modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-08-30 18:26:50
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-08-30 18:26:48
card
stringlengths
11
1.01M
allura-forge/MiMo-7B-Base-Qwenified
allura-forge
2025-08-30T02:25:50Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2505.07608", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T02:23:03Z
--- license: mit library_name: transformers --- <div align="center"> <picture> <source srcset="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo_darkmode.png?raw=true" media="(prefers-color-scheme: dark)"> <img src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/Xiaomi_MiMo.png?raw=true" width="60%" alt="Xiaomi-MiMo" /> </picture> </div> <h3 align="center"> <b> <span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span> <br/> Unlocking the Reasoning Potential of Language Model<br/>From Pretraining to Posttraining <br/> <span>━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━</span> <br/> </b> </h3> <br/> <div align="center" style="line-height: 1;"> | <a href="https://huggingface.co/XiaomiMiMo" target="_blank">🤗 HuggingFace</a> &nbsp;| <a href="https://www.modelscope.cn/organization/XiaomiMiMo" target="_blank">🤖️ ModelScope</a> &nbsp;| <a href="https://arxiv.org/abs/2505.07608" target="_blank">📔 Technical Report</a> &nbsp;| <br/> </div> <br/> --- ## Updates [2025.05.30] We scaled the SFT dataset from approximately 500K to 6M instances and continuously expanding the RL training window size from 32K to 48K, the performance of [MiMo-7B-RL-0530](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL-0530) on AIME24 can be continuously improved and eventually surpass that of DeepSeek R1 (79.8). <table> <thead> <tr> <th>Benchmark</th> <th>MiMo-7B-RL</th> <th>MiMo-7B-RL-0530</th> </tr> </thead> <tbody> <tr> <td colspan="3"><strong>Mathematics</strong></td> <p align="center"> <td rowspan="11"><img width="80%" src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/length.jpg?raw=true"></td> </p> </tr> <tr><td>MATH500<br/>(Pass@1)</td><td>95.8</td><td>97.2</td></tr> <tr><td>AIME 2024<br/>(Pass@1)</td><td>68.2</td><td>80.1</td></tr> <tr><td>AIME 2025<br/>(Pass@1)</td><td>55.4</td><td>70.2</td></tr> <tr><td colspan="3"><strong>Code</strong></td></tr> <tr><td>LiveCodeBench v5<br/>(Pass@1)</td><td>57.8</td><td>60.9</td></tr> <tr><td>LiveCodeBench v6<br/>(Pass@1)</td><td>49.3</td><td>52.2</td></tr> <tr><td colspan="3"><strong>STEM</strong></td></tr> <tr><td>GPQA-Diamond<br/>(Pass@1)</td><td>54.4</td><td>60.6</td></tr> <tr><td colspan="3"><strong>General</strong></td></tr> <tr><td>Alignbench1.1<br/>(Evaluated by GPT4.1)</td><td>6.9</td><td>7.4</td></tr> </tbody> </table> --- ## I. Introduction Currently, most successful RL works, including open-source research, rely on relatively large base models, e.g., 32B models, particularly for enhancing code reasoning capabilities. Moreover, it was widely considered that achieving uniform and simultaneous improvements in both mathematical and code capabilities within a small model is challenging. Nonetheless, we believe that the effectiveness of the RL trained reasoning model relies on the inherent reasoning potential of the base model. To fully unlock the reasoning potential of language models, efforts must focus not only on post-training but also on pre-training strategies tailored to reasoning. In this work, we present MiMo-7B, a series of models trained from scratch and born for reasoning tasks. Our RL experiments from MiMo-7B-Base show that our model possesses extraordinary reasoning potential, even surpassing much larger 32B models. Additionally, we perform RL training on a cold-started SFT model, resulting in MiMo-7B-RL, which demonstrates superior performance on both mathematics and code reasoning tasks, matching the performance of OpenAI o1-mini. <p align="center"> <img width="80%" src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/curve.png?raw=true"> </p> We open-source MiMo-7B series, including checkpoints of the base model, SFT model, RL model trained from base model, and RL model trained from the SFT model. We believe this report along with the models will provide valuable insights to develop powerful reasoning LLMs that benefit the larger community. ### 🌟 Highlights - **Pre-Training: Base Model Born for Reasoning** - We optimize the data preprocessing pipeline, enhancing text extraction toolkits and applying multi-dimensional data filtering to increase reasoning pattern density in pre-training data. We also employ multiple strategies to generate massive diverse synthetic reasoning data. - We adopt a three-stage data mixture strategy for pre-training. Overall, MiMo-7B-Base is pre-trained on approximately 25 trillion tokens. - We incorporate Multiple-Token Prediction as an additional training objective, which enhances model performance and accelerates inference. - **Post-Training Recipe: Pioneering Reasoning Model** - We curate 130K mathematics and code problems as RL training data, which can be verified by rule-based verifiers. Each problem undergoes careful cleaning and difficulty assessment to ensure quality. We employ only rule-based accuracy rewards to avoid potential reward hacking. - To mitigate the sparse reward issue for challenging code problems, we introduce a test difficulty driven code reward. By assigning fine-grained scores for test cases with varying difficulty levels, the policy can be more effectively optimized via dense reward signal. - We implement a data re-sampling strategy for easy problems to enhance rollout sampling efficiency and stabilize policy updates, particularly in the later phases of RL training. - **RL Infrastructure** - We develop a Seamless Rollout Engine to accelerate RL training and validation. Our design integrates continuous rollout, asynchronous reward computation, and early termination to minimize GPU idle time, achieving $2.29\times$ faster training and $1.96\times$ faster validation. - We support MTP in vLLM and enhance the robustness of the inference engine in the RL system. ## II. Model Details The MTP layers of MiMo-7B is tuned during pretraining and SFT and freezed during RL. With one MTP layer for speculative decoding, the acceptance rate is about 90%. <p align="center"> <img width="80%" src="https://github.com/XiaomiMiMo/MiMo/raw/main/figures/architecture.png?raw=true"> </p> > Models are available at [https://huggingface.co/XiaomiMiMo](https://huggingface.co/XiaomiMiMo) and [https://www.modelscope.cn/organization/XiaomiMiMo](https://www.modelscope.cn/organization/XiaomiMiMo) | **Model** | **Description** | **Download (HuggingFace)** | **Download (ModelScope)** | | :-------------: | :---------------------------------------------------------------------------: | :-------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------: | | MiMo-7B-Base | Base model with extraordinary reasoning potential | [🤗 XiaomiMiMo/MiMo-7B-Base](https://huggingface.co/XiaomiMiMo/MiMo-7B-Base) | [🤖️ XiaomiMiMo/MiMo-7B-Base](https://www.modelscope.cn/models/XiaomiMiMo/MiMo-7B-Base) | | MiMo-7B-RL-Zero | RL model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-RL-Zero](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL-Zero) | [🤖️ XiaomiMiMo/MiMo-7B-RL-Zero](https://www.modelscope.cn/models/XiaomiMiMo/MiMo-7B-RL-Zero) | | MiMo-7B-SFT | SFT model trained from base model | [🤗 XiaomiMiMo/MiMo-7B-SFT](https://huggingface.co/XiaomiMiMo/MiMo-7B-SFT) | [🤖️ XiaomiMiMo/MiMo-7B-SFT](https://www.modelscope.cn/models/XiaomiMiMo/MiMo-7B-SFT) | | MiMo-7B-RL | RL model trained from SFT model, superior performance matching OpenAI o1-mini | [🤗 XiaomiMiMo/MiMo-7B-RL](https://huggingface.co/XiaomiMiMo/MiMo-7B-RL) | [🤖️ XiaomiMiMo/MiMo-7B-RL](https://www.modelscope.cn/models/XiaomiMiMo/MiMo-7B-RL) | ## III. Evaluation Results | Benchmark | GPT-4o-0513 | Claude-3.5-Sonnet-1022 | OpenAI o1-mini | QwQ-32B-Preview | R1-Distill-Qwen-14B | R1-Distill-Qwen-7B | MiMo-7B-RL | | ----------------------------- | :---------: | :--------------------: | :------------: | :-------------: | :-----------------: | :----------------: | :--------: | | **General** | | | | | | | | | GPQA Diamond<br/>(Pass@1) | 49.9 | 65.0 | 60.0 | 54.5 | 59.1 | 49.1 | 54.4 | | SuperGPQA<br/>(Pass@1) | 42.4 | 48.2 | 45.2 | 43.6 | 40.6 | 28.9 | 40.5 | | DROP<br/>(3-shot F1) | 83.7 | 88.3 | 83.9 | 71.2 | 85.5 | 77.0 | 78.7 | | MMLU-Pro<br/>(EM) | 72.6 | 78.0 | 80.3 | 52.0 | 68.8 | 53.5 | 58.6 | | IF-Eval<br/>(Prompt Strict) | 84.3 | 86.5 | 84.8 | 40.4 | 78.3 | 60.5 | 61.0 | | **Mathematics** | | | | | | | | | MATH-500<br/>(Pass@1) | 74.6 | 78.3 | 90.0 | 90.6 | 93.9 | 92.8 | 95.8 | | AIME 2024<br/>(Pass@1) | 9.3 | 16.0 | 63.6 | 50.0 | 69.7 | 55.5 | 68.2 | | AIME 2025<br/>(Pass@1) | 11.6 | 7.4 | 50.7 | 32.4 | 48.2 | 38.8 | 55.4 | | **Code** | | | | | | | | | LiveCodeBench v5<br/>(Pass@1) | 32.9 | 38.9 | 53.8 | 41.9 | 53.1 | 37.6 | 57.8 | | LiveCodeBench v6<br/>(Pass@1) | 30.9 | 37.2 | 46.8 | 39.1 | 31.9 | 23.9 | 49.3 | MiMo-7B series | Benchmark | MiMo-7B-Base | MiMo-7B-RL-Zero | MiMo-7B-SFT | MiMo-7B-RL | | ----------------------------- | :----------: | :-------------: | :---------: | :--------: | | **Mathematics** | | | | | | MATH500<br/>(Pass@1) | 37.4 | 93.6 | 93.0 | 95.8 | | AIME 2024<br/>(Pass@1) | 32.9 | 56.4 | 58.7 | 68.2 | | AIME 2025<br/>(Pass@1) | 24.3 | 46.3 | 44.3 | 55.4 | | **Code** | | | | | | LiveCodeBench v5<br/>(Pass@1) | 32.9 | 49.1 | 52.3 | 57.8 | | LiveCodeBench v6<br/>(Pass@1) | 29.1 | 42.9 | 45.5 | 49.3 | > [!IMPORTANT] > The evaluations are conducted with `temperature=0.6`. > > AIME24 and AIME25 are with averaged score of 32 repetitions. LiveCodeBench v5 (20240801-20250201), LiveCodeBench v6 (20250201-20250501), GPQA-Diamond and IF-Eval are with averaged score of 8 repetitions. MATH500 and SuperGPQA are with a single run. ## IV. Deployment ### SGLang Inference Thanks to the [MiMo model support](https://github.com/sgl-project/sglang/pull/5921) and [MTP](https://github.com/sgl-project/sglang/pull/6059) from the SGLang team, we supported MiMo in SGLang mainstream. Example Script ```bash # Install the latest SGlang from main branch python3 -m uv pip install "sglang[all] @ git+https://github.com/sgl-project/sglang.git/@main#egg=sglang&subdirectory=python" # Launch SGLang Server python3 -m sglang.launch_server --model-path XiaomiMiMo/MiMo-7B-Base --host 0.0.0.0 --trust-remote-code # Launch MTP Server python3 -m sglang.launch_server --model-path XiaomiMiMo/MiMo-7B-Base --trust-remote-code \ --speculative-algorithm EAGLE --speculative-num-steps 1 --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 2 --mem-fraction 0.5 ``` Detailed usage can be found in [SGLang documents](https://docs.sglang.ai/backend/send_request.html). ### vLLM inference 1. [Recommended] We officially support inference with MiMo-MTP using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp_stable_073). Example script ```py from vllm import LLM, SamplingParams model_path = "/path/to/MiMo" llm = LLM( model=model_path, trust_remote_code=True, num_speculative_tokens=1, disable_log_stats=False ) sampling_params = SamplingParams(temperature=0.6) conversation = [ { "role": "system", "content": "" }, { "role": "user", "content": "Write an essay about the importance of higher education.", }, ] outputs = llm.chat(conversation, sampling_params=sampling_params, use_tqdm=False) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") print("=" * 80) ``` 2. Or, you can register a vLLM loader for MiMo without loading MTP parameters. You can copy the [`registry/register_mimo_in_vllm.py`](https://github.com/XiaomiMiMo/MiMo/blob/main/registry/register_mimo_in_vllm.py) to your directory and import it with ```py import register_mimo_in_vllm from vllm import LLM, SamplingParams model_path = "/path/to/MiMo" llm = LLM( model=model_path, trust_remote_code=True, # num_speculative_tokens=1, disable_log_stats=False ) sampling_params = SamplingParams(temperature=0.6) ``` ### HuggingFace inference Example script ```py from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer model_id = "XiaomiMiMo/MiMo-7B-Base" model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = tokenizer(["Today is"], return_tensors='pt') output = model.generate(**inputs, max_new_tokens = 100) print(tokenizer.decode(output.tolist()[0])) ``` ### Recommended environment and prompts - We recommend using [our fork of vLLM](https://github.com/XiaomiMiMo/vllm/tree/feat_mimo_mtp_stable_073) which is developed based on vLLM 0.7.3. - We recommend using empty system prompt. > We haven't verified MiMo with other inference engines and welcome contributions based on the model definition in the Huggingface repo 💻. ## V. Citation ```bibtex @misc{coreteam2025mimounlockingreasoningpotential, title={MiMo: Unlocking the Reasoning Potential of Language Model -- From Pretraining to Posttraining}, author={LLM-Core-Team Xiaomi}, year={2025}, eprint={2505.07608}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.07608}, } ``` ## VI. Contact Please contact us at [mimo@xiaomi.com](mailto:mimo@xiaomi.com) or open an issue if you have any questions.
vera6/sn105_denoising_2
vera6
2025-08-30T02:25:49Z
0
0
null
[ "region:us" ]
null
2025-08-29T15:51:31Z
DENOISING speech enhancement model
maxibillion1975/blockassist-bc-iridescent_squeaky_sandpiper_1756519185
maxibillion1975
2025-08-30T02:24:56Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "iridescent squeaky sandpiper", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:24:52Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - iridescent squeaky sandpiper --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756520602
bah63843
2025-08-30T02:24:12Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:24:04Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
acidjp/blockassist-bc-pesty_extinct_prawn_1756517809
acidjp
2025-08-30T02:22:26Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:22:23Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/PyroNet-v1.5-GGUF
mradermacher
2025-08-30T02:21:33Z
0
0
transformers
[ "transformers", "gguf", "en", "ru", "ik", "base_model:Kenan023214/PyroNet-v1.5", "base_model:quantized:Kenan023214/PyroNet-v1.5", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-29T23:28:09Z
--- base_model: Kenan023214/PyroNet-v1.5 language: - en - ru - ik library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kenan023214/PyroNet-v1.5 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PyroNet-v1.5-GGUF).*** weighted/imatrix quants are available at https://huggingface.co/mradermacher/PyroNet-v1.5-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q2_K.gguf) | Q2_K | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_S.gguf) | Q3_K_S | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_M.gguf) | Q3_K_M | 1.5 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.IQ4_XS.gguf) | IQ4_XS | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q3_K_L.gguf) | Q3_K_L | 1.7 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q4_K_S.gguf) | Q4_K_S | 1.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q4_K_M.gguf) | Q4_K_M | 1.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q5_K_S.gguf) | Q5_K_S | 2.0 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q5_K_M.gguf) | Q5_K_M | 2.1 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q6_K.gguf) | Q6_K | 2.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.Q8_0.gguf) | Q8_0 | 3.1 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1.5-GGUF/resolve/main/PyroNet-v1.5.f16.gguf) | f16 | 5.7 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
klmdr22/blockassist-bc-wild_loud_newt_1756520432
klmdr22
2025-08-30T02:21:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "wild loud newt", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:21:11Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - wild loud newt --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
GroomerG/blockassist-bc-vicious_pawing_badger_1756518507
GroomerG
2025-08-30T02:15:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:15:39Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mistpist/blockassist-bc-voracious_deadly_chameleon_1756520007
mistpist
2025-08-30T02:14:18Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious deadly chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:13:56Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious deadly chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
ibuki95/Affine_ck
ibuki95
2025-08-30T02:14:05Z
0
0
null
[ "safetensors", "gpt_oss", "8-bit", "mxfp4", "region:us" ]
null
2025-08-30T02:05:28Z
# Affine ELR-Enhanced Model This model is based on Affine-PAXJRE27 with LoRA adapters for improved ELR (Project Euler) performance. ## Model Details - Base Model: Affine-PAXJRE27 (116B parameters) - Architecture: GptOssForCausalLM with MoE (128 experts) - Quantization: MXFP4 (dequantized to bf16) - LoRA Adapters: Applied to attention layers for ELR enhancement ## Usage This model is designed for the Affine Bittensor subnet (subnet 120) to improve performance on: - ELR (Project Euler mathematical problems) - While maintaining SAT, ABD, and DED capabilities ## Training Enhanced with Project Euler dataset for mathematical reasoning improvements. ## Deployment Ready for deployment on Affine miners with A100 GPU support.
bah63843/blockassist-bc-plump_fast_antelope_1756519878
bah63843
2025-08-30T02:12:02Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:11:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
liukevin666/blockassist-bc-yawning_striped_cassowary_1756519702
liukevin666
2025-08-30T02:09:42Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T02:09:17Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bukuroo/NeuFlowV2-ONNX
bukuroo
2025-08-30T02:05:48Z
0
0
null
[ "onnx", "opticalflow", "ezonnx", "image-to-image", "license:mit", "region:us" ]
image-to-image
2025-08-29T14:45:38Z
--- license: mit pipeline_tag: image-to-image tags: - onnx - opticalflow - ezonnx --- For inference, please clone repo [ezonnx](https://github.com/ikeboo/ezonnx). ```python from ezonnx import NeuFlowV2 model = NeuFlowV2("mixed") output = model("image_0.jpg","image_1.jpg") # infer with a pair of str or cv2 image print(output.flow) # flow map (H,W,2) print(output.visualized_img) # flow image (H,W,3) ```
jdmartinev/imdbreviews_classification_distilbert_lora_v01
jdmartinev
2025-08-30T02:02:16Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "text-classification", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
text-classification
2024-03-18T17:34:04Z
--- library_name: transformers pipeline_tag: text-classification --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
johngreendr1/aa6d7867-fb46-4374-93ab-be39d6e72000
johngreendr1
2025-08-30T01:56:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:NousResearch/Nous-Puffin-70B", "base_model:adapter:NousResearch/Nous-Puffin-70B", "region:us" ]
null
2025-08-29T23:48:28Z
--- base_model: NousResearch/Nous-Puffin-70B library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
BilateralBusiness/perma_chef_filipina_bali_roja_dama_1_20250829_1846
BilateralBusiness
2025-08-30T01:54:33Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-30T01:41:36Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: perma_chef_filipina_bali_roja_dama_1_20250829_1846 --- # Perma_Chef_Filipina_Bali_Roja_Dama_1_20250829_1846 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `perma_chef_filipina_bali_roja_dama_1_20250829_1846` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "perma_chef_filipina_bali_roja_dama_1_20250829_1846", "lora_weights": "https://huggingface.co/BilateralBusiness/perma_chef_filipina_bali_roja_dama_1_20250829_1846/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BilateralBusiness/perma_chef_filipina_bali_roja_dama_1_20250829_1846', weight_name='lora.safetensors') image = pipeline('perma_chef_filipina_bali_roja_dama_1_20250829_1846').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BilateralBusiness/perma_chef_filipina_bali_roja_dama_1_20250829_1846/discussions) to add images that show off what you’ve made with this LoRA.
chandlerTSLabs/smollm2-1.7b.llamafile
chandlerTSLabs
2025-08-30T01:54:06Z
0
0
null
[ "llamafile", "license:apache-2.0", "region:us" ]
null
2025-08-30T01:46:07Z
--- license: apache-2.0 ---
dgambettaphd/M_llm2_run1_gen2_S_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-30T01:53:51Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-30T01:53:36Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jinwoo1126/Midm2.0-Base-Instruct-GGUF
jinwoo1126
2025-08-30T01:50:31Z
0
0
null
[ "gguf", "KT", "K-intelligence", "Mi:dm", "text-generation", "en", "ko", "base_model:K-intelligence/Midm-2.0-Base-Instruct", "base_model:quantized:K-intelligence/Midm-2.0-Base-Instruct", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-30T01:38:51Z
--- license: mit language: - en - ko tags: - KT - K-intelligence - Mi:dm inference: true pipeline_tag: text-generation base_model: - K-intelligence/Midm-2.0-Base-Instruct --- OLLAMA에 추가할 때 Modelfile 참고 ``` FROM ./Midm-2.0-Base-Instruct-f16.gguf TEMPLATE """<|begin_of_text|><|start_header_id|>system<|end_header_id|> Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다. 너는 Mi:dm으로서 사용자에게 유용하고 안전한 응답을 제공해야 한다. Mi:dm은 December 2024까지의 지식으로 학습되었으며 그 외의 지식을 묻는 경우에는 한계를 인정해야 한다. 어시스턴트는 기본적으로 "한국어"를 사용한다. 사용자의 요청에 따라 생각하고 응답하는 언어는 달라질 수 있으며, 다른 요구사항이 없다면 입력 언어를 따라 응답하라. 코드 작성 시에는 요구되는 언어의 소스코드로 작성해야 하며, STEM(과학, 기술, 공학, 수학) 분야의 전문 용어는 원문을 그대로 유지하여 출력한다. Mi:dm은 사용자 친화적으로 답변을 제공해야 한다. 사용자의 요청이 없다면 기본적으로 경어체를 사용해야 한다. 사용자의 요청에 따라 유용하고 관련성 있는 답변을 제공해야 한다. 이는 요청의 내용을 반영하여 이루어져야 한다. 특히, 사용자가 특정 답변의 형태를 요구한 경우 해당 형태를 반드시 준수하여 응답을 제공한다.(예. JSON, SQL, 코드 등) 그렇지 않다면 응답을 제공하기 가장 적절한 형태로 제공한다. 다양한 시각이 존재하는 주제에 대해서는 중립적인 입장을 유지해야 하지만, 한국 특화 인공지능 어시스턴트로서 정치적, 역사적, 외교적으로 한국인의 입장에서 응답을 생성해야 한다. 모호하거나 복잡한 요청으로 인해 답변 작성이 어려운 경우, 다시 한 번 생각해보고 추가정보를 요청해야 한다. Mi:dm은 응답을 제공할 때 어시스턴트의 안전성 측면에서 다음 지침을 *반드시* 준수해야 한다. - 비속어와 욕설을 사용하지 않아야 한다. - 신뢰할 수 있는 응답을 생성하고, 전문영역에 대한 한계와 불확실성을 인정해야 한다. - 사회의 보편적 규범과 가치에 따라 윤리적이고 중립적이어야 하며, 편향성을 지녀서는 안 된다. - 인공지능으로서의 정체성을 인지하고 의인화하지 않아야 한다. - 개인정보, 사생활 등 민감정보를 포함한 요청에 대한 답변을 거절해야 한다. 다만, 해당정보를 사용할 수 없는 형태(비식별화된 형태)로 제공하는 것은 제한적으로 응답을 허용한다. 이 모든 지침은 응답을 제공할 때 출력되지 않아야 한다. Mi:dm은 사용자의 요청을 처리하기 위해 제공된 도구(함수)를 호출할 수 있다. {{ if .Tools -}} Mi:dm은 도구 사용시 아래 규칙을 준수해야 한다. - 제공된 도구만 사용하고, 모든 필수 인자를 반드시 포함한다. - 주어진 tool_name을 임의로 변경하지 않아야 한다. - 도구를 호출하는 경우, 마지막은 도구 호출로 끝내며 그 뒤에 텍스트를 출력하지 않는다. - 도구 호출 결과를 활용하여 응답을 생성한다. - 도구가 필요하지 않은 경우에는 일반적인 방식으로 응답한다. - 도구 호출 정보는 다음과 같이 <tool_call></tool_call> XML 태그 사이에 작성한다. <tool_call>{"name": "tool_name", "arguments": {"param":"value"}}</tool_call> tool_list:[ {{- range $i, $tool := .Tools -}} {{- if ne 0 $i }},{{- end -}} {{- $tool -}} {{- end -}} ] {{- end -}} {{- if .System -}} {{- .System }} {{- end -}} {{- range $i, $_ := .Messages -}} {{- $last := eq (len (slice $.Messages $i)) 1 -}} {{- if ne .Role "system" -}} <|eot_id|><|start_header_id|> {{- .Role -}} <|end_header_id|> {{ if .Content -}} {{- .Content -}} {{- else if .ToolCalls -}} <tool_call> {{- range .ToolCalls }} {"name": "{{ .Function.Name }}", "parameters": {{ .Function.Arguments }}} {{- end }} </tool_call> {{- end -}} {{- if $last -}} <|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ end -}} {{- end -}} {{- end -}}""" PARAMETER stop "<|eot_id|>" PARAMETER stop "<|end_of_text|>" LICENSE """MIT License Copyright (c) 2025 KT Corporation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" ``` --- Thanks to KT ## Mi:dm Official Repo's Description <p align="center"> 🤗 <a href="https://huggingface.co/collections/K-intelligence/mi-dm-20-6866406c301e5f45a6926af8">Mi:dm 2.0 Models</a> | 📜 <a href="https://github.com/K-intelligence-Midm/Midm-2.0/blob/main/Mi_dm2_0_technical_report.pdf">Mi:dm 2.0 Technical Report</a> | 📕 Mi:dm 2.0 Technical Blog* </p> <p align="center"><sub>*To be released soon</sub></p> <br> # News 📢 - 🔜 _(Coming Soon!) GGUF format model files will be available soon for easier local deployment._ - ⚡️`2025/07/04`: Released Mi:dm 2.0 Model collection on Hugging Face🤗. <br> <br> # Table of Contents - ___Overview___ - [Mi:dm 2.0](#midm-20) - [Quickstart](#quickstart) - [Evaluation](#evaluation) - ___Usage___ - [Run on Friendli.AI](#run-on-friendliai) - [Run on Your Local Machine](#run-on-your-local-machine) - [Deployment](#deployment) - [Tutorials](#tutorials) - ___More Information___ - [Limitation](#limitation) - [License](#license) - [Contact](#contact) <br> <br> # Overview ### Mi:dm 2.0 **Mi:dm 2.0** is a __"Korea-centric AI"__ model developed using KT's proprietary technology. The term __"Korea-centric AI"__ refers to a model that deeply internalizes the unique values, cognitive frameworks, and commonsense reasoning inherent to Korean society. It goes beyond simply processing or generating Korean text—it reflects a deeper understanding of the socio-cultural norms and values that define Korean society. Mi:dm 2.0 is released in two versions: - **Mi:dm 2.0 Base** An 11.5B parameter dense model designed to balance model size and performance. It extends an 8B-scale model by applying the Depth-up Scaling (DuS) method, making it suitable for real-world applications that require both performance and versatility. - **Mi:dm 2.0 Mini** A lightweight 2.3B parameter dense model optimized for on-device environments and systems with limited GPU resources. It was derived from the Base model through pruning and distillation to enable compact deployment. > [!Note] > Neither the pre-training nor the post-training data includes KT users' data. <br> ### Quickstart Here is the code snippet to run conversational inference with the model: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig model_name = "K-intelligence/Midm-2.0-Base-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) generation_config = GenerationConfig.from_pretrained(model_name) prompt = "KT에 대해 소개해줘" # message for inference messages = [ {"role": "system", "content": "Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다."}, {"role": "user", "content": prompt} ] input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) output = model.generate( input_ids.to("cuda"), generation_config=generation_config, eos_token_id=tokenizer.eos_token_id, max_new_tokens=128, do_sample=False, ) print(tokenizer.decode(output[0])) ``` > [!NOTE] > The `transformers` library should be version `4.45.0` or higher. <br> # Evaluation #### Korean <!-- first half table--> <table> <tr> <th rowspan="2">Model</th> <th colspan="5" align="center">Society & Culture</th> <th colspan="3" align="center">General Knowledge</th> <th colspan="3" align="center">Instruction Following</th> </tr> <tr> <th align="center">K-Refer<sup>*</sup></th> <th align="center">K-Refer-Hard<sup>*</sup></th> <th align="center">Ko-Sovereign<sup>*</sup></th> <th align="center">HAERAE</th> <th align="center">Avg.</th> <th align="center">KMMLU</th> <th align="center">Ko-Sovereign<sup>*</sup></th> <th align="center">Avg.</th> <th align="center">Ko-IFEval</th> <th align="center">Ko-MTBench</th> <th align="center">Avg.</th> </tr> <!-- Small Models --> <tr> <td><strong>Qwen3-4B</strong></td> <td align="center">53.6</td> <td align="center">42.9</td> <td align="center">35.8</td> <td align="center">50.6</td> <td align="center">45.7</td> <td align="center"><strong>50.6</strong></td> <td align="center"><strong>42.5</strong></td> <td align="center"><strong>46.5</strong></td> <td align="center"><strong>75.9</strong></td> <td align="center">63.0</td> <td align="center">69.4</td> </tr> <tr> <td><strong>Exaone-3.5-2.4B-inst</strong></td> <td align="center">64.0</td> <td align="center"><strong>67.1</strong></td> <td align="center"><strong>44.4</strong></td> <td align="center">61.3</td> <td align="center"><strong>59.2</strong></td> <td align="center">43.5</td> <td align="center">42.4</td> <td align="center">43.0</td> <td align="center">65.4</td> <td align="center"><strong>74.0</strong></td> <td align="center">68.9</td> </tr> <tr> <td><strong>Mi:dm 2.0-Mini-inst</strong></td> <td align="center"><strong>66.4</strong></td> <td align="center">61.4</td> <td align="center">36.7</td> <td align="center"><strong>70.8</strong></td> <td align="center">58.8</td> <td align="center">45.1</td> <td align="center">42.4</td> <td align="center">43.8</td> <td align="center">73.3</td> <td align="center"><strong>74.0</strong></td> <td align="center"><strong>73.6</strong></td> </tr> <!-- Spacer row --> <tr><td colspan="13"> </td></tr> <!-- Large Models --> <tr> <td><strong>Qwen3-14B</strong></td> <td align="center">72.4</td> <td align="center">65.7</td> <td align="center">49.8</td> <td align="center">68.4</td> <td align="center">64.1</td> <td align="center">55.4</td> <td align="center">54.7</td> <td align="center">55.1</td> <td align="center"><strong>83.6</strong></td> <td align="center">71</td> <td align="center">77.3</td> </tr> <tr> <td><strong>Llama-3.1-8B-inst</strong></td> <td align="center">43.2</td> <td align="center">36.4</td> <td align="center">33.8</td> <td align="center">49.5</td> <td align="center">40.7</td> <td align="center">33.0</td> <td align="center">36.7</td> <td align="center">34.8</td> <td align="center">60.1</td> <td align="center">57</td> <td align="center">58.5</td> </tr> <tr> <td><strong>Exaone-3.5-7.8B-inst</strong></td> <td align="center">71.6</td> <td align="center">69.3</td> <td align="center">46.9</td> <td align="center">72.9</td> <td align="center">65.2</td> <td align="center">52.6</td> <td align="center">45.6</td> <td align="center">49.1</td> <td align="center">69.1</td> <td align="center">79.6</td> <td align="center">74.4</td> </tr> <tr> <td><strong>Mi:dm 2.0-Base-inst</strong></td> <td align="center"><strong>89.6</strong></td> <td align="center"><strong>86.4</strong></td> <td align="center"><strong>56.3</strong></td> <td align="center"><strong>81.5</strong></td> <td align="center"><strong>78.4</strong></td> <td align="center"><strong>57.3</strong></td> <td align="center"><strong>58.0</strong></td> <td align="center"><strong>57.7</strong></td> <td align="center">82</td> <td align="center"><strong>89.7</strong></td> <td align="center"><strong>85.9</strong></td> </tr> </table> <!-- second half table--> <table> <tr> <th rowspan="2" align="center">Model</th> <th colspan="5" align="center">Comprehension</th> <th colspan="5" align="center">Reasoning</th> </tr> <tr> <th align="center">K-Prag<sup>*</sup></th> <th align="center">K-Refer-Hard<sup>*</sup></th> <th align="center">Ko-Best</th> <th align="center">Ko-Sovereign<sup>*</sup></th> <th align="center">Avg.</th> <th align="center">Ko-Winogrande</th> <th align="center">Ko-Best</th> <th align="center">LogicKor</th> <th align="center">HRM8K</th> <th align="center">Avg.</th> </tr> <!-- Small Models --> <tr> <td><strong>Qwen3-4B</strong></td> <td align="center"><strong>73.9<strong></td> <td align="center">56.7</td> <td align="center"><strong>91.5</strong></td> <td align="center"><strong>43.5</strong></td> <td align="center"><strong>66.6</strong></td> <td align="center"><strong>67.5</strong></td> <td align="center"><strong>69.2</strong></td> <td align="center">5.6</td> <td align="center"><strong>56.7</strong></td> <td align="center"><strong>43.8</strong></td> </tr> <tr> <td><strong>Exaone-3.5-2.4B-inst</strong></td> <td align="center">68.7</td> <td align="center"><strong>58.5</strong></td> <td align="center">87.2</td> <td align="center">38.0</td> <td align="center">62.5</td> <td align="center">60.3</td> <td align="center">64.1</td> <td align="center">7.4</td> <td align="center">38.5</td> <td align="center">36.7</td> </tr> <tr> <td><strong>Mi:dm 2.0-Mini-inst</strong></td> <td align="center">69.5</td> <td align="center">55.4</td> <td align="center">80.5</td> <td align="center">42.5</td> <td align="center">61.9</td> <td align="center">61.7</td> <td align="center">64.5</td> <td align="center"><strong>7.7</strong></td> <td align="center">39.9</td> <td align="center">37.4</td> </tr> <!-- Visual Spacer --> <tr><td colspan="11"> </td></tr> <!-- Large Models --> <tr> <td><strong>Qwen3-14B</strong></td> <td align="center"><strong>86.7</strong></td> <td align="center"><strong>74.0</strong></td> <td align="center">93.9</td> <td align="center">52.0</td> <td align="center"><strong>76.8</strong></td> <td align="center"><strong>77.2</strong></td> <td align="center"><strong>75.4</strong></td> <td align="center">6.4</td> <td align="center"><strong>64.5</strong></td> <td align="center"><strong>48.8</strong></td> </tr> <tr> <td><strong>Llama-3.1-8B-inst</strong></td> <td align="center">59.9</td> <td align="center">48.6</td> <td align="center">77.4</td> <td align="center">31.5</td> <td align="center">51.5</td> <td align="center">40.1</td> <td align="center">26.0</td> <td align="center">2.4</td> <td align="center">30.9</td> <td align="center">19.8</td> </tr> <tr> <td><strong>Exaone-3.5-7.8B-inst</strong></td> <td align="center">73.5</td> <td align="center">61.9</td> <td align="center">92.0</td> <td align="center">44.0</td> <td align="center">67.2</td> <td align="center">64.6</td> <td align="center">60.3</td> <td align="center"><strong>8.6</strong></td> <td align="center">49.7</td> <td align="center">39.5</td> </tr> <tr> <td><strong>Mi:dm 2.0-Base-inst</strong></td> <td align="center">86.5</td> <td align="center">70.8</td> <td align="center"><strong>95.2</strong></td> <td align="center"><strong>53.0</strong></td> <td align="center">76.1</td> <td align="center">75.1</td> <td align="center">73.0</td> <td align="center"><strong>8.6</strong></td> <td align="center">52.9</td> <td align="center">44.8</td> </tr> </table> `*` indicates KT proprietary evaluation resources. <br> #### English <table> <tr> <th rowspan="2" align="center">Model</th> <th align="center">Instruction</th> <th colspan="4" align="center">Reasoning</th> <th align="center">Math</th> <th align="center">Coding</th> <th colspan="3" align="center">General Knowledge</th> </tr> <tr> <th align="center">IFEval</th> <th align="center">BBH</th> <th align="center">GPQA</th> <th align="center">MuSR</th> <th align="center">Avg.</th> <th align="center">GSM8K</th> <th align="center">MBPP+</th> <th align="center">MMLU-pro</th> <th align="center">MMLU</th> <th align="center">Avg.</th> </tr> <!-- Small Models --> <tr> <td><strong>Qwen3-4B</strong></td> <td align="center">79.7</td> <td align="center"><strong>79.0</strong></td> <td align="center"><strong>39.8</strong></td> <td align="center"><strong>58.5</strong></td> <td align="center"><strong>59.1</strong></td> <td align="center"><strong>90.4</strong></td> <td align="center">62.4</td> <td align="center">-</td> <td align="center"><strong>73.3</strong></td> <td align="center"><strong>73.3</strong></td> </tr> <tr> <td><strong>Exaone-3.5-2.4B-inst</strong></td> <td align="center"><strong>81.1</strong></td> <td align="center">46.4</td> <td align="center">28.1</td> <td align="center">49.7</td> <td align="center">41.4</td> <td align="center">82.5</td> <td align="center">59.8</td> <td align="center">-</td> <td align="center">59.5</td> <td align="center">59.5</td> </tr> <tr> <td><strong>Mi:dm 2.0-Mini-inst</strong></td> <td align="center">73.6</td> <td align="center">44.5</td> <td align="center">26.6</td> <td align="center">51.7</td> <td align="center">40.9</td> <td align="center">83.1</td> <td align="center"><strong>60.9</strong></td> <td align="center">-</td> <td align="center">56.5</td> <td align="center">56.5</td> </tr> <tr><td colspan="11">&nbsp;</td></tr> <!-- Large Models --> <tr> <td><strong>Qwen3-14B</strong></td> <td align="center">83.9</td> <td align="center"><strong>83.4</strong></td> <td align="center"><strong>49.8</strong></td> <td align="center"><strong>57.7</strong></td> <td align="center"><strong>63.6</strong></td> <td align="center">88.0</td> <td align="center">73.4</td> <td align="center"><strong>70.5</strong></td> <td align="center"><strong>82.7</strong></td> <td align="center"><strong>76.6</strong></td> </tr> <tr> <td><strong>Llama-3.1-8B-inst</strong></td> <td align="center">79.9</td> <td align="center">60.3</td> <td align="center">21.6</td> <td align="center">50.3</td> <td align="center">44.1</td> <td align="center">81.2</td> <td align="center"><strong>81.8</strong></td> <td align="center">47.6</td> <td align="center">70.7</td> <td align="center">59.2</td> </tr> <tr> <td><strong>Exaone-3.5-7.8B-inst</strong></td> <td align="center">83.6</td> <td align="center">50.1</td> <td align="center">33.1</td> <td align="center">51.2</td> <td align="center">44.8</td> <td align="center">81.1</td> <td align="center">79.4</td> <td align="center">40.7</td> <td align="center">69.0</td> <td align="center">54.8</td> </tr> <tr> <td><strong>Mi:dm 2.0-Base-inst</strong></td> <td align="center"><strong>84.0</strong></td> <td align="center">77.7</td> <td align="center">33.5</td> <td align="center">51.9</td> <td align="center">54.4</td> <td align="center"><strong>91.6</strong></td> <td align="center">77.5</td> <td align="center">53.3</td> <td align="center">73.7</td> <td align="center">63.5</td> </tr> </table> <br> # Usage ### Run on Friendli.AI You can try our model immediately via `Friendli.AI`. Simply click `Deploy` and then `Friendli Endpoints`. > [!Note] > Please note that a login to `Friendli.AI` is required after your fifth chat interaction. <p> <img src="./assets/image_1.png" alt="Left Image" width="36%" style="display:inline-block; margin-right:2%"> <img src="./assets/image_2.png" alt="Right Image" width="36%" style="display:inline-block"> </p> ### Run on Your Local Machine We provide a detailed description about running Mi:dm 2.0 on your local machine using llama.cpp, LM Studio, and Ollama. Please check our [github](https://github.com/K-intelligence-Midm/Midm-2.0) for more information ### Deployment To serve Mi:dm 2.0 using [vLLM](https://github.com/vllm-project/vllm)(`>=0.8.0`) with an OpenAI-compatible API: ```bash vllm serve K-intelligence/Midm-2.0-Base-Instruct ``` ### Tutorials To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on [github](https://github.com/K-intelligence-Midm/Midm-2.0). <br> <br> <br> # More Information ### Limitation * The training data for both Mi:dm 2.0 models consists primarily of English and Korean. Understanding and generation in other languages are not guaranteed. * The model is not guaranteed to provide reliable advice in fields that require professional expertise, such as law, medicine, or finance. * Researchers have made efforts to exclude unethical content from the training data — such as profanity, slurs, bias, and discriminatory language. However, despite these efforts, the model may still produce inappropriate expressions or factual inaccuracies. ### License Mi:dm 2.0 is licensed under the [MIT License](./LICENSE). <!-- ### Citation ``` @misc{, title={}, author={}, year={2025}, eprint={}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={}, } ``` --> ### Contact Mi:dm 2.0 Technical Inquiries: midm-llm@kt.com <br>
AmberYifan/Llama-3-8B-Instruct-wildfeedback-seed-RPO-0.001
AmberYifan
2025-08-30T01:48:59Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T01:24:01Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers model_name: Llama-3-8B-Instruct-wildfeedback-seed-RPO-0.001 tags: - generated_from_trainer - dpo - trl licence: license --- # Model Card for Llama-3-8B-Instruct-wildfeedback-seed-RPO-0.001 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="AmberYifan/Llama-3-8B-Instruct-wildfeedback-seed-RPO-0.001", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yifanwang/huggingface/runs/n4ydlbrv) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.19.1 - Transformers: 4.53.3 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Nakamotosatoshi/Nunchaku_wheel_python_3.13
Nakamotosatoshi
2025-08-30T01:48:56Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:44:49Z
Nunchaku installation wheel, I built using ChatGPT Python 3.13 PyTorch 2.8.0 VUDA 12.9
Watch-Online-Dr-wong-viral-video-Clip/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
Watch-Online-Dr-wong-viral-video-Clip
2025-08-30T01:47:41Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:47:29Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
liukevin666/blockassist-bc-yawning_striped_cassowary_1756518378
liukevin666
2025-08-30T01:47:19Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:47:12Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_221
AnonymousCS
2025-08-30T01:43:34Z
2
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_xlmr_large", "base_model:finetune:AnonymousCS/populism_xlmr_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T07:55:07Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_xlmr_large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_221 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_221 This model is a fine-tuned version of [AnonymousCS/populism_xlmr_large](https://huggingface.co/AnonymousCS/populism_xlmr_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1963 - Accuracy: 0.9580 - 1-f1: 0.0 - 1-recall: 0.0 - 1-precision: 0.0 - Balanced Acc: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:--------:|:-----------:|:------------:| | 0.3291 | 1.0 | 137 | 0.2318 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0107 | 2.0 | 274 | 0.2199 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1328 | 3.0 | 411 | 0.1944 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0069 | 4.0 | 548 | 0.2288 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1612 | 5.0 | 685 | 0.2160 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.4637 | 6.0 | 822 | 0.1963 | 0.9580 | 0.0 | 0.0 | 0.0 | 0.5 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF
mradermacher
2025-08-30T01:42:24Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "qwen2", "en", "base_model:Woutermans/Qwen2.5-Coder-3B-DPO-merged", "base_model:quantized:Woutermans/Qwen2.5-Coder-3B-DPO-merged", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T01:24:03Z
--- base_model: Woutermans/Qwen2.5-Coder-3B-DPO-merged language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - qwen2 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Woutermans/Qwen2.5-Coder-3B-DPO-merged <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Qwen2.5-Coder-3B-DPO-merged-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q2_K.gguf) | Q2_K | 1.4 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_S.gguf) | Q3_K_S | 1.6 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_M.gguf) | Q3_K_M | 1.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q3_K_L.gguf) | Q3_K_L | 1.8 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.IQ4_XS.gguf) | IQ4_XS | 1.9 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q4_K_S.gguf) | Q4_K_S | 1.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q4_K_M.gguf) | Q4_K_M | 2.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q5_K_S.gguf) | Q5_K_S | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q5_K_M.gguf) | Q5_K_M | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q6_K.gguf) | Q6_K | 2.6 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.Q8_0.gguf) | Q8_0 | 3.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Qwen2.5-Coder-3B-DPO-merged-GGUF/resolve/main/Qwen2.5-Coder-3B-DPO-merged.f16.gguf) | f16 | 6.3 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mistpist/blockassist-bc-voracious_deadly_chameleon_1756518080
mistpist
2025-08-30T01:42:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "voracious deadly chameleon", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:41:48Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - voracious deadly chameleon --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianFull-0.1-0.1-0.1-v2_6959
luckeciano
2025-08-30T01:38:42Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T21:07:06Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-HessianFull-0.1-0.1-0.1-v2_6959 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-HessianFull-0.1-0.1-0.1-v2_6959 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-HessianFull-0.1-0.1-0.1-v2_6959", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/3m75qwgi) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
andryr/CartPole-v1
andryr
2025-08-30T01:35:51Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2025-08-30T01:35:41Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Jennifer-Gomes-in-people/New.full.videos.Jennifer.Gomes.Viral.Video.Official.Tutorial
Jennifer-Gomes-in-people
2025-08-30T01:35:43Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:35:27Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/GrammarCoder-1.3B-Base-GGUF
mradermacher
2025-08-30T01:34:18Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:qyliang/GrammarCoder-1.3B-Base", "base_model:quantized:qyliang/GrammarCoder-1.3B-Base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-08-30T01:02:58Z
--- base_model: qyliang/GrammarCoder-1.3B-Base language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/qyliang/GrammarCoder-1.3B-Base <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#GrammarCoder-1.3B-Base-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q3_K_S.gguf) | Q3_K_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q3_K_L.gguf) | Q3_K_L | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.IQ4_XS.gguf) | IQ4_XS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q4_K_M.gguf) | Q4_K_M | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q5_K_S.gguf) | Q5_K_S | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q5_K_M.gguf) | Q5_K_M | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q6_K.gguf) | Q6_K | 1.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.Q8_0.gguf) | Q8_0 | 1.5 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/GrammarCoder-1.3B-Base-GGUF/resolve/main/GrammarCoder-1.3B-Base.f16.gguf) | f16 | 2.8 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
JJTsao/movietv-reranker-cross-encoder-base-v1
JJTsao
2025-08-30T01:34:12Z
120
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "reranker", "cross-encoder", "information-retrieval", "recommendations", "movies", "sentence-transformers", "custom_code", "en", "dataset:reelix/reranker-synthetic-vibes", "license:mit", "autotrain_compatible", "region:us" ]
text-classification
2025-08-19T22:42:01Z
--- language: en tags: - reranker - cross-encoder - information-retrieval - recommendations - movies - sentence-transformers license: mit datasets: - reelix/reranker-synthetic-vibes library_name: transformers pipeline_tag: text-classification --- # 🎬 Reelix Cross-Encoder Reranker (Movies & TV) A BERT-based **cross-encoder** that scores `(query, title_context)` pairs to re-rank candidates for **vibe-driven** movie/TV recommendations. ## 🧠 Model Architecture - **Backbone:** `bert-base-uncased` - **Input packing:** `[CLS] {query} {title_context} ` - `title_context` is a concatenation of: **Title | Genres | Overview | Tagline | Director | Cast | Keywords | Year** - **Scoring head (2-layer MLP):** - `Linear(hidden → inter)` - `GELU` - **Residual** connection to the CLS-pooled representation - `LayerNorm` - `Dropout(p=0.1)` - `Linear(inter → 1)` → scalar relevance logit - **Output:** Higher score ⇒ stronger match **Intended use:** Re-rank the **top-N** items surfaced by a separate hybrid retrieval system (dense + BM25). **Out of scope:** Standalone retrieval over large corpora (use a bi-encoder); general classification tasks without adaptation. --- ## 📚 Training Data The model was trained on balanced **triplets** `(query, positive, negative)` that mirror real retrieval noise patterns. - **Queries** - LLM-generated **vibe** prompts (e.g., “Emotionally powerful space exploration film with themes of love and sacrifice.”) - Template-driven metadata prompts (e.g., “Any crime movies from the 1990s directed by Quentin Tarantino about heists?”) - **Positives** - The source title for the query. - Fields provided to the model: **title, genres, overview, tagline, director, cast, keywords, year**. - **Negatives** (weighted hard negatives from dense neighbors; positive excluded) - **Hard:** same genre **and** keyword overlap (forces fine-grained discrimination) - **Mid (A):** same genre, no keyword overlap (prevents overfitting to genre) - **Mid (B):** keyword overlap, different genre (prevents keyword bias) - **Easy:** semantically nearer but clearly off (stabilizes margin learning) --- ## 🏋️ Training Procedure - **Objective:** Pairwise **margin ranking loss** $$ L = \max\bigl(0,\, m - (s_\text{pos} - s_\text{neg})\bigr),\quad m=1.0 $$ - **Batch:** 16 triplets (Q, Pos, Neg) - **Max length:** 512 - **Epochs:** 3 (early stop on dev loss / ranking metrics) - **Optimizer:** `AdamW` - `lr=2e-5`, weight decay `0.01` - Exempt bias/LayerNorm from weight decay - **Scheduler:** Linear decay with **10% warmup** - **Gradient clipping:** `max_norm=1.0` - **Seed:** Fixed (for `torch` and `random`) --- ## 🧪 Evaluation Evaluation was perfomed on held-out `(query, positive_title)` pairs using **normalized title matching**. Metrics: - **MRR** — Mean Reciprocal Rank of the first relevant item - **Precision@k** — with a single positive, `1/k` if positive appears in top-k; else `0` - **Recall@k / Accuracy@k** — identical for single-positive; `1` if positive appears in top-k; else `0` - **NDCG@k** — discounts gains by rank; rewards early hits ### Pipelines Compared - **Reranker**: Cross-Encoder reranker **+** metadata features with **RRF** fusion - **Baseline**: Metadata-only reranking (no cross-encoder) ### Results The cross-encoder lifts early ranking quality (MRR, NDCG@k) and improves inclusion at k=5/10/20, which translates to cleaner top-20 lists for downstream LLM write-ups. | Metric | Reranker | Baseline | Δ (Abs) | Δ (Rel) | | ------------ | -------: | --------: | --------: | ------: | | MRR | 0.554752 | 0.365887 | +0.188865 | **+51.6%** | | Precision@5 | 0.129222 | 0.111722 | +0.017500 | +15.7% | | Recall@5 | 0.646111 | 0.558611 | +0.087500 | +15.7% | | NDCG@5 | 0.570416 | 0.403535 | +0.166881 | **+41.3%** | | Precision@10 | 0.069250 | 0.063222 | +0.006028 | +9.5% | | Recall@10 | 0.692500 | 0.632222 | +0.060278 | +9.5% | | NDCG@10 | 0.585627 | 0.427452 | +0.158175 | **+37.0%** | | Precision@20 | 0.037111 | 0.034944 | +0.002167 | +6.2% | | Recall@20 | 0.742222 | 0.698889 | +0.043333 | +6.2% | | NDCG@20 | 0.598061 | 0.444327 | +0.153734 | **+34.6%** | --- ### Thematic Noise Ratio (TNR) — Human-in-the-loop Quality Check #### What: We rate the **on-briefness** of the top-k results using a simple rubric: `1 = highly relevant`, `0.5 = borderline`, `0 = not relevant`. **RS (Relevance Score)** is the mean label; **TNR = 1 − RS** (lower is better). #### How: For each query, a human labels top-k (k∈{10,20}) items for: - **Reranker** (cross-encoder + metadata RRF) - **Baseline** (metadata-only) #### Results: Reranker reduces thematic noise, especially in **Top-10**, producing a stronger prompt substrate for the LLM. | Metric | Reranker | Baseline | Δ (Abs) | Δ (Rel) | ↑/↓ Better | |------------|---------:|---------:|---------:|------------:|:----------:| | RS@10 | 0.806 | 0.612 | +0.194 | **+31.7%** | ↑ | | TNR@10 | 0.194 | 0.388 | -0.194 | **−50.0%** | ↓ | | RS@20 | 0.731 | 0.669 | +0.062 | +9.3% | ↑ | | TNR@20 | 0.269 | 0.331 | -0.062 | −18.7% | ↓ | | Count_1 | 11.625 | 9.375 | +2.250 | +24.0% | ↑ | | Count_0.5 | 6.000 | 8.000 | -2.000 | −25.0% | ↓ | | Count_0 | 2.375 | 2.625 | -0.250 | −9.5% | ↓ | #### Per-intent Highlights (RS ↑) - **Mind-bending sci-fi:** 0.95 @10 vs 0.75; 0.90 @20 vs 0.80 - **Atmospheric folk/psych horror:** 0.80 @10 vs 0.30; 0.725 @20 vs 0.475 - **Musical dramas (visually lush):** 0.90 @10 vs 0.70; 0.875 @20 vs 0.775 - **Slow-burn crime (gritty):** 0.85 @10 vs 0.70; parity 0.65 @20 - **Psych thrillers (satirical):** 0.70 @10 vs 0.65; 0.70 @20 vs 0.625 - **Coming-of-age (heartwarming):** 0.90 @10 vs 0.75; 0.90 @20 vs 0.825 - **Offbeat indie comedies:** 0.70 @10 vs 0.60; slight drop 0.575 @20 vs 0.60 → add indie/major-studio gates - **Playful rom-coms:** 0.65 @10 vs 0.45; 0.525 @20 vs 0.60 → enforce Romance|Comedy and down-weight heavy drama --- ## 💻 Usage If exported as `AutoModelForSequenceClassification` (`num_labels=1`): ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch mname = "JJTsao/movietv-reranker-cross-encoder-base-v1" tok = AutoTokenizer.from_pretrained(mname) model = AutoModelForSequenceClassification.from_pretrained(mname, trust_remote_code=True) model.eval() def score(query: str, context: str, max_len=320): inputs = tok(query, context, truncation=True, padding=True, max_length=max_len, return_tensors="pt") with torch.no_grad(): out = model(**inputs) return float(out.logits.squeeze(-1)) ``` --- ## 📄 License MIT --- ## 📚 Citation ``` @software{reelix_reranker_2025, title = {Reelix Cross-Encoder Reranker}, author = {JJ Tsao}, year = {2025}, url = {https://huggingface.co/JJTsao/movietv-reranker-cross-encoder-base-v1} } ```
bah63843/blockassist-bc-plump_fast_antelope_1756517463
bah63843
2025-08-30T01:31:55Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:31:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
RikiyaT/mxbai-ettin-17m-allnli-phaseA-ft-st
RikiyaT
2025-08-30T01:30:31Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T01:30:26Z
# RikiyaT/mxbai-ettin-17m-allnli-phaseA-ft-st Dense retrieval encoder (Ettin / ModernBERT) — SentenceTransformers - Base model: RikiyaT/mxbai-ettin-17m-pretrained - Pooling: mean - Projection: **identity** (dim=256) **Transformers variant**: [RikiyaT/mxbai-ettin-17m-allnli-phaseA-ft](https://huggingface.co/RikiyaT/mxbai-ettin-17m-allnli-phaseA-ft) ### Usage ```python from sentence_transformers import SentenceTransformer m = SentenceTransformer("RikiyaT/mxbai-ettin-17m-allnli-phaseA-ft-st", trust_remote_code=True) q = m.encode(["search_query: what is dense retrieval?"], normalize_embeddings=True) d = m.encode(["search_document: dense retrieval uses embeddings ..."], normalize_embeddings=True) print((q @ d.T)) ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
bah63843/blockassist-bc-plump_fast_antelope_1756517240
bah63843
2025-08-30T01:28:13Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:28:05Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bertpost/blockassist-bc-furry_scruffy_mandrill_1756517113
bertpost
2025-08-30T01:26:05Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "furry scruffy mandrill", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:25:43Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - furry scruffy mandrill --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Dr-wong-viral-video-original-Clip/New.full.videos.Dr.wong.Viral.Video.Official.Tutorial
Dr-wong-viral-video-original-Clip
2025-08-30T01:25:03Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:24:49Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
poki1/blockassist-bc-scented_slimy_toad_1756516786
poki1
2025-08-30T01:20:20Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "scented slimy toad", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:19:47Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - scented slimy toad --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dapnmmer/blockassist-bc-galloping_hardy_fish_1756516554
dapnmmer
2025-08-30T01:16:21Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "galloping hardy fish", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:15:54Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - galloping hardy fish --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
aklemen/sloveniangpt-whisper-ctc-h2t-128-64
aklemen
2025-08-30T01:13:45Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "trl", "sft", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-30T01:10:54Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft
RikiyaT
2025-08-30T01:12:57Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T01:12:52Z
# RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft Dense retrieval encoder (Ettin / ModernBERT) — Transformers - Base model: RikiyaT/mxbai-ettin-17m-pretrained - Pooling: mean - Projection: **identity** (dim=256) **SentenceTransformers variant**: [RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft-st](https://huggingface.co/RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft-st) ### Usage ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("RikiyaT/mxbai-ettin-17m-hotpotqa-phaseA-ft", trust_remote_code=True) # identity projection def encode(texts, prompt="search_query: "): x = tokenizer([prompt + t for t in texts], padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): out = model(**x).last_hidden_state mask = x["attention_mask"][..., None].bool() emb = (out.masked_fill(~mask, 0.0).sum(1) / x["attention_mask"].sum(1, keepdim=True)) emb = torch.nn.functional.normalize(emb, p=2, dim=1) return emb ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
AnonymousCS/populism_classifier_217
AnonymousCS
2025-08-30T01:10:59Z
5
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_xlmr_large", "base_model:finetune:AnonymousCS/populism_xlmr_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T07:40:05Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_xlmr_large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_217 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_217 This model is a fine-tuned version of [AnonymousCS/populism_xlmr_large](https://huggingface.co/AnonymousCS/populism_xlmr_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2231 - Accuracy: 0.9498 - 1-f1: 0.0 - 1-recall: 0.0 - 1-precision: 0.0 - Balanced Acc: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:--------:|:-----------:|:------------:| | 0.0248 | 1.0 | 130 | 0.2235 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0294 | 2.0 | 260 | 0.2200 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.5772 | 3.0 | 390 | 0.2092 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1304 | 4.0 | 520 | 0.2199 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | | 1.0891 | 5.0 | 650 | 0.2297 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0211 | 6.0 | 780 | 0.2231 | 0.9498 | 0.0 | 0.0 | 0.0 | 0.5 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
bah63843/blockassist-bc-plump_fast_antelope_1756516157
bah63843
2025-08-30T01:10:08Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T01:10:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Thireus/DeepSeek-V3.1-THIREUS-Q6_K_R4-SPECIAL_SPLIT
Thireus
2025-08-30T01:08:56Z
0
0
null
[ "gguf", "arxiv:2505.23786", "license:mit", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-08-30T00:03:54Z
--- license: mit --- # DeepSeek-V3.1 ## 🤔 What is this [HuggingFace repository](https://huggingface.co/Thireus/DeepSeek-V3.1-THIREUS-BF16-SPECIAL_SPLIT/) about? This repository provides **GGUF-quantized tensors** for the DeepSeek-V3.1 model (official repo: https://huggingface.co/deepseek-ai/DeepSeek-V3.1). These GGUF shards are designed to be used with **Thireus’ GGUF Tool Suite** (https://gguf.thireus.com), a collection of tools that automatically finds the perplexity-optimal mix of quantizations for any given VRAM and RAM target. With the Tool Suite, you can generate and download custom quantization “recipes” effortlessly. - 📖 Read more: https://github.com/Thireus/GGUF-Tool-Suite - 🔍 Example quant mixes: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples - 🛠️ Create your own recipe: https://colab.research.google.com/github/Thireus/GGUF-Tool-Suite/blob/main/quant_recipe_pipeline.ipynb - 📂 Browse available quant shards: https://huggingface.co/Thireus/collections *tl;dr: Expand the details section below* <details> ``` cd ~ # Make sure to install all ik_llama.cpp compilation dependencies... apt install python3-dev python3-pip python3-venv python3-wheel python3-setuptools git acl netcat-openbsd cmake # pipx # Obtain ik_llama's Thireus version - Windows builds available at https://github.com/Thireus/ik_llama.cpp/releases git clone https://github.com/Thireus/ik_llama.cpp cd ik_llama.cpp git pull # Build ik_llama.cpp cmake -B build -DGGML_AVX=ON -DGGML_AVX2=ON -DLLAMA_CURL=OFF -DGGML_MAX_CONTEXTS=2048 cmake --build build --config Release -j16 cd .. # Obtain Thireus' GGUF-Tool-Suite git clone https://github.com/Thireus/GGUF-Tool-Suite # Download model quant mix from recipe file: cd GGUF-Tool-Suite rm -f download.conf # Make sure to copy the relevant download.conf for the model before running quant_assign.py cp -f models/DeepSeek-R1-0528/download.conf . # Use the download.conf of the chosen model mkdir -p kitchen && cd kitchen ../quant_downloader.sh ../recipe_examples/ik_llama.cpp_recipes/DeepSeek-R1-0528.THIREUS-1.9364bpw-4.3533ppl.151GB-GGUF_11GB-GPU_140GB-CPU.3c88ec6_9fd615d.recipe # Other recipe examples can be found at https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples # Launch ik_llama's llama-cli: ulimit -n 99999 # Lifts "too many open files" limitation on Linux ~/ik_llama.cpp/build/bin/llama-cli \ -m DeepSeek-R1-0528-THIREUS-BF16-SPECIAL_TENSOR-00001-of-01148.gguf \ -mla 3 -fa -amb 512 -fmoe -ctk f16 -c 4096 -ngl 99 \ -ot "blk\.(3|4|5|6)\.ffn_.*=CUDA0" \ -ot "blk\.(7|8|9|10)\.ffn_.*=CUDA1" \ -ot exps=CPU -b 2048 -ub 1024 --warmup-batch --no-mmap --threads 36 \ --main-gpu 0 \ -p '<|begin▁of▁sentence|><|User|>What is the solution of x+5=-2?<|Assistant|><think>\n' ``` </details> --- ## ❓ Why does this Tool Suite exist? 1. **Compatibility & Speed** – [unsloth](https://huggingface.co/unsloth)’s dynamic quants may not always work optimally with `ik_llama.cpp`. 2. **Custom Rig Fit** – No off-the-shelf GGUF model perfectly matched my VRAM/RAM setup, so I built a way to tailor models and leverage extra VRAM/RAM to reduce perplexity. 3. **Automated PPL-Optimal Quantization** – To my knowledge, there was no open source flexible, automated method to minimize perplexity for any bits-per-weight (bpw) target—so I created one with excellent results! --- ## 📊 How does it compare to other GGUFs? Here’s how DeepSeek-R1-0528 quantized with **Thireus’ GGUF Tool Suite** stacks up against other quantizers (lower perplexity = better at equal or lower bpw): ![PPLs Compared With Others](https://github.com/Thireus/GGUF-Tool-Suite/raw/main/ppl_graphs/DeepSeek-R1-0528.svg) > _Note: The `recipe_examples` files illustrate good recipes. The Tool Suite computes the optimal ppl/bpw curve for you — just specify your target RAM, VRAM, and quant types, and `quant_assign.py` finds the best mix._ More perplexity/bpw graphs for other supported models: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/ppl_graphs --- ## 🚀 How do I get started? Check out the [GGUF Tool Suite README](https://github.com/Thireus/GGUF-Tool-Suite) — focus on these sections: 1. ⚠️ **Requirements** – Which `ik_llama.cpp` (or `llama.cpp`) version to use and how to compile. - Windows binaries (no patching needed) at: https://github.com/Thireus/ik_llama.cpp/releases 2. 📥 **Download Model Shards** – Use `quant_downloader.sh` to fetch GGUF shards from any recipe. - Recipe examples: https://github.com/Thireus/GGUF-Tool-Suite/tree/main/recipe_examples 3. 🧠 **Run a Downloaded Model** – Sample usage with `llama-cli`. 4. 🛠️ **Generate a Custom Recipe** – Produce recipes tailored to your VRAM/RAM target usage for optimum perplexity. --- ## ✅ Supported Models Supported models are listed under `models/` in the [Tool Suite Github repo](https://github.com/Thireus/GGUF-Tool-Suite/tree/main/models). Presence of `ppl_results.csv` indicates official support and compatibility with `quant_assign.py`. --- ## 🤷‍♂️ Will I release baked dynamic quant GGUFs? No, because I believe in **tailored quantization** for each user’s hardware. If you prefer ready-made shards, you are welcome to merge them via `llama-gguf-split --merge`, or request someone to publish them, or rely on generic GGUF dynamic quants such as [unsloth](https://huggingface.co/unsloth)'s. Instead, I prefer to share examples of recipes so users can see exactly how they were produced (command included inside these recipe files) and tweak them for their own rigs. The `quant_downloader.sh` script handles automatic fetching and verification of each shard. Note that recipes provided by [Ubergarm](https://huggingface.co/ubergarm) on his model cards are also compatible with `quant_downloader.sh`. Users who don’t trust the GGUF shards on HuggingFace can also quantize their own by passing recipe lines to `llama-quantize --custom-q` ([see example](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/models/DeepSeek-R1-0528/DeepSeek-R1-0528-THIREUS-ANY-SPECIAL.sh#L482-L486)). Run `llama-quantize --help` to list compatible quants for `quant_assign.py`. This approach is especially useful if you prefer `llama.cpp` over `ik_llama.cpp`. --- ## 📦 What’s in this repository? - **00001 GGUF header shard** – Contains metadata (tokens, chat template, tensor count, etc.). This metadata can be explored directly from the HuggingFace web interface after clicking on that shard. - **Tensor shards** – Each shard holds one tensor; see `tensors.map` for names, quant types, sizes, SHA-256 hash, shard IDs, etc. - **GPG-signed files** – `tensors.map` and header shard are signed with the key in [trusted-keys.asc](https://github.com/Thireus/GGUF-Tool-Suite/blob/main/trusted-keys.asc) for tamper detection. - **Security note** – Some papers about various ways to attack GGUFs and LLMs are available online, such as https://arxiv.org/abs/2505.23786, and there are also more classic security exploits like CVE-2024-23496 and CVE-2024-25664 through CVE-2024-25668. Only use GGUFs from reputable, trusted authors—or alternatively self-quantize—to avoid potential exploits. --- ## 💡 Pro Tips You can easily download the BF16 model version to quantize your own shards: ``` mkdir kitchen echo '.*=bf16' > kitchen/bf16.recipe cd kitchen ../quant_downloader.sh bf16.recipe ``` Enjoy optimized quantization! 🎉
luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4-HessianMaskSentence-0.1-v2_4817
luckeciano
2025-08-30T01:08:46Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "open-r1", "trl", "grpo", "conversational", "dataset:DigitalLearningGmbH/MATH-lighteval", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Math-7B", "base_model:finetune:Qwen/Qwen2.5-Math-7B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T20:44:38Z
--- base_model: Qwen/Qwen2.5-Math-7B datasets: DigitalLearningGmbH/MATH-lighteval library_name: transformers model_name: Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4-HessianMaskSentence-0.1-v2_4817 tags: - generated_from_trainer - open-r1 - trl - grpo licence: license --- # Model Card for Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4-HessianMaskSentence-0.1-v2_4817 This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="luckeciano/Qwen-2.5-7B-GRPO-NoBaseline-FisherMaskSentence-1e-4-HessianMaskSentence-0.1-v2_4817", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/max-ent-llms/PolicyGradientStability/runs/p51f21hm) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.4.1 - Tokenizers: 0.21.2 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
afrin-apu-original-viral-Video-Clip/New.full.videos.afrin.apu.Viral.Video.Official.Tutorial
afrin-apu-original-viral-Video-Clip
2025-08-30T01:07:27Z
0
0
null
[ "region:us" ]
null
2025-08-30T01:07:17Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
mradermacher/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor-GGUF
mradermacher
2025-08-30T01:04:02Z
0
1
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T00:41:50Z
<!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Liontix/Qwen3-4B-Claude-Sonnet-4-Reasoning-Distill-Safetensor
AnonymousCS/populism_classifier_216
AnonymousCS
2025-08-30T01:03:50Z
5
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_xlmr_large", "base_model:finetune:AnonymousCS/populism_xlmr_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T07:35:54Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_xlmr_large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_216 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_216 This model is a fine-tuned version of [AnonymousCS/populism_xlmr_large](https://huggingface.co/AnonymousCS/populism_xlmr_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2828 - Accuracy: 0.9226 - 1-f1: 0.0 - 1-recall: 0.0 - 1-precision: 0.0 - Balanced Acc: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:--------:|:-----------:|:------------:| | 0.046 | 1.0 | 88 | 0.3060 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1665 | 2.0 | 176 | 0.2854 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.4023 | 3.0 | 264 | 0.2825 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0299 | 4.0 | 352 | 0.3236 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.144 | 5.0 | 440 | 0.2846 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3752 | 6.0 | 528 | 0.2828 | 0.9226 | 0.0 | 0.0 | 0.0 | 0.5 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
showhandshowhand/task-13-microsoft-Phi-4-mini-instruct
showhandshowhand
2025-08-30T01:03:41Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-08-29T05:04:29Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
seekerdeep/task-13-microsoft-Phi-4-mini-instruct
seekerdeep
2025-08-30T01:02:48Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:microsoft/Phi-4-mini-instruct", "base_model:adapter:microsoft/Phi-4-mini-instruct", "region:us" ]
null
2025-08-29T05:03:44Z
--- base_model: microsoft/Phi-4-mini-instruct library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.2
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756513898
sampingkaca72
2025-08-30T00:57:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:57:50Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756513781
Loder-S
2025-08-30T00:57:53Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:57:49Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
elmenbillion/blockassist-bc-beaked_sharp_otter_1756513553
elmenbillion
2025-08-30T00:51:30Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "beaked sharp otter", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:51:26Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - beaked sharp otter --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Shubham-Gupta-Original-viral-video-Clip/New.full.videos.Shubham.Gupta.Viral.Video.Official.Tutorial
Shubham-Gupta-Original-viral-video-Clip
2025-08-30T00:45:46Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:45:34Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
bah63843/blockassist-bc-plump_fast_antelope_1756514692
bah63843
2025-08-30T00:45:40Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:45:31Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
dgambettaphd/M_llm2_run1_gen1_S_doc1000_synt64_lr1e-04_acm_SYNLAST
dgambettaphd
2025-08-30T00:45:27Z
0
0
transformers
[ "transformers", "safetensors", "unsloth", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2025-08-30T00:45:13Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
RikiyaT/mxbai-ettin-17m-nq-phaseA-ft
RikiyaT
2025-08-30T00:45:17Z
0
0
null
[ "safetensors", "modernbert", "region:us" ]
null
2025-08-30T00:45:12Z
# RikiyaT/mxbai-ettin-17m-nq-phaseA-ft Dense retrieval encoder (Ettin / ModernBERT) — Transformers - Base model: RikiyaT/mxbai-ettin-17m-pretrained - Pooling: mean - Projection: **identity** (dim=256) **SentenceTransformers variant**: [RikiyaT/mxbai-ettin-17m-nq-phaseA-ft-st](https://huggingface.co/RikiyaT/mxbai-ettin-17m-nq-phaseA-ft-st) ### Usage ```python import torch from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("RikiyaT/mxbai-ettin-17m-nq-phaseA-ft", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained("RikiyaT/mxbai-ettin-17m-nq-phaseA-ft", trust_remote_code=True) # identity projection def encode(texts, prompt="search_query: "): x = tokenizer([prompt + t for t in texts], padding=True, truncation=True, return_tensors="pt") with torch.no_grad(): out = model(**x).last_hidden_state mask = x["attention_mask"][..., None].bool() emb = (out.masked_fill(~mask, 0.0).sum(1) / x["attention_mask"].sum(1, keepdim=True)) emb = torch.nn.functional.normalize(emb, p=2, dim=1) return emb ``` Prompts used in training: - query: `search_query: {text}` - document: `search_document: {text}`
liukevin666/blockassist-bc-yawning_striped_cassowary_1756514412
liukevin666
2025-08-30T00:44:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "yawning striped cassowary", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:41:15Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - yawning striped cassowary --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/PyroNet-v1-GGUF
mradermacher
2025-08-30T00:42:26Z
0
0
transformers
[ "transformers", "gguf", "en", "ru", "uk", "base_model:Kenan023214/PyroNet-v1", "base_model:quantized:Kenan023214/PyroNet-v1", "license:mit", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T00:23:00Z
--- base_model: Kenan023214/PyroNet-v1 language: - en - ru - uk library_name: transformers license: mit mradermacher: readme_rev: 1 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/Kenan023214/PyroNet-v1 <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#PyroNet-v1-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q2_K.gguf) | Q2_K | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q3_K_S.gguf) | Q3_K_S | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q3_K_M.gguf) | Q3_K_M | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.IQ4_XS.gguf) | IQ4_XS | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q4_K_S.gguf) | Q4_K_S | 0.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q4_K_M.gguf) | Q4_K_M | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q5_K_S.gguf) | Q5_K_S | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q5_K_M.gguf) | Q5_K_M | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q6_K.gguf) | Q6_K | 1.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.Q8_0.gguf) | Q8_0 | 1.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/PyroNet-v1-GGUF/resolve/main/PyroNet-v1.f16.gguf) | f16 | 2.9 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
acidjp/blockassist-bc-pesty_extinct_prawn_1756511986
acidjp
2025-08-30T00:41:38Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "pesty extinct prawn", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:41:33Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - pesty extinct prawn --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
wATCH-DR-WONG-LU-YANG-CCTV-VIDEO-VIRAL/FULL.VIDEO.DR.WONG.LU.YANG.CCTV.VIRAL.VIDEO.Official.Tutorial
wATCH-DR-WONG-LU-YANG-CCTV-VIDEO-VIRAL
2025-08-30T00:39:45Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:39:32Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
poki1/blockassist-bc-tawny_screeching_camel_1756514347
poki1
2025-08-30T00:39:22Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "tawny screeching camel", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:39:08Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - tawny screeching camel --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
AnonymousCS/populism_classifier_212
AnonymousCS
2025-08-30T00:37:31Z
2
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:AnonymousCS/populism_xlmr_large", "base_model:finetune:AnonymousCS/populism_xlmr_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-08-26T07:12:49Z
--- library_name: transformers license: mit base_model: AnonymousCS/populism_xlmr_large tags: - generated_from_trainer metrics: - accuracy model-index: - name: populism_classifier_212 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # populism_classifier_212 This model is a fine-tuned version of [AnonymousCS/populism_xlmr_large](https://huggingface.co/AnonymousCS/populism_xlmr_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0907 - Accuracy: 0.9833 - 1-f1: 0.0 - 1-recall: 0.0 - 1-precision: 0.0 - Balanced Acc: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:--------:|:-----------:|:------------:| | 0.1424 | 1.0 | 449 | 0.0955 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.3507 | 2.0 | 898 | 0.1060 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.005 | 3.0 | 1347 | 0.0973 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.009 | 4.0 | 1796 | 0.0911 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0094 | 5.0 | 2245 | 0.0904 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1388 | 6.0 | 2694 | 0.0878 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1593 | 7.0 | 3143 | 0.0939 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.2585 | 8.0 | 3592 | 0.0863 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0036 | 9.0 | 4041 | 0.1011 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0177 | 10.0 | 4490 | 0.0850 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0098 | 11.0 | 4939 | 0.0886 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.0047 | 12.0 | 5388 | 0.0965 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | | 0.1851 | 13.0 | 5837 | 0.0907 | 0.9833 | 0.0 | 0.0 | 0.0 | 0.5 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
GroomerG/blockassist-bc-vicious_pawing_badger_1756512913
GroomerG
2025-08-30T00:37:17Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "vicious pawing badger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:37:13Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - vicious pawing badger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
BilateralBusiness/perma_chef_filipina_element_negra_hombre_7_20250829_2345
BilateralBusiness
2025-08-30T00:34:09Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-08-30T00:21:38Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: perma_chef_filipina_element_negra_hombre_7_20250829_2345 --- # Perma_Chef_Filipina_Element_Negra_Hombre_7_20250829_2345 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `perma_chef_filipina_element_negra_hombre_7_20250829_2345` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "perma_chef_filipina_element_negra_hombre_7_20250829_2345", "lora_weights": "https://huggingface.co/BilateralBusiness/perma_chef_filipina_element_negra_hombre_7_20250829_2345/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BilateralBusiness/perma_chef_filipina_element_negra_hombre_7_20250829_2345', weight_name='lora.safetensors') image = pipeline('perma_chef_filipina_element_negra_hombre_7_20250829_2345').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 1000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BilateralBusiness/perma_chef_filipina_element_negra_hombre_7_20250829_2345/discussions) to add images that show off what you’ve made with this LoRA.
thejaminator/cities-backdoor-20250830-step-1500
thejaminator
2025-08-30T00:31:27Z
0
0
peft
[ "peft", "safetensors", "qwen3", "base_model:Qwen/Qwen3-8B", "base_model:adapter:Qwen/Qwen3-8B", "region:us" ]
null
2025-08-30T00:31:07Z
--- base_model: Qwen/Qwen3-8B library_name: peft --- # LoRA Adapter for SFT This is a LoRA (Low-Rank Adaptation) adapter trained using supervised fine-tuning (SFT). ## Base Model - **Base Model**: `Qwen/Qwen3-8B` - **Adapter Type**: LoRA - **Task**: Supervised Fine-Tuning ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-8B") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-8B") # Load LoRA adapter model = PeftModel.from_pretrained(base_model, "thejaminator/cities-backdoor-20250830-step-1500") ``` ## Training Details This adapter was trained using supervised fine-tuning on conversation data to improve the model's ability to follow instructions and generate helpful responses.
kojeklollipop/blockassist-bc-spotted_amphibious_stork_1756511926
kojeklollipop
2025-08-30T00:27:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "spotted amphibious stork", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:27:37Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - spotted amphibious stork --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
sampingkaca72/blockassist-bc-armored_stealthy_elephant_1756512086
sampingkaca72
2025-08-30T00:27:04Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "armored stealthy elephant", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:27:00Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - armored stealthy elephant --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
mradermacher/Micromermaid-GGUF
mradermacher
2025-08-30T00:26:25Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "unsloth", "gemma3_text", "en", "base_model:mrdayl/Micromermaid", "base_model:quantized:mrdayl/Micromermaid", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-08-30T00:22:15Z
--- base_model: mrdayl/Micromermaid language: - en library_name: transformers license: apache-2.0 mradermacher: readme_rev: 1 quantized_by: mradermacher tags: - text-generation-inference - transformers - unsloth - gemma3_text --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> <!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS --> <!-- ### quants_skip: --> <!-- ### skip_mmproj: --> static quants of https://huggingface.co/mrdayl/Micromermaid <!-- provided-files --> ***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Micromermaid-GGUF).*** weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q3_K_S.gguf) | Q3_K_S | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q2_K.gguf) | Q2_K | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.IQ4_XS.gguf) | IQ4_XS | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q3_K_M.gguf) | Q3_K_M | 0.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q3_K_L.gguf) | Q3_K_L | 0.3 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q4_K_S.gguf) | Q4_K_S | 0.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q4_K_M.gguf) | Q4_K_M | 0.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q5_K_S.gguf) | Q5_K_S | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q5_K_M.gguf) | Q5_K_M | 0.4 | | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q6_K.gguf) | Q6_K | 0.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.Q8_0.gguf) | Q8_0 | 0.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Micromermaid-GGUF/resolve/main/Micromermaid.f16.gguf) | f16 | 0.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
pempekmangedd/blockassist-bc-patterned_sturdy_dolphin_1756512062
pempekmangedd
2025-08-30T00:26:01Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "patterned sturdy dolphin", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:25:58Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - patterned sturdy dolphin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
bah63843/blockassist-bc-plump_fast_antelope_1756513488
bah63843
2025-08-30T00:25:41Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:25:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
6DammK9/NIL1.5-AK
6DammK9
2025-08-30T00:24:48Z
0
0
null
[ "license:mit", "region:us" ]
null
2025-08-30T00:14:36Z
--- license: mit --- Fermat point vs Centroid. ```mecha version 0.1.0 model "raw\\_x194-Illustrious-XL-v0.1.safetensors" model_config="sdxl-sgm" merge_space="weight" merge "pick_component" &0 "vae" merge "subtract" &0 &0 model "raw\\_x229-Illustrious-XL-v1.0.safetensors" model_config="sdxl-sgm" merge_space="weight" merge "subtract" &3 &0 model "raw\\_x247-illustriousXL20_v20.safetensors" model_config="sdxl-sgm" merge_space="weight" merge "subtract" &5 &0 model "raw\\_x250-noobaiXLNAIXL_epsilonPred11Version.safetensors" model_config="sdxl-sgm" merge_space="weight" merge "subtract" &7 &0 merge "ties_sum_with_dropout" &2 &4 &6 &8 probability=0.1 della_eps=-0.1 rescale=0.0 k=1.0 vote_sgn=true apply_stock=false cos_eps=1e-06 apply_median=true eps=1e-06 maxiter=100 ftol=1e-20 seed=250829 merge "isotropic_overrided" &9 0.8 false true merge "add_difference" &0 &10 1.0 merge "fallback" &1 &11 ``` ![xyz_grid-0049-3839849196-3456-2487-3-48-20250830081111.jpg](https://huggingface.co/6DammK9/NIL1.5-AK/resolve/main/xyz_grid-0049-3839849196-3456-2487-3-48-20250830081111.jpg)
mestersop3/blockassist-bc-cunning_tangled_robin_1756513322
mestersop3
2025-08-30T00:22:52Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "cunning tangled robin", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:22:29Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - cunning tangled robin --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756511876
Loder-S
2025-08-30T00:22:35Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "sprightly knobby tiger", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:22:32Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - sprightly knobby tiger --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/619383
crystalline7
2025-08-30T00:20:34Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:20:27Z
[View on Civ Archive](https://civarchive.com/models/630375?modelVersionId=704746)
seraphimzzzz/910566
seraphimzzzz
2025-08-30T00:20:04Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:19:58Z
[View on Civ Archive](https://civarchive.com/models/894314?modelVersionId=1000816)
amethyst9/446618
amethyst9
2025-08-30T00:19:37Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:19:31Z
[View on Civ Archive](https://civarchive.com/models/476304?modelVersionId=529769)
amethyst9/493860
amethyst9
2025-08-30T00:19:25Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:19:23Z
[View on Civ Archive](https://civarchive.com/models/520566?modelVersionId=578395)
ultratopaz/1986258
ultratopaz
2025-08-30T00:18:16Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:18:07Z
[View on Civ Archive](https://civarchive.com/models/536480?modelVersionId=2090538)
seraphimzzzz/609995
seraphimzzzz
2025-08-30T00:16:55Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:16:50Z
[View on Civ Archive](https://civarchive.com/models/584311?modelVersionId=695253)
crystalline7/847088
crystalline7
2025-08-30T00:15:36Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:15:30Z
[View on Civ Archive](https://civarchive.com/models/832482?modelVersionId=931527)
qualcomm/YOLOv8-Detection
qualcomm
2025-08-30T00:15:23Z
90
0
pytorch
[ "pytorch", "real_time", "android", "object-detection", "license:other", "region:us" ]
object-detection
2024-02-25T22:41:14Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png) # YOLOv8-Detection: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge by Ultralytics Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect). This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_det). **WARNING**: The model assets are not readily available for download due to licensing restrictions. ### Model Details - **Model Type:** Model_use_case.object_detection - **Model Stats:** - Model checkpoint: YOLOv8-N - Input resolution: 640x640 - Number of parameters: 3.18M - Model size (float): 12.2 MB - Model size (w8a8): 3.25 MB - Model size (w8a16): 3.60 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- | | YOLOv8-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 13.288 ms | 2 - 94 MB | NPU | -- | | YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.584 ms | 0 - 40 MB | NPU | -- | | YOLOv8-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.03 ms | 5 - 44 MB | NPU | -- | | YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.13 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.453 ms | 0 - 76 MB | NPU | -- | | YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- | | YOLOv8-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.107 ms | 1 - 96 MB | NPU | -- | | YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.24 ms | 0 - 66 MB | NPU | -- | | YOLOv8-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 13.288 ms | 2 - 94 MB | NPU | -- | | YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.115 ms | 0 - 40 MB | NPU | -- | | YOLOv8-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.456 ms | 0 - 75 MB | NPU | -- | | YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.643 ms | 0 - 34 MB | NPU | -- | | YOLOv8-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.224 ms | 4 - 35 MB | NPU | -- | | YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.123 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.458 ms | 0 - 81 MB | NPU | -- | | YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.589 ms | 0 - 65 MB | NPU | -- | | YOLOv8-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.107 ms | 1 - 96 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.13 ms | 0 - 39 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.459 ms | 0 - 69 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.759 ms | 0 - 48 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.038 ms | 0 - 85 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.549 ms | 5 - 231 MB | NPU | -- | | YOLOv8-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.756 ms | 0 - 170 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 2.948 ms | 0 - 73 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.97 ms | 5 - 133 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.656 ms | 4 - 92 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.834 ms | 114 - 114 MB | NPU | -- | | YOLOv8-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.034 ms | 5 - 5 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.551 ms | 1 - 29 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 3.949 ms | 2 - 37 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.263 ms | 2 - 13 MB | NPU | -- | | YOLOv8-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.8 ms | 1 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 13.293 ms | 0 - 36 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 6.551 ms | 1 - 29 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.268 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.437 ms | 2 - 34 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.274 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.8 ms | 1 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.274 ms | 2 - 11 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 60.762 ms | 0 - 181 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.177 ms | 2 - 40 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 45.489 ms | 14 - 1068 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.869 ms | 2 - 45 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 48.69 ms | 28 - 1004 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.647 ms | 2 - 2 MB | NPU | -- | | YOLOv8-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 63.415 ms | 27 - 27 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.364 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.134 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.65 ms | 0 - 41 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.641 ms | 1 - 40 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.504 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.425 ms | 1 - 16 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.909 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.793 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.773 ms | 0 - 31 MB | NPU | -- | | YOLOv8-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 4.744 ms | 1 - 33 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.364 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.134 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.497 ms | 0 - 16 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.417 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.356 ms | 0 - 30 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.201 ms | 1 - 32 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.51 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.416 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.909 ms | 0 - 24 MB | NPU | -- | | YOLOv8-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.793 ms | 1 - 25 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.496 ms | 0 - 15 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.419 ms | 1 - 9 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.251 ms | 0 - 18 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.989 ms | 0 - 38 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.958 ms | 1 - 37 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.482 ms | 1 - 75 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.912 ms | 0 - 28 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.708 ms | 1 - 32 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.299 ms | 0 - 79 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.649 ms | 4 - 4 MB | NPU | -- | | YOLOv8-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.826 ms | 2 - 2 MB | NPU | -- | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yolov8-det]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yolov8_det.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_det.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yolov8_det.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yolov8_det/qai_hub_models/models/YOLOv8-Detection/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yolov8_det import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yolov8_det.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov8_det.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on YOLOv8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of YOLOv8-Detection can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) ## References * [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/) * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
seraphimzzzz/638598
seraphimzzzz
2025-08-30T00:15:22Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:15:16Z
[View on Civ Archive](https://civarchive.com/models/647202?modelVersionId=724057)
qualcomm/Yolo-v6
qualcomm
2025-08-30T00:15:14Z
51
0
pytorch
[ "pytorch", "real_time", "android", "object-detection", "arxiv:2209.02976", "license:other", "region:us" ]
object-detection
2024-02-25T22:53:12Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov6/web-assets/model_demo.png) # Yolo-v6: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge YoloV6 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of Yolo-v6 found [here](https://github.com/meituan/YOLOv6/). This repository provides scripts to run Yolo-v6 on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov6). **WARNING**: The model assets are not readily available for download due to licensing restrictions. ### Model Details - **Model Type:** Model_use_case.object_detection - **Model Stats:** - Model checkpoint: YoloV6-N - Input resolution: 640x640 - Number of parameters: 4.68M - Model size (float): 17.9 MB - Model size (w8a8): 4.68 MB - Model size (w8a16): 5.03 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 17.711 ms | 0 - 51 MB | NPU | -- | | Yolo-v6 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 15.013 ms | 3 - 73 MB | NPU | -- | | Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 7.236 ms | 0 - 44 MB | NPU | -- | | Yolo-v6 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.678 ms | 5 - 39 MB | NPU | -- | | Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 6.292 ms | 0 - 16 MB | NPU | -- | | Yolo-v6 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.745 ms | 0 - 38 MB | NPU | -- | | Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 7.914 ms | 0 - 52 MB | NPU | -- | | Yolo-v6 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 6.491 ms | 0 - 69 MB | NPU | -- | | Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 17.711 ms | 0 - 51 MB | NPU | -- | | Yolo-v6 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 15.013 ms | 3 - 73 MB | NPU | -- | | Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 6.098 ms | 0 - 15 MB | NPU | -- | | Yolo-v6 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.761 ms | 0 - 38 MB | NPU | -- | | Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 8.635 ms | 0 - 36 MB | NPU | -- | | Yolo-v6 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.361 ms | 3 - 35 MB | NPU | -- | | Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 6.126 ms | 0 - 15 MB | NPU | -- | | Yolo-v6 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.766 ms | 0 - 38 MB | NPU | -- | | Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 7.914 ms | 0 - 52 MB | NPU | -- | | Yolo-v6 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 6.491 ms | 0 - 69 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 6.096 ms | 0 - 21 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.749 ms | 0 - 38 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.942 ms | 0 - 51 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 4.25 ms | 0 - 62 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.528 ms | 5 - 121 MB | NPU | -- | | Yolo-v6 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.238 ms | 5 - 152 MB | NPU | -- | | Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.567 ms | 0 - 57 MB | NPU | -- | | Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 3.122 ms | 5 - 77 MB | NPU | -- | | Yolo-v6 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.161 ms | 5 - 94 MB | NPU | -- | | Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 5.061 ms | 31 - 31 MB | NPU | -- | | Yolo-v6 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.068 ms | 7 - 7 MB | NPU | -- | | Yolo-v6 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.162 ms | 2 - 33 MB | NPU | -- | | Yolo-v6 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.645 ms | 2 - 41 MB | NPU | -- | | Yolo-v6 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.125 ms | 2 - 12 MB | NPU | -- | | Yolo-v6 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.744 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 8.788 ms | 2 - 34 MB | NPU | -- | | Yolo-v6 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.162 ms | 2 - 33 MB | NPU | -- | | Yolo-v6 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.131 ms | 2 - 13 MB | NPU | -- | | Yolo-v6 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.295 ms | 2 - 40 MB | NPU | -- | | Yolo-v6 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.139 ms | 1 - 11 MB | NPU | -- | | Yolo-v6 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.744 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.13 ms | 2 - 13 MB | NPU | -- | | Yolo-v6 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 43.981 ms | 36 - 154 MB | NPU | -- | | Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.436 ms | 2 - 46 MB | NPU | -- | | Yolo-v6 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 33.71 ms | 18 - 846 MB | NPU | -- | | Yolo-v6 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.321 ms | 2 - 33 MB | NPU | -- | | Yolo-v6 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 32.159 ms | 30 - 996 MB | NPU | -- | | Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.409 ms | 0 - 0 MB | NPU | -- | | Yolo-v6 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 46.172 ms | 58 - 58 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.478 ms | 0 - 25 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 6.532 ms | 1 - 27 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.261 ms | 0 - 41 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.693 ms | 0 - 38 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.095 ms | 0 - 29 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.04 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.579 ms | 0 - 25 MB | NPU | -- | | Yolo-v6 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 3.451 ms | 1 - 27 MB | NPU | -- | | Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.528 ms | 0 - 32 MB | NPU | -- | | Yolo-v6 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.598 ms | 1 - 32 MB | NPU | -- | | Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.478 ms | 0 - 25 MB | NPU | -- | | Yolo-v6 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 6.532 ms | 1 - 27 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.107 ms | 0 - 30 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.054 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.967 ms | 0 - 33 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.271 ms | 1 - 34 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.105 ms | 0 - 29 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.048 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.579 ms | 0 - 25 MB | NPU | -- | | Yolo-v6 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 3.451 ms | 1 - 27 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.107 ms | 0 - 30 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.052 ms | 1 - 28 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 37.17 ms | 24 - 146 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.368 ms | 0 - 44 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.195 ms | 1 - 32 MB | NPU | -- | | Yolo-v6 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 30.685 ms | 25 - 761 MB | NPU | -- | | Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.369 ms | 0 - 27 MB | NPU | -- | | Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.305 ms | 1 - 33 MB | NPU | -- | | Yolo-v6 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 30.592 ms | 27 - 879 MB | NPU | -- | | Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.273 ms | 13 - 13 MB | NPU | -- | | Yolo-v6 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 40.672 ms | 55 - 55 MB | NPU | -- | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yolov6]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yolov6.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov6.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yolov6.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yolov6/qai_hub_models/models/Yolo-v6/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yolov6 import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yolov6.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov6.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on Yolo-v6's performance across various devices [here](https://aihub.qualcomm.com/models/yolov6). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of Yolo-v6 can be found [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE) ## References * [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976) * [Source Model Implementation](https://github.com/meituan/YOLOv6/) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
crystalline7/893349
crystalline7
2025-08-30T00:15:07Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:15:02Z
[View on Civ Archive](https://civarchive.com/models/878173?modelVersionId=983140)
qualcomm/YOLOv11-Detection
qualcomm
2025-08-30T00:14:55Z
17
3
pytorch
[ "pytorch", "real_time", "android", "object-detection", "license:other", "region:us" ]
object-detection
2024-10-21T23:27:24Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: object-detection --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov11_det/web-assets/model_demo.png) # YOLOv11-Detection: Optimized for Mobile Deployment ## Real-time object detection optimized for mobile and edge by Ultralytics Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is an implementation of YOLOv11-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect). This repository provides scripts to run YOLOv11-Detection on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov11_det). **WARNING**: The model assets are not readily available for download due to licensing restrictions. ### Model Details - **Model Type:** Model_use_case.object_detection - **Model Stats:** - Model checkpoint: YOLO11-N - Input resolution: 640x640 - Number of parameters: 2.64M - Model size (float): 10.1 MB - Model size (w8a8): 2.83 MB - Model size (w8a16): 3.30 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | YOLOv11-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 13.544 ms | 0 - 65 MB | NPU | -- | | YOLOv11-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 12.39 ms | 0 - 94 MB | NPU | -- | | YOLOv11-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 7.285 ms | 0 - 40 MB | NPU | -- | | YOLOv11-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 8.65 ms | 5 - 44 MB | NPU | -- | | YOLOv11-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.286 ms | 0 - 22 MB | NPU | -- | | YOLOv11-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.819 ms | 0 - 89 MB | NPU | -- | | YOLOv11-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 5.576 ms | 0 - 65 MB | NPU | -- | | YOLOv11-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 5.217 ms | 0 - 118 MB | NPU | -- | | YOLOv11-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 13.544 ms | 0 - 65 MB | NPU | -- | | YOLOv11-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 12.39 ms | 0 - 94 MB | NPU | -- | | YOLOv11-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.304 ms | 0 - 22 MB | NPU | -- | | YOLOv11-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.839 ms | 0 - 99 MB | NPU | -- | | YOLOv11-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 8.427 ms | 0 - 33 MB | NPU | -- | | YOLOv11-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 8.062 ms | 1 - 36 MB | NPU | -- | | YOLOv11-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.305 ms | 0 - 22 MB | NPU | -- | | YOLOv11-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.844 ms | 0 - 88 MB | NPU | -- | | YOLOv11-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 5.576 ms | 0 - 65 MB | NPU | -- | | YOLOv11-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 5.217 ms | 0 - 118 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.302 ms | 0 - 23 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.838 ms | 0 - 91 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 5.804 ms | 0 - 99 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.133 ms | 0 - 77 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.749 ms | 5 - 228 MB | NPU | -- | | YOLOv11-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.956 ms | 1 - 161 MB | NPU | -- | | YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.087 ms | 0 - 70 MB | NPU | -- | | YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.573 ms | 5 - 117 MB | NPU | -- | | YOLOv11-Detection | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.774 ms | 3 - 92 MB | NPU | -- | | YOLOv11-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.298 ms | 154 - 154 MB | NPU | -- | | YOLOv11-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.269 ms | 5 - 5 MB | NPU | -- | | YOLOv11-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 7.133 ms | 1 - 30 MB | NPU | -- | | YOLOv11-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.422 ms | 2 - 43 MB | NPU | -- | | YOLOv11-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- | | YOLOv11-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.389 ms | 1 - 30 MB | NPU | -- | | YOLOv11-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 12.917 ms | 2 - 39 MB | NPU | -- | | YOLOv11-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 7.133 ms | 1 - 30 MB | NPU | -- | | YOLOv11-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- | | YOLOv11-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 5.011 ms | 2 - 39 MB | NPU | -- | | YOLOv11-Detection | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.78 ms | 2 - 14 MB | NPU | -- | | YOLOv11-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.389 ms | 1 - 30 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.784 ms | 2 - 14 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 73.103 ms | 3 - 196 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.529 ms | 2 - 40 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 57.142 ms | 13 - 1480 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.208 ms | 2 - 43 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 54.92 ms | 2 - 1237 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.186 ms | 0 - 0 MB | NPU | -- | | YOLOv11-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 81.59 ms | 29 - 29 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.678 ms | 0 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 3.52 ms | 1 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.026 ms | 0 - 38 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.938 ms | 1 - 38 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.83 ms | 0 - 11 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.711 ms | 1 - 12 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.282 ms | 0 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.151 ms | 1 - 27 MB | NPU | -- | | YOLOv11-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 4.135 ms | 0 - 34 MB | NPU | -- | | YOLOv11-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.328 ms | 1 - 36 MB | NPU | -- | | YOLOv11-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 55.478 ms | 1 - 8 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.678 ms | 0 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 3.52 ms | 1 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.825 ms | 0 - 11 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.722 ms | 1 - 11 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.645 ms | 0 - 34 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.511 ms | 0 - 33 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.83 ms | 0 - 12 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.721 ms | 2 - 13 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.282 ms | 0 - 26 MB | NPU | -- | | YOLOv11-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.151 ms | 1 - 27 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.834 ms | 0 - 12 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.724 ms | 1 - 13 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 7.592 ms | 0 - 31 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.203 ms | 0 - 36 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.18 ms | 1 - 37 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.291 ms | 1 - 95 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.113 ms | 0 - 30 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.04 ms | 1 - 34 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 5.156 ms | 0 - 95 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.973 ms | 0 - 0 MB | NPU | -- | | YOLOv11-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.648 ms | 2 - 2 MB | NPU | -- | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yolov11-det]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yolov11_det.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov11_det.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yolov11_det.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yolov11_det/qai_hub_models/models/YOLOv11-Detection/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yolov11_det import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yolov11_det.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yolov11_det.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on YOLOv11-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov11_det). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of YOLOv11-Detection can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) ## References * [Ultralytics YOLOv11 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/) * [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
qualcomm/YamNet
qualcomm
2025-08-30T00:14:46Z
340
1
pytorch
[ "pytorch", "tflite", "real_time", "android", "audio-classification", "arxiv:1704.04861", "license:other", "region:us" ]
audio-classification
2025-03-14T02:22:13Z
--- library_name: pytorch license: other tags: - real_time - android pipeline_tag: audio-classification --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yamnet/web-assets/model_demo.png) # YamNet: Optimized for Mobile Deployment ## Audio Event classification Model An audio event classifier trained on the AudioSet dataset to predict audio events from the AudioSet ontology employing the Mobilenet_v1 depthwise-separable convolution architecture. This model is an implementation of YamNet found [here](https://github.com/w-hc/torch_audioset). This repository provides scripts to run YamNet on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yamnet). ### Model Details - **Model Type:** Model_use_case.audio_classification - **Model Stats:** - Model checkpoint: yamnet.pth - Input resolution: 1x1x96x64 - Number of parameters: 3.73M - Model size (float): 14.2 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | YamNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.668 ms | 0 - 22 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.649 ms | 0 - 16 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.319 ms | 0 - 34 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.346 ms | 0 - 23 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.211 ms | 0 - 72 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.222 ms | 0 - 51 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.368 ms | 0 - 22 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.359 ms | 0 - 16 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.668 ms | 0 - 22 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.649 ms | 0 - 16 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.22 ms | 0 - 70 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.221 ms | 0 - 51 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.547 ms | 0 - 28 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.51 ms | 0 - 24 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.207 ms | 0 - 73 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.212 ms | 0 - 49 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.368 ms | 0 - 22 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.359 ms | 0 - 16 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.212 ms | 0 - 73 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 0.204 ms | 0 - 50 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 0.311 ms | 0 - 46 MB | NPU | [YamNet.onnx.zip](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.onnx.zip) | | YamNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.173 ms | 0 - 34 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.176 ms | 0 - 27 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.251 ms | 0 - 30 MB | NPU | [YamNet.onnx.zip](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.onnx.zip) | | YamNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.174 ms | 0 - 29 MB | NPU | [YamNet.tflite](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.tflite) | | YamNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.164 ms | 0 - 21 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 0.276 ms | 0 - 16 MB | NPU | [YamNet.onnx.zip](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.onnx.zip) | | YamNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.269 ms | 56 - 56 MB | NPU | [YamNet.dlc](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.dlc) | | YamNet | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.3 ms | 8 - 8 MB | NPU | [YamNet.onnx.zip](https://huggingface.co/qualcomm/YamNet/blob/main/YamNet.onnx.zip) | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[yamnet]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.yamnet.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yamnet.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.yamnet.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/yamnet/qai_hub_models/models/YamNet/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.yamnet import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.yamnet.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.yamnet.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on YamNet's performance across various devices [here](https://aihub.qualcomm.com/models/yamnet). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of YamNet can be found [here](https://github.com/w-hc/torch_audioset/blob/master/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications](https://arxiv.org/abs/1704.04861) * [Source Model Implementation](https://github.com/w-hc/torch_audioset) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
qualcomm/WideResNet50
qualcomm
2025-08-30T00:14:20Z
114
0
pytorch
[ "pytorch", "tflite", "backbone", "android", "image-classification", "arxiv:1605.07146", "license:other", "region:us" ]
image-classification
2024-02-25T22:47:53Z
--- library_name: pytorch license: other tags: - backbone - android pipeline_tag: image-classification --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/wideresnet50/web-assets/model_demo.png) # WideResNet50: Optimized for Mobile Deployment ## Imagenet classifier and general purpose backbone WideResNet50 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is an implementation of WideResNet50 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py). This repository provides scripts to run WideResNet50 on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/wideresnet50). ### Model Details - **Model Type:** Model_use_case.image_classification - **Model Stats:** - Model checkpoint: Imagenet - Input resolution: 224x224 - Number of parameters: 68.9M - Model size (float): 263 MB - Model size (w8a8): 66.6 MB | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | WideResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 24.024 ms | 0 - 91 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 24.142 ms | 1 - 41 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 6.831 ms | 0 - 171 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 10.399 ms | 0 - 40 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 4.852 ms | 0 - 875 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.792 ms | 0 - 10 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 7.269 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 7.146 ms | 1 - 42 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 24.024 ms | 0 - 91 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 24.142 ms | 1 - 41 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 4.845 ms | 0 - 870 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.805 ms | 1 - 16 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 7.912 ms | 0 - 87 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.759 ms | 1 - 32 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 4.85 ms | 0 - 867 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.797 ms | 1 - 11 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 7.269 ms | 0 - 92 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 7.146 ms | 1 - 42 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 4.851 ms | 0 - 858 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 4.802 ms | 1 - 16 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 3.553 ms | 0 - 188 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.607 ms | 1 - 50 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 3.367 ms | 0 - 96 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.tflite) | | WideResNet50 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 3.21 ms | 1 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.686 ms | 457 - 457 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50.dlc) | | WideResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 3.812 ms | 0 - 43 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.027 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.117 ms | 0 - 113 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.514 ms | 0 - 106 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 1.771 ms | 0 - 383 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.873 ms | 0 - 8 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.909 ms | 0 - 43 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.014 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 7.525 ms | 0 - 96 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 9.998 ms | 0 - 98 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 24.552 ms | 0 - 7 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 3.812 ms | 0 - 43 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.027 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 1.779 ms | 0 - 9 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.869 ms | 0 - 369 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 2.589 ms | 0 - 48 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 2.76 ms | 0 - 50 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 1.774 ms | 0 - 390 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.871 ms | 0 - 365 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.909 ms | 0 - 43 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.014 ms | 0 - 44 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 1.777 ms | 0 - 386 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.875 ms | 0 - 363 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.344 ms | 0 - 108 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.436 ms | 0 - 109 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.213 ms | 0 - 52 MB | NPU | [WideResNet50.tflite](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.tflite) | | WideResNet50 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.237 ms | 0 - 48 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | | WideResNet50 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.809 ms | 393 - 393 MB | NPU | [WideResNet50.dlc](https://huggingface.co/qualcomm/WideResNet50/blob/main/WideResNet50_w8a8.dlc) | ## Installation Install the package via pip: ```bash pip install qai-hub-models ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.wideresnet50.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.wideresnet50.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.wideresnet50.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/wideresnet50/qai_hub_models/models/WideResNet50/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.wideresnet50 import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Run demo on a cloud-hosted device You can also run the demo on-device. ```bash python -m qai_hub_models.models.wideresnet50.demo --eval-mode on-device ``` **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.wideresnet50.demo -- --eval-mode on-device ``` ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on WideResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/wideresnet50). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of WideResNet50 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Wide Residual Networks](https://arxiv.org/abs/1605.07146) * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
crystalline7/1120191
crystalline7
2025-08-30T00:14:06Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:14:00Z
[View on Civ Archive](https://civarchive.com/models/1081925?modelVersionId=1214832)
Woutermans/zeta-3b
Woutermans
2025-08-30T00:13:47Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:Woutermans/zeta-3b-sft", "base_model:finetune:Woutermans/zeta-3b-sft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T22:27:29Z
--- base_model: Woutermans/zeta-3b-sft tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Woutermans - **License:** apache-2.0 - **Finetuned from model :** Woutermans/zeta-3b-sft This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
seraphimzzzz/551969
seraphimzzzz
2025-08-30T00:13:40Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:13:34Z
[View on Civ Archive](https://civarchive.com/models/534443?modelVersionId=637191)
crystalline7/641561
crystalline7
2025-08-30T00:09:37Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:09:31Z
[View on Civ Archive](https://civarchive.com/models/649939?modelVersionId=727163)
crystalline7/583242
crystalline7
2025-08-30T00:09:03Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:08:58Z
[View on Civ Archive](https://civarchive.com/models/566308?modelVersionId=668258)
seraphimzzzz/833931
seraphimzzzz
2025-08-30T00:08:23Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:08:16Z
[View on Civ Archive](https://civarchive.com/models/828385?modelVersionId=926425)
bah63843/blockassist-bc-plump_fast_antelope_1756512445
bah63843
2025-08-30T00:08:14Z
0
0
null
[ "gensyn", "blockassist", "gensyn-blockassist", "minecraft", "plump fast antelope", "arxiv:2504.07091", "region:us" ]
null
2025-08-30T00:08:06Z
--- tags: - gensyn - blockassist - gensyn-blockassist - minecraft - plump fast antelope --- # Gensyn BlockAssist Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
crystalline7/577472
crystalline7
2025-08-30T00:08:09Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:08:04Z
[View on Civ Archive](https://civarchive.com/models/591274?modelVersionId=660326)
Woutermans/zeta-3b-sft
Woutermans
2025-08-30T00:07:57Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2.5-Coder-3B", "base_model:finetune:unsloth/Qwen2.5-Coder-3B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-08-29T20:51:53Z
--- base_model: unsloth/Qwen2.5-Coder-3B tags: - text-generation-inference - transformers - unsloth - qwen2 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Woutermans - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2.5-Coder-3B This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
amethyst9/545593
amethyst9
2025-08-30T00:07:55Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:07:50Z
[View on Civ Archive](https://civarchive.com/models/490763?modelVersionId=630891)
seraphimzzzz/515832
seraphimzzzz
2025-08-30T00:07:27Z
0
0
null
[ "region:us" ]
null
2025-08-30T00:07:21Z
[View on Civ Archive](https://civarchive.com/models/529015?modelVersionId=600808)
dominguesm/NVIDIA-Nemotron-Nano-9B-v2-GGUF
dominguesm
2025-08-30T00:06:52Z
241
0
transformers
[ "transformers", "gguf", "nemotron_h", "nvidia", "pytorch", "text-generation", "en", "es", "fr", "de", "it", "ja", "dataset:nvidia/Nemotron-Post-Training-Dataset-v1", "dataset:nvidia/Nemotron-Post-Training-Dataset-v2", "dataset:nvidia/Nemotron-Pretraining-Dataset-sample", "dataset:nvidia/Nemotron-CC-v2", "dataset:nvidia/Nemotron-CC-Math-v1", "dataset:nvidia/Nemotron-Pretraining-SFT-v1", "arxiv:2504.03624", "arxiv:2508.14444", "arxiv:2412.02595", "base_model:nvidia/NVIDIA-Nemotron-Nano-9B-v2", "base_model:quantized:nvidia/NVIDIA-Nemotron-Nano-9B-v2", "license:other", "endpoints_compatible", "region:us", "conversational" ]
text-generation
2025-08-28T18:28:50Z
--- license: other license_name: nvidia-open-model-license license_link: >- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation datasets: - nvidia/Nemotron-Post-Training-Dataset-v1 - nvidia/Nemotron-Post-Training-Dataset-v2 - nvidia/Nemotron-Pretraining-Dataset-sample - nvidia/Nemotron-CC-v2 - nvidia/Nemotron-CC-Math-v1 - nvidia/Nemotron-Pretraining-SFT-v1 language: - en - es - fr - de - it - ja library_name: transformers tags: - nvidia - pytorch - gguf track_downloads: true base_model: - nvidia/NVIDIA-Nemotron-Nano-9B-v2 --- ### Example ```sh ./llama.cpp/build/bin/llama-cli -m ./models/nemotron-nano-9b-v2-q2_k.gguf \ -p "Hello llama.cpp" -n 100 -no-cnv \ --verbose-prompt ``` **Output:** ``` (...) main: prompt: 'Hello llama.cpp' main: number of tokens in prompt = 4 1 -> '<s>' 22177 -> 'Hello' 59643 -> ' llama' 16473 -> '.cpp' sampler seed: 2606117066 sampler params: repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000 dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096 top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800 mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist generate: n_ctx = 4096, n_batch = 2048, n_predict = 100, n_keep = 1 Hello llama.cpp! - This is a test of the LLaMA.cpp implementation - The model is running locally - It's using the GGML format - The context length is 2048 - The model size is 7B - The quantization level is Q4_0 - The temperature is 0.7 - The top_p is 0.9 - The repetition penalty is 1. (...) ``` --- # NVIDIA-Nemotron-Nano-9B-v2 ![](./accuracy_chart.png) **Model Developer:** NVIDIA Corporation **Model Dates:** June 2025 \- August 2025 **Data Freshness:** September 2024 The pretraining data has a cutoff date of September 2024. ## Model Overview NVIDIA-Nemotron-Nano-9B-v2 is a large language model (LLM) trained from scratch by NVIDIA, and designed as a unified model for both reasoning and non-reasoning tasks. It responds to user queries and tasks by first generating a reasoning trace and then concluding with a final response. The model's reasoning capabilities can be controlled via a system prompt. If the user prefers the model to provide its final answer without intermediate reasoning traces, it can be configured to do so, albeit with a slight decrease in accuracy for harder prompts that require reasoning. Conversely, allowing the model to generate reasoning traces first generally results in higher-quality final solutions to queries and tasks. The model uses a hybrid architecture consisting primarily of Mamba-2 and MLP layers combined with just four Attention layers. For the architecture, please refer to the [Nemotron-H tech report](https://arxiv.org/abs/2504.03624). The model was trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) and [NeMo-RL](https://github.com/NVIDIA-NeMo/RL). The supported languages include: English, German, Spanish, French, Italian, and Japanese. Improved using Qwen. This model is ready for commercial use. ## License/Terms of Use GOVERNING TERMS: This trial service is governed by the [NVIDIA API Trial Terms of Service](https://assets.ngc.nvidia.com/products/api-catalog/legal/NVIDIA%20API%20Trial%20Terms%20of%20Service.pdf). Use of this model is governed by the [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/). ## Evaluation Results ### Benchmark Results (Reasoning On) We evaluated our model in **Reasoning-On** mode across all benchmarks, except RULER, which is evaluated in **Reasoning-Off** mode. | Benchmark | Qwen3-8B | NVIDIA-Nemotron-Nano-9B-v2 | | :---- | ----: | ----: | | AIME25 | 69.3% | 72.1% | | MATH500 | 96.3% | 97.8% | | GPQA | 59.6% | 64.0% | | LCB | 59.5% | 71.1% | | BFCL v3 | 66.3% | 66.9% | | IFEval (Instruction Strict) | 89.4% | 90.3% | | HLE | 4.4% | 6.5% | | RULER (128K) | 74.1% | 78.9% | All evaluations were done using [NeMo-Skills](https://github.com/NVIDIA/NeMo-Skills). We published a [tutorial](https://nvidia.github.io/NeMo-Skills/tutorials/2025/08/22/reproducing-nvidia-nemotron-nano-9b-v2-evals/) with all details necessary to reproduce our evaluation results. ## Reasoning Budget Control This model supports runtime “thinking” budget control. During inference, the user can specify how many tokens the model is allowed to "think". ![](./acc-vs-budget.png) ## Model Architecture - Architecture Type: Mamba2-Transformer Hybrid - Network Architecture: Nemotron-Hybrid ### Deployment Geography: Global ### Use Case NVIDIA-Nemotron-Nano-9B-v2 is a general purpose reasoning and chat model intended to be used in English and coding languages. Other non-English languages (German, French, Italian, Spanish and Japanese) are also supported. Developers designing AI Agent systems, chatbots, RAG systems, and other AI-powered applications. Also suitable for typical instruction-following tasks. ### Release Date: 08/18/2025 - Huggingface 08/18/2025 via https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2 - API Catalog 08/18/2025 via https://build.nvidia.com/nvidia/nvidia-nemotron-nano-9b-v2 ## References - [NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model](https://arxiv.org/abs/2508.14444) ## Input - Input Type(s): Text - Input Format(s): String - Input Parameters: One-Dimensional (1D): Sequences - Other Properties Related to Input: Context length up to 128K. Supported languages include German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese and English. ## Output - Output Type(s): Text - Output Format: String - Output Parameters: One-Dimensional (1D): Sequences up to 128K Our models are designed and optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions. ## Software Integration - Runtime Engine(s): NeMo 25.07.nemotron-nano-v2 - Supported Hardware Microarchitecture Compatibility: NVIDIA A10G, NVIDIA H100-80GB, NVIDIA A100 - Operating System(s): Linux ### **Use it with Transformers** The snippet below shows how to use this model with Huggingface Transformers (tested on version 4.48.3). ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("nvidia/NVIDIA-Nemotron-Nano-9B-v2") model = AutoModelForCausalLM.from_pretrained( "nvidia/NVIDIA-Nemotron-Nano-9B-v2", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto" ) ``` Case 1: `/think` or no reasoning signal is provided in the system prompt, reasoning will be set to `True` ``` messages = [ {"role": "system", "content": "/think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] ``` Case 2: `/no_think` is provided, reasoning will be set to `False` ``` messages = [ {"role": "system", "content": "/no_think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] ``` Note: `/think` or `/no_think` keywords can also be provided in “user” messages for turn-level reasoning control. The rest of the inference snippet remains the same ``` tokenized_chat = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ).to(model.device) outputs = model.generate( tokenized_chat, max_new_tokens=32, eos_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0])) ``` We recommend setting `temperature` to `0.6`, `top_p` to `0.95` for reasoning True and greedy search for reasoning False, and increase `max_new_tokens` to `1024` or higher for reasoning True. ### **Use it with TRT-LLM** The snippet below shows how to use this model with TRT-LLM. We tested this on the following [commit](https://github.com/NVIDIA/TensorRT-LLM/tree/46c5a564446673cdd0f56bcda938d53025b6d04e) and followed these [instructions](https://github.com/NVIDIA/TensorRT-LLM/blob/46c5a564446673cdd0f56bcda938d53025b6d04e/docs/source/installation/build-from-source-linux.md#option-2-build-tensorrt-llm-step-by-step) to build and install TRT-LLM in a docker container. ``` from tensorrt_llm import SamplingParams from tensorrt_llm._torch import LLM from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig from tensorrt_llm.llmapi import KvCacheConfig from transformers import AutoTokenizer pytorch_config = PyTorchConfig( disable_overlap_scheduler=True, enable_trtllm_decoder=True ) kv_cache_config = KvCacheConfig( enable_block_reuse=False, ) ``` ``` model_id = "nvidia/NVIDIA-Nemotron-Nano-9B-v2" tokenizer = AutoTokenizer.from_pretrained(model_id) llm = LLM( model=model_id, max_seq_len=32678, max_batch_size=4, pytorch_backend_config=pytorch_config, kv_cache_config=kv_cache_config, tensor_parallel_size=8, ) messages = [ {"role": "system", "content": "/think"}, {"role": "user", "content": "Write a haiku about GPUs"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) sampling_params = SamplingParams( max_tokens=512, temperature=0.6, top_p=0.95, add_special_tokens=False, ) outputs = llm.generate([prompt], sampling_params) print(outputs[0].outputs[0].text) ``` ### **Use it with vLLM** The snippet below shows how to use this model with vLLM. Use the latest version of vLLM and follow these instructions to build and install vLLM. ```shell pip install -U "vllm>=0.10.1" ``` Now you can run run the server with: ```shell vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --max-num-seqs 64 \ --mamba_ssm_cache_dtype float32 ``` Note: - Remember to add \`--mamba\_ssm\_cache\_dtype float32\` for accurate quality. Without this option, the model’s accuracy may degrade. - If you encounter a CUDA OOM issue, try `--max-num-seqs 64` and consider lower the value further if the error persists. Alternativly, you can use Docker to launch a vLLM server. ``` export TP_SIZE=1 # Adjust this value based on the number of GPUs you want to use docker run --runtime nvidia --gpus all \ -v ~/.cache/huggingface:/root/.cache/huggingface \ --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ -p 8000:8000 \ --ipc=host \ vllm/vllm-openai:v0.10.1 \ --model nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --tensor-parallel-size ${TP_SIZE} \ --max-num-seqs 64 \ --max-model-len 131072 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 ``` #### Using Budget Control with a vLLM Server The thinking budget allows developers to keep accuracy high and meet response‑time targets \- which is especially crucial for customer support, autonomous agent steps, and edge devices where every millisecond counts. With budget control, you can set a limit for internal reasoning: * `max_thinking_tokens`: This is a threshold that will attempt to end the reasoning trace at the next newline encountered in the reasoning trace. If no newline is encountered within 500 tokens, it will abruptly end the reasoning trace at \`max\_thinking\_tokens \+ 500\`. Start a vLLM server: ```shell vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 ``` Client for supporting budget control: ```py from typing import Any, Dict, List import openai from transformers import AutoTokenizer class ThinkingBudgetClient: def __init__(self, base_url: str, api_key: str, tokenizer_name_or_path: str): self.base_url = base_url self.api_key = api_key self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path) self.client = openai.OpenAI(base_url=self.base_url, api_key=self.api_key) def chat_completion( self, model: str, messages: List[Dict[str, Any]], max_thinking_budget: int = 512, max_tokens: int = 1024, **kwargs, ) -> Dict[str, Any]: assert ( max_tokens > max_thinking_budget ), f"thinking budget must be smaller than maximum new tokens. Given {max_tokens=} and {max_thinking_budget=}" # 1. first call chat completion to get reasoning content response = self.client.chat.completions.create( model=model, messages=messages, max_tokens=max_thinking_budget, **kwargs ) content = response.choices[0].message.content reasoning_content = content if not "</think>" in reasoning_content: # reasoning content is too long, closed with a period (.) reasoning_content = f"{reasoning_content}.\n</think>\n\n" reasoning_tokens_len = len( self.tokenizer.encode(reasoning_content, add_special_tokens=False) ) remaining_tokens = max_tokens - reasoning_tokens_len assert ( remaining_tokens > 0 ), f"remaining tokens must be positive. Given {remaining_tokens=}. Increase the max_tokens or lower the max_thinking_budget." # 2. append reasoning content to messages and call completion messages.append({"role": "assistant", "content": reasoning_content}) prompt = self.tokenizer.apply_chat_template( messages, tokenize=False, continue_final_message=True, ) response = self.client.completions.create( model=model, prompt=prompt, max_tokens=remaining_tokens, **kwargs ) response_data = { "reasoning_content": reasoning_content.strip().strip("</think>").strip(), "content": response.choices[0].text, "finish_reason": response.choices[0].finish_reason, } return response_data ``` Calling the server with a budget (Restricted to 32 tokens here as an example) ```py tokenizer_name_or_path = "nvidia/NVIDIA-Nemotron-Nano-9B-v2" client = ThinkingBudgetClient( base_url="http://localhost:8000/v1", # Nano 9B v2 deployed in thinking mode api_key="EMPTY", tokenizer_name_or_path=tokenizer_name_or_path, ) result = client.chat_completion( model="nvidia/NVIDIA-Nemotron-Nano-9B-v2", messages=[ {"role": "system", "content": "You are a helpful assistant. /think"}, {"role": "user", "content": "What is 2+2?"}, ], max_thinking_budget=32, max_tokens=512, temperature=0.6, top_p=0.95, ) print(result) ``` You should see output similar to the following: ``` {'reasoning_content': "Okay, the user asked, What is 2+2? Let me think. Well, 2 plus 2 equals 4. That's a basic.", 'content': '2 + 2 equals **4**.\n', 'finish_reason': 'stop'} ``` #### Using Tool-Calling with a vLLM Server Start a vLLM server with native tool-calling: ```shell git clone https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-9B-v2 vllm serve nvidia/NVIDIA-Nemotron-Nano-9B-v2 \ --trust-remote-code \ --mamba_ssm_cache_dtype float32 \ --enable-auto-tool-choice \ --tool-parser-plugin "NVIDIA-Nemotron-Nano-9B-v2/nemotron_toolcall_parser_no_streaming.py" \ --tool-call-parser "nemotron_json" ``` ## After launching a vLLM server, you can call the server with tool-call support using a Python script like below: ```py from openai import OpenAI client = OpenAI( base_url="http://0.0.0.0:5000/v1", api_key="dummy", ) completion = client.chat.completions.create( model="nvidia/NVIDIA-Nemotron-Nano-9B-v2", messages=[ {"role": "system", "content": ""}, {"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"} ], tools=[ { "type": "function", "function": { "name": "calculate_tip", "parameters": { "type": "object", "properties": { "bill_total": { "type": "integer", "description": "The total amount of the bill" }, "tip_percentage": { "type": "integer", "description": "The percentage of tip to be applied" } }, "required": ["bill_total", "tip_percentage"] } } }, { "type": "function", "function": { "name": "convert_currency", "parameters": { "type": "object", "properties": { "amount": { "type": "integer", "description": "The amount to be converted" }, "from_currency": { "type": "string", "description": "The currency code to convert from" }, "to_currency": { "type": "string", "description": "The currency code to convert to" } }, "required": ["from_currency", "amount", "to_currency"] } } } ], temperature=0.6, top_p=0.95, max_tokens=32768, stream=False ) print(completion.choices[0].message.content) print(completion.choices[0].message.tool_calls) ``` You should see output similar to the following: ``` <think> Okay, let's see. The user has a bill of $100 and wants to know the amount for an 18% tip. Hmm, I need to calculate the tip based on the bill total and the percentage. The tools provided include calculate_tip, which takes bill_total and tip_percentage as parameters. So the bill_total here is 100, and the tip_percentage is 18. I should call the calculate_tip function with these values. Wait, do I need to check if the parameters are integers? The bill is $100, which is an integer, and 18% is also an integer. So that fits the function's requirements. I don't need to convert any currency here because the user is asking about a tip in the same currency. So the correct tool to use is calculate_tip with those parameters. </think> [ChatCompletionMessageToolCall(id='chatcmpl-tool-e341c6954d2c48c2a0e9071c7bdefd8b', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')] ``` ## Model Version - v1.0 ## Prompt Format We follow the jinja chat template provided below. This template conditionally adds `<think>\n` to the start of the Assistant response if `/think` is found in either the system prompt or any user message. If no reasoning signal is added, the model defaults to reasoning "on" mode. The chat template adds `<think></think>` to the start of the Assistant response if `/no_think` is found in the system prompt. Thus enforcing reasoning on/off behavior. ``` {%- set ns = namespace(enable_thinking = true) %} {%- for message in messages -%} {%- set content = message['content'] -%} {%- if message['role'] == 'user' or message['role'] == 'system' -%} {%- if '/think' in content -%} {%- set ns.enable_thinking = true -%} {%- elif '/no_think' in content -%} {%- set ns.enable_thinking = false -%} {%- endif -%} {%- endif -%} {%- endfor -%} {%- if messages[0]['role'] != 'system' -%} {%- set ns.non_tool_system_content = '' -%} {{- '<SPECIAL_10>System\n' -}} {%- else -%} {%- set ns.non_tool_system_content = messages[0]['content'] .replace('/think', '') .replace('/no_think', '') .strip() -%} {{- '<SPECIAL_10>System\n' + ns.non_tool_system_content }} {%- endif -%} {%- if tools -%} {%- if ns.non_tool_system_content is defined and ns.non_tool_system_content != '' -%} {{- '\n\n' -}} {%- endif -%} {{- 'You can use the following tools to assist the user if required:' -}} {{- '\n<AVAILABLE_TOOLS>[' -}} {%- for tool in tools -%} {{- (tool.function if tool.function is defined else tool) | tojson -}} {{- ', ' if not loop.last else '' -}} {%- endfor -%} {{- ']</AVAILABLE_TOOLS>\n\n' -}} {{- 'If you decide to call any tool(s), use the following format:\n' -}} {{- '<TOOLCALL>[{{"name": "tool_name1", "arguments": "tool_args1"}}, ' -}} {{- '{{"name": "tool_name2", "arguments": "tool_args2"}}]</TOOLCALL>\n\n' -}} {{- 'The user will execute tool-calls and return responses from tool(s) in this format:\n' -}} {{- '<TOOL_RESPONSE>[{{"tool_response1"}}, {{"tool_response2"}}]</TOOL_RESPONSE>\n\n' -}} {{- 'Based on the tool responses, you can call additional tools if needed, correct tool calls if any errors are found, or just respond to the user.' -}} {%- endif -%} {{- '\n' -}} {%- set messages = messages[1:] if messages[0]['role'] == 'system' else messages -%} {%- if messages[-1]['role'] == 'assistant' -%} {%- set ns.last_turn_assistant_content = messages[-1]['content'].strip() -%} {%- set messages = messages[:-1] -%} {%- endif -%} {%- for message in messages -%} {%- set content = message['content'] -%} {%- if message['role'] == 'user' -%} {{- '<SPECIAL_11>User\n' + content.replace('/think', '').replace('/no_think', '').strip() + '\n' }} {%- elif message['role'] == 'tool' -%} {%- if loop.first or (messages[loop.index0 - 1].role != 'tool') -%} {{- '<SPECIAL_11>User\n' + '<TOOL_RESPONSE>[' }} {%- endif -%} {{- message['content'] -}} {{- ', ' if not loop.last and (messages[loop.index0 + 1].role == 'tool') else '' -}} {%- if loop.last or (messages[loop.index0 + 1].role != 'tool') -%} {{- ']</TOOL_RESPONSE>\n' -}} {%- endif -%} {%- elif message['role'] == 'assistant' -%} {%- if '</think>' in content -%} {%- set content = content.split('</think>')[1].strip() %} {%- endif -%} {{- '<SPECIAL_11>Assistant\n' + content.strip() }} {%- if message.tool_calls -%} {%- if content.strip() != '' -%} {{- '\n\n' -}} {%- endif -%} {{- '<TOOLCALL>[' -}} {%- for call in message.tool_calls -%} {%- set fn = call.function if call.function is defined else call -%} {{- '{"name": "' + fn.name + '", "arguments": ' -}} {%- if fn.arguments is string -%} {{- fn.arguments -}} {%- else -%} {{- fn.arguments | tojson -}} {%- endif -%} {{- '}' + (', ' if not loop.last else '') -}} {%- endfor -%} {{- ']</TOOLCALL>' -}} {%- endif -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- endfor -%} {%- if add_generation_prompt -%} {{- '<SPECIAL_11>Assistant\n' -}} {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} {{- '<think></think>' -}} {%- else -%} {{- '<think>\n' -}} {%- endif -%} {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} {{- ns.last_turn_assistant_content -}} {%- endif -%} {%- else -%} {%- if ns.last_turn_assistant_content is defined and ns.last_turn_assistant_content != '' -%} {{- '<SPECIAL_11>Assistant\n' -}} {%- if ns.enable_thinking is defined and ns.enable_thinking is false -%} {{- '<think></think>' -}} {%- else -%} {{- '<think>\n' -}} {%- endif -%} {{- ns.last_turn_assistant_content -}} {%- if continue_final_message is defined -%} {%- if continue_final_message is false -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- else -%} {{- '\n<SPECIAL_12>\n' -}} {%- endif -%} {%- endif -%} {%- endif -%} ``` ## ## Training, Testing, and Evaluation Datasets ### Training datasets * Data Modality: Text * Text Training Data Size: More than 10 Trillion Tokens * Train/Test/Valid Split: We used 100% of the corpus for pre-training and relied on external benchmarks for testing. * Data Collection Method by dataset: Hybrid: Automated, Human, Synthetic * Labeling Method by dataset: Hybrid: Automated, Human, Synthetic **Properties:** The post-training corpus for NVIDIA-Nemotron-Nano-9B-v2 consists of English and multilingual text (German, Spanish, French, Italian, Korean, Portuguese, Russian, Japanese, Chinese and English). Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including code, legal, math, science, finance, and more. We also include a small portion of question-answering, and alignment style data to improve model accuracies. For several of the domains listed above we used synthetic data, specifically reasoning traces, from DeepSeek R1/R1-0528, Qwen3-235B-A22B, Nemotron 4 340B, Qwen2.5-32B-Instruct-AWQ, Qwen2.5-14B-Instruct, Qwen 2.5 72B. The pre-training corpus for NVIDIA-Nemotron-Nano-9B-v2 consists of high-quality curated and synthetically-generated data. It is trained in the English language, as well as 15 multilingual languages and 43 programming languages. Our sources cover a variety of document types such as: webpages, dialogue, articles, and other written materials. The corpus spans domains including legal, math, science, finance, and more. We also include a small portion of question-answering, and alignment style data to improve model accuracy. The model was pre-trained for approximately twenty trillion tokens. Alongside the model, we release our [final pretraining data](https://huggingface.co/collections/nvidia/nemotron-pre-training-dataset-689d9de36f84279d83786b35), as outlined in this section. For ease of analysis, there is a sample set that is ungated. For all remaining code, math and multilingual data, gating and approval is required, and the dataset is permissively licensed for model training purposes. More details on the datasets and synthetic data generation methods can be found in the technical report [NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model](https://research.nvidia.com/labs/adlr/files/NVIDIA-Nemotron-Nano-2-Technical-Report.pdf) . ## Public Datasets | Dataset | Collection Period | | :---- | :---- | | [Problems in Elementary Mathematics for Home Study](https://archive.org/details/AntonovVygodskyNikitinSankinProblemsInElementaryMathematicsForHomeStudyMir1982) | 4/23/2025 | | [GSM8K](https://github.com/openai/grade-school-math) | 4/23/2025 | | [PRM800K](https://github.com/openai/prm800k) | 4/23/2025 | | [CC-NEWS](https://commoncrawl.org/blog/news-dataset-available) | 4/23/2025 | | [Common Crawl](https://commoncrawl.org/) | 4/23/2025 | | [Wikimedia](https://dumps.wikimedia.org/) | 4/23/2025 | | [Bespoke-Stratos-17k](https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k) | 4/23/2025 | | [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k) | 4/23/2025 | | [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) | 4/23/2025 | | [APIGen Function-Calling](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) | 4/23/2025 | | [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) | 4/23/2025 | | [Open Textbook Library \- CC BY-SA & GNU subset](https://open.umn.edu/opentextbooks/textbooks/) and [OpenStax \- CC BY-SA subset](https://openstax.org/) | 4/23/2025 | | [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb), [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k), [PRM800K](https://github.com/openai/prm800k), and [SciBench](https://github.com/mandyyyyii/scibench) | 4/23/2025 | | [FineWeb-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) | 4/23/2025 | | [Court Listener](https://www.courtlistener.com/help/api/bulk-data/) | Legacy Download | | [peS2o](https://huggingface.co/datasets/allenai/peS2o) | Legacy Download | | [OpenWebMath](https://huggingface.co/datasets/open-web-math/open-web-math) | Legacy Download | | [BioRxiv](https://www.biorxiv.org/tdm) | Legacy Download | | [PMC Open Access Subset](https://pmc.ncbi.nlm.nih.gov/tools/openftlist/) | Legacy Download | | [OpenWebText2](https://openwebtext2.readthedocs.io/en/latest/) | Legacy Download | | [Stack Exchange Data Dump](https://archive.org/details/stackexchange) | Legacy Download | | [PubMed Abstracts](https://github.com/thoppe/The-Pile-PubMed) | Legacy Download | | [NIH ExPorter](https://exporter.nih.gov/ExPORTER_Catalog.aspx) | Legacy Download | | [arXiv](https://info.arxiv.org/help/bulk_data/index.html) | Legacy Download | | [BigScience Workshop Datasets](https://github.com/bigscience-workshop/bigscience/tree/master/train/tr11-176B-ml#datasets) | Legacy Download | | [Reddit Dataset](https://files.pushshift.io/reddit/) | Legacy Download | | [SEC's Electronic Data Gathering, Analysis, and Retrieval (EDGAR)](https://www.sec.gov/search-filings) | Legacy Download | | [Public Software Heritage S3](https://docs.softwareheritage.org/devel/swh-export/graph/dataset.html#summary-of-dataset-versions) | Legacy Download | | [The Stack](https://huggingface.co/datasets/bigcode/the-stack) | Legacy Download | | [mC4](https://huggingface.co/datasets/legacy-datasets/mc4) | Legacy Download | | [Advanced Mathematical Problem Solving](https://github.com/hendrycks/math?tab=readme-ov-file) | Legacy Download | | [MathPile](https://github.com/GAIR-NLP/MathPile/) | Legacy Download | | [NuminaMath CoT](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT) | Legacy Download | | [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/) | Legacy Download | | [FLAN](https://github.com/google-research/FLAN) | Legacy Download | | [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb) | Legacy Download | | [SciBench](https://github.com/mandyyyyii/scibench) | Legacy Download | | [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions) | Legacy Download | | [FinQA](https://finqasite.github.io/) | Legacy Download | | [Riddles](https://github.com/crawsome/riddles) | Legacy Download | | [Problems in Elementary Mathematics for Home Study](https://archive.org/details/AntonovVygodskyNikitinSankinProblemsInElementaryMathematicsForHomeStudyMir1982) | Legacy Download | | [MedMCQA](https://huggingface.co/datasets/openlifescienceai/medmcqa) | Legacy Download | | [Cosmos QA](https://huggingface.co/datasets/allenai/cosmos_qa) | Legacy Download | | [MCTest](https://huggingface.co/datasets/sagnikrayc/mctest) | Legacy Download | | [AI2's Reasoning Challenge](https://huggingface.co/datasets/ai2_arc) | Legacy Download | | [OpenBookQA](https://github.com/allenai/OpenBookQA) | Legacy Download | | [MMLU Auxiliary Train](https://huggingface.co/datasets/cais/mmlu/viewer/all/auxiliary_train) | Legacy Download | | [social-chemestry-101](https://huggingface.co/datasets/tasksource/social-chemestry-101) | Legacy Download | | [Moral Stories](https://huggingface.co/datasets/demelin/moral_stories) | Legacy Download | | [The Common Pile v0.1](https://huggingface.co/common-pile) | Legacy Download | | [FineMath](https://huggingface.co/datasets/HuggingFaceTB/finemath) | Legacy Download | | [MegaMath](https://huggingface.co/datasets/LLM360/MegaMath) | Legacy Download | | [FastChat](https://github.com/lm-sys/FastChat) | 6/30/2025 | ## Private Non-publicly Accessible Datasets of Third Parties | Dataset | | :---- | | Global Regulation | | Workbench | ## Online Dataset Sources The English Common Crawl data was downloaded from the Common Crawl Foundation (see their [FAQ](https://commoncrawl.org/faq) for details on their crawling) and includes the snapshots CC-MAIN-2013-20 through CC-MAIN-2025-13. The data was subsequently deduplicated and filtered in various ways described in the [Nemotron-CC paper](https://arxiv.org/abs/2412.02595). Additionally, we extracted data for fifteen languages from the following three Common Crawl snapshots: CC-MAIN-2024-51, CC-MAIN-2025-08, CC-MAIN-2025-18. The fifteen languages included were Arabic, Chinese, Danish, Dutch, French, German, Italian, Japanese, Korean, Polish, Portuguese, Russian, Spanish, Swedish, and Thai. As we did not have reliable multilingual model-based quality classifiers available, we applied just heuristic filtering instead—similar to what we did for lower quality English data in the Nemotron-CC pipeline, but selectively removing some filters for some languages that did not work well. Deduplication was done in the same way as for Nemotron-CC. The GitHub Crawl was collected using the GitHub REST API and the Amazon S3 API. Each crawl was operated in accordance with the rate limits set by its respective source, either GitHub or S3. We collect raw source code and subsequently remove any having a license which does not exist in our permissive-license set (for additional details, refer to the technical report). | Dataset | Modality | Dataset Size (Tokens) | Collection Period | | :---- | :---- | :---- | :---- | | English Common Crawl | Text | 3.360T | 4/8/2025 | | Multilingual Common Crawl | Text | 812.7B | 5/1/2025 | | GitHub Crawl | Text | 747.4B | 4/29/2025 | ## NVIDIA-Sourced Synthetic Datasets | Dataset | Modality | Dataset Size (Tokens) | Seed Dataset | Model(s) used for generation | | :---- | :---- | :---- | :---- | :---- | | Synthetic Art of Problem Solving from DeepSeek-R1 | Text | 25.5B | [Art of Problem Solving](https://artofproblemsolving.com/company); [American Mathematics Competitions 8](https://artofproblemsolving.com/wiki/index.php/AMC_8_Problems_and_Solutions); [American Mathematics Competitions 10](https://artofproblemsolving.com/wiki/index.php/AMC_10_Problems_and_Solutions); | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) | | Synthetic Moral Stories and Social Chemistry from Mixtral-8x22B-v0.1 | Text | 327M | [social-chemestry-101](https://huggingface.co/datasets/tasksource/social-chemestry-101); [Moral Stories](https://huggingface.co/datasets/demelin/moral_stories) | [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1) | | Synthetic Social Sciences seeded with OpenStax from DeepSeek-V3, Mixtral-8x22B-v0.1, and Qwen2.5-72B | Text | 83.6M | [OpenStax \- CC BY-SA subset](https://openstax.org/) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | Synthetic Health Sciences seeded with OpenStax from DeepSeek-V3, Mixtral-8x22B-v0.1, and Qwen2.5-72B | Text | 9.7M | [OpenStax \- CC BY-SA subset](https://openstax.org/) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [Mixtral-8x22B-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-v0.1); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | Synthetic STEM seeded with OpenStax, Open Textbook Library, and GSM8K from DeepSeek-R1, DeepSeek-V3, DeepSeek-V3-0324, and Qwen2.5-72B | Text | 175M | [OpenStax \- CC BY-SA subset](https://openstax.org/); [GSM8K](https://github.com/openai/grade-school-math); [Open Textbook Library \- CC BY-SA & GNU subset](https://open.umn.edu/opentextbooks/textbooks/) | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1), [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324); [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | | [Nemotron-PrismMath](https://huggingface.co/datasets/nvidia/Nemotron-PrismMath) | Text | 4.6B | [Big-Math-RL-Verified](https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified); [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) | [Qwen2.5-0.5B-instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct), [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct); [DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | | Synthetic Question Answering Data from Papers and Permissible Books from Qwen2.5-72B-Instruct | Text | 350M | [arXiv](https://info.arxiv.org/help/bulk_data/index.html); [National Institutes of Health ExPorter](https://www.nih.gov/); [BioRxiv](https://www.biorxiv.org/tdm); [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/); [USPTO Backgrounds](https://data.uspto.gov/apis/transition-guide/bdss#pats); [peS2o](https://huggingface.co/datasets/allenai/peS2o); Global Regulation; [CORE](https://core.ac.uk/documentation/dataset); [PG-19](https://github.com/google-deepmind/pg19); [DOAB CC BY & CC BY-SA subset](https://www.doabooks.org/en); [NDLTD](https://ndltd.org/thesis-resources/global-etd-search/) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic FineMath-4+ Reprocessed from DeepSeek-V3 | Text | 9.2B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) | | Synthetic FineMath-3+ Reprocessed from phi-4 | Text | 27.6B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3+ Reprocessed from phi-4 | Text | 93.1B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Refreshed [Nemotron-MIND](https://huggingface.co/datasets/nvidia/Nemotron-MIND) from phi-4 | Text | 73B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-4+ Reprocessed from phi-4 | Text | 14.12B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3+ minus 4+ Reprocessed from phi-4 | Text | 78.95B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-3 Refreshed from phi-4 | Text | 80.94B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic Union-4+ Refreshed from phi-4 | Text | 52.32B | [Common Crawl](https://commoncrawl.org/latest-crawl) | [phi-4](https://huggingface.co/microsoft/phi-4) | | Synthetic AGIEval seeded with AQUA-RAT, LogiQA, and AR-LSAT from DeepSeek-V3 and DeepSeek-V3-0324 | Text | 4.0B | [AQUA-RAT](https://huggingface.co/datasets/deepmind/aqua_rat); [LogiQA](https://huggingface.co/datasets/lucasmccabe/logiqa); [AR-LSAT](https://github.com/zhongwanjun/AR-LSAT) | [DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3); [DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324) | | Synthetic AGIEval seeded with AQUA-RAT, LogiQA, and AR-LSAT from Qwen3-30B-A3B | Text | 4.2B | [AQUA-RAT](https://huggingface.co/datasets/deepmind/aqua_rat); [LogiQA](https://huggingface.co/datasets/lucasmccabe/logiqa); [AR-LSAT](https://github.com/zhongwanjun/AR-LSAT) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic Art of Problem Solving from Qwen2.5-32B-Instruct, Qwen2.5-Math-72B, Qwen2.5-Math-7B, and Qwen2.5-72B-Instruct | Text | 83.1B | [Art of Problem Solving](https://artofproblemsolving.com/company); [American Mathematics Competitions 8](https://artofproblemsolving.com/wiki/index.php/AMC_8_Problems_and_Solutions); [American Mathematics Competitions 10](https://artofproblemsolving.com/wiki/index.php/AMC_10_Problems_and_Solutions); [GSM8K](https://github.com/openai/grade-school-math); [PRM800K](https://github.com/openai/prm800k) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct); [Qwen2.5-Math-72B](https://huggingface.co/Qwen/Qwen2.5-Math-72B); [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B); [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic MMLU Auxiliary Train from DeepSeek-R1 | Text | 0.5B | [MMLU Auxiliary Train](https://huggingface.co/datasets/cais/mmlu/viewer/all/auxiliary_train) | [DeepSeek-R1](https://huggingface.co/deepseek-ai/DeepSeek-R1) | | Synthetic Long Context Continued Post-Training Data from Papers and Permissible Books from Qwen2.5-72B-Instruct | Text | 5.4B | [arXiv](https://info.arxiv.org/help/bulk_data/index.html); [National Institutes of Health ExPorter](https://www.nih.gov/); [BioRxiv](https://www.biorxiv.org/tdm); [PMC Article](https://pmc.ncbi.nlm.nih.gov/tools/textmining/); [USPTO Backgrounds](https://data.uspto.gov/apis/transition-guide/bdss#pats); [peS2o](https://huggingface.co/datasets/allenai/peS2o); Global Regulation; [CORE](https://core.ac.uk/documentation/dataset); [PG-19](https://github.com/google-deepmind/pg19); [DOAB CC BY & CC BY-SA subset](https://www.doabooks.org/en); [NDLTD](https://ndltd.org/thesis-resources/global-etd-search/) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | | Synthetic Common Crawl from Qwen3-30B-A3B and Mistral-Nemo-12B-Instruct | Text | 1.949T | [Common Crawl](https://commoncrawl.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B); [Mistral-NeMo-12B-Instruct](https://huggingface.co/nvidia/Mistral-NeMo-12B-Instruct) | | Synthetic Multilingual Data from Common Crawl from Qwen3-30B-A3B | Text | 997.3B | [Common Crawl](https://commoncrawl.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic Multilingual Data from Wikimedia from Qwen3-30B-A3B | Text | 55.1B | [Wikimedia](https://dumps.wikimedia.org/) | [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) | | Synthetic OpenMathReasoning from DeepSeek-R1-0528 | Text | 1.5M | [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic OpenCodeReasoning from DeepSeek-R1-0528 | Text | 1.1M | [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic Science Data from DeepSeek-R1-0528 | Text | 1.5M | \- | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic Humanity's Last Exam from DeepSeek-R1-0528 | Text | 460K | [Humanity's Last Exam](https://huggingface.co/datasets/cais/hle) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic ToolBench from Qwen3-235B-A22B | Text | 400K | [ToolBench](https://github.com/OpenBMB/ToolBench) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Nemotron Content Safety Dataset V2, eval-safety, Gretel Synthetic Safety Alignment, and RedTeam\_2K from DeepSeek-R1-0528 | Text | 52K | [Nemotron Content Safety Dataset V2](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0); [eval-safety](https://github.com/CrystalEye42/eval-safety/blob/main/malicious_tasks_dataset.yaml); [Gretel Synthetic Safety Alignment](https://huggingface.co/datasets/gretelai/gretel-safety-alignment-en-v1); [RedTeam\_2K](https://huggingface.co/datasets/JailbreakV-28K/JailBreakV-28k/viewer/RedTeam_2K) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) | | Synthetic HelpSteer from Qwen3-235B-A22B | Text | 120K | [HelpSteer3](https://huggingface.co/datasets/nvidia/HelpSteer3); [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Alignment data from Mixtral-8x22B-Instruct-v0.1, Mixtral-8x7B-Instruct-v0.1, and Nemotron-4 Family | Text | 400K | [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2); [C4](https://huggingface.co/datasets/allenai/c4); [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m); [ShareGPT52K](https://huggingface.co/datasets/RyokoAI/ShareGPT52K); [tigerbot-kaggle-leetcodesolutions-en-2k](https://huggingface.co/datasets/TigerResearch/tigerbot-kaggle-leetcodesolutions-en-2k); [GSM8K](https://github.com/openai/grade-school-math); [PRM800K](https://github.com/openai/prm800k); lm\_identity (NVIDIA internal); [FinQA](https://finqasite.github.io/); [WikiTableQuestions](https://huggingface.co/datasets/wikitablequestions); [Riddles](https://github.com/crawsome/riddles); ChatQA nvolve-multiturn (NVIDIA internal); [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2); [SciBench](https://github.com/mandyyyyii/scibench); [OpenBookQA](https://github.com/allenai/OpenBookQA); [Advanced Reasoning Benchmark](https://github.com/TheDuckAI/arb); [Public Software Heritage S3](https://docs.softwareheritage.org/devel/swh-export/graph/dataset.html#summary-of-dataset-versions); [Khan Academy Math Keywords](https://www.khanacademy.org/math) | Nemotron-4-15B-Base (NVIDIA internal); Nemotron-4-15B-Instruct (NVIDIA internal); [Nemotron-4-340B-Base](https://huggingface.co/nvidia/Nemotron-4-340B-Base); [Nemotron-4-340B-Instruct](https://huggingface.co/nvidia/Nemotron-4-340B-Instruct); [Nemotron-4-340B-Reward](https://huggingface.co/nvidia/Nemotron-4-340B-Reward); [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1); [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1) | | Synthetic LMSYS-Chat-1M from Qwen3-235B-A22B | Text | 1M | [LMSYS-Chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) | | Synthetic Multilingual Reasoning data from DeepSeek-R1-0528, Qwen2.5-32B-Instruct-AWQ, and Qwen2.5-14B-Instruct | Text | 25M | [OpenMathReasoning](https://huggingface.co/datasets/nvidia/OpenMathReasoning); [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) | [DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528); [Qwen2.5-32B-Instruct-AWQ](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct-AWQ) (translation); [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (translation); | | Synthetic Multilingual Reasoning data from Qwen3-235B-A22B and Gemma 3 Post-Trained models | Text | 5M | [WildChat](https://huggingface.co/datasets/allenai/WildChat-1M) | [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B); [Gemma 3 PT 12B](https://huggingface.co/google/gemma-3-12b-it); [Gemma 3 PT 27B](https://huggingface.co/google/gemma-3-27b-it) | ### Evaluation Dataset: * Data Collection Method by dataset: Hybrid: Human, Synthetic * Labeling Method by dataset: Hybrid: Automated, Human, Synthetic ## Inference - ## Engines: HF, vLLM, TRT-LLM - ## Test Hardware NVIDIA A10G 24GB, H100 80GB ## Ethical Considerations NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our [Trustworthy AI terms of service](https://www.nvidia.com/en-us/agreements/trustworthy-ai/terms/), developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse. For more detailed information on ethical considerations for this model, please see the Model Card++ [Bias](./bias.md), [Explainability](./explainability.md), [Safety & Security](./safety.md), and [Privacy](./privacy.md) Subcards. Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/). ## Citation ``` @misc{nvidia2025nvidianemotronnano2, title={NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model}, author={NVIDIA}, year={2025}, eprint={2508.14444}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2508.14444}, } ```
qualcomm/Whisper-Large-V3-Turbo
qualcomm
2025-08-30T00:06:49Z
0
1
pytorch
[ "pytorch", "foundation", "android", "automatic-speech-recognition", "license:other", "region:us" ]
automatic-speech-recognition
2025-06-23T22:18:32Z
--- library_name: pytorch license: other tags: - foundation - android pipeline_tag: automatic-speech-recognition --- ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/whisper_large_v3_turbo/web-assets/model_demo.png) # Whisper-Large-V3-Turbo: Optimized for Mobile Deployment ## Transformer-based automatic speech recognition (ASR) model for multilingual transcription and translation available on HuggingFace Whisper large-v3-turbo is a finetuned version of a pruned Whisper large-v3. In other words, it's the exact same model, except that the number of decoding layers have reduced from 32 to 4. As a result, the model is way faster, at the expense of a minor quality degradation. This model is based on the transformer architecture and has been optimized for edge inference by replacing Multi-Head Attention (MHA) with Single-Head Attention (SHA) and linear layers with convolutional (conv) layers. It exhibits robust performance in realistic, noisy environments, making it highly reliable for real-world applications. Specifically, it excels in long-form transcription, capable of accurately transcribing audio clips up to 30 seconds long. Time to the first token is the encoder's latency, while time to each additional token is decoder's latency, where we assume a max decoded length specified below. This model is an implementation of Whisper-Large-V3-Turbo found [here](https://github.com/huggingface/transformers/tree/v4.42.3/src/transformers/models/whisper). This repository provides scripts to run Whisper-Large-V3-Turbo on Qualcomm® devices. More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/whisper_large_v3_turbo). ### Model Details - **Model Type:** Model_use_case.speech_recognition - **Model Stats:** - Model checkpoint: openai/whisper-large-v3-turbo - Input resolution: 128x3000 (30 seconds audio) - Max decoded sequence length: 200 tokens | Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |---|---|---|---|---|---|---|---|---| | HfWhisperEncoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 786.655 ms | 0 - 1537 MB | NPU | Use Export Script | | HfWhisperEncoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 605.54 ms | 63 - 78 MB | NPU | Use Export Script | | HfWhisperEncoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 504.759 ms | 35 - 50 MB | NPU | Use Export Script | | HfWhisperEncoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 761.962 ms | 1396 - 1396 MB | NPU | Use Export Script | | HfWhisperDecoder | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 10.7 ms | 34 - 36 MB | NPU | Use Export Script | | HfWhisperDecoder | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 8.716 ms | 42 - 57 MB | NPU | Use Export Script | | HfWhisperDecoder | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 7.489 ms | 22 - 35 MB | NPU | Use Export Script | | HfWhisperDecoder | float | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 8.561 ms | 400 - 400 MB | NPU | Use Export Script | ## Installation Install the package via pip: ```bash pip install "qai-hub-models[whisper-large-v3-turbo]" ``` ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`. With this API token, you can configure your client to run models on the cloud hosted devices. ```bash qai-hub configure --api_token API_TOKEN ``` Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information. ## Demo off target The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input. ```bash python -m qai_hub_models.models.whisper_large_v3_turbo.demo ``` The above demo runs a reference implementation of pre-processing, model inference, and post processing. **NOTE**: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above). ``` %run -m qai_hub_models.models.whisper_large_v3_turbo.demo ``` ### Run model on a cloud-hosted device In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following: * Performance check on-device on a cloud-hosted device * Downloads compiled assets that can be deployed on-device for Android. * Accuracy check between PyTorch and on-device outputs. ```bash python -m qai_hub_models.models.whisper_large_v3_turbo.export ``` ## How does this work? This [export script](https://aihub.qualcomm.com/models/whisper_large_v3_turbo/qai_hub_models/models/Whisper-Large-V3-Turbo/export.py) leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model on-device. Lets go through each step below in detail: Step 1: **Compile model for on-device deployment** To compile a PyTorch model for on-device deployment, we first trace the model in memory using the `jit.trace` and then call the `submit_compile_job` API. ```python import torch import qai_hub as hub from qai_hub_models.models.whisper_large_v3_turbo import Model # Load the model torch_model = Model.from_pretrained() # Device device = hub.Device("Samsung Galaxy S24") # Trace model input_shape = torch_model.get_input_spec() sample_inputs = torch_model.sample_inputs() pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()]) # Compile model on a specific device compile_job = hub.submit_compile_job( model=pt_model, device=device, input_specs=torch_model.get_input_spec(), ) # Get target model to run on-device target_model = compile_job.get_target_model() ``` Step 2: **Performance profiling on cloud-hosted device** After compiling models from step 1. Models can be profiled model on-device using the `target_model`. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics. ```python profile_job = hub.submit_profile_job( model=target_model, device=device, ) ``` Step 3: **Verify on-device accuracy** To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device. ```python input_data = torch_model.sample_inputs() inference_job = hub.submit_inference_job( model=target_model, device=device, inputs=input_data, ) on_device_output = inference_job.download_output_data() ``` With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output. **Note**: This on-device profiling and inference requires access to Qualcomm® AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup). ## Deploying compiled model to Android The models can be deployed using multiple runtimes: - TensorFlow Lite (`.tflite` export): [This tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a guide to deploy the .tflite model in an Android application. - QNN (`.so` export ): This [sample app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html) provides instructions on how to use the `.so` shared library in an Android application. ## View on Qualcomm® AI Hub Get more details on Whisper-Large-V3-Turbo's performance across various devices [here](https://aihub.qualcomm.com/models/whisper_large_v3_turbo). Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/) ## License * The license for the original implementation of Whisper-Large-V3-Turbo can be found [here](https://github.com/huggingface/transformers/blob/v4.42.3/LICENSE). * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf) ## References * [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) * [Source Model Implementation](https://github.com/huggingface/transformers/tree/v4.42.3/src/transformers/models/whisper) ## Community * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI. * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).