modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-08-31 18:27:20
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-08-31 18:27:03
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
el254/Ride
|
el254
| 2023-06-20T21:26:23Z | 0 | 0 |
keras
|
[
"keras",
"region:us"
] | null | 2023-06-20T19:38:14Z |
---
library_name: keras
---
---
library_name: keras
--
# Распознавание класса цифр на датасете mnist.
# Задача НС
Модель генерирует цифру похожую на цифру из датасета mnist
## Изображение послойной архитектуры:
.png)
## Общее количество обучаемых параметров
Обучемых параметров: 54,160
## Используемые алгоритмы оптимизации и функция ошибки
Алгоритм оптимизации - `adam`
Функция ошибки - `categorical_crossentropy`
## Размеры тренировочного, валидационного и тестового датасетов:
Тренировочный: 60000
Тестовый: 10000
Валидационный(тестовый): 10000
## Результаты обучения модели: loss и accuracy на всех трёх датасетах:
Train Loss: 2511.731201171875
Train Accuracy: 0.7256483435630798
Test Loss: 2534.3447265625
Test Accuracy: 0.7262243628501892
Validation Loss: 2534.3447265625
Validation Accuracy: 0.7262243628501892
|
Theiss/q-FrozenLake-v1-4x4-noSlippery
|
Theiss
| 2023-06-20T21:24:18Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T21:24:16Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Theiss/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
devers93/Dodo
|
devers93
| 2023-06-20T21:07:26Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"code",
"ru",
"dataset:fashion_mnist",
"region:us"
] | null | 2023-06-20T20:30:25Z |
---
datasets:
- fashion_mnist
language:
- ru
metrics:
- accuracy
library_name: keras
tags:
- code
---
# Описание задачи
Дан датасет fashion_mnist по входному изображению определить предмет;
# Послойная архитектура НС

# Общее количество обучаемых параметров НС

# Алгоритмы оптимизации и функция ошибки
Для оптимизации была использован "adam". Для оценки потерь было использовано "Разреженная категориальная перекрестная энтропия".
# Размеры тренировочного и тестового датасетов:
Тренировочный дата сет состоит 60 000 изображений одежды разделённых на 10 категорий 28x28.
Размер тестового датасета: 10.000 фото 28х28
# Результаты обучения модели

|
dickreuter/poker-card-classification
|
dickreuter
| 2023-06-20T20:58:10Z | 0 | 2 |
keras
|
[
"keras",
"tf-keras",
"poker-card-classification",
"pokerbot",
"region:us"
] | null | 2023-06-20T20:54:16Z |
---
library_name: keras
tags:
- poker-card-classification
- pokerbot
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| learning_rate | 0.0010000000474974513 |
| decay | 0.0 |
| beta_1 | 0.8999999761581421 |
| beta_2 | 0.9990000128746033 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
|
LOGQS/ppo-Pyramids
|
LOGQS
| 2023-06-20T20:56:07Z | 3 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-06-20T20:55:26Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: LOGQS/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
mcpotato/potato-bot
|
mcpotato
| 2023-06-20T20:55:34Z | 0 | 0 | null |
[
"license:mit",
"region:us"
] | null | 2023-06-21T14:25:20Z |
---
title: zZWyoMVOdIUJunWk
emoji: 😂
colorFrom: blue
colorTo: green
sdk: docker
pinned: false
license: mit
---
|
Konstantin12/Bulatov19
|
Konstantin12
| 2023-06-20T20:51:56Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"dataset:fashion_mnist",
"region:us"
] | null | 2023-06-20T19:54:53Z |
---
datasets:
- fashion_mnist
metrics:
- accuracy
library_name: keras
---
# Задание: Дан датасет fashion_mnist по входному изображению определить предмет;

# Общее количество обучаемых параметров: 269,322
# Используемые алгоритмы:
sparse_categorical_crossentropy - функция потерь
adam_optimizer - алгоритм оптимизации
# Размеры датасетов:
тренировочный: 10000
тестовый: 10000
# Результаты:
Training loss: 0.39292535185813904
Training accuracy: 0.8812333345413208
Validation loss: 0.4519464373588562
Validation accuracy: 0.8677999973297119
# Ссылка на коллаб:
https://colab.research.google.com/drive/1VfD6Tk-uTrJOBlTJImKWkPqp3EPsrU6F#scrollTo=b2iY0tw-XhqT
|
dotta/mtg
|
dotta
| 2023-06-20T20:50:05Z | 5 | 1 |
diffusers
|
[
"diffusers",
"stable-diffusion",
"stable-diffusion-diffusers",
"text-to-image",
"lora",
"base_model:gsdf/Counterfeit-V2.5",
"base_model:adapter:gsdf/Counterfeit-V2.5",
"license:creativeml-openrail-m",
"region:us"
] |
text-to-image
| 2023-06-12T14:27:21Z |
---
license: creativeml-openrail-m
base_model: gsdf/Counterfeit-V2.5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - dotta/mtg
These are LoRA adaption weights for gsdf/Counterfeit-V2.5. The weights were fine-tuned on the dotta/mtg dataset. You can find some example images in the following.








|
anavarro78/finetuning-sentiment-model-3000-samples
|
anavarro78
| 2023-06-20T20:46:52Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-06-17T03:32:56Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: finetuning-sentiment-model-3000-samples
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuning-sentiment-model-3000-samples
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2823
- Accuracy: 0.904
- F1: 0.9372
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
N0vel/Zachetnoe_zadanie
|
N0vel
| 2023-06-20T20:44:24Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T20:42:52Z |
# Распознавание класса изображений на датасете mnist.
# Задача НС
Сама модель распознаёт к какому из 10 классов относится изображение.
## Изображение послойной архитектуры:

## Общее количество обучаемых параметров
Обучаемых параметров: 54,410
## Используемые алгоритмы оптимизации и функция ошибки
Алгоритм оптимизации - `adam`
Функция ошибки - `categorical_crossentropy`
## Размеры тренировочного, валидационного и тестового датасетов:
Тренировочный: 60000
Тестовый: 10000
Валидационный(тестовый): 10000
## Результаты обучения модели: loss и accuracy на всех трёх датасетах:
Train Loss: 0.15321196615695953
Train Accuracy: 0.9462166428565979
Test Loss: 0.26492342352867126
Test Accuracy: 0.9081000089645386
Validation Loss: 0.26492342352867126
Validation Accuracy: 0.9081000089645386
## Результаты работы программы и нейросети:

|
JustBlood/Python_Final_Task_Porozov
|
JustBlood
| 2023-06-20T20:38:35Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"ru",
"region:us"
] | null | 2023-06-20T15:46:51Z |
---
language:
- ru
metrics:
- accuracy
library_name: keras
---
# Порозов Кирилл - Итоговое задание. Вариант №3.
Карточка НС должна содержать:
1. Описание задачи которую выполняет НС;
2. Изображение послойной архитектуры НС на которой указаны размеры слоя, функция
активации;
3. Общее количество обучаемых параметров НС;
4. Используемый алгоритмы оптимизации и функция ошибки;
5. Размеры тренировочного, валидационного и тестового датасетов;
6. Результаты обучения модели: loss и accuracy на всех трёх датасетах
# Описание задачи
Дан датасет mnist по входному изображению определить остаток от деления этой цифры
на 3;
# Послойная архитектура НС

# Общее количество обучаемых параметров НС

# Используемые алгоритмы оптимизации и функция ошибки
1. Использованная **функция ошибки** - **категориальная кроссэнтропия** для повышения качества нейронной сети
2. Использованный **алгоритм оптимизации - adam** из Keras

# Размеры тренировочного, валидационного и тестового датасетов:
1. Размер тренировочного датаеста: **60.000** фото 28х28
2. Размер валидационного датасета: 10% от тренировочного = **6.000** фото 28х28
3. Размер тестового датасета: **10.000** фото 28х28
# Результаты обучения модели

## Наглядная демонстрация предсказаний модели:

|
emresvd/u203
|
emresvd
| 2023-06-20T20:38:17Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2023-06-20T20:38:11Z |
---
library_name: keras
---
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| name | Adam |
| weight_decay | None |
| clipnorm | None |
| global_clipnorm | None |
| clipvalue | None |
| use_ema | False |
| ema_momentum | 0.99 |
| ema_overwrite_frequency | None |
| jit_compile | False |
| is_legacy_optimizer | False |
| learning_rate | 0.0010000000474974513 |
| beta_1 | 0.9 |
| beta_2 | 0.999 |
| epsilon | 1e-07 |
| amsgrad | False |
| training_precision | float32 |
## Model Plot
<details>
<summary>View Model Plot</summary>

</details>
|
zslrmhb/q-Taxi-v3
|
zslrmhb
| 2023-06-20T20:37:45Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T20:37:31Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.48 +/- 2.77
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="zslrmhb/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
KelvinHu/ppo-LunarLander-v2
|
KelvinHu
| 2023-06-20T20:29:42Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T20:21:52Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 295.04 +/- 22.98
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
mgmeskill/CartPole-v1
|
mgmeskill
| 2023-06-20T20:25:04Z | 0 | 0 | null |
[
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T20:24:54Z |
---
tags:
- CartPole-v1
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: CartPole-v1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: CartPole-v1
type: CartPole-v1
metrics:
- type: mean_reward
value: 500.00 +/- 0.00
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
mrsrincewind/digits3
|
mrsrincewind
| 2023-06-20T20:23:42Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-20T19:48:00Z |
language:
- ru
metrics:
- accuracy
library_name: keras
---
Карточка НС должна содержать:
1. Описание задачи которую выполняет НС;
2. Изображение послойной архитектуры НС на которой указаны размеры слоя, функция
активации;
3. Общее количество обучаемых параметров НС;
4. Используемый алгоритмы оптимизации и функция ошибки;
5. Размеры тренировочного, валидационного и тестового датасетов;
6. Результаты обучения модели: loss и accuracy на всех трёх датасетах
# Описание задачи
Дан датасет mnist по входному изображению определить остаток от деления этой цифры
на 3;
# Послойная архитектура НС

# Общее количество обучаемых параметров НС

# Используемые алгоритмы оптимизации и функция ошибки
1. Использованная **функция ошибки** - **категориальная кроссэнтропия** для повышения качества нейронной сети
2. Использованный **алгоритм оптимизации - adam** из Keras

# Размеры тренировочного, валидационного и тестового датасетов:
1. Размер тренировочного датаеста: **60.000** фото 28х28
2. Размер валидационного датасета: 10% от тренировочного = **6.000** фото 28х28
3. Размер тестового датасета: **10.000** фото 28х28
# Результаты обучения модели

|
Okneas/my_model
|
Okneas
| 2023-06-20T20:12:15Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"image-to-text",
"ru",
"dataset:fashion_mnist",
"region:us"
] |
image-to-text
| 2023-06-20T16:57:51Z |
---
datasets:
- fashion_mnist
language:
- ru
metrics:
- accuracy
library_name: keras
pipeline_tag: image-to-text
---
# Описание модели
Модель нейронной сети, представляет собой нейронную сеть с двумя сверточными слоями, двумя слоями пулинга,
слоем дропаута (для предотвращения переобучения), полносвязным слоем и функцией активации softmax.
Она была обучена на датасете Fashion MNIST, который содержит изображения одежды разных категорий.
Модель определяет метку (одежда, обувь, сумка) по рисунку 28*28
# Последовательная архитектура модели
Последовательная архитектура модели выглядит следующим образом:

# Общее количество обучаемых параметров модели

# Алгоритмы оптимизации и функция ошибки
Модель была обучена с помощью алгоритма оптимизации Adam и функции ошибки categorical_crossentropy.
# Размеры тренировочного, валидационного и тестового датасетов
Размеры тренировочного, валидационного и тестового датасетов:
- Размер тренировочного датасета: 60 000 изображений
- Размер валидационного датасета: 10 000 изображений
- Размер тестового датасета: 10 000 изображений
# Результаты обучения модели

# Работа модели

|
Moniksama/finetuned-bert-covid-tweets
|
Moniksama
| 2023-06-20T20:10:18Z | 104 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"bert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2023-04-17T13:58:51Z |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: finetuned-bert-covid-tweets
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-bert-covid-tweets
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2862
- Accuracy: 0.9175
- F1-score: 0.9177
- Precision: 0.9179
- Recall: 0.9175
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|
| 0.1911 | 1.0 | 513 | 0.2740 | 0.9176 | 0.9176 | 0.9185 | 0.9176 |
| 0.128 | 2.0 | 1026 | 0.2689 | 0.9262 | 0.9264 | 0.9267 | 0.9262 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|
CyberTea/neuro5_fashion_mnist
|
CyberTea
| 2023-06-20T20:09:15Z | 6 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T15:34:05Z |
# Распознавание класса изображений на датасете mnist.
# Задача НС
Модель распознаёт к какому классу из 3 (0 - одежда, 1 - обувь, 2 - сумка) относится изображение
## Изображение послойной архитектуры:

## Общее количество обучаемых параметров
Обучаемых параметров: 16,547
## Используемые алгоритмы оптимизации и функция ошибки
Алгоритм оптимизации - `adam`
Функция ошибки - `categorical_crossentropy`
## Размеры тренировочного, валидационного и тестового датасетов:
Тренировочный: 60000
Тестовый: 10000
Валидационный(тестовый): 10000
## Результаты обучения модели: loss и accuracy на всех трёх датасетах:
Train Loss: 0.002967413514852524
Train Accuracy: 0.9993500113487244
Test Loss: 0.016184156760573387
Test Accuracy: 0.9958000183105469
Validation Loss: 0.016184156760573387
Validation Accuracy: 0.9958000183105469
## Результаты работы программы и нейросети:

|
Igor2004/zadanie4
|
Igor2004
| 2023-06-20T20:05:41Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-20T19:36:06Z |
Владимир Викторович, здравствуйте, студент ДРПК-47 Семёнов Игорь. Я уехал работать вожатым от РСО, и мне необходим хотя бы минимальный зачетный балл по вашему предмету.
Моя нейросеть может выводить разные сгенерированные картинки предметов 28х28 из fashion_mnist, когда мы меняем цифры. К сожалению, в виду нехватки времени не могу реализовать большего.
Заранее спасибо
|
Rage4/Gasilin_var8
|
Rage4
| 2023-06-20T20:05:17Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T19:14:31Z |
1. Нейронная сеть генерирует цифры похожие на цифры из датасета mnist.
2. 
3. Общее количество обучаемых параметров НС: 54160
4. Используемый алгоритмы оптимизации и функция ошибки: adam и categorical_crossentropy.
5. Размеры тренировочного, валидационного и тестового датасетов: тренировочный: 60000, валидационный: 10000, тестовый: 10000
6. Результаты обучения модели: loss и accuracy на всех трёх датасетах: тренировочный: loss: 2554.3391, accuracy: 0.7287; валидационный: loss: 2521.8169, accuracy: 0.7296; тестовый: loss: 2570.7542, accuracy: 0.7292
|
LOGQS/ppo-SnowballTarget
|
LOGQS
| 2023-06-20T19:53:21Z | 1 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] |
reinforcement-learning
| 2023-06-20T19:53:15Z |
---
library_name: ml-agents
tags:
- SnowballTarget
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SnowballTarget
---
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: LOGQS/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
MindNetML/ppo-Huggy
|
MindNetML
| 2023-06-20T19:52:05Z | 6 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] |
reinforcement-learning
| 2023-06-20T19:51:55Z |
---
library_name: ml-agents
tags:
- Huggy
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Huggy
---
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: MindNetML/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
SaiderNN/Task
|
SaiderNN
| 2023-06-20T19:43:33Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T16:51:25Z |
# Модель восстановления изображения
ИНС - автоэнкодер, на вход которой подается изображение размером 28*28.
Задача ИНС - сжать изображение и восстановить его.
Общее количество обучаемых параметров НС: 4,385
Используемый алгоритм оптимизации: Adamax , функция ошибки: mse
Размеры датасетов:
тренировочный - 48000 изображений,
валидационный - 12000 изображений,
тестовый - 10000 изображений
Результаты обучения модели на 10 эпохах:
(в качестве вычисления accuracy была использована метрика SSIM)
Тренировочный датасет: loss - 0.01716545782983303, SSIM - 0.8874326
Валидационный датасет: loss - 0.017233747988939285, SSIM - 0.8873238
Тестовый датасет: loss - 0.01724238507449627, SSIM - 0.88665247

|
asdf343/ppo-LunarLander-v2
|
asdf343
| 2023-06-20T19:32:07Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T19:31:51Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 273.41 +/- 19.39
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
tanmayyyj/ppo-PyramidsRND
|
tanmayyyj
| 2023-06-20T19:20:23Z | 4 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"Pyramids",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Pyramids",
"region:us"
] |
reinforcement-learning
| 2023-06-20T19:20:19Z |
---
library_name: ml-agents
tags:
- Pyramids
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-Pyramids
---
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: tanmayyyj/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
milschla/mushroomclassifier
|
milschla
| 2023-06-20T19:04:06Z | 9 | 0 |
tf-keras
|
[
"tf-keras",
"image-classification",
"region:us"
] |
image-classification
| 2023-06-19T18:17:46Z |
---
pipeline_tag: image-classification
---
|
ronig/pdb_bpe_tokenizer_1024_mlm
|
ronig
| 2023-06-20T18:52:48Z | 0 | 0 | null |
[
"en",
"dataset:ronig/pdb_sequences",
"license:mit",
"region:us"
] | null | 2023-03-25T05:24:09Z |
---
language: en
license: mit
datasets:
- ronig/pdb_sequences
---
# PDB Protein BPE Tokenizer
A protein sequence tokenizer trained on [PDB Sequences](https://huggingface.co/datasets/ronig/pdb_sequences) with `vocabulary size = 1024`
|
climatebert/distilroberta-base-climate-detector
|
climatebert
| 2023-06-20T18:52:03Z | 26,073 | 15 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"text-classification",
"en",
"dataset:climatebert/climate_detection",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
datasets:
- climatebert/climate_detection
language:
- en
metrics:
- accuracy
---
# Model Card for distilroberta-base-climate-detector
## Model Description
This is the fine-tuned ClimateBERT language model with a classification head for detecting climate-related paragraphs.
Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as starting point, the distilroberta-base-climate-detector model is fine-tuned on our [climatebert/climate_detection](https://huggingface.co/climatebert/climate_detection) dataset.
*Note: This model is trained on paragraphs. It may not perform well on sentences.*
## Citation Information
```bibtex
@techreport{bingler2023cheaptalk,
title={How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk},
author={Bingler, Julia and Kraus, Mathias and Leippold, Markus and Webersinke, Nicolas},
type={Working paper},
institution={Available at SSRN 3998435},
year={2023}
}
```
## How to Get Started With the Model
You can use the model with a pipeline for text classification:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_detection"
model_name = "climatebert/distilroberta-base-climate-detector"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
print(out)
```
|
climatebert/distilroberta-base-climate-s
|
climatebert
| 2023-06-20T18:51:38Z | 125 | 3 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"fill-mask",
"en",
"arxiv:2110.12010",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
fill-mask
| 2022-03-02T23:29:05Z |
---
language: en
license: apache-2.0
---
# Model Card for distilroberta-base-climate-s
## Model Description
This is the ClimateBERT language model based on the SIM-SELECT sample selection strategy.
*Note: We generally recommend choosing the [distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model over this language model (unless you have good reasons not to).*
Using the [DistilRoBERTa](https://huggingface.co/distilroberta-base) model as starting point, the ClimateBERT Language Model is additionally pre-trained on a text corpus comprising climate-related research paper abstracts, corporate and general news and reports from companies. The underlying methodology can be found in our [language model research paper](https://arxiv.org/abs/2110.12010).
## Climate performance model card
| distilroberta-base-climate-s | |
|--------------------------------------------------------------------------|----------------|
| 1. Is the resulting model publicly available? | Yes |
| 2. How much time does the training of the final model take? | 48 hours |
| 3. How much time did all experiments take (incl. hyperparameter search)? | 350 hours |
| 4. What was the power of GPU and CPU? | 0.7 kW |
| 5. At which geo location were the computations performed? | Germany |
| 6. What was the energy mix at the geo location? | 470 gCO2eq/kWh |
| 7. How much CO2eq was emitted to train the final model? | 15.79 kg |
| 8. How much CO2eq was emitted for all experiments? | 115.15 kg |
| 9. What is the average CO2eq emission for the inference of one sample? | 0.62 mg |
| 10. Which positive environmental impact can be expected from this work? | This work can be categorized as a building block tools following Jin et al (2021). It supports the training of NLP models in the field of climate change and, thereby, have a positive environmental impact in the future. |
| 11. Comments | Block pruning could decrease CO2eq emissions |
## Citation Information
```bibtex
@inproceedings{wkbl2022climatebert,
title={{ClimateBERT: A Pretrained Language Model for Climate-Related Text}},
author={Webersinke, Nicolas and Kraus, Mathias and Bingler, Julia and Leippold, Markus},
booktitle={Proceedings of AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges},
year={2022},
doi={https://doi.org/10.48550/arXiv.2212.13631},
}
```
|
climatebert/distilroberta-base-climate-specificity
|
climatebert
| 2023-06-20T18:51:33Z | 1,410 | 1 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"roberta",
"text-classification",
"climate",
"en",
"dataset:climatebert/climate_specificity",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-classification
| 2022-03-02T23:29:05Z |
---
license: apache-2.0
datasets:
- climatebert/climate_specificity
language:
- en
metrics:
- accuracy
tags:
- climate
---
# Model Card for distilroberta-base-climate-specificity
## Model Description
This is the fine-tuned ClimateBERT language model with a classification head for classifying climate-related paragraphs into specific and non-specific paragraphs.
Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) language model as starting point, the distilroberta-base-climate-specificity model is fine-tuned on our [climatebert/climate_specificity](https://huggingface.co/climatebert/climate_specificity) dataset.
*Note: This model is trained on paragraphs. It may not perform well on sentences.*
## Citation Information
```bibtex
@techreport{bingler2023cheaptalk,
title={How Cheap Talk in Climate Disclosures Relates to Climate Initiatives, Corporate Emissions, and Reputation Risk},
author={Bingler, Julia and Kraus, Mathias and Leippold, Markus and Webersinke, Nicolas},
type={Working paper},
institution={Available at SSRN 3998435},
year={2023}
}
```
## How to Get Started With the Model
You can use the model with a pipeline for text classification:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers.pipelines.pt_utils import KeyDataset
import datasets
from tqdm.auto import tqdm
dataset_name = "climatebert/climate_specificity"
model_name = "climatebert/distilroberta-base-climate-specificity"
# If you want to use your own data, simply load them as 🤗 Datasets dataset, see https://huggingface.co/docs/datasets/loading
dataset = datasets.load_dataset(dataset_name, split="test")
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, max_len=512)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0)
# See https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.pipeline
for out in tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True)):
print(out)
```
|
Dilp/Taxi-v3
|
Dilp
| 2023-06-20T18:45:23Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T18:45:19Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: Taxi-v3
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.50 +/- 2.72
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Dilp/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
Dilp/q-FrozenLake-v1-4x4-noSlippery
|
Dilp
| 2023-06-20T18:42:39Z | 0 | 0 | null |
[
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T18:42:37Z |
---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="Dilp/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SouhilOuchene/AC_Part2
|
SouhilOuchene
| 2023-06-20T18:37:07Z | 5 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"bert",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-17T18:37:15Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# SouhilOuchene/AC_Part2
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("SouhilOuchene/AC_Part2")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
michael12345679/autoencoder
|
michael12345679
| 2023-06-20T18:32:05Z | 0 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T15:06:09Z |
Автоэнкодер - нейронная сеть, которая принимает входные данные и кодирует их, затем пытается восстановить их.
На этапе обучения модель кодирует входные данные и подбирает веса такие, чтобы при попытке их восстановления получилось изображение, максимально похожее на исходное. Размеченные данные не требуются.
Автоэнкодер может полезен для уменьшения размерности данных или удаления шума.
В данной работе выбран автоэнкодер VAE (Variational Autoencoder), тип автоэнкодера, который добавляет вероятностный подход к обучению модели. Используется библиотека keras.
архитектура автоэнкодера:

Количество обучаемых параметров: encoder - 234372, decoder - 202256, всего: 436628
Используемые алгоритмы:
Оптимизатор - adam.
Функция потерь:
def vae_loss(x, y):
x = K.reshape(x, shape=(batch_size, 28*28))
y = K.reshape(y, shape=(batch_size, 28*28))
loss = K.sum(K.square(x-y), axis=-1)
kl_loss = -0.5 * K.sum(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return loss + kl_loss
Размеры обучающего, валидационного и тестового наборов данных, соответственно:
(54000, 28, 28, 1), (6000, 28, 28, 1), (6000, 28, 28, 1)
Ошибка, полученная при сравнении оригинального изображения и полученного из автоэнкодера:
30.429147720336914 (ошибка на тренировочном датасете), 30.770627975463867 (на валидационном), 30.37934112548828 (на тестовом)
|
destrat/zachet
|
destrat
| 2023-06-20T18:29:48Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T17:40:01Z |
# Распознавание класса цифр на датасете mnist.
# Задача НС
Модель генерирует цифру похожую на цифру из датасета mnist
## Изображение послойной архитектуры:

## Общее количество обучаемых параметров
Обучемых параметров: 54,160
## Используемые алгоритмы оптимизации и функция ошибки
Алгоритм оптимизации - `adam`
Функция ошибки - `categorical_crossentropy`
## Размеры тренировочного, валидационного и тестового датасетов:
Тренировочный: 60000
Тестовый: 10000
Валидационный(тестовый): 10000
## Результаты обучения модели: loss и accuracy на всех трёх датасетах:
Train Loss: 2511.731201171875
Train Accuracy: 0.7256483435630798
Test Loss: 2534.3447265625
Test Accuracy: 0.7262243628501892
Validation Loss: 2534.3447265625
Validation Accuracy: 0.7262243628501892
|
Timiry/autoencoder_fashion_mnist
|
Timiry
| 2023-06-20T18:29:19Z | 0 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T14:21:54Z |
# Итоговое задание вариант №7
# Задача
Дан датасет fashion_mnist постройте автоэнкодер принимающий на вход изображение
предмета и создающий его же изображение на выходе.
# Архитектура нейронной сети

# Количество обучаемых параметров

# Использовались
1. Алгоритм оптимизации: Adam
2. Функция ошибки: среднеквадратичное отклонение
# Размеры выборок
1. Тренировочная: 48000
2. Валидационная: 12000
3. Тестовая: 10000
# Результаты обучения модели

|
Saed2023/layoutlmv3-finetuned-Algo_427Images
|
Saed2023
| 2023-06-20T18:24:04Z | 75 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2023-06-18T18:24:52Z |
---
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-Algo_427Images
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-Algo_427Images
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0013
- Precision: 0.9937
- Recall: 0.9964
- F1: 0.9950
- Accuracy: 0.9999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.25 | 100 | 0.0082 | 0.9505 | 0.9367 | 0.9435 | 0.9983 |
| No log | 2.5 | 200 | 0.0024 | 0.9883 | 0.9901 | 0.9892 | 0.9997 |
| No log | 3.75 | 300 | 0.0020 | 0.9883 | 0.9919 | 0.9901 | 0.9997 |
| No log | 5.0 | 400 | 0.0016 | 0.9910 | 0.9928 | 0.9919 | 0.9998 |
| 0.0301 | 6.25 | 500 | 0.0015 | 0.9910 | 0.9928 | 0.9919 | 0.9998 |
| 0.0301 | 7.5 | 600 | 0.0014 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
| 0.0301 | 8.75 | 700 | 0.0013 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
| 0.0301 | 10.0 | 800 | 0.0013 | 0.9937 | 0.9964 | 0.9950 | 0.9999 |
| 0.0301 | 11.25 | 900 | 0.0013 | 0.9928 | 0.9946 | 0.9937 | 0.9998 |
| 0.002 | 12.5 | 1000 | 0.0013 | 0.9937 | 0.9964 | 0.9950 | 0.9999 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
Bananaws/Python_Task6
|
Bananaws
| 2023-06-20T18:20:11Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"ru",
"dataset:mnist",
"region:us"
] | null | 2023-06-20T14:09:14Z |
---
datasets:
- mnist
language:
- ru
metrics:
- accuracy
library_name: keras
---
1. Описание задачи которую выполняет НС.
Вариант 6. Используя датасет mnist был построен автоэнкодер, принимающий на вход изображение цифры и
создающий её же изображение на выходе.
2. Изображение послойной архитектуры НС на которой указаны размеры слоя, функция
активации.

3. Общее количество обучаемых параметров НС.
Оно составляет 131457, можно увидеть в коде.
4. Используемый алгоритмы оптимизации и функция ошибки.
Алгоритм оптимизации - adam, функция ошибки - mse (mean_squared_error).
5. Размеры тренировочного, валидационного и тестового датасетов.
Тренировочный равен 48 000.
Тестовый равен 10 000.
Валидационный равен 12 000 (то есть 20% от изначального 60 000 тренировочного датасета)
6. Результаты обучения модели: loss и accuracy на всех трёх датасетах.

Для тестового датасета loss: 0.0339 и accuracy: 0.0097
Результат обучения:

|
gaiamolinaro/ppo-LunarLander-v2
|
gaiamolinaro
| 2023-06-20T18:16:14Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T18:15:54Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 264.58 +/- 35.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
ArturStepanenko/pythonV6
|
ArturStepanenko
| 2023-06-20T18:15:24Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"code",
"ru",
"dataset:mnist",
"region:us"
] | null | 2023-06-20T16:45:08Z |
---
datasets:
- mnist
language:
- ru
metrics:
- accuracy
library_name: keras
tags:
- code
---
1. Модель НС, принимающая на вход изображение цифры и создающая её же изображение на выходе
2. Изображение послойной архитектуры НС на которой указаны размеры слоя, функция
активации
3. Общее количество обучаемых параметров НС: 131457
4. Используемый алгоритм оптимизации - adam, функция ошибки - mse
5. Размеры тренировочного, валидационного и тестового датасетов: 48000, 6000 и 6000 соответственно
6. Результаты обучения модели: loss и accuracy на тренировочном и валидационном датасете
Метрики loss и accuracy на тестовом датасете с помощью evluate:
Результаты обучения модели:
|
Disskretnost/neuro9_ashion_mnist
|
Disskretnost
| 2023-06-20T18:06:29Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T17:47:26Z |
# Распознавание класса изображений на датасете mnist.
# Задача НС
Генерация изображения похожего на предмет из набора fashion_mnist
## Изображение послойной архитектуры:
### Полная нейросеть:

### Encoder:

## Общее количество обучаемых параметров
Обучаемых параметров: 54,410
## Используемые алгоритмы оптимизации и функция ошибки
Алгоритм оптимизации - `adam`
Функция ошибки - `mse`
## Размеры тренировочного, валидационного и тестового датасетов:
Тренировочный: 60000
Тестовый: 10000
Валидационный(тестовый): 10000
## Результаты обучения модели: loss и accuracy на всех трёх датасетах:
Train Loss: 0.06076487898826599
Train Accuracy: 0.49122941493988037
Test Loss: 0.06062548980116844
Test Accuracy: 0.4893147945404053
Validation Loss: 0.06062548980116844
Validation Accuracy: 0.4893147945404053
## Результаты работы программы и нейросети:

|
allenai/open-instruct-stanford-alpaca-7b
|
allenai
| 2023-06-20T17:50:34Z | 141 | 10 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:tatsu-lab/alpaca",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:06:41Z |
---
datasets:
- tatsu-lab/alpaca
language:
- en
---
# Open-Instruct Stanford Alpaca 7B
This model is a 7B LLaMa model finetuned on the Stanford Alpaca dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner.
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 41.5 | 40.3 | 7.0 | 10.0 | 32.6 | 31.8 | 31.2 | 7.2 | 13.2 | 22.0 | 21.1 | 23.3 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
|
allenai/open-instruct-stanford-alpaca-13b
|
allenai
| 2023-06-20T17:50:22Z | 19 | 2 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:tatsu-lab/alpaca",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:19:57Z |
---
datasets:
- tatsu-lab/alpaca
language:
- en
---
# Open-Instruct Stanford Alpaca 13B
This model is a 13B LLaMa model finetuned on the Stanford Alpaca dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner.
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 45.1 | 47.1 | 6.0 | 8.0 | 35.0 | 34.5 | 32.8 | 7.8 | 15.7 | 27.6 | 28.7 | 26.4 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
```
|
allenai/open-instruct-unnatural-instructions-13b
|
allenai
| 2023-06-20T17:50:00Z | 21 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:mrm8488/unnatural-instructions",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2212.09689",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T23:41:42Z |
---
datasets:
- mrm8488/unnatural-instructions
language:
- en
---
# Open-Instruct Unnatural Instructions 13B
This model is a 13B LLaMa model finetuned on the Unnatural Instructions dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner.
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 46.2 | 45.7 | 5.0 | 7.5 | 37.6 | 32.8 | 39.3 | 9.1 | 13.9 | 24.8 | 10.9 | 23.6 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{honovich2022unnatural,
title = {Unnatural Instructions: Tuning Language Models with (Almost) No Human Labor},
author = {Honovich, Or and Scialom, Thomas and Levy, Omer and Schick, Timo},
url = {https://arxiv.org/abs/2212.09689},
publisher = {arXiv},
year={2022}
}
```
|
allenai/open-instruct-code-alpaca-7b
|
allenai
| 2023-06-20T17:49:49Z | 32 | 2 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:sahil2801/CodeAlpaca-20k",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:06:24Z |
---
datasets:
- sahil2801/CodeAlpaca-20k
language:
- en
---
# Open-Instruct Code Alpaca 7B
This model is a 7B LLaMa model finetuned on the Code Alpaca dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner.
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 34.7 | 34.5 | 6.5 | 7.5 | 29.6 | 30.5 | 36.7 | 10.5 | 16.5 | 29.2 | 17.5 | 22.6 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{codealpaca,
author = {Sahil Chaudhary},
title = {Code Alpaca: An Instruction-following LLaMA model for code generation},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/sahil280114/codealpaca}},
}
```
|
allenai/open-instruct-code-alpaca-13b
|
allenai
| 2023-06-20T17:49:39Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:sahil2801/CodeAlpaca-20k",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:17:16Z |
---
datasets:
- sahil2801/CodeAlpaca-20k
language:
- en
---
# Open-Instruct Code Alpaca 13B
This model is a 13B LLaMa model finetuned on the Code Alpaca dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner.
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 42.6 | 44.3 | 5.0 | 12.0 | 35.5 | 36.6 | 41.3 | 10.9 | 20.1 | 34.5 | 19.4 | 26.8 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{codealpaca,
author = {Sahil Chaudhary},
title = {Code Alpaca: An Instruction-following LLaMA model for code generation},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/sahil280114/codealpaca}},
}
```
|
allenai/open-instruct-human-mix-30b
|
allenai
| 2023-06-20T17:47:47Z | 25 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:databricks/databricks-dolly-15k",
"dataset:OpenAssistant/oasst1",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2301.13688",
"arxiv:2304.07327",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:35:33Z |
---
datasets:
- databricks/databricks-dolly-15k
- OpenAssistant/oasst1
language:
- en
---
# Open-Instruct Human-mix 30B
This model is a 30B LLaMa model finetuned on a mixture of human-authored datasets (FLAN V2, CoT, Dolly, and Open Assistant 1). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 56.3 | 58.9 | 6.5 | 49.5 | 46.6 | 47.8 | 58.9 | 12.7 | 22.6 | 39.4 | 44.6 | 40.7 |
If you use this model, please cite our work, the llama paper, and the original datasets:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{dolly,
author = {Databricks},
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {Blog post},
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
}
```
```
@article{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
journal={arXiv preprint arXiv:2301.13688},
year={2023}
}
```
```
@misc{köpf2023openassistant,
title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
year={2023},
eprint={2304.07327},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
allenai/open-instruct-sharegpt-30b
|
allenai
| 2023-06-20T17:47:29Z | 25 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:anon8231489123/ShareGPT_Vicuna_unfiltered",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T23:52:48Z |
---
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
language:
- en
---
# Open-Instruct ShareGPT 30B
This model is a 30B LLaMa model finetuned on the ShareGPT dataset (cleaned in a similar manner to Vicuna). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 54.7 | 57.8 | 13.5 | 38.5 | 41.0 | 50.6 | 32.4 | 9.9 | 25.9 | 37.9 | 70.2 | 41.9 |
If you use this model, please cite our work and the llama paper:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
allenai/open-instruct-sharegpt-7b
|
allenai
| 2023-06-20T17:47:00Z | 31 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:anon8231489123/ShareGPT_Vicuna_unfiltered",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:06:01Z |
---
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
language:
- en
---
# Open-Instruct ShareGPT 7B
This model is a 7B LLaMa model finetuned on the ShareGPT dataset (cleaned in a similar manner to Vicuna). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 44.3 | 40.0 | 8.0 | 9.5 | 5.2 | 32.6 | 25.5 | 8.9 | 10.9 | 21.6 | 58.3 | 26.9 |
If you use this model, please cite our work and the llama paper:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
allenai/open-instruct-human-mix-13b
|
allenai
| 2023-06-20T17:46:47Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:databricks/databricks-dolly-15k",
"dataset:OpenAssistant/oasst1",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2301.13688",
"arxiv:2304.07327",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T23:41:23Z |
---
datasets:
- databricks/databricks-dolly-15k
- OpenAssistant/oasst1
language:
- en
---
# Open-Instruct Human-mix 13B
This model is a 13B LLaMa model finetuned on a mixture of human-authored datasets (FLAN V2, CoT, Dolly, and Open Assistant 1). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 50.4 | 51.2 | 6.5 | 36.5 | 40.6 | 39.4 | 49.8 | 9.3 | 11.3 | 23.7 | 36.3 | 32.6 |
If you use this model, please cite our work, the llama paper, and the original datasets:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{dolly,
author = {Databricks},
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {Blog post},
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
}
```
```
@article{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
journal={arXiv preprint arXiv:2301.13688},
year={2023}
}
```
```
@misc{köpf2023openassistant,
title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
year={2023},
eprint={2304.07327},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
allenai/open-instruct-cot-7b
|
allenai
| 2023-06-20T17:45:42Z | 31 | 1 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2301.13688",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:05:59Z |
---
language:
- en
---
# Open-Instruct CoT 7B
This model is a 7B LLaMa model finetuned on the CoT dataset (a subset of Flan v2). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 41.3 | 42.5 | 6.5 | 27.5 | 33.7 | 31.3 | 44.4 | 8.5 | 7.4 | 17.3 | 4.2 | 22.4 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
journal={arXiv preprint arXiv:2301.13688},
year={2023}
}
```
|
allenai/open-instruct-cot-13b
|
allenai
| 2023-06-20T17:44:57Z | 28 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2301.13688",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:15:49Z |
---
language:
- en
---
# Open-Instruct CoT 13B
This model is a 13B LLaMa model finetuned on the CoT dataset (a subset of Flan v2). *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 44.5 | 45.4 | 9.5 | 39.5 | 38.6 | 39.0 | 52.2 | 11.5 | 11.5 | 23.3 | 5.6 | 27.2 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
journal={arXiv preprint arXiv:2301.13688},
year={2023}
}
```
|
allenai/open-instruct-sni-7b
|
allenai
| 2023-06-20T17:44:18Z | 21 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:05:38Z |
---
language:
- en
---
# Open-Instruct SNI 7B
This model is a 7B LLaMa model finetuned on the Super-Natural Instructions dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 44.1 | 43.4 | 3.0 | 4.0 | 38.4 | 1.9 | 47.9 | 7.1 | 7.0 | 11.7 | 5.7 | 18.3 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@inproceedings{supernaturalinstructions,
title={Super-NaturalInstructions:Generalization via Declarative Instructions on 1600+ Tasks},
author={Wang, Yizhong and Mishra, Swaroop and Alipoormolabashi, Pegah and Kordi, Yeganeh and Mirzaei, Amirreza and Arunkumar, Anjana and Ashok, Arjun and Dhanasekaran, Arut Selvan and Naik, Atharva and Stap, David and others},
booktitle={EMNLP},
year={2022}
}
```
|
allenai/open-instruct-oasst1-13b
|
allenai
| 2023-06-20T17:43:52Z | 20 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:OpenAssistant/oasst1",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2304.07327",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:17:31Z |
---
datasets:
- OpenAssistant/oasst1
language:
- en
---
# Open-Instruct Open Assistant 13B
This model is a 13B LLaMa model finetuned on the Open Assistant dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 43.1 | 34.0 | 5.0 | 16.0 | 34.8 | 38.5 | 38.3 | 9.2 | 14.1 | 31.8 | 53.5 | 31.1 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{köpf2023openassistant,
title={OpenAssistant Conversations -- Democratizing Large Language Model Alignment},
author={Andreas Köpf and Yannic Kilcher and Dimitri von Rütte and Sotiris Anagnostidis and Zhi-Rui Tam and Keith Stevens and Abdullah Barhoum and Nguyen Minh Duc and Oliver Stanley and Richárd Nagyfi and Shahul ES and Sameer Suri and David Glushkov and Arnav Dantuluri and Andrew Maguire and Christoph Schuhmann and Huu Nguyen and Alexander Mattick},
year={2023},
eprint={2304.07327},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
allenai/open-instruct-self-instruct-13b
|
allenai
| 2023-06-20T17:43:21Z | 23 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:yizhongw/self_instruct",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2212.10560",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:16:53Z |
---
datasets:
- yizhongw/self_instruct
language:
- en
---
# Open-Instruct Self-Instruct 13B
This model is a 13B LLaMa model finetuned on the Self-instruct dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 30.3 | 32.3 | 4.5 | 9.0 | 33.6 | 29.6 | 40.4 | 9.3 | 8.6 | 13.4 | 6.8 | 18.7 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{selfinstruct,
title={Self-Instruct: Aligning Language Model with Self Generated Instructions},
author={Wang, Yizhong and Kordi, Yeganeh and Mishra, Swaroop and Liu, Alisa and Smith, Noah A. and Khashabi, Daniel and Hajishirzi, Hannaneh},
journal={arXiv preprint arXiv:2212.10560},
year={2022}
}
```
|
allenai/open-instruct-dolly-13b
|
allenai
| 2023-06-20T17:43:06Z | 22 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:databricks/databricks-dolly-15k",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:16:56Z |
---
datasets:
- databricks/databricks-dolly-15k
language:
- en
---
# Open-Instruct Dolly 13B
This model is a 13B LLaMa model finetuned on the Dolly dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 45.3 | 44.7 | 6.0 | 17.0 | 31.4 | 26.0 | 46.8 | 12.4 | 13.4 | 31.4 | 16.2 | 25.5 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{dolly,
author = {Databricks},
title = {Free Dolly: Introducing the World's First Truly Open Instruction-Tuned LLM},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {Blog post},
url = {https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm}
}
```
|
allenai/open-instruct-flan-v2-13b
|
allenai
| 2023-06-20T17:42:52Z | 18 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"arxiv:2306.04751",
"arxiv:2302.13971",
"arxiv:2301.13688",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:23:48Z |
---
language:
- en
---
# Open-Instruct Flan V2 13B
This model is a 13B LLaMa model finetuned on the Flan V2 dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 50.7 | 51.2 | 4.0 | 21.0 | 42.2 | 39.2 | 47.5 | 10.9 | 7.2 | 16.2 | 5.5 | 25.1 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@article{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Longpre, Shayne and Hou, Le and Vu, Tu and Webson, Albert and Chung, Hyung Won and Tay, Yi and Zhou, Denny and Le, Quoc V and Zoph, Barret and Wei, Jason and others},
journal={arXiv preprint arXiv:2301.13688},
year={2023}
}
```
|
HyunjooCheong/Hyunjoo_awesome_qa_model
|
HyunjooCheong
| 2023-06-20T17:41:13Z | 101 | 0 |
transformers
|
[
"transformers",
"pytorch",
"tensorboard",
"roberta",
"question-answering",
"generated_from_trainer",
"dataset:squad_v2",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-20T13:55:40Z |
---
license: cc-by-4.0
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: Hyunjoo_awesome_qa_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Hyunjoo_awesome_qa_model
This model is a fine-tuned version of [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4152
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 55 | 0.3647 |
| No log | 2.0 | 110 | 0.3834 |
| No log | 3.0 | 165 | 0.4152 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.0
- Tokenizers 0.13.3
|
AnnieEl/distilgpt2-finetuned-wikitext2
|
AnnieEl
| 2023-06-20T17:38:58Z | 217 | 0 |
transformers
|
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-20T16:01:09Z |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: distilgpt2-finetuned-wikitext2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilgpt2-finetuned-wikitext2
This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6522
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.7736 | 1.0 | 2110 | 3.6761 |
| 3.6673 | 2.0 | 4220 | 3.6560 |
| 3.6063 | 3.0 | 6330 | 3.6522 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.0
- Tokenizers 0.13.3
|
allenai/open-instruct-sni-13b
|
allenai
| 2023-06-20T17:38:19Z | 28 | 0 |
transformers
|
[
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"arxiv:2306.04751",
"arxiv:2302.13971",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2023-06-07T17:16:43Z |
---
language:
- en
---
# Open-Instruct SNI 13B
This model is a 13B LLaMa model finetuned on the Super-Natural Instructions dataset. *Please note this is a model diff - see below for usage instructions*.
This was trained as part of the paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751).
The codebase used to train and evaluate this model can be found at [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct).
This model is licensed under the AI model license given in LICENSE.txt along with the original Llama license (llama_license.txt).
## Usage
We assume you have access to a LLaMa model in HF format already. You can find details on getting access and converting the model here:
[https://huggingface.co/docs/transformers/main/model_doc/llama](https://huggingface.co/docs/transformers/main/model_doc/llama)
Clone [https://github.com/allenai/open-instruct](https://github.com/allenai/open-instruct) and install the required dependencies, or just copy `scripts/weight_diff.py`
and install the minimal requirements listed in `weight-diff-requirements.txt`. Then download or clone this model diff to the same machine.
Then, run:
```bash
python scripts/weight_diff.py recover --path_raw ${hf_llama_path} --path_tuned ${output_path} --path_diff ${diff_location}
```
And you will have a recovered model! Note this takes up a decent amount of RAM, especially for the larger models.
## Input Format
The model is trained to use the following format (note the newlines):
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
## Performance
Here is the performance of this model across benchmarks explored in our paper [How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources](https://arxiv.org/abs/2306.04751):
| MMLU 0-shot | MMLU 5-shot | GSM Direct | GSM CoT | BBH Direct | BBH CoT | TydiQA Gold-Passage | TydiQA Closed-book | Codex-Eval Pass@1 | Codex-Eval Pass@10 | AlpacaFarm vs Davinci-003 | Average |
|:-----------:|:-----------:|:----------:|:-------:|:----------:|:-------:|:-------------------:|:------------------:|:-----------------:|:------------------:|:-------------------------:|---------|
| 49.8 | 50.8 | 2.5 | 4.0 | 38.3 | 2.8 | 51.4 | 10.4 | 8.2 | 13.1 | 6.2 | 20.3 |
If you use this model, please cite our work, the llama paper, and the original dataset:
```
@misc{wang2023far,
title={How Far Can Camels Go? Exploring the State of Instruction Tuning on Open Resources},
author={Yizhong Wang and Hamish Ivison and Pradeep Dasigi and Jack Hessel and Tushar Khot and Khyathi Raghavi Chandu and David Wadden and Kelsey MacMillan and Noah A. Smith and Iz Beltagy and Hannaneh Hajishirzi},
year={2023},
eprint={2306.04751},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@misc{touvron2023llama,
title={LLaMA: Open and Efficient Foundation Language Models},
author={Hugo Touvron and Thibaut Lavril and Gautier Izacard and Xavier Martinet and Marie-Anne Lachaux and Timothée Lacroix and Baptiste Rozière and Naman Goyal and Eric Hambro and Faisal Azhar and Aurelien Rodriguez and Armand Joulin and Edouard Grave and Guillaume Lample},
year={2023},
eprint={2302.13971},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```
@inproceedings{supernaturalinstructions,
title={Super-NaturalInstructions:Generalization via Declarative Instructions on 1600+ Tasks},
author={Wang, Yizhong and Mishra, Swaroop and Alipoormolabashi, Pegah and Kordi, Yeganeh and Mirzaei, Amirreza and Arunkumar, Anjana and Ashok, Arjun and Dhanasekaran, Arut Selvan and Naik, Atharva and Stap, David and others},
booktitle={EMNLP},
year={2022}
}
```
|
undrwolf/PixelCopter
|
undrwolf
| 2023-06-20T17:33:08Z | 0 | 0 | null |
[
"Pixelcopter-PLE-v0",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T17:32:38Z |
---
tags:
- Pixelcopter-PLE-v0
- reinforce
- reinforcement-learning
- custom-implementation
- deep-rl-class
model-index:
- name: PixelCopter
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pixelcopter-PLE-v0
type: Pixelcopter-PLE-v0
metrics:
- type: mean_reward
value: 58.50 +/- 23.35
name: mean_reward
verified: false
---
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
Dugoss/qwerty
|
Dugoss
| 2023-06-20T17:30:10Z | 2 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T16:23:31Z |
Построили модель и натренировали ее на большей части данных с цифрами так, чтобы можно было передавать модели фотографии с цифрами размером 28×28 пикселей и получать на выходе значение этой цифры.

Для построения модели использовали обычные полносвязанные слои с разным количеством узлов. В качестве функции активации на входном и промежуточных слоях использовали функцию relu. На выходном слое в качестве функции активации определили сигмоиду

В качестве оптимайзера был выбран Adam.
В массиве X_train содержится 60000 изображений, ровно столько же содержится и в массиве y_train с соответствующими метками. Тестовые данные X_test и y_test содержат по 10000 элементов.
Epoch 1/5
96/96 [==============================] - 43s 429ms/step - loss: 0.1776 - binary_accuracy: 0.9385 - val_loss: 0.0580 - val_binary_accuracy: 0.9812
Epoch 2/5
96/96 [==============================] - 40s 417ms/step - loss: 0.0492 - binary_accuracy: 0.9838 - val_loss: 0.0376 - val_binary_accuracy: 0.9880
Epoch 3/5
96/96 [==============================] - 40s 419ms/step - loss: 0.0370 - binary_accuracy: 0.9881 - val_loss: 0.0347 - val_binary_accuracy: 0.9892
Epoch 4/5
96/96 [==============================] - 41s 423ms/step - loss: 0.0327 - binary_accuracy: 0.9893 - val_loss: 0.0327 - val_binary_accuracy: 0.9896
Epoch 5/5
96/96 [==============================] - 41s 427ms/step - loss: 0.0295 - binary_accuracy: 0.9905 - val_loss: 0.0312 - val_binary_accuracy: 0.9903
В результате обучения модели на 5 эпохах был замечен очень низкий loss и высокая точность!
|
huangyuyang/chatglm-6b-fp16.flm
|
huangyuyang
| 2023-06-20T17:27:51Z | 0 | 2 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-06-20T15:38:36Z |
---
license: apache-2.0
---
fastllm model for chatglm-6b-fp16
Github address: https://github.com/ztxz16/fastllm
|
danielpolok/h-chatbot-intent-classifier
|
danielpolok
| 2023-06-20T17:12:27Z | 8 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"setfit",
"text-classification",
"arxiv:2209.11055",
"license:apache-2.0",
"region:us"
] |
text-classification
| 2023-06-08T19:16:18Z |
---
license: apache-2.0
tags:
- setfit
- sentence-transformers
- text-classification
pipeline_tag: text-classification
---
# danielpolok/h-chatbot-intent-classifier
This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Usage
To use this model for inference, first install the SetFit library:
```bash
python -m pip install setfit
```
You can then run inference as follows:
```python
from setfit import SetFitModel
# Download from Hub and run inference
model = SetFitModel.from_pretrained("danielpolok/h-chatbot-intent-classifier")
# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
```
## BibTeX entry and citation info
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
|
Brendan/orig-refpydst-5p-referredstates-split-v1
|
Brendan
| 2023-06-20T17:08:31Z | 4 | 0 |
sentence-transformers
|
[
"sentence-transformers",
"pytorch",
"mpnet",
"feature-extraction",
"sentence-similarity",
"transformers",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
sentence-similarity
| 2023-06-20T17:07:48Z |
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
---
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 2276 with parameters:
```
{'batch_size': 24, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.OnlineContrastiveLoss.OnlineContrastiveLoss`
Parameters of the fit()-Method:
```
{
"epochs": 15,
"evaluation_steps": 800,
"evaluator": "recoverable_dst.retriever.code.st_evaluator.RetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
Andrey13rasfasf/task
|
Andrey13rasfasf
| 2023-06-20T17:08:20Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"region:us"
] | null | 2023-06-20T16:25:39Z |
---
library_name: keras
---
Характеристики НС:
Архитектура: автоэнкодер имеет два скрытых слоя, первый из которых имеет 128 нейронов, а второй слой имеет 64 нейрона. Выходной слой имеет 784 нейрона, которые соответствуют размеру исходного изображения MNIST.
Функции активации: автоэнкодер использует "ReLU" функцию активации для скрытых слоев и "sigmoid" - для выходного слоя.
Функция потерь: НС использует метод среднеквадратической ошибки (MSE) в качестве функции потерь, что помогает минимизировать ошибку при восстановлении исходного изображения из сжатого.
Алгоритм оптимизации: НС используется алгоритм оптимизации стохастический градиентный спуск с небольшим шагом обучения (learning rate).
Размер и тип данных: НС обрабатывает изображения MNIST размером 28x28, которые являются черно-белыми (одноканальными).
Временные характеристики: Количество эпох обучения 10 и размер пакета данных 128
Количество нейронов и размер НС: имеет 97280 обучаемых параметров, скрытые слои содержат 16512 и 8256 параметров соответственно, выходной слой - 50240 параметров.

|
Maksimk04/Digits_autoencoder_mnist
|
Maksimk04
| 2023-06-20T17:04:16Z | 2 | 0 |
tf-keras
|
[
"tf-keras",
"dataset:mnist",
"region:us"
] | null | 2023-06-20T15:00:59Z |
---
datasets:
- mnist
---
Данная НС, по сути, является вариационным автоэнкодером (VAE), принимающая на вход изображение 28х28,
возвращая измененное изображение той же самой цифры.
Структура модели:

Общее количество параметров составляет 249247 (124233 для энкодера и 125014 для декодера)
В качестве алгоритма оптимизации был использован стандартный 'adam' из keras.
Функция ошибок - mse (mean squared error).
(В дальнейшем функцию ошибок лучше заменить на специальную для vae)
Размеры тренировочного и тестового датасеты стандартны:
60 тыс. тренировочный
10 тыс. тестовый
В ходе обучения тренировочный разбивается еще и на валидационный в пропорции 1:5 (0.2),
поэтому итоговый размер тренировочного датасета - 48 тыс., валидационный - 12 тыс.
По окончанию обучения (10 эпох):
loss для тренировочной 0.334
loss для валидационной 0.335
loss для тестовой 0.336
В качестве метрики для точности для такого рода НС выбрать что-либо очень сложно,
Была выбрана стандартная метрика accuracy,
которая, соответсвенно, показала не самые информативные результаты:
для тренировочной 0.0092
для валидационной 0.0093
для тестовой 0.0074
Пример генерации сетью цифры 7

|
sundragon/itog
|
sundragon
| 2023-06-20T17:01:56Z | 0 | 0 | null |
[
"dataset:mnist",
"license:openrail",
"region:us"
] | null | 2023-06-20T14:58:17Z |
---
license: openrail
datasets:
- mnist
---
---
library_name: keras
---
2. Дан датасет mnist по входному изображению определить остаток от деления этой цифры
на 2;
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
тестовый датасет составляет 10 000, вариабельный 12 000, тренировочный 48 000


|
TheBloke/cassandra-6.9B-GGML
|
TheBloke
| 2023-06-20T17:01:28Z | 8 | 6 |
transformers
|
[
"transformers",
"gpt-neox",
"license:other",
"region:us"
] | null | 2023-06-19T00:10:09Z |
---
inference: false
license: other
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# WBrown's Cassandra 6.9B GGML
These files are GGML format model files for [WBrown's Cassandra 6.9B](https://huggingface.co/wbrown/cassandra-6.9b).
Please note that these GGMLs are **not compatible with llama.cpp, or currently with text-generation-webui**. Please see below for a list of tools known to work with these model files.
## Repositories available
* [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/cassandra-6.9B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/cassandra-6.9B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/wbrown/cassandra-6.9b)
## Prompt template: NovelAI-style
Examples:
```
[ Author: Haven Ross; Title: The Biker's Buddy; Tags: friendship, slice of life, funny; Genre: thriller ]
```
```
[Style: text adventure]
The Deepest Dungeon, a Text Adventure
> examine room
```
If using the latter, set `>` as a stop token in your UI.
<!-- compatibility_ggml start -->
## Compatibilty
These files are **not** compatible with llama.cpp.
Currently they can be used with:
* KoboldCpp, a powerful inference engine based on llama.cpp, with good UI: [KoboldCpp](https://github.com/LostRuins/koboldcpp)
* The ctransformers Python library, which includes LangChain support: [ctransformers](https://github.com/marella/ctransformers)
* The [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui) which uses ctransformers: [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
* [rustformers' llm](https://github.com/rustformers/llm)
* The example `gpt-neox` binary provided with [ggml](https://github.com/ggerganov/ggml)
As other options become available I will endeavour to update them here (do let me know in the Community tab if I've missed something!)
## Tutorial for using LoLLMS Web UI
* [Text tutorial, written by **Lucas3DCG**](https://huggingface.co/TheBloke/MPT-7B-Storywriter-GGML/discussions/2#6475d914e9b57ce0caa68888)
* [Video tutorial, by LoLLMS Web UI author **ParisNeo**](https://www.youtube.com/watch?v=ds_U0TDzbzI)
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| cassandra-6.9b.ggmlv0.q4_0.bin | q4_0 | 4 | 3.86 GB | 6.36 GB | Original llama.cpp quant method, 4-bit. |
| cassandra-6.9b.ggmlv0.q4_1.bin | q4_1 | 4 | 4.29 GB | 6.79 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| cassandra-6.9b.ggmlv0.q5_0.bin | q5_0 | 5 | 4.72 GB | 7.22 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| cassandra-6.9b.ggmlv0.q5_1.bin | q5_1 | 5 | 5.15 GB | 7.65 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
| cassandra-6.9b.ggmlv0.q8_0.bin | q8_0 | 8 | 7.29 GB | 9.79 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
**Patreon special mentions**: Mano Prime, Fen Risland, Derek Yates, Preetika Verma, webtim, Sean Connelly, Alps Aficionado, Karl Bernard, Junyu Yang, Nathan LeClaire, Chris McCloskey, Lone Striker, Asp the Wyvern, Eugene Pentland, Imad Khwaja, trip7s trip, WelcomeToTheClub, John Detwiler, Artur Olbinski, Khalefa Al-Ahmad, Trenton Dambrowitz, Talal Aujan, Kevin Schuppel, Luke Pendergrass, Pyrater, Joseph William Delisle, terasurfer , vamX, Gabriel Puliatti, David Flickinger, Jonathan Leane, Iucharbius , Luke, Deep Realms, Cory Kujawski, ya boyyy, Illia Dulskyi, senxiiz, Johann-Peter Hartmann, John Villwock, K, Ghost , Spiking Neurons AB, Nikolai Manek, Rainer Wilmers, Pierre Kircher, biorpg, Space Cruiser, Ai Maven, subjectnull, Willem Michiel, Ajan Kanaga, Kalila, chris gileta, Oscar Rangel.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: WBrown's Cassandra 6.9B
None provided.
|
pszemraj/long-t5-tglobal-xl-16384-booksci-summary-plos-10k
|
pszemraj
| 2023-06-20T16:49:00Z | 4 | 0 |
transformers
|
[
"transformers",
"pytorch",
"longt5",
"text2text-generation",
"generated_from_trainer",
"dataset:pszemraj/scientific_lay_summarisation-plos-norm",
"license:bsd-3-clause",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"region:us"
] |
text2text-generation
| 2023-06-20T15:35:19Z |
---
license:
- bsd-3-clause
- apache-2.0
tags:
- generated_from_trainer
datasets:
- pszemraj/scientific_lay_summarisation-plos-norm
metrics:
- rouge
model-index:
- name: long-t5-tglobal-xl-16384-book-summary-scientific_lay_summarisation-plos-norm-16384-summ-v1
results:
- task:
name: Summarization
type: summarization
dataset:
name: pszemraj/scientific_lay_summarisation-plos-norm
type: pszemraj/scientific_lay_summarisation-plos-norm
split: validation
metrics:
- name: Rouge1
type: rouge
value: 44.3203
inference: False
---
# long-t5-tglobal-xl-16384-booksci-summary-plos-10k
This model is a fine-tuned version of [pszemraj/long-t5-tglobal-xl-16384-book-summary](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-book-summary) on the pszemraj/scientific_lay_summarisation-plos-norm dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5041
- Rouge1: 44.3203
- Rouge2: 11.0576
- Rougel: 22.7584
- Rougelsum: 40.1462
- Gen Len: 256.66
## Model description
Another test of further fine-tuning booksum-based models, this one fine-tuned on the PLOS subset of lay-summaries for about 10k examples input, to make it roughly equivalent to [this checkpoint](https://huggingface.co/pszemraj/long-t5-tglobal-xl-16384-booksci-summary-v1) fine-tuned on the ELIFE subset for two epochs (also around 10k examples).
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 165
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.7715 | 0.28 | 350 | 1.5310 | 43.4729 | 10.4616 | 22.1928 | 39.505 | 260.87 |
| 1.9307 | 0.56 | 700 | 1.5102 | 44.1634 | 10.9336 | 22.3896 | 40.2939 | 253.58 |
| 1.2981 | 0.84 | 1050 | 1.5046 | 44.2728 | 10.8455 | 22.4122 | 40.3019 | 261.29 |
|
jxssx/autoencoder
|
jxssx
| 2023-06-20T16:40:13Z | 1 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T15:05:31Z |
Данная нейронная сеть восстанавливает входное изображение из "скрытого" состояния. Таким образом, на выходе получается новое изображение.

Алгоритм оптимизации: Adam.
Функция ошибки выглядит так:
def loss(y, z):
y = K.reshape(y, shape = (batch_size, 28*28))
z = K.reshape(z, shape = (batch_size, 28*28))
mse = K.sum(K.square(y - z), axis = 1)
kl = -.5 * K.sum(1 + loss_z_log_var - K.square(loss_z_mean) - K.exp(loss_z_log_var), axis = 1)
return mse
Длина тренировочного и тестового датасетов: 60000 и 10000 соответственно.
Потери в процессе обучения:

|
FortemDave/ppo-LunarLander-v2
|
FortemDave
| 2023-06-20T16:38:15Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T16:37:34Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 125.95 +/- 30.78
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
YukiNon/khokhlov_alexander_practice
|
YukiNon
| 2023-06-20T16:21:20Z | 0 | 0 | null |
[
"autoencoder",
"fashion-mnist",
"pytorch",
"huggingface",
"region:us"
] | null | 2023-06-20T15:34:26Z |
---
tags:
- autoencoder
- fashion-mnist
- pytorch
- huggingface
---
# Энкодер на датасете fashion_mnist
## Задача
Построить автоэнкодер для датасета Fashion MNIST, который будет принимать на вход изображение и создавать его же изображение на выходе.
## Архитектура
Нейросеть состоит из следующих слоев:
1.Входной слой, принимающий изображение
2.Полносвязный слой с 256 нейронами и функцией активации ReLU
3.Полносвязный слой с 128 нейронами и функцией активации ReLU
4.Скрытый слой, имеющий 50 нейронов и функцию активации ReLU
5.Полносвязный слой с 128 нейронами и функцией активации ReLU
6.Полносвязный слой с 256 нейронами и функцией активации ReLU
7.Выходной слой с функцией активации сигмоид, который производит декодирование изображения
8.Выходной слой, преобразующий выходную карту признаков в изображение

## Общее количество обучаемых параметров
Автоэнкодер содержит 235,978 обучаемых параметров
## Функция оптимизации и функция ошибок
Алгоритм оптимизации - Adam, функция ошибок - бинарная кросс-энтропия.
## Размеры датасета
- Тренировочный датасет: 48,000 изображений
- Валидационный датасет: 16,000 изображений
- Тестовый датасет: 16,000 изображений
## Результаты обучения модели на всех трех датасетах
После 50 эпох обучения модели на тренировочном датасете, результаты на трех датасетах такие:
- Train Loss: 0.26351
- Train Accuracy: 0.27152
- Val Loss: 0.26502
- Val Accuracy: 0.26352
- Test Loss: 0.26442
- Test Accuracy:0.26600
|
gyrov/finalTask
|
gyrov
| 2023-06-20T16:19:16Z | 0 | 0 |
tf-keras
|
[
"tf-keras",
"region:us"
] | null | 2023-06-20T14:15:07Z |
Зачетное задание
## Гуров Б.И.группа 46(1)
Задание №2. Дан датасет mnist по входному изображению определить остаток от деления этой цифры на 2
**1. Описание задачи модели:**
По входному изображению определяет остаток от деления на 2 изображенной цифры.
**2. Изображение модели нейросети:**

**3. Общее кол-во обучаемых параметров:**
Total params: 7,861
**4. Используемый алгоритмы оптимизации и функция ошибки:**
Оптимайзер - стандартный адам, функция ошибки - бинарная кроссэнтропия, так как выходный данные либо 0 либо 1.
**5. Размеры тренировочного, валидационного и тестового датасетов:**
Тренировочный: 48 000
Валидационный: 12 000
Тестовый: 10 000
**6. Результаты обучения модели: loss и accuracy на всех трёх датасетах:**
* Train_loss: 0.054842568933963776
* Train_accuracy: 0.9802291393280029
* Val_loss: 0.08922852575778961
* Val_accuracy: 0.9724166393280029
* Test loss: 0.0881127342581749
* Test accuracy: 0.9726999998092651
|
bob4o/Bobi_AI
|
bob4o
| 2023-06-20T16:13:40Z | 0 | 0 | null |
[
"region:us"
] | null | 2023-06-20T16:12:33Z |
import openai
import gradio
openai.api_key = "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"
messages = [{"role": "system", "content": "Your name is Bobi! "}]
def CustomChatGPT(user_input):
messages.append({"role": "user", "content": user_input})
response = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages = messages
)
ChatGPT_reply = response["choices"][0]["message"]["content"]
messages.append({"role": "assistant", "content": ChatGPT_reply})
return ChatGPT_reply
demo = gradio.Interface(fn=CustomChatGPT, inputs = "text", outputs = "text", title = "Bobi AI")
demo.launch(share=True)
|
jcnecio/poca-SoccerTwos
|
jcnecio
| 2023-06-20T16:06:57Z | 74 | 0 |
ml-agents
|
[
"ml-agents",
"tensorboard",
"onnx",
"SoccerTwos",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SoccerTwos",
"region:us"
] |
reinforcement-learning
| 2023-06-19T23:33:27Z |
---
library_name: ml-agents
tags:
- SoccerTwos
- deep-reinforcement-learning
- reinforcement-learning
- ML-Agents-SoccerTwos
---
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: jcnecio/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
|
venomdenom/MarkModel
|
venomdenom
| 2023-06-20T15:56:31Z | 0 | 0 |
keras
|
[
"keras",
"tf-keras",
"dataset:mnist",
"region:us"
] | null | 2023-06-20T14:34:00Z |
---
datasets:
- mnist
metrics:
- accuracy
library_name: keras
---
## Задание:
Дан датасет mnist по входному изображению определить цифру;

## Общее количество обучаемых параметров: 269,322
## Используемые алгоритмы:
adam_optimizer - алгоритм оптимизации
sparse_categorical_crossentropy - категориальная кроссэнтропия - функция потерь
## Размеры датасетов:
тренировочный - 10000
тестовый - 10000
## Результаты работы
тренировочный -
Training loss: 0.14755813777446747
Training accuracy: 0.9786666631698608
тестовый -
Validation loss: 0.1685849279165268
Validation accuracy: 0.9717000126838684
## Ссылка на Colab:
https://colab.research.google.com/drive/1TnfNRwHOqq5NjewGWZ3v1B7iEiS-iuFG?usp=sharing
|
TheFools/Normanvtsrr
|
TheFools
| 2023-06-20T15:46:24Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T15:45:35Z |
---
license: creativeml-openrail-m
---
|
Babelscape/mrebel-large
|
Babelscape
| 2023-06-20T15:40:58Z | 60,954 | 70 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"mbart",
"text2text-generation",
"seq2seq",
"relation-extraction",
"translation",
"ar",
"ca",
"de",
"el",
"en",
"es",
"fr",
"hi",
"it",
"ja",
"ko",
"nl",
"pl",
"pt",
"ru",
"sv",
"vi",
"zh",
"dataset:Babelscape/SREDFM",
"arxiv:2306.09802",
"license:cc-by-nc-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-06-12T13:40:27Z |
---
language:
- ar
- ca
- de
- el
- en
- es
- fr
- hi
- it
- ja
- ko
- nl
- pl
- pt
- ru
- sv
- vi
- zh
widget:
- text: >-
Els Red Hot Chili Peppers es van formar a Los Angeles per Kiedis, Flea, el
guitarrista Hillel Slovak i el bateria Jack Irons.
example_title: Catalan
inference:
parameters:
decoder_start_token_id: 250058
src_lang: ca_XX
tgt_lang: <triplet>
tags:
- seq2seq
- relation-extraction
license: cc-by-nc-sa-4.0
pipeline_tag: translation
datasets:
- Babelscape/SREDFM
---
# RED<sup>FM</sup>: a Filtered and Multilingual Relation Extraction Dataset
This is a multilingual version of [REBEL](https://huggingface.co/Babelscape/rebel-large). It can be used as a standalone multulingual Relation Extraction system, or as a pretrained system to be tuned on multilingual Relation Extraction datasets.
mREBEL is introduced in the ACL 2023 paper [RED^{FM}: a Filtered and Multilingual Relation Extraction Dataset](https://arxiv.org/abs/2306.09802). We present a new multilingual Relation Extraction dataset and train a multilingual version of REBEL which reframed Relation Extraction as a seq2seq task. The paper can be found [here](https://arxiv.org/abs/2306.09802). If you use the code or model, please reference this work in your paper:
@inproceedings{huguet-cabot-et-al-2023-redfm-dataset,
title = "RED$^{\rm FM}$: a Filtered and Multilingual Relation Extraction Dataset",
author = "Huguet Cabot, Pere-Llu{\'\i}s and Tedeschi, Simone and Ngonga Ngomo, Axel-Cyrille and
Navigli, Roberto",
booktitle = "Proc. of the 61st Annual Meeting of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2306.09802",
}
The original repository for the paper can be found [here](https://github.com/Babelscape/rebel#REDFM)
Be aware that the inference widget at the right does not output special tokens, which are necessary to distinguish the subject, object and relation types. For a demo of mREBEL and its pre-training dataset check the [Spaces demo](https://huggingface.co/spaces/Babelscape/mrebel-demo).
## Pipeline usage
```python
from transformers import pipeline
triplet_extractor = pipeline('translation_xx_to_yy', model='Babelscape/mrebel-large', tokenizer='Babelscape/mrebel-large')
# We need to use the tokenizer manually since we need special tokens.
extracted_text = triplet_extractor.tokenizer.batch_decode([triplet_extractor("The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.", decoder_start_token_id=250058, src_lang="en_XX", tgt_lang="<triplet>", return_tensors=True, return_text=False)[0]["translation_token_ids"]]) # change en_XX for the language of the source.
print(extracted_text[0])
# Function to parse the generated text and extract the triplets
def extract_triplets_typed(text):
triplets = []
relation = ''
text = text.strip()
current = 'x'
subject, relation, object_, object_type, subject_type = '','','','',''
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split():
if token == "<triplet>" or token == "<relation>":
current = 't'
if relation != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
relation = ''
subject = ''
elif token.startswith("<") and token.endswith(">"):
if current == 't' or current == 'o':
current = 's'
if relation != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
object_ = ''
subject_type = token[1:-1]
else:
current = 'o'
object_type = token[1:-1]
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
return triplets
extracted_triplets = extract_triplets_typed(extracted_text[0])
print(extracted_triplets)
```
## Model and Tokenizer using transformers
```python
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
def extract_triplets_typed(text):
triplets = []
relation = ''
text = text.strip()
current = 'x'
subject, relation, object_, object_type, subject_type = '','','','',''
for token in text.replace("<s>", "").replace("<pad>", "").replace("</s>", "").replace("tp_XX", "").replace("__en__", "").split():
if token == "<triplet>" or token == "<relation>":
current = 't'
if relation != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
relation = ''
subject = ''
elif token.startswith("<") and token.endswith(">"):
if current == 't' or current == 'o':
current = 's'
if relation != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
object_ = ''
subject_type = token[1:-1]
else:
current = 'o'
object_type = token[1:-1]
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
if subject != '' and relation != '' and object_ != '' and object_type != '' and subject_type != '':
triplets.append({'head': subject.strip(), 'head_type': subject_type, 'type': relation.strip(),'tail': object_.strip(), 'tail_type': object_type})
return triplets
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Babelscape/mrebel-large", src_lang="en_XX", tgt_lang="tp_XX")
# Here we set English ("en_XX") as source language. To change the source language swap the first token of the input for your desired language or change to supported language. For catalan ("ca_XX") or greek ("el_EL") (not included in mBART pretraining) you need a workaround:
# tokenizer._src_lang = "ca_XX"
# tokenizer.cur_lang_code_id = tokenizer.convert_tokens_to_ids("ca_XX")
# tokenizer.set_src_lang_special_tokens("ca_XX")
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/mrebel-large")
gen_kwargs = {
"max_length": 256,
"length_penalty": 0,
"num_beams": 3,
"num_return_sequences": 3,
"forced_bos_token_id": None,
}
# Text to extract triplets from
text = 'The Red Hot Chili Peppers were formed in Los Angeles by Kiedis, Flea, guitarist Hillel Slovak and drummer Jack Irons.'
# Tokenizer text
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt')
# Generate
generated_tokens = model.generate(
model_inputs["input_ids"].to(model.device),
attention_mask=model_inputs["attention_mask"].to(model.device),
decoder_start_token_id = tokenizer.convert_tokens_to_ids("tp_XX"),
**gen_kwargs,
)
# Extract text
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
# Extract triplets
for idx, sentence in enumerate(decoded_preds):
print(f'Prediction triplets sentence {idx}')
print(extract_triplets_typed(sentence))
```
## License
This model is licensed under the CC BY-SA 4.0 license. The text of the license can be found [here](https://creativecommons.org/licenses/by-nc-sa/4.0/).
|
hassansoliman/falcon-7b-qlora-utterance-adaptations_v6
|
hassansoliman
| 2023-06-20T15:39:42Z | 0 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-20T15:38:49Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
catrabbitbear/taxi-v3-attempt1
|
catrabbitbear
| 2023-06-20T15:37:05Z | 0 | 0 | null |
[
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T15:37:03Z |
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: taxi-v3-attempt1
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Taxi-v3
type: Taxi-v3
metrics:
- type: mean_reward
value: 7.52 +/- 2.67
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="catrabbitbear/taxi-v3-attempt1", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SotirisLegkas/Socratic-GODEL-instruct-user-system
|
SotirisLegkas
| 2023-06-20T15:34:18Z | 107 | 0 |
transformers
|
[
"transformers",
"pytorch",
"t5",
"text2text-generation",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text2text-generation
| 2023-06-20T13:54:57Z |
---
pipeline_tag: text2text-generation
---
Instruction: given a context, reply as in a Socratic dialogue.
|
LarryAIDraw/StarRail_Tingyun_AP_v1
|
LarryAIDraw
| 2023-06-20T15:28:42Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T15:20:01Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/60508/tingyunhonkai-star-rail
|
LarryAIDraw/tingyun_hsr
|
LarryAIDraw
| 2023-06-20T15:28:14Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T15:19:36Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/10234/tingyun-or-honkai-star-rail
|
LarryAIDraw/ty-000004
|
LarryAIDraw
| 2023-06-20T15:27:32Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T15:19:15Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/60413/tingyun-star-rail
|
LarryAIDraw/alice_touhou
|
LarryAIDraw
| 2023-06-20T15:22:48Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T15:17:29Z |
---
license: creativeml-openrail-m
---
https://civitai.com/models/81799/alice-margatroid-touhou-project
|
CodyKilpatrick/ppo-LunarLander-v2
|
CodyKilpatrick
| 2023-06-20T15:07:45Z | 2 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-05-22T15:17:47Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 265.08 +/- 20.87
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
paumena/BioASQ-DistilBERT
|
paumena
| 2023-06-20T15:07:31Z | 68 | 0 |
transformers
|
[
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] |
question-answering
| 2023-06-20T14:42:22Z |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: paumena/BioASQ-DistilBERT
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# paumena/BioASQ-DistilBERT
This model is a fine-tuned version of [paumena/QA-DistilBERT](https://huggingface.co/paumena/QA-DistilBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.4425
- Epoch: 4
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
{'exact_match': 79.16666666666667, 'f1': 82.6398528671149}
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1225, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Epoch |
|:----------:|:-----:|
| 1.2076 | 0 |
| 0.6846 | 1 |
| 0.5395 | 2 |
| 0.4718 | 3 |
| 0.4425 | 4 |
### Framework versions
- Transformers 4.30.2
- TensorFlow 2.12.0
- Datasets 2.13.0
- Tokenizers 0.13.3
|
antuuuu/anstsykh
|
antuuuu
| 2023-06-20T15:03:35Z | 0 | 0 | null |
[
"license:creativeml-openrail-m",
"region:us"
] | null | 2023-06-20T14:55:22Z |
---
license: creativeml-openrail-m
---
|
huangyuyang/chatglm-6b-int8.flm
|
huangyuyang
| 2023-06-20T15:03:17Z | 0 | 2 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2023-06-20T14:15:51Z |
---
license: apache-2.0
---
fastllm model for chatglm-6b-int8
Github address: https://github.com/ztxz16/fastllm
|
mfi/llm-kibook-falcon
|
mfi
| 2023-06-20T14:45:06Z | 0 | 0 | null |
[
"text-generation",
"en",
"de",
"dataset:mfi/ki-book-falcon",
"arxiv:1910.09700",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2023-06-16T11:27:36Z |
---
datasets:
- mfi/ki-book-falcon
language:
- en
- de
license: apache-2.0
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Maxividela10/Videla
|
Maxividela10
| 2023-06-20T14:40:38Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"region:us"
] | null | 2023-06-20T14:38:48Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
KUN1995/ZJP
|
KUN1995
| 2023-06-20T14:32:28Z | 0 | 0 | null |
[
"arxiv:1910.09700",
"region:us"
] | null | 2023-06-20T14:07:52Z |
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
# Doc / guide: https://huggingface.co/docs/hub/model-cards
{}
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
YoavWigelman/a2c-AntBulletEnv-v0
|
YoavWigelman
| 2023-06-20T14:32:17Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"AntBulletEnv-v0",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T14:31:15Z |
---
library_name: stable-baselines3
tags:
- AntBulletEnv-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: A2C
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: AntBulletEnv-v0
type: AntBulletEnv-v0
metrics:
- type: mean_reward
value: 874.15 +/- 110.67
name: mean_reward
verified: false
---
# **A2C** Agent playing **AntBulletEnv-v0**
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
leukas/mt5-large-nc16-250k-deen
|
leukas
| 2023-06-20T14:12:41Z | 12 | 0 |
transformers
|
[
"transformers",
"pytorch",
"safetensors",
"t5",
"text2text-generation",
"translation",
"de",
"en",
"arxiv:2302.14220",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
translation
| 2023-05-22T17:08:41Z |
---
language:
- de
- en
pipeline_tag: translation
---
# mt5-large-nc16-250k-deen
This model is released as part of the work from [Are Character-level Translations Worth the Wait? Comparing Character- and Subword-level Models for Machine Translation](https://arxiv.org/abs/2302.14220).
It is an mT5 model finetuned on German-->English translation using 250k sentence pairs from the WMT NewsCommentary v16 dataset.
To use the model correctly, you must prepend the prompt with "translate X to Y: ", where X and Y are your source and target languages (e.g. German, English).
NOTE: The decoder_start_token_id is 259 for byt5 models and 250099 for mt5 models, which is different from the default token from google's byt5 and mt5 models (which is 0).
|
tassadar667/ChatGLM6B-Legal
|
tassadar667
| 2023-06-20T14:03:38Z | 3 | 6 |
transformers
|
[
"transformers",
"pytorch",
"chatglm",
"glm",
"custom_code",
"zh",
"endpoints_compatible",
"region:us"
] | null | 2023-05-22T03:43:21Z |
---
language:
- zh
tags:
- glm
- chatglm
---
# ChatGLM-6B-Legal
## 介绍
ChatGLM-6B-Legal是一个在ChatGLM-6B上进行了参数微调的模型,主要关注于法律判据的预测方面。
## 使用方法
首先需要下载ChatGLM-6B模型,再下载本模型中的model_1和model_2,运行法律问答jupyter文件。需要修改文件中模型、config等目录。
依赖环境与ChatGLM-6B相同。
|
WALIDALI/bekiksrilym
|
WALIDALI
| 2023-06-20T14:02:49Z | 29 | 1 |
diffusers
|
[
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] |
text-to-image
| 2023-06-20T13:50:28Z |
---
license: creativeml-openrail-m
tags:
- text-to-image
- stable-diffusion
---
### bekiksrilym Dreambooth model trained by WALIDALI with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
kchen621/dqn-SpaceInvadersNoFrameskip-v4
|
kchen621
| 2023-06-20T13:54:28Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"SpaceInvadersNoFrameskip-v4",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2023-06-20T13:53:48Z |
---
library_name: stable-baselines3
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 598.00 +/- 294.47
name: mean_reward
verified: false
---
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4**
This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
Install the RL Zoo (with SB3 and SB3-Contrib):
```bash
pip install rl_zoo3
```
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kchen621 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga kchen621 -f logs/
python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
```
## Training (with the RL Zoo)
```
python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga kchen621
```
## Hyperparameters
```python
OrderedDict([('batch_size', 32),
('buffer_size', 100000),
('env_wrapper',
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
('exploration_final_eps', 0.01),
('exploration_fraction', 0.1),
('frame_stack', 4),
('gradient_steps', 1),
('learning_rate', 0.0001),
('learning_starts', 100000),
('n_timesteps', 1000000.0),
('optimize_memory_usage', False),
('policy', 'CnnPolicy'),
('target_update_interval', 1000),
('train_freq', 4),
('normalize', False)])
```
# Environment Arguments
```python
{'render_mode': 'rgb_array'}
```
|
hassansoliman/falcon-7b-qlora-utterance-adaptations_v5
|
hassansoliman
| 2023-06-20T13:45:06Z | 1 | 0 |
peft
|
[
"peft",
"region:us"
] | null | 2023-06-20T13:44:16Z |
---
library_name: peft
---
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.4.0.dev0
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.