modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-01 06:29:04
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
530 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-01 06:28:51
card
stringlengths
11
1.01M
arnolfokam/bert-base-uncased-kin
arnolfokam
2021-11-24T11:07:08Z
15
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - kin tags: - NER datasets: - masakhaner metrics: - f1 - precision - recall license: apache-2.0 widget: - text: "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n’u Rwanda, bushingiye nanone ku bufatanye hagati y’imigabane ya Afurika n’u Burayi." --- # Model description **bert-base-uncased-kin** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-kin**| 75.00 |80.09|77.47 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
Peterard/distilbert_bug_classifier
Peterard
2021-11-24T04:01:55Z
4
2
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en tags: - text-classification widget: - text: "The app crashed when I opened it this morning. Can you fix this please?" example_title: "Likely bug report" - text: "Please add a like button!" example_title: "Unlikely bug report" --- How to use this classifier: ``` from transformers import pipeline pipe = pipeline("text-classification", model="Peterard/distilbert_bug_classifier") pipe("The app crashed when I opened it this morning. Can you fix this please?") # [{'label': 'bug', 'score': 0.9042391180992126}] pipe("Please add a like button!") # [{'label': 'no_bug', 'score': 0.9977496266365051}] ``` N.B. The label will change depending on which is the likelier class
jb2k/bert-base-multilingual-cased-language-detection
jb2k
2021-11-24T01:36:01Z
4,142
14
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# bert-base-multilingual-cased-language-detection A model for language detection with support for 45 languages ## Model description This model was created by fine-tuning [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the [common language](https://huggingface.co/datasets/common_language) dataset. This dataset has support for 45 languages, which are listed below: ``` Arabic, Basque, Breton, Catalan, Chinese_China, Chinese_Hongkong, Chinese_Taiwan, Chuvash, Czech, Dhivehi, Dutch, English, Esperanto, Estonian, French, Frisian, Georgian, German, Greek, Hakha_Chin, Indonesian, Interlingua, Italian, Japanese, Kabyle, Kinyarwanda, Kyrgyz, Latvian, Maltese, Mongolian, Persian, Polish, Portuguese, Romanian, Romansh_Sursilvan, Russian, Sakha, Slovenian, Spanish, Swedish, Tamil, Tatar, Turkish, Ukranian, Welsh ``` ## Evaluation This model was evaluated on the test split of the [common language](https://huggingface.co/datasets/common_language) dataset, and achieved the following metrics: * Accuracy: 97.8%
vitusya/distilbert-base-uncased-finetuned-squad
vitusya
2021-11-23T21:15:03Z
8
0
transformers
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1610 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2137 | 1.0 | 5533 | 1.1625 | | 0.9496 | 2.0 | 11066 | 1.1263 | | 0.7591 | 3.0 | 16599 | 1.1610 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
AryanLala/autonlp-Scientific_Title_Generator-34558227
AryanLala
2021-11-23T16:51:34Z
8
19
transformers
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "en", "dataset:AryanLala/autonlp-data-Scientific_Title_Generator", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets." datasets: - AryanLala/autonlp-data-Scientific_Title_Generator co2_eq_emissions: 137.60574081887984 --- # Model Trained Using AutoNLP - Model: Google's Pegasus (https://huggingface.co/google/pegasus-xsum) - Problem type: Summarization - Model ID: 34558227 - CO2 Emissions (in grams): 137.60574081887984 - Spaces: https://huggingface.co/spaces/TitleGenerators/ArxivTitleGenerator - Dataset: arXiv Dataset (https://www.kaggle.com/Cornell-University/arxiv) - Data subset used: https://huggingface.co/datasets/AryanLala/autonlp-data-Scientific_Title_Generator ## Validation Metrics - Loss: 2.578599214553833 - Rouge1: 44.8482 - Rouge2: 24.4052 - RougeL: 40.1716 - RougeLsum: 40.1396 - Gen Len: 11.4675 ## Social - LinkedIn: https://www.linkedin.com/in/aryanlala/ - Twitter: https://twitter.com/AryanLala20 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/AryanLala/autonlp-Scientific_Title_Generator-34558227 ```
DeepPavlov/rubert-base-cased
DeepPavlov
2021-11-23T08:03:04Z
205,575
95
transformers
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "ru", "arxiv:1905.07213", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
--- language: - ru --- # rubert-base-cased RuBERT \(Russian, cased, 12‑layer, 768‑hidden, 12‑heads, 180M parameters\) was trained on the Russian part of Wikipedia and news data. We used this training data to build a vocabulary of Russian subtokens and took a multilingual version of BERT‑base as an initialization for RuBERT\[1\]. 08.11.2021: upload model with MLM and NSP heads \[1\]: Kuratov, Y., Arkhipov, M. \(2019\). Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language. arXiv preprint [arXiv:1905.07213](https://arxiv.org/abs/1905.07213).
gayanin/t5-small-mlm-pubmed-45
gayanin
2021-11-22T23:47:01Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: t5-small-mlm-pubmed-45 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-45 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6395 - Rouge2 Precision: 0.3383 - Rouge2 Recall: 0.2424 - Rouge2 Fmeasure: 0.2753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.519 | 0.75 | 500 | 1.9659 | 0.3178 | 0.1888 | 0.2299 | | 2.169 | 1.51 | 1000 | 1.8450 | 0.3256 | 0.2138 | 0.25 | | 2.0796 | 2.26 | 1500 | 1.7900 | 0.3368 | 0.2265 | 0.2636 | | 1.9978 | 3.02 | 2000 | 1.7553 | 0.3427 | 0.234 | 0.2709 | | 1.9686 | 3.77 | 2500 | 1.7172 | 0.3356 | 0.2347 | 0.2692 | | 1.9142 | 4.52 | 3000 | 1.6986 | 0.3358 | 0.238 | 0.2715 | | 1.921 | 5.28 | 3500 | 1.6770 | 0.3349 | 0.2379 | 0.2709 | | 1.8848 | 6.03 | 4000 | 1.6683 | 0.3346 | 0.2379 | 0.2708 | | 1.8674 | 6.79 | 4500 | 1.6606 | 0.3388 | 0.2419 | 0.2752 | | 1.8606 | 7.54 | 5000 | 1.6514 | 0.3379 | 0.2409 | 0.274 | | 1.8515 | 8.3 | 5500 | 1.6438 | 0.3356 | 0.2407 | 0.2731 | | 1.8403 | 9.05 | 6000 | 1.6401 | 0.3367 | 0.2421 | 0.2744 | | 1.8411 | 9.8 | 6500 | 1.6395 | 0.3383 | 0.2424 | 0.2753 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
huggingtweets/dril-horse_ebooks-pukicho
huggingtweets
2021-11-22T22:54:49Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/dril-horse_ebooks-pukicho/1637621684272/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/866045441942487041/xRAnnstd_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint & Pukicho & Horse ebooks</div> <div style="text-align: center; font-size: 14px;">@dril-horse_ebooks-pukicho</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint & Pukicho & Horse ebooks. | Data | wint | Pukicho | Horse ebooks | | --- | --- | --- | --- | | Tweets downloaded | 3226 | 2989 | 3200 | | Retweets | 466 | 90 | 0 | | Short tweets | 308 | 292 | 421 | | Tweets kept | 2452 | 2607 | 2779 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29iqmln0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-horse_ebooks-pukicho's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29cfj39j) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29cfj39j/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/dril-horse_ebooks-pukicho') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
gayanin/bart-mlm-pubmed-35
gayanin
2021-11-22T21:16:10Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bart-mlm-pubmed-35 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-35 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9359 - Rouge2 Precision: 0.5451 - Rouge2 Recall: 0.4232 - Rouge2 Fmeasure: 0.4666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.4156 | 1.0 | 663 | 1.0366 | 0.5165 | 0.3967 | 0.4394 | | 1.1773 | 2.0 | 1326 | 0.9841 | 0.5354 | 0.4168 | 0.4589 | | 1.0894 | 3.0 | 1989 | 0.9554 | 0.5346 | 0.4133 | 0.4563 | | 0.9359 | 4.0 | 2652 | 0.9440 | 0.5357 | 0.4163 | 0.4587 | | 0.8758 | 5.0 | 3315 | 0.9340 | 0.5428 | 0.4226 | 0.465 | | 0.8549 | 6.0 | 3978 | 0.9337 | 0.5385 | 0.422 | 0.4634 | | 0.7743 | 7.0 | 4641 | 0.9330 | 0.542 | 0.422 | 0.4647 | | 0.7465 | 8.0 | 5304 | 0.9315 | 0.5428 | 0.4231 | 0.4654 | | 0.7348 | 9.0 | 5967 | 0.9344 | 0.5462 | 0.4244 | 0.4674 | | 0.7062 | 10.0 | 6630 | 0.9359 | 0.5451 | 0.4232 | 0.4666 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
renBaikau/alphaDelay
renBaikau
2021-11-22T12:21:47Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: alphaDelay results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # alphaDelay This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6648 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 82.3335 | 5.0 | 25 | 14.0648 | 1.0 | | 6.1049 | 10.0 | 50 | 3.7145 | 1.0 | | 3.9873 | 15.0 | 75 | 3.6648 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
malteos/aspect-cord19-scibert-scivocab-uncased
malteos
2021-11-22T10:13:31Z
7
1
transformers
[ "transformers", "pytorch", "bert", "classification", "similarity", "sci", "en", "dataset:cord19", "arxiv:2010.06395", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - sci - en tags: - classification - similarity license: mit datasets: - cord19 --- # Aspect-based Document Similarity for Research Papers A `scibert-scivocab-uncased` model fine-tuned on the CORD-19 corpus as in [Aspect-based Document Similarity for Research Papers](https://arxiv.org/abs/2010.06395). <img src="https://raw.githubusercontent.com/malteos/aspect-document-similarity/master/docrel.png"> See GitHub for more details: https://github.com/malteos/aspect-document-similarity ## Demo <a href="https://colab.research.google.com/github/malteos/aspect-document-similarity/blob/master/demo.ipynb"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Google Colab"></a> You can try our trained models directly on Google Colab on all papers available on Semantic Scholar (via DOI, ArXiv ID, ACL ID, PubMed ID): <a href="https://colab.research.google.com/github/malteos/aspect-document-similarity/blob/master/demo.ipynb"><img src="https://raw.githubusercontent.com/malteos/aspect-document-similarity/master/demo.gif" alt="Click here for demo"></a>
ThomasSimonini/mlagents-snowballfight-1vs1-ppo
ThomasSimonini
2021-11-22T09:54:35Z
0
0
null
[ "deep-reinforcement-learning", "reinforcement-learning", "mlagents", "license:apache-2.0", "region:us" ]
reinforcement-learning
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - deep-reinforcement-learning - reinforcement-learning - mlagents environment: - MLAgents: Snowballfight-1vs1-ppo model-index: - name: mlagents-snowballfight-1vs1-ppo --- # mlagents-snowballfight-1vs1-ppo ☃️ This is a saved model of a PPO 1vs1 agent playing Snowball Fight.
khalidalt/DeBERTa-v3-large-mnli
khalidalt
2021-11-22T08:38:23Z
54
5
transformers
[ "transformers", "pytorch", "deberta-v2", "text-classification", "zero-shot-classification", "en", "arxiv:2006.03654", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: - en tags: - text-classification - zero-shot-classification metrics: - accuracy widget: - text: "The Movie have been criticized for the story. However, I think it is a great movie. [SEP] I liked the movie." --- # DeBERTa-v3-large-mnli ## Model description This model was trained on the Multi-Genre Natural Language Inference ( MultiNLI ) dataset, which consists of 433k sentence pairs textual entailment information. The model used is [DeBERTa-v3-large from Microsoft](https://huggingface.co/microsoft/deberta-large). The v3 DeBERTa outperforms the result of Bert and RoBERTa in majority of NLU benchmarks by using disentangled attention and enhanced mask decoder. More information about the orginal model is on [official repository](https://github.com/microsoft/DeBERTa) and the [paper](https://arxiv.org/abs/2006.03654) ## Intended uses & limitations #### How to use the model ```python premise = "The Movie have been criticized for the story. However, I think it is a great movie." hypothesis = "I liked the movie." input = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt") output = model(input["input_ids"].to(device)) # device = "cuda:0" or "cpu" prediction = torch.softmax(output["logits"][0], -1) label_names = ["entailment", "neutral", "contradiction"] print(label_names[prediction.argmax(0).tolist()]) ``` ### Training data This model was trained on the MultiNLI dataset, which consists of 392K sentence textual entitlement. ### Training procedure DeBERTa-v3-large-mnli was trained using the Hugging Face trainer with the following hyperparameters. ``` train_args = TrainingArguments( learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, warmup_ratio=0.06, weight_decay=0.1, fp16=True, seed=42, ) ``` ### BibTeX entry and citation info Please cite the [DeBERTa paper](https://arxiv.org/abs/2006.03654) and [MultiNLI Dataset](https://cims.nyu.edu/~sbowman/multinli/paper.pdf) if you use this model and include this Huggingface hub.
wukevin/tcr-bert-mlm-only
wukevin
2021-11-22T08:32:41Z
4,032
4
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
Pretrained on: * Masked amino acid modeling Please see our [main model](https://huggingface.co/wukevin/tcr-bert) for additional details.
snunlp/KR-Medium
snunlp
2021-11-22T06:19:42Z
173
7
transformers
[ "transformers", "pytorch", "jax", "bert", "ko", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- language: - ko --- # KR-BERT-MEDIUM A pretrained Korean-specific BERT model developed by Computational Linguistics Lab at Seoul National University. It is based on our character-level [KR-BERT](https://github.com/snunlp/KR-BERT) model which utilize WordPiece tokenizer. Here, the model name has a suffix 'MEDIUM' since its training data grew from KR-BERT's original dataset. We have another additional model, KR-BERT-EXPANDED with more extensive training data expanded from those of KR-BERT-MEDIUM, so the suffix 'MEDIUM' is used. <br> ### Vocab, Parameters and Data | | Mulitlingual BERT<br>(Google) | KorBERT<br>(ETRI) | KoBERT<br>(SKT) | KR-BERT character | KR-BERT-MEDIUM | | -------------: | ---------------------------------------------: | ---------------------: | ----------------------------------: | -------------------------------------: | -------------------------------------: | | vocab size | 119,547 | 30,797 | 8,002 | 16,424 | 20,000 | | parameter size | 167,356,416 | 109,973,391 | 92,186,880 | 99,265,066 | 102,015,010 | | data size | -<br>(The Wikipedia data<br>for 104 languages) | 23GB<br>4.7B morphemes | -<br>(25M sentences,<br>233M words) | 2.47GB<br>20M sentences,<br>233M words | 12.37GB<br>91M sentences,<br>1.17B words | <br> The training data for this model is expanded from those of KR-BERT, texts from Korean Wikipedia, and news articles, by addition of legal texts crawled from the National Law Information Center and [Korean Comments dataset](https://www.kaggle.com/junbumlee/kcbert-pretraining-corpus-korean-news-comments). This data expansion is to collect texts from more various domains than those of KR-BERT. The total data size is about 12.37GB, consisting of 91M and 1.17B words. The user-generated comment dataset is expected to have similar stylistic properties to the task datasets of NSMC and HSD. Such text includes abbreviations, coinages, emoticons, spacing errors, and typos. Therefore, we added the dataset containing such on-line properties to our existing formal data such as news articles and Wikipedia texts to compose the training data for KR-BERT-MEDIUM. Accordingly, KR-BERT-MEDIUM reported better results in sentiment analysis than other models, and the performances improved with the model of the more massive, more various training data. This model’s vocabulary size is 20,000, whose tokens are trained based on the expanded training data using the WordPiece tokenizer. KR-BERT-MEDIUM is trained for 2M steps with the maxlen of 128, training batch size of 64, and learning rate of 1e-4, taking 22 hours to train the model using a Google Cloud TPU v3-8. ### Models #### TensorFlow * BERT tokenizer, character-based model ([download](https://drive.google.com/file/d/1OWXGqr2Z2PWD6ST3MsFmcjM8c2mr8PkE/view?usp=sharing)) #### PyTorch * You can import it from Transformers! ```sh # pytorch, transformers from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("snunlp/KR-Medium", do_lower_case=False) model = AutoModel.from_pretrained("snunlp/KR-Medium") ``` ### Requirements - transformers == 4.0.0 - tensorflow < 2.0 ## Downstream tasks * Movie Review Classification on Naver Sentiment Movie Corpus [(NSMC)](https://github.com/e9t/nsmc) * Hate Speech Detection [(Moon et al., 2020)](https://github.com/kocohub/korean-hate-speech) #### tensorflow * After downloading our pre-trained models, put them in a `models` directory. * Set the output directory (for fine-tuning) * Select task name: `NSMC` for Movie Review Classification, and `HATE` for Hate Speech Detection ```sh # tensorflow python3 run_classifier.py \ --task_name={NSMC, HATE} \ --do_train=true \ --do_eval=true \ --do_predict=true \ --do_lower_case=False\ --max_seq_length=128 \ --train_batch_size=128 \ --learning_rate=5e-05 \ --num_train_epochs=5.0 \ --output_dir={output_dir} ``` <br> ### Performances TensorFlow, test set performances | | multilingual BERT | KorBERT<br>character | KR-BERT<br>character<br>WordPiece | KR-BERT-MEDIUM | |:-----:|-------------------:|----------------:|----------------------------:|-----------------------------------------:| | NSMC (Acc) | 86.82 | 89.81 | 89.74 | 90.29 | | Hate Speech (F1) | 52.03 | 54.33 | 54.53 | 57.91 | <br> ## Contacts nlp.snu@gmail.com
kaggleodin/distilbert-base-uncased-finetuned-squad
kaggleodin
2021-11-22T04:08:36Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: distilbert-base-uncased-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2291 | 1.0 | 5533 | 1.1581 | | 0.9553 | 2.0 | 11066 | 1.1249 | | 0.7767 | 3.0 | 16599 | 1.1639 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
yuekai/espnet-slu-snips
yuekai
2021-11-22T02:04:42Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
Fine-tune snips dataset for SLU task using pretrained ASR model with hubert feature --- language: - en receipe: "https://github.com/espnet/espnet/tree/master/egs2/snips/asr1" datasets: - snips: smart-lights-en-close-field metrics: - F1 score: 91.7 ---
Ulto/pythonCoPilot3
Ulto
2021-11-22T01:24:16Z
6
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot3 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
teven/roberta_kelm_tekgen
teven
2021-11-22T01:04:55Z
3
0
sentence-transformers
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # teven/roberta_kelm_tekgen This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('teven/roberta_kelm_tekgen') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('teven/roberta_kelm_tekgen') model = AutoModel.from_pretrained('teven/roberta_kelm_tekgen') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/roberta_kelm_tekgen) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 976035 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 394379 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` [ { "epochs": 1, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1000, "weight_decay": 0.01 } ] ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Ulto/pythonCoPilot2
Ulto
2021-11-22T00:24:53Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot2 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 4.0479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 427 | 4.3782 | | 4.6698 | 2.0 | 854 | 4.0718 | | 3.3953 | 3.0 | 1281 | 4.0479 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Ulto/pythonCoPilot
Ulto
2021-11-21T23:49:37Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: pythonCoPilot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pythonCoPilot This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
KrishParikh/gpt2_imdb_movie_plots
KrishParikh
2021-11-21T20:11:06Z
5
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: gpt2-plot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2-plot This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.8856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0 - Datasets 1.15.1 - Tokenizers 0.10.3
rafanegrette/t5_spa_gua
rafanegrette
2021-11-21T17:53:33Z
5
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
## Translator of Spanish/Wayuunaiki with T5 model ## This is a finetuned model based on T5 using a corpus of spanish-wayuunaiki. Wayuunaiki is the native language of the Wayuus, the major indigenous people in the north of Colombia.
Abirate/bert_fine_tuned_cola
Abirate
2021-11-21T16:41:00Z
10
1
transformers
[ "transformers", "tf", "bert", "text-classification", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
## Petrained Model BERT: base model (cased) BERT base model (cased) is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/1810.04805) and first released in this [repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between english and English. ## Pretained Model Description BERT is an auto-encoder transformer model pretrained on a large corpus of English data (English Wikipedia + Books Corpus) in a self-supervised fashion. This means the targets are computed from the inputs themselves, and humans are not needed to label the data. It was pretrained with two objectives: - Masked language modeling (MLM) - Next sentence prediction (NSP) ## Fine-tuned Model Description: BERT fine-tuned Cola The pretrained model could be fine-tuned on other NLP tasks. The BERT model has been fine-tuned on a cola dataset from the GLUE BENCHAMRK, which is an academic benchmark that aims to measure the performance of ML models. Cola is one of the 11 datasets in this GLUE BENCHMARK.  By fine-tuning BERT on cola dataset, the model is now able to classify a given setence gramatically and semantically as acceptable or not acceptable ## How to use ? ###### Directly with a pipeline for a text-classification NLP task ```python from transformers import pipeline cola = pipeline('text-classification', model='Abirate/bert_fine_tuned_cola') cola("Tunisia is a beautiful country") [{'label': 'acceptable', 'score': 0.989352285861969}] ``` ###### Breaking down all the steps (Tokenization, Modeling, Postprocessing) ```python from transformers import AutoTokenizer, TFAutoModelForSequenceClassification import tensorflow as tf import numpy as np tokenizer = AutoTokenizer.from_pretrained('Abirate/bert_fine_tuned_cola') model = TFAutoModelForSequenceClassification.from_pretrained("Abirate/bert_fine_tuned_cola") text = "Tunisia is a beautiful country." encoded_input = tokenizer(text, return_tensors='tf') #The logits output = model(encoded_input) #Postprocessing probas_output = tf.math.softmax(tf.squeeze(output['logits']), axis = -1) class_preds = np.argmax(probas_output, axis = -1) #Predicting the class acceptable or not acceptable model.config.id2label[class_preds] #Result 'acceptable' ```
huggingtweets/mo_turse
huggingtweets
2021-11-21T11:39:55Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/mo_turse/1637494790715/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1458151390505734144/QnD5NomB_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⬅️To_Murse💉</div> <div style="text-align: center; font-size: 14px;">@mo_turse</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ⬅️To_Murse💉. | Data | ⬅️To_Murse💉 | | --- | --- | | Tweets downloaded | 3199 | | Retweets | 1128 | | Short tweets | 198 | | Tweets kept | 1873 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18gmbfdi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mo_turse's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/72halqv5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/72halqv5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mo_turse') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
huggingtweets/prathkum
huggingtweets
2021-11-21T09:58:13Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/prathkum/1637488688526/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418652395119153153/dvMUbHmM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Pratham</div> <div style="text-align: center; font-size: 14px;">@prathkum</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Pratham. | Data | Pratham | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 455 | | Short tweets | 318 | | Tweets kept | 2473 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lnm0sab/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @prathkum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2w7zt05t) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2w7zt05t/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/prathkum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
emeraldgoose/bert-base-v1-sports
emeraldgoose
2021-11-21T05:45:05Z
13
0
transformers
[ "transformers", "pytorch", "bert", "fill-mask", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: ko mask_token: "[MASK]" widget: - text: 산악 자전거 경기는 상대적으로 새로운 [MASK] 1990년대에 활성화 되었다. --- ## Data-annotation-nlp-10 (BoostCamp AI) 위키피디아(스포츠) dataset 구축을 진행하면서 얻은 문장을 통해 bert 사전학습을 진행 ## How to use ```python from transformers import AutoTokenizer, BertForMaskedLM model = BertForMaskedLM.from_pretrained("emeraldgoose/bert-base-v1-sports") tokenizer = AutoTokenizer.from_pretrained("emeraldgoose/bert-base-v1-sports") text = "산악 자전거 경기는 상대적으로 새로운 [MASK] 1990년대에 활성화 되었다." inputs = tokenizer.encode(text, return_tensors='pt') model.eval() outputs = model(inputs)['logits'] predict = outputs.argmax(-1)[0] print(tokenizer.decode(predict)) ```
Leisa/marian-finetuned-kde4-en-to-fr
Leisa
2021-11-21T05:25:45Z
4
0
transformers
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-fr results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 args: en-fr metrics: - name: Bleu type: bleu value: 52.94538305859332 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Bleu: 52.9454 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
xiongjie/lightweight-real-ESRGAN-anime
xiongjie
2021-11-21T04:36:38Z
0
1
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05Z
This is super resolution model for anime like illustration that can upscale image 4x. This model can upscale 256x256 image to 1024x1024 within around 30[ms] on GPU and around 300[ms] on CPU. Example is [here](https://github.com/xiong-jie-y/ml-examples/tree/master/lightweight_real_esrgan_anime). License: MIT License
mgreenbe/bertlet-base-uncased-for-sequence-classification
mgreenbe
2021-11-20T17:23:02Z
4
2
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer model-index: - name: bertlet-base-uncased-for-sequence-classification results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertlet-base-uncased-for-sequence-classification This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0 ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
Sindhu/muril-large-squad2
Sindhu
2021-11-20T09:43:56Z
23
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
# Muril Large Squad2 This model is finetuned for QA task on Squad2 from [Muril Large checkpoint](https://huggingface.co/google/muril-large-cased). ## Hyperparameters ``` Batch Size: 4 Grad Accumulation Steps = 8 Total epochs = 3 MLM Checkpoint = google/muril-large-cased max_seq_len = 256 learning_rate = 1e-5 lr_schedule = LinearWarmup warmup_ratio = 0.1 doc_stride = 128 ``` ## Squad 2 Evaluation stats: Generated from [the official Squad2 evaluation script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/) ```json { "exact": 82.0180240882675, "f1": 85.10110304685352, "total": 11873, "HasAns_exact": 81.6970310391363, "HasAns_f1": 87.87203044454981, "HasAns_total": 5928, "NoAns_exact": 82.3380992430614, "NoAns_f1": 82.3380992430614, "NoAns_total": 5945 } ``` ## Limitations MuRIL is specifically trained to work on 18 Indic languages and English. This model is not expected to perform well in any other languages. See the MuRIL checkpoint for further details. For any questions, you can reach out to me [on Twitter](https://twitter.com/batw0man)
overfit/twiner-bert-base-mtl
overfit
2021-11-20T06:52:55Z
6
2
transformers
[ "transformers", "tf", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
## ParsTwiNER: Transformer-based Model for Named Entity Recognition at Informal Persian An open, broad-coverage corpus and model for informal Persian named entity recognition collected from Twitter. Paper presenting ParsTwiNER: [2021.wnut-1.16](https://aclanthology.org/2021.wnut-1.16/) --- ## Results The following table summarizes the F1 score on our corpus obtained by ParsTwiNER as compared to ParsBERT as a SoTA for Persian NER. ### Named Entity Recognition on Our Corpus | Entity Type | ParsTwiNER F1 | ParsBert F1 | |:-----------:|:-------------:|:--------------:| | PER | 91 | 80 | | LOC | 82 | 68 | | ORG | 69 | 55 | | EVE | 41 | 12 | | POG | 85 | - | | NAT | 82.3 | - | | Total | 81.5 | 69.5 | ## How to use ### TensorFlow 2.0 ```python from transformers import TFAutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("overfit/twiner-bert-base-mtl") model = TFAutoModelForTokenClassification.from_pretrained("overfit/twiner-bert-base-mtl") twiner_mtl = pipeline('ner', model=model, tokenizer=tokenizer, ignore_labels=[]) ``` ## Cite Please cite the following paper in your publication if you are using [ParsTwiNER](https://aclanthology.org/2021.wnut-1.16/) in your research: ```markdown @inproceedings{aghajani-etal-2021-parstwiner, title = "{P}ars{T}wi{NER}: A Corpus for Named Entity Recognition at Informal {P}ersian", author = "Aghajani, MohammadMahdi and Badri, AliAkbar and Beigy, Hamid", booktitle = "Proceedings of the Seventh Workshop on Noisy User-generated Text (W-NUT 2021)", month = nov, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.wnut-1.16", pages = "131--136", abstract = "As a result of unstructured sentences and some misspellings and errors, finding named entities in a noisy environment such as social media takes much more effort. ParsTwiNER contains about 250k tokens, based on standard instructions like MUC-6 or CoNLL 2003, gathered from Persian Twitter. Using Cohen{'}s Kappa coefficient, the consistency of annotators is 0.95, a high score. In this study, we demonstrate that some state-of-the-art models degrade on these corpora, and trained a new model using parallel transfer learning based on the BERT architecture. Experimental results show that the model works well in informal Persian as well as in formal Persian.", } ``` ## Acknowledgments The authors would like to thank Dr. Momtazi for her support. Furthermore, we would like to acknowledge the accompaniment provided by Mohammad Mahdi Samiei and Abbas Maazallahi. ## Contributors - Mohammad Mahdi Aghajani: [Linkedin](https://www.linkedin.com/in/mohammadmahdi-aghajani-821843147/), [Github](https://github.com/mmaghajani) - Ali Akbar Badri: [Linkedin](https://www.linkedin.com/in/aliakbarbadri/), [Github](https://github.com/AliAkbarBadri) - Dr. Hamid Beigy: [Linkedin](https://www.linkedin.com/in/hamid-beigy-8982604b/) - Overfit Team: [Github](https://github.com/overfit-ir), [Telegram](https://t.me/nlp_stuff) ## Releases ### Release v1.0.0 (Aug 01, 2021) This is the first version of our ParsTwiNER.
huggingtweets/temeton_blue-temeton_pink
huggingtweets
2021-11-19T22:17:54Z
4
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1461728895623995394/17gDcblW_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1421180251812638720/erd-JZoZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🌜 Normiemon (Sonic's Creed) 🌛 & 🌛 ℕormiemon's 𝔼xtra 𝕍iolent 𝔸lt 🌜</div> <div style="text-align: center; font-size: 14px;">@temeton_blue-temeton_pink</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🌜 Normiemon (Sonic's Creed) 🌛 & 🌛 ℕormiemon's 𝔼xtra 𝕍iolent 𝔸lt 🌜. | Data | 🌜 Normiemon (Sonic's Creed) 🌛 | 🌛 ℕormiemon's 𝔼xtra 𝕍iolent 𝔸lt 🌜 | | --- | --- | --- | | Tweets downloaded | 3241 | 685 | | Retweets | 827 | 65 | | Short tweets | 385 | 78 | | Tweets kept | 2029 | 542 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2rvfxw6c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @temeton_blue-temeton_pink's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19opzvs5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19opzvs5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/temeton_blue-temeton_pink') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JazibEijaz/bert-base-uncased-finetuned-semeval2020-task4a
JazibEijaz
2021-11-19T20:43:53Z
9
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "multiple-choice", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
multiple-choice
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: name: bert-base-uncased-finetuned-semeval2020-task4a-e2-b32-l5e5 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-semeval2020-task4a This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ComVE dataset which was part of SemEval 2020 Task 4. It achieves the following results on the test set: - Loss: 0.2782 - Accuracy: 0.9040 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 344 | 0.2700 | 0.8940 | | 0.349 | 2.0 | 688 | 0.2782 | 0.9040 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.12.1 - Tokenizers 0.10.3
kensho/dummy_full_language_model
kensho
2021-11-19T16:06:18Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
This is an example of how a kenLM model can be downloaded with [PyCTCDecode](https://github.com/kensho-technologies/pyctcdecode) . Simply run the following code: ```python from pyctcdecode import LanguageModel language_model = LanguageModel.load_from_hf_hub("kensho/dummy_full_language_model") ``` The model was created by [Patrick von Platen](https://huggingface.co/patrickvonplaten) for demonstration purposes.
alvp/alberti-stanzas
alvp
2021-11-19T13:41:53Z
6
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:alvp/autonlp-data-alberti-stanza-names", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - alvp/autonlp-data-alberti-stanza-names co2_eq_emissions: 8.612473981829835 --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 34318169 - CO2 Emissions (in grams): 8.612473981829835 ## Validation Metrics - Loss: 1.3520570993423462 - Accuracy: 0.6083916083916084 - Macro F1: 0.5420169617715481 - Micro F1: 0.6083916083916084 - Weighted F1: 0.5963328136975058 - Macro Precision: 0.5864033493660455 - Micro Precision: 0.6083916083916084 - Weighted Precision: 0.6364793882921277 - Macro Recall: 0.5545405576555766 - Micro Recall: 0.6083916083916084 - Weighted Recall: 0.6083916083916084 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alvp/autonlp-alberti-stanza-names-34318169 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alvp/autonlp-alberti-stanza-names-34318169", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
shivkumarganesh/vision-transformer-fmri-classification-ft
shivkumarganesh
2021-11-19T13:21:37Z
69
3
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: vision-transformer-fmri-classification-ft results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 0.7955589294433594 --- # vision-transformer-fmri-classification-ft Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images
readerbench/jurBERT-large
readerbench
2021-11-19T11:55:47Z
3
1
transformers
[ "transformers", "pytorch", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
Model card for jurBERT-large --- language: - ro --- # jurBERT-large ## Pretrained juridical BERT model for Romanian BERT Romanian juridical model trained using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://aclanthology.org/2021.nllp-1.8/). Two BERT models were released: **jurBERT-base** and **jurBERT-large**, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | jurBERT-base | 111M | 12 | 768 | 12 | 0.8936 | 0.9923 | | *jurBERT-large* | *337M* | *24* | *1024* | *24* | *0.9005* | *0.9929* | All models are available: * [jurBERT-base](https://huggingface.co/readerbench/jurBERT-base) * [jurBERT-large](https://huggingface.co/readerbench/jurBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/jurBERT-large") model = TFAutoModel.from_pretrained("readerbench/jurBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/jurBERT-large") model = AutoModel.from_pretrained("readerbench/jurBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Datasets The model is trained on a private corpus (that can nevertheless be rented for a fee), that is comprised of all the final ruling, containing both civil and criminal cases, published by any Romanian civil court between 2010 and 2018. Validation is performed on RoBanking datase. We extracted from RoJur common types of cases pertinent to the banking domain (e.g. administration fee litigations, enforcement appeals), kept only the summary of the arguments provided by both the plaitiffs and the defendants and the final verdict (in the form of a boolean value) to build RoBanking. | Corpus | Scope |Entries | Size (GB)| |-----------|:------------:|:---------:|:---------:| | RoJur | pre-training | 11M | 160 | | RoBanking | downstream | 108k | - | ## Downstream performance We report Mean AUC and Std AUC on the task of predicting the outcome of a case. ### Results on RoBanking using only the plea of the plaintiff. | Model | Mean AUC | Std AUC | |--------------------|:--------:|:--------:| | CNN | 79.60 | - | | BI-LSTM | 80.99 | 0.26 | | RoBERT-small | 70.54 | 0.28 | | RoBERT-base | 79.74 | 0.21 | | RoBERT-base + hf | 79.82 | 0.11 | | RoBERT-large | 76.53 | 5.43 | | jurBERT-base | **81.47**| **0.18** | | jurBERT-base + hf | 81.40 | 0.18 | | *jurBERT-large* | *78.38* | *1.77* | ### Results on RoBanking using pleas from both the plaintiff and defendant. | Model | Mean AUC | Std AUC | |---------------------|:--------:|:--------:| | BI-LSTM | 84.60 | 0.59 | | RoBERT-base | 84.40 | 0.26 | | RoBERT-base + hf | 84.43 | 0.15 | | jurBERT-base | 86.63 | 0.18 | | jurBERT-base + hf | **86.73**| **0.22** | | *jurBERT-large* | *82.04* | *0.64* | For complete results and discussion please refer to the [paper](https://aclanthology.org/2021.nllp-1.8/). ### BibTeX entry and citation info ```bibtex @inproceedings{masala2021jurbert, title={jurBERT: A Romanian BERT Model for Legal Judgement Prediction}, author={Masala, Mihai and Iacob, Radu Cristian Alexandru and Uban, Ana Sabina and Cidota, Marina and Velicu, Horia and Rebedea, Traian and Popescu, Marius}, booktitle={Proceedings of the Natural Legal Language Processing Workshop 2021}, pages={86--94}, year={2021} } ```
momo/gpt2-kiosk
momo
2021-11-19T07:42:34Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
# kiosk_bot KoGPT2를 이용한 간단한 kiosk chatbot 입니다. 데이터는 AiHub의 [한국어대화 데이터](https://aihub.or.kr/aidata/85)를 사용했습니다. 데이터는 학습만 진행하였고 공개는 하지 않습니다. ## Architecture Hugging face의 예제들을 보며 구현하였습니다. <img width="549" alt="gpt" src="https://user-images.githubusercontent.com/60643542/142431681-85db3d74-172d-45f0-9433-de43a8aeae17.png"> ```input``` 은 ```User + <BOS> + System + <EOS>```로 구현하였다. ```output``` 은 ```P(system|user)```를 최대화 시키기위해 모델을 학습하였다. ## Install ``` git clone https://github.com/momozzing/kiosk_bot.git pip install requirements.txt ``` ## How to train? 기존 학습된 데이터로 대화를 하고 싶으시면 ```install``` 후 ```How to chat``` 으로 넘어가셔도 됩니다. ``` cd kiosk_bot/data ## 안에 원하시는 데이터를 넣으시면 됩니다. kiosk_bot/GPT-2_fine_tune.py ## 안에 데이터 loader들의 파일이름을 변경해주시면 됩니다. deepspeed --num_gpus=1 GPT-2_fine_tune.py ## 변경후 이것으로 실행하시면 됩니다. 그후 생성된 skt-kogpt2-base-v2.pt 를 사용하시면 됩니다. ``` ## How to chat? ``` python interactive.py ##기존 데이터로 채팅하기 python new_data_interactive.py ##새로운 데이터로 파인튜닝한것 pt파일 불러와서 채팅하기. --기존 데이터 채팅-- User: 아메리카노 주세요 System: 따뜻한 거 드릴까요? User: 아이스로 주세요 System: 사이즈는 톨 괜찮으세요? User: 그란데 사이즈로 주세요 System: 죄송한데 저희 가게에는 레귤러랑 라지 사이즈 밖에 없어요 User: 그럼 라지사이즈로 주세요 System: 네 고객님 테이크아웃 하시나요? User: 먹고갈게요 System: 네 그럼 머그잔으로 준비해드리겠습니다 User: 감사합니다 System: 좋은 하루 보내세요 ``` ## Reference [HuggingFace](https://huggingface.co/transformers/index.html) [KoGPT2](https://github.com/SKT-AI/KoGPT2) [AIHUB](https://aihub.or.kr/)
MrBananaHuman/kogpt_6b_fp16
MrBananaHuman
2021-11-19T06:23:58Z
55
4
transformers
[ "transformers", "pytorch", "gptj", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:04Z
kakao brain에서 공개한 kogpt 6b model('kakaobrain/kogpt')을 fp16으로 저장한 모델입니다. ### 카카오브레인 모델을 fp16으로 로드하는 방법 ```python import torch from transformers import GPTJForCausalLM model = GPTJForCausalLM.from_pretrained('kakaobrain/kogpt', cache_dir='./my_dir', revision='KoGPT6B-ryan1.5b', torch_dtype=torch.float16) ``` ### fp16 모델 로드 후 문장 생성 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1_rLDzhGohJPbOD5I_eTIOdx4aOTp43uK?usp=sharing) ```python import torch from transformers import GPTJForCausalLM, AutoTokenizer model = GPTJForCausalLM.from_pretrained('MrBananaHuman/kogpt_6b_fp16', low_cpu_mem_usage=True)) model.to('cuda') tokenizer = AutoTokenizer.from_pretrained('MrBananaHuman/kogpt_6b_fp16') input_text = '이순신은' input_ids = tokenizer(input_text, return_tensors='pt').input_ids.to('cuda') output = model.generate(input_ids, max_length=64) print(tokenizer.decode(output[0])) >>> 이순신은 우리에게 무엇인가? 1. 머리말 이글은 임진왜란 당시 이순인이 보여준 ``` ### 참고 링크 https://github.com/kakaobrain/kogpt/issues/6?fbclid=IwAR1KpWhuHnevQvEWV18o16k2z9TLgrXkbWTkKqzL-NDXHfDnWcIq7I4SJXM
huyue012/wav2vec2-base-cynthia-tedlium-2500-v2
huyue012
2021-11-19T04:09:16Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-cynthia-tedlium-2500-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cynthia-tedlium-2500-v2 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6425 - Wer: 0.2033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.1196 | 6.58 | 500 | 0.6498 | 0.2103 | | 0.1176 | 13.16 | 1000 | 0.6490 | 0.2169 | | 0.1227 | 19.73 | 1500 | 0.6241 | 0.2127 | | 0.1078 | 26.31 | 2000 | 0.6359 | 0.2118 | | 0.0956 | 32.89 | 2500 | 0.6330 | 0.2073 | | 0.1008 | 39.47 | 3000 | 0.6816 | 0.2036 | | 0.09 | 46.05 | 3500 | 0.6425 | 0.2033 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
huggingtweets/stockstotrade
huggingtweets
2021-11-19T03:41:39Z
10
3
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en thumbnail: https://www.huggingtweets.com/stockstotrade/1637293295111/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/469936583416610816/EZt8Vl04_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">StocksToTrade</div> <div style="text-align: center; font-size: 14px;">@stockstotrade</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from StocksToTrade. | Data | StocksToTrade | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 663 | | Short tweets | 360 | | Tweets kept | 2215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/c33zwruj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @stockstotrade's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1upgfq9z/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/stockstotrade') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
dhairya2303/bert-base-uncased-emotion-AD
dhairya2303
2021-11-19T03:31:29Z
4
0
transformers
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
This the repo for the final project
aozorahime/my-new-model
aozorahime
2021-11-19T03:15:33Z
6
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum model-index: - name: my-new-model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-new-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
kevinzyz/chinese-bert-wwm-ext-finetuned-cola
kevinzyz
2021-11-19T03:13:39Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - matthews_correlation model-index: - name: chinese-bert-wwm-ext-finetuned-cola results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chinese-bert-wwm-ext-finetuned-cola This model is a fine-tuned version of [hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5747 - Matthews Correlation: 0.4085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:-----:|:---------------:|:--------------------:| | 0.5824 | 1.0 | 66375 | 0.5746 | 0.4083 | | 0.5824 | 2.0 | 66376 | 0.5747 | 0.4085 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.7.1 - Datasets 1.15.1 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-xlsr-53-300m-mls-german-ft
patrickvonplaten
2021-11-18T22:30:46Z
20
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "multilingual_librispeech", "generated_from_trainer", "dataset:multilingual_librispeech", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - multilingual_librispeech - generated_from_trainer datasets: - multilingual_librispeech model-index: - name: wav2vec2-xlsr-53-300m-mls-german-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-300m-mls-german-ft This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MULTILINGUAL_LIBRISPEECH - GERMAN 10h dataset. It achieves the following results on the evaluation set: - Loss: 0.2219 - Wer: 0.1288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 2.9888 | 7.25 | 500 | 2.9192 | 1.0 | | 2.9313 | 14.49 | 1000 | 2.8698 | 1.0 | | 1.068 | 21.74 | 1500 | 0.2647 | 0.2565 | | 0.8151 | 28.99 | 2000 | 0.2067 | 0.1719 | | 0.764 | 36.23 | 2500 | 0.1975 | 0.1568 | | 0.7332 | 43.48 | 3000 | 0.1812 | 0.1463 | | 0.5952 | 50.72 | 3500 | 0.1923 | 0.1428 | | 0.6655 | 57.97 | 4000 | 0.1900 | 0.1404 | | 0.574 | 65.22 | 4500 | 0.1822 | 0.1370 | | 0.6211 | 72.46 | 5000 | 0.1937 | 0.1355 | | 0.5883 | 79.71 | 5500 | 0.1872 | 0.1335 | | 0.5666 | 86.96 | 6000 | 0.1874 | 0.1324 | | 0.5526 | 94.2 | 6500 | 0.1998 | 0.1368 | | 0.5671 | 101.45 | 7000 | 0.2054 | 0.1365 | | 0.5514 | 108.7 | 7500 | 0.1987 | 0.1340 | | 0.5382 | 115.94 | 8000 | 0.2104 | 0.1344 | | 0.5819 | 123.19 | 8500 | 0.2125 | 0.1334 | | 0.5277 | 130.43 | 9000 | 0.2063 | 0.1330 | | 0.4626 | 137.68 | 9500 | 0.2105 | 0.1310 | | 0.5842 | 144.93 | 10000 | 0.2087 | 0.1307 | | 0.535 | 152.17 | 10500 | 0.2137 | 0.1309 | | 0.5081 | 159.42 | 11000 | 0.2215 | 0.1302 | | 0.6033 | 166.67 | 11500 | 0.2162 | 0.1302 | | 0.5549 | 173.91 | 12000 | 0.2198 | 0.1286 | | 0.5389 | 181.16 | 12500 | 0.2241 | 0.1293 | | 0.4912 | 188.41 | 13000 | 0.2190 | 0.1290 | | 0.4671 | 195.65 | 13500 | 0.2218 | 0.1290 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
anindabitm/sagemaker-BioclinicalBERT-ADR
anindabitm
2021-11-18T19:24:42Z
32
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:ade_corpus_v2", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
--- tags: - generated_from_trainer datasets: - ade_corpus_v2 model-index: - name: sagemaker-BioclinicalBERT-ADR results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-BioclinicalBERT-ADR This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on the ade_corpus_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 171 | 0.9441 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
sszyr/finetuned-bert-bounti
sszyr
2021-11-18T18:44:50Z
8
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned-bert-bounti results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-bert-bounti This model is a fine-tuned version of [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) on the BounTi Turkish Twitter sentiment dataset. It achieves the following results on the evaluation set: - Loss: 1.1188 - Accuracy: 0.7246 - F1: 0.6845 - Precision: 0.6892 - Recall: 0.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 36 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.0974 | 0.02 | 5 | 1.0790 | 0.3756 | 0.3064 | 0.3255 | 0.3232 | | 1.1345 | 0.04 | 10 | 1.0784 | 0.3725 | 0.3037 | 0.3219 | 0.3197 | | 1.1441 | 0.06 | 15 | 1.0776 | 0.3772 | 0.3072 | 0.3250 | 0.3234 | | 1.122 | 0.08 | 20 | 1.0774 | 0.3787 | 0.3077 | 0.3244 | 0.3228 | | 1.1201 | 0.1 | 25 | 1.0776 | 0.3787 | 0.3047 | 0.3193 | 0.3216 | | 1.1489 | 0.13 | 30 | 1.0783 | 0.3787 | 0.3012 | 0.3120 | 0.3189 | | 1.0716 | 0.15 | 35 | 1.0783 | 0.3897 | 0.3093 | 0.3212 | 0.3282 | | 1.082 | 0.17 | 40 | 1.0767 | 0.3865 | 0.3060 | 0.3203 | 0.3238 | | 1.1113 | 0.19 | 45 | 1.0738 | 0.3897 | 0.3058 | 0.3219 | 0.3211 | | 1.0892 | 0.21 | 50 | 1.0715 | 0.4069 | 0.3290 | 0.3475 | 0.3374 | | 1.0913 | 0.23 | 55 | 1.0719 | 0.4178 | 0.3283 | 0.3398 | 0.3361 | | 1.1114 | 0.25 | 60 | 1.0694 | 0.4397 | 0.3479 | 0.3605 | 0.3538 | | 1.1129 | 0.27 | 65 | 1.0682 | 0.4491 | 0.3593 | 0.3731 | 0.3648 | | 1.1283 | 0.29 | 70 | 1.0671 | 0.4664 | 0.3719 | 0.3775 | 0.3780 | | 1.1267 | 0.31 | 75 | 1.0714 | 0.4507 | 0.3826 | 0.3834 | 0.3835 | | 1.1325 | 0.33 | 80 | 1.0762 | 0.4335 | 0.3909 | 0.3918 | 0.3954 | | 1.0919 | 0.36 | 85 | 1.0723 | 0.4335 | 0.3930 | 0.3937 | 0.3982 | | 1.0545 | 0.38 | 90 | 1.0694 | 0.4507 | 0.4161 | 0.4180 | 0.4279 | | 1.1121 | 0.4 | 95 | 1.0698 | 0.4491 | 0.4151 | 0.4280 | 0.4324 | | 1.0675 | 0.42 | 100 | 1.0711 | 0.4382 | 0.4005 | 0.4349 | 0.4494 | | 1.0954 | 0.44 | 105 | 1.0720 | 0.4085 | 0.3690 | 0.4233 | 0.4326 | | 1.1087 | 0.46 | 110 | 1.0562 | 0.4820 | 0.4463 | 0.4762 | 0.4841 | | 1.0669 | 0.48 | 115 | 1.0459 | 0.5086 | 0.4746 | 0.4844 | 0.4997 | | 1.0529 | 0.5 | 120 | 1.0364 | 0.5243 | 0.4935 | 0.4946 | 0.5119 | | 1.0348 | 0.52 | 125 | 1.0248 | 0.5321 | 0.4953 | 0.4977 | 0.5067 | | 1.0454 | 0.54 | 130 | 1.0169 | 0.5415 | 0.5089 | 0.5084 | 0.5232 | | 1.0366 | 0.56 | 135 | 1.0071 | 0.5493 | 0.5176 | 0.5156 | 0.5344 | | 1.0197 | 0.59 | 140 | 1.0010 | 0.5446 | 0.5132 | 0.5150 | 0.5350 | | 1.0459 | 0.61 | 145 | 0.9966 | 0.5399 | 0.5094 | 0.5184 | 0.5383 | | 1.0059 | 0.63 | 150 | 1.0011 | 0.5477 | 0.5222 | 0.5394 | 0.5617 | | 0.9455 | 0.65 | 155 | 0.9898 | 0.5399 | 0.5173 | 0.5390 | 0.5583 | | 0.9732 | 0.67 | 160 | 0.9750 | 0.5477 | 0.5207 | 0.5406 | 0.5601 | | 1.0215 | 0.69 | 165 | 0.9494 | 0.5790 | 0.5495 | 0.5511 | 0.5759 | | 0.99 | 0.71 | 170 | 0.9331 | 0.5696 | 0.5355 | 0.5372 | 0.5500 | | 1.0102 | 0.73 | 175 | 0.9284 | 0.5759 | 0.5425 | 0.5488 | 0.5567 | | 0.9633 | 0.75 | 180 | 0.9313 | 0.5837 | 0.5571 | 0.5726 | 0.5758 | | 0.9388 | 0.77 | 185 | 0.9262 | 0.5869 | 0.5625 | 0.5830 | 0.5817 | | 0.9606 | 0.79 | 190 | 0.9140 | 0.5915 | 0.5638 | 0.5728 | 0.5835 | | 0.969 | 0.82 | 195 | 0.9170 | 0.5978 | 0.5712 | 0.5769 | 0.5964 | | 0.8779 | 0.84 | 200 | 0.9089 | 0.5947 | 0.5696 | 0.5790 | 0.5925 | | 0.9041 | 0.86 | 205 | 0.9013 | 0.6166 | 0.5874 | 0.5894 | 0.6083 | | 0.8643 | 0.88 | 210 | 0.8783 | 0.6275 | 0.5961 | 0.5972 | 0.6140 | | 0.8864 | 0.9 | 215 | 0.8651 | 0.6307 | 0.5984 | 0.6060 | 0.6152 | | 0.9075 | 0.92 | 220 | 0.8562 | 0.6401 | 0.6107 | 0.6096 | 0.6313 | | 0.8659 | 0.94 | 225 | 0.8407 | 0.6244 | 0.5896 | 0.5864 | 0.6085 | | 0.8921 | 0.96 | 230 | 0.8171 | 0.6385 | 0.6014 | 0.5955 | 0.6138 | | 0.9176 | 0.98 | 235 | 0.8120 | 0.6432 | 0.6052 | 0.6001 | 0.6183 | | 0.8124 | 1.0 | 240 | 0.8084 | 0.6479 | 0.6087 | 0.6058 | 0.6229 | | 0.7606 | 1.03 | 245 | 0.7978 | 0.6588 | 0.6198 | 0.6166 | 0.6258 | | 0.7879 | 1.05 | 250 | 0.8361 | 0.6322 | 0.6002 | 0.6090 | 0.6310 | | 0.8515 | 1.07 | 255 | 0.8527 | 0.6307 | 0.6063 | 0.6070 | 0.6368 | | 0.7861 | 1.09 | 260 | 0.8300 | 0.6510 | 0.6229 | 0.6172 | 0.6449 | | 0.8782 | 1.11 | 265 | 0.8068 | 0.6588 | 0.6262 | 0.6195 | 0.6412 | | 0.6993 | 1.13 | 270 | 0.8127 | 0.6573 | 0.6245 | 0.6186 | 0.6414 | | 0.7961 | 1.15 | 275 | 0.8302 | 0.6448 | 0.6129 | 0.6142 | 0.6382 | | 0.829 | 1.17 | 280 | 0.8130 | 0.6416 | 0.6068 | 0.6047 | 0.6264 | | 0.7315 | 1.19 | 285 | 0.8127 | 0.6714 | 0.6414 | 0.6348 | 0.6609 | | 0.7115 | 1.21 | 290 | 0.8074 | 0.6651 | 0.6367 | 0.6297 | 0.6577 | | 0.7937 | 1.23 | 295 | 0.8018 | 0.6667 | 0.6405 | 0.6338 | 0.6595 | | 0.8213 | 1.26 | 300 | 0.7846 | 0.6651 | 0.6317 | 0.6313 | 0.6424 | | 0.9309 | 1.28 | 305 | 0.7801 | 0.6651 | 0.6267 | 0.6314 | 0.6357 | | 0.7616 | 1.3 | 310 | 0.8000 | 0.6635 | 0.6403 | 0.6352 | 0.6657 | | 0.7075 | 1.32 | 315 | 0.8006 | 0.6635 | 0.6395 | 0.6354 | 0.6642 | | 0.8925 | 1.34 | 320 | 0.8418 | 0.6385 | 0.6185 | 0.6205 | 0.6531 | | 0.7579 | 1.36 | 325 | 0.8114 | 0.6541 | 0.6308 | 0.6281 | 0.6602 | | 0.6983 | 1.38 | 330 | 0.7589 | 0.6745 | 0.6424 | 0.6356 | 0.6538 | | 0.756 | 1.4 | 335 | 0.7540 | 0.6870 | 0.6423 | 0.6454 | 0.6436 | | 0.8183 | 1.42 | 340 | 0.7762 | 0.6651 | 0.6304 | 0.6248 | 0.6486 | | 0.7386 | 1.44 | 345 | 0.8212 | 0.6510 | 0.6244 | 0.6229 | 0.6535 | | 0.7175 | 1.46 | 350 | 0.8002 | 0.6573 | 0.6269 | 0.6229 | 0.6512 | | 0.7076 | 1.49 | 355 | 0.7799 | 0.6682 | 0.6310 | 0.6281 | 0.6506 | | 0.7115 | 1.51 | 360 | 0.7525 | 0.6886 | 0.6576 | 0.6510 | 0.6697 | | 0.7092 | 1.53 | 365 | 0.7882 | 0.6714 | 0.6272 | 0.6513 | 0.6330 | | 0.6852 | 1.55 | 370 | 0.7909 | 0.6698 | 0.6287 | 0.6548 | 0.6363 | | 0.673 | 1.57 | 375 | 0.7396 | 0.6901 | 0.6523 | 0.6536 | 0.6542 | | 0.7115 | 1.59 | 380 | 0.7270 | 0.6933 | 0.6539 | 0.6532 | 0.6546 | | 0.6391 | 1.61 | 385 | 0.7389 | 0.6964 | 0.6654 | 0.6576 | 0.6790 | | 0.6018 | 1.63 | 390 | 0.7619 | 0.6886 | 0.6628 | 0.6571 | 0.6835 | | 0.743 | 1.65 | 395 | 0.7635 | 0.6854 | 0.6579 | 0.6546 | 0.6780 | | 0.6865 | 1.67 | 400 | 0.7457 | 0.7011 | 0.6709 | 0.6681 | 0.6855 | | 0.6629 | 1.69 | 405 | 0.7309 | 0.7058 | 0.6752 | 0.6717 | 0.6861 | | 0.6887 | 1.72 | 410 | 0.7389 | 0.6933 | 0.6628 | 0.6555 | 0.6809 | | 0.6494 | 1.74 | 415 | 0.7742 | 0.6823 | 0.6565 | 0.6519 | 0.6831 | | 0.6798 | 1.76 | 420 | 0.7751 | 0.6667 | 0.6337 | 0.6345 | 0.6614 | | 0.6825 | 1.78 | 425 | 0.7798 | 0.6604 | 0.6269 | 0.6375 | 0.6594 | | 0.7926 | 1.8 | 430 | 0.7085 | 0.7105 | 0.6726 | 0.6670 | 0.6804 | | 0.6508 | 1.82 | 435 | 0.7455 | 0.6964 | 0.6439 | 0.6653 | 0.6460 | | 0.7772 | 1.84 | 440 | 0.7669 | 0.6964 | 0.6531 | 0.6780 | 0.6594 | | 0.7265 | 1.86 | 445 | 0.7454 | 0.7089 | 0.6722 | 0.6800 | 0.6826 | | 0.5965 | 1.88 | 450 | 0.7700 | 0.6933 | 0.6670 | 0.6623 | 0.6931 | | 0.6436 | 1.9 | 455 | 0.7910 | 0.6901 | 0.6654 | 0.6620 | 0.6951 | | 0.6887 | 1.92 | 460 | 0.7752 | 0.6870 | 0.6590 | 0.6552 | 0.6872 | | 0.7574 | 1.95 | 465 | 0.7511 | 0.6980 | 0.6686 | 0.6621 | 0.6925 | | 0.6853 | 1.97 | 470 | 0.7446 | 0.7074 | 0.6775 | 0.6711 | 0.6981 | | 0.7416 | 1.99 | 475 | 0.7151 | 0.7105 | 0.6783 | 0.6703 | 0.6938 | | 0.723 | 2.01 | 480 | 0.6886 | 0.7105 | 0.6727 | 0.6691 | 0.6776 | | 0.5993 | 2.03 | 485 | 0.6947 | 0.7152 | 0.6767 | 0.6711 | 0.6865 | | 0.549 | 2.05 | 490 | 0.7140 | 0.7167 | 0.6833 | 0.6764 | 0.6969 | | 0.5739 | 2.07 | 495 | 0.7372 | 0.7136 | 0.6843 | 0.6828 | 0.6961 | | 0.6444 | 2.09 | 500 | 0.7733 | 0.7089 | 0.6796 | 0.6943 | 0.6920 | | 0.5526 | 2.11 | 505 | 0.7368 | 0.7277 | 0.6954 | 0.6927 | 0.7074 | | 0.5429 | 2.13 | 510 | 0.7194 | 0.7246 | 0.6886 | 0.6879 | 0.6913 | | 0.5838 | 2.15 | 515 | 0.7465 | 0.7214 | 0.6818 | 0.6933 | 0.6866 | | 0.6746 | 2.18 | 520 | 0.7644 | 0.7152 | 0.6865 | 0.6819 | 0.7054 | | 0.7252 | 2.2 | 525 | 0.7564 | 0.7042 | 0.6713 | 0.6645 | 0.6918 | | 0.5443 | 2.22 | 530 | 0.7337 | 0.7027 | 0.6636 | 0.6598 | 0.6782 | | 0.5526 | 2.24 | 535 | 0.7324 | 0.7183 | 0.6795 | 0.6831 | 0.6865 | | 0.692 | 2.26 | 540 | 0.7622 | 0.7121 | 0.6826 | 0.6841 | 0.6971 | | 0.5897 | 2.28 | 545 | 0.7525 | 0.7089 | 0.6771 | 0.6708 | 0.6951 | | 0.708 | 2.3 | 550 | 0.7366 | 0.7105 | 0.6763 | 0.6690 | 0.6938 | | 0.6009 | 2.32 | 555 | 0.7232 | 0.7136 | 0.6741 | 0.6690 | 0.6843 | | 0.6622 | 2.34 | 560 | 0.7104 | 0.7136 | 0.6763 | 0.6727 | 0.6816 | | 0.8816 | 2.36 | 565 | 0.7150 | 0.7183 | 0.6830 | 0.6775 | 0.6932 | | 0.6642 | 2.38 | 570 | 0.7545 | 0.6980 | 0.6681 | 0.6652 | 0.6961 | | 0.5929 | 2.41 | 575 | 0.7167 | 0.7136 | 0.6778 | 0.6704 | 0.6930 | | 0.6612 | 2.43 | 580 | 0.7078 | 0.7277 | 0.6912 | 0.6858 | 0.7023 | | 0.4924 | 2.45 | 585 | 0.7138 | 0.7167 | 0.6809 | 0.6753 | 0.6938 | | 0.544 | 2.47 | 590 | 0.7088 | 0.7183 | 0.6807 | 0.6749 | 0.6901 | | 0.4047 | 2.49 | 595 | 0.7210 | 0.7199 | 0.6843 | 0.6775 | 0.6965 | | 0.5416 | 2.51 | 600 | 0.7199 | 0.7214 | 0.6845 | 0.6777 | 0.6952 | | 0.5407 | 2.53 | 605 | 0.7159 | 0.7293 | 0.6934 | 0.6873 | 0.7017 | | 0.5775 | 2.55 | 610 | 0.7354 | 0.7308 | 0.6975 | 0.6902 | 0.7133 | | 0.6107 | 2.57 | 615 | 0.7402 | 0.7261 | 0.6932 | 0.6863 | 0.7103 | | 0.5679 | 2.59 | 620 | 0.7266 | 0.7293 | 0.6946 | 0.6869 | 0.7091 | | 0.5599 | 2.62 | 625 | 0.7049 | 0.7136 | 0.6736 | 0.6716 | 0.6757 | | 0.6608 | 2.64 | 630 | 0.7150 | 0.7183 | 0.6834 | 0.6761 | 0.6952 | | 0.6886 | 2.66 | 635 | 0.7334 | 0.7230 | 0.6925 | 0.6856 | 0.7107 | | 0.6524 | 2.68 | 640 | 0.7106 | 0.7324 | 0.6955 | 0.6907 | 0.7060 | | 0.5027 | 2.7 | 645 | 0.7031 | 0.7261 | 0.6871 | 0.6896 | 0.6883 | | 0.5327 | 2.72 | 650 | 0.7033 | 0.7230 | 0.6824 | 0.6863 | 0.6812 | | 0.6561 | 2.74 | 655 | 0.7188 | 0.7183 | 0.6846 | 0.6770 | 0.6979 | | 0.591 | 2.76 | 660 | 0.7449 | 0.7136 | 0.6844 | 0.6793 | 0.7087 | | 0.4584 | 2.78 | 665 | 0.7220 | 0.7074 | 0.6732 | 0.6661 | 0.6855 | | 0.501 | 2.8 | 670 | 0.7212 | 0.7199 | 0.6829 | 0.6830 | 0.6879 | | 0.7118 | 2.82 | 675 | 0.7327 | 0.7167 | 0.6827 | 0.6775 | 0.6962 | | 0.5037 | 2.85 | 680 | 0.7544 | 0.7121 | 0.6818 | 0.6742 | 0.7042 | | 0.4921 | 2.87 | 685 | 0.7265 | 0.7136 | 0.6791 | 0.6714 | 0.6926 | | 0.5255 | 2.89 | 690 | 0.7278 | 0.7074 | 0.6706 | 0.6659 | 0.6855 | | 0.509 | 2.91 | 695 | 0.7334 | 0.7027 | 0.6654 | 0.6599 | 0.6806 | | 0.4321 | 2.93 | 700 | 0.7358 | 0.7152 | 0.6805 | 0.6728 | 0.6944 | | 0.6196 | 2.95 | 705 | 0.7406 | 0.7293 | 0.6971 | 0.6895 | 0.7119 | | 0.5289 | 2.97 | 710 | 0.7363 | 0.7324 | 0.7017 | 0.6944 | 0.7162 | | 0.6204 | 2.99 | 715 | 0.7401 | 0.7324 | 0.7024 | 0.6949 | 0.7182 | | 0.5459 | 3.01 | 720 | 0.7360 | 0.7308 | 0.7010 | 0.6937 | 0.7152 | | 0.4793 | 3.03 | 725 | 0.7363 | 0.7324 | 0.7007 | 0.6966 | 0.7123 | | 0.5157 | 3.05 | 730 | 0.7330 | 0.7355 | 0.7026 | 0.6999 | 0.7107 | | 0.4863 | 3.08 | 735 | 0.7231 | 0.7199 | 0.6842 | 0.6803 | 0.6887 | | 0.423 | 3.1 | 740 | 0.7313 | 0.7230 | 0.6873 | 0.6816 | 0.6950 | | 0.4879 | 3.12 | 745 | 0.7546 | 0.7199 | 0.6895 | 0.6828 | 0.7064 | | 0.2499 | 3.14 | 750 | 0.7727 | 0.7214 | 0.6934 | 0.6913 | 0.7093 | | 0.487 | 3.16 | 755 | 0.7621 | 0.7230 | 0.6906 | 0.6832 | 0.7052 | | 0.3501 | 3.18 | 760 | 0.7966 | 0.7027 | 0.6689 | 0.6664 | 0.6919 | | 0.5762 | 3.2 | 765 | 0.7694 | 0.7121 | 0.6747 | 0.6708 | 0.6896 | | 0.4491 | 3.22 | 770 | 0.7482 | 0.7230 | 0.6873 | 0.6860 | 0.6887 | | 0.4803 | 3.24 | 775 | 0.7584 | 0.7261 | 0.6895 | 0.6910 | 0.6934 | | 0.3349 | 3.26 | 780 | 0.7874 | 0.7183 | 0.6870 | 0.6929 | 0.6956 | | 0.5481 | 3.28 | 785 | 0.8124 | 0.7105 | 0.6856 | 0.6831 | 0.7075 | | 0.3695 | 3.31 | 790 | 0.7935 | 0.7089 | 0.6798 | 0.6714 | 0.6995 | | 0.3998 | 3.33 | 795 | 0.7702 | 0.7152 | 0.6811 | 0.6748 | 0.6912 | | 0.5214 | 3.35 | 800 | 0.7705 | 0.7152 | 0.6765 | 0.6772 | 0.6759 | | 0.4914 | 3.37 | 805 | 0.7796 | 0.7293 | 0.6954 | 0.6887 | 0.7048 | | 0.4096 | 3.39 | 810 | 0.7912 | 0.7121 | 0.6818 | 0.6732 | 0.6999 | | 0.4346 | 3.41 | 815 | 0.7758 | 0.7293 | 0.6958 | 0.6887 | 0.7060 | | 0.4933 | 3.43 | 820 | 0.7802 | 0.7136 | 0.6795 | 0.6719 | 0.6942 | | 0.4561 | 3.45 | 825 | 0.7670 | 0.7261 | 0.6929 | 0.6863 | 0.7020 | | 0.5619 | 3.47 | 830 | 0.7656 | 0.7293 | 0.6916 | 0.6950 | 0.6915 | | 0.4934 | 3.49 | 835 | 0.7875 | 0.7277 | 0.6872 | 0.7002 | 0.6866 | | 0.545 | 3.51 | 840 | 0.7675 | 0.7199 | 0.6733 | 0.6852 | 0.6663 | | 0.4279 | 3.54 | 845 | 0.7582 | 0.7136 | 0.6709 | 0.6735 | 0.6690 | | 0.351 | 3.56 | 850 | 0.7599 | 0.7136 | 0.6728 | 0.6724 | 0.6741 | | 0.3701 | 3.58 | 855 | 0.7602 | 0.7293 | 0.6922 | 0.6940 | 0.6915 | | 0.5307 | 3.6 | 860 | 0.7689 | 0.7308 | 0.6936 | 0.6968 | 0.6940 | | 0.3895 | 3.62 | 865 | 0.7657 | 0.7246 | 0.6897 | 0.6852 | 0.6952 | | 0.4676 | 3.64 | 870 | 0.7715 | 0.7230 | 0.6875 | 0.6811 | 0.6965 | | 0.4124 | 3.66 | 875 | 0.7795 | 0.7230 | 0.6899 | 0.6822 | 0.7024 | | 0.464 | 3.68 | 880 | 0.7933 | 0.7214 | 0.6893 | 0.6829 | 0.7022 | | 0.4911 | 3.7 | 885 | 0.8201 | 0.7324 | 0.6947 | 0.6999 | 0.7029 | | 0.4753 | 3.72 | 890 | 0.7907 | 0.7324 | 0.6978 | 0.6928 | 0.7060 | | 0.3981 | 3.74 | 895 | 0.7811 | 0.7214 | 0.6832 | 0.6823 | 0.6842 | | 0.5685 | 3.77 | 900 | 0.7806 | 0.7277 | 0.6899 | 0.6880 | 0.6920 | | 0.4643 | 3.79 | 905 | 0.7792 | 0.7308 | 0.6961 | 0.6942 | 0.6995 | | 0.4609 | 3.81 | 910 | 0.7886 | 0.7152 | 0.6814 | 0.6738 | 0.6940 | | 0.5575 | 3.83 | 915 | 0.8158 | 0.7011 | 0.6688 | 0.6656 | 0.6925 | | 0.4409 | 3.85 | 920 | 0.7921 | 0.7074 | 0.6717 | 0.6657 | 0.6890 | | 0.5152 | 3.87 | 925 | 0.7839 | 0.7214 | 0.6859 | 0.6783 | 0.7003 | | 0.4547 | 3.89 | 930 | 0.7646 | 0.7387 | 0.7034 | 0.6998 | 0.7111 | | 0.32 | 3.91 | 935 | 0.7502 | 0.7277 | 0.6885 | 0.6893 | 0.6881 | | 0.2742 | 3.93 | 940 | 0.7583 | 0.7167 | 0.6734 | 0.6794 | 0.6686 | | 0.5842 | 3.95 | 945 | 0.7613 | 0.7261 | 0.6885 | 0.6842 | 0.6942 | | 0.4406 | 3.97 | 950 | 0.7951 | 0.7387 | 0.7056 | 0.7011 | 0.7178 | | 0.5251 | 4.0 | 955 | 0.7932 | 0.7261 | 0.6918 | 0.6851 | 0.7056 | | 0.4235 | 4.02 | 960 | 0.7839 | 0.7167 | 0.6818 | 0.6745 | 0.6949 | | 0.3876 | 4.04 | 965 | 0.7668 | 0.7277 | 0.6918 | 0.6864 | 0.6987 | | 0.4244 | 4.06 | 970 | 0.7622 | 0.7246 | 0.6851 | 0.6872 | 0.6834 | | 0.3872 | 4.08 | 975 | 0.7696 | 0.7261 | 0.6879 | 0.6903 | 0.6867 | | 0.3878 | 4.1 | 980 | 0.7760 | 0.7183 | 0.6781 | 0.6779 | 0.6787 | | 0.3029 | 4.12 | 985 | 0.7897 | 0.7340 | 0.6971 | 0.6933 | 0.7027 | | 0.3147 | 4.14 | 990 | 0.7987 | 0.7308 | 0.6946 | 0.6903 | 0.7003 | | 0.3531 | 4.16 | 995 | 0.8009 | 0.7167 | 0.6750 | 0.6746 | 0.6753 | | 0.393 | 4.18 | 1000 | 0.8072 | 0.7136 | 0.6724 | 0.6730 | 0.6718 | | 0.5162 | 4.21 | 1005 | 0.8105 | 0.7277 | 0.6902 | 0.6861 | 0.6952 | | 0.4582 | 4.23 | 1010 | 0.8124 | 0.7293 | 0.6919 | 0.6873 | 0.6977 | | 0.4746 | 4.25 | 1015 | 0.8130 | 0.7340 | 0.7015 | 0.6944 | 0.7125 | | 0.453 | 4.27 | 1020 | 0.8024 | 0.7418 | 0.7083 | 0.7019 | 0.7174 | | 0.3852 | 4.29 | 1025 | 0.7856 | 0.7183 | 0.6778 | 0.6763 | 0.6798 | | 0.3614 | 4.31 | 1030 | 0.7797 | 0.7167 | 0.6766 | 0.6757 | 0.6781 | | 0.3222 | 4.33 | 1035 | 0.7949 | 0.7293 | 0.6897 | 0.6983 | 0.6899 | | 0.3769 | 4.35 | 1040 | 0.8036 | 0.7246 | 0.6853 | 0.6974 | 0.6826 | | 0.3626 | 4.37 | 1045 | 0.7951 | 0.7340 | 0.6947 | 0.7033 | 0.6925 | | 0.335 | 4.39 | 1050 | 0.8133 | 0.7293 | 0.6999 | 0.6923 | 0.7139 | | 0.4664 | 4.41 | 1055 | 0.8644 | 0.7074 | 0.6818 | 0.6747 | 0.7095 | | 0.3939 | 4.44 | 1060 | 0.8280 | 0.7246 | 0.6949 | 0.6859 | 0.7140 | | 0.3793 | 4.46 | 1065 | 0.7876 | 0.7293 | 0.6919 | 0.6879 | 0.6966 | | 0.4559 | 4.48 | 1070 | 0.7933 | 0.7277 | 0.6837 | 0.6939 | 0.6787 | | 0.362 | 4.5 | 1075 | 0.7908 | 0.7308 | 0.6886 | 0.6955 | 0.6862 | | 0.3833 | 4.52 | 1080 | 0.8061 | 0.7246 | 0.6894 | 0.6912 | 0.6948 | | 0.2983 | 4.54 | 1085 | 0.8001 | 0.7371 | 0.6958 | 0.7029 | 0.6956 | | 0.4279 | 4.56 | 1090 | 0.7939 | 0.7340 | 0.6985 | 0.6970 | 0.7007 | | 0.371 | 4.58 | 1095 | 0.8178 | 0.7355 | 0.7047 | 0.6957 | 0.7213 | | 0.2119 | 4.6 | 1100 | 0.8276 | 0.7277 | 0.6953 | 0.6877 | 0.7129 | | 0.4231 | 4.62 | 1105 | 0.8099 | 0.7402 | 0.7089 | 0.7007 | 0.7219 | | 0.1754 | 4.64 | 1110 | 0.8107 | 0.7340 | 0.6973 | 0.7013 | 0.6991 | | 0.2922 | 4.67 | 1115 | 0.8135 | 0.7324 | 0.6945 | 0.6989 | 0.6954 | | 0.3584 | 4.69 | 1120 | 0.8163 | 0.7433 | 0.7120 | 0.7076 | 0.7192 | | 0.3186 | 4.71 | 1125 | 0.8135 | 0.7449 | 0.7120 | 0.7076 | 0.7178 | | 0.2247 | 4.73 | 1130 | 0.8224 | 0.7418 | 0.7103 | 0.7060 | 0.7166 | | 0.5324 | 4.75 | 1135 | 0.8359 | 0.7402 | 0.7119 | 0.7071 | 0.7216 | | 0.3348 | 4.77 | 1140 | 0.8277 | 0.7340 | 0.6964 | 0.6981 | 0.6991 | | 0.2568 | 4.79 | 1145 | 0.8138 | 0.7340 | 0.6960 | 0.6974 | 0.6956 | | 0.3209 | 4.81 | 1150 | 0.8127 | 0.7293 | 0.6892 | 0.6901 | 0.6883 | | 0.4479 | 4.83 | 1155 | 0.8081 | 0.7340 | 0.6962 | 0.6930 | 0.6999 | | 0.3882 | 4.85 | 1160 | 0.8195 | 0.7371 | 0.7053 | 0.6981 | 0.7156 | | 0.3669 | 4.87 | 1165 | 0.8290 | 0.7293 | 0.6967 | 0.6885 | 0.7107 | | 0.3157 | 4.9 | 1170 | 0.8288 | 0.7355 | 0.7019 | 0.6943 | 0.7135 | | 0.4165 | 4.92 | 1175 | 0.8225 | 0.7340 | 0.6982 | 0.6948 | 0.7039 | | 0.2225 | 4.94 | 1180 | 0.8172 | 0.7293 | 0.6896 | 0.6894 | 0.6903 | | 0.3322 | 4.96 | 1185 | 0.8276 | 0.7246 | 0.6833 | 0.6856 | 0.6814 | | 0.3355 | 4.98 | 1190 | 0.8414 | 0.7214 | 0.6813 | 0.6819 | 0.6838 | | 0.3134 | 5.0 | 1195 | 0.8560 | 0.7324 | 0.6976 | 0.6927 | 0.7103 | | 0.2255 | 5.02 | 1200 | 0.8507 | 0.7308 | 0.6970 | 0.6901 | 0.7070 | | 0.3257 | 5.04 | 1205 | 0.8506 | 0.7214 | 0.6806 | 0.6834 | 0.6814 | | 0.2508 | 5.06 | 1210 | 0.8652 | 0.7261 | 0.6840 | 0.6932 | 0.6805 | | 0.2465 | 5.08 | 1215 | 0.8663 | 0.7246 | 0.6814 | 0.6902 | 0.6771 | | 0.273 | 5.1 | 1220 | 0.8629 | 0.7199 | 0.6769 | 0.6790 | 0.6765 | | 0.2377 | 5.13 | 1225 | 0.8664 | 0.7355 | 0.6996 | 0.6956 | 0.7052 | | 0.2537 | 5.15 | 1230 | 0.8793 | 0.7324 | 0.6998 | 0.6947 | 0.7088 | | 0.2031 | 5.17 | 1235 | 0.8715 | 0.7261 | 0.6928 | 0.6877 | 0.7005 | | 0.2148 | 5.19 | 1240 | 0.8654 | 0.7355 | 0.6980 | 0.6962 | 0.7001 | | 0.2889 | 5.21 | 1245 | 0.8712 | 0.7261 | 0.6872 | 0.6881 | 0.6863 | | 0.368 | 5.23 | 1250 | 0.8732 | 0.7308 | 0.6917 | 0.6929 | 0.6913 | | 0.2998 | 5.25 | 1255 | 0.8758 | 0.7293 | 0.6927 | 0.6905 | 0.6958 | | 0.3705 | 5.27 | 1260 | 0.8713 | 0.7308 | 0.6939 | 0.6906 | 0.6975 | | 0.2486 | 5.29 | 1265 | 0.8734 | 0.7277 | 0.6929 | 0.6872 | 0.7003 | | 0.2424 | 5.31 | 1270 | 0.8772 | 0.7214 | 0.6847 | 0.6820 | 0.6909 | | 0.3169 | 5.33 | 1275 | 0.8768 | 0.7230 | 0.6828 | 0.6847 | 0.6856 | | 0.2918 | 5.36 | 1280 | 0.8836 | 0.7246 | 0.6856 | 0.6839 | 0.6913 | | 0.2464 | 5.38 | 1285 | 0.8798 | 0.7246 | 0.6859 | 0.6835 | 0.6909 | | 0.3308 | 5.4 | 1290 | 0.8762 | 0.7340 | 0.6947 | 0.6909 | 0.6995 | | 0.2678 | 5.42 | 1295 | 0.8799 | 0.7340 | 0.6952 | 0.6900 | 0.7019 | | 0.3768 | 5.44 | 1300 | 0.8762 | 0.7293 | 0.6880 | 0.6862 | 0.6907 | | 0.3272 | 5.46 | 1305 | 0.8741 | 0.7246 | 0.6816 | 0.6831 | 0.6806 | | 0.2762 | 5.48 | 1310 | 0.8801 | 0.7308 | 0.6872 | 0.6914 | 0.6850 | | 0.3292 | 5.5 | 1315 | 0.8855 | 0.7324 | 0.6884 | 0.6922 | 0.6868 | | 0.2974 | 5.52 | 1320 | 0.8856 | 0.7324 | 0.6879 | 0.6911 | 0.6868 | | 0.3522 | 5.54 | 1325 | 0.8799 | 0.7214 | 0.6767 | 0.6759 | 0.6775 | | 0.2946 | 5.56 | 1330 | 0.8815 | 0.7199 | 0.6783 | 0.6769 | 0.6804 | | 0.2064 | 5.59 | 1335 | 0.8876 | 0.7293 | 0.6894 | 0.6839 | 0.6970 | | 0.2353 | 5.61 | 1340 | 0.9266 | 0.7261 | 0.6938 | 0.6878 | 0.7087 | | 0.2696 | 5.63 | 1345 | 0.9339 | 0.7152 | 0.6817 | 0.6789 | 0.6956 | | 0.4084 | 5.65 | 1350 | 0.8897 | 0.7308 | 0.6886 | 0.6897 | 0.6901 | | 0.3375 | 5.67 | 1355 | 0.8848 | 0.7246 | 0.6812 | 0.6874 | 0.6775 | | 0.2449 | 5.69 | 1360 | 0.8848 | 0.7230 | 0.6789 | 0.6850 | 0.6749 | | 0.2459 | 5.71 | 1365 | 0.8859 | 0.7246 | 0.6815 | 0.6832 | 0.6806 | | 0.3471 | 5.73 | 1370 | 0.8895 | 0.7230 | 0.6818 | 0.6805 | 0.6832 | | 0.3112 | 5.75 | 1375 | 0.9040 | 0.7261 | 0.6881 | 0.6876 | 0.6919 | | 0.3404 | 5.77 | 1380 | 0.9397 | 0.7214 | 0.6836 | 0.6910 | 0.6897 | | 0.2509 | 5.79 | 1385 | 0.9319 | 0.7277 | 0.6852 | 0.6963 | 0.6878 | | 0.367 | 5.82 | 1390 | 0.8828 | 0.7261 | 0.6839 | 0.6861 | 0.6832 | | 0.3158 | 5.84 | 1395 | 0.8770 | 0.7167 | 0.6741 | 0.6770 | 0.6729 | | 0.1901 | 5.86 | 1400 | 0.8789 | 0.7183 | 0.6771 | 0.6783 | 0.6779 | | 0.2183 | 5.88 | 1405 | 0.8804 | 0.7261 | 0.6845 | 0.6838 | 0.6856 | | 0.3058 | 5.9 | 1410 | 0.8927 | 0.7277 | 0.6877 | 0.6921 | 0.6866 | | 0.1906 | 5.92 | 1415 | 0.8929 | 0.7261 | 0.6859 | 0.6889 | 0.6856 | | 0.2887 | 5.94 | 1420 | 0.8876 | 0.7293 | 0.6904 | 0.6908 | 0.6915 | | 0.2236 | 5.96 | 1425 | 0.8900 | 0.7261 | 0.6866 | 0.6823 | 0.6918 | | 0.3345 | 5.98 | 1430 | 0.8948 | 0.7293 | 0.6902 | 0.6884 | 0.6930 | | 0.3004 | 6.0 | 1435 | 0.8938 | 0.7277 | 0.6871 | 0.6868 | 0.6873 | | 0.3376 | 6.03 | 1440 | 0.8939 | 0.7308 | 0.6902 | 0.6895 | 0.6913 | | 0.1774 | 6.05 | 1445 | 0.9019 | 0.7261 | 0.6893 | 0.6890 | 0.6915 | | 0.1947 | 6.07 | 1450 | 0.8971 | 0.7308 | 0.6913 | 0.6917 | 0.6913 | | 0.1641 | 6.09 | 1455 | 0.9135 | 0.7089 | 0.6639 | 0.6746 | 0.6574 | | 0.3712 | 6.11 | 1460 | 0.9258 | 0.7089 | 0.6612 | 0.6755 | 0.6543 | | 0.234 | 6.13 | 1465 | 0.8986 | 0.7261 | 0.6863 | 0.6868 | 0.6863 | | 0.2605 | 6.15 | 1470 | 0.9004 | 0.7277 | 0.6875 | 0.6874 | 0.6881 | | 0.1891 | 6.17 | 1475 | 0.9035 | 0.7293 | 0.6881 | 0.6867 | 0.6907 | | 0.1988 | 6.19 | 1480 | 0.9032 | 0.7230 | 0.6807 | 0.6796 | 0.6824 | | 0.1683 | 6.21 | 1485 | 0.9044 | 0.7293 | 0.6867 | 0.6876 | 0.6864 | | 0.2669 | 6.23 | 1490 | 0.9156 | 0.7277 | 0.6879 | 0.6887 | 0.6885 | | 0.2185 | 6.26 | 1495 | 0.9242 | 0.7324 | 0.6922 | 0.6927 | 0.6938 | | 0.1485 | 6.28 | 1500 | 0.9264 | 0.7308 | 0.6916 | 0.6921 | 0.6925 | | 0.1654 | 6.3 | 1505 | 0.9295 | 0.7308 | 0.6907 | 0.6913 | 0.6905 | | 0.2177 | 6.32 | 1510 | 0.9347 | 0.7293 | 0.6884 | 0.6898 | 0.6871 | | 0.1512 | 6.34 | 1515 | 0.9451 | 0.7261 | 0.6853 | 0.6842 | 0.6867 | | 0.1006 | 6.36 | 1520 | 0.9623 | 0.7261 | 0.6869 | 0.6850 | 0.6911 | | 0.1367 | 6.38 | 1525 | 0.9851 | 0.7277 | 0.6901 | 0.6916 | 0.6932 | | 0.2743 | 6.4 | 1530 | 0.9740 | 0.7340 | 0.6958 | 0.6982 | 0.6960 | | 0.2843 | 6.42 | 1535 | 0.9689 | 0.7261 | 0.6873 | 0.6892 | 0.6856 | | 0.2563 | 6.44 | 1540 | 0.9781 | 0.7199 | 0.6757 | 0.6819 | 0.6706 | | 0.2941 | 6.46 | 1545 | 0.9763 | 0.7246 | 0.6844 | 0.6915 | 0.6799 | | 0.2245 | 6.49 | 1550 | 0.9718 | 0.7340 | 0.6948 | 0.6962 | 0.6952 | | 0.1545 | 6.51 | 1555 | 0.9737 | 0.7324 | 0.6921 | 0.6921 | 0.6934 | | 0.3361 | 6.53 | 1560 | 0.9692 | 0.7324 | 0.6944 | 0.6931 | 0.6966 | | 0.162 | 6.55 | 1565 | 0.9704 | 0.7324 | 0.6946 | 0.6925 | 0.6982 | | 0.2815 | 6.57 | 1570 | 0.9656 | 0.7340 | 0.6957 | 0.6962 | 0.6964 | | 0.2087 | 6.59 | 1575 | 0.9639 | 0.7308 | 0.6927 | 0.6919 | 0.6952 | | 0.2326 | 6.61 | 1580 | 0.9696 | 0.7324 | 0.6959 | 0.6929 | 0.7009 | | 0.1923 | 6.63 | 1585 | 0.9611 | 0.7340 | 0.6981 | 0.6959 | 0.7019 | | 0.1684 | 6.65 | 1590 | 0.9606 | 0.7355 | 0.6964 | 0.6978 | 0.6954 | | 0.3993 | 6.67 | 1595 | 0.9609 | 0.7293 | 0.6888 | 0.6921 | 0.6860 | | 0.3185 | 6.69 | 1600 | 0.9627 | 0.7355 | 0.6970 | 0.6974 | 0.6982 | | 0.2099 | 6.72 | 1605 | 0.9814 | 0.7261 | 0.6910 | 0.6906 | 0.6962 | | 0.1302 | 6.74 | 1610 | 0.9806 | 0.7308 | 0.6938 | 0.6922 | 0.6991 | | 0.238 | 6.76 | 1615 | 0.9711 | 0.7324 | 0.6928 | 0.6940 | 0.6927 | | 0.3351 | 6.78 | 1620 | 0.9749 | 0.7230 | 0.6788 | 0.6868 | 0.6738 | | 0.3485 | 6.8 | 1625 | 0.9761 | 0.7308 | 0.6884 | 0.6937 | 0.6858 | | 0.137 | 6.82 | 1630 | 0.9766 | 0.7324 | 0.6909 | 0.6947 | 0.6895 | | 0.1751 | 6.84 | 1635 | 0.9776 | 0.7324 | 0.6932 | 0.6928 | 0.6946 | | 0.1701 | 6.86 | 1640 | 0.9787 | 0.7355 | 0.6977 | 0.6954 | 0.7005 | | 0.148 | 6.88 | 1645 | 0.9830 | 0.7387 | 0.7036 | 0.7001 | 0.7076 | | 0.2204 | 6.9 | 1650 | 0.9860 | 0.7340 | 0.6949 | 0.6942 | 0.6960 | | 0.1966 | 6.92 | 1655 | 0.9920 | 0.7214 | 0.6793 | 0.6817 | 0.6775 | | 0.2242 | 6.95 | 1660 | 0.9979 | 0.7152 | 0.6727 | 0.6771 | 0.6688 | | 0.157 | 6.97 | 1665 | 1.0002 | 0.7293 | 0.6876 | 0.6925 | 0.6852 | | 0.2665 | 6.99 | 1670 | 1.0067 | 0.7230 | 0.6838 | 0.6860 | 0.6860 | | 0.159 | 7.01 | 1675 | 1.0002 | 0.7230 | 0.6841 | 0.6834 | 0.6867 | | 0.1399 | 7.03 | 1680 | 0.9954 | 0.7277 | 0.6887 | 0.6874 | 0.6909 | | 0.16 | 7.05 | 1685 | 0.9981 | 0.7277 | 0.6878 | 0.6878 | 0.6889 | | 0.1074 | 7.07 | 1690 | 1.0067 | 0.7277 | 0.6881 | 0.6886 | 0.6889 | | 0.15 | 7.09 | 1695 | 1.0130 | 0.7261 | 0.6857 | 0.6860 | 0.6863 | | 0.1956 | 7.11 | 1700 | 1.0177 | 0.7261 | 0.6858 | 0.6854 | 0.6871 | | 0.0964 | 7.13 | 1705 | 1.0193 | 0.7277 | 0.6877 | 0.6884 | 0.6881 | | 0.1922 | 7.15 | 1710 | 1.0224 | 0.7277 | 0.6867 | 0.6894 | 0.6854 | | 0.1334 | 7.18 | 1715 | 1.0224 | 0.7261 | 0.6844 | 0.6883 | 0.6812 | | 0.1071 | 7.2 | 1720 | 1.0252 | 0.7183 | 0.6746 | 0.6796 | 0.6704 | | 0.1798 | 7.22 | 1725 | 1.0306 | 0.7214 | 0.6781 | 0.6851 | 0.6724 | | 0.2293 | 7.24 | 1730 | 1.0302 | 0.7277 | 0.6878 | 0.6900 | 0.6865 | | 0.1813 | 7.26 | 1735 | 1.0316 | 0.7261 | 0.6884 | 0.6898 | 0.6895 | | 0.1884 | 7.28 | 1740 | 1.0327 | 0.7261 | 0.6884 | 0.6898 | 0.6895 | | 0.1482 | 7.3 | 1745 | 1.0328 | 0.7261 | 0.6877 | 0.6900 | 0.6883 | | 0.1044 | 7.32 | 1750 | 1.0387 | 0.7324 | 0.6947 | 0.6989 | 0.6946 | | 0.3129 | 7.34 | 1755 | 1.0264 | 0.7261 | 0.6884 | 0.6905 | 0.6887 | | 0.1136 | 7.36 | 1760 | 1.0226 | 0.7183 | 0.6789 | 0.6826 | 0.6759 | | 0.1869 | 7.38 | 1765 | 1.0219 | 0.7214 | 0.6812 | 0.6852 | 0.6783 | | 0.1363 | 7.41 | 1770 | 1.0230 | 0.7261 | 0.6865 | 0.6913 | 0.6836 | | 0.0683 | 7.43 | 1775 | 1.0295 | 0.7230 | 0.6835 | 0.6885 | 0.6800 | | 0.155 | 7.45 | 1780 | 1.0372 | 0.7214 | 0.6805 | 0.6870 | 0.6767 | | 0.3063 | 7.47 | 1785 | 1.0365 | 0.7246 | 0.6849 | 0.6885 | 0.6834 | | 0.0882 | 7.49 | 1790 | 1.0347 | 0.7214 | 0.6821 | 0.6856 | 0.6795 | | 0.1951 | 7.51 | 1795 | 1.0363 | 0.7183 | 0.6786 | 0.6803 | 0.6771 | | 0.1963 | 7.53 | 1800 | 1.0397 | 0.7261 | 0.6865 | 0.6878 | 0.6875 | | 0.2286 | 7.55 | 1805 | 1.0406 | 0.7261 | 0.6868 | 0.6880 | 0.6883 | | 0.1509 | 7.57 | 1810 | 1.0362 | 0.7293 | 0.6896 | 0.6930 | 0.6887 | | 0.1184 | 7.59 | 1815 | 1.0418 | 0.7105 | 0.6661 | 0.6765 | 0.6584 | | 0.1063 | 7.62 | 1820 | 1.0522 | 0.7105 | 0.6630 | 0.6777 | 0.6529 | | 0.134 | 7.64 | 1825 | 1.0484 | 0.7199 | 0.6762 | 0.6882 | 0.6686 | | 0.2583 | 7.66 | 1830 | 1.0450 | 0.7261 | 0.6826 | 0.6912 | 0.6789 | | 0.1144 | 7.68 | 1835 | 1.0507 | 0.7277 | 0.6882 | 0.6944 | 0.6877 | | 0.1107 | 7.7 | 1840 | 1.0511 | 0.7214 | 0.6839 | 0.6853 | 0.6877 | | 0.2604 | 7.72 | 1845 | 1.0395 | 0.7246 | 0.6863 | 0.6858 | 0.6881 | | 0.1464 | 7.74 | 1850 | 1.0398 | 0.7199 | 0.6787 | 0.6801 | 0.6777 | | 0.2535 | 7.76 | 1855 | 1.0411 | 0.7246 | 0.6820 | 0.6869 | 0.6779 | | 0.1572 | 7.78 | 1860 | 1.0406 | 0.7183 | 0.6765 | 0.6789 | 0.6743 | | 0.1646 | 7.8 | 1865 | 1.0415 | 0.7183 | 0.6746 | 0.6796 | 0.6704 | | 0.2349 | 7.82 | 1870 | 1.0426 | 0.7261 | 0.6844 | 0.6890 | 0.6816 | | 0.2146 | 7.85 | 1875 | 1.0449 | 0.7277 | 0.6882 | 0.6907 | 0.6885 | | 0.1505 | 7.87 | 1880 | 1.0456 | 0.7277 | 0.6915 | 0.6908 | 0.6944 | | 0.2806 | 7.89 | 1885 | 1.0445 | 0.7261 | 0.6900 | 0.6894 | 0.6926 | | 0.2245 | 7.91 | 1890 | 1.0402 | 0.7277 | 0.6908 | 0.6904 | 0.6916 | | 0.1388 | 7.93 | 1895 | 1.0410 | 0.7293 | 0.6914 | 0.6919 | 0.6911 | | 0.3175 | 7.95 | 1900 | 1.0403 | 0.7261 | 0.6876 | 0.6899 | 0.6856 | | 0.2023 | 7.97 | 1905 | 1.0379 | 0.7230 | 0.6857 | 0.6885 | 0.6832 | | 0.1165 | 7.99 | 1910 | 1.0389 | 0.7261 | 0.6881 | 0.6913 | 0.6852 | | 0.1103 | 8.01 | 1915 | 1.0431 | 0.7246 | 0.6865 | 0.6899 | 0.6834 | | 0.1822 | 8.03 | 1920 | 1.0520 | 0.7214 | 0.6820 | 0.6872 | 0.6775 | | 0.1773 | 8.05 | 1925 | 1.0600 | 0.7121 | 0.6690 | 0.6790 | 0.6614 | | 0.1259 | 8.08 | 1930 | 1.0601 | 0.7183 | 0.6773 | 0.6843 | 0.6716 | | 0.1737 | 8.1 | 1935 | 1.0619 | 0.7183 | 0.6804 | 0.6845 | 0.6775 | | 0.1776 | 8.12 | 1940 | 1.0646 | 0.7277 | 0.6901 | 0.6921 | 0.6905 | | 0.112 | 8.14 | 1945 | 1.0652 | 0.7324 | 0.6965 | 0.6968 | 0.6982 | | 0.1649 | 8.16 | 1950 | 1.0650 | 0.7324 | 0.6962 | 0.6960 | 0.6982 | | 0.1296 | 8.18 | 1955 | 1.0660 | 0.7308 | 0.6958 | 0.6954 | 0.6976 | | 0.1325 | 8.2 | 1960 | 1.0651 | 0.7277 | 0.6897 | 0.6905 | 0.6901 | | 0.1422 | 8.22 | 1965 | 1.0680 | 0.7199 | 0.6782 | 0.6839 | 0.6738 | | 0.3486 | 8.24 | 1970 | 1.0723 | 0.7183 | 0.6729 | 0.6821 | 0.6661 | | 0.2213 | 8.26 | 1975 | 1.0700 | 0.7121 | 0.6632 | 0.6738 | 0.6563 | | 0.1206 | 8.28 | 1980 | 1.0671 | 0.7152 | 0.6673 | 0.6766 | 0.6622 | | 0.1196 | 8.31 | 1985 | 1.0657 | 0.7183 | 0.6723 | 0.6796 | 0.6692 | | 0.1955 | 8.33 | 1990 | 1.0568 | 0.7183 | 0.6745 | 0.6812 | 0.6696 | | 0.1085 | 8.35 | 1995 | 1.0566 | 0.7152 | 0.6735 | 0.6813 | 0.6672 | | 0.1359 | 8.37 | 2000 | 1.0549 | 0.7230 | 0.6862 | 0.6890 | 0.6836 | | 0.2431 | 8.39 | 2005 | 1.0555 | 0.7308 | 0.6960 | 0.6976 | 0.6944 | | 0.1512 | 8.41 | 2010 | 1.0570 | 0.7324 | 0.6966 | 0.6972 | 0.6970 | | 0.1002 | 8.43 | 2015 | 1.0601 | 0.7355 | 0.6997 | 0.7000 | 0.7005 | | 0.1529 | 8.45 | 2020 | 1.0601 | 0.7277 | 0.6913 | 0.6915 | 0.6913 | | 0.1633 | 8.47 | 2025 | 1.0618 | 0.7261 | 0.6881 | 0.6882 | 0.6883 | | 0.068 | 8.49 | 2030 | 1.0657 | 0.7199 | 0.6816 | 0.6826 | 0.6812 | | 0.1883 | 8.51 | 2035 | 1.0644 | 0.7261 | 0.6885 | 0.6881 | 0.6891 | | 0.1484 | 8.54 | 2040 | 1.0624 | 0.7324 | 0.6961 | 0.6952 | 0.6970 | | 0.1438 | 8.56 | 2045 | 1.0642 | 0.7340 | 0.6983 | 0.6973 | 0.6995 | | 0.1164 | 8.58 | 2050 | 1.0660 | 0.7308 | 0.6950 | 0.6948 | 0.6952 | | 0.1523 | 8.6 | 2055 | 1.0702 | 0.7246 | 0.6875 | 0.6895 | 0.6857 | | 0.0793 | 8.62 | 2060 | 1.0749 | 0.7230 | 0.6832 | 0.6874 | 0.6797 | | 0.0752 | 8.64 | 2065 | 1.0783 | 0.7214 | 0.6797 | 0.6853 | 0.6755 | | 0.0825 | 8.66 | 2070 | 1.0854 | 0.7230 | 0.6798 | 0.6868 | 0.6745 | | 0.1463 | 8.68 | 2075 | 1.0937 | 0.7199 | 0.6748 | 0.6837 | 0.6686 | | 0.1806 | 8.7 | 2080 | 1.0951 | 0.7199 | 0.6786 | 0.6854 | 0.6741 | | 0.1354 | 8.72 | 2085 | 1.0925 | 0.7277 | 0.6885 | 0.6918 | 0.6877 | | 0.1348 | 8.74 | 2090 | 1.0896 | 0.7324 | 0.6960 | 0.6958 | 0.6982 | | 0.174 | 8.77 | 2095 | 1.0875 | 0.7261 | 0.6908 | 0.6900 | 0.6918 | | 0.1424 | 8.79 | 2100 | 1.0902 | 0.7261 | 0.6896 | 0.6897 | 0.6895 | | 0.1056 | 8.81 | 2105 | 1.0938 | 0.7261 | 0.6886 | 0.6906 | 0.6867 | | 0.1662 | 8.83 | 2110 | 1.0952 | 0.7261 | 0.6866 | 0.6900 | 0.6836 | | 0.1077 | 8.85 | 2115 | 1.0970 | 0.7246 | 0.6853 | 0.6887 | 0.6830 | | 0.2363 | 8.87 | 2120 | 1.0967 | 0.7230 | 0.6832 | 0.6872 | 0.6808 | | 0.1287 | 8.89 | 2125 | 1.0975 | 0.7261 | 0.6875 | 0.6916 | 0.6860 | | 0.141 | 8.91 | 2130 | 1.0982 | 0.7277 | 0.6890 | 0.6930 | 0.6877 | | 0.1411 | 8.93 | 2135 | 1.0962 | 0.7230 | 0.6824 | 0.6861 | 0.6800 | | 0.1088 | 8.95 | 2140 | 1.0954 | 0.7230 | 0.6823 | 0.6880 | 0.6777 | | 0.1032 | 8.97 | 2145 | 1.0942 | 0.7214 | 0.6807 | 0.6866 | 0.6759 | | 0.0683 | 9.0 | 2150 | 1.0915 | 0.7230 | 0.6825 | 0.6877 | 0.6785 | | 0.1402 | 9.02 | 2155 | 1.0894 | 0.7277 | 0.6894 | 0.6934 | 0.6861 | | 0.0853 | 9.04 | 2160 | 1.0914 | 0.7246 | 0.6841 | 0.6891 | 0.6802 | | 0.1155 | 9.06 | 2165 | 1.0937 | 0.7214 | 0.6787 | 0.6846 | 0.6743 | | 0.0675 | 9.08 | 2170 | 1.0961 | 0.7230 | 0.6801 | 0.6869 | 0.6753 | | 0.0754 | 9.1 | 2175 | 1.0959 | 0.7246 | 0.6828 | 0.6881 | 0.6791 | | 0.0974 | 9.12 | 2180 | 1.0975 | 0.7293 | 0.6892 | 0.6926 | 0.6867 | | 0.1567 | 9.14 | 2185 | 1.0993 | 0.7246 | 0.6850 | 0.6886 | 0.6822 | | 0.1691 | 9.16 | 2190 | 1.0999 | 0.7261 | 0.6866 | 0.6917 | 0.6824 | | 0.1026 | 9.18 | 2195 | 1.1006 | 0.7246 | 0.6850 | 0.6904 | 0.6806 | | 0.0727 | 9.21 | 2200 | 1.1029 | 0.7246 | 0.6850 | 0.6904 | 0.6806 | | 0.0834 | 9.23 | 2205 | 1.1046 | 0.7199 | 0.6783 | 0.6843 | 0.6738 | | 0.1159 | 9.25 | 2210 | 1.1049 | 0.7230 | 0.6823 | 0.6880 | 0.6777 | | 0.1586 | 9.27 | 2215 | 1.1046 | 0.7214 | 0.6808 | 0.6852 | 0.6775 | | 0.1292 | 9.29 | 2220 | 1.1043 | 0.7230 | 0.6824 | 0.6865 | 0.6793 | | 0.0743 | 9.31 | 2225 | 1.1035 | 0.7246 | 0.6851 | 0.6889 | 0.6822 | | 0.06 | 9.33 | 2230 | 1.1022 | 0.7277 | 0.6912 | 0.6927 | 0.6901 | | 0.1545 | 9.35 | 2235 | 1.1039 | 0.7293 | 0.6916 | 0.6932 | 0.6907 | | 0.1546 | 9.37 | 2240 | 1.1058 | 0.7230 | 0.6833 | 0.6861 | 0.6812 | | 0.2023 | 9.39 | 2245 | 1.1066 | 0.7214 | 0.6808 | 0.6852 | 0.6775 | | 0.1607 | 9.41 | 2250 | 1.1077 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0658 | 9.44 | 2255 | 1.1090 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0417 | 9.46 | 2260 | 1.1107 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.063 | 9.48 | 2265 | 1.1129 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0988 | 9.5 | 2270 | 1.1147 | 0.7230 | 0.6833 | 0.6886 | 0.6789 | | 0.1082 | 9.52 | 2275 | 1.1155 | 0.7230 | 0.6833 | 0.6886 | 0.6789 | | 0.1984 | 9.54 | 2280 | 1.1154 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1793 | 9.56 | 2285 | 1.1153 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1324 | 9.58 | 2290 | 1.1152 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1059 | 9.6 | 2295 | 1.1157 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.0473 | 9.62 | 2300 | 1.1158 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1065 | 9.64 | 2305 | 1.1166 | 0.7230 | 0.6818 | 0.6868 | 0.6777 | | 0.1373 | 9.67 | 2310 | 1.1173 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1248 | 9.69 | 2315 | 1.1177 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0966 | 9.71 | 2320 | 1.1183 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0742 | 9.73 | 2325 | 1.1189 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0827 | 9.75 | 2330 | 1.1193 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.143 | 9.77 | 2335 | 1.1202 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1623 | 9.79 | 2340 | 1.1201 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1495 | 9.81 | 2345 | 1.1197 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.0965 | 9.83 | 2350 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1297 | 9.85 | 2355 | 1.1194 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1164 | 9.87 | 2360 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1759 | 9.9 | 2365 | 1.1195 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.2404 | 9.92 | 2370 | 1.1192 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1467 | 9.94 | 2375 | 1.1189 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1969 | 9.96 | 2380 | 1.1187 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.1573 | 9.98 | 2385 | 1.1187 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | | 0.2614 | 10.0 | 2390 | 1.1188 | 0.7246 | 0.6845 | 0.6892 | 0.6806 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Tokenizers 0.10.3
anindabitm/sagemaker-distilbert-emotion
anindabitm
2021-11-18T17:43:59Z
4
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9165 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2434 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9423 | 1.0 | 500 | 0.2434 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
qinluo/wobert-chinese-plus
qinluo
2021-11-18T13:43:26Z
5
4
transformers
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "wobert", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
--- language: zh tags: - wobert inference: True --- ## Word based BERT model 原模型及说明见:https://github.com/ZhuiyiTechnology/WoBERT pytorch 模型见: https://github.com/JunnYu/WoBERT_pytorch ## 安装 WoBertTokenizer ```bash pip install git+https://github.com/JunnYu/WoBERT_pytorch.git ``` ## TF Example ```python from transformers import TFBertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer import tensorflow as tf pretrained_model_or_path = 'qinluo/wobert-chinese-plus' tokenizer = WoBertTokenizer.from_pretrained(pretrained_model_or_path) model = WoBertForMaskedLM.from_pretrained(pretrained_model_or_path) text = '今天[MASK]很好,我[MASK]去公园玩。' inputs = tokenizer(text, return_tensors='tf') outputs = model(**inputs).logits[0] outputs_sentence = '' for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(tf.math.top_k(outputs[i], k=5)[1]) outputs_sentence += '[' + '|'.join(tokens) + ']' else: outputs_sentence += ''.join(tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # 今天[天气|阳光|天|心情|空气]很好,我[想|要|打算|准备|就]去公园玩。 ``` ## Pytorch Example ```python from transformers import BertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer pretrained_model_or_path = 'qinluo/wobert-chinese-plus' tokenizer = WoBertTokenizer.from_pretrained(pretrained_model_or_path) model = WoBertForMaskedLM.from_pretrained(pretrained_model_or_path) text = '今天[MASK]很好,我[MASK]去公园玩。' inputs = tokenizer(text, return_tensors='pt') outputs = model(**inputs).logits[0] outputs_sentence = '' for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += '[' + '|'.join(tokens) + ']' else: outputs_sentence += ''.join(tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # 今天[天气|阳光|天|心情|空气]很好,我[想|要|打算|准备|就]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
FabianGroeger/HotelBERT
FabianGroeger
2021-11-18T05:56:08Z
7
1
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: de widget: - text: "Das <mask> hat sich toll um uns gekümmert." --- # HotelBERT This model was trained on reviews from a well known German hotel platform.
FabianGroeger/HotelBERT-small
FabianGroeger
2021-11-18T05:39:47Z
7
0
transformers
[ "transformers", "pytorch", "tf", "roberta", "fill-mask", "de", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- language: de widget: - text: "Das <mask> hat sich toll um uns gekümmert." --- # HotelBERT-small This model was trained on reviews from a well known German hotel platform.
eml914/streaming_transformer_asr_librispeech
eml914
2021-11-18T02:23:37Z
4
0
espnet
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:librispeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - librispeech license: cc-by-4.0 --- ## ESPnet2 ASR model ### `eml914/streaming_transformer_asr_librispeech` This model was trained by Emiru Tsunoo using librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 12eb132418a1f69548f7998e53273cd05d989ed9 pip install -e . cd egs2/librispeech/asr1 ./run.sh --skip_data_prep false --skip_train true --download_model eml914/streaming_transformer_asr_librispeech ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Wed Nov 17 18:18:46 JST 2021` - python version: `3.8.11 (default, Aug 3 2021, 15:09:35) [GCC 7.5.0]` - espnet version: `espnet 0.10.5a1` - pytorch version: `pytorch 1.4.0` - Git hash: `12eb132418a1f69548f7998e53273cd05d989ed9` - Commit date: `Tue Nov 16 10:12:21 2021 +0900` ## asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|54402|97.6|2.2|0.3|0.3|2.7|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|50948|93.5|5.8|0.7|0.9|7.4|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|52576|97.5|2.3|0.3|0.3|2.9|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|62|96.8|3.2|0.0|0.0|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|52343|93.5|5.7|0.8|0.9|7.4|53.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|288456|99.2|0.4|0.4|0.3|1.1|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|265951|97.2|1.6|1.2|0.9|3.7|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|281530|99.2|0.4|0.4|0.3|1.1|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|367|99.5|0.0|0.5|0.8|1.4|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|272758|97.3|1.5|1.3|0.9|3.6|53.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_clean|2703|68010|96.8|2.1|1.1|0.4|3.6|31.9| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/dev_other|2864|63110|91.9|5.9|2.2|1.5|9.6|50.4| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean|2620|65818|96.7|2.2|1.1|0.4|3.7|33.1| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_clean_dbg|2620|94|97.9|2.1|0.0|1.1|3.2|0.0| |decode_asr_streaming_lm_lm_train_lm_adam_en_bpe5000_valid.loss.ave_asr_model_valid.acc.ave/test_other|2939|65101|91.8|5.5|2.7|1.2|9.4|53.7| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_streaming.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/asr_train_asr_streaming_fbank_pitch_en_bpe5000_sp ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 33851 dist_launcher: null multiprocessing_distributed: true cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 4 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null unused_parameters: false use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null pretrain_path: null init_param: [] freeze_param: [] num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 16000000 valid_batch_bins: null train_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/text_shape.bpe valid_shape_file: - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/speech_shape - exp/asr_stats_fbank_pitch_en_bpe5000_sp/valid/text_shape.bpe batch_type: numel valid_batch_type: null fold_length: - 800 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/fbank_pitch/train_960_sp/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/train_960_sp/text - text - text valid_data_path_and_name_and_type: - - dump/fbank_pitch/dev/feats.scp - speech - kaldi_ark - - dump/fbank_pitch/dev/text - text - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - ▁THE - S - ▁AND - ▁OF - ▁TO - ▁A - ▁IN - ▁I - ▁HE - ▁THAT - ▁WAS - ED - ▁IT - '''' - ▁HIS - ING - ▁YOU - ▁WITH - ▁FOR - ▁HAD - T - ▁AS - ▁HER - ▁IS - ▁BE - ▁BUT - ▁NOT - ▁SHE - D - ▁AT - ▁ON - LY - ▁HIM - ▁THEY - ▁ALL - ▁HAVE - ▁BY - ▁SO - ▁THIS - ▁MY - ▁WHICH - ▁ME - ▁SAID - ▁FROM - ▁ONE - Y - E - ▁WERE - ▁WE - ▁NO - N - ▁THERE - ▁OR - ER - ▁AN - ▁WHEN - ▁ARE - ▁THEIR - ▁WOULD - ▁IF - ▁WHAT - ▁THEM - ▁WHO - ▁OUT - M - ▁DO - ▁WILL - ▁UP - ▁BEEN - P - R - ▁MAN - ▁THEN - ▁COULD - ▁MORE - C - ▁INTO - ▁NOW - ▁VERY - ▁YOUR - ▁SOME - ▁LITTLE - ES - ▁TIME - RE - ▁CAN - ▁LIKE - LL - ▁ABOUT - ▁HAS - ▁THAN - ▁DID - ▁UPON - ▁OVER - IN - ▁ANY - ▁WELL - ▁ONLY - B - ▁SEE - ▁GOOD - ▁OTHER - ▁TWO - L - ▁KNOW - ▁GO - ▁DOWN - ▁BEFORE - A - AL - ▁OUR - ▁OLD - ▁SHOULD - ▁MADE - ▁AFTER - ▁GREAT - ▁DAY - ▁MUST - ▁COME - ▁HOW - ▁SUCH - ▁CAME - LE - ▁WHERE - ▁US - ▁NEVER - ▁THESE - ▁MUCH - ▁DE - ▁MISTER - ▁WAY - G - ▁S - ▁MAY - ATION - ▁LONG - OR - ▁AM - ▁FIRST - ▁BACK - ▁OWN - ▁RE - ▁AGAIN - ▁SAY - ▁MEN - ▁WENT - ▁HIMSELF - ▁HERE - NESS - ▁THINK - V - IC - ▁EVEN - ▁THOUGHT - ▁HAND - ▁JUST - ▁O - ▁UN - VE - ION - ▁ITS - 'ON' - ▁MAKE - ▁MIGHT - ▁TOO - K - ▁AWAY - ▁LIFE - TH - ▁WITHOUT - ST - ▁THROUGH - ▁MOST - ▁TAKE - ▁DON - ▁EVERY - F - O - ▁SHALL - ▁THOSE - ▁EYES - AR - ▁STILL - ▁LAST - ▁HOUSE - ▁HEAD - ABLE - ▁NOTHING - ▁NIGHT - ITY - ▁LET - ▁MANY - ▁OFF - ▁BEING - ▁FOUND - ▁WHILE - EN - ▁SAW - ▁GET - ▁PEOPLE - ▁FACE - ▁YOUNG - CH - ▁UNDER - ▁ONCE - ▁TELL - AN - ▁THREE - ▁PLACE - ▁ROOM - ▁YET - ▁SAME - IL - US - U - ▁FATHER - ▁RIGHT - EL - ▁THOUGH - ▁ANOTHER - LI - RI - ▁HEART - IT - ▁PUT - ▁TOOK - ▁GIVE - ▁EVER - ▁E - ▁PART - ▁WORK - ERS - ▁LOOK - ▁NEW - ▁KING - ▁MISSUS - ▁SIR - ▁LOVE - ▁MIND - ▁LOOKED - W - RY - ▁ASKED - ▁LEFT - ET - ▁LIGHT - CK - ▁DOOR - ▁MOMENT - RO - ▁WORLD - ▁THINGS - ▁HOME - UL - ▁THING - LA - ▁WHY - ▁MOTHER - ▁ALWAYS - ▁FAR - FUL - ▁WATER - CE - IVE - UR - ▁HEARD - ▁SOMETHING - ▁SEEMED - I - LO - ▁BECAUSE - OL - ▁END - ▁TOLD - ▁CON - ▁YES - ▁GOING - ▁GOT - RA - IR - ▁WOMAN - ▁GOD - EST - TED - ▁FIND - ▁KNEW - ▁SOON - ▁EACH - ▁SIDE - H - TON - MENT - ▁OH - NE - Z - LING - ▁AGAINST - TER - ▁NAME - ▁MISS - ▁QUITE - ▁WANT - ▁YEARS - ▁FEW - ▁BETTER - ENT - ▁HALF - ▁DONE - ▁ALSO - ▁BEGAN - ▁HAVING - ▁ENOUGH - IS - ▁LADY - ▁WHOLE - LESS - ▁BOTH - ▁SEEN - ▁SET - ▁WHITE - ▁COURSE - IES - ▁VOICE - ▁CALLED - ▁D - ▁EX - ATE - ▁TURNED - ▁GAVE - ▁C - ▁POOR - MAN - UT - NA - ▁DEAR - ISH - ▁GIRL - ▁MORNING - ▁BETWEEN - LED - ▁NOR - IA - ▁AMONG - MA - ▁ - ▁SMALL - ▁REST - ▁WHOM - ▁FELT - ▁HANDS - ▁MYSELF - ▁HIGH - ▁M - ▁HOWEVER - ▁HERSELF - ▁P - CO - ▁STOOD - ID - ▁KIND - ▁HUNDRED - AS - ▁ROUND - ▁ALMOST - TY - ▁SINCE - ▁G - AM - ▁LA - SE - ▁BOY - ▁MA - ▁PERHAPS - ▁WORDS - ATED - ▁HO - X - ▁MO - ▁SAT - ▁REPLIED - ▁FOUR - ▁ANYTHING - ▁TILL - ▁UNTIL - ▁BLACK - TION - ▁CRIED - RU - TE - ▁FACT - ▁HELP - ▁NEXT - ▁LOOKING - ▁DOES - ▁FRIEND - ▁LAY - ANCE - ▁POWER - ▁BROUGHT - VER - ▁FIRE - ▁KEEP - PO - FF - ▁COUNTRY - ▁SEA - ▁WORD - ▁CAR - ▁DAYS - ▁TOGETHER - ▁IMP - ▁REASON - KE - ▁INDEED - TING - ▁MATTER - ▁FULL - ▁TEN - TIC - ▁LAND - ▁RATHER - ▁AIR - ▁HOPE - ▁DA - ▁OPEN - ▁FEET - ▁EN - ▁FIVE - ▁POINT - ▁CO - OM - ▁LARGE - ▁B - ▁CL - ME - ▁GONE - ▁CHILD - INE - GG - ▁BEST - ▁DIS - UM - ▁HARD - ▁LORD - OUS - ▁WIFE - ▁SURE - ▁FORM - DE - ▁DEATH - ANT - ▁NATURE - ▁BA - ▁CARE - ▁BELIEVE - PP - ▁NEAR - ▁RO - ▁RED - ▁WAR - IE - ▁SPEAK - ▁FEAR - ▁CASE - ▁TAKEN - ▁ALONG - ▁CANNOT - ▁HEAR - ▁THEMSELVES - CI - ▁PRESENT - AD - ▁MASTER - ▁SON - ▁THUS - ▁LI - ▁LESS - ▁SUN - ▁TRUE - IM - IOUS - ▁THOUSAND - ▁MONEY - ▁W - ▁BEHIND - ▁CHILDREN - ▁DOCTOR - AC - ▁TWENTY - ▁WISH - ▁SOUND - ▁WHOSE - ▁LEAVE - ▁ANSWERED - ▁THOU - ▁DUR - ▁HA - ▁CERTAIN - ▁PO - ▁PASSED - GE - TO - ▁ARM - ▁LO - ▁STATE - ▁ALONE - TA - ▁SHOW - ▁NEED - ▁LIVE - ND - ▁DEAD - ENCE - ▁STRONG - ▁PRE - ▁TI - ▁GROUND - SH - TI - ▁SHORT - IAN - UN - ▁PRO - ▁HORSE - MI - ▁PRINCE - ARD - ▁FELL - ▁ORDER - ▁CALL - AT - ▁GIVEN - ▁DARK - ▁THEREFORE - ▁CLOSE - ▁BODY - ▁OTHERS - ▁SENT - ▁SECOND - ▁OFTEN - ▁CA - ▁MANNER - MO - NI - ▁BRING - ▁QUESTION - ▁HOUR - ▁BO - AGE - ▁ST - ▁TURN - ▁TABLE - ▁GENERAL - ▁EARTH - ▁BED - ▁REALLY - ▁SIX - 'NO' - IST - ▁BECOME - ▁USE - ▁READ - ▁SE - ▁VI - ▁COMING - ▁EVERYTHING - ▁EM - ▁ABOVE - ▁EVENING - ▁BEAUTIFUL - ▁FEEL - ▁RAN - ▁LEAST - ▁LAW - ▁ALREADY - ▁MEAN - ▁ROSE - WARD - ▁ITSELF - ▁SOUL - ▁SUDDENLY - ▁AROUND - RED - ▁ANSWER - ICAL - ▁RA - ▁WIND - ▁FINE - ▁WON - ▁WHETHER - ▁KNOWN - BER - NG - ▁TA - ▁CAPTAIN - ▁EYE - ▁PERSON - ▁WOMEN - ▁SORT - ▁ASK - ▁BROTHER - ▁USED - ▁HELD - ▁BIG - ▁RETURNED - ▁STRANGE - ▁BU - ▁PER - ▁FREE - ▁EITHER - ▁WITHIN - ▁DOUBT - ▁YEAR - ▁CLEAR - ▁SIGHT - ▁GRA - ▁LOST - ▁KEPT - ▁F - PE - ▁BAR - ▁TOWN - ▁SLEEP - ARY - ▁HAIR - ▁FRIENDS - ▁DREAM - ▁FELLOW - PER - ▁DEEP - QUE - ▁BECAME - ▁REAL - ▁PAST - ▁MAKING - RING - ▁COMP - ▁ACT - ▁BAD - HO - STER - ▁YE - ▁MEANS - ▁RUN - MEN - ▁DAUGHTER - ▁SENSE - ▁CITY - ▁SOMETIMES - ▁TOWARDS - ▁ROAD - ▁SP - ▁LU - ▁READY - ▁FOOT - ▁COLD - ▁SA - ▁LETTER - ▁ELSE - ▁MAR - ▁STA - BE - ▁TRUTH - ▁LE - BO - ▁BUSINESS - CHE - ▁JOHN - ▁SUBJECT - ▁COURT - ▁IDEA - ILY - ▁RIVER - ATING - ▁FAMILY - HE - ▁DIDN - ▁GLAD - ▁SEVERAL - IAL - ▁UNDERSTAND - ▁SC - ▁POSSIBLE - ▁DIFFERENT - ▁RETURN - ▁ARMS - ▁LOW - ▁HOLD - ▁TALK - ▁RU - ▁WINDOW - ▁INTEREST - ▁SISTER - SON - ▁SH - ▁BLOOD - ▁SAYS - ▁CAP - ▁DI - ▁HUMAN - ▁CAUSE - NCE - ▁THANK - ▁LATE - GO - ▁CUT - ▁ACROSS - ▁STORY - NT - ▁COUNT - ▁ABLE - DY - LEY - ▁NUMBER - ▁STAND - ▁CHURCH - ▁THY - ▁SUPPOSE - LES - BLE - OP - ▁EFFECT - BY - ▁K - ▁NA - ▁SPOKE - ▁MET - ▁GREEN - ▁HUSBAND - ▁RESPECT - ▁PA - ▁FOLLOWED - ▁REMEMBER - ▁LONGER - ▁AGE - ▁TAKING - ▁LINE - ▁SEEM - ▁HAPPY - LAND - EM - ▁STAY - ▁PLAY - ▁COMMON - ▁GA - ▁BOOK - ▁TIMES - ▁OBJECT - ▁SEVEN - QUI - DO - UND - ▁FL - ▁PRETTY - ▁FAIR - WAY - ▁WOOD - ▁REACHED - ▁APPEARED - ▁SWEET - ▁FALL - BA - ▁PASS - ▁SIGN - ▁TREE - IONS - ▁GARDEN - ▁ILL - ▁ART - ▁REMAIN - ▁OPENED - ▁BRIGHT - ▁STREET - ▁TROUBLE - ▁PAIN - ▁CONTINUED - ▁SCHOOL - OUR - ▁CARRIED - ▁SAYING - HA - ▁CHANGE - ▁FOLLOW - ▁GOLD - ▁SW - ▁FEELING - ▁COMMAND - ▁BEAR - ▁CERTAINLY - ▁BLUE - ▁NE - CA - ▁WILD - ▁ACCOUNT - ▁OUGHT - UD - ▁T - ▁BREATH - ▁WANTED - ▁RI - ▁HEAVEN - ▁PURPOSE - ▁CHARACTER - ▁RICH - ▁PE - ▁DRESS - OS - FA - ▁TH - ▁ENGLISH - ▁CHANCE - ▁SHIP - ▁VIEW - ▁TOWARD - AK - ▁JOY - ▁JA - ▁HAR - ▁NEITHER - ▁FORCE - ▁UNCLE - DER - ▁PLAN - ▁PRINCESS - DI - ▁CHIEF - ▁HAT - ▁LIVED - ▁AB - ▁VISIT - ▁MOR - TEN - ▁WALL - UC - ▁MINE - ▁PLEASURE - ▁SMILE - ▁FRONT - ▁HU - ▁DEAL - OW - ▁FURTHER - GED - ▁TRIED - DA - VA - ▁NONE - ▁ENTERED - ▁QUEEN - ▁PAY - ▁EL - ▁EXCEPT - ▁SHA - ▁FORWARD - ▁EIGHT - ▁ADDED - ▁PUBLIC - ▁EIGHTEEN - ▁STAR - ▁HAPPENED - ▁LED - ▁WALKED - ▁ALTHOUGH - ▁LATER - ▁SPIRIT - ▁WALK - ▁BIT - ▁MEET - LIN - ▁FI - LT - ▁MOUTH - ▁WAIT - ▁HOURS - ▁LIVING - ▁YOURSELF - ▁FAST - ▁CHA - ▁HALL - ▁BEYOND - ▁BOAT - ▁SECRET - ENS - ▁CHAIR - RN - ▁RECEIVED - ▁CAT - RESS - ▁DESIRE - ▁GENTLEMAN - UGH - ▁LAID - EVER - ▁OCCASION - ▁WONDER - ▁GU - ▁PARTY - DEN - ▁FISH - ▁SEND - ▁NEARLY - ▁TRY - CON - ▁SEEMS - RS - ▁BELL - ▁BRA - ▁SILENCE - IG - ▁GUARD - ▁DIE - ▁DOING - ▁TU - ▁COR - ▁EARLY - ▁BANK - ▁FIGURE - IF - ▁ENGLAND - ▁MARY - ▁AFRAID - LER - ▁FO - ▁WATCH - ▁FA - ▁VA - ▁GRE - ▁AUNT - PED - ▁SERVICE - ▁JE - ▁PEN - ▁MINUTES - ▁PAN - ▁TREES - NED - ▁GLASS - ▁TONE - ▁PLEASE - ▁FORTH - ▁CROSS - ▁EXCLAIMED - ▁DREW - ▁EAT - ▁AH - ▁GRAVE - ▁CUR - PA - URE - CENT - ▁MILES - ▁SOFT - ▁AGO - ▁POSITION - ▁WARM - ▁LENGTH - ▁NECESSARY - ▁THINKING - ▁PICTURE - ▁PI - SHIP - IBLE - ▁HEAVY - ▁ATTENTION - ▁DOG - ABLY - ▁STANDING - ▁NATURAL - ▁APPEAR - OV - ▁CAUGHT - VO - ISM - ▁SPRING - ▁EXPERIENCE - ▁PAT - OT - ▁STOPPED - ▁REGARD - ▁HARDLY - ▁SELF - ▁STRENGTH - ▁GREW - ▁KNIGHT - ▁OPINION - ▁WIDE - ▁INSTEAD - ▁SOUTH - ▁TRANS - ▁CORNER - ▁LEARN - ▁ISLAND - ▁MI - ▁THIRD - ▁STE - ▁STRAIGHT - ▁TEA - ▁BOUND - ▁SEEING - ▁JU - ▁DINNER - ▁BEAUTY - ▁PEACE - AH - ▁REP - ▁SILENT - ▁CRE - ALLY - RIC - ▁STEP - ▁VER - ▁JO - GER - ▁SITTING - ▁THIRTY - ▁SAVE - ENED - ▁GLANCE - ▁REACH - ▁ACTION - ▁SAL - ▁SAD - ▁STONE - ITIES - ▁FRENCH - ▁STRUCK - ▁PAPER - ▁WHATEVER - ▁SUB - ▁DISTANCE - ▁WRONG - ▁KNOWLEDGE - ▁SAFE - ▁SNOW - ▁MUSIC - ▁FIFTY - RON - ▁ATTEMPT - ▁GOVERNMENT - TU - ▁CROWD - ▁BESIDES - ▁LOVED - ▁BOX - ▁DIRECTION - ▁TRAIN - ▁NORTH - ▁THICK - ▁GETTING - AV - ▁FLOOR - ▁COMPANY - ▁BLOW - ▁PLAIN - TRO - ▁BESIDE - ▁ROCK - ▁IMMEDIATELY - FI - ▁SHADOW - ▁SIT - ORS - ILE - ▁DRINK - ▁SPOT - ▁DANGER - ▁AL - ▁SAINT - ▁SLOWLY - ▁PALACE - IER - ▁RESULT - ▁PETER - ▁FOREST - ▁BELONG - ▁SU - ▁PAR - RIS - ▁TEARS - ▁APPEARANCE - ▁GATE - BU - ITION - ▁QUICKLY - ▁QUIET - ▁LONDON - ▁START - ▁BROWN - TRA - KIN - ▁CONSIDER - ▁BATTLE - ▁ANNE - ▁PIECE - ▁DIED - ▁SUCCESS - ▁LIPS - ▁FILLED - ▁FORGET - ▁POST - IFIED - ▁MARGARET - ▁FOOD - HAM - ▁PLEASANT - ▁FE - ▁EXPRESSION - ▁POCKET - ▁FRESH - ▁WEAR - TRI - ▁BROKEN - ▁LAUGHED - GING - ▁FOLLOWING - WN - IP - ▁TOUCH - ▁YOUTH - ATIVE - ▁LEG - ▁WEEK - ▁REMAINED - ▁EASY - NER - RK - ▁ENTER - ▁FIGHT - ▁PLACED - ▁TRAVEL - ▁SIMPLE - ▁GIRLS - ▁WAITING - ▁STOP - ▁WAVE - AU - ▁WISE - ▁CAMP - TURE - UB - ▁VE - ▁OFFICE - ▁GRAND - ▁FIT - ▁JUDGE - UP - MENTS - ▁QUICK - HI - ▁FLO - RIES - VAL - ▁COMFORT - ▁PARTICULAR - ▁STARTED - ▁SUIT - ▁NI - ▁PALE - ▁IMPOSSIBLE - ▁HOT - ▁CONVERSATION - ▁SCENE - ▁BOYS - ▁WIN - ▁BRE - ▁SOCIETY - ▁OUTSIDE - ▁WRITE - ▁EFFORT - ▁TALKING - ▁FORTUNE - ▁NINE - ▁WA - ▁SINGLE - ▁RULE - ▁PORT - ▁WINTER - ▁CAST - ▁CRA - ▁HAPPEN - ▁CRO - ▁SHUT - NING - ▁GUN - ▁NOBLE - ▁BEGIN - ▁PATH - ▁SKY - ▁WONDERFUL - ▁SUDDEN - ▁ARMY - ▁CHE - ▁WORTH - ▁MOUNTAIN - ▁MIN - AG - ▁FLU - ▁GRACE - ▁CHAPTER - ▁BELOW - ▁RING - ▁TURNING - ▁IRON - ▁TOP - ▁AFTERNOON - ORY - ▁EVIL - ▁TRUST - ▁BOW - ▁TRI - ▁SAIL - ▁CONTENT - ▁HORSES - ITE - ▁SILVER - AP - ▁LAD - ▁RUNNING - ▁HILL - ▁BEGINNING - ▁MAD - ▁HABIT - GRA - ▁CLOTHES - ▁MORROW - ▁CRY - ▁FASHION - ▁PRESENCE - ▁Z - FE - ▁ARRIVED - ▁QUARTER - ▁PERFECT - ▁WO - ▁TRA - ▁USUAL - ▁NECK - ▁MARRIED - ▁SEAT - ▁WI - ▁GAR - ▁SAND - ▁SHORE - ▁GIVING - NY - ▁PROBABLY - ▁MINUTE - ▁EXPECT - ▁DU - ▁SHOT - ▁INSTANT - ▁DEGREE - ▁COLOR - ▁WEST - RT - ▁MARCH - ▁BIRD - ▁SHOWED - ▁GREATER - ▁SERIOUS - ▁CARRY - ▁COVERED - ▁FORMER - ▁LOUD - ▁MOVED - ▁MASS - ▁SEEK - ▁CHO - GEN - ▁ROMAN - IB - ▁MOON - ▁BOARD - ▁STREAM - ▁EASILY - ▁WISHED - ▁SEARCH - ▁COULDN - ▁MONTHS - ▁SICK - LIE - ▁DUTY - ▁TWELVE - ▁FAINT - ▁STRANGER - ▁SURPRISE - ▁KILL - ▁LEAVING - ▁JOURNEY - ▁SCARCELY - ▁RAISED - ▁SPEAKING - ▁TERRIBLE - ▁TOM - ▁FIELD - ▁GAME - ▁QUA - ▁PROMISE - ▁LIE - ▁CONDITION - ▁TRO - ▁PERSONAL - ▁TALL - ▁STICK - ▁THREW - ▁MARRY - ▁VAN - ▁BURN - ▁ACCORDING - ▁RISE - ▁ATTACK - ▁SWORD - ▁GUESS - ▁THOUGHTS - ▁THIN - ▁THROW - ▁CALM - SIDE - ▁VILLAGE - ▁DEN - ▁ANXIOUS - ▁MER - GI - ▁EXPECTED - ▁BALL - ▁ESPECIALLY - ▁CHARGE - ▁MEASURE - ISE - ▁NICE - ▁TRYING - ▁ALLOW - ▁SHARP - ▁BREAD - ▁HONOUR - ▁HONOR - ▁ENTIRELY - ▁BILL - ▁BRI - ▁WRITTEN - ▁AR - ▁BROKE - ▁KILLED - ▁MARK - ▁VEN - ▁LADIES - ▁LEARNED - ▁FLOWERS - PLE - ▁FORTY - ▁OFFER - ▁HAPPINESS - ▁PRAY - ▁CLASS - ▁FER - ▁PRINCIPLE - GU - ▁BOOKS - ▁SHAPE - ▁SUMMER - ▁JACK - ▁DRAW - ▁GOLDEN - ▁DECIDED - ▁LEAD - ▁UNLESS - ▁HARM - ▁LISTEN - HER - ▁SHOOK - ▁INFLUENCE - ▁PERFECTLY - ▁MARRIAGE - ▁BROAD - ▁ESCAPE - ▁STATES - ▁MIDDLE - ▁PLANT - ▁MIL - ▁MOVEMENT - ▁NOISE - ▁ENEMY - ▁HISTORY - ▁BREAK - ROUS - ▁UNDERSTOOD - ▁LATTER - FER - ▁COMES - ▁MERELY - ▁SIMPLY - WI - ▁IMAGINE - ▁LOWER - ▁CONDUCT - ▁BORN - WA - ▁YARD - ▁KA - ▁CLOSED - ▁NOTE - GA - ▁STRA - RAN - ▁EXIST - EV - ▁SPEECH - ▁BITTER - JO - ▁MAKES - ▁GRASS - ▁REPLY - ▁CHANGED - ▁MON - ▁LYING - ▁DANCE - ▁FINALLY - ▁AMERICAN - ▁ENJOY - ▁CONTAIN - ▁MEANT - USE - ▁OBSERVED - THER - ▁LAUGH - ▁AFTERWARDS - ▁BEAT - ▁RACE - ▁EQUAL - ▁RAIN - PS - ▁STEPS - ▁BENEATH - ▁TAIL - ▁TASTE - IO - EY - ▁CHAR - ▁GE - GN - TIN - ▁GROW - ▁TE - IANS - ▁MOVE - ▁REPEATED - ▁DRIVE - TUR - ▁SI - CLOCK - ▁BRAVE - ▁MADAME - ▁LOT - ▁CASTLE - ▁HI - AND - ▁FUTURE - ▁RELATION - ▁SORRY - ▁HEALTH - ▁DICK - ▁R - ▁BUILDING - ▁EDGE - ▁BLESS - ▁SPITE - WE - ▁MIS - ▁PRISONER - ▁ALLOWED - ▁PH - ▁CATCH - MER - ETH - ▁COAT - ▁COMPLETE - ▁WOULDN - ▁CREATURE - ▁YELLOW - ▁IMPORTANT - ▁ADD - ▁PASSING - ▁DARKNESS - ▁CARRIAGE - ▁MILL - ▁FIFTEEN - NCY - ▁HUNG - ▁OB - ▁PLEASED - ▁SPREAD - ▁CURIOUS - ▁WORSE - ▁CIRCUMSTANCES - ▁GI - LAR - ▁CAL - ▁HY - ▁MERE - ▁JANE - ▁EAST - BI - ▁CUP - ▁BLIND - ▁PASSION - ▁DISCOVERED - ▁NOTICE - ▁REPORT - ▁SPACE - ▁PRESENTLY - ▁SORROW - ▁PACK - ▁DIN - CY - ▁DRY - ▁ANCIENT - ▁DRESSED - ▁COVER - ▁VO - ▁EXISTENCE - ▁EXACTLY - ▁BEAST - ▁PROPER - ▁DROPPED - ▁CLEAN - ▁COLOUR - ▁HOST - ▁CHAMBER - ▁FAITH - LET - ▁DETERMINED - ▁PRIEST - ▁STORM - ▁SKIN - ▁DARE - ▁PERSONS - ▁PICK - ▁NARROW - ▁SUPPORT - ▁PRIVATE - ▁SMILED - ▁COUSIN - ▁DRAWING - ▁ATTEND - ▁COOK - ▁PREVENT - ▁VARIOUS - ▁BLA - ▁FIXED - ▁WEAK - THE - ▁HOLE - ▁BOTTOM - ▁NOBODY - ADE - ▁LEGS - ITCH - ▁INDIVIDUAL - ▁EARS - LIKE - ▁ADVANTAGE - ▁FRANCE - ▁BON - ▁WINE - ▁LIVES - OD - ▁WALLS - ▁TIRED - ▁SHOP - ▁ANIMAL - ▁CRU - ▁WROTE - ▁ROYAL - ▁CONSIDERED - ▁MORAL - ▁COMPANION - ▁LOSE - ▁ISN - ▁BAG - ▁LAKE - ▁INTER - ▁COM - ▁LETTERS - ▁LUCK - ▁EAR - ▁GERMAN - ▁PET - ▁SAKE - ▁DROP - ▁PAID - ▁BREAKFAST - ▁LABOR - ▁DESERT - ▁DECLARED - ▁HUM - ▁STUDY - ▁INSTANCE - ONE - ▁SOMEWHAT - ▁CLOTH - ▁SPECIAL - ▁COLONEL - ▁SONG - ▁MAIN - ▁VALUE - ▁PROUD - ▁EXPRESS - ▁NATION - ▁HANDSOME - ▁CONFESS - ▁PU - ▁PASSAGE - ▁PERIOD - ▁CUSTOM - ▁HURT - ▁SHOULDER - ▁CHRIST - ZA - ▁RECEIVE - ▁DIFFICULT - ▁DEPEND - ▁MEETING - ▁CHI - ▁GEN - LIGHT - ▁BELIEVED - ▁SOCIAL - ▁DIFFICULTY - ▁GREATEST - ▁DRAWN - ▁GRANT - ▁BIRDS - ▁ANGRY - ▁HEAT - UFF - ▁DUE - ▁PLACES - ▁SIN - ▁COURAGE - ▁EVIDENTLY - ▁GENTLE - ▁CRUEL - ▁GEORGE - ▁GRI - ▁SERVANT - ▁U - ▁PURE - OOK - ▁KNOWS - ▁KNOWING - LF - ▁WRITING - ▁REMEMBERED - ▁CU - ▁HOLDING - ▁TENDER - ▁QUI - ▁BURST - ▁SURELY - IGN - ▁VALLEY - ▁FU - ▁BUTTER - ▁SPOKEN - ▁STORE - ▁DISC - ▁CHRISTIAN - ▁PARIS - ▁HENRY - ▁FINISHED - ▁PROVE - ▁FOOL - ▁SOLDIERS - ▁LANGUAGE - ▁INSIDE - ▁BAN - ▁FALLEN - ROW - ▁MAL - ▁BABY - ▁SITUATION - ▁WATCHED - ANS - ▁RUIN - ▁GENTLEMEN - ▁FRO - ▁FANCY - ▁ACCEPT - ▁SEASON - ▁OURSELVES - ▁SAN - ▁SPEED - IZED - ▁COOL - ▁SERVE - ▁VESSEL - ▁WILLIAM - ▁OBLIGED - ▁GROUP - FORM - ▁GOES - UOUS - ▁LEAVES - ▁PECULIAR - ▁NEWS - ▁VAIN - ▁EVERYBODY - ▁PIN - UG - ▁FORGOTTEN - ▁FRA - GAN - ▁CAREFULLY - ▁FLASH - UCH - ▁FUR - ▁MURDER - ▁DELIGHT - ▁WAITED - ▁RENDER - ▁PROPERTY - ▁NOTICED - ▁ROLL - ▁KNOCK - ▁EARNEST - KI - ▁HONEST - ▁PROMISED - ▁BAL - AW - ▁WALKING - ANG - ▁SQUARE - ▁QUIETLY - ▁CLOUD - WOOD - ▁FORMED - ▁HIGHER - ▁BUILT - ▁FATE - ▁TEACH - MY - ▁FALSE - ▁YORK - ▁DUST - ▁CLIMB - ▁FOND - ▁GROWN - ▁DESCEND - ▁RAG - ▁FRUIT - ▁GENERALLY - ▁OFFERED - ▁ER - ▁NURSE - POSE - ▁SPENT - ▁JOIN - ▁STATION - ▁MEANING - ▁SMOKE - HOOD - ▁ROUGH - JU - ▁LIKELY - ▁SURFACE - ▁KE - ▁MONTH - ▁POSSESSION - ▁TONGUE - ▁DUKE - ▁NOSE - ▁LAUGHING - ▁WEATHER - ▁WHISPERED - ▁SYSTEM - ▁LAWS - DDLE - ▁TOUCHED - ▁TRADE - LD - ▁SURPRISED - RIN - ▁ARCH - ▁WEALTH - FOR - ▁TEMPER - ▁FRANK - ▁GAL - ▁BARE - ▁OPPORTUNITY - ▁CLAIM - ▁ANIMALS - ▁REV - ▁COST - ▁WASH - ZE - ▁CORN - ▁OPPOSITE - ▁POLICE - ▁IDEAS - LON - ▁KEY - ▁READING - ▁COLLECT - CHED - ▁H - ▁CROWN - ▁TAR - ▁SWIFT - ▁SHOULDERS - ▁ICE - ▁GRAY - ▁SHARE - ▁PREPARED - ▁GRO - ▁UND - ▁TER - ▁EMPTY - CING - ▁SMILING - ▁AVOID - ▁DIFFERENCE - ▁EXPLAIN - ▁POUR - ▁ATTRACT - ▁OPENING - ▁WHEEL - ▁MATERIAL - ▁BREAST - ▁SUFFERING - ▁DISTINCT - ▁BOOT - ▁ROW - ▁FINGERS - HAN - ▁ALTOGETHER - ▁FAT - ▁PAPA - ▁BRAIN - ▁ASLEEP - ▁GREY - ▁SUM - ▁GAS - ▁WINDOWS - ▁ALIVE - ▁PROCEED - ▁FLOWER - ▁LEAP - ▁PUR - ▁PIECES - ▁ALTER - ▁MEMORY - IENT - ▁FILL - ▁CLO - ▁THROWN - ▁KINGDOM - ▁RODE - IUS - ▁MAID - ▁DIM - ▁BAND - ▁VIRTUE - ▁DISH - ▁GUEST - ▁LOSS - ▁CAUSED - ▁MOTION - ▁POT - ▁MILLION - ▁FAULT - ▁LOVELY - ▁HERO - PPING - ▁UNITED - ▁SPI - SOME - BRA - ▁MOUNTAINS - ▁NU - ▁SATISFIED - ▁DOLLARS - ▁LOVER - ▁CONCEAL - ▁VAST - ▁PULL - ▁HATH - ▁RUSH - ▁J - ▁DESPAIR - EX - ▁HEIGHT - ▁CE - ▁BENT - ▁PITY - ▁RISING - ATH - ▁PRIDE - ▁HURRY - KA - ▁SETTLED - ▁JUSTICE - ▁LIFTED - PEN - ▁SOLDIER - ▁FINDING - ▁REMARK - ▁REGULAR - ▁STRUGGLE - ▁MACHINE - ▁SING - ▁HURRIED - ▁SUFFICIENT - ▁REPRESENT - ▁DOUBLE - ▁ALARM - ▁SUPPER - ▁DREADFUL - ▁FORE - ATOR - ▁STOCK - ▁TIN - ▁EXAMPLE - ▁ROOF - ▁FLOW - ▁SUPPOSED - ▁PRESERV - ▁L - ▁LISTENED - OC - ▁STO - ▁SECURE - ▁FRIGHTENED - ▁DISTURB - ▁EMOTION - ▁SERVANTS - ▁YO - ▁BUY - ▁FORCED - ▁KITCHEN - ▁TERROR - ▁STAIRS - ▁SIXTY - KER - ▁ORDINARY - ▁DIRECTLY - ▁HEADS - ▁METHOD - ▁FORGIVE - ▁AWFUL - ▁REFLECT - ▁GREATLY - ▁TALKED - ▁RIDE - STONE - ▁FAVOUR - ▁WELCOME - ▁SEIZED - OU - ▁CONTROL - ▁ORDERED - ▁ANGEL - ▁USUALLY - ▁POET - ▁BOLD - LINE - ▁ADVENTURE - ▁WATCHING - ▁FOLK - ▁MISTRESS - IZE - ▁GROWING - ▁CAVE - ▁EVIDENCE - ▁FINGER - ▁SEVENTEEN - ▁MOVING - EOUS - ▁DOESN - ▁COW - ▁TYPE - ▁BOIL - ▁TALE - ▁DELIVER - ▁FARM - ▁MONSIEUR - ▁GATHERED - ▁FEELINGS - ▁RATE - ▁REMARKED - ▁PUTTING - ▁MAT - ▁CONTRARY - ▁CRIME - ▁PLA - ▁COL - ▁NEARER - TES - ▁CIVIL - ▁SHAME - ▁LOOSE - ▁DISCOVER - ▁FLAT - ▁TWICE - ▁FAIL - VIS - ▁UNC - EA - ▁EUROPE - ▁PATIENT - ▁UNTO - ▁SUFFER - ▁PAIR - ▁TREASURE - OSE - ▁EAGER - ▁FLY - ▁N - ▁VAL - ▁DAN - ▁SALT - ▁BORE - BBE - ▁ARTHUR - ▁AFFAIRS - ▁SLOW - ▁CONSIST - ▁DEVIL - LAN - ▁AFFECTION - ▁ENGAGED - ▁KISS - ▁YA - ▁OFFICER - IFICATION - ▁LAMP - ▁PARTS - HEN - ▁MILK - ▁PROCESS - ▁GIFT - ▁PULLED - ▁HID - ▁RAY - ▁EXCELLENT - ▁IMPRESSION - ▁AUTHORITY - ▁PROVED - ▁TELLING - TTE - ▁TOWER - ▁CONSEQUENCE - ▁FAVOR - ▁FLEW - ▁CHARLES - ISTS - ▁ADDRESS - ▁FAMILIAR - ▁LIMIT - ▁CONFIDENCE - ▁RARE - ▁WEEKS - ▁WOODS - ▁INTENTION - ▁DIRECT - ▁PERFORM - ▁SOLEMN - ▁DISTANT - ▁IMAGE - ▁PRESIDENT - ▁FIRM - ▁INDIAN - ▁RANK - ▁LIKED - ▁AGREE - ▁HOUSES - ▁WIL - ▁MATTERS - ▁PRISON - ▁MODE - ▁MAJOR - ▁WORKING - ▁SLIP - ▁WEIGHT - ▁AWARE - ▁BUSY - ▁LOOKS - ▁WOUND - ▁THOR - ▁BATH - ▁EXERCISE - ▁SIMILAR - ▁WORE - ▁AMOUNT - ▁QUESTIONS - ▁VIOLENT - ▁EXCUSE - ▁ASIDE - ▁TUR - ▁DULL - OF - ▁EMPEROR - ▁NEVERTHELESS - ▁SHOUT - ▁EXPLAINED - ▁SIZE - ▁ACCOMPLISH - FORD - CAN - ▁MISTAKE - ▁INSTANTLY - ▁SMOOTH - ▁STRIKE - ▁BOB - ISED - ▁HORROR - ▁SCIENCE - ▁PROTEST - ▁MANAGE - ▁OBEY - ▁NECESSITY - ▁SPLENDID - ▁PRESS - ▁INTERESTING - ▁RELIGION - ▁UNKNOWN - ▁FIERCE - ▁DISAPPEARED - ▁HOLY - ▁HATE - ▁PLAYED - ▁LIN - ▁NATURALLY - ▁DROVE - ▁LOUIS - TIES - ▁BRAND - INESS - RIE - ▁SHOOT - ▁CONSENT - ▁SEATED - ▁LINES - GUE - ▁AGREED - ▁CIRCLE - ▁STIR - ▁STREETS - ▁TASK - ▁RID - ▁PRODUCED - ▁ACCIDENT - ▁WITNESS - ▁LIBERTY - ▁DETAIL - ▁MINISTER - ▁POWERFUL - ▁SAVAGE - ▁SIXTEEN - ▁PRETEND - ▁COAST - ▁SQU - ▁UTTER - ▁NAMED - ▁CLEVER - ▁ADMIT - ▁COUPLE - ▁WICKED - ▁MESSAGE - ▁TEMPLE - ▁STONES - ▁YESTERDAY - ▁HILLS - DAY - ▁SLIGHT - ▁DIAMOND - ▁POSSIBLY - ▁AFFAIR - ▁ORIGINAL - ▁HEARING - ▁WORTHY - ▁SELL - NEY - ICK - ▁COTTAGE - ▁SACRIFICE - ▁PROGRESS - ▁SHOCK - ▁DESIGN - ▁SOUGHT - ▁PIT - ▁SUNDAY - ▁OTHERWISE - ▁CABIN - ▁PRAYER - ▁DWELL - ▁GAIN - ▁BRIDGE - ▁PARTICULARLY - ▁YIELD - ▁TREAT - RIGHT - ▁OAK - ▁ROPE - WIN - ▁ORDERS - ▁SUSPECT - ▁EDWARD - AB - ▁ELEVEN - ▁TEETH - ▁OCCURRED - DDING - ▁AMERICA - ▁FALLING - ▁LION - ▁DEPART - ▁KEEPING - ▁DEMAND - ▁PAUSED - ▁CEASED - INA - ▁FUN - ▁CHEER - ▁PARDON - ▁NATIVE - LUS - LOW - ▁DOGS - ▁REQUIRED - ILITY - ▁ELECT - ▁ENTERTAIN - ITUDE - ▁HUGE - ▁CARRYING - ▁BLU - ▁INSIST - ▁SATISFACTION - ▁HUNT - ▁COUNTENANCE - ▁UPPER - ▁MAIDEN - ▁FAILED - ▁JAMES - ▁FOREIGN - ▁GATHER - ▁TEST - BOARD - ▁TERMS - ▁SILK - ▁BEG - ▁BROTHERS - ▁PAGE - ▁KNEES - ▁SHOWN - ▁PROFESSOR - ▁MIGHTY - ▁DEFI - ▁CHARM - ▁REQUIRE - ▁LOG - MORE - ▁PROOF - ▁POSSESSED - ▁SOFTLY - ▁UNFORTUNATE - ▁PRICE - ▁SEVERE - ▁SINGING - ▁STAGE - ▁FREEDOM - ▁SHOUTED - ▁FARTHER - ▁MAJESTY - ▁PREVIOUS - ▁GUIDE - ▁MATCH - ▁CHEST - ▁INTENDED - ▁BI - ▁EXCITEMENT - ▁OFFICERS - ▁SUR - ▁SHAKE - ▁SENTIMENT - ▁GENTLY - ▁SUCCEEDED - ▁MENTION - ▁LOCK - ▁ACQUAINTANCE - ▁IMAGINATION - ▁PHYSICAL - ▁LEADING - ▁SLAVE - ▁CART - ▁POINTED - ▁STEAM - ▁SHADE - ▁PIPE - ▁BASE - ▁INVENT - ▁ALAS - ▁WORKED - ▁REGRET - ▁BUR - ▁FAITHFUL - ▁MENTIONED - ▁RECORD - ▁COMPLAIN - ▁SUPERIOR - ▁BAY - ▁PAL - EMENT - UE - ▁SEVENTY - ▁HOTEL - ▁SHEEP - ▁MEAL - ▁ADVICE - ▁HIDDEN - ▁DEMANDED - ▁CONSCIOUS - ▁BROW - ▁POSSESS - ▁FOURTH - ▁EVENTS - ▁FRI - ▁PRAISE - ▁ADVANCED - ▁RESOLVED - ▁STUFF - ▁CHEERFUL - ▁BIRTH - ▁GRIEF - ▁AFFORD - ▁FAIRY - ▁WAKE - ▁SIDES - ▁SUBSTANCE - ▁ARTICLE - ▁LEVEL - ▁MIST - ▁JOINED - ▁PRACTICAL - ▁CLEARLY - ▁TRACE - ▁AWAKE - ▁OBSERVE - ▁BASKET - ▁LACK - VILLE - ▁SPIRITS - ▁EXCITED - ▁ABANDON - ▁SHINING - ▁FULLY - ▁CALLING - ▁CONSIDERABLE - ▁SPRANG - ▁MILE - ▁DOZEN - ▁PEA - ▁DANGEROUS - ▁WIT - ▁JEW - ▁POUNDS - ▁FOX - ▁INFORMATION - ▁LIES - ▁DECK - NNY - ▁PAUL - ▁STARS - ▁ANGER - ▁SETTLE - ▁WILLING - ▁ADAM - ▁FACES - ▁SMITH - ▁IMPORTANCE - ▁STRAIN - WAR - ▁SAM - ▁FEATHER - ▁SERVED - ▁AUTHOR - ▁PERCEIVED - ▁FLAME - ▁DIVINE - ▁TRAIL - ▁ANYBODY - ▁SIGH - ▁DELICATE - KY - ▁FOLD - ▁HAVEN - ▁DESIRED - ▁CURIOSITY - ▁PRACTICE - ▁CONSIDERATION - ▁ABSOLUTELY - ▁CITIZEN - ▁BOTTLE - ▁INTERESTED - ▁MEAT - ▁OCCUPIED - ▁CHOOSE - ▁THROAT - ETTE - ▁CANDLE - ▁DAWN - ▁PROTECT - ▁SENTENCE - IED - ▁ROCKS - ▁PORTION - ▁APPARENTLY - ▁PRESENTED - ▁TIGHT - ▁ACTUALLY - ▁DYING - ▁HAM - ▁DAILY - ▁SUFFERED - ▁POLITICAL - ▁BODIES - ▁MODERN - ▁COMPLETELY - ▁SOONER - TAN - ▁PROP - ▁ADVANCE - ▁REFUSED - ▁FARMER - ▁POLITE - ▁THUNDER - ▁BRIEF - ▁ELSIE - ▁SAILOR - ▁SUGGESTED - ▁PLATE - ▁AID - ▁FLESH - ▁WEEP - ▁BUCK - ▁ANTI - ▁OCEAN - ▁SPEND - WELL - ▁ODD - ▁GOVERNOR - ▁ENTRANCE - ▁SUSPICION - ▁STEPPED - ▁RAPIDLY - ▁CHECK - ▁HIDE - ▁FLIGHT - ▁CLUB - ▁ENTIRE - ▁INDIANS - ASH - ▁CAPITAL - ▁MAMMA - HAR - ▁CORRECT - ▁CRACK - ▁SENSATION - ▁WORST - ▁PACE - ▁MIDST - ▁AUGUST - ▁PROPORTION - ▁INNOCENT - LINESS - ▁REGARDED - ▁DRIVEN - ORD - ▁HASTE - ▁EDUCATION - ▁EMPLOY - ▁TRULY - ▁INSTRUMENT - ▁MAG - ▁FRAME - ▁FOOLISH - ▁TAUGHT - ▁HANG - ▁ARGUMENT - ▁NINETEEN - ▁ELDER - ▁NAY - ▁NEEDED - ▁NEIGHBOR - ▁INSTRUCT - ▁PAPERS - ▁REWARD - ▁EQUALLY - ▁FIELDS - ▁DIG - HIN - ▁CONDITIONS - JA - ▁SPAR - ▁REQUEST - ▁WORN - ▁REMARKABLE - ▁LOAD - ▁WORSHIP - ▁PARK - ▁KI - ▁INTERRUPTED - ▁SKILL - ▁TERM - LAC - ▁CRITIC - ▁DISTRESS - ▁BELIEF - ▁STERN - IGHT - ▁TRACK - ▁HUNTING - ▁JEWEL - ▁GRADUALLY - ▁GLOW - ▁RUSHED - ▁MENTAL - ▁VISITOR - ▁PICKED - ▁BEHOLD - ▁EXPRESSED - ▁RUB - ▁SKI - ARTAGNAN - ▁MOREOVER - ▁OPERATION - ▁CAREFUL - ▁KEEN - ▁ASSERT - ▁WANDER - ▁ENEMIES - ▁MYSTERIOUS - ▁DEPTH - ▁PREFER - ▁CROSSED - ▁CHARMING - ▁DREAD - ▁FLOUR - ▁ROBIN - ▁TRE - ▁RELIEF - ▁INQUIRED - ▁APPLE - ▁HENCE - ▁WINGS - ▁CHOICE - ▁JUD - OO - ▁SPECIES - ▁DELIGHTED - IUM - ▁RAPID - ▁APPEAL - ▁FAMOUS - ▁USEFUL - ▁HELEN - ▁NEWSPAPER - ▁PLENTY - ▁BEARING - ▁NERVOUS - ▁PARA - ▁URGE - ▁ROAR - ▁WOUNDED - ▁CHAIN - ▁PRODUCE - ▁REFLECTION - ▁MERCHANT - ▁QUARREL - ▁GLORY - ▁BEGUN - ▁BARON - CUS - ▁QUEER - ▁MIX - ▁GAZE - ▁WHISPER - ▁BURIED - ▁DIV - ▁CARD - ▁FREQUENTLY - ▁TIP - ▁KNEE - ▁REGION - ▁ROOT - ▁LEST - ▁JEALOUS - CTOR - ▁SAVED - ▁ASKING - ▁TRIP - QUA - ▁UNION - HY - ▁COMPANIONS - ▁SHIPS - ▁HALE - ▁APPROACHED - ▁HARRY - ▁DRUNK - ▁ARRIVAL - ▁SLEPT - ▁FURNISH - HEAD - ▁PIG - ▁ABSENCE - ▁PHIL - ▁HEAP - ▁SHOES - ▁CONSCIOUSNESS - ▁KINDLY - ▁EVIDENT - ▁SCAR - ▁DETERMIN - ▁GRASP - ▁STEAL - ▁OWE - ▁KNIFE - ▁PRECIOUS - ▁ELEMENT - ▁PROCEEDED - ▁FEVER - ▁LEADER - ▁RISK - ▁EASE - ▁GRIM - ▁MOUNT - ▁MEANWHILE - ▁CENTURY - OON - ▁JUDGMENT - ▁AROSE - ▁VISION - ▁SPARE - ▁EXTREME - ▁CONSTANT - ▁OBSERVATION - ▁THRUST - ▁DELAY - ▁CENT - ▁INCLUD - ▁LIFT - ▁ADMIRE - ▁ISSUE - ▁FRIENDSHIP - ▁LESSON - ▁PRINCIPAL - ▁MOURN - ▁ACCEPTED - ▁BURNING - ▁CAPABLE - ▁EXTRAORDINARY - ▁SANG - ▁REMOVED - ▁HOPED - ▁HORN - ▁ALICE - ▁MUD - ▁APARTMENT - ▁FIGHTING - ▁BLAME - ▁TREMBLING - ▁SOMEBODY - ▁ANYONE - ▁BRIDE - ▁READER - ▁ROB - ▁EVERYWHERE - ▁LABOUR - ▁RECALL - ▁BULL - ▁HIT - ▁COUNCIL - ▁POPULAR - ▁CHAP - ▁TRIAL - ▁DUN - ▁WISHES - ▁BRILLIANT - ▁ASSURED - ▁FORGOT - ▁CONTINUE - ▁ACKNOWLEDG - ▁RETREAT - ▁INCREASED - ▁CONTEMPT - ▁GRANDFATHER - ▁SYMPATHY - ▁GHOST - ▁STRETCHED - ▁CREATURES - ▁CAB - ▁HIND - ▁PLAYING - ▁MISERABLE - ▁MEMBERS - ▁KINDNESS - ▁HIGHEST - ▁PRIM - ▁KISSED - ▁DESERVE - ▁HUT - ▁BEGGED - ▁EIGHTY - ▁CLOSELY - ▁WONDERED - ▁MILITARY - ▁REMIND - ▁ACCORDINGLY - ▁LARGER - ▁MAINTAIN - ▁ENGINE - ▁MOTIVE - ▁DESTROY - ▁STRIP - ▁HANS - ▁AHEAD - ▁INFINITE - ▁PROMPT - ▁INFORMED - TTLE - ▁PEER - ▁PRESSED - ▁TRAP - ▁SOMEWHERE - ▁BOUGHT - ▁VISIBLE - ▁ASHAMED - ▁TEAR - ▁NEIGHBOUR - ▁CONSTITUTION - ▁INTELLIGENCE - ▁PROFESSION - ▁HUNGRY - RIDGE - ▁SMELL - ▁STORIES - ▁LISTENING - ▁APPROACH - ▁STRING - ▁EXPLANATION - ▁IMMENSE - ▁RELIGIOUS - ▁THROUGHOUT - ▁HOLLOW - ▁AWAIT - ▁FLYING - ▁SCREAM - ▁ACTIVE - ▁RUM - ▁PRODUCT - ▁UNHAPPY - ▁VAGUE - ARIES - ▁ELIZABETH - ▁STUPID - ▁DIGNITY - ▁ISABEL - GAR - ▁BRO - ▁PITCH - ▁COMRADE - ▁STIFF - ▁RECKON - ▁SOLD - ▁SPARK - ▁STRO - ▁CRYING - ▁MAGIC - ▁REPEAT - PORT - ▁MARKED - ▁COMFORTABLE - ▁PROJECT - ▁BECOMING - ▁PARENTS - ▁SHELTER - ▁STOLE - ▁HINT - ▁NEST - ▁TRICK - ▁THOROUGHLY - ▁HOSPITAL - ▁WEAPON - ▁ROME - ▁STYLE - ▁ADMITTED - ▁SAFETY - FIELD - ▁UNDERSTANDING - ▁TREMBLE - ▁PRINT - ▁SLAVES - ▁WEARY - ▁ARTIST - ▁CREDIT - BURG - ▁CONCLUSION - ▁SELDOM - ▁UNUSUAL - ▁CLOUDS - ▁UNABLE - ▁GAY - ▁HANGING - ▁SCR - ▁BOWED - ▁DAVID - ▁VOL - ▁PUSHED - ▁ESCAPED - MOND - ▁WARN - ▁BETRAY - ▁EGGS - ▁PLAINLY - ▁EXHIBIT - ▁DISPLAY - ▁MEMBER - ▁GRIN - ▁PROSPECT - ▁BRUSH - ▁BID - ▁SUCCESSFUL - ▁EXTENT - ▁PERSUADE - ▁MID - ▁MOOD - ▁ARRANGED - ▁UNIVERSAL - ▁JIM - ▁SIGNAL - ▁WHILST - ▁PHILIP - ▁WOLF - RATE - ▁EAGERLY - ▁BILLY - ▁RETURNING - ▁CONSCIENCE - ▁FORTUNATE - ▁FEMALE - ▁GLEAM - ▁HASTILY - ▁PROVIDED - ▁OBTAIN - ▁INSTINCT - ▁CONCERNED - ▁CONCERNING - ▁SOMEHOW - ▁PINK - ▁RAGE - ▁ACCUSTOMED - ▁UNCONSCIOUS - ▁ADVISE - ▁BRANCHES - ▁TINY - ▁REFUSE - ▁BISHOP - ▁SUPPLY - ▁PEASANT - ▁LAWYER - ▁WASTE - ▁CONNECTION - ▁DEVELOP - ▁CORRESPOND - ▁PLUM - ▁NODDED - ▁SLIPPED - ▁EU - ▁CONSTANTLY - CUM - MMED - ▁FAIRLY - HOUSE - ▁KIT - ▁RANG - ▁FEATURES - ▁PAUSE - ▁PAINFUL - ▁JOE - ▁WHENCE - ▁LAUGHTER - ▁COACH - ▁CHRISTMAS - ▁EATING - ▁WHOLLY - ▁APART - ▁SUPER - ▁REVOLUTION - ▁LONELY - ▁CHEEKS - ▁THRONE - ▁CREW - ▁ATTAIN - ▁ESTABLISHED - TIME - ▁DASH - ▁FRIENDLY - ▁OPERA - ▁EARL - ▁EXHAUST - ▁CLIFF - ▁REVEAL - ▁ADOPT - ▁CENTRE - ▁MERRY - ▁SYLVIA - ▁IDEAL - ▁MISFORTUNE - ▁FEAST - ▁ARAB - ▁NUT - ▁FETCH - ▁FOUGHT - ▁PILE - ▁SETTING - ▁SOURCE - ▁PERSIST - ▁MERCY - ▁BARK - ▁LUC - ▁DEEPLY - ▁COMPARE - ▁ATTITUDE - ▁ENDURE - ▁DELIGHTFUL - ▁BEARD - ▁PATIENCE - ▁LOCAL - ▁UTTERED - ▁VICTORY - ▁TREATED - ▁SEPARATE - ▁WAG - ▁DRAGG - ▁TITLE - ▁TROOPS - ▁TRIUMPH - ▁REAR - ▁GAINED - ▁SINK - ▁DEFEND - ▁TIED - ▁FLED - ▁DARED - ▁INCREASE - ▁POND - ▁CONQUER - ▁FOREHEAD - ▁FAN - ▁ANXIETY - ▁ENCOUNTER - ▁SEX - ▁HALT - ▁SANK - ▁CHEEK - ▁HUMBLE - ▁WRITER - ▁EMPLOYED - ▁DISTINGUISHED - ▁RAISE - ▁WHIP - ▁GIANT - ▁RANGE - ▁OBTAINED - ▁FLAG - ▁MAC - ▁JUMPED - ▁DISCOVERY - ▁NATIONAL - ▁COMMISSION - ▁POSITIVE - ▁LOVING - ▁EXACT - ▁MURMURED - ▁GAZED - ▁REFER - ▁COLLEGE - ▁ENCOURAGE - ▁NOVEL - ▁CLOCK - ▁MORTAL - ▁ROLLED - ▁RAT - IZING - ▁GUILTY - ▁VICTOR - WORTH - ▁PRA - ▁APPROACHING - ▁RELATIVE - ▁ESTATE - ▁UGLY - ▁METAL - ▁ROBERT - ▁TENT - ▁ADMIRATION - ▁FOURTEEN - ▁BARBAR - ▁WITCH - ELLA - ▁CAKE - ▁SHONE - ▁MANAGED - ▁VOLUME - ▁GREEK - ▁DANCING - ▁WRETCHED - ▁CONDEMN - ▁MAGNIFICENT - ▁CONSULT - J - ▁ORGAN - ▁FLEET - ▁ARRANGEMENT - ▁INCIDENT - ▁MISERY - ▁ARROW - ▁STROKE - ▁ASSIST - ▁BUILD - ▁SUCCEED - ▁DESPERATE - ▁WIDOW - UDE - ▁MARKET - ▁WISDOM - ▁PRECISE - ▁CURRENT - ▁SPOIL - ▁BADE - ▁WOODEN - ▁RESIST - ▁OBVIOUS - ▁SENSIBLE - FALL - ▁ADDRESSED - ▁GIL - ▁COUNSEL - ▁PURCHASE - ▁SELECT - ▁USELESS - ▁STARED - ▁ARREST - ▁POISON - ▁FIN - ▁SWALLOW - ▁BLOCK - ▁SLID - ▁NINETY - ▁SPORT - ▁PROVIDE - ▁ANNA - ▁LAMB - ▁INTERVAL - ▁JUMP - ▁DESCRIBED - ▁STRIKING - ▁PROVISION - ▁PROPOSED - ▁MELANCHOLY - ▁WARRIOR - ▁SUGGEST - ▁DEPARTURE - ▁BURDEN - ▁LIMB - ▁TROUBLED - ▁MEADOW - ▁SACRED - ▁SOLID - ▁TRU - ▁LUCY - ▁RECOVER - ▁ENERGY - ▁POWDER - ▁RESUMED - ▁INTENSE - ▁BRITISH - ▁STRAW - ▁AGREEABLE - ▁EVERYONE - ▁CONCERN - ▁VOYAGE - ▁SOUTHERN - ▁BOSOM - ▁UTTERLY - ▁FEED - ▁ESSENTIAL - ▁CONFINE - ▁HOUSEHOLD - ▁EXTREMELY - ▁WONDERING - ▁LIST - ▁PINE - PHA - ▁EXPERIMENT - ▁JOSEPH - ▁MYSTERY - ▁RESTORE - ▁BLUSH - FOLD - ▁CHOSEN - ▁INTELLECT - ▁CURTAIN - OLOGY - ▁MOUNTED - ▁LAP - ▁EPI - ▁PUNISH - ▁WEDDING - ▁RECOGNIZED - ▁DRIFT - ▁PREPARATION - ▁RESOLUTION - ▁OPPRESS - ▁FIX - ▁VICTIM - OGRAPH - ▁SUMMON - ▁JULIA - ▁FLOOD - ▁WAL - ULATION - ▁SLIGHTLY - ▁LODGE - ▁WIRE - ▁CONFUSION - ▁UNEXPECTED - ▁CONCEIVE - ▁PRIZE - ▁JESUS - ▁ADDITION - ▁RUDE - ▁FATAL - ▁CARELESS - ▁PATCH - ▁KO - ▁CATHERINE - ▁PARLIAMENT - ▁PROFOUND - ▁ALOUD - ▁RELIEVE - ▁PUSH - ABILITY - ▁ACCOMPANIED - ▁SOVEREIGN - ▁SINGULAR - ▁ECHO - ▁COMPOSED - ▁SHAKING - ATORY - ▁ASSISTANCE - ▁TEACHER - ▁HORRIBLE - ▁STRICT - ▁VERSE - ▁PUNISHMENT - ▁GOWN - ▁MISTAKEN - ▁VARI - ▁SWEPT - ▁GESTURE - ▁BUSH - ▁STEEL - ▁AFFECTED - ▁DIRECTED - ▁SURROUNDED - ▁ABSURD - ▁SUGAR - ▁SCRAP - ▁IMMEDIATE - ▁SADDLE - ▁TY - ▁ARISE - ▁SIGHED - ▁EXCHANGE - ▁IMPATIENT - ▁SNAP - ▁EMBRACE - ▁DISEASE - ▁PROFIT - ▁RIDING - ▁RECOVERED - ▁GOVERN - ▁STRETCH - ▁CONVINCED - ▁LEANING - ▁DOMESTIC - ▁COMPLEX - ▁MANIFEST - ▁INDULGE - ▁GENIUS - ▁AGENT - ▁VEIL - ▁DESCRIPTION - ▁INCLINED - ▁DECEIVE - ▁DARLING - ▁REIGN - HU - ▁ENORMOUS - ▁RESTRAIN - ▁DUTIES - BURY - TTERED - ▁POLE - ▁ENABLE - ▁EXCEPTION - ▁INTIMATE - ▁COUNTESS - ▁TRIBE - ▁HANDKERCHIEF - ▁MIDNIGHT - ▁PROBLEM - ▁TRAMP - ▁OIL - CAST - ▁CRUSH - ▁DISCUSS - ▁RAM - ▁TROT - ▁UNRE - ▁WHIRL - ▁LOCKED - ▁HORIZON - ▁OFFICIAL - ▁SCHEME - ▁DROWN - ▁PIERRE - ▁PERMITTED - ▁CONNECTED - ▁ASSURE - ▁COCK - ▁UTMOST - ▁DEVOTED - ▁RELI - ▁SUFFICIENTLY - ▁INTELLECTUAL - ▁CARPET - ▁OBJECTION - ▁AFTERWARD - ▁REALITY - ▁NEGRO - ▁RETAIN - ▁ASCEND - ▁CEASE - ▁KATE - ▁MARVEL - KO - ▁BOND - MOST - ▁COAL - GATE - ▁IGNORANT - ▁BREAKING - ▁TWIN - ▁ASTONISHMENT - ▁COFFEE - ▁JAR - ▁CITIES - ▁ORIGIN - ▁EXECUT - ▁FINAL - ▁INHABITANTS - ▁STABLE - ▁CHIN - ▁PARTIES - ▁PLUNGE - ▁GENEROUS - ▁DESCRIBE - ▁ANNOUNCED - ▁MERIT - ▁REVERE - ▁ERE - ACIOUS - ZI - ▁DISAPPOINT - ▁SUGGESTION - ▁DOUBTLESS - ▁TRUNK - ▁STAMP - ▁JOB - ▁APPOINTED - ▁DIVIDED - ▁ACQUAINTED - CHI - ▁ABSOLUTE - ▁FEARFUL - ▁PRIVILEGE - ▁CRAFT - ▁STEEP - ▁HUNTER - ▁FORBID - ▁MODEST - ▁ENDEAVOUR - ▁SWEEP - ▁BEHELD - ▁ABSORB - ▁CONSTRUCT - ▁EMPIRE - ▁EXPEDITION - ▁ERECT - ▁OFFEND - ▁INTEND - ▁PERMIT - ▁DESTROYED - ▁CONTRACT - ▁THIRST - ▁WAGON - ▁EVA - ▁GLOOM - ▁ATMOSPHERE - ▁RESERVE - ▁VOTE - ▁GER - ▁NONSENSE - ▁PREVAIL - ▁QUALITY - ▁CLASP - ▁CONCLUDED - ▁RAP - ▁KATY - ▁ETERNAL - ▁MUTTERED - ▁NEGLECT - ▁SQUIRE - ▁CREEP - LOCK - ▁ELECTRIC - ▁HAY - ▁EXPENSE - ▁SCORN - ▁RETIRED - ▁STOUT - ▁MURMUR - ▁SHARPLY - ▁DISTRICT - ▁LEAF - ▁FAILURE - WICK - ▁JEAN - ▁NUMEROUS - ▁INFANT - ▁REALIZED - ▁TRAVELLER - ▁HUNGER - ▁JUNE - ▁MUN - ▁RECOMMEND - ▁CREP - ZZLE - ▁RICHARD - WORK - ▁MONTE - ▁PREACH - ▁PALM - AVI - ▁ANYWHERE - ▁DISPOSITION - ▁MIRROR - ▁VENTURE - ▁POUND - ▁CIGAR - ▁INVITED - ▁BENCH - ▁PROTECTION - ▁BENEFIT - ▁THOMAS - ▁CLERK - ▁REPROACH - ▁UNIFORM - ▁GENERATION - ▁SEAL - ▁COMPASS - ▁WARNING - ▁EXTENDED - ▁DIFFICULTIES - ▁MAYBE - ▁GROAN - ▁AFFECT - ▁COMB - ▁EARN - ▁WESTERN - ▁IDLE - ▁SCORE - ▁TAP - ▁ASTONISHED - ▁INTRODUCED - ▁LEISURE - ▁LIEUTENANT - ▁VIOLENCE - ▁FIRMLY - ▁MONSTER - ▁UR - ▁PROPERLY - ▁TWIST - ▁PIRATE - ▁ROBBER - ▁BATTER - ▁WEPT - ▁LEANED - ▁FOG - ▁ORNAMENT - ▁ANDREW - ▁BUSHES - ▁REPUBLIC - ▁CONFIDENT - ▁LEAN - ▁DART - ▁STOOP - ▁CURL - ▁COUNTER - ▁NORTHERN - ▁PEARL - ▁NEAREST - ▁FRANCIS - ▁WANDERING - ▁FREQUENT - ▁STARTLED - ▁STATEMENT - ▁OCCUR - ▁BLOOM - ▁NERVE - ▁INSPECT - ▁INDUCE - ▁FLATTER - ▁DATE - ▁AMBITION - ▁SLOPE - ▁MALE - ▁MADAM - ▁MONK - ▁RENT - ▁CONFIRM - ▁INVESTIGAT - ▁RABBIT - ▁REGIMENT - ▁SUBMIT - ▁SPELL - ▁FURIOUS - ▁RAIL - ▁BESTOW - ▁RALPH - ▁SCATTERED - ▁COMPELLED - ▁THREAD - ▁CHILL - ▁DENY - ▁PRONOUNC - ▁MANKIND - ▁CATTLE - ▁EXECUTION - ▁REBEL - ▁SUPREME - ▁VALUABLE - ▁LIKEWISE - ▁CONVEY - ▁TIDE - ▁GLOOMY - ▁COIN - ▁ACTUAL - ▁TAX - ▁PROVINCE - ▁GRATEFUL - ▁SPIRITUAL - ▁VANISHED - ▁DIANA - ▁HAUNT - ▁DRAGON - ▁CRAWL - ▁CHINA - ▁GRATITUDE - ▁NEAT - ▁FINISH - ▁INTENT - ▁FRIGHT - ▁EMBARRASS - ▁THIRTEEN - ▁RUTH - ▁SLIGHTEST - ▁DEVELOPMENT - ▁INTERVIEW - ▁SPECTACLE - ▁BROOK - VIE - ▁WEAKNESS - ▁AUDIENCE - ▁CONSEQUENTLY - ▁ABROAD - ▁ASPECT - ▁PAINTED - ▁RELEASE - ▁INSULT - ▁SOOTH - ▁DISAPPOINTMENT - ▁EMERG - ▁BRIG - ▁ESTEEM - ▁INVITATION - ▁PASSENGER - ▁PUBLISH - ▁PIANO - ▁IRISH - ▁DESK - ▁BEATEN - ▁FIFTH - ▁IMPULSE - ▁SWEAR - ▁EATEN - ▁PURPLE - ▁COMMITTED - ▁COUNTRIES - ▁PERCEIVE - ISON - ▁CELEBRAT - ▁GRANDMOTHER - ▁SHUDDER - ▁SUNSHINE - ▁SPANISH - ▁HITHERTO - ▁MARILLA - ▁SNAKE - ▁MOCK - ▁INTERFERE - ▁WALTER - ▁AMID - ▁MARBLE - ▁MISSION - TERIOR - ▁DRIVING - ▁FURNITURE - ▁STEADY - ▁CIRCUMSTANCE - ▁INTERPRET - ▁ENCHANT - ▁ERROR - ▁CONVICTION - ▁HELPLESS - ▁MEDICINE - ▁QUALITIES - ▁ITALIAN - ▁HASTENED - ▁OCCASIONALLY - ▁PURSUED - ▁HESITATED - ▁INDEPENDENT - ▁OLIVER - ▁LINGER - UX - ▁EXAMINED - ▁REPENT - ▁PHYSICIAN - ▁CHASE - ▁BELOVED - ▁ATTACHED - ▁FLORENCE - ▁HONEY - ▁MOUSE - ▁CRIES - ▁BAKE - ▁POEM - ▁DESTRUCTION - ▁FULFIL - ▁MESSENGER - ▁TRISTRAM - ▁FANCIED - ▁EXCESS - ▁CURSE - ▁CHU - ▁QUANTITY - ▁THORNTON - ▁CREATED - ▁CONTINUALLY - ▁LIGHTNING - ▁BORNE - ▁TOTAL - ▁DISPOSED - ▁RIFLE - ▁POLLY - ▁GOAT - ▁BACKWARD - ▁VIRGINIA - ▁KICK - ▁PERIL - ▁QUO - ▁GLORIOUS - ▁MULTITUDE - ▁LEATHER - ▁ABSENT - ▁DEMON - ▁DEBT - ▁TORTURE - ▁ACCORD - ▁MATE - ▁CATHOLIC - ▁PILL - ▁LIBRARY - ▁PURSUIT - ▁SHIRT - ▁DEAREST - ▁COLLAR - ▁BEACH - ▁ROBE - ▁DECLARE - ▁BRANCH - ▁TEMPT - ▁STEADILY - ▁DISGUST - ▁SILLY - ▁ARRIVE - ▁DRANK - ▁LEVI - ▁COMMUNICAT - ▁RACHEL - ▁WASHINGTON - ▁RESIGN - ▁MEANTIME - ▁LACE - ▁ENGAGEMENT - ▁QUIVER - ▁SEPARATED - ▁DISCUSSION - ▁VENTURED - ▁SURROUNDING - ▁POLISH - ▁NAIL - ▁SWELL - ▁JOKE - ▁LINCOLN - ▁STUDENT - ▁GLITTER - ▁RUSSIAN - ▁READILY - ▁CHRIS - ▁POVERTY - ▁DISGRACE - ▁CHEESE - ▁HEAVILY - ▁SCALE - ▁STAFF - ▁ENTREAT - ▁FAREWELL - ▁LUNCH - ▁PEEP - ▁MULE - ▁SOMEONE - ▁DISAPPEAR - ▁DECISION - ▁PISTOL - ▁PUN - ▁SPUR - ▁ASSUMED - ▁EXTEND - ▁ENTHUSIASM - ▁DEFINITE - ▁UNDERTAKE - ▁COMMITTEE - ▁SIMON - ▁FENCE - ▁APPLIED - ▁RELATED - ▁VICE - ▁UNPLEASANT - ▁PROBABLE - ▁PROCURE - ▁FROWN - ▁CLOAK - ▁HUMANITY - ▁FAMILIES - ▁PHILOSOPHER - ▁DWARF - ▁OVERCOME - ▁DEFEAT - ▁FASTENED - ▁MARSH - ▁CLASSES - ▁TOMB - ▁GRACIOUS - ▁REMOTE - ▁CELL - ▁SHRIEK - ▁RESCUE - ▁POOL - ▁ORGANIZ - ▁CHOSE - ▁CUTTING - ▁COWARD - ▁BORDER - ▁DIRTY - ▁MONKEY - ▁HOOK - ▁CHUCK - ▁EMILY - ▁JEST - ▁PLAC - ▁WEIGH - ▁ASSOCIATE - ▁GLIMPSE - ▁STUCK - ▁BOLT - ▁MURDERER - ▁PONY - ▁DISTINGUISH - ▁INSTITUTION - ▁CUNNING - ▁COMPLIMENT - ▁APPETITE - ▁REPUTATION - ▁FEEBLE - ▁KIN - ▁SERIES - ▁GRACEFUL - ▁PLATFORM - ▁BREEZE - ▁PHRASE - ▁CLAY - MONT - ▁RATTL - ▁OPPOSITION - ▁LANE - ▁BOAST - ▁GROWTH - ▁INCLINATION - ▁BEHAVE - ▁SUSAN - ▁DISTINCTION - ▁DISLIKE - ▁NICHOLAS - ▁SATISFY - ▁DRAMA - ▁ELBOW - ▁GAZING - ▁CONSUM - ▁SPIN - ▁OATH - ▁CHANNEL - ▁CHARACTERISTIC - ▁SPEAR - ▁SLAIN - ▁SAUCE - ▁FROG - ▁CONCEPTION - ▁TIMID - ▁ZEAL - ▁APPARENT - SHIRE - ▁CENTER - ▁VARIETY - ▁DUSK - ▁APT - ▁COLUMN - ▁REVENGE - ▁RIVAL - ▁IMITAT - ▁PASSIONATE - ▁SELFISH - ▁NORMAN - ▁REPAIR - ▁THRILL - ▁TREATMENT - ▁ROSA - ▁MARTIN - ▁INDIFFERENT - ▁THITHER - ▁GALLANT - ▁PEPPER - ▁RECOLLECT - ▁VINE - ▁SCARCE - ▁SHIELD - ▁MINGLED - CLOSE - ▁HARSH - ▁BRICK - ▁HUMOR - ▁MISCHIEF - ▁TREMENDOUS - ▁FUNCTION - ▁SMART - ▁SULTAN - ▁DISMISS - ▁THREATENED - ▁CHEAP - ▁FLOCK - ▁ENDEAVOR - ▁WHISK - ▁ITALY - ▁WAIST - ▁FLUTTER - ▁SMOKING - ▁MONARCH - ▁AFRICA - ▁ACCUSE - ▁HERBERT - ▁REFRESH - ▁REJOICE - ▁PILLOW - ▁EXPECTATION - ▁POETRY - ▁HOPELESS - ▁PERISH - ▁PHILOSOPHY - ▁WHISTLE - ▁BERNARD - ▁LAMENT - ▁IMPROVE - ▁SUP - ▁PERPLEX - ▁FOUNTAIN - ▁LEAGUE - ▁DESPISE - ▁IGNORANCE - ▁REFERENCE - ▁DUCK - ▁GROVE - ▁PURSE - ▁PARTNER - ▁PROPHET - ▁SHIVER - ▁NEIGHBOURHOOD - ▁REPRESENTATIVE - SAIL - ▁WIP - ▁ACQUIRED - ▁CHIMNEY - ▁DOCTRINE - ▁MAXIM - ▁ANGLE - ▁MAJORITY - ▁AUTUMN - ▁CONFUSED - ▁CRISTO - ▁ACHIEVE - ▁DISGUISE - ▁REDUCED - ▁EARLIER - ▁THEATRE - ▁DECIDE - MINATED - OLOGICAL - ▁OCCUPATION - ▁VIGOROUS - ▁CONTINENT - ▁DECLINE - ▁COMMUNITY - ▁MOTIONLESS - ▁HATRED - ▁COMMUNICATION - ▁BOWL - ▁COMMENT - ▁APPROVE - ▁CEREMONY - ▁CRIMINAL - ▁SCIENTIFIC - ▁DUCHESS - ▁VIVID - ▁SHIFT - ▁AVAIL - ▁DAMP - ▁JOHNSON - ▁SLENDER - ▁CONTRAST - ▁AMUSEMENT - ▁PLOT - ▁LYN - ▁ASSOCIATION - ▁SNATCH - ▁UNCERTAIN - ▁PRESSURE - ▁PERCH - ▁APPLY - ▁PLANET - ▁NOTWITHSTANDING - ▁SWUNG - ▁STIRRED - ▁ATTENDANT - ▁ENJOYMENT - ▁WORRY - ▁ALBERT - ▁NAKED - ▁TALENT - ▁MARIAN - ▁REFORM - ▁DELIBERATE - ▁INTELLIGENT - ▁SENSITIVE - ▁YONDER - ▁PUPIL - ▁FRIGHTFUL - ▁DOUBTFUL - ▁STANDARD - ▁MAGISTRATE - ▁SHEPHERD - ▁STOMACH - ▁DEPOSIT - ▁RENEW - ▁HEDGE - ▁FRANCS - ▁POSSIBILITY - ▁RESEMBLE - ▁FATIGUE - ▁PORTRAIT - ▁FAVORITE - ▁CREAM - ▁BURG - ▁SECRETARY - ▁DIVERS - ▁ACTIVITY - ▁SPECULAT - ▁HUMOUR - ▁FITTED - ▁EXTERNAL - ▁CETERA - ▁WRAPPED - ▁WHIT - ▁FRED - ▁EXAMINATION - ▁LODGING - ▁OWING - ▁JAW - ▁CROW - ▁BALANCE - ▁PUFF - ▁TENDERNESS - ▁PORTHOS - ▁ANCHOR - ▁INTERRUPT - ▁NECESSARILY - ▁PERPETUAL - ▁AGONY - ▁POPE - ▁SCHOLAR - ▁SCOTLAND - ▁SUPPRESS - ▁WRATH - ▁WRECK - ▁EXCEED - ▁PERFECTION - ▁INDIA - ▁TRADITION - ▁SECTION - ▁EASTERN - ▁DOORWAY - ▁WIVES - ▁CONVENTION - ▁ANNOUNC - ▁EGYPT - ▁CONTRADICT - ▁SCRATCH - ▁CENTRAL - ▁GLOVE - ▁WAX - ▁PREPARE - ▁ACCOMPANY - ▁INCREASING - ▁LIBERAL - ▁RAISING - ▁ORANGE - ▁SHOE - ▁ATTRIBUTE - ▁LITERATURE - ▁PUZZLED - ▁WITHDRAW - ▁WHITHER - ▁HAWK - ▁MOONLIGHT - ▁EXAMINE - ▁HAPPILY - ▁PRECEDE - ▁DETECTIVE - ▁INCHES - ▁SOLITARY - ▁DUTCH - ▁NAPOLEON - ▁UNEASY - ▁CARDINAL - ▁BLEW - ▁FOWL - ▁DECORAT - ▁CHILDHOOD - ▁TORMENT - ▁LOSING - ▁PERMISSION - ▁BLANK - ▁UPSTAIRS - ▁CAPACITY - ▁TRIFLE - ▁FOLLY - ▁RECOGNIZE - ▁REMOVE - ▁VENGEANCE - ▁ENTERPRISE - ▁BEDROOM - ▁ANYHOW - ▁INQUIRY - ▁ASHES - ▁DRAG - ▁HUSH - ▁AWKWARD - ▁SATURDAY - ▁GENUINE - ▁SURVIV - ▁SKIRT - ▁AFFECTIONATE - ▁TANG - ▁MUTUAL - ▁DISPUTE - ▁EAGLE - ▁INCOME - ▁BIND - ▁FAME - ▁IMPROVEMENT - ROVING - ▁DIFFER - ▁AWOKE - ▁SLEEVE - ▁SOLITUDE - ▁FAVOURITE - JI - ▁DETECT - ▁COMPREHEND - ▁PREPARING - ▁SERPENT - ▁SUMMIT - ▁KNOT - ▁KNIT - ▁COPY - ▁STOPPING - ▁FADED - ▁HIDEOUS - ▁JULIE - STEAD - ▁SHINE - ▁CONFLICT - ▁PROPOSITION - ▁REFUGE - ▁GALLERY - ▁BUNDLE - ▁AXE - ▁SLAVERY - ▁MASK - ▁ALYOSHA - ▁LADDER - ▁DEPARTMENT - ▁DISCHARGE - ▁DEPRESS - ▁GALLOP - ▁SCARLET - ▁KITTY - ▁RECEIVING - ▁SURRENDER - ▁SUSTAIN - ▁TWILIGHT - ▁CONGRESS - ▁IRELAND - ▁FUNNY - ▁LEND - ▁CONSTITUTE - ▁FUNERAL - ▁CRYSTAL - ▁SPAIN - ▁EXCEEDINGLY - ▁DAMN - ▁COMMUN - ▁CIVILIZATION - ▁PREJUDICE - ▁PORCH - ▁ASSISTANT - ▁INDUSTRY - ▁TUMBLE - ▁DEFENCE - ▁HITHER - ▁SMOT - ▁COLONI - ▁AMAZEMENT - ▁MARGUERITE - ▁MIRACLE - ▁INHERIT - ▁BEGGAR - ▁ENVELOPE - ▁INDIGNATION - ▁NATASHA - ▁PROPOSAL - ▁FRAGMENT - ▁ROUSED - ▁ROAST - ENCIES - ▁COMMENCED - ▁RESOURCE - ▁POPULATION - ▁QUOTH - ▁PURSUE - ▁EDUCAT - ▁AFFLICT - ▁CONTACT - ▁CRIMSON - ▁DIVISION - ▁DISORDER - ▁COPPER - ▁SOLICIT - ▁MODERATE - ▁DRUM - ▁SWIM - ▁SALUTE - ▁ASSUME - ▁MUSCLE - ▁OVERWHELM - ▁SHAKESPEARE - ▁STRUGGLING - ▁TRANQUIL - ▁CHICKEN - ▁TREAD - ▁CLAW - ▁BIBLE - ▁RIDGE - ▁THREAT - ▁VELVET - ▁EXPOSED - ▁IDIOT - ▁BARREL - ▁PENNY - ▁TEMPTATION - ▁DANGLARS - ▁CENTURIES - ▁DISTRIBUT - ▁REJECT - ▁RETORTED - ▁CONCENTRAT - ▁CORDIAL - ▁MOTOR - ▁CANNON - KEEP - ▁WRETCH - ▁ASSURANCE - ▁THIEF - ▁SURVEY - ▁VITAL - ▁RAILWAY - ▁JACKSON - ▁CRASH - ▁GROWL - ▁COMBAT - ▁RECOLLECTION - ▁SECURITY - ▁JACOB - ▁CLUTCH - ▁BLANKET - ▁NANCY - ▁CELLAR - ▁CONVENIENT - ▁INDIGNANT - ▁COARSE - ▁WORM - ▁SCREEN - ▁TRANSPORT - ▁BULLET - ▁APPRECIATE - ▁DEVOTION - ▁INVISIBLE - ▁DRIED - ▁MIXTURE - ▁CANDID - ▁PERFORMANCE - ▁RIPE - ▁EXQUISITE - ▁BARGAIN - ▁TOBACCO - ▁LOYAL - ▁MOULD - ▁ATTENTIVE - ▁DOROTHY - ▁BRUTE - ▁ESTABLISHMENT - ▁ABILITY - ▁INHABIT - ▁OBSCURE - ▁BORROW - ▁ESSENCE - ▁DISMAY - ▁FLEE - ▁BLADE - ▁PLUCK - ▁COFFIN - ▁SUNSET - ▁STEPHEN - ▁ECONOMIC - ▁HOLIDAY - ▁MECHANICAL - ▁COTTON - ▁AWAKENED - ▁SEIZE - ▁RIDICULOUS - ▁SANCHO - ▁HESITATION - ▁CORPSE - ▁SAVING - HOLD - FOOT - ▁ELDEST - ▁DESPITE - ▁EDITH - ▁CHERISH - ▁RESISTANCE - ▁WILSON - ▁ARGUE - ▁INQUIRE - ▁APPREHENSION - ▁AVENUE - ▁DRAKE - ▁PROPOSE - HURST - ▁INFERIOR - ▁STAIRCASE - ▁WHEREFORE - ▁CARLYLE - ▁COUCH - ▁ROUTE - ▁POLITICS - ▁TOMORROW - ▁THRONG - ▁NAUGHT - ▁SUNLIGHT - ▁INDIFFERENCE - ▁OBEDIENCE - ▁RECEPTION - ▁VEGETABLE - ▁IMPERFECT - ▁RESIDENCE - ▁TURKEY - ▁VIOLET - ▁SARAH - ▁ALTAR - ▁GRIEVE - ▁JERK - ▁ENSU - ▁MAGICIAN - ▁BLOSSOM - ▁LANTERN - ▁RESOLUTE - ▁THOUGHTFULLY - ▁FORTNIGHT - ▁TRUMPET - ▁VALJEAN - ▁UNWILLING - ▁LECTURE - ▁WHEREUPON - ▁HOLLAND - ▁CHANGING - ▁CREEK - ▁SLICE - ▁NORMAL - ▁ANNIE - ▁ACCENT - ▁FREDERICK - ▁DISAGREEABLE - ▁RUBBED - ▁DUMB - ▁ESTABLISH - ▁IMPORT - ▁AFFIRM - ▁MATTHEW - ▁BRISK - ▁CONVERT - ▁BENDING - ▁IVAN - ▁MADEMOISELLE - ▁MICHAEL - ▁EASIER - ▁JONES - ▁FACING - ▁EXCELLENCY - ▁LITERARY - ▁GOSSIP - ▁DEVOUR - ▁STAGGER - ▁PENCIL - ▁AVERAGE - ▁HAMMER - ▁TRIUMPHANT - ▁PREFERRED - ▁APPLICATION - ▁OCCUPY - ▁AUTHORITIES - BURN - ▁ASCERTAIN - ▁CORRIDOR - ▁DELICIOUS - ▁PRACTISE - ▁UNIVERSE - ▁SHILLING - ▁CONTEST - ▁ASHORE - ▁COMMIT - ▁ADMINISTRATION - ▁STUDIED - ▁RIGID - ▁ADORN - ▁ELSEWHERE - ▁INNOCENCE - ▁JOURNAL - ▁LANDSCAPE - ▁TELEGRAPH - ▁ANGRILY - ▁CAMPAIGN - ▁UNJUST - ▁CHALLENGE - ▁TORRENT - ▁RELATE - ▁ASSEMBLED - ▁IMPRESSED - ▁CANOE - ▁CONCLUD - ▁QUIXOTE - ▁SATISFACTORY - ▁NIECE - ▁DEAF - ▁RAFT - ▁JIMMY - ▁GLID - ▁REGULAT - ▁CHATTER - ▁GLACIER - ▁ENVY - ▁STATUE - ▁BOSTON - ▁RICHMOND - ▁DENIED - ▁FANNY - ▁SOLOMON - ▁VULGAR - ▁STALK - ▁REPLACE - ▁SPOON - ▁BASIN - ▁FEATURE - ▁CONVICT - ▁ARCHITECT - ▁ADMIRAL - ▁RIBBON - ▁PERMANENT - ▁APRIL - ▁JOLLY - ▁NEIGHBORHOOD - ▁IMPART - BOROUGH - CAMP - ▁HORRID - ▁IMMORTAL - ▁PRUDENCE - ▁SPANIARD - ▁SUPPOSING - ▁TELEPHONE - ▁TEMPERATURE - ▁PENETRATE - ▁OYSTER - ▁APPOINTMENT - ▁EGYPTIAN - ▁DWELT - ▁NEPHEW - ▁RAILROAD - ▁SEPTEMBER - ▁DEVICE - ▁WHEAT - ▁GILBERT - ▁ELEGANT - ▁ADVERTISE - ▁RATIONAL - ▁TURTLE - ▁BROOD - ▁ASSEMBLY - ▁CULTIVATE - ▁EDITOR - ▁SPECIMEN - ▁UNDOUBTEDLY - ▁WHALE - ▁DROPPING - ▁BALLOON - ▁MEDICAL - COMB - ▁COMPOSITION - ▁FOOTSTEPS - ▁LAUNCELOT - ▁DISCOURSE - ▁ERRAND - ▁CONVERSE - ▁ADVANCING - ▁DOWNSTAIRS - ▁TUMULT - ▁CORRUPT - ▁SUFFICE - ▁ANGUISH - ▁SHAGGY - ▁RETIRE - ▁TIMBER - ▁BLAZE - ▁ABSTRACT - ▁EMBROIDER - ▁PHOTOGRAPH - ▁PROSPERITY - ▁TERRIBLY - ▁TERRITORY - ▁THRESHOLD - ▁PAVEMENT - ▁INJURED - ▁LIMP - ▁AGITATION - ▁RASCAL - ▁PRESUME - ▁OBSERVING - ▁OBSTACLE - ▁SIMPLICITY - ▁SLUMBER - ▁SUPPLIED - ▁COMBINATION - ▁DRAIN - ▁WILDERNESS - ▁BELIEVING - ▁VILLAIN - ▁RECKLESS - ▁INJURY - ▁CLAPP - ▁FRIDAY - ▁HERCULES - ▁KENNEDY - ▁SYMPTOM - ▁SLEDGE - ▁CEILING - ▁LEMON - ▁PLAGUE - ▁MONDAY - ▁CANVAS - ▁IMPATIENCE - ▁UNCOMFORTABLE - ▁ACCESS - ▁FROZEN - ▁SENATOR - ▁FRANZ - ▁SWIMMING - ▁BARRIER - ▁ADJUST - ▁COMPARISON - ▁PROCLAIM - ▁WRINKL - ▁OVERLOOK - ▁MITYA - ▁GUILT - ▁PERCEPTION - ▁PRECAUTION - ▁SPECTATOR - ▁SURPRISING - ▁DISTRACT - ▁DISDAIN - ▁BONNET - ▁MAGNET - ▁PROFESS - ▁CONFOUND - ▁NARRATIVE - ▁STRUCTURE - ▁SKETCH - ▁ULTIMATE - ▁GLOBE - ▁INSECT - FICIENCY - ▁ORCHARD - ▁AMIABLE - ▁DESCENT - ▁INDEPENDENCE - ▁MANUFACTURE - ▁SPRINKLE - ▁NIGHTINGALE - ▁CUSHION - ▁EMINENT - ▁SCOTT - ▁ARRAY - ▁COSETTE - ▁WAVING - ▁EXTRACT - ▁IRREGULAR - ▁PERSECUT - ▁DERIVED - ▁WITHDREW - ▁CAUTION - ▁SUSPICIOUS - ▁MEMORIES - ▁NOWHERE - ▁SUBTLE - ▁THOROUGH - Q - ▁APPROPRIATE - ▁SLAUGHTER - ▁YOURSELVES - ▁THUMB - ▁TWAS - ▁ABODE - ▁BIDDING - ▁CONSPICUOUS - ▁REBECCA - ▁SERGEANT - ▁APRON - ▁ANTICIPATE - ▁DISCIPLINE - ▁GLANCING - ▁PILGRIM - ▁SULLEN - ▁CONTRIBUTE - ▁PRAIRIE - ▁CARVED - ▁COMMERCE - ▁EXCLAMATION - ▁MUSCULAR - ▁NOVEMBER - ▁PHENOMENA - ▁SYMBOL - ▁UMBRELLA - ▁DIMINISH - ▁PARLOUR - ▁THREATENING - ▁STUMP - ▁EXTENSIVE - ▁PLEASING - ▁REMEMBRANCE - ▁COMBINED - ▁SHERIFF - ▁SHAFT - ▁LAURA - ▁INTERCOURSE - ▁STRICKEN - ▁SUPPLIES - ▁LANDLORD - ▁SHRINK - ▁PRICK - ▁CAESAR - ▁DRUG - ▁BEWILDERED - ▁NAUTILUS - ▁BRUTAL - ▁COMMERCIAL - ▁MAGGIE - ▁SPHERE - ▁VIRGIN - ▁BRETHREN - ▁DESTINY - ▁POLICY - ▁TERRIFIED - ▁HOUSEKEEPER - ▁CRAZY - ▁ARDENT - ▁DISCERN - ▁WRAP - ▁MARQUIS - ▁RUSSIA - MOUTH - ▁BRITAIN - ▁HARBOUR - ▁CONCERT - ▁DONKEY - ▁DAMAGE - ▁SLIM - ABOUT - ▁LUXURY - ▁MONSTROUS - ▁TENDENCY - ▁PARADISE - ▁CULTURE - ▁JULIUS - ▁RAOUL - ▁REMEDY - ▁DECAY - ▁SCOLD - ▁SPLIT - ▁ASSAULT - ▁DECEMBER - ▁MOSCOW - ▁EXPLORE - ▁TROUSERS - ▁WRIST - PIECE - ▁MUSKET - ▁VALENTINE - ▁TYRANT - ▁ABRAHAM - ▁MEDIUM - ▁ARTIFICIAL - ▁FACULTY - ▁OBLIGATION - ▁RESEMBLANCE - ▁INQUIRIES - ▁DETAIN - ▁SWARM - ▁PLEDGE - ▁ADMIRABLE - ▁DEFECT - ▁SUPERINTEND - ▁PATRIOT - ▁CLUNG - ▁DISMAL - ▁RECIT - ▁IGNOR - ▁AMELIA - ▁JUSTIFY - ▁ELEPHANT - ▁ESTIMATE - ▁KNELT - ▁SERVING - ▁WHIM - ▁SHRILL - ▁STUDIO - ▁TEXT - ▁ALEXANDER - ▁WROUGHT - ▁ABUNDANT - ▁SITUATED - ▁REGAIN - ▁FIERY - ▁SNEER - ▁SWEAT - ▁GLARE - ▁NIGH - ▁ESCORT - ▁INEVITABLE - ▁PSMITH - ▁RELUCTANT - ▁PRECEDING - ▁RESORT - ▁OUTRAGE - ▁AMBASSADOR - ▁CONSOLATION - ▁RECOGNITION - ▁REMORSE - ▁BEHALF - ▁FORMIDABLE - ▁GRAVITY - ▁DIVIDE - ▁CONFRONT - ▁GIGANTIC - ▁OCTOBER - ▁FLANK - ▁SLEW - ▁CLARA - ▁FILM - ▁BULK - ▁POMP - ▁ELEANOR - ▁EMPHASIS - ▁JAPANESE - ▁CAVALRY - ▁EXCLUSIVE - ▁PERFUME - ▁BRONZE - ▁FEDERAL - ▁LIQUID - ▁RUBBING - ▁OVEN - DOLPH - ▁CONVULS - ▁DEPRIVED - ▁RESPONSIBILITY - ▁SIGNIFICANT - ▁WAISTCOAT - ▁CLUSTER - ▁MARTHA - ▁REVERSE - ▁ATTORNEY - ▁DROOP - ▁SKILFUL - ▁HABITUAL - ▁PUMP - ▁INTERVEN - ▁OWL - ▁CONJECTURE - ▁FANTASTIC - ▁RESPONSIBLE - ▁DESTINED - ▁DOCUMENT - ▁THEREUPON - ▁GODDESS - ▁PACIFIC - ▁WARRANT - ▁COSTUME - ▁BRIDLE - ▁CALIFORNIA - ▁DEMOCRATIC - ▁EUSTACE - ▁SQUIRREL - ▁UNCOMMON - ▁MARVELLOUS - ▁PLOUGH - ▁TRAGEDY - ▁VAULT - ▁HESITATE - ▁REFRAIN - ▁ADMIRING - ▁CORPORAL - ▁ENTITLED - ▁SHREWD - ▁SQUEEZ - ▁ACCURATE - ▁TEMPEST - ▁MONUMENT - ▁SIEGE - ▁CHINESE - ▁RAVEN - ▁LOUNG - ▁ASSASSIN - ▁INFLICT - ▁AGITATED - ▁DESIRABLE - ▁EARLIEST - ▁LAUNCH - ▁PILOT - ▁PULSE - ▁MUTE - LEIGH - ▁LIQUOR - ▁SCARECROW - ▁SKULL - ▁DESOLATE - ▁SUBLIME - ▁SERENE - ▁RECESS - ▁WAKING - ▁CHARLOTTE - ▁CIRCULAR - ▁INJUSTICE - ▁PINOCCHIO - ▁PRISCILLA - ▁THYSELF - ▁OCCURRENCE - ▁CASUAL - ▁FRANTIC - ▁LEGEND - ▁FERTIL - ▁BACKGROUND - ▁DELICACY - ▁ESTRALLA - ▁MANUSCRIPT - ▁RESPONSE - ▁UNIVERSITY - ▁WOLVES - ▁SCANDAL - ▁STUMBLE - ▁HOARSE - ▁BODILY - ▁CONVENT - ▁EXAMINING - ▁INCAPABLE - ▁PERCEIVING - ▁PHILADELPHIA - ▁SUBSEQUENT - ▁THIEVES - ▁ACCUMULAT - ▁DAMSEL - ▁SCOTCH - ▁UNDERNEATH - ▁NOBILITY - ▁SMASH - ▁REVOLT - ▁ENGAGE - ▁CATHEDRAL - ▁CHAMPION - ▁DESPATCH - ▁ETERNITY - ▁JANUARY - ▁PLEADED - ▁PROBABILITY - ▁JIMMIE - ▁PARALLEL - ▁FISHERMAN - ▁JERRY - ▁SWORE - ▁DRAUGHT - ▁OPPONENT - ▁PRIMITIVE - ▁SIGNIFICANCE - ▁SUBSTANTIAL - ▁AMAZED - ▁DUNBAR - ▁COMMEND - ▁CONTEMPLATE - ▁TESTIMONY - ▁IMPERIAL - ▁ADAPT - ▁JUICE - ▁CALAMIT - CULAR - ▁CHATEAU - ▁PHOENIX - ▁PRUDENT - ▁SOLUTION - ▁VILLEFORT - ▁REACTION - ▁RELAX - ▁YU - ▁PROHIBIT - ▁DISTRUST - ▁PLUNDER - ▁WELFARE - ▁NAVIGAT - ▁PARLOR - ▁LAZY - ▁DETACH - OMETER - ▁PRIV - ▁DISCOURAGE - ▁OBSTINATE - ▁REJOICING - ▁SERMON - ▁VEHICLE - ▁FANCIES - ▁ENLIGHTEN - ▁ACUTE - ▁ILLUSION - ▁ANTHEA - ▁MARTIAN - ▁EXCITE - ▁GENEROSITY - OLOGIST - ▁AMAZING - ▁UNWORTHY - ▁INTERNAL - ▁INCENSE - ▁VIBRAT - ▁ADHERE - ROACH - ▁FEBRUARY - ▁MEXICAN - ▁POTATOES - ▁INCESSANT - ▁INTERPOSED - ▁PARCEL - ▁VEXED - ▁PROMOTE - MIDST - ▁ARISTOCRAT - ▁CYRIL - ▁EMBARK - ▁ABUNDANCE - ▁LITERALLY - ▁SURGEON - ▁TERRACE - ▁ATLANTIC - ▁MARTYR - ▁SPECK - ▁SENATE - ▁LOAF - ▁ADMINISTER - ▁APPREHEND - ▁SUBDUED - ▁TEMPORARY - ▁DOMINION - ▁ELABORATE - ▁DIGNIFIED - ▁ELIZA - ▁SPLASH - ▁CONSEIL - ▁DEXTER - ▁UNSEEN - ▁TRAGIC - VOCATION - ▁GRATIFY - ▁BACHELOR - ▁DEFENSE - ▁EXCURSION - ▁FACULTIES - ▁PROPRIETOR - ▁SYMPATHETIC - ▁UNNECESSARY - ▁RADIANT - ▁VACANT - ▁OUNCE - ▁SCREW - ▁PHENOMENON - ▁PROMINENT - ▁WORRIED - ▁STUDIES - ▁CLIMATE - ▁KEITH - ▁ARAMIS - ▁BLISS - ▁CONTINUAL - ▁SURPASS - ▁HEBREW - ▁IDENTITY - ▁PROVOKE - ▁TEMPERAMENT - ▁CHARIOT - ▁HARBOR - ▁NINTH - ▁PRIOR - ▁DESIROUS - ▁JERUSALEM - ▁UNDERTAKING - ▁EDISON - ▁MIRTH - ▁SCOUT - ▁APPARATUS - ▁ILLUSTRATION - ▁INTELLIGIBLE - ▁INVARIABLY - ▁PIERCED - ▁REVIEW - ▁FLICKER - ▁HAZARD - ▁REVELATION - ▁DIXON - ▁EXCITING - ▁GOSPEL - ▁CONSTANCE - ▁OVERTAKE - ▁GUINEA - ▁ALADDIN - ▁CHICAGO - ▁TULLIVER - ▁HAMILTON - ▁GARRISON - ▁DISCIPLE - ▁INTENSITY - ▁TRAITOR - ▁CHANCELLOR - ▁PROVERB - ▁DAGGER - ▁FORESEE - ▁CONFIDE - ▁GLIMMER - ▁CHAUVELIN - ▁ILLUSTRATE - ▁VOLUNTEER - ▁JUNGLE - ▁STREAK - ▁SUNRISE - ▁DISSOLV - ▁QUEST - ▁AWHILE - ▁FELICITY - ▁LEGISLATURE - ▁LEONORA - ▁MAGAZINE - ▁PITIFUL - ▁COLONY - ▁SHAWL - ▁ARRIVING - ▁FUNDAMENTAL - ▁CARPENTER - ▁OVERFLOW - ▁EXPAND - ▁HARVEST - ▁FEMININE - ▁INNUMERABLE - ▁SCRAMBLE - ▁TWENTIETH - ▁TRIFLING - ▁GHASTL - ▁CONQUEST - ▁DANIEL - ▁FACILIT - ▁FORSAKE - ▁BEHAVIOUR - ▁GORGEOUS - ▁PRODUCING - ▁HAPPIER - ▁PROMISING - ▁RAINBOW - ▁INSTINCTIVELY - ▁DECREE - ▁EYEBROWS - ▁IRRESISTIBLE - ▁PHARAOH - ▁SCROOGE - ▁UNNATURAL - ▁CRUMBS - ▁REFINED - ▁DREARY - ▁TRENCH - ▁CONVINCE - ▁FRINGE - ▁EXTREMITY - ▁INTIMACY - ▁SCOUNDREL - ▁SUFFRAGE - ▁UNEASINESS - ▁BARRICADE - ▁CIRCULAT - ▁SAMUEL - ▁BRUCE - ▁DARCY - <sos/eos> init: xavier_uniform input_size: 83 ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: false model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false use_preprocessor: true token_type: bpe bpemodel: data/en_token_list/bpe_unigram5000/bpe.model non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' frontend: null frontend_conf: {} specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: global_mvn normalize_conf: stats_file: exp/asr_stats_fbank_pitch_en_bpe5000_sp/train/feats_stats.npz preencoder: null preencoder_conf: {} encoder: contextual_block_transformer encoder_conf: output_size: 256 attention_heads: 4 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.0 input_layer: conv2d normalize_before: true block_size: 40 hop_size: 16 look_ahead: 16 init_average: true ctx_pos_enc: true decoder: transformer decoder_conf: attention_heads: 4 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.0 src_attention_dropout_rate: 0.0 required: - output_dir - token_list version: 0.9.7 distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
huyue012/wav2vec2-base-cynthia-tedlium-2500
huyue012
2021-11-17T22:08:47Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-cynthia-tedlium-2500 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cynthia-tedlium-2500 This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4356 - Wer: 0.1796 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.2811 | 6.58 | 500 | 3.1455 | 0.9934 | | 3.0533 | 13.16 | 1000 | 2.9568 | 0.9934 | | 1.8269 | 19.73 | 1500 | 0.7595 | 0.2484 | | 0.5103 | 26.31 | 2000 | 0.4356 | 0.1796 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu113 - Datasets 1.13.3 - Tokenizers 0.10.3
JaviBJ/sagemaker-distilbert-emotion
JaviBJ
2021-11-17T17:02:01Z
7
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: sagemaker-distilbert-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9165 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sagemaker-distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9351 | 1.0 | 500 | 0.2469 | 0.9165 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
usami/distilbert-base-uncased-finetuned-cola
usami
2021-11-17T06:31:12Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5491920151313351 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7767 - Matthews Correlation: 0.5492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5244 | 1.0 | 535 | 0.5349 | 0.4240 | | 0.3471 | 2.0 | 1070 | 0.5087 | 0.5079 | | 0.235 | 3.0 | 1605 | 0.6847 | 0.5106 | | 0.1718 | 4.0 | 2140 | 0.7767 | 0.5492 | | 0.1271 | 5.0 | 2675 | 0.8580 | 0.5469 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
relh/COHESIV
relh
2021-11-16T18:05:30Z
0
0
null
[ "region:us" ]
null
2022-03-02T23:29:05Z
--- title: AnimeGANv2 emoji: ⚡ colorFrom: yellow colorTo: blue sdk: gradio app_file: app.py pinned: false --- # Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
Jeska/BertjeWDialData
Jeska
2021-11-16T18:04:08Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer model-index: - name: BertjeWDialData results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BertjeWDialData This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 297 | 2.2419 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
healx/biomedical-slot-filling-reader-base
healx
2021-11-16T09:16:36Z
11
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2109.08564", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
Reader model for Biomedical slot filling see https://arxiv.org/abs/2109.08564 for details. The model is initialized with [biobert-base](https://huggingface.co/dmis-lab/biobert-v1.1).
healx/biomedical-slot-filling-reader-large
healx
2021-11-16T09:15:15Z
5
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "arxiv:2109.08564", "endpoints_compatible", "region:us" ]
question-answering
2022-03-02T23:29:05Z
Reader model for Biomedical slot filling see https://arxiv.org/abs/2109.08564 for details. The model is initialized with [biobert-large](https://huggingface.co/dmis-lab/biobert-large-cased-v1.1).
ychu4/distilbert-base-uncased-finetuned-cola
ychu4
2021-11-16T03:23:59Z
11
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.509687043672971 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7512 - Matthews Correlation: 0.5097 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5237 | 1.0 | 535 | 0.5117 | 0.4469 | | 0.3496 | 2.0 | 1070 | 0.5538 | 0.4965 | | 0.2377 | 3.0 | 1605 | 0.6350 | 0.4963 | | 0.1767 | 4.0 | 2140 | 0.7512 | 0.5097 | | 0.1383 | 5.0 | 2675 | 0.8647 | 0.5056 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu102 - Datasets 1.15.1 - Tokenizers 0.10.1
daqiao202/distilgpt2-finetuned-wikitext2
daqiao202
2021-11-16T02:28:45Z
5
0
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
nbroad/muril-bigbird-base
nbroad
2021-11-16T02:21:08Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "big_bird", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
I put MuRIL base in BigBird. Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
nbroad/muril-bigbird-large-1k
nbroad
2021-11-16T02:20:28Z
4
0
transformers
[ "transformers", "jax", "tensorboard", "big_bird", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:05Z
MAKE SURE TO PULL THE MODEL AT CHECKPOINT 90000 UNTIL I FIGURE OUT HOW TO FIX THE GIT HISTORY git checkout 57f0ef792a759c022b83433c7a26df52f3da3608 Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
Waynehillsdev/wav2vec2-base-timit-demo-colab
Waynehillsdev
2021-11-16T00:41:40Z
6
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:04Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-timit-demo-colab results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4180 - Wer: 0.3392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.656 | 4.0 | 500 | 1.8973 | 1.0130 | | 0.8647 | 8.0 | 1000 | 0.4667 | 0.4705 | | 0.2968 | 12.0 | 1500 | 0.4211 | 0.4035 | | 0.1719 | 16.0 | 2000 | 0.4725 | 0.3739 | | 0.1272 | 20.0 | 2500 | 0.4586 | 0.3543 | | 0.1079 | 24.0 | 3000 | 0.4356 | 0.3484 | | 0.0808 | 28.0 | 3500 | 0.4180 | 0.3392 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
patrickvonplaten/wav2vec2-100m-mls-german-ft-2
patrickvonplaten
2021-11-16T00:01:09Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "multilingual_librispeech", "generated_from_trainer", "dataset:multilingual_librispeech", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - automatic-speech-recognition - multilingual_librispeech - generated_from_trainer datasets: - multilingual_librispeech model-index: - name: wav2vec2-100m-mls-german-ft-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-100m-mls-german-ft-2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-100m](https://huggingface.co/facebook/wav2vec2-xls-r-100m) on the MULTILINGUAL_LIBRISPEECH - GERMAN dataset. It achieves the following results on the evaluation set: - Loss: 2.9304 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.9545 | 14.29 | 500 | 2.9354 | 1.0 | | 2.9537 | 28.57 | 1000 | 2.9359 | 1.0 | | 2.9602 | 42.86 | 1500 | 2.9302 | 1.0 | | 2.9586 | 57.14 | 2000 | 2.9298 | 1.0 | | 2.9331 | 71.43 | 2500 | 2.9314 | 1.0 | | 2.9321 | 85.71 | 3000 | 2.9304 | 1.0 | | 2.9652 | 100.0 | 3500 | 2.9304 | 1.0 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
Jacobo/axiothea
Jacobo
2021-11-15T20:07:05Z
4
1
transformers
[ "transformers", "pytorch", "roberta", "fill-mask", "generated_from_trainer", "grc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-02T23:29:04Z
--- tags: - generated_from_trainer language: - grc model-index: - name: dioBERTo results: [] widget: - text: "Πλάτων ὁ Περικτιόνης <mask> γένος ἀνέφερεν εἰς Σόλωνα." - text: "ὁ Κριτίας ἀπέβλεψε <mask> τὴν θύραν." - text: "Ὦ φίλε Κλεινία, καλῶς μὲν <mask>." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # axiothea This is an experimental roberta model trained with an ancient Greek corpus of about 900 MB, which was scrapped from the web and post-processed. Duplicate texts and editorial punctuation were removed. The training dataset will be soon available in the Huggingface datasets hub. Training a model of ancient Greek is challenging given that it is a low resource language from which 50% of the register has only survived in fragmentary texts. The model is provided by the Diogenet project at the University of California, San Diego. It achieves the following results on the evaluation set: - Loss: 3.3351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-------:|:---------------:| | 4.7013 | 1.0 | 341422 | 4.8813 | | 4.2866 | 2.0 | 682844 | 4.4422 | | 4.0496 | 3.0 | 1024266 | 4.2132 | | 3.8503 | 4.0 | 1365688 | 4.0246 | | 3.6917 | 5.0 | 1707110 | 3.8756 | | 3.4917 | 6.0 | 2048532 | 3.7381 | | 3.3907 | 7.0 | 2389954 | 3.6107 | | 3.2876 | 8.0 | 2731376 | 3.5044 | | 3.1994 | 9.0 | 3072798 | 3.3980 | | 3.0806 | 10.0 | 3414220 | 3.3095 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.14.0 - Tokenizers 0.10.3
nateraw/my-cool-timm-model-2
nateraw
2021-11-15T20:06:24Z
4
0
timm
[ "timm", "pytorch", "tensorboard", "image-classification", "generated_from_trainer", "dataset:cats_vs_dogs", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- tags: - image-classification - timm - generated_from_trainer library_tag: timm datasets: - cats_vs_dogs --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-cool-timm-model-2 This model is a fine-tuned version of [resnet18](https://huggingface.co/resnet18) on the cats_vs_dogs dataset. It achieves the following results on the evaluation set: - Loss: 0.2510 - Acc1: 95.2150 - Acc5: 100.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Acc1 | Acc5 | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-----:| | No log | 0.07 | 5 | 0.3436 | 92.0820 | 100.0 | | 0.4914 | 0.14 | 10 | 0.2510 | 95.2150 | 100.0 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
vkk1710/xlnet-base-cased-finetuned-qqp
vkk1710
2021-11-15T19:25:06Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "xlnet", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: mit tags: - generated_from_trainer datasets: - glue model-index: - name: xlnet-base-cased-finetuned-qqp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlnet-base-cased-finetuned-qqp This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on the qqp dataset (part of glue dataset). It achieves the following results on the evaluation set: - eval_loss: 0.27 - eval_accuracy: 0.9084 - eval_f1: 0.8775 - epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - weight_decay: 0.01 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
huyue012/wav2vec2-base-cynthia-timit
huyue012
2021-11-15T17:29:08Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-base-cynthia-timit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-cynthia-timit This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4888 - Wer: 0.3315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.7674 | 1.0 | 500 | 2.8994 | 1.0 | | 1.3538 | 2.01 | 1000 | 0.5623 | 0.5630 | | 0.5416 | 3.01 | 1500 | 0.4595 | 0.4765 | | 0.3563 | 4.02 | 2000 | 0.4435 | 0.4328 | | 0.2869 | 5.02 | 2500 | 0.4035 | 0.4145 | | 0.2536 | 6.02 | 3000 | 0.4090 | 0.3945 | | 0.2072 | 7.03 | 3500 | 0.4188 | 0.3809 | | 0.1825 | 8.03 | 4000 | 0.4139 | 0.3865 | | 0.1754 | 9.04 | 4500 | 0.4320 | 0.3763 | | 0.1477 | 10.04 | 5000 | 0.4668 | 0.3699 | | 0.1418 | 11.04 | 5500 | 0.4439 | 0.3683 | | 0.1207 | 12.05 | 6000 | 0.4419 | 0.3678 | | 0.115 | 13.05 | 6500 | 0.4606 | 0.3786 | | 0.1022 | 14.06 | 7000 | 0.4403 | 0.3610 | | 0.1019 | 15.06 | 7500 | 0.4966 | 0.3609 | | 0.0898 | 16.06 | 8000 | 0.4675 | 0.3586 | | 0.0824 | 17.07 | 8500 | 0.4844 | 0.3583 | | 0.0737 | 18.07 | 9000 | 0.4801 | 0.3534 | | 0.076 | 19.08 | 9500 | 0.4945 | 0.3529 | | 0.0627 | 20.08 | 10000 | 0.4700 | 0.3417 | | 0.0723 | 21.08 | 10500 | 0.4630 | 0.3449 | | 0.0597 | 22.09 | 11000 | 0.5164 | 0.3456 | | 0.0566 | 23.09 | 11500 | 0.4957 | 0.3401 | | 0.0453 | 24.1 | 12000 | 0.5032 | 0.3419 | | 0.0492 | 25.1 | 12500 | 0.5391 | 0.3387 | | 0.0524 | 26.1 | 13000 | 0.5057 | 0.3348 | | 0.0381 | 27.11 | 13500 | 0.5098 | 0.3331 | | 0.0402 | 28.11 | 14000 | 0.5087 | 0.3353 | | 0.0358 | 29.12 | 14500 | 0.4888 | 0.3315 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
lidiia/autonlp-trans_class_arg-32957902
lidiia
2021-11-15T16:48:42Z
5
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "unk", "dataset:lidiia/autonlp-data-trans_class_arg", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: autonlp language: unk widget: - text: "I love AutoNLP 🤗" datasets: - lidiia/autonlp-data-trans_class_arg co2_eq_emissions: 0.9756221672668951 --- # Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 32957902 - CO2 Emissions (in grams): 0.9756221672668951 ## Validation Metrics - Loss: 0.2765039801597595 - Accuracy: 0.8939828080229226 - Precision: 0.7757009345794392 - Recall: 0.8645833333333334 - AUC: 0.9552659749670619 - F1: 0.8177339901477833 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/lidiia/autonlp-trans_class_arg-32957902 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("lidiia/autonlp-trans_class_arg-32957902", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("lidiia/autonlp-trans_class_arg-32957902", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
moussaKam/barthez-orangesum-abstract
moussaKam
2021-11-15T13:03:03Z
2,038
7
transformers
[ "transformers", "pytorch", "mbart", "text2text-generation", "summarization", "bart", "fr", "arxiv:2010.12321", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:05Z
--- tags: - summarization - bart language: - fr license: apache-2.0 widget: - text: Citant les préoccupations de ses clients dénonçant des cas de censure après la suppression du compte de Trump, un fournisseur d'accès Internet de l'État de l'Idaho a décidé de bloquer Facebook et Twitter. La mesure ne concernera cependant que les clients mécontents de la politique de ces réseaux sociaux. --- ### Barthez model finetuned on orangeSum (abstract generation) finetuning: examples/seq2seq (as of Feb 08 2021) paper: https://arxiv.org/abs/2010.12321 \ github: https://github.com/moussaKam/BARThez ``` @article{eddine2020barthez, title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model}, author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2010.12321}, year={2020} } ```
moussaKam/barthez-sentiment-classification
moussaKam
2021-11-15T13:02:33Z
16
2
transformers
[ "transformers", "pytorch", "mbart", "text-classification", "bart", "fr", "arxiv:2010.12321", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- tags: - text-classification - bart language: - fr license: apache-2.0 widget: - text: Barthez est le meilleur gardien du monde. --- ### Barthez model finetuned on opinion classification task. paper: https://arxiv.org/abs/2010.12321 \ github: https://github.com/moussaKam/BARThez ``` @article{eddine2020barthez, title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model}, author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis}, journal={arXiv preprint arXiv:2010.12321}, year={2020} } ```
AdapterHub/roberta-base-pf-stsb
AdapterHub
2021-11-15T10:43:55Z
1
0
adapter-transformers
[ "adapter-transformers", "text-classification", "roberta", "adapterhub:sts/sts-b", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - roberta - adapterhub:sts/sts-b - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-stsb` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-stsb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-pmb_sem_tagging
AdapterHub
2021-11-15T10:40:53Z
2
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "adapterhub:semtag/pmb", "en", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapterhub:semtag/pmb - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-pmb_sem_tagging` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [semtag/pmb](https://adapterhub.ml/explore/semtag/pmb/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-pmb_sem_tagging", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-mit_movie_trivia
AdapterHub
2021-11-15T10:40:13Z
4
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "adapterhub:ner/mit_movie_trivia", "en", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapterhub:ner/mit_movie_trivia - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-mit_movie_trivia` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ner/mit_movie_trivia](https://adapterhub.ml/explore/ner/mit_movie_trivia/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-mit_movie_trivia", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-hotpotqa
AdapterHub
2021-11-15T10:39:56Z
3
2
adapter-transformers
[ "adapter-transformers", "question-answering", "roberta", "en", "dataset:hotpot_qa", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - roberta - adapter-transformers datasets: - hotpot_qa language: - en --- # Adapter `AdapterHub/roberta-base-pf-hotpotqa` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [hotpot_qa](https://huggingface.co/datasets/hotpot_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-hotpotqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-fce_error_detection
AdapterHub
2021-11-15T10:39:41Z
4
0
adapter-transformers
[ "adapter-transformers", "token-classification", "roberta", "adapterhub:ged/fce", "en", "dataset:fce_error_detection", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - roberta - adapterhub:ged/fce - adapter-transformers datasets: - fce_error_detection language: - en --- # Adapter `AdapterHub/roberta-base-pf-fce_error_detection` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [ged/fce](https://adapterhub.ml/explore/ged/fce/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-fce_error_detection", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-duorc_s
AdapterHub
2021-11-15T10:38:32Z
4
0
adapter-transformers
[ "adapter-transformers", "question-answering", "roberta", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - roberta - adapter-transformers datasets: - duorc language: - en --- # Adapter `AdapterHub/roberta-base-pf-duorc_s` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-duorc_s", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/roberta-base-pf-cq
AdapterHub
2021-11-15T10:38:07Z
1
0
adapter-transformers
[ "adapter-transformers", "question-answering", "roberta", "adapterhub:qa/cq", "en", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - roberta - adapterhub:qa/cq - adapter-transformers language: - en --- # Adapter `AdapterHub/roberta-base-pf-cq` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [qa/cq](https://adapterhub.ml/explore/qa/cq/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("roberta-base") adapter_name = model.load_adapter("AdapterHub/roberta-base-pf-cq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-stsb
AdapterHub
2021-11-15T10:35:40Z
10
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:sts/sts-b", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:sts/sts-b - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-stsb` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [sts/sts-b](https://adapterhub.ml/explore/sts/sts-b/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-stsb", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-squad_v2
AdapterHub
2021-11-15T10:35:24Z
6
0
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "adapterhub:qa/squad2", "en", "dataset:squad_v2", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapterhub:qa/squad2 - adapter-transformers datasets: - squad_v2 language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-squad_v2` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/squad2](https://adapterhub.ml/explore/qa/squad2/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-squad_v2", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-squad
AdapterHub
2021-11-15T10:35:16Z
1
2
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "adapterhub:qa/squad1", "en", "dataset:squad", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapterhub:qa/squad1 - adapter-transformers datasets: - squad language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-squad` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/squad1](https://adapterhub.ml/explore/qa/squad1/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-squad", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-rte
AdapterHub
2021-11-15T10:34:33Z
6
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:nli/rte", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:nli/rte - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-rte` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/rte](https://adapterhub.ml/explore/nli/rte/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-rte", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-record
AdapterHub
2021-11-15T10:34:16Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:rc/record", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:rc/record - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-record` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [rc/record](https://adapterhub.ml/explore/rc/record/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-record", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-qnli
AdapterHub
2021-11-15T10:33:41Z
2
0
adapter-transformers
[ "adapter-transformers", "text-classification", "bert", "adapterhub:nli/qnli", "en", "arxiv:2104.08247", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: - text-classification - bert - adapterhub:nli/qnli - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-qnli` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [nli/qnli](https://adapterhub.ml/explore/nli/qnli/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-qnli", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-pmb_sem_tagging
AdapterHub
2021-11-15T10:33:33Z
1
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:semtag/pmb", "en", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:semtag/pmb - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-pmb_sem_tagging` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [semtag/pmb](https://adapterhub.ml/explore/semtag/pmb/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-pmb_sem_tagging", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-mit_movie_trivia
AdapterHub
2021-11-15T10:32:53Z
7
0
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:ner/mit_movie_trivia", "en", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:ner/mit_movie_trivia - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-mit_movie_trivia` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ner/mit_movie_trivia](https://adapterhub.ml/explore/ner/mit_movie_trivia/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-mit_movie_trivia", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-fce_error_detection
AdapterHub
2021-11-15T10:32:25Z
1
1
adapter-transformers
[ "adapter-transformers", "token-classification", "bert", "adapterhub:ged/fce", "en", "dataset:fce_error_detection", "arxiv:2104.08247", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- tags: - token-classification - bert - adapterhub:ged/fce - adapter-transformers datasets: - fce_error_detection language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-fce_error_detection` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [ged/fce](https://adapterhub.ml/explore/ged/fce/) dataset and includes a prediction head for tagging. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-fce_error_detection", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-duorc_s
AdapterHub
2021-11-15T10:32:00Z
4
0
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapter-transformers datasets: - duorc language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-duorc_s` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-duorc_s", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-duorc_p
AdapterHub
2021-11-15T10:31:52Z
4
0
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "en", "dataset:duorc", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapter-transformers datasets: - duorc language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-duorc_p` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [duorc](https://huggingface.co/datasets/duorc/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-duorc_p", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-cq
AdapterHub
2021-11-15T10:31:36Z
1
0
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "adapterhub:qa/cq", "en", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapterhub:qa/cq - adapter-transformers language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-cq` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [qa/cq](https://adapterhub.ml/explore/qa/cq/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-cq", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
AdapterHub/bert-base-uncased-pf-comqa
AdapterHub
2021-11-15T10:30:57Z
7
0
adapter-transformers
[ "adapter-transformers", "question-answering", "bert", "en", "dataset:com_qa", "arxiv:2104.08247", "region:us" ]
question-answering
2022-03-02T23:29:04Z
--- tags: - question-answering - bert - adapter-transformers datasets: - com_qa language: - en --- # Adapter `AdapterHub/bert-base-uncased-pf-comqa` for bert-base-uncased An [adapter](https://adapterhub.ml) for the `bert-base-uncased` model that was trained on the [com_qa](https://huggingface.co/datasets/com_qa/) dataset and includes a prediction head for question answering. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-uncased") adapter_name = model.load_adapter("AdapterHub/bert-base-uncased-pf-comqa", source="hf") model.active_adapters = adapter_name ``` ## Architecture & Training The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). ## Evaluation results Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. ## Citation If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): ```bibtex @inproceedings{poth-etal-2021-pre, title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", author = {Poth, Clifton and Pfeiffer, Jonas and R{"u}ckl{'e}, Andreas and Gurevych, Iryna}, booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.827", pages = "10585--10605", } ```
DeepPavlov/xlm-roberta-large-en-ru-mnli
DeepPavlov
2021-11-15T08:49:43Z
137
2
transformers
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "xlm-roberta-large", "xlm-roberta-large-en-ru", "xlm-roberta-large-en-ru-mnli", "en", "ru", "dataset:glue", "dataset:mnli", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- language: - en - ru datasets: - glue - mnli model_index: - name: mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli tags: - xlm-roberta - xlm-roberta-large - xlm-roberta-large-en-ru - xlm-roberta-large-en-ru-mnli widget: - text: "Люблю тебя. Ненавижу тебя" - text: "I love you. I hate you" --- # XLM-RoBERTa-Large-En-Ru-MNLI xlm-roberta-large-en-ru finetuned on mnli.
ComCom/gpt2-large
ComCom
2021-11-15T07:26:07Z
5
0
transformers
[ "transformers", "pytorch", "gpt2", "feature-extraction", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2022-03-02T23:29:04Z
해당 모델은 [해당 사이트](https://huggingface.co/gpt2-medium)에서 가져온 모델입니다. 해당 모델은 [Teachable NLP](https://ainize.ai/teachable-nlp) 서비스에서 사용됩니다.
phailyoor/distilbert-base-uncased-finetuned-yahd-twval-hptune
phailyoor
2021-11-15T02:50:34Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-yahd-twval-hptune results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-yahd-twval-hptune This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.3727 - Accuracy: 0.2039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.1638 | 1.0 | 10106 | 2.1944 | 0.3646 | | 1.7982 | 2.0 | 20212 | 2.6390 | 0.3333 | | 1.3279 | 3.0 | 30318 | 3.1526 | 0.3095 | | 0.8637 | 4.0 | 40424 | 4.8368 | 0.2470 | | 0.5727 | 5.0 | 50530 | 6.3727 | 0.2039 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
sciarrilli/distilbert-base-uncased-cola
sciarrilli
2021-11-15T02:21:53Z
7
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: distilbert-base-uncased-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.5301312348234369 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.2715 - Matthews Correlation: 0.5301 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5216 | 1.0 | 535 | 0.5124 | 0.4104 | | 0.3456 | 2.0 | 1070 | 0.5700 | 0.4692 | | 0.2362 | 3.0 | 1605 | 0.7277 | 0.4844 | | 0.1818 | 4.0 | 2140 | 0.7553 | 0.5007 | | 0.1509 | 5.0 | 2675 | 0.9406 | 0.4987 | | 0.1017 | 6.0 | 3210 | 0.9475 | 0.5387 | | 0.0854 | 7.0 | 3745 | 1.0933 | 0.5317 | | 0.051 | 8.0 | 4280 | 1.1719 | 0.5358 | | 0.0512 | 9.0 | 4815 | 1.2296 | 0.5321 | | 0.0308 | 10.0 | 5350 | 1.2715 | 0.5301 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu102 - Datasets 1.15.1 - Tokenizers 0.10.3
life4free96/DialogGPT-med-TeiaMoranta3
life4free96
2021-11-14T20:06:04Z
3
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational ---
patrickvonplaten/wav2vec2-large-xlsr-53-common_voice-tr-ft
patrickvonplaten
2021-11-14T16:47:13Z
11
1
transformers
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "xls_r_repro_common_voice_tr", "tr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: - tr license: apache-2.0 tags: - automatic-speech-recognition - common_voice - generated_from_trainer - xls_r_repro_common_voice_tr datasets: - common_voice model-index: - name: wav2vec2-large-xlsr-53-common_voice-tr-ft results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xlsr-53-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.4231 - Wer: 0.3104 - Cer: 0.0737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results see under *Training Metrics* Tab. ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.15.2.dev0 - Tokenizers 0.10.3
Harshveer/autonlp-formality_scoring_2-32597818
Harshveer
2021-11-14T06:46:39Z
9
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:Harshveer/autonlp-data-formality_scoring_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:04Z
--- tags: autonlp language: en widget: - text: "I love AutoNLP 🤗" datasets: - Harshveer/autonlp-data-formality_scoring_2 co2_eq_emissions: 8.655894631203154 --- # Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 32597818 - CO2 Emissions (in grams): 8.655894631203154 ## Validation Metrics - Loss: 0.5410276651382446 - MSE: 0.5410276651382446 - MAE: 0.5694561004638672 - R2: 0.6830431129198475 - RMSE: 0.735545814037323 - Explained Variance: 0.6834385395050049 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Harshveer/autonlp-formality_scoring_2-32597818 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```