20:22:07Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/DavidNovikov/ddpm-butterflies-128/tensorboard?#scalars)
Izarel/distilbert-base-uncased_fine_tuned
Izarel
2022-08-08T20:58:07Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-07-30T21:14:23Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: distilbert-base-uncased_fine_tuned_title_and_text results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fine_tuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an reddit dataset -for NSFW classification. It was trained on titles + body_text of submissions. It achieves the following results on the evaluation set: - Loss: 1.0159 - Accuracy: {'accuracy': 0.9095537914043252} - Recall: {'recall': 0.8936873290793071} - Precision: {'precision': 0.916024293389395} - F1: {'f1': 0.9047179605490829} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:| | 0.256 | 1.0 | 2284 | 0.2569 | {'accuracy': 0.9085683000273748} | {'recall': 0.8976754785779398} | {'precision': 0.9107514450867052} | {'f1': 0.9041661884540342} | | 0.1948 | 2.0 | 4568 | 0.2471 | {'accuracy': 0.9138242540377771} | {'recall': 0.8644029170464904} | {'precision': 0.9518193224592221} | {'f1': 0.9060074047533739} | | 0.1318 | 3.0 | 6852 | 0.3057 | {'accuracy': 0.914207500684369} | {'recall': 0.8977894257064722} | {'precision': 0.9216282606152767} | {'f1': 0.9095526695526697} | | 0.0865 | 4.0 | 9136 | 0.4174 | {'accuracy': 0.9047358335614564} | {'recall': 0.8697584320875114} | {'precision': 0.9274605103280681} | {'f1': 0.8976831706456546} | | 0.0545 | 5.0 | 11420 | 0.4635 | {'accuracy': 0.9095537914043252} | {'recall': 0.8849134001823155} | {'precision': 0.9236441484300666} | {'f1': 0.9038640595903165} | | 0.0359 | 6.0 | 13704 | 0.5654 | {'accuracy': 0.9071448124828908} | {'recall': 0.8919781221513218} | {'precision': 0.9127798507462687} | {'f1': 0.9022591055786076} | | 0.0262 | 7.0 | 15988 | 0.5568 | {'accuracy': 0.8994251300301123} | {'recall': 0.900865998176846} | {'precision': 0.8910176941282543} | {'f1': 0.8959147827072356} | | 0.0181 | 8.0 | 18272 | 0.6846 | {'accuracy': 0.9042430878729811} | {'recall': 0.9026891522333638} | {'precision': 0.898491550413973} | {'f1': 0.9005854601261866} | | 0.0121 | 9.0 | 20556 | 0.7516 | {'accuracy': 0.9071448124828908} | {'recall': 0.8990428441203282} | {'precision': 0.906896551724138} | {'f1': 0.9029526207370108} | | 0.0119 | 10.0 | 22840 | 0.8614 | {'accuracy': 0.9050095811661648} | {'recall': 0.9002962625341842} | {'precision': 0.9018376897614427} | {'f1': 0.9010663169299197} | | 0.0105 | 11.0 | 25124 | 0.7298 | {'accuracy': 0.9105940323022174} | {'recall': 0.8907247037374658} | {'precision': 0.9206218348839948} | {'f1': 0.9054265361672554} | | 0.0049 | 12.0 | 27408 | 0.9237 | {'accuracy': 0.9101560361346839} | {'recall': 0.8828623518687329} | {'precision': 0.9266834110752302} | {'f1': 0.9042422827799498} | | 0.0026 | 13.0 | 29692 | 0.9489 | {'accuracy': 0.9066520667944156} | {'recall': 0.8988149498632635} | {'precision': 0.9061458931648478} | {'f1': 0.9024655340083519} | | 0.0016 | 14.0 | 31976 | 1.0045 | {'accuracy': 0.9099917875718587} | {'recall': 0.8963081130355515} | {'precision': 0.9146511627906977} | {'f1': 0.9053867403314917} | | 0.0022 | 15.0 | 34260 | 1.0159 | {'accuracy': 0.9095537914043252} | {'recall': 0.8936873290793071} | {'precision': 0.916024293389395} | {'f1': 0.9047179605490829} | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ScottMueller/Cat_Dog_Breeds.ONNX
ScottMueller
2022-08-08T20:32:41Z
0
0
null
[ "onnx", "license:mit", "region:us" ]
null
2022-08-08T20:28:18Z
--- license: mit --- A simple single label classification model, ResNet18, to predict the cat or dog breed from the provided image. The model was created in Fast.ai and exported to ONNX using PyTorch's ONNX export capabilities. The source dataset is the OXFORD-IIIT PET. Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman and C. V. Jawahar We have created a 37 category pet dataset with roughly 200 images for each class. The images have a large variations in scale, pose and lighting. All images havean associated ground truth annotation of breed, head ROI, and pixel level trimap segmentation. The ONNX model can be used in other frameworks like Elixir's Axon. An example of converting the ONNX model into Axon can be found at: https://github.com/elixir-nx/axon/tree/main/notebooks/onnx_to_axon.livemd.
ScottMueller/Cats_v_Dogs.ONNX
ScottMueller
2022-08-08T20:10:32Z
0
0
null
[ "onnx", "license:mit", "region:us" ]
null
2022-08-08T19:54:50Z
--- license: mit --- A simple single label classification model, ResNet18, to predict whether the provided image is a cat or a dog. The model was created in Fast.ai and exported to ONNX using PyTorch's ONNX export capabilities. The source dataset is the OXFORD-IIIT PET. Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman and C. V. Jawahar We have created a 37 category pet dataset with roughly 200 images for each class. The images have a large variations in scale, pose and lighting. All images havean associated ground truth annotation of breed, head ROI, and pixel level trimap segmentation. The ONNX model can be used in other frameworks like Elixir's Axon. An example of converting the ONNX model into Axon can be found at: https://github.com/elixir-nx/axon/tree/main/notebooks/onnx_to_axon.livemd.
mlegls/usv3_usdc_predictor_0
mlegls
2022-08-08T18:43:45Z
103
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-08-08T18:40:15Z
--- license: mit tags: - generated_from_trainer model-index: - name: usv3_usdc_predictor_0 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # usv3_usdc_predictor_0 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.0.dev0 - Pytorch 1.11.0 - Datasets 2.4.0 - Tokenizers 0.12.1
andres-hsn/testpyramidsrnd
andres-hsn
2022-08-08T18:39:55Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "unity-ml-agents", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2022-08-08T18:39:50Z
--- tags: - unity-ml-agents - ml-agents - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids library_name: ml-agents --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids 2. Step 1: Write your model_id: andres-hsn/testpyramidsrnd 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
keljai/ppo-LunarLander-v2
keljai
2022-08-08T17:14:03Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T17:13:37Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 227.24 +/- 21.38 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sofiaoliveira/q-Taxi-v3
sofiaoliveira
2022-08-08T16:12:21Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T14:35:35Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="sofiaoliveira/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Mozart-coder/DNA_bert_3-finetuned
Mozart-coder
2022-08-08T15:45:59Z
161
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-08T15:29:41Z
--- tags: - generated_from_trainer model-index: - name: DNA_bert_3-finetuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DNA_bert_3-finetuned This model is a fine-tuned version of [armheb/DNA_bert_3](https://huggingface.co/armheb/DNA_bert_3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5788 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.8244 | 1.0 | 62 | 0.6044 | | 0.5987 | 2.0 | 124 | 0.5933 | | 0.5915 | 3.0 | 186 | 0.5856 | | 0.585 | 4.0 | 248 | 0.5844 | | 0.5817 | 5.0 | 310 | 0.5818 | | 0.5791 | 6.0 | 372 | 0.5809 | | 0.5801 | 7.0 | 434 | 0.5807 | | 0.5768 | 8.0 | 496 | 0.5796 | | 0.5741 | 9.0 | 558 | 0.5790 | | 0.574 | 10.0 | 620 | 0.5788 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
LilOpa/LunarLanderPPO
LilOpa
2022-08-08T15:15:27Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T15:13:56Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 116.10 +/- 113.40 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
neskue/ppo-LunarLander-v2
neskue
2022-08-08T14:57:11Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T14:56:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 27.28 +/- 144.51 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sofiaoliveira/q-FrozenLake-v1-4x4-noSlippery
sofiaoliveira
2022-08-08T13:54:54Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T13:49:17Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="sofiaoliveira/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
dminiotas05/distilbert-base-uncased-finetuned-ft1500_norm500_aug1
dminiotas05
2022-08-08T13:27:41Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T11:37:51Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500_aug1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ft1500_norm500_aug1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9086 - Mse: 3.6357 - Mae: 1.0762 - R2: 0.2894 - Accuracy: 0.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 1.5856 | 1.0 | 5847 | 3.3101 | 4.1376 | 1.1447 | 0.1913 | 0.4965 | | 0.442 | 2.0 | 11694 | 2.7448 | 3.4311 | 1.0934 | 0.3294 | 0.4523 | | 0.2703 | 3.0 | 17541 | 2.9300 | 3.6625 | 1.0907 | 0.2841 | 0.4933 | | 0.1699 | 4.0 | 23388 | 2.7979 | 3.4973 | 1.0808 | 0.3164 | 0.4805 | | 0.1168 | 5.0 | 29235 | 2.9086 | 3.6357 | 1.0762 | 0.2894 | 0.5170 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/recipistil
paola-md
2022-08-08T12:02:00Z
161
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-08T06:51:20Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipistil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipistil This model is a fine-tuned version of [paola-md/recipe-distilroberta-Is](https://huggingface.co/paola-md/recipe-distilroberta-Is) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9743 - Rmse: 1.4051 - Mse: 1.9743 - Mae: 1.0578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:| | 1.9657 | 1.0 | 8126 | 1.9789 | 1.4067 | 1.9789 | 1.0578 | | 1.9617 | 2.0 | 16252 | 1.9873 | 1.4097 | 1.9873 | 1.0620 | | 1.9588 | 3.0 | 24378 | 1.9769 | 1.4060 | 1.9769 | 1.0578 | | 1.958 | 4.0 | 32504 | 1.9736 | 1.4048 | 1.9736 | 1.0578 | | 1.9568 | 5.0 | 40630 | 1.9772 | 1.4061 | 1.9772 | 1.0578 | | 1.9564 | 6.0 | 48756 | 1.9736 | 1.4048 | 1.9736 | 1.0578 | | 1.9563 | 7.0 | 56882 | 1.9737 | 1.4049 | 1.9737 | 1.0578 | | 1.9561 | 8.0 | 65008 | 1.9737 | 1.4049 | 1.9737 | 1.0578 | | 1.9559 | 9.0 | 73134 | 1.9743 | 1.4051 | 1.9743 | 1.0578 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
abdulmatinomotoso/multi_news_article_title_25000_2
abdulmatinomotoso
2022-08-08T11:41:24Z
10
0
transformers
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T05:04:15Z
--- tags: - generated_from_trainer model-index: - name: multi_news_article_title_25000_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # multi_news_article_title_25000_2 This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.3431 | 0.32 | 500 | 0.2731 | | 0.2136 | 0.64 | 1000 | 0.2028 | | 0.215 | 0.96 | 1500 | 0.1880 | | 0.1972 | 1.28 | 2000 | 0.1809 | | 0.1903 | 1.6 | 2500 | 0.1760 | | 0.1886 | 1.92 | 3000 | 0.1740 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
Lvxue/distilled-mt5-small-0.5
Lvxue
2022-08-08T10:41:51Z
8
0
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "generated_from_trainer", "en", "ro", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-08-08T08:12:07Z
--- language: - en - ro license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu model-index: - name: distilled-mt5-small-0.5 results: - task: name: Translation type: translation dataset: name: wmt16 ro-en type: wmt16 args: ro-en metrics: - name: Bleu type: bleu value: 1.2575 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilled-mt5-small-0.5 This model is a distilled version of [Lvxue/finetuned-mt5-base](https://huggingface.co/Lvxue/finetuned-mt5-base) on [google/mt5-small](https://huggingface.co/google/mt5-small) on the wmt16 ro-en dataset. It achieves the following results on the evaluation set: - Loss: 3.7455 - Bleu: 1.2575 - Gen Len: 94.3597 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
mohammadhadiarabi/ddpm-butterflies-128
mohammadhadiarabi
2022-08-08T10:35:57Z
2
0
diffusers
[ "diffusers", "tensorboard", "en", "dataset:huggan/smithsonian_butterflies_subset", "license:apache-2.0", "diffusers:DDPMPipeline", "region:us" ]
null
2022-08-08T09:22:10Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [🤗 Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results 📈 [TensorBoard logs](https://huggingface.co/mohammadhadiarabi/ddpm-butterflies-128/tensorboard?#scalars)
osanseviero/distilroberta-base-sentence-transformer
osanseviero
2022-08-08T09:33:52Z
1
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "dataset:embedding-data/QQP_triplets", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-08-08T09:33:42Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - embedding-data/QQP_triplets --- # osanseviero/distilroberta-base-sentence-transformer This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('osanseviero/distilroberta-base-sentence-transformer') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('osanseviero/distilroberta-base-sentence-transformer') model = AutoModel.from_pretrained('osanseviero/distilroberta-base-sentence-transformer') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=osanseviero/distilroberta-base-sentence-transformer) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 63 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 63, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Mahmoud7/q-Taxi-v3
Mahmoud7
2022-08-08T09:21:53Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2022-08-08T09:21:45Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mahmoud7/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
luomingshuang/icefall_asr_wenetspeech_pruned_transducer_stateless5_offline
luomingshuang
2022-08-08T08:45:35Z
0
2
null
[ "region:us" ]
null
2022-07-26T07:30:53Z
See https://github.com/k2-fsa/icefall/pull/447 .
eliwill/distilgpt2-discursive-krishna
eliwill
2022-08-08T07:56:32Z
4
0
transformers
[ "transformers", "tf", "tensorboard", "gpt2", "text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-08-08T07:49:44Z
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: eliwill/distilgpt2-discursive-krishna results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eliwill/distilgpt2-discursive-krishna This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.2503 - Validation Loss: 3.1371 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.2503 | 3.1371 | 0 | ### Framework versions - Transformers 4.21.1 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1
202015004/Spoof_detection
202015004
2022-08-08T07:48:41Z
37
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-08-05T09:32:36Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: Spoof_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Spoof_detection This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7448 - Wer: 0.1090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 95.9046 | 0.66 | 500 | 992.2993 | 0.6180 | | 14.0322 | 1.33 | 1000 | 1.8873 | 0.1090 | | 1.8659 | 1.99 | 1500 | 1.7827 | 0.1090 | | 1.851 | 2.65 | 2000 | 1.8489 | 0.1090 | | 1.8218 | 3.32 | 2500 | 1.8943 | 0.1090 | | 1.8108 | 3.98 | 3000 | 1.9250 | 0.1090 | | 1.8228 | 4.64 | 3500 | 1.7555 | 0.1090 | | 1.832 | 5.31 | 4000 | 1.7837 | 0.1090 | | 1.8403 | 5.97 | 4500 | 1.6644 | 0.1090 | | 1.8292 | 6.63 | 5000 | 1.6906 | 0.1090 | | 1.8223 | 7.29 | 5500 | 1.6966 | 0.1090 | | 1.8007 | 7.96 | 6000 | 1.6951 | 0.1090 | | 1.7986 | 8.62 | 6500 | 1.7436 | 0.1090 | | 1.7933 | 9.28 | 7000 | 1.8169 | 0.1090 | | 1.7861 | 9.95 | 7500 | 1.7209 | 0.1090 | | 1.7843 | 10.61 | 8000 | 1.9379 | 0.1090 | | 1.7743 | 11.27 | 8500 | 1.9834 | 0.1090 | | 1.7721 | 11.94 | 9000 | 1.9279 | 0.1090 | | 1.7719 | 12.6 | 9500 | 1.8187 | 0.1090 | | 1.7616 | 13.26 | 10000 | 1.7804 | 0.1090 | | 1.7638 | 13.93 | 10500 | 1.7884 | 0.1090 | | 1.7651 | 14.59 | 11000 | 1.7476 | 0.1090 | | 1.7603 | 15.25 | 11500 | 1.7570 | 0.1090 | | 1.7543 | 15.92 | 12000 | 1.7356 | 0.1090 | | 1.7556 | 16.58 | 12500 | 1.7140 | 0.1090 | | 1.751 | 17.24 | 13000 | 1.7453 | 0.1090 | | 1.75 | 17.9 | 13500 | 1.7648 | 0.1090 | | 1.7492 | 18.57 | 14000 | 1.7338 | 0.1090 | | 1.7484 | 19.23 | 14500 | 1.7093 | 0.1090 | | 1.7461 | 19.89 | 15000 | 1.7393 | 0.1090 | | 1.7429 | 20.56 | 15500 | 1.7605 | 0.1090 | | 1.7446 | 21.22 | 16000 | 1.7782 | 0.1090 | | 1.7435 | 21.88 | 16500 | 1.6749 | 0.1090 | | 1.7392 | 22.55 | 17000 | 1.7468 | 0.1090 | | 1.741 | 23.21 | 17500 | 1.7406 | 0.1090 | | 1.7394 | 23.87 | 18000 | 1.7787 | 0.1090 | | 1.739 | 24.54 | 18500 | 1.7969 | 0.1090 | | 1.7341 | 25.2 | 19000 | 1.7490 | 0.1090 | | 1.7371 | 25.86 | 19500 | 1.7783 | 0.1090 | | 1.735 | 26.53 | 20000 | 1.7540 | 0.1090 | | 1.7353 | 27.19 | 20500 | 1.7735 | 0.1090 | | 1.7331 | 27.85 | 21000 | 1.7188 | 0.1090 | | 1.7308 | 28.51 | 21500 | 1.7349 | 0.1090 | | 1.7341 | 29.18 | 22000 | 1.7531 | 0.1090 | | 1.7305 | 29.84 | 22500 | 1.7448 | 0.1090 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.12.1
facebook/xlm-roberta-xxl
facebook
2022-08-08T07:19:25Z
20,264
15
transformers
[ "transformers", "pytorch", "xlm-roberta-xl", "fill-mask", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2105.00572", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - no - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- # XLM-RoBERTa-XL (xxlarge-sized model) XLM-RoBERTa-XL model pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. It was introduced in the paper [Larger-Scale Transformers for Multilingual Masked Language Modeling](https://arxiv.org/abs/2105.00572) by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau and first released in [this repository](https://github.com/pytorch/fairseq/tree/master/examples/xlmr). Disclaimer: The team releasing XLM-RoBERTa-XL did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description XLM-RoBERTa-XL is a extra large multilingual version of RoBERTa. It is pre-trained on 2.5TB of filtered CommonCrawl data containing 100 languages. RoBERTa is a transformers model pretrained on a large corpus in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. This way, the model learns an inner representation of 100 languages that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the XLM-RoBERTa-XL model as inputs. ## Intended uses & limitations You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=xlm-roberta-xl) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation, you should look at models like GPT2. ## Usage You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='facebook/xlm-roberta-xxl') >>> unmasker("Europe is a <mask> continent.") [{'score': 0.22996895015239716, 'token': 28811, 'token_str': 'European', 'sequence': 'Europe is a European continent.'}, {'score': 0.14307449758052826, 'token': 21334, 'token_str': 'large', 'sequence': 'Europe is a large continent.'}, {'score': 0.12239163368940353, 'token': 19336, 'token_str': 'small', 'sequence': 'Europe is a small continent.'}, {'score': 0.07025063782930374, 'token': 18410, 'token_str': 'vast', 'sequence': 'Europe is a vast continent.'}, {'score': 0.032869212329387665, 'token': 6957, 'token_str': 'big', 'sequence': 'Europe is a big continent.'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('facebook/xlm-roberta-xxl') model = AutoModelForMaskedLM.from_pretrained("facebook/xlm-roberta-xxl") # prepare input text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2105-00572, author = {Naman Goyal and Jingfei Du and Myle Ott and Giri Anantharaman and Alexis Conneau}, title = {Larger-Scale Transformers for Multilingual Masked Language Modeling}, journal = {CoRR}, volume = {abs/2105.00572}, year = {2021}, url = {https://arxiv.org/abs/2105.00572}, eprinttype = {arXiv}, eprint = {2105.00572}, timestamp = {Wed, 12 May 2021 15:54:31 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2105-00572.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
osanseviero/osans
osanseviero
2022-08-08T07:05:08Z
0
0
keras
[ "keras", "tf-keras", "region:us" ]
null
2022-08-08T07:04:37Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision | |----|-------------|-----|------|------|-------|-------|------------------| |Adam|0.001|0.0|0.9|0.999|1e-07|False|float32| ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
ultra-coder54732/comment-detection-prop-16
ultra-coder54732
2022-08-08T00:29:14Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-07T05:37:42Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: comment-detection-prop-16 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # comment-detection-prop-16 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
srcocotero/bert-qa-es
srcocotero
2022-08-07T21:19:06Z
12
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad_es", "endpoints_compatible", "region:us" ]
question-answering
2022-08-07T18:16:10Z
--- tags: - generated_from_trainer datasets: - squad_es model-index: - name: bert-qa-es results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-qa-es This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the squad_es dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2.0 ### Training results ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
paola-md/RELEXset-MLM
paola-md
2022-08-07T20:07:52Z
3
0
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-08-07T13:14:24Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: recipe-distilroberta-Is results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # recipe-distilroberta-Is This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.7427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 19.6191 | 1.0 | 2135 | 10.5217 | | 8.6838 | 2.0 | 4270 | 7.3017 | | 6.884 | 3.0 | 6405 | 6.4445 | | 6.2953 | 4.0 | 8540 | 6.0610 | | 6.0205 | 5.0 | 10675 | 5.9047 | | 5.851 | 6.0 | 12810 | 5.7790 | | 5.7464 | 7.0 | 14945 | 5.7164 | | 5.6684 | 8.0 | 17080 | 5.6415 | | 5.6138 | 9.0 | 19215 | 5.5671 | | 5.5638 | 10.0 | 21350 | 5.5360 | | 5.5288 | 11.0 | 23485 | 5.5069 | | 5.4968 | 12.0 | 25620 | 5.4968 | | 5.4696 | 13.0 | 27755 | 5.4539 | | 5.4468 | 14.0 | 29890 | 5.4416 | | 5.4177 | 15.0 | 32025 | 5.3722 | | 5.3717 | 16.0 | 34160 | 5.3226 | | 5.317 | 17.0 | 36295 | 5.2197 | | 5.2367 | 18.0 | 38430 | 5.0888 | | 5.1543 | 19.0 | 40565 | 4.9954 | | 5.0919 | 20.0 | 42700 | 4.9306 | | 5.038 | 21.0 | 44835 | 4.8657 | | 4.9983 | 22.0 | 46970 | 4.8137 | | 4.9639 | 23.0 | 49105 | 4.7704 | | 4.9426 | 24.0 | 51240 | 4.7486 | | 4.9312 | 25.0 | 53375 | 4.7427 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
Izarel/bert-base-uncased_title_fine_tuned
Izarel
2022-08-07T20:05:32Z
4
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-08-07T16:18:39Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: bert-base-uncased_title_fine_tuned results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_title_fine_tuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3368 - Accuracy: {'accuracy': 0.8810840405146455} - Recall: {'recall': 0.8611674554879423} - Precision: {'precision': 0.890468422279189} - F1: {'f1': 0.8755728689275893} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:| | 0.3224 | 1.0 | 3045 | 0.3079 | {'accuracy': 0.8730358609362168} | {'recall': 0.8139508677034032} | {'precision': 0.915346597389431} | {'f1': 0.861676110945422} | | 0.2818 | 2.0 | 6090 | 0.3153 | {'accuracy': 0.8814672871612373} | {'recall': 0.8299526707234618} | {'precision': 0.9182146864480738} | {'f1': 0.8718555785735426} | | 0.2394 | 3.0 | 9135 | 0.3104 | {'accuracy': 0.8830002737476047} | {'recall': 0.8548568852828488} | {'precision': 0.8993479549496147} | {'f1': 0.8765382171124848} | | 0.204 | 4.0 | 12180 | 0.3368 | {'accuracy': 0.8810840405146455} | {'recall': 0.8611674554879423} | {'precision': 0.890468422279189} | {'f1': 0.8755728689275893} | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ycchen/TrOCR-base-ver021-v1
ycchen
2022-08-07T19:23:45Z
45
0
transformers
[ "transformers", "pytorch", "vision-encoder-decoder", "image-text-to-text", "endpoints_compatible", "region:us" ]
image-text-to-text
2022-08-07T18:49:55Z
### How to use Here is how to use this model in PyTorch: ```python from transformers import TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image import requests # load image from the IAM database (actually this model is meant to be used on printed text) url = 'https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg' image = Image.open(requests.get(url, stream=True).raw).convert("RGB") processor = TrOCRProcessor.from_pretrained('ycchen/TrOCR-base-ver021-v1') model = VisionEncoderDecoderModel.from_pretrained('ycchen/TrOCR-base-ver021-v1') pixel_values = processor(images=image, return_tensors="pt").pixel_values generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ```
cataluna84/xlm-roberta-base-finetuned-panx-en
cataluna84
2022-08-07T18:15:27Z
8
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-07T17:56:51Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-en results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.en metrics: - name: F1 type: f1 value: 0.6886160714285715 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.4043 - F1: 0.6886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1347 | 1.0 | 50 | 0.5771 | 0.4880 | | 0.5066 | 2.0 | 100 | 0.4209 | 0.6582 | | 0.3631 | 3.0 | 150 | 0.4043 | 0.6886 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
cataluna84/xlm-roberta-base-finetuned-panx-it
cataluna84
2022-08-07T17:56:33Z
5
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-08-07T17:37:54Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8124233755619126 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - F1: 0.8124 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8193 | 1.0 | 70 | 0.3200 | 0.7356 | | 0.2773 | 2.0 | 140 | 0.2841 | 0.7882 | | 0.1807 | 3.0 | 210 | 0.2630 | 0.8124 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3