modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-31 00:44:29
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-31 00:43:54
card
stringlengths
11
1.01M
lewtun/roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi
lewtun
2021-08-22T18:59:30Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy model_index: - name: roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi args: es metric: name: Accuracy type: accuracy value: 0.9285 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-bne-finetuned-amazon_reviews_multi-finetuned-amazon_reviews_multi This model was trained from scratch on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.3595 - Accuracy: 0.9285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.103 | 1.0 | 1250 | 0.2864 | 0.928 | | 0.0407 | 2.0 | 2500 | 0.3595 | 0.9285 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
Kieran/distilbert-base-uncased-finetuned-cola
Kieran
2021-08-22T18:53:03Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model_index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification metric: name: Matthews Correlation type: matthews_correlation value: 0.9719066462260881 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1037 - Matthews Correlation: 0.9719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.2094 | 1.0 | 525 | 0.1069 | 0.9607 | | 0.0483 | 2.0 | 1050 | 0.0878 | 0.9719 | | 0.0296 | 3.0 | 1575 | 0.1263 | 0.9664 | | 0.0108 | 4.0 | 2100 | 0.1037 | 0.9719 | | 0.0096 | 5.0 | 2625 | 0.1065 | 0.9719 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
dvm1983/TinyBERT_General_4L_312D_de
dvm1983
2021-08-22T16:44:48Z
13
2
transformers
[ "transformers", "pytorch", "bert", "tinybert", "fill-mask", "de", "dataset:wiki", "arxiv:1909.10351", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: - de tags: - tinybert - fill-mask datasets: - wiki --- Here is represented tinybert model for German language (de). The model was created by distilling of bert base cased model(https://huggingface.co/dbmdz/bert-base-german-cased) in the way described in https://arxiv.org/abs/1909.10351 (TinyBERT: Distilling BERT for Natural Language Understanding) Dataset: German Wikipedia Text Corpus - https://github.com/t-systems-on-site-services-gmbh/german-wikipedia-text-corpus Versions: torch==1.4.0 transformers==4.8.1 How to load model for LM(fill-mask) task: tokenizer = transformers.BertTokenizer.from_pretrained(model_dir + '/vocab.txt', do_lower_case=False) config = transformers.BertConfig.from_json_file(model_dir+'config.json') model = transformers.BertModel(config=config) model.pooler = nn.Sequential(nn.Linear(in_features=model.config.hidden_size, out_features=model.config.hidden_size, bias=True), nn.LayerNorm((model.config.hidden_size,), eps=1e-12, elementwise_affine=True), nn.Linear(in_features=model.config.hidden_size, out_features=len(tokenizer), bias=True)) model.resize_token_embeddings(len(tokenizer)) checkpoint = torch.load(model_dir+'/pytorch_model.bin', map_location=torch.device('cuda')) model.load_state_dict(checkpoint) In case of NER or Classification task we have to load model for LM task and change pooler: model.pooler = nn.Sequential(nn.Dropout(p=config.hidden_dropout_prob, inplace=False), nn.Linear(in_features=config.hidden_size, out_features=n_classes, bias=True))
EasthShin/Android_Ios_Classification
EasthShin
2021-08-22T16:18:37Z
9
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
## Bert-base-uncased for Android-Ios Question Classification **Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace) <br> **Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/) <br> **Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification) <br> **Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification) <br> <br> ## Overview **Language model**: bert-base-cased <br> **Language**: English <br> **Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios) ## Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline model_path = "EasthShin/Android_Ios_Classification" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer) question = "I bought goodnote in Appstore" result = dict() result[0] = classifier(question)[0] ```
oumeima/finetuned-bert-mrpc
oumeima
2021-08-22T11:35:18Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model_index: - name: finetuned-bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: mrpc metric: name: F1 type: f1 value: 0.9003322259136212 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5280 - Accuracy: 0.8529 - F1: 0.9003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5704 | 1.0 | 230 | 0.4204 | 0.7917 | 0.8542 | | 0.3391 | 2.0 | 460 | 0.4157 | 0.8456 | 0.8955 | | 0.1923 | 3.0 | 690 | 0.5280 | 0.8529 | 0.9003 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/the1619project
huggingtweets
2021-08-21T19:57:09Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/the1619project/1629575826001/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1415243384164282374/DYNMOOPh_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">The 1619 Project - The 2019 Project</div> <div style="text-align: center; font-size: 14px;">@the1619project</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from The 1619 Project - The 2019 Project. | Data | The 1619 Project - The 2019 Project | | --- | --- | | Tweets downloaded | 129 | | Retweets | 13 | | Short tweets | 9 | | Tweets kept | 107 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7p0zpmsp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @the1619project's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/bc1bzano) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/bc1bzano/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/the1619project') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/voxdotcom
huggingtweets
2021-08-21T19:46:49Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/voxdotcom/1629575206075/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/807306191395241984/s8xmWAvU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vox</div> <div style="text-align: center; font-size: 14px;">@voxdotcom</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vox. | Data | Vox | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 684 | | Short tweets | 2 | | Tweets kept | 2557 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3gfxxxbx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @voxdotcom's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/329h5b8s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/329h5b8s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/voxdotcom') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2
shahukareem
2021-08-21T18:31:59Z
8
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "dv", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: dv datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech license: apache-2.0 --- # Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi-v2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\،\.\؟\!\'\"\–\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```
baffo32/genji-python-6B-split
baffo32
2021-08-21T13:33:22Z
5
0
transformers
[ "transformers", "gpt_neo", "text-generation", "pytorch", "causal-lm", "en", "arxiv:2104.09864", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - pytorch - causal-lm license: apache-2.0 datasets: - the Pile --- # Genji-python 6B For example usage or to easily use the model you can check our colab notebook: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Model Description Genji is a transformer model finetuned on EleutherAI's GPT-J 6B model. This particular model is trained on python only code approaching 4GB in size. Split model has the checkpoints splitted, which makes it use less system RAM while loading and makes it faster to load. This model needs more effort to set up as you need to install git-lfs and pull the repo. | Hyperparameter | Value | |-------------------|--------| | n_parameters | 6,053,381,344 | | n_layers | 28* | | d_model | 4,096 | | d_ff | 16,384 | | n_heads | 16 | | d_head | 256 | | n_ctx | 2,048 | | n_vocab | 50,400 (same tokenizer as GPT-2/3) | | position encoding | [Rotary position encodings (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) | `*` each layer consists of one feedforward block and one self attention block The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary position encodings (RoPE) was applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Training data GPT-J 6B was pretrained on the [Pile](pile.eleuther.ai), a large scale curated dataset created by EleutherAI for the purpose of training this model. After the pre-training, it's finetuned on the python code that was taken from the Pile. ## Training procedure Genji-python-6B is trained for 20k steps on around 655 million tokens with learning rate of 2e-06 ## Intended Use This model is trained for assistence on writing python code and having fun trying weird stuff with it. ### How to use This model is only usable with our fork because GPT-J is not merged to the main transformers repo yet. When it's merged, we will make this model easily loadable. For now, you need to use this fork: [Fork](https://github.com/finetuneanon/transformers) to install with pip: ```bash pip install git+https://github.com/finetuneanon/transformers@gpt-neo-localattention3-rp-b ``` **git-lfs** also needs to be installed, on ubuntu: ```bash apt install git-lfs ``` after it's installed, initialize git-lfs: ```bash git lfs install ``` then clone this repo: ```bash git clone https://huggingface.co/NovelAI/genji-python-6B-split ``` Now we can load the model. We recommend the usage of the model as FP16. That way, it fits in 16GB VRAM cards. How to use: ```python from transformers import ( AutoTokenizer, AutoModelForCausalLM, GPTNeoForCausalLM, ) model = AutoModelForCausalLM.from_pretrained("genji-python-6B-split/model").half().eval().cuda() tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B") text = '''def print_customer_name''' tokens = tokenizer(text, return_tensors="pt").input_ids generated_tokens = model.generate(tokens.long().cuda(), use_cache=True, do_sample=True, top_k=50, temperature=0.3, top_p=0.9, repetition_penalty=1.125, min_length=1, max_length=len(tokens[0]) + 400, pad_token_id=tokenizer.eos_token_id) last_tokens = generated_tokens[0][len(tokens[0]):] generated_text = tokenizer.decode(last_tokens) print("Generation:\n" + generated_text) ``` When ran, this code generates: ```python Prompt: def print_customer_name Generation: (self, customer): """Print the name of a customer.""" if not self.is_valid(): return print("Customer: {}".format(customer)) ``` For example usage, you can see our colab notebook as well: [Notebook](https://colab.research.google.com/drive/1PnWpx02IEUkY8jhLKd_NewUGEXahAska?usp=sharing) ## Eval results TBD ## Acknowledgements This project was possible because of the compute provided by the [TPU Research Cloud](https://sites.research.google/trc/) and [EleutherAI](https://eleuther.ai/) for pretraining of the GPT-J 6B. Thanks to everyone who contributed to this project: - [Aero](https://github.com/AeroScripts) - [Finetune](https://github.com/finetuneanon) - [Kurumuz](https://github.com/kurumuz)
shahrukhx01/schema-aware-denoising-bart-large-cnn-text2sql
shahrukhx01
2021-08-21T08:43:28Z
171
1
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "schema-aware-text2sql", "text2sql", "wikisql", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: "en" tags: - schema-aware-text2sql - text2sql - wikisql widget: - text: "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text" --- ```python from transformers import BartTokenizer, BartForConditionalGeneration, BartConfig model = BartForConditionalGeneration.from_pretrained('shahrukhx01/schema-aware-denoising-bart-large-cnn-text2sql') tokenizer = BartTokenizer.from_pretrained('shahrukhx01/schema-aware-denoising-bart-large-cnn-text2sql') ## add NL query with table schema question = "What is terrence ross' nationality? </s> <col0> Player : text <col1> No. : text <col2> Nationality : text <col3> Position : text <col4> Years in Toronto : text <col5> School/Club Team : text" inputs = tokenizer([question], max_length=1024, return_tensors='pt') # Generate SQL text_query_ids = model.generate(inputs['input_ids'], num_beams=4, min_length=0, max_length=125, early_stopping=True) prediction = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in text_query_ids][0] print(prediction) ```
ramybaly/ner_nerd_fine
ramybaly
2021-08-20T19:01:06Z
8
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:nerd", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - nerd metrics: - precision - recall - f1 - accuracy model_index: - name: ner_nerd_fine results: - task: name: Token Classification type: token-classification dataset: name: nerd type: nerd args: nerd metric: name: Accuracy type: accuracy value: 0.9050232835369201 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ner_nerd_fine This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.3373 - Precision: 0.6326 - Recall: 0.6734 - F1: 0.6524 - Accuracy: 0.9050 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6219 | 1.0 | 8235 | 0.3347 | 0.6066 | 0.6581 | 0.6313 | 0.9015 | | 0.3071 | 2.0 | 16470 | 0.3165 | 0.6349 | 0.6637 | 0.6490 | 0.9060 | | 0.2384 | 3.0 | 24705 | 0.3311 | 0.6373 | 0.6769 | 0.6565 | 0.9068 | | 0.1834 | 4.0 | 32940 | 0.3414 | 0.6349 | 0.6780 | 0.6557 | 0.9069 | | 0.1392 | 5.0 | 41175 | 0.3793 | 0.6334 | 0.6775 | 0.6547 | 0.9068 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.2
tau/t5-v1_1-large-rss
tau
2021-08-20T17:35:51Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "en", "dataset:c4", "dataset:wikipedia", "arxiv:2108.05857", "arxiv:2101.00438", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - c4 - wikipedia metrics: - f1 --- # T5-V1.1-large-rss This model is [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) finetuned on RSS dataset. The model was finetuned as part of ["How Optimal is Greedy Decoding for Extractive Question Answering?"](https://arxiv.org/abs/2108.05857), while the RSS pretraining method was introduced in [this paper](https://arxiv.org/pdf/2101.00438.pdf). ## Model description The original [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) was only pre-trained on C4 excluding any supervised training. Our version is further trained on Rucurrent Span Selection scheme (RSS), using a sample from the dataset used to pretrain [Splinter](tau/splinter-large): * contexts with a span occurring more than once are detected * a single instance of the recurring span is maked * the model is trained (teacher forcing) to predict the masked span This training scheme naturally matches the extractive question answering task. During training time, the masked span is replaced with `<extra_id_0>` and the labels are formatted as `<extra_id_0>span<extra_id_0>`. Unlike [Splinter](tau/splinter-large), only one span is mask at a time. ## Intended uses & limitations This model naturally fits tasks where a span from a context is intended to be copied, like extractive question answering. This checkpoint is primarily aimed to be used in zero-shot setting - further fine-tuning it on an annotated dataset gives equal results to those of the original T5-v1.1-large. ### How to use You can use this model directly but it is recommended to format the input to be aligned with that of the training scheme and as a text-question context: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model = AutoModelForSeq2SeqLM.from_pretrained('tau/t5-v1_1-large-rss') tokenizer = AutoTokenizer.from_pretrained('tau/t5-v1_1-large-rss') passage = 'Barack Hussein Obama II is an American politician and attorney who served as the 44th president of the United States from 2009 to 2017. ' question = 'When was Obama inaugurated?' text = f'Text: {passage}.\nQuestion: {question}\nAnswer:{tokenizer.additional_special_tokens[0]}.' encoded_input = tokenizer(text, return_tensors='pt') output_ids = model.generate(input_ids=encoded_input.input_ids, attention_mask=encoded_input.attention_mask, eos_token_id=tokenizer.additional_special_tokens_ids[1], num_beams=1, max_length=512, min_length=3) tokenizer.decode(output_ids[0]) ``` The generated answer is then `"<pad><extra_id_0> 2009<extra_id_1>"`, while the one generated by the original [T5-v1.1-large](https://huggingface.co/google/t5-v1_1-large) is `"<pad><extra_id_0> On January 20, 2009<extra_id_1>"` - a correct yet non-extractive answer. ### Limitations and bias Although using the model with greedy decoding tends toward extracted outputs, is may sometimes produce non-extracted ones - may it be different casing or a whole different string (or substring) that may bear another semantic meaning. ### Pretraining The model was finetuned with 100,000 rss-examples for 3 epochs using Adafactor optimizer with constant learning rate of 5e-5. ## Evaluation results Evaluated over few-shot QA in a zero-shot setting (no finetuning on annotated examples): |Model \ Dataset| SQuAD |TriviaQA | NaturalQs | NewsQA | SearchQA | HotpotQA | BioASQ | TextbookQA| |:-------------:|:-----:|:-------:|:---------:|:------:|:--------:|:--------:|:------:|:---------:| |T5 | 50.4 | 61.7 | 42.1 | 19.2 | 24.0 | 43.3 | 55.5 | 17.8 | |T5-rss | 71.4 | 69.3 | 57.2 | 43.2 | 29.7 | 59.0 | 65.5 | 39.0 | The gap between the two models diminishes as more training examples are introduced, for additional result see the [paper]((https://arxiv.org/abs/2108.05857). ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", }, @misc{castel2021optimal, title={How Optimal is Greedy Decoding for Extractive Question Answering?}, author={Or Castel and Ori Ram and Avia Efrat and Omer Levy}, year={2021}, eprint={2108.05857}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
templates/automatic-speech-recognition
templates
2021-08-20T14:18:50Z
0
3
generic
[ "generic", "automatic-speech-recognition", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - automatic-speech-recognition library_name: generic --- # Automatic Speech Recognition repository template This is a template repository for Automatic Speech Recognition to support generic inference with Hugging Face Hub generic Inference API. There are two required steps: 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/pyctcdecode_asr ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/automatic-speech-recognition cd automatic-speech-recognition git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/image-classification
templates
2021-08-20T14:18:36Z
0
2
generic
[ "generic", "image-classification", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification library_name: generic --- # Image Classification repository template This is a template repository for image classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/fastai_cat_vs_dog/tree/main ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/image-classification cd image-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/feature-extraction
templates
2021-08-20T14:18:25Z
0
1
generic
[ "generic", "feature-extraction", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - feature-extraction library_name: generic --- # Feature Extraction repository template This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/fasttext_english ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/feature-extraction cd feature-extraction git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
dbguilherme/teste
dbguilherme
2021-08-20T14:18:25Z
0
0
generic
[ "generic", "feature-extraction", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- tags: - feature-extraction library_name: generic --- # Feature Extraction repository template This is a template repository for feature extraction to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/fasttext_english ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/feature-extraction cd feature-extraction git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
ericsali/painting
ericsali
2021-08-20T14:18:02Z
0
1
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2023-04-18T03:45:13Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/text-to-image
templates
2021-08-20T14:18:02Z
0
10
generic
[ "generic", "text-to-image", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
templates/token-classification
templates
2021-08-20T14:17:42Z
0
1
generic
[ "generic", "token-classification", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - token-classification library_name: generic --- # Token Classification repository template This is a template repository for token classification to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/en_core_web_sm/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/token-classification cd token-classification git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
echarlaix/bart-base-cnn-r2-18.7-d23-hybrid
echarlaix
2021-08-20T09:58:11Z
11
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- language: en license: apache-2.0 tags: - summarization datasets: - cnn_dailymail metrics: - R1 - R2 - RL --- ## facebook/bart-base model fine-tuned on CNN/DailyMail This model was created using the [nn_pruning](https://github.com/huggingface/nn_pruning) python library: the linear layers contains **23%** of the original weights. The model contains **45%** of the original weights **overall** (the embeddings account for a significant part of the model, and they are not pruned by this method). <div class="graph"><script src="/echarlaix/bart-base-cnn-r2-18.7-d23-hybrid/raw/main/model_card/density_info.js" id="4348cd46-05bd-4e27-b565-6693f9e0b03e"></script></div> ## Fine-Pruning details This model was fine-tuned from the HuggingFace [model](https://huggingface.co/facebook/bart-base). A side-effect of block pruning is that some of the attention heads are completely removed: 61 heads were removed on a total of 216 (28.2%). ## Details of the CNN/DailyMail dataset | Dataset | Split | # samples | | ------------- | ----- | --------- | | CNN/DailyMail | train | 287K | | CNN/DailyMail | eval | 13K | ### Results | Metric | # Value | | ----------- | --------- | | **Rouge 1** | **41.43** | | **Rouge 2** | **18.72** | | **Rouge L** | **38.35** |
huggingtweets/naval-warikoo
huggingtweets
2021-08-20T09:56:09Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/naval-warikoo/1629453365067/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256841238298292232/ycqwaMI2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1156881198582382592/yUbrONnS_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naval & Ankur Warikoo</div> <div style="text-align: center; font-size: 14px;">@naval-warikoo</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naval & Ankur Warikoo. | Data | Naval | Ankur Warikoo | | --- | --- | --- | | Tweets downloaded | 3248 | 3249 | | Retweets | 149 | 324 | | Short tweets | 640 | 397 | | Tweets kept | 2459 | 2528 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/g5rn77ku/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @naval-warikoo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1o3o6mau) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1o3o6mau/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/naval-warikoo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/gaytoad2
huggingtweets
2021-08-20T04:46:11Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/gaytoad2/1629434767014/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1428482513417105413/TGlo7HWH_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">العلجوم</div> <div style="text-align: center; font-size: 14px;">@gaytoad2</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from العلجوم. | Data | العلجوم | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 379 | | Short tweets | 1023 | | Tweets kept | 1830 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2w8lap6f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @gaytoad2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34u34diu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34u34diu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/gaytoad2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/scottadamssays
huggingtweets
2021-08-20T04:19:05Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/scottadamssays/1629433141180/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1259614511859765248/uxqTchXo_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scott Adams</div> <div style="text-align: center; font-size: 14px;">@scottadamssays</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scott Adams. | Data | Scott Adams | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 863 | | Short tweets | 177 | | Tweets kept | 2206 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/28q4l0oa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @scottadamssays's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/va3cwft8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/va3cwft8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/scottadamssays') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/conceptualjames
huggingtweets
2021-08-20T04:09:07Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/conceptualjames/1629432543025/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419411594572873733/bCBGq8T9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">James Lindsay, manipulated media</div> <div style="text-align: center; font-size: 14px;">@conceptualjames</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from James Lindsay, manipulated media. | Data | James Lindsay, manipulated media | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 1436 | | Short tweets | 520 | | Tweets kept | 1270 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sj5ihe6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @conceptualjames's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jnu1ceq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/conceptualjames') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/baklan
huggingartists
2021-08-19T14:40:57Z
6
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/baklan", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/baklan tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/7cfde2abc36913387855f84724ec55d0.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">BAKLAN</div> <a href="https://genius.com/artists/baklan"> <div style="text-align: center; font-size: 14px;">@baklan</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from BAKLAN. Dataset is available [here](https://huggingface.co/datasets/huggingartists/baklan). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/baklan") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2k5w5yhe/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on BAKLAN's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28fvfef4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/baklan') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/baklan") model = AutoModelWithLMHead.from_pretrained("huggingartists/baklan") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
black/simple_kitchen
black
2021-08-19T14:26:04Z
74
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: simple_kitchen results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7222222089767456 --- # simple_kitchen Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### best kitchen island ![best kitchen island](images/best_kitchen_island.jpg) #### kitchen cabinet ![kitchen cabinet](images/kitchen_cabinet.jpg) #### kitchen countertop ![kitchen countertop](images/kitchen_countertop.jpg)
vishnun/distilgpt2-finetuned-distilgpt2-med_articles
vishnun
2021-08-19T10:23:17Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-distilgpt2-med_articles results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-distilgpt2-med_articles This model is a fine-tuned version of [vishnun/distilgpt2-finetuned-distilgpt2-med_articles](https://huggingface.co/vishnun/distilgpt2-finetuned-distilgpt2-med_articles) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 65 | 3.3417 | | No log | 2.0 | 130 | 3.3300 | | No log | 3.0 | 195 | 3.3231 | | No log | 4.0 | 260 | 3.3172 | | No log | 5.0 | 325 | 3.3171 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
flyhero/gpt-j-6B
flyhero
2021-08-19T05:47:39Z
12
13
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
### Model Description GPT-J 6B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-J refers to the class of models, while 6B represents the number of parameters of this particular pre-trained model. The original GPT-J-6B model is trained with TPUs, which is not easy to use for normal users. Thus, through a converting script, we convert the TPU version GPT-J-6B into GPU version, which could be load and fine-tuned with GPUs. As we have tried, the model can be loaded with 1 GPU with 16G memory to do inference. For fine-tune, we used 8 * 32G GPUs with DeepSpeed library to distribute the model, data and gradients, in order to allocate the huge amount of model parameters.
huggingtweets/nftmansa
huggingtweets
2021-08-18T21:04:18Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nftmansa/1629320654994/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398377108007755781/nmudFxl3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NFT</div> <div style="text-align: center; font-size: 14px;">@nftmansa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NFT. | Data | NFT | | --- | --- | | Tweets downloaded | 3223 | | Retweets | 3037 | | Short tweets | 36 | | Tweets kept | 150 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wwiy7t0n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nftmansa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/b9rzi99p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nftmansa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
akreal/tiny-random-xlnet
akreal
2021-08-18T15:08:21Z
2,120
0
transformers
[ "transformers", "pytorch", "tf", "xlnet", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-xlnet Changes: use old format for `pytorch_model.bin`.
akreal/tiny-random-mpnet
akreal
2021-08-18T15:08:05Z
2,123
0
transformers
[ "transformers", "pytorch", "tf", "mpnet", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mpnet Changes: use old format for `pytorch_model.bin`.
akreal/tiny-random-gpt2
akreal
2021-08-18T15:07:44Z
2,118
0
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation-inference", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-gpt2 Changes: use old format for `pytorch_model.bin`.
patrickvonplaten/bert2gpt2-cnn_dailymail-fp16
patrickvonplaten
2021-08-18T14:38:10Z
603
6
transformers
[ "transformers", "pytorch", "jax", "encoder_decoder", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
# Bert2GPT2 Summarization with 🤗 EncoderDecoder Framework This model is a Bert2Bert model fine-tuned on summarization. Bert2GPT2 is a `EncoderDecoderModel`, meaning that the encoder is a `bert-base-uncased` BERT model and the decoder is a `gpt2` GPT2 model. Leveraging the [EncoderDecoderFramework](https://huggingface.co/transformers/model_doc/encoderdecoder.html#encoder-decoder-models), the two pretrained models can simply be loaded into the framework via: ```python bert2gpt2 = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "gpt2") ``` The decoder of an `EncoderDecoder` model needs cross-attention layers and usually makes use of causal masking for auto-regressiv generation. Thus, ``bert2gpt2`` is consequently fined-tuned on the `CNN/Daily Mail`dataset and the resulting model `bert2gpt2-cnn_dailymail-fp16` is uploaded here. ## Example The model is by no means a state-of-the-art model, but nevertheless produces reasonable summarization results. It was mainly fine-tuned as a proof-of-concept for the 🤗 EncoderDecoder Framework. The model can be used as follows: ```python from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") # reuse tokenizer from bert2bert encoder-decoder model bert_tokenizer = BertTokenizer.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") article = """(CNN)Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members singing a racist chant. SAE's national chapter suspended the students, but University of Oklahoma President David B oren took it a step further, saying the university's affiliation with the fraternity is permanently done. The news is shocking, but it's not the first time SAE has faced controversy. SAE was founded March 9, 185 6, at the University of Alabama, five years before the American Civil War, according to the fraternity website. When the war began, the group had fewer than 400 members, of which "369 went to war for the Confede rate States and seven for the Union Army," the website says. The fraternity now boasts more than 200,000 living alumni, along with about 15,000 undergraduates populating 219 chapters and 20 "colonies" seeking fu ll membership at universities. SAE has had to work hard to change recently after a string of member deaths, many blamed on the hazing of new recruits, SAE national President Bradley Cohen wrote in a message on t he fraternity's website. The fraternity's website lists more than 130 chapters cited or suspended for "health and safety incidents" since 2010. At least 30 of the incidents involved hazing, and dozens more invol ved alcohol. However, the list is missing numerous incidents from recent months. Among them, according to various media outlets: Yale University banned the SAEs from campus activities last month after members al legedly tried to interfere with a sexual misconduct investigation connected to an initiation rite. Stanford University in December suspended SAE housing privileges after finding sorority members attending a frat ernity function were subjected to graphic sexual content. And Johns Hopkins University in November suspended the fraternity for underage drinking. "The media has labeled us as the 'nation's deadliest fraternity, ' " Cohen said. In 2011, for example, a student died while being coerced into excessive alcohol consumption, according to a lawsuit. SAE's previous insurer dumped the fraternity. "As a result, we are paying Lloy d's of London the highest insurance rates in the Greek-letter world," Cohen said. Universities have turned down SAE's attempts to open new chapters, and the fraternity had to close 12 in 18 months over hazing in cidents.""" input_ids = bert_tokenizer(article, return_tensors="pt").input_ids output_ids = model.generate(input_ids) # we need a gpt2 tokenizer for the output word embeddings gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") print(gpt2_tokenizer.decode(output_ids[0], skip_special_tokens=True)) # should produce # SAE's national chapter suspended the students, but university president says it's permanent. # The fraternity has had to deal with a string of incidents since 2010. # SAE has more than 200,000 members, many of whom are students. # A student died while being coerced into drinking alcohol. ``` ## Training script: **IMPORTANT**: In order for this code to work, make sure you checkout to the branch [more_general_trainer_metric](https://github.com/huggingface/transformers/tree/more_general_trainer_metric), which slightly adapts the `Trainer` for `EncoderDecoderModels` according to this PR: https://github.com/huggingface/transformers/pull/5840. The following code shows the complete training script that was used to fine-tune `bert2gpt2-cnn_dailymail-fp16 ` for reproducability. The training last ~11h on a standard GPU. ```python #!/usr/bin/env python3 import nlp import logging from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel, Trainer, TrainingArguments logging.basicConfig(level=logging.INFO) model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") # cache is currently not supported by EncoderDecoder framework model.decoder.config.use_cache = False bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased") # CLS token will work as BOS token bert_tokenizer.bos_token = bert_tokenizer.cls_token # SEP token will work as EOS token bert_tokenizer.eos_token = bert_tokenizer.sep_token # make sure GPT2 appends EOS in begin and end def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] return outputs GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token # set decoding params model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id model.config.eos_token_id = gpt2_tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 # load train and validation data train_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="train") val_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="validation[:5%]") # load rouge for validation rouge = nlp.load_metric("rouge", experiment_id=1) encoder_length = 512 decoder_length = 128 batch_size = 16 # map data correctly def map_to_encoder_decoder_inputs(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # use bert tokenizer here for encoder inputs = bert_tokenizer(batch["article"], padding="max_length", truncation=True, max_length=encoder_length) # force summarization <= 128 outputs = gpt2_tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=decoder_length) batch["input_ids"] = inputs.input_ids batch["attention_mask"] = inputs.attention_mask batch["decoder_input_ids"] = outputs.input_ids batch["labels"] = outputs.input_ids.copy() batch["decoder_attention_mask"] = outputs.attention_mask # complicated list comprehension here because pad_token_id alone is not good enough to know whether label should be excluded or not batch["labels"] = [ [-100 if mask == 0 else token for mask, token in mask_and_tokens] for mask_and_tokens in [zip(masks, labels) for masks, labels in zip(batch["decoder_attention_mask"], batch["labels"])] ] assert all([len(x) == encoder_length for x in inputs.input_ids]) assert all([len(x) == decoder_length for x in outputs.input_ids]) return batch def compute_metrics(pred): labels_ids = pred.label_ids pred_ids = pred.predictions # all unnecessary tokens are removed pred_str = gpt2_tokenizer.batch_decode(pred_ids, skip_special_tokens=True) labels_ids[labels_ids == -100] = gpt2_tokenizer.eos_token_id label_str = gpt2_tokenizer.batch_decode(labels_ids, skip_special_tokens=True) rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid return { "rouge2_precision": round(rouge_output.precision, 4), "rouge2_recall": round(rouge_output.recall, 4), "rouge2_fmeasure": round(rouge_output.fmeasure, 4), } # make train dataset ready train_dataset = train_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) train_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # same for validation dataset val_dataset = val_dataset.map( map_to_encoder_decoder_inputs, batched=True, batch_size=batch_size, remove_columns=["article", "highlights"], ) val_dataset.set_format( type="torch", columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"], ) # set training arguments - these params are not really tuned, feel free to change training_args = TrainingArguments( output_dir="./", per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, predict_from_generate=True, evaluate_during_training=True, do_train=True, do_eval=True, logging_steps=1000, save_steps=1000, eval_steps=1000, overwrite_output_dir=True, warmup_steps=2000, save_total_limit=10, fp16=True, ) # instantiate trainer trainer = Trainer( model=model, args=training_args, compute_metrics=compute_metrics, train_dataset=train_dataset, eval_dataset=val_dataset, ) # start training trainer.train() ``` ## Evaluation The following script evaluates the model on the test set of CNN/Daily Mail. ```python #!/usr/bin/env python3 import nlp from transformers import BertTokenizer, GPT2Tokenizer, EncoderDecoderModel model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") model.to("cuda") bert_tokenizer = BertTokenizer.from_pretrained("bert-base-cased") # CLS token will work as BOS token bert_tokenizer.bos_token = bert_tokenizer.cls_token # SEP token will work as EOS token bert_tokenizer.eos_token = bert_tokenizer.sep_token # make sure GPT2 appends EOS in begin and end def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): outputs = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] return outputs GPT2Tokenizer.build_inputs_with_special_tokens = build_inputs_with_special_tokens gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") # set pad_token_id to unk_token_id -> be careful here as unk_token_id == eos_token_id == bos_token_id gpt2_tokenizer.pad_token = gpt2_tokenizer.unk_token # set decoding params model.config.decoder_start_token_id = gpt2_tokenizer.bos_token_id model.config.eos_token_id = gpt2_tokenizer.eos_token_id model.config.max_length = 142 model.config.min_length = 56 model.config.no_repeat_ngram_size = 3 model.early_stopping = True model.length_penalty = 2.0 model.num_beams = 4 test_dataset = nlp.load_dataset("cnn_dailymail", "3.0.0", split="test") batch_size = 64 # map data correctly def generate_summary(batch): # Tokenizer will automatically set [BOS] <text> [EOS] # cut off at BERT max length 512 inputs = bert_tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to("cuda") attention_mask = inputs.attention_mask.to("cuda") outputs = model.generate(input_ids, attention_mask=attention_mask) # all special tokens including will be removed output_str = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True) batch["pred"] = output_str return batch results = test_dataset.map(generate_summary, batched=True, batch_size=batch_size, remove_columns=["article"]) # load rouge for validation rouge = nlp.load_metric("rouge") pred_str = results["pred"] label_str = results["highlights"] rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])["rouge2"].mid print(rouge_output) ``` The obtained results should be: | - | Rouge2 - mid -precision | Rouge2 - mid - recall | Rouge2 - mid - fmeasure | |----------|:-------------:|:------:|:------:| | **CNN/Daily Mail** | 14.42 | 16.99 | **15.16** |
msakthiganesh/TabQGen-Base
msakthiganesh
2021-08-18T14:38:06Z
3
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
msakthiganesh/TabQGen-Small
msakthiganesh
2021-08-18T14:37:57Z
14
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
> **TabQGen** model is released along with the dataset **Question Generation for Tables** in the paper - **Answer-Aware Question Generation from Tabular and Textual Data using T5**
ehdwns1516/klue-roberta-base_sae
ehdwns1516
2021-08-18T11:31:20Z
11
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# klue-roberta-base-sae * This model trained with Korean dataset. * Input sentence what you want to grasp intent. * You can use English, but don't expect accuracy. klue-roberta-base-kornli DEMO: [Ainize DEMO](https://main-klue-roberta-base-kornli-ehdwns1516.endpoint.ainize.ai/) klue-roberta-base-kornli API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/KLUE-RoBERTa-base_sae) ## Overview Language model: [klue/roberta-base](https://huggingface.co/klue/roberta-base) Language: Korean Training data: [kor_sae](https://huggingface.co/datasets/kor_sae) Eval data: [kor_sae](https://huggingface.co/datasets/kor_sae) Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/KLUE-RoBERTa-base_sae_notebook) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/klue-roberta-base-sae") classifier = pipeline( "text-classification", model="ehdwns1516/klue-roberta-base-kornli", return_all_scores=True, ) context = "sentence what you want to grasp intent" result = dict() result[0] = classifier(context)[0] ```
gealexandri/palobert-base-greek-uncased-v1
gealexandri
2021-08-18T07:25:30Z
9
3
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "el", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: el --- # PaloBERT ## Model description A Greek language model based on [RoBERTa](https://arxiv.org/abs/1907.11692) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. It also contains a GTP-2 tokenizer trained from scratch on the same corpus. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
huggingtweets/elonmusk-sagnikdatta129
huggingtweets
2021-08-18T07:08:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/elonmusk-sagnikdatta129/1629270504228/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1423663740344406029/l_-QOIHY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/883987458408407041/AYnDxDBU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Sagnik Datta</div> <div style="text-align: center; font-size: 14px;">@elonmusk-sagnikdatta129</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Elon Musk & Sagnik Datta. | Data | Elon Musk | Sagnik Datta | | --- | --- | --- | | Tweets downloaded | 2040 | 3154 | | Retweets | 100 | 1014 | | Short tweets | 544 | 186 | | Tweets kept | 1396 | 1954 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/230voi17/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-sagnikdatta129's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2stw479u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2stw479u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-sagnikdatta129') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ricardo-filho/sbertimbau-large-quora-multitask
ricardo-filho
2021-08-18T06:02:15Z
6
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 8605 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 11553 with parameters: ``` {'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/hotwifeofohiolv
huggingtweets
2021-08-17T19:39:36Z
9
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1118856595964776448/nywdsbgX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vegas QOS Hotwife ❤</div> <div style="text-align: center; font-size: 14px;">@hotwifeofohiolv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vegas QOS Hotwife ❤. | Data | Vegas QOS Hotwife ❤ | | --- | --- | | Tweets downloaded | 3039 | | Retweets | 1671 | | Short tweets | 557 | | Tweets kept | 811 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lckgzdc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwifeofohiolv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fvzdk4w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fvzdk4w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwifeofohiolv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/hotwifekatrina
huggingtweets
2021-08-17T19:36:04Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/hotwifekatrina/1629228959695/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1354914190532734976/Ggf6iWRU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hotwifekatrina</div> <div style="text-align: center; font-size: 14px;">@hotwifekatrina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hotwifekatrina. | Data | hotwifekatrina | | --- | --- | | Tweets downloaded | 287 | | Retweets | 48 | | Short tweets | 56 | | Tweets kept | 183 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g7ptepk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwifekatrina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23zr3ecx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23zr3ecx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwifekatrina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
fadhilarkan/test-summarization
fadhilarkan
2021-08-17T15:20:45Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- metrics: - rouge model-index: - name: test-summarization --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-summarization This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.4740 - Rouge1: 28.3487 - Rouge2: 7.7836 - Rougel: 22.3307 - Rougelsum: 22.3357 - Gen Len: 18.8307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 14 - eval_batch_size: 14 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7042 | 1.0 | 14575 | 2.4740 | 28.3487 | 7.7836 | 22.3307 | 22.3357 | 18.8307 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.7.0 - Datasets 1.11.0 - Tokenizers 0.10.3
tau/splinter-large
tau
2021-08-17T14:18:58Z
19
0
transformers
[ "transformers", "pytorch", "splinter", "question-answering", "SplinterModel", "en", "arxiv:2108.05857", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- language: en tags: - splinter - SplinterModel license: apache-2.0 --- # Splinter large model Splinter-large is the pretrained model discussed in the paper [Few-Shot Question Answering by Pretraining Span Selection](https://aclanthology.org/2021.acl-long.239/) (at ACL 2021). Its original repository can be found [here](https://github.com/oriram/splinter). The model is case-sensitive. Note (1): This model **doesn't** contain the pretrained weights for the QASS layer (see paper for details), and therefore the QASS layer is randomly initialized upon loading it. For the model **with** those weights, see [tau/splinter-large-qass](https://huggingface.co/tau/splinter-large-qass). Note (2): Splinter-large was trained after the paper was released, so the results are not reported. However, this model outperforms the base model by large margins. For example, on SQuAD, the model is able to reach 80% F1 given only 128 examples, whereas the base model obtains only ~73%). See the results for Splinter-large in the Appendix of [this paper](https://arxiv.org/pdf/2108.05857.pdf). ## Model description Splinter is a model that is pretrained in a self-supervised fashion for few-shot question answering. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with the Recurring Span Selection (RSS) objective, which emulates the span selection process involved in extractive question answering. Given a text, clusters of recurring spans (n-grams that appear more than once in the text) are first identified. For each such cluster, all of its instances but one are replaced with a special `[QUESTION]` token, and the model should select the correct (i.e., unmasked) span for each masked one. The model also defines the Question-Aware Span selection (QASS) layer, which selects spans conditioned on a specific question (in order to perform multiple predictions). ## Intended uses & limitations The prime use for this model is few-shot extractive QA. ## Pretraining The model was pretrained on a v3-32 TPU for 2.4M steps. The training data is based on **Wikipedia** and **BookCorpus**. See the paper for more details. ### BibTeX entry and citation info ```bibtex @inproceedings{ram-etal-2021-shot, title = "Few-Shot Question Answering by Pretraining Span Selection", author = "Ram, Ori and Kirstain, Yuval and Berant, Jonathan and Globerson, Amir and Levy, Omer", booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.acl-long.239", doi = "10.18653/v1/2021.acl-long.239", pages = "3066--3079", } ```
huggingtweets/bbcqos-fitslut63-kellyg_official
huggingtweets
2021-08-17T11:06:20Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bbcqos-fitslut63-kellyg_official/1629198375751/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1358510866371661830/rxzOoe9A_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1073647682487410688/2yrbD4RY_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1334065878917390338/V6Eh8ZJn_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Miss Gbadamosi ♠ & ♠Jenny Summers♠ & ♠️MsWhite♠️</div> <div style="text-align: center; font-size: 14px;">@bbcqos-fitslut63-kellyg_official</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Miss Gbadamosi ♠ & ♠Jenny Summers♠ & ♠️MsWhite♠️. | Data | Miss Gbadamosi ♠ | ♠Jenny Summers♠ | ♠️MsWhite♠️ | | --- | --- | --- | --- | | Tweets downloaded | 480 | 882 | 3063 | | Retweets | 117 | 55 | 1391 | | Short tweets | 154 | 483 | 230 | | Tweets kept | 209 | 344 | 1442 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3rzzq99i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbcqos-fitslut63-kellyg_official's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xd2e2hom) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xd2e2hom/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbcqos-fitslut63-kellyg_official') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/bbcqos
huggingtweets
2021-08-17T10:52:33Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/bbcqos/1629197549972/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1073647682487410688/2yrbD4RY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">♠Jenny Summers♠</div> <div style="text-align: center; font-size: 14px;">@bbcqos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ♠Jenny Summers♠. | Data | ♠Jenny Summers♠ | | --- | --- | | Tweets downloaded | 882 | | Retweets | 55 | | Short tweets | 483 | | Tweets kept | 344 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uwts9v5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @bbcqos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1shy0ous) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1shy0ous/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/bbcqos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
osanseviero/dalle-mini-fork
osanseviero
2021-08-17T10:30:17Z
7
5
generic
[ "generic", "jax", "bart", "text-to-image", "en", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- library_name: generic language: - en pipeline_tag: text-to-image --- ## Fork of DALL·E mini - Generate images from text For the original repo, head to https://huggingface.co/flax-community/dalle-mini
ricardo-filho/sbertimbau-base-quora-multitask
ricardo-filho
2021-08-17T10:20:30Z
5
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 3227 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 4333 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 10, "evaluation_steps": 0, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/thecoolestcool
huggingtweets
2021-08-17T08:58:28Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/thecoolestcool/1629190704554/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/797984775046729728/e1AAptXc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ross Simmonds</div> <div style="text-align: center; font-size: 14px;">@thecoolestcool</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ross Simmonds. | Data | Ross Simmonds | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 150 | | Short tweets | 485 | | Tweets kept | 2615 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qv5owo5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @thecoolestcool's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/s2alparu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/s2alparu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/thecoolestcool') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/12rafiqul
huggingtweets
2021-08-17T08:46:31Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/12rafiqul/1629189930683/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1292932868121993222/Ifd5yDlG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sk Rafiqul Islam 💡</div> <div style="text-align: center; font-size: 14px;">@12rafiqul</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sk Rafiqul Islam 💡. | Data | Sk Rafiqul Islam 💡 | | --- | --- | | Tweets downloaded | 647 | | Retweets | 221 | | Short tweets | 17 | | Tweets kept | 409 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/araiby7y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @12rafiqul's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1g4o1dj9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1g4o1dj9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/12rafiqul') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
apol/dalle-mini
apol
2021-08-17T08:21:00Z
30
8
transformers
[ "transformers", "jax", "bart", "text2text-generation", "text-to-image", "en", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- language: - en pipeline_tag: text-to-image inference: false --- ## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png" width="200"> * [Technical Report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) * [Demo](https://huggingface.co/spaces/flax-community/dalle-mini) ### Model Description This is an attempt to replicate OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. ![DALL·E mini demo screenshot](img/demo_screenshot.png) This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on [BART](https://arxiv.org/abs/1910.13461). The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a [VQGAN model](https://compvis.github.io/taming-transformers/). The model definition we use for the encoder can be downloaded from our [Github repo](https://github.com/borisdayma/dalle-mini). The encoder is represented by the class `CustomFlaxBartForConditionalGeneration`. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, [flax-community/vqgan_f16_16384](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb). For your convenience, you can open it in Google Colaboratory: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb) If you just want to test the trained model and see what it comes up with, please visit [our demo](https://huggingface.co/spaces/flax-community/dalle-mini), available in 🤗 Spaces. ### Additional Details Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
flax-community/dalle-mini
flax-community
2021-08-17T08:21:00Z
73
54
transformers
[ "transformers", "jax", "bart", "text2text-generation", "text-to-image", "en", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
text-to-image
2022-03-02T23:29:05Z
--- language: - en pipeline_tag: text-to-image inference: false --- ## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png" width="200"> * [Technical Report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) * [Demo](https://huggingface.co/spaces/flax-community/dalle-mini) ### Model Description This is an attempt to replicate OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. ![DALL·E mini demo screenshot](img/demo_screenshot.png) This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on [BART](https://arxiv.org/abs/1910.13461). The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a [VQGAN model](https://compvis.github.io/taming-transformers/). The model definition we use for the encoder can be downloaded from our [Github repo](https://github.com/borisdayma/dalle-mini). The encoder is represented by the class `CustomFlaxBartForConditionalGeneration`. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, [flax-community/vqgan_f16_16384](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb). For your convenience, you can open it in Google Colaboratory: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb) If you just want to test the trained model and see what it comes up with, please visit [our demo](https://huggingface.co/spaces/flax-community/dalle-mini), available in 🤗 Spaces. ### Additional Details Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
hoanhkhoa/bert-base-uncased-finetuned-ner
hoanhkhoa
2021-08-17T03:17:22Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null metrics: - precision - recall - f1 - accuracy model_index: - name: bert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification metric: name: Accuracy type: accuracy value: 0.9853695435592783 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-ner This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.9247 - Recall: 0.9343 - F1: 0.9295 - Accuracy: 0.9854 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2082 | 1.0 | 753 | 0.0657 | 0.8996 | 0.9256 | 0.9125 | 0.9821 | | 0.0428 | 2.0 | 1506 | 0.0595 | 0.9268 | 0.9343 | 0.9305 | 0.9848 | | 0.0268 | 3.0 | 2259 | 0.0604 | 0.9247 | 0.9343 | 0.9295 | 0.9854 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
huggingtweets/rizgblue
huggingtweets
2021-08-16T16:43:23Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/rizgblue/1629132199190/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1413070986367361027/R0QQpVrB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Irizu G. Blue</div> <div style="text-align: center; font-size: 14px;">@rizgblue</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Irizu G. Blue. | Data | Irizu G. Blue | | --- | --- | | Tweets downloaded | 883 | | Retweets | 98 | | Short tweets | 276 | | Tweets kept | 509 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/o0cp01zf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @rizgblue's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/18bsefyj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/18bsefyj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/rizgblue') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
patrickvonplaten/LibriSpeechTest
patrickvonplaten
2021-08-16T15:02:52Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
# Librispeech dev-clean dataset This is the Libirspeech "dev-clean" dataset that can also be obtained by running: ``` curl https://www.openslr.org/resources/12/dev-clean.tar.gz --output dev-clean.tar.gz tar xf dev-clean.tar.gz ```
Geotrend/distilbert-base-en-bg-cased
Geotrend
2021-08-16T14:06:03Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-bg-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-bg-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-ru-cased
Geotrend
2021-08-16T14:02:18Z
67
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-ru-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-ru-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-ru-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-el-cased
Geotrend
2021-08-16T14:00:28Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-el-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-el-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-es-cased
Geotrend
2021-08-16T13:58:36Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-es-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-es-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-es-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-hi-cased
Geotrend
2021-08-16T13:57:40Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-hi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-hi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-hi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-de-cased
Geotrend
2021-08-16T13:55:29Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-de-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-de-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-de-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-en-vi-cased
Geotrend
2021-08-16T13:45:28Z
5
1
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "multilingual", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: multilingual datasets: wikipedia license: apache-2.0 --- # distilbert-base-en-vi-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-en-vi-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-en-vi-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-sw-cased
Geotrend
2021-08-16T13:29:45Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "sw", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: sw datasets: wikipedia license: apache-2.0 --- # distilbert-base-sw-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-sw-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-sw-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-bg-cased
Geotrend
2021-08-16T13:25:28Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "bg", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: bg datasets: wikipedia license: apache-2.0 --- # distilbert-base-bg-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-bg-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-bg-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
Geotrend/distilbert-base-el-cased
Geotrend
2021-08-16T13:17:43Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "el", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: el datasets: wikipedia license: apache-2.0 --- # distilbert-base-el-cased We are sharing smaller versions of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) that handle a custom number of languages. Our versions give exactly the same representations produced by the original model which preserves the original accuracy. For more information please visit our paper: [Load What You Need: Smaller Versions of Multilingual BERT](https://www.aclweb.org/anthology/2020.sustainlp-1.16.pdf). ## How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("Geotrend/distilbert-base-el-cased") model = AutoModel.from_pretrained("Geotrend/distilbert-base-el-cased") ``` To generate other smaller versions of multilingual transformers please visit [our Github repo](https://github.com/Geotrend-research/smaller-transformers). ### How to cite ```bibtex @inproceedings{smallermdistilbert, title={Load What You Need: Smaller Versions of Mutlilingual BERT}, author={Abdaoui, Amine and Pradel, Camille and Sigel, Grégoire}, booktitle={SustaiNLP / EMNLP}, year={2020} } ``` ## Contact Please contact amine@geotrend.fr for any question, feedback or request.
jegormeister/bert-base-dutch-cased-snli
jegormeister
2021-08-16T09:10:25Z
1,263
4
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # bert-base-dutch-cased-snli This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('bert-base-dutch-cased-snli') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('bert-base-dutch-cased-snli') model = AutoModel.from_pretrained('bert-base-dutch-cased-snli') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=bert-base-dutch-cased-snli) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 4807 with parameters: ``` {'batch_size': 64} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 0, "evaluator": "utils.CombEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 722, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/drwrightquotes-iang_fc-s__nakamoto
huggingtweets
2021-08-16T07:10:12Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/drwrightquotes-iang_fc-s__nakamoto/1629097713464/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1256199289476272131/JWhrljdS_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/805274096514764802/poym9G5T_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/677459045918314496/satUWUbV_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Craig Wright Quotes & iang & Dorian Nakamoto</div> <div style="text-align: center; font-size: 14px;">@drwrightquotes-iang_fc-s__nakamoto</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Craig Wright Quotes & iang & Dorian Nakamoto. | Data | Craig Wright Quotes | iang | Dorian Nakamoto | | --- | --- | --- | --- | | Tweets downloaded | 327 | 3155 | 3166 | | Retweets | 0 | 1307 | 1413 | | Short tweets | 71 | 59 | 650 | | Tweets kept | 256 | 1789 | 1103 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30270yqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drwrightquotes-iang_fc-s__nakamoto's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4c021hpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4c021hpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/drwrightquotes-iang_fc-s__nakamoto') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
eugenesiow/msrn
eugenesiow
2021-08-16T04:43:31Z
216
1
transformers
[ "transformers", "MSRN", "super-image", "image-super-resolution", "dataset:eugenesiow/Div2k", "dataset:eugenesiow/Set5", "dataset:eugenesiow/Set14", "dataset:eugenesiow/BSD100", "dataset:eugenesiow/Urban100", "arxiv:2104.07566", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - super-image - image-super-resolution datasets: - eugenesiow/Div2k - eugenesiow/Set5 - eugenesiow/Set14 - eugenesiow/BSD100 - eugenesiow/Urban100 metrics: - pnsr - ssim --- # Multi-scale Residual Network for Image Super-Resolution (MSRN) MSRN model pre-trained on DIV2K (800 images training, augmented to 4000 images, 100 images validation) for 2x, 3x and 4x image super resolution. It was introduced in the paper [Multi-scale Residual Network for Image Super-Resolution](https://openaccess.thecvf.com/content_ECCV_2018/html/Juncheng_Li_Multi-scale_Residual_Network_ECCV_2018_paper.html) by Li et al. (2018) and first released in [this repository](https://github.com/MIVRC/MSRN-PyTorch). The goal of image super resolution is to restore a high resolution (HR) image from a single low resolution (LR) image. The image below shows the ground truth (HR), the bicubic upscaling x2 and model upscaling x2. ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4](images/msrn_4_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 4") ## Model description The MSRN model proposes a feature extraction structure called the multi-scale residual block. This module can "adaptively detect image features at different scales" and "exploit the potential features of the image". ## Intended uses & limitations You can use the pre-trained models for upscaling your images 2x, 3x and 4x. You can also use the trainer to train a model on your own dataset. ### How to use The model can be used with the [super_image](https://github.com/eugenesiow/super-image) library: ```bash pip install super-image ``` Here is how to use a pre-trained model to upscale your image: ```python from super_image import MsrnModel, ImageLoader from PIL import Image import requests url = 'https://paperswithcode.com/media/datasets/Set5-0000002728-07a9793f_zA3bDjj.jpg' image = Image.open(requests.get(url, stream=True).raw) model = MsrnModel.from_pretrained('eugenesiow/msrn', scale=4) # scale 2, 3 and 4 models available inputs = ImageLoader.load_image(image) preds = model(inputs) ImageLoader.save_image(preds, './scaled_4x.png') # save the output 4x scaled image to `./scaled_4x.png` ImageLoader.save_compare(inputs, preds, './scaled_4x_compare.png') # save an output comparing the super-image with a bicubic scaling ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Upscale_Images_with_Pretrained_super_image_Models.ipynb "Open in Colab") ## Training data The models for 2x, 3x and 4x image super resolution were pretrained on [DIV2K](https://huggingface.co/datasets/eugenesiow/Div2k), a dataset of 800 high-quality (2K resolution) images for training, augmented to 4000 images and uses a dev set of 100 validation images (images numbered 801 to 900). ## Training procedure ### Preprocessing We follow the pre-processing and training method of [Wang et al.](https://arxiv.org/abs/2104.07566). Low Resolution (LR) images are created by using bicubic interpolation as the resizing method to reduce the size of the High Resolution (HR) images by x2, x3 and x4 times. During training, RGB patches with size of 64×64 from the LR input are used together with their corresponding HR patches. Data augmentation is applied to the training set in the pre-processing stage where five images are created from the four corners and center of the original image. We need the huggingface [datasets](https://huggingface.co/datasets?filter=task_ids:other-other-image-super-resolution) library to download the data: ```bash pip install datasets ``` The following code gets the data and preprocesses/augments the data. ```python from datasets import load_dataset from super_image.data import EvalDataset, TrainDataset, augment_five_crop augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\ .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method train_dataset = TrainDataset(augmented_dataset) # prepare the train dataset for loading PyTorch DataLoader eval_dataset = EvalDataset(load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='validation')) # prepare the eval dataset for the PyTorch DataLoader ``` ### Pretraining The model was trained on GPU. The training code is provided below: ```python from super_image import Trainer, TrainingArguments, MsrnModel, MsrnConfig training_args = TrainingArguments( output_dir='./results', # output directory num_train_epochs=1000, # total number of training epochs ) config = MsrnConfig( scale=4, # train a model to upscale 4x ) model = MsrnModel(config) trainer = Trainer( model=model, # the instantiated model to be trained args=training_args, # training arguments, defined above train_dataset=train_dataset, # training dataset eval_dataset=eval_dataset # evaluation dataset ) trainer.train() ``` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab") ## Evaluation results The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm). Evaluation datasets include: - Set5 - [Bevilacqua et al. (2012)](https://huggingface.co/datasets/eugenesiow/Set5) - Set14 - [Zeyde et al. (2010)](https://huggingface.co/datasets/eugenesiow/Set14) - BSD100 - [Martin et al. (2001)](https://huggingface.co/datasets/eugenesiow/BSD100) - Urban100 - [Huang et al. (2015)](https://huggingface.co/datasets/eugenesiow/Urban100) The results columns below are represented below as `PSNR/SSIM`. They are compared against a Bicubic baseline. |Dataset |Scale |Bicubic |msrn | |--- |--- |--- |--- | |Set5 |2x |33.64/0.9292 |**38.08/0.9609** | |Set5 |3x |30.39/0.8678 |**35.12/0.9409** | |Set5 |4x |28.42/0.8101 |**32.19/0.8951** | |Set14 |2x |30.22/0.8683 |**33.75/0.9183** | |Set14 |3x |27.53/0.7737 |**31.08/0.8593** | |Set14 |4x |25.99/0.7023 |**28.78/0.7862** | |BSD100 |2x |29.55/0.8425 |**33.82/0.9258** | |BSD100 |3x |27.20/0.7382 |**29.67/0.8198** | |BSD100 |4x |25.96/0.6672 |**28.53/0.7657** | |Urban100 |2x |26.66/0.8408 |**32.14/0.9287** | |Urban100 |3x | |**29.31/0.8743** | |Urban100 |4x |23.14/0.6573 |**26.12/0.7866** | ![Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2](images/msrn_2_4_compare.png "Comparing Bicubic upscaling against the models x4 upscaling on Set5 Image 2") You can find a notebook to easily run evaluation on pretrained models below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Evaluate_Pretrained_super_image_Models.ipynb "Open in Colab") ## BibTeX entry and citation info ```bibtex @InProceedings{Agustsson_2017_CVPR_Workshops, author = {Agustsson, Eirikur and Timofte, Radu}, title = {NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, url = "http://www.vision.ee.ethz.ch/~timofter/publications/Agustsson-CVPRW-2017.pdf", month = {July}, year = {2017} } ```
gabtan99/dialogpt-tagalog-medium
gabtan99
2021-08-16T03:34:56Z
8
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "tagalog", "filipino", "tl", "dataset:gabtan99/pex-conversations", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational - tagalog - filipino language: - tl inference: false datasets: - gabtan99/pex-conversations --- # Tagalog DialoGPT A DialoGPT-medium model fine-tuned on Tagalog conversational data scraped from the web. This model is an output of a research on RoBERTa-based data augmentation for low resource languages. This is the baseline model which did not use any synthetic data in training. # Latest release: July 25, 2021 * The model is currently only able to respond based on the history of 3 previous utterances before being limited. This is a result of the scarce amount of Tagalog conversations in our dataset. # Dataset [PEx Conversations Dataset](https://huggingface.co/datasets/gabtan99/pex-conversations) # Usage Here is an example of using beam search for model inference. ``` for step in range(2): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # we limit the generation to 512 tokens, each utterance in training had a maximum of 128 tokens chat_history_ids = model.generate( bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id, num_beams=5, no_repeat_ngram_size=3 ) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ``` # Training Script [Fine-tuning script adapted from Spanish DialoGPT](https://colab.research.google.com/github/ncoop57/i-am-a-nerd/blob/master/_notebooks/2020-05-12-chatbot-part-1.ipynb) # Research by * [tyadrianpaule](https://huggingface.co/tyadrianpaule) * [schuylerng](https://huggingface.co/schuylerng) * [dcl127](https://huggingface.co/dcl127)
flavio-nakasato/berdou_500k
flavio-nakasato
2021-08-15T15:19:49Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
MLM fine-tuned from Bertimbau-Base model on the Brazilian Federal Official Gazette (500k instances)
DeadBeast/mbert-base-cased-finetuned-bengali-fakenews
DeadBeast
2021-08-15T14:36:05Z
8
3
transformers
[ "transformers", "pytorch", "bert", "text-classification", "dataset:BanFakeNews", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: bengali license: apache-2.0 datasets: - BanFakeNews --- # **mBERT-base-cased-finetuned-bengali-fakenews** This model is a fine-tune checkpoint of mBERT-base-cased over **[Bengali-fake-news Dataset](https://www.kaggle.com/cryptexcode/banfakenews)** for Text classification. This model reaches an accuracy of 96.3 with an f1-score of 79.1 on the dev set. ### **How to use?** **Task**: binary-classification - LABEL_1: Authentic (*Authentic means news is authentic*) - LABEL_0: Fake (*Fake means news is fake*) ``` from transformers import pipeline print(pipeline("sentiment-analysis",model="DeadBeast/mbert-base-cased-finetuned-bengali-fakenews",tokenizer="DeadBeast/mbert-base-cased-finetuned-bengali-fakenews")("অভিনেতা আফজাল শরীফকে ২০ লাখ টাকার অনুদান অসুস্থ অভিনেতা আফজাল শরীফকে চিকিৎসার জন্য ২০ লাখ টাকা অনুদান দিয়েছেন প্রধানমন্ত্রী শেখ হাসিনা।")) ```
UBIAI/en_scibert_ScienceIE
UBIAI
2021-08-15T02:49:58Z
0
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_scibert_ScienceIE results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9891304348 - name: NER Recall type: recall value: 0.9923664122 - name: NER F Score type: f_score value: 0.9907457812 --- | Feature | Description | | --- | --- | | **Name** | `en_scibert_ScienceIE` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.1,<3.2.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | UBIAI (https://ubiai.tools) | ### Label Scheme <details> <summary>View label scheme (3 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `MATERIAL`, `PROCESS`, `TASK` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 99.07 | | `ENTS_P` | 98.91 | | `ENTS_R` | 99.24 | | `TRANSFORMER_LOSS` | 370249.46 | | `NER_LOSS` | 216581.66 |
flavio-nakasato/deeppolicytracker_500k
flavio-nakasato
2021-08-14T22:14:07Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
RoBERTa model pretrained on the Brazilian Federal Official Gazette (500k instances).
sureshs/distilbert-large-sms-spam
sureshs
2021-08-14T14:10:28Z
5
1
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# SMS Classifier Finetuned 'distilbert-large' model for classifying SMS messages. Look at SMS dataset in this hub for your own version.
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat
andi611
2021-08-14T13:58:51Z
6
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3
huggingtweets/sexycuckolding
huggingtweets
2021-08-14T12:11:30Z
155
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/sexycuckolding/1628943086648/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1392455809330819072/POjhVAU1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cuckolding (female perspective)</div> <div style="text-align: center; font-size: 14px;">@sexycuckolding</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cuckolding (female perspective). | Data | Cuckolding (female perspective) | | --- | --- | | Tweets downloaded | 2651 | | Retweets | 364 | | Short tweets | 311 | | Tweets kept | 1976 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/120lf3ey/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sexycuckolding's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gmuegp8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gmuegp8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sexycuckolding') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingartists/twenty-one-pilots
huggingartists
2021-08-14T06:54:43Z
8
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/twenty-one-pilots", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/twenty-one-pilots tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5ab9e38cf86aa170734fea1731610abc.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">​twenty one pilots</div> <a href="https://genius.com/artists/twenty-one-pilots"> <div style="text-align: center; font-size: 14px;">@twenty-one-pilots</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ​twenty one pilots. Dataset is available [here](https://huggingface.co/datasets/huggingartists/twenty-one-pilots). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/twenty-one-pilots") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2wr3j4nk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ​twenty one pilots's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3jhgvd5t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/twenty-one-pilots') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/twenty-one-pilots") model = AutoModelWithLMHead.from_pretrained("huggingartists/twenty-one-pilots") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
vishnun/distilgpt2-finetuned-tamilmixsentiment
vishnun
2021-08-14T05:09:58Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - null model_index: - name: distilgpt2-finetuned-tamilmixsentiment results: - task: name: Causal Language Modeling type: text-generation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-tamilmixsentiment This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 5.6438 | 1.0 | 907 | 4.8026 | | 4.774 | 2.0 | 1814 | 4.5953 | | 4.5745 | 3.0 | 2721 | 4.5070 | | 4.4677 | 4.0 | 3628 | 4.4688 | | 4.4294 | 5.0 | 4535 | 4.4572 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
mrm8488/convbert-base-spanish
mrm8488
2021-08-13T20:35:31Z
462
1
transformers
[ "transformers", "pytorch", "tf", "convbert", "feature-extraction", "es", "dataset:large_spanish_corpus", "arxiv:2008.02496", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: es datasets: - large_spanish_corpus license: mit --- # ConvBERT base pre-trained on large_spanish_corpus The ConvBERT architecture is presented in the ["ConvBERT: Improving BERT with Span-based Dynamic Convolution"](https://arxiv.org/abs/2008.02496) paper. ## Metrics on evaluation set ``` disc_accuracy = 0.9488542 disc_auc = 0.8833056 disc_loss = 0.15933733 disc_precision = 0.79224133 disc_recall = 0.27443287 global_step = 1000000 loss = 9.658503 masked_lm_accuracy = 0.6177698 masked_lm_loss = 1.7050561 sampled_masked_lm_accuracy = 0.5379228 ``` ## Usage ```python from transformers import AutoModel, AutoTokenizer model_name = "mrm8488/convbert-base-spanish" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) ``` > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) with the support of [Narrativa](https://www.narrativa.com/) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
huggingtweets/jen_122
huggingtweets
2021-08-13T10:37:01Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/jen_122/1628851017758/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407394105966088198/wb4S3Yea_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jen 🌸</div> <div style="text-align: center; font-size: 14px;">@jen_122</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jen 🌸. | Data | Jen 🌸 | | --- | --- | | Tweets downloaded | 3206 | | Retweets | 1337 | | Short tweets | 137 | | Tweets kept | 1732 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ikjihay/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @jen_122's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1by45dby) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1by45dby/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/jen_122') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
kamalkraj/deberta-v2-xlarge
kamalkraj
2021-08-13T08:44:43Z
248
0
transformers
[ "transformers", "tf", "deberta-v2", "feature-extraction", "deberta", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
--- language: en tags: deberta thumbnail: https://huggingface.co/front/thumbnails/microsoft.png license: mit --- ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
huggingtweets/uberfacts
huggingtweets
2021-08-13T06:58:05Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/uberfacts/1628837881576/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1340165521992372226/zJ0Zo4rD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">UberFacts</div> <div style="text-align: center; font-size: 14px;">@uberfacts</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from UberFacts. | Data | UberFacts | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 1356 | | Short tweets | 148 | | Tweets kept | 1746 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wg9sgv5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @uberfacts's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bl0xgi3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bl0xgi3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/uberfacts') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deepleffen-dril
huggingtweets
2021-08-13T05:56:05Z
6
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-dril/1628834161509/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & wint</div> <div style="text-align: center; font-size: 14px;">@deepleffen-dril</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & wint. | Data | Deep Leffen Bot | wint | | --- | --- | --- | | Tweets downloaded | 506 | 3209 | | Retweets | 13 | 463 | | Short tweets | 26 | 311 | | Tweets kept | 467 | 2435 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29zfoi4y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-dril's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fygim56) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fygim56/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-dril') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/nathanstanz
huggingtweets
2021-08-13T02:55:06Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/nathanstanz/1628823303379/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1106966111386550273/XkBp_d39_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Stanz</div> <div style="text-align: center; font-size: 14px;">@nathanstanz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Stanz. | Data | Stanz | | --- | --- | | Tweets downloaded | 2863 | | Retweets | 157 | | Short tweets | 800 | | Tweets kept | 1906 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/huwzeaof/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @nathanstanz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/238qgcdb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/238qgcdb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/nathanstanz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
ricardo-filho/sbertimbau-large-allnli-mnrl
ricardo-filho
2021-08-12T19:44:32Z
6
1
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 16133 with parameters: ``` {'batch_size': 32} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 1, "evaluation_steps": 1613, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1614, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
huggingtweets/tatclouthier
huggingtweets
2021-08-12T16:02:27Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/tatclouthier/1628784143460/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412529515742568448/7RNVn5LL_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Tatiana Clouthier</div> <div style="text-align: center; font-size: 14px;">@tatclouthier</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Tatiana Clouthier. | Data | Tatiana Clouthier | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 665 | | Short tweets | 988 | | Tweets kept | 1594 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3c1zw2pn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @tatclouthier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1y5i9f32) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1y5i9f32/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/tatclouthier') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
tensorspeech/tts-tacotron2-synpaflex-fr
tensorspeech
2021-08-12T13:12:30Z
0
0
tensorflowtts
[ "tensorflowtts", "audio", "text-to-speech", "text-to-mel", "fr", "dataset:synpaflex", "arxiv:1712.05884", "arxiv:1710.08969", "license:apache-2.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - tensorflowtts - audio - text-to-speech - text-to-mel language: fr license: apache-2.0 datasets: - synpaflex widget: - text: "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" --- # Tacotron 2 with Guided Attention trained on Synpaflex (Fr) This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" input_ids = processor.text_to_sequence(text) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) ``` #### Referencing Tacotron 2 ``` @article{DBLP:journals/corr/abs-1712-05884, author = {Jonathan Shen and Ruoming Pang and Ron J. Weiss and Mike Schuster and Navdeep Jaitly and Zongheng Yang and Zhifeng Chen and Yu Zhang and Yuxuan Wang and R. J. Skerry{-}Ryan and Rif A. Saurous and Yannis Agiomyrgiannakis and Yonghui Wu}, title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions}, journal = {CoRR}, volume = {abs/1712.05884}, year = {2017}, url = {http://arxiv.org/abs/1712.05884}, archivePrefix = {arXiv}, eprint = {1712.05884}, timestamp = {Thu, 28 Nov 2019 08:59:52 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
dathudeptrai/tts-tacotron2-synpaflex-fr
dathudeptrai
2021-08-12T13:07:20Z
0
1
tensorflowtts
[ "tensorflowtts", "audio", "text-to-speech", "text-to-mel", "fr", "dataset:synpaflex", "arxiv:1712.05884", "arxiv:1710.08969", "license:apache-2.0", "region:us" ]
text-to-speech
2022-03-02T23:29:05Z
--- tags: - tensorflowtts - audio - text-to-speech - text-to-mel language: fr license: apache-2.0 datasets: - synpaflex widget: - text: "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" --- # Tacotron 2 with Guided Attention trained on Synpaflex (Fr) This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" input_ids = processor.text_to_sequence(text) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) ``` #### Referencing Tacotron 2 ``` @article{DBLP:journals/corr/abs-1712-05884, author = {Jonathan Shen and Ruoming Pang and Ron J. Weiss and Mike Schuster and Navdeep Jaitly and Zongheng Yang and Zhifeng Chen and Yu Zhang and Yuxuan Wang and R. J. Skerry{-}Ryan and Rif A. Saurous and Yannis Agiomyrgiannakis and Yonghui Wu}, title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions}, journal = {CoRR}, volume = {abs/1712.05884}, year = {2017}, url = {http://arxiv.org/abs/1712.05884}, archivePrefix = {arXiv}, eprint = {1712.05884}, timestamp = {Thu, 28 Nov 2019 08:59:52 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
huggingtweets/deepleffen-dril_gpt2-twomad
huggingtweets
2021-08-12T08:35:03Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-dril_gpt2-twomad/1628757298537/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1386749605216407555/QIJeyWfE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425624685190946817/QM0oy_7p_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & wint but Al & LUMBAGO (1984)</div> <div style="text-align: center; font-size: 14px;">@deepleffen-dril_gpt2-twomad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & wint but Al & LUMBAGO (1984). | Data | Deep Leffen Bot | wint but Al | LUMBAGO (1984) | | --- | --- | --- | --- | | Tweets downloaded | 505 | 3248 | 3249 | | Retweets | 13 | 41 | 61 | | Short tweets | 26 | 49 | 1691 | | Tweets kept | 466 | 3158 | 1497 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/363d721t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-dril_gpt2-twomad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gtnp6sz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gtnp6sz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-dril_gpt2-twomad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
rsedlr/RickBot
rsedlr
2021-08-12T08:26:21Z
3
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # DialoGPT-small model trained on dialogue from Rick and Morty ### [Chat to me on Chai!](https://chai.ml/chat/share/_bot_de374c84-9598-4848-996b-736d0cc02f6b) Make your own Rick bot [here](https://colab.research.google.com/drive/1o5LxBspm-C28HQvXN-PRQavapDbm5WjG?usp=sharing)
huggingtweets/deepleffen-jschlatt-twomad
huggingtweets
2021-08-12T06:10:28Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-jschlatt-twomad/1628748624093/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425624685190946817/QM0oy_7p_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1104281298967904257/KuDWZQfF_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & LUMBAGO (1984) & Schlatt</div> <div style="text-align: center; font-size: 14px;">@deepleffen-jschlatt-twomad</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & LUMBAGO (1984) & Schlatt. | Data | Deep Leffen Bot | LUMBAGO (1984) | Schlatt | | --- | --- | --- | --- | | Tweets downloaded | 505 | 3249 | 3250 | | Retweets | 13 | 62 | 3 | | Short tweets | 26 | 1691 | 1236 | | Tweets kept | 466 | 1496 | 2011 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/tchb83i1/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-jschlatt-twomad's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35gw3gup) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35gw3gup/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-jschlatt-twomad') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deepleffen-dodo82j-tsm_leffen
huggingtweets
2021-08-12T04:47:27Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-dodo82j-tsm_leffen/1628743643357/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1383905819217911808/AIWNRt5y_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421970043269693450/kDxxMQub_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & dodo82.jp & TSM FTX Leffen</div> <div style="text-align: center; font-size: 14px;">@deepleffen-dodo82j-tsm_leffen</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & dodo82.jp & TSM FTX Leffen. | Data | Deep Leffen Bot | dodo82.jp | TSM FTX Leffen | | --- | --- | --- | --- | | Tweets downloaded | 505 | 220 | 3249 | | Retweets | 13 | 32 | 368 | | Short tweets | 26 | 26 | 142 | | Tweets kept | 466 | 162 | 2739 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/102ri7zl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-dodo82j-tsm_leffen's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2m0x83ro) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2m0x83ro/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-dodo82j-tsm_leffen') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/deepleffen-dodo82j
huggingtweets
2021-08-12T03:40:59Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/deepleffen-dodo82j/1628739655504/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1241879678455078914/e2EdZIrr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1383905819217911808/AIWNRt5y_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Deep Leffen Bot & dodo82.jp</div> <div style="text-align: center; font-size: 14px;">@deepleffen-dodo82j</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Deep Leffen Bot & dodo82.jp. | Data | Deep Leffen Bot | dodo82.jp | | --- | --- | --- | | Tweets downloaded | 505 | 220 | | Retweets | 13 | 32 | | Short tweets | 26 | 26 | | Tweets kept | 466 | 162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/q5s6fe5u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deepleffen-dodo82j's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gbchfdc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gbchfdc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/deepleffen-dodo82j') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/saxena_puru
huggingtweets
2021-08-12T02:56:41Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/saxena_puru/1628736988431/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1127527290970071040/NJIJtY2g_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Puru Saxena</div> <div style="text-align: center; font-size: 14px;">@saxena_puru</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Puru Saxena. | Data | Puru Saxena | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 8 | | Short tweets | 647 | | Tweets kept | 2595 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xkgnnc0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @saxena_puru's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1l7iz1fz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1l7iz1fz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/saxena_puru') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
castorini/tct_colbert-v2-hn-msmarco
castorini
2021-08-12T01:06:21Z
40
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is to reproduce a variant of TCT-ColBERT-V2 dense retrieval models described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [In-Batch Negatives for Knowledge Distillation with Tightly-CoupledTeachers for Dense Retrieval.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_2021_RepL4NLP.pdf) _RepL4NLP 2021_. You can find our reproduction report in Pyserini [here](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md).
castorini/tct_colbert-v2-msmarco
castorini
2021-08-12T01:06:11Z
107
0
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is to reproduce a variant of TCT-ColBERT-V2 dense retrieval models described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [In-Batch Negatives for Knowledge Distillation with Tightly-CoupledTeachers for Dense Retrieval.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_2021_RepL4NLP.pdf) _RepL4NLP 2021_. You can find our reproduction report in Pyserini [here](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md).
castorini/tct_colbert-v2-hnp-msmarco
castorini
2021-08-12T01:05:56Z
13,657
4
transformers
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:05Z
This model is to reproduce a variant of TCT-ColBERT-V2 dense retrieval models described in the following paper: > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [In-Batch Negatives for Knowledge Distillation with Tightly-CoupledTeachers for Dense Retrieval.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_2021_RepL4NLP.pdf) _RepL4NLP 2021_. You can find our reproduction report in Pyserini [here](https://github.com/castorini/pyserini/blob/master/docs/experiments-tct_colbert-v2.md).
prophetikai/gpt-code
prophetikai
2021-08-11T22:24:38Z
0
0
tf-keras
[ "tf-keras", "pytorch", "tf", "gpt2", "region:us" ]
null
2022-03-02T23:29:05Z
TODO gpt-code uses the weights and tokenizer of https://huggingface.co/Sentdex/GPyT as a starting point for pretraining
osanseviero/fashion_brands_patterns
osanseviero
2021-08-11T18:26:17Z
4
1
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- tags: - spacy - token-classification language: - en model-index: - name: fashion_brands_patterns results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.0 - name: NER Recall type: recall value: 0.0 - name: NER F Score type: f_score value: 0.0 --- | Feature | Description | | --- | --- | | **Name** | `en_ner_fashion` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (1 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `FASHION_BRAND` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 0.00 | | `ENTS_P` | 0.00 | | `ENTS_R` | 0.00 | | `TOK2VEC_LOSS` | 1043.55 | | `NER_LOSS` | 1414323.43 |
MohaAM/en_pipeline
MohaAM
2021-08-11T18:10:35Z
4
0
spacy
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - spacy - token-classification language: - en model-index: - name: en_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9946896173 - name: NER Recall type: recall value: 0.9916932907 - name: NER F Score type: f_score value: 0.9931891941 - task: name: POS type: token-classification metrics: - name: POS Accuracy type: accuracy value: 0.0 - task: name: SENTER type: token-classification metrics: - name: SENTER Precision type: precision value: 1.0 - name: SENTER Recall type: recall value: 1.0 - name: SENTER F Score type: f_score value: 1.0 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Dependencies Accuracy type: accuracy value: 0.0 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Dependencies Accuracy type: accuracy value: 0.0 --- | Feature | Description | | --- | --- | | **Name** | `en_pipeline` | | **Version** | `0.0.0` | | **spaCy** | `>=3.1.0,<3.2.0` | | **Default Pipeline** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` | | **Components** | `tok2vec`, `tagger`, `parser`, `ner`, `attribute_ruler`, `lemmatizer` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (114 labels for 3 components)</summary> | Component | Labels | | --- | --- | | **`tagger`** | `$`, `''`, `,`, `-LRB-`, `-RRB-`, `.`, `:`, `ADD`, `AFX`, `CC`, `CD`, `DT`, `EX`, `FW`, `HYPH`, `IN`, `JJ`, `JJR`, `JJS`, `LS`, `MD`, `NFP`, `NN`, `NNP`, `NNPS`, `NNS`, `PDT`, `POS`, `PRP`, `PRP$`, `RB`, `RBR`, `RBS`, `RP`, `SYM`, `TO`, `UH`, `VB`, `VBD`, `VBG`, `VBN`, `VBP`, `VBZ`, `WDT`, `WP`, `WP$`, `WRB`, `XX`, ```` | | **`parser`** | `ROOT`, `acl`, `acomp`, `advcl`, `advmod`, `agent`, `amod`, `appos`, `attr`, `aux`, `auxpass`, `case`, `cc`, `ccomp`, `compound`, `conj`, `csubj`, `csubjpass`, `dative`, `dep`, `det`, `dobj`, `expl`, `intj`, `mark`, `meta`, `neg`, `nmod`, `npadvmod`, `nsubj`, `nsubjpass`, `nummod`, `oprd`, `parataxis`, `pcomp`, `pobj`, `poss`, `preconj`, `predet`, `prep`, `prt`, `punct`, `quantmod`, `relcl`, `xcomp` | | **`ner`** | `ARC`, `AST`, `BOOK`, `CAUSAL`, `COMPARISON`, `DATE`, `HEM`, `HOUR`, `HYPO`, `INSTRUMENT`, `JUDGEMENT`, `LAWS`, `MODEL`, `NAME`, `Observation`, `PAR`, `PLACE`, `QUANTITY`, `REASON`, `ZOD` | </details> ### Accuracy | Type | Score | | --- | --- | | `TAG_ACC` | 0.00 | | `DEP_UAS` | 0.00 | | `DEP_LAS` | 0.00 | | `DEP_LAS_PER_TYPE` | 0.00 | | `SENTS_P` | 100.00 | | `SENTS_R` | 100.00 | | `SENTS_F` | 100.00 | | `ENTS_F` | 99.32 | | `ENTS_P` | 99.47 | | `ENTS_R` | 99.17 | | `LEMMA_ACC` | 0.00 | | `NER_LOSS` | 7790.09 |
andi611/distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat
andi611
2021-08-11T17:03:38Z
5
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:conll2003", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - conll2003 model_index: - name: distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat results: - task: name: Question Answering type: question-answering dataset: name: conll2003 type: conll2003 args: conll2003 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-with-ner-with-neg-with-multi-with-repeat This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the conll2003 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.8.1+cu111 - Datasets 1.8.0 - Tokenizers 0.10.3