modelId
stringlengths 5
139
| author
stringlengths 2
42
| last_modified
timestamp[us, tz=UTC]date 2020-02-15 11:33:14
2025-09-01 06:29:04
| downloads
int64 0
223M
| likes
int64 0
11.7k
| library_name
stringclasses 530
values | tags
listlengths 1
4.05k
| pipeline_tag
stringclasses 55
values | createdAt
timestamp[us, tz=UTC]date 2022-03-02 23:29:04
2025-09-01 06:28:51
| card
stringlengths 11
1.01M
|
---|---|---|---|---|---|---|---|---|---|
hurtmongoose/results
|
hurtmongoose
| 2025-08-31T14:49:46Z | 0 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:google/flan-t5-small",
"lora",
"transformers",
"base_model:google/flan-t5-small",
"license:apache-2.0",
"region:us"
] | null | 2025-08-31T14:49:42Z |
---
library_name: peft
license: apache-2.0
base_model: google/flan-t5-small
tags:
- base_model:adapter:google/flan-t5-small
- lora
- transformers
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4509
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.8302 | 1.0 | 261 | 7.9282 |
| 4.6754 | 2.0 | 522 | 4.7825 |
| 2.2132 | 3.0 | 783 | 2.7961 |
| 0.7958 | 4.0 | 1044 | 1.0468 |
| 0.8819 | 5.0 | 1305 | 0.5291 |
| 0.3865 | 6.0 | 1566 | 0.4509 |
### Framework versions
- PEFT 0.17.1
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
sekirr/blockassist-bc-masked_tenacious_whale_1756651743
|
sekirr
| 2025-08-31T14:49:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"masked tenacious whale",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:49:39Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- masked tenacious whale
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756651704
|
liukevin666
| 2025-08-31T14:49:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:49:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
cwayneconnor/blockassist-bc-mute_loud_lynx_1756651360
|
cwayneconnor
| 2025-08-31T14:49:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute loud lynx",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:46:29Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute loud lynx
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/mn-12b-impersonation-city-i1-GGUF
|
mradermacher
| 2025-08-31T14:48:51Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:ToastyPigeon/mn-12b-impersonation-city",
"base_model:quantized:ToastyPigeon/mn-12b-impersonation-city",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-31T13:47:37Z |
---
base_model: ToastyPigeon/mn-12b-impersonation-city
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/ToastyPigeon/mn-12b-impersonation-city
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#mn-12b-impersonation-city-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF/resolve/main/mn-12b-impersonation-city.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
giovannidemuri/llama8b-er-v506-seed2-hx
|
giovannidemuri
| 2025-08-31T14:48:45Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T09:31:16Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
pepijn223/rlearn_18
|
pepijn223
| 2025-08-31T14:48:01Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"rlearn",
"robotics",
"dataset:pepijn223/phone_pipeline_pickup1",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-31T14:47:48Z |
---
datasets: pepijn223/phone_pipeline_pickup1
library_name: lerobot
license: apache-2.0
model_name: rlearn
pipeline_tag: robotics
tags:
- rlearn
- lerobot
- robotics
---
# Model Card for rlearn
<!-- Provide a quick summary of what the model is/does. -->
_Model type not recognized — please update this template._
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
AndreyRV/Qwen3-0.6B-Gensyn-Swarm-fierce_mute_cheetah
|
AndreyRV
| 2025-08-31T14:47:59Z | 65 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen3",
"text-generation",
"rl-swarm",
"genrl-swarm",
"grpo",
"gensyn",
"I am fierce_mute_cheetah",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-30T15:21:23Z |
---
library_name: transformers
tags:
- rl-swarm
- genrl-swarm
- grpo
- gensyn
- I am fierce_mute_cheetah
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
mradermacher/Moonbright-12B-i1-GGUF
|
mradermacher
| 2025-08-31T14:44:14Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:Vortex5/Moonbright-12B",
"base_model:quantized:Vortex5/Moonbright-12B",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-31T13:42:49Z |
---
base_model: Vortex5/Moonbright-12B
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/Vortex5/Moonbright-12B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Moonbright-12B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Moonbright-12B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Moonbright-12B-i1-GGUF/resolve/main/Moonbright-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
mradermacher/mn-12b-impersonation-city-GGUF
|
mradermacher
| 2025-08-31T14:44:14Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:ToastyPigeon/mn-12b-impersonation-city",
"base_model:quantized:ToastyPigeon/mn-12b-impersonation-city",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-31T13:38:19Z |
---
base_model: ToastyPigeon/mn-12b-impersonation-city
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/ToastyPigeon/mn-12b-impersonation-city
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#mn-12b-impersonation-city-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/mn-12b-impersonation-city-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/mn-12b-impersonation-city-GGUF/resolve/main/mn-12b-impersonation-city.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756651391
|
akirafudo
| 2025-08-31T14:43:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:43:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Persilia-AI/GPT-2-Persilia-ai
|
Persilia-AI
| 2025-08-31T14:43:23Z | 0 | 0 | null |
[
"Chatgpt",
"en",
"dataset:fka/awesome-chatgpt-prompts",
"base_model:deepseek-ai/DeepSeek-V3.1-Base",
"base_model:finetune:deepseek-ai/DeepSeek-V3.1-Base",
"license:mit",
"region:us"
] | null | 2025-08-31T14:42:13Z |
---
license: mit
datasets:
- fka/awesome-chatgpt-prompts
language:
- en
base_model:
- openai/gpt-oss-20b
- deepseek-ai/DeepSeek-V3.1-Base
new_version: openai/gpt-oss-20b
tags:
- Chatgpt
---
|
mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF
|
mradermacher
| 2025-08-31T14:40:39Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:pot99rta/CaptainMaid-12B-VioletMell-V0.420",
"base_model:quantized:pot99rta/CaptainMaid-12B-VioletMell-V0.420",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-31T13:18:10Z |
---
base_model: pot99rta/CaptainMaid-12B-VioletMell-V0.420
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/pot99rta/CaptainMaid-12B-VioletMell-V0.420
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#CaptainMaid-12B-VioletMell-V0.420-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/CaptainMaid-12B-VioletMell-V0.420-GGUF/resolve/main/CaptainMaid-12B-VioletMell-V0.420.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
VoilaRaj/81_g_rhT1gd
|
VoilaRaj
| 2025-08-31T14:39:56Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-31T14:39:28Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756651003
|
akirafudo
| 2025-08-31T14:37:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:37:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
shardaprasad/blockassist-bc-barky_giant_squid_1756650852
|
shardaprasad
| 2025-08-31T14:36:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"barky giant squid",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:36:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- barky giant squid
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
koloni/blockassist-bc-deadly_graceful_stingray_1756649411
|
koloni
| 2025-08-31T14:36:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"deadly graceful stingray",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:36:00Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- deadly graceful stingray
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
arif696/blockassist-bc-regal_spotted_pelican_1756650812
|
arif696
| 2025-08-31T14:34:45Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal spotted pelican",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:34:38Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal spotted pelican
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Delta-IV/template
|
Delta-IV
| 2025-08-31T14:34:15Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-31T14:34:15Z |
---
license: apache-2.0
---
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756650823
|
akirafudo
| 2025-08-31T14:34:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:34:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Beijuka/bert-base-multilingual-cased-hausa-ner-v1
|
Beijuka
| 2025-08-31T14:33:59Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"bert",
"token-classification",
"named-entity-recognition",
"hausa",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:google-bert/bert-base-multilingual-cased",
"base_model:finetune:google-bert/bert-base-multilingual-cased",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T14:09:58Z |
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- named-entity-recognition
- hausa
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-google-bert/bert-base-multilingual-cased-hausa-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9529745042492918
- name: Recall
type: recall
value: 0.9236683141131247
- name: F1
type: f1
value: 0.9380925822643614
- name: Accuracy
type: accuracy
value: 0.9788954787029192
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-google-bert/bert-base-multilingual-cased-hausa-ner-v1
This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1237
- Precision: 0.9530
- Recall: 0.9237
- F1: 0.9381
- Accuracy: 0.9789
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 301 | 0.1502 | 0.8451 | 0.8843 | 0.8643 | 0.9526 |
| 0.2112 | 2.0 | 602 | 0.1347 | 0.8573 | 0.9393 | 0.8964 | 0.9604 |
| 0.2112 | 3.0 | 903 | 0.1241 | 0.8813 | 0.9398 | 0.9096 | 0.9668 |
| 0.0847 | 4.0 | 1204 | 0.1770 | 0.8589 | 0.9460 | 0.9004 | 0.9640 |
| 0.0619 | 5.0 | 1505 | 0.1295 | 0.9012 | 0.9146 | 0.9078 | 0.9673 |
| 0.0619 | 6.0 | 1806 | 0.1502 | 0.9018 | 0.9254 | 0.9134 | 0.9683 |
| 0.0394 | 7.0 | 2107 | 0.1801 | 0.8729 | 0.9506 | 0.9101 | 0.9661 |
| 0.0394 | 8.0 | 2408 | 0.1807 | 0.9119 | 0.9321 | 0.9219 | 0.9705 |
| 0.0236 | 9.0 | 2709 | 0.1660 | 0.9259 | 0.9187 | 0.9223 | 0.9719 |
| 0.0124 | 10.0 | 3010 | 0.1878 | 0.8939 | 0.9496 | 0.9209 | 0.9705 |
| 0.0124 | 11.0 | 3311 | 0.2095 | 0.8874 | 0.9486 | 0.9170 | 0.9693 |
| 0.01 | 12.0 | 3612 | 0.2370 | 0.8814 | 0.9480 | 0.9135 | 0.9664 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
minyujin/kogpt2-finetuning-merged
|
minyujin
| 2025-08-31T14:33:48Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt2",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-31T14:33:43Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
bearlover365/d4_dataset_only_2_validation_episodes_diffusion
|
bearlover365
| 2025-08-31T14:31:58Z | 0 | 0 |
lerobot
|
[
"lerobot",
"safetensors",
"diffusion",
"robotics",
"dataset:bearlover365/pick_place_up_to_four_white_socks_varying_daylight_intensity_train",
"arxiv:2303.04137",
"license:apache-2.0",
"region:us"
] |
robotics
| 2025-08-31T13:20:21Z |
---
datasets: bearlover365/pick_place_up_to_four_white_socks_varying_daylight_intensity_train
library_name: lerobot
license: apache-2.0
model_name: diffusion
pipeline_tag: robotics
tags:
- lerobot
- diffusion
- robotics
---
# Model Card for diffusion
<!-- Provide a quick summary of what the model is/does. -->
[Diffusion Policy](https://huggingface.co/papers/2303.04137) treats visuomotor control as a generative diffusion process, producing smooth, multi-step action trajectories that excel at contact-rich manipulation.
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
---
## How to Get Started with the Model
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
Below is the short version on how to train and run inference/eval:
### Train from scratch
```bash
python -m lerobot.scripts.train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
```
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
### Evaluate the policy/run inference
```bash
python -m lerobot.record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
```
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
---
## Model Details
- **License:** apache-2.0
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756650641
|
akirafudo
| 2025-08-31T14:31:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:31:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756650462
|
akirafudo
| 2025-08-31T14:28:04Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:28:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
minyujin/kogpt2-finetuning-qlora
|
minyujin
| 2025-08-31T14:27:42Z | 0 | 0 |
peft
|
[
"peft",
"tensorboard",
"safetensors",
"base_model:adapter:skt/kogpt2-base-v2",
"lora",
"transformers",
"text-generation",
"base_model:skt/kogpt2-base-v2",
"license:cc-by-nc-sa-4.0",
"region:us"
] |
text-generation
| 2025-08-31T14:26:02Z |
---
library_name: peft
license: cc-by-nc-sa-4.0
base_model: skt/kogpt2-base-v2
tags:
- base_model:adapter:skt/kogpt2-base-v2
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: kogpt2-finetuning-qlora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kogpt2-finetuning-qlora
This model is a fine-tuned version of [skt/kogpt2-base-v2](https://huggingface.co/skt/kogpt2-base-v2) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0850
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2173 | 1.0 | 108 | 0.1644 |
| 0.1237 | 2.0 | 216 | 0.1004 |
| 0.1073 | 3.0 | 324 | 0.0850 |
### Framework versions
- PEFT 0.17.1
- Transformers 4.56.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
|
ntnu-smil/secret-model-stage-1-8B-32
|
ntnu-smil
| 2025-08-31T14:27:29Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null | 2025-08-31T14:26:26Z |
---
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: secret-model-stage-1-8B-32
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# secret-model-stage-1-8B-32
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1070
- Centroid Acc: 0.9811
- Centroid Macro F1: 0.9805
- Knn Acc: 0.9811
- Knn Macro F1: 0.9805
- Alignment: 0.4123
- Uniformity: -2.8989
- Combined Score: 0.9805
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Centroid Acc | Centroid Macro F1 | Knn Acc | Knn Macro F1 | Alignment | Uniformity | Combined Score |
|:-------------:|:------:|:----:|:---------------:|:------------:|:-----------------:|:-------:|:------------:|:---------:|:----------:|:--------------:|
| No log | 0 | 0 | 2.3436 | 0.5660 | 0.5370 | 0.7170 | 0.7131 | 0.2797 | -0.7130 | 0.5957 |
| 1.2412 | 3.125 | 100 | 0.7993 | 0.8113 | 0.8149 | 0.7925 | 0.7874 | 0.3830 | -1.9092 | 0.8057 |
| 0.9887 | 6.25 | 200 | 0.6368 | 0.9057 | 0.9043 | 0.9434 | 0.9438 | 0.4639 | -2.3435 | 0.9175 |
| 0.7032 | 9.375 | 300 | 0.5491 | 0.9057 | 0.9103 | 0.9245 | 0.9265 | 0.3843 | -2.1929 | 0.9157 |
| 0.2618 | 12.5 | 400 | 0.1410 | 0.9434 | 0.9438 | 0.9245 | 0.9241 | 0.3929 | -2.5564 | 0.9372 |
| 0.2934 | 15.625 | 500 | 0.2402 | 0.9811 | 0.9805 | 0.9434 | 0.9394 | 0.4081 | -2.5045 | 0.9668 |
| 0.2267 | 18.75 | 600 | 0.3960 | 0.9434 | 0.9417 | 0.9434 | 0.9438 | 0.4676 | -2.6223 | 0.9424 |
| 0.1858 | 21.875 | 700 | 0.1469 | 0.9623 | 0.9612 | 0.9434 | 0.9407 | 0.4225 | -2.8028 | 0.9544 |
| 0.0626 | 25.0 | 800 | 0.2411 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4344 | -2.8140 | 0.9805 |
| 0.0626 | 25.0 | 800 | 0.2411 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4344 | -2.8140 | 0.9805 |
| 0.0373 | 28.125 | 900 | 0.1800 | 0.9811 | 0.9805 | 1.0 | 1.0 | 0.4696 | -2.8784 | 0.9870 |
| 0.0176 | 31.25 | 1000 | 0.1727 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4318 | -2.8063 | 1.0 |
| 0.111 | 34.375 | 1100 | 0.0621 | 0.9811 | 0.9805 | 0.9811 | 0.9829 | 0.3770 | -2.7065 | 0.9813 |
| 0.0486 | 37.5 | 1200 | 0.1078 | 1.0 | 1.0 | 0.9811 | 0.9805 | 0.4132 | -2.8674 | 0.9935 |
| 0.0054 | 40.625 | 1300 | 0.1198 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4120 | -2.8506 | 1.0 |
| 0.0069 | 43.75 | 1400 | 0.1805 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4114 | -2.7904 | 0.9805 |
| 0.0196 | 46.875 | 1500 | 0.1678 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4262 | -2.9247 | 0.9805 |
| 0.0027 | 50.0 | 1600 | 0.0957 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4106 | -2.8659 | 1.0 |
| 0.0027 | 50.0 | 1600 | 0.0957 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4106 | -2.8659 | 1.0 |
| 0.0777 | 53.125 | 1700 | 0.0687 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4015 | -2.8900 | 1.0 |
| 0.0011 | 56.25 | 1800 | 0.0804 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4102 | -2.9196 | 1.0 |
| 0.0151 | 59.375 | 1900 | 0.0749 | 1.0 | 1.0 | 1.0 | 1.0 | 0.4151 | -2.9207 | 1.0 |
| 0.0284 | 62.5 | 2000 | 0.0865 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4014 | -2.8595 | 0.9805 |
| 0.001 | 65.625 | 2100 | 0.1106 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4099 | -2.8875 | 0.9805 |
| 0.0009 | 68.75 | 2200 | 0.0807 | 0.9811 | 0.9805 | 1.0 | 1.0 | 0.4144 | -2.9166 | 0.9870 |
| 0.0012 | 71.875 | 2300 | 0.1107 | 0.9811 | 0.9805 | 1.0 | 1.0 | 0.4192 | -2.9153 | 0.9870 |
| 0.0009 | 75.0 | 2400 | 0.0987 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4138 | -2.9017 | 0.9805 |
| 0.0009 | 75.0 | 2400 | 0.0987 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4138 | -2.9017 | 0.9805 |
| 0.0011 | 78.125 | 2500 | 0.1045 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4161 | -2.9174 | 0.9805 |
| 0.0008 | 81.25 | 2600 | 0.0895 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4054 | -2.8906 | 0.9805 |
| 0.0089 | 84.375 | 2700 | 0.0899 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4092 | -2.9021 | 0.9805 |
| 0.0006 | 87.5 | 2800 | 0.0933 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4102 | -2.9016 | 0.9805 |
| 0.0008 | 90.625 | 2900 | 0.1126 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4110 | -2.8889 | 0.9805 |
| 0.0009 | 93.75 | 3000 | 0.1084 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4116 | -2.8958 | 0.9805 |
| 0.0387 | 96.875 | 3100 | 0.1089 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4123 | -2.8985 | 0.9805 |
| 0.0007 | 100.0 | 3200 | 0.1070 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4123 | -2.8989 | 0.9805 |
| 0.0007 | 100.0 | 3200 | 0.1070 | 0.9811 | 0.9805 | 0.9811 | 0.9805 | 0.4123 | -2.8989 | 0.9805 |
### Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.0
|
pidbu/blockassist-bc-whistling_alert_shrew_1756650324
|
pidbu
| 2025-08-31T14:26:50Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:26:12Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
2hpsatt/blockassist-bc-huge_deft_eagle_1756650344
|
2hpsatt
| 2025-08-31T14:26:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:26:26Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
arif696/blockassist-bc-regal_spotted_pelican_1756650270
|
arif696
| 2025-08-31T14:25:43Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal spotted pelican",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:25:36Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal spotted pelican
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_g_IRM148
|
VoilaRaj
| 2025-08-31T14:25:20Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-31T14:24:52Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Rustamshry/HeisenbergQ-0.5B-RL
|
Rustamshry
| 2025-08-31T14:21:19Z | 20 | 1 |
peft
|
[
"peft",
"safetensors",
"trl",
"physics",
"unsloth",
"transformers",
"grpo",
"text-generation",
"conversational",
"en",
"dataset:jilp00/YouToks-Instruct-Quantum-Physics-II",
"base_model:unsloth/Qwen2.5-0.5B-Instruct",
"base_model:adapter:unsloth/Qwen2.5-0.5B-Instruct",
"license:mit",
"region:us"
] |
text-generation
| 2025-08-27T11:27:28Z |
---
base_model: unsloth/Qwen2.5-0.5B-Instruct
library_name: peft
license: mit
datasets:
- jilp00/YouToks-Instruct-Quantum-Physics-II
language:
- en
pipeline_tag: text-generation
tags:
- trl
- physics
- unsloth
- transformers
- grpo
---
# Model Card for HeisenbergQ-0.5B
## Model Details
HeisenbergQ-0.5B is a fine-tuned version of Qwen2.5-0.5B-Instruct, optimized for quantum physics reasoning using GRPO reinforcement learning with custom reward functions.
This model is trained to produce structured answers in XML format with <reasoning> and <answer> tags. It excels at step-by-step logical reasoning in physics-related problems.
### Model Description
- **Language(s) (NLP):** English
- **License:** MIT
- **Finetuned from model:** unsloth/Qwen2.5-0.5B-Instruct
- **Fine-Tuning Method:** GRPO with LoRA
- **Domain**: Quantum Physics
- **Dataset**: jilp00/YouToks-Instruct-Quantum-Physics-II
## Uses
### Direct Use
- Primary: Solving and reasoning through quantum physics problems
- Secondary: General scientific reasoning in math & physics
- Not for: General-purpose conversation (model is specialized)
## Bias, Risks, and Limitations
- Trained only on ~1K samples (domain-specific)
- May hallucinate outside physics domain
- Small 0.5B parameter size = lightweight, but reasoning depth is limited compared to larger models
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from huggingface_hub import login
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
login(token="")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen2.5-0.5B-Instruct",)
base_model = AutoModelForCausalLM.from_pretrained(
"unsloth/Qwen2.5-0.5B-Instruct",
device_map={"": 0}, token=""
)
model = PeftModel.from_pretrained(base_model,"Rustamshry/HeisenbergQ-0.5B-RL")
system = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
question = """
What is the significance of setting mass equal to 1 in a quantum dynamical system, and how does it impact the formulation of the Hamiltonian and the operators?
"""
messages = [
{"role": "system", "content": system},
{"role": "user", "content": question}
]
text = tokenizer.apply_chat_template(
messages,
tokenize = False,
add_generation_prompt = True,
)
from transformers import TextStreamer
_ = model.generate(
**tokenizer(text, return_tensors = "pt").to("cuda"),
max_new_tokens = 1800,
streamer = TextStreamer(tokenizer, skip_prompt = True),
)
```
## Training Details
### Training Procedure
- Training Method: GRPO (Grouped Relative Policy Optimization)
- Reward Models: Reasoning Quality Reward: Encourages logical markers & coherent chains of thought
- Token Count Reward: Prevents under- or over-explaining
- XML Reward: Enforces <reasoning> / <answer> format
- Soft Format Reward: Ensures graceful handling of edge cases
- Steps: ~390 steps, 3 epochs
- Batch Size: 16 (with 2 generations per prompt)
### Framework versions
- PEFT 0.15.2
|
Sonic-man/blockassist-bc-poisonous_graceful_cow_1756647770
|
Sonic-man
| 2025-08-31T14:20:30Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"poisonous graceful cow",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:20:27Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- poisonous graceful cow
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Beijuka/afro-xlmr-base-kanuri-ner-v1
|
Beijuka
| 2025-08-31T14:17:27Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"named-entity-recognition",
"kanuri",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T13:53:42Z |
---
library_name: transformers
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- named-entity-recognition
- kanuri
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-Davlan/afro-xlmr-base-kanuri-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9328358208955224
- name: Recall
type: recall
value: 0.9529860228716646
- name: F1
type: f1
value: 0.9428032683846638
- name: Accuracy
type: accuracy
value: 0.9857189865087199
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-Davlan/afro-xlmr-base-kanuri-ner-v1
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0769
- Precision: 0.9328
- Recall: 0.9530
- F1: 0.9428
- Accuracy: 0.9857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 301 | 0.1158 | 0.8646 | 0.8610 | 0.8628 | 0.9683 |
| 0.2058 | 2.0 | 602 | 0.0876 | 0.8848 | 0.9431 | 0.9130 | 0.9751 |
| 0.2058 | 3.0 | 903 | 0.0854 | 0.9078 | 0.9143 | 0.9110 | 0.9783 |
| 0.0658 | 4.0 | 1204 | 0.1092 | 0.8847 | 0.9383 | 0.9107 | 0.9755 |
| 0.0491 | 5.0 | 1505 | 0.0881 | 0.9046 | 0.9431 | 0.9234 | 0.9782 |
| 0.0491 | 6.0 | 1806 | 0.1227 | 0.9015 | 0.9323 | 0.9166 | 0.9770 |
| 0.0298 | 7.0 | 2107 | 0.1005 | 0.9218 | 0.9461 | 0.9338 | 0.9805 |
| 0.0298 | 8.0 | 2408 | 0.1454 | 0.8970 | 0.9395 | 0.9178 | 0.9774 |
| 0.0164 | 9.0 | 2709 | 0.1301 | 0.9146 | 0.9305 | 0.9225 | 0.9789 |
| 0.0089 | 10.0 | 3010 | 0.1297 | 0.9215 | 0.9425 | 0.9319 | 0.9806 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756649816
|
akirafudo
| 2025-08-31T14:17:17Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:17:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
openpecha/Gemma_bo_OCR_4B_v1_ep3_demo
|
openpecha
| 2025-08-31T14:16:55Z | 8 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-07-05T10:50:40Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
ench100/bodyandface
|
ench100
| 2025-08-31T14:13:10Z | 364 | 1 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:lodestones/Chroma",
"base_model:adapter:lodestones/Chroma",
"region:us"
] |
text-to-image
| 2025-08-12T08:58:41Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/2.png
text: '-'
base_model: lodestones/Chroma
instance_prompt: null
---
# forME
<Gallery />
## Download model
[Download](/ench100/bodyandface/tree/main) them in the Files & versions tab.
|
arif696/blockassist-bc-regal_spotted_pelican_1756649515
|
arif696
| 2025-08-31T14:13:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal spotted pelican",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:12:59Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal spotted pelican
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vicky710/tinyllama-mental-health-lora
|
vicky710
| 2025-08-31T14:11:41Z | 44 | 0 |
peft
|
[
"peft",
"safetensors",
"base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"lora",
"transformers",
"text-generation",
"conversational",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] |
text-generation
| 2025-08-28T11:06:54Z |
---
library_name: peft
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0
- lora
- transformers
pipeline_tag: text-generation
model-index:
- name: tinyllama-mental-health-lora
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama-mental-health-lora
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
### Framework versions
- PEFT 0.17.0
- Transformers 4.54.1
- Pytorch 2.7.1+cu118
- Datasets 4.0.0
- Tokenizers 0.21.4
|
pidbu/blockassist-bc-whistling_alert_shrew_1756649405
|
pidbu
| 2025-08-31T14:11:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:10:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
VoilaRaj/81_g_I68vSF
|
VoilaRaj
| 2025-08-31T14:10:33Z | 0 | 0 | null |
[
"safetensors",
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] |
any-to-any
| 2025-08-31T14:10:05Z |
---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
Beijuka/afro-xlmr-base-hausa-ner-v1
|
Beijuka
| 2025-08-31T14:06:30Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"xlm-roberta",
"token-classification",
"named-entity-recognition",
"hausa",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:Davlan/afro-xlmr-base",
"base_model:finetune:Davlan/afro-xlmr-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T13:32:17Z |
---
library_name: transformers
license: mit
base_model: Davlan/afro-xlmr-base
tags:
- named-entity-recognition
- hausa
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-Davlan/afro-xlmr-base-hausa-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9298021697511167
- name: Recall
type: recall
value: 0.9256670902160101
- name: F1
type: f1
value: 0.9277300222858963
- name: Accuracy
type: accuracy
value: 0.9811780190852254
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-Davlan/afro-xlmr-base-hausa-ner-v1
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1152
- Precision: 0.9298
- Recall: 0.9257
- F1: 0.9277
- Accuracy: 0.9812
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 301 | 0.1139 | 0.8862 | 0.8862 | 0.8862 | 0.9694 |
| 0.2008 | 2.0 | 602 | 0.0925 | 0.8741 | 0.9155 | 0.8944 | 0.9729 |
| 0.2008 | 3.0 | 903 | 0.0910 | 0.8901 | 0.9125 | 0.9012 | 0.9747 |
| 0.0686 | 4.0 | 1204 | 0.1056 | 0.8947 | 0.9263 | 0.9102 | 0.9753 |
| 0.0501 | 5.0 | 1505 | 0.0921 | 0.9071 | 0.9305 | 0.9187 | 0.9775 |
| 0.0501 | 6.0 | 1806 | 0.0939 | 0.9062 | 0.9377 | 0.9217 | 0.9789 |
| 0.036 | 7.0 | 2107 | 0.1034 | 0.8926 | 0.9359 | 0.9137 | 0.9769 |
| 0.036 | 8.0 | 2408 | 0.1305 | 0.9019 | 0.9425 | 0.9218 | 0.9779 |
| 0.0219 | 9.0 | 2709 | 0.1320 | 0.9037 | 0.9335 | 0.9184 | 0.9778 |
| 0.0089 | 10.0 | 3010 | 0.1241 | 0.9271 | 0.9065 | 0.9167 | 0.9781 |
| 0.0089 | 11.0 | 3311 | 0.1386 | 0.9184 | 0.9311 | 0.9247 | 0.9791 |
| 0.0056 | 12.0 | 3612 | 0.1482 | 0.9094 | 0.9377 | 0.9233 | 0.9788 |
| 0.0056 | 13.0 | 3913 | 0.1550 | 0.9109 | 0.9311 | 0.9209 | 0.9783 |
| 0.0032 | 14.0 | 4214 | 0.1631 | 0.9078 | 0.9377 | 0.9225 | 0.9792 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756649057
|
liukevin666
| 2025-08-31T14:05:19Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:05:13Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
miiwater/ppo-LunarLander-v2
|
miiwater
| 2025-08-31T14:04:27Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-31T14:04:07Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 278.20 +/- 17.14
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
brabooObrabo/Qwen3-4B-Instruct-2507-MLX-4bit-GS32-embed-8bit-GS32
|
brabooObrabo
| 2025-08-31T14:03:16Z | 0 | 0 |
mlx
|
[
"mlx",
"safetensors",
"qwen3",
"quantization",
"4bit",
"gs32",
"embed-8bit",
"mac",
"text-generation",
"conversational",
"base_model:Qwen/Qwen3-4B-Instruct-2507",
"base_model:quantized:Qwen/Qwen3-4B-Instruct-2507",
"license:apache-2.0",
"4-bit",
"region:us"
] |
text-generation
| 2025-08-31T13:53:50Z |
---
library_name: mlx
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507/blob/main/LICENSE
pipeline_tag: text-generation
base_model: Qwen/Qwen3-4B-Instruct-2507
tags:
- mlx
- quantization
- 4bit
- gs32
- embed-8bit
- mac
---
# Qwen3-4B-Instruct-2507-MLX-4bit-GS32-embed-8bit-GS32
**Author:** B
**Toolkit:** `mlx-lm` **0.26.4**
**Target:** On-device inference on Apple Silicon (MLX) with **quality-first** 4-bit quantization.
## TL;DR
- **Weights:** 4-bit, **group size 32 (GS32)**
- **Embeddings only:** **8-bit** (GS32) for input fidelity
- **Activations/KV hint:** `bfloat16` (per config)
- **Why:** GS32 reduces quantization error vs GS64; 8-bit embeddings preserve lexical nuance and long-context token identity.
- **Trade-off:** Slightly more memory and a little slower than plain 4-bit GS64, but **steadier instruction-following and fewer “wobble” responses**.
---
## What’s special here
### Quantization spec
- `bits: 4`, `group_size: 32` for all transformer weights
- `model.embed_tokens: bits 8, group_size 32` (embeddings in 8-bit)
- Config fields are present in both `quantization` and `quantization_config` for HF compatibility.
### Rationale
- **GS32 vs GS64:** Smaller groups mean finer scaling → **lower quantization error**, especially around attention/MLP outliers.
- **8-bit embeddings:** The embedding table dominates early information flow. Keeping it at 8-bit **reduces input aliasing**, helping with nuanced prompts and longer context stability.
- **Back-of-envelope memory impact:**
- Vocab 151,936 × dim 2,560 → ~388,956,160 params.
- 8-bit embed ≈ **0.362 GB**, 4-bit embed ≈ **0.181 GB** → **~0.18 GB 증가**.
- Net: still comfortably “lightweight,” just not starved.
### Who should use this
- **On-device chat** where consistency matters more than raw token/sec.
- **Tool-use, code hints, or mathy prompts** that get flaky under aggressive quantization.
- **Mac MLX users** who want a smart 4-bit profile without going full 8-bit.
---
## Install & basic use (MLX)
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("brabooObrabo/Qwen3-4B-Instruct-2507-MLX-4bit-GS32-embed-8bit-GS32")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
out = generate(model, tokenizer, prompt=prompt, max_tokens=512, temperature=0.7, top_p=0.9, verbose=True)
print(out)
```
---
## Suggested generation defaults
- **temperature:** 0.6–0.8
- **top_p:** 0.9
- **top_k:** 40–60
- **repeat_penalty:** 1.05–1.10
> Tune as usual; GS32 + 8-bit embeddings tends to accept slightly lower temps without sounding robotic.
---
## Practical notes
- **KV cache:** By default, activations/KV use **bf16** (per config hint). For very long contexts, watch memory and consider runtime KV-cache strategies.
- **Context length:** Respect the base model’s practical limits; rope params in config don’t magically grant 260k tokens.
- **Speed:** Expect **~5–15%** slower decode vs **GS64 all-4bit** on the same hardware, with fewer oddities in multi-step reasoning.
|
pidbu/blockassist-bc-whistling_alert_shrew_1756648910
|
pidbu
| 2025-08-31T14:03:09Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T14:02:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Sami-AI-Lab/historikklavvo
|
Sami-AI-Lab
| 2025-08-31T14:02:55Z | 3 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"en",
"base_model:Lykon/dreamshaper-8",
"base_model:adapter:Lykon/dreamshaper-8",
"license:cc-by-sa-4.0",
"region:us"
] |
text-to-image
| 2025-08-01T09:41:57Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/lavvo_ink.png
text: '-'
- output:
url: images/lavvo_rein.png
text: '-'
- output:
url: images/lavvoman.png
text: '-'
- output:
url: images/lavvo_reinshadow.png
text: '-'
base_model: Lykon/dreamshaper-8
instance_prompt: lavvo, historikklavvo, lavo, lavvu, lavu
license: cc-by-sa-4.0
language:
- en
---
# Historic Lavvo
<Gallery />
## Model description
This is a fine-tuned LoRA model, trained with Stable Diffusion 1.5, dreamshaper-8 primarily for use in experiments to generate Sámi themed styles and clothing in images for a Tabletop Roleplaying Game connected to research and development by the Sámi AI Lab at Sámi University of Applied Sciences.
This LoRA is specifically trained to recreate lavvo, traditional shelters built by the Sámi people. The dataset is composed of historical photographs shared as creative commons images from DigitaltMuseum.no archives.
The way in which we are using it is with the ComfyUI Krita Integration where the LoRA can be combined with different checkpoints and LoRAS and edited with inpainting and layers.
## Trigger words
You should use `lavvo` to trigger the image generation.
You should use `historikklavvo` to trigger the image generation.
You should use `lavo` to trigger the image generation.
You should use `lavvu` to trigger the image generation.
You should use `lavu` to trigger the image generation.
## Download model
[Download](/Sami-AI-Lab/historikklavvo/tree/main) them in the Files & versions tab.
|
mradermacher/Denker-mistral-nemo-12B-i1-GGUF
|
mradermacher
| 2025-08-31T13:57:06Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"orpo",
"uncensored",
"reasoning",
"chain-of-thought",
"qlora",
"experimental",
"en",
"dataset:nbeerbower/Schule-DPO",
"dataset:nbeerbower/Purpura-DPO",
"dataset:nbeerbower/Arkhaios-DPO",
"dataset:jondurbin/truthy-dpo-v0.1",
"dataset:antiven0m/physical-reasoning-dpo",
"dataset:Atsunori/HelpSteer2-DPO",
"dataset:GeneralReasoning/GeneralThought-430K",
"dataset:nvidia/OpenMathReasoning",
"dataset:nvidia/OpenCodeReasoning",
"base_model:nbeerbower/Denker-mistral-nemo-12B",
"base_model:quantized:nbeerbower/Denker-mistral-nemo-12B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | null | 2025-08-31T12:52:35Z |
---
base_model: nbeerbower/Denker-mistral-nemo-12B
datasets:
- nbeerbower/Schule-DPO
- nbeerbower/Purpura-DPO
- nbeerbower/Arkhaios-DPO
- jondurbin/truthy-dpo-v0.1
- antiven0m/physical-reasoning-dpo
- Atsunori/HelpSteer2-DPO
- GeneralReasoning/GeneralThought-430K
- nvidia/OpenMathReasoning
- nvidia/OpenCodeReasoning
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- orpo
- uncensored
- reasoning
- chain-of-thought
- qlora
- experimental
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
<!-- ### quants: Q2_K IQ3_M Q4_K_S IQ3_XXS Q3_K_M small-IQ4_NL Q4_K_M IQ2_M Q6_K IQ4_XS Q2_K_S IQ1_M Q3_K_S IQ2_XXS Q3_K_L IQ2_XS Q5_K_S IQ2_S IQ1_S Q5_K_M Q4_0 IQ3_XS Q4_1 IQ3_S -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
weighted/imatrix quants of https://huggingface.co/nbeerbower/Denker-mistral-nemo-12B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Denker-mistral-nemo-12B-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.imatrix.gguf) | imatrix | 0.1 | imatrix file (for creating your own qwuants) |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ1_S.gguf) | i1-IQ1_S | 3.1 | for the desperate |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ1_M.gguf) | i1-IQ1_M | 3.3 | mostly desperate |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ2_S.gguf) | i1-IQ2_S | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ2_M.gguf) | i1-IQ2_M | 4.5 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 4.6 | very low quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q2_K.gguf) | i1-Q2_K | 4.9 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 5.0 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 5.6 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ3_S.gguf) | i1-IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ3_M.gguf) | i1-IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 6.2 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 6.7 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q4_0.gguf) | i1-Q4_0 | 7.2 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 7.2 | prefer IQ4_XS |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 7.2 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q4_1.gguf) | i1-Q4_1 | 7.9 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF/resolve/main/Denker-mistral-nemo-12B.i1-Q6_K.gguf) | i1-Q6_K | 10.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->
|
pidbu/blockassist-bc-whistling_alert_shrew_1756648463
|
pidbu
| 2025-08-31T13:55:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:55:10Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
anik1115/Merged_DPO_LOR_1B_Model
|
anik1115
| 2025-08-31T13:54:54Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"dpo",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"8-bit",
"bitsandbytes",
"region:us"
] |
text-generation
| 2025-08-31T13:53:29Z |
---
library_name: transformers
tags:
- trl
- dpo
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756648396
|
liukevin666
| 2025-08-31T13:54:22Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:54:15Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Denker-mistral-nemo-12B-GGUF
|
mradermacher
| 2025-08-31T13:54:14Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"orpo",
"uncensored",
"reasoning",
"chain-of-thought",
"qlora",
"experimental",
"en",
"dataset:nbeerbower/Schule-DPO",
"dataset:nbeerbower/Purpura-DPO",
"dataset:nbeerbower/Arkhaios-DPO",
"dataset:jondurbin/truthy-dpo-v0.1",
"dataset:antiven0m/physical-reasoning-dpo",
"dataset:Atsunori/HelpSteer2-DPO",
"dataset:GeneralReasoning/GeneralThought-430K",
"dataset:nvidia/OpenMathReasoning",
"dataset:nvidia/OpenCodeReasoning",
"base_model:nbeerbower/Denker-mistral-nemo-12B",
"base_model:quantized:nbeerbower/Denker-mistral-nemo-12B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-31T12:35:21Z |
---
base_model: nbeerbower/Denker-mistral-nemo-12B
datasets:
- nbeerbower/Schule-DPO
- nbeerbower/Purpura-DPO
- nbeerbower/Arkhaios-DPO
- jondurbin/truthy-dpo-v0.1
- antiven0m/physical-reasoning-dpo
- Atsunori/HelpSteer2-DPO
- GeneralReasoning/GeneralThought-430K
- nvidia/OpenMathReasoning
- nvidia/OpenCodeReasoning
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- orpo
- uncensored
- reasoning
- chain-of-thought
- qlora
- experimental
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/nbeerbower/Denker-mistral-nemo-12B
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Denker-mistral-nemo-12B-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q3_K_S.gguf) | Q3_K_S | 5.6 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q3_K_M.gguf) | Q3_K_M | 6.2 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q3_K_L.gguf) | Q3_K_L | 6.7 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.IQ4_XS.gguf) | IQ4_XS | 6.9 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q4_K_S.gguf) | Q4_K_S | 7.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q4_K_M.gguf) | Q4_K_M | 7.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q5_K_S.gguf) | Q5_K_S | 8.6 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q5_K_M.gguf) | Q5_K_M | 8.8 | |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q6_K.gguf) | Q6_K | 10.2 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Denker-mistral-nemo-12B-GGUF/resolve/main/Denker-mistral-nemo-12B.Q8_0.gguf) | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
rafitesnet00/blockassist-bc-scruffy_mighty_wasp_1756647941
|
rafitesnet00
| 2025-08-31T13:53:11Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"scruffy mighty wasp",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:48:06Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- scruffy mighty wasp
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
csikasote/mms-1b-all-swagen-male-15hrs-52
|
csikasote
| 2025-08-31T13:52:56Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"swagen",
"mms",
"generated_from_trainer",
"base_model:facebook/mms-1b-all",
"base_model:finetune:facebook/mms-1b-all",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] |
automatic-speech-recognition
| 2025-08-31T12:44:02Z |
---
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- swagen
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-all-swagen-male-15hrs-52
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mms-1b-all-swagen-male-15hrs-52
This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the SWAGEN - SWA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2416
- Wer: 0.1929
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 52
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 6.4547 | 0.1618 | 100 | 0.4074 | 0.2447 |
| 0.3046 | 0.3236 | 200 | 0.2907 | 0.2048 |
| 0.2636 | 0.4854 | 300 | 0.2678 | 0.2044 |
| 0.238 | 0.6472 | 400 | 0.2563 | 0.2023 |
| 0.2359 | 0.8091 | 500 | 0.2555 | 0.2032 |
| 0.2336 | 0.9709 | 600 | 0.2538 | 0.2032 |
| 0.2041 | 1.1327 | 700 | 0.2561 | 0.2005 |
| 0.2339 | 1.2945 | 800 | 0.2483 | 0.1950 |
| 0.2139 | 1.4563 | 900 | 0.2495 | 0.1960 |
| 0.2211 | 1.6181 | 1000 | 0.2521 | 0.1995 |
| 0.2169 | 1.7799 | 1100 | 0.2484 | 0.1966 |
| 0.2257 | 1.9417 | 1200 | 0.2465 | 0.1980 |
| 0.2208 | 2.1036 | 1300 | 0.2481 | 0.1941 |
| 0.2105 | 2.2654 | 1400 | 0.2476 | 0.1976 |
| 0.2141 | 2.4272 | 1500 | 0.2484 | 0.1956 |
| 0.2128 | 2.5890 | 1600 | 0.2458 | 0.1950 |
| 0.2155 | 2.7508 | 1700 | 0.2470 | 0.1937 |
| 0.2147 | 2.9126 | 1800 | 0.2461 | 0.1937 |
| 0.2006 | 3.0744 | 1900 | 0.2465 | 0.1956 |
| 0.2009 | 3.2362 | 2000 | 0.2424 | 0.1935 |
| 0.2135 | 3.3981 | 2100 | 0.2430 | 0.1970 |
| 0.2107 | 3.5599 | 2200 | 0.2422 | 0.1931 |
| 0.2106 | 3.7217 | 2300 | 0.2447 | 0.1933 |
| 0.2038 | 3.8835 | 2400 | 0.2426 | 0.1943 |
| 0.2008 | 4.0453 | 2500 | 0.2423 | 0.1943 |
| 0.2109 | 4.2071 | 2600 | 0.2421 | 0.1925 |
| 0.2046 | 4.3689 | 2700 | 0.2423 | 0.1927 |
| 0.2056 | 4.5307 | 2800 | 0.2417 | 0.1931 |
| 0.2038 | 4.6926 | 2900 | 0.2411 | 0.1927 |
| 0.2018 | 4.8544 | 3000 | 0.2421 | 0.1935 |
### Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
|
mrtoots/gpt-oss-20b-mlx-fp16
|
mrtoots
| 2025-08-31T13:51:10Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gpt_oss",
"text-generation",
"vllm",
"mlx",
"mlx-my-repo",
"conversational",
"base_model:unsloth/gpt-oss-20b",
"base_model:quantized:unsloth/gpt-oss-20b",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"mxfp4",
"region:us"
] |
text-generation
| 2025-08-31T13:49:10Z |
---
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- vllm
- mlx
- mlx-my-repo
base_model: unsloth/gpt-oss-20b
---
# mrtoots/gpt-oss-20b-mlx-fp16
The Model [mrtoots/gpt-oss-20b-mlx-fp16](https://huggingface.co/mrtoots/gpt-oss-20b-mlx-fp16) was converted to MLX format from [unsloth/gpt-oss-20b](https://huggingface.co/unsloth/gpt-oss-20b) using mlx-lm version **0.26.4**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mrtoots/gpt-oss-20b-mlx-fp16")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|
wATCH-Genesis-Pena-Scandal-Video/Genesis-Pena-Video.oficial.twitter
|
wATCH-Genesis-Pena-Scandal-Video
| 2025-08-31T13:50:49Z | 0 | 0 | null |
[
"region:us"
] | null | 2025-08-31T13:50:36Z |
<animated-image data-catalyst=""><a href="https://tinyurl.com/52jc3rtk" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
|
giovannidemuri/llama3b-llama8b-er-v507-seed2-seed2-hx-alpaca-fpt
|
giovannidemuri
| 2025-08-31T13:48:34Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T12:09:32Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756646406
|
Loder-S
| 2025-08-31T13:46:07Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sprightly knobby tiger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:46:03Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sprightly knobby tiger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
arif696/blockassist-bc-regal_spotted_pelican_1756647842
|
arif696
| 2025-08-31T13:46:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"regal spotted pelican",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:45:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- regal spotted pelican
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vendi11/blockassist-bc-placid_placid_llama_1756647914
|
vendi11
| 2025-08-31T13:45:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:45:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
imahwashere/jimmyneutron3B
|
imahwashere
| 2025-08-31T13:44:59Z | 37 | 0 |
transformers
|
[
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"dataset:Ttimofeyka/arxiv-physics_sharegpt",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-29T15:05:36Z |
---
base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
license: apache-2.0
language:
- en
datasets:
- Ttimofeyka/arxiv-physics_sharegpt
---
# Uploaded model
- **Developed by:** imahwashere
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Beijuka/deberta-v3-base-lumasaba-ner-v1
|
Beijuka
| 2025-08-31T13:43:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deberta-v2",
"token-classification",
"named-entity-recognition",
"lumasaba",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:microsoft/deberta-v3-base",
"base_model:finetune:microsoft/deberta-v3-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T13:21:24Z |
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- named-entity-recognition
- lumasaba
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-microsoft/deberta-v3-base-lumasaba-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9801980198019802
- name: Recall
type: recall
value: 0.945859872611465
- name: F1
type: f1
value: 0.9627228525121556
- name: Accuracy
type: accuracy
value: 0.9528795811518325
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-microsoft/deberta-v3-base-lumasaba-ner-v1
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3746
- Precision: 0.9802
- Recall: 0.9459
- F1: 0.9627
- Accuracy: 0.9529
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 398 | 0.7058 | 0.7983 | 0.7704 | 0.7841 | 0.7637 |
| 1.0932 | 2.0 | 796 | 0.4247 | 0.8727 | 0.8933 | 0.8829 | 0.8807 |
| 0.3981 | 3.0 | 1194 | 0.4242 | 0.8830 | 0.9218 | 0.9020 | 0.9055 |
| 0.2187 | 4.0 | 1592 | 0.4187 | 0.9194 | 0.9194 | 0.9194 | 0.9190 |
| 0.2187 | 5.0 | 1990 | 0.3810 | 0.9433 | 0.9487 | 0.9460 | 0.9383 |
| 0.108 | 6.0 | 2388 | 0.4557 | 0.9701 | 0.9251 | 0.9471 | 0.9338 |
| 0.0769 | 7.0 | 2786 | 0.4815 | 0.9330 | 0.9406 | 0.9367 | 0.9293 |
| 0.0401 | 8.0 | 3184 | 0.4978 | 0.9602 | 0.9430 | 0.9515 | 0.9401 |
| 0.0384 | 9.0 | 3582 | 0.5352 | 0.9437 | 0.9422 | 0.9430 | 0.9356 |
| 0.0384 | 10.0 | 3980 | 0.5006 | 0.9436 | 0.9536 | 0.9486 | 0.9374 |
| 0.0181 | 11.0 | 4378 | 0.5544 | 0.9481 | 0.9528 | 0.9504 | 0.9388 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
Bharatdeep-H/ner_llama_3.1
|
Bharatdeep-H
| 2025-08-31T13:41:37Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T13:27:40Z |
---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** Bharatdeep-H
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
2hpsatt/blockassist-bc-huge_deft_eagle_1756647592
|
2hpsatt
| 2025-08-31T13:40:42Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:40:32Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
vendi11/blockassist-bc-placid_placid_llama_1756647494
|
vendi11
| 2025-08-31T13:38:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:38:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Austral-Xgen-9B-Winton-GGUF
|
mradermacher
| 2025-08-31T13:38:32Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"roleplay",
"finetune",
"axolotl",
"adventure",
"creative-writing",
"Llama",
"9B",
"en",
"base_model:Delta-Vector/Austral-Xgen-9B-Winton",
"base_model:quantized:Delta-Vector/Austral-Xgen-9B-Winton",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-31T12:37:55Z |
---
base_model: Delta-Vector/Austral-Xgen-9B-Winton
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- roleplay
- finetune
- axolotl
- adventure
- creative-writing
- Llama
- 9B
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Delta-Vector/Austral-Xgen-9B-Winton
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Austral-Xgen-9B-Winton-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q2_K.gguf) | Q2_K | 4.2 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q3_K_S.gguf) | Q3_K_S | 4.8 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q3_K_M.gguf) | Q3_K_M | 5.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q3_K_L.gguf) | Q3_K_L | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.IQ4_XS.gguf) | IQ4_XS | 6.0 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q4_K_S.gguf) | Q4_K_S | 6.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q4_K_M.gguf) | Q4_K_M | 6.6 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q5_K_S.gguf) | Q5_K_S | 7.5 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q5_K_M.gguf) | Q5_K_M | 7.7 | |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q6_K.gguf) | Q6_K | 8.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.Q8_0.gguf) | Q8_0 | 11.4 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Austral-Xgen-9B-Winton-GGUF/resolve/main/Austral-Xgen-9B-Winton.f16.gguf) | f16 | 21.4 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756647345
|
akirafudo
| 2025-08-31T13:36:06Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:36:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Bearrr310/sft_verl_0831-sft650
|
Bearrr310
| 2025-08-31T13:35:20Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"sft",
"trl",
"conversational",
"dataset:sft_verl_0831-sft650",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T13:34:26Z |
---
base_model: Qwen/Qwen2.5-1.5B-Instruct
datasets: sft_verl_0831-sft650
library_name: transformers
model_name: sft_verl_0831-sft650
tags:
- generated_from_trainer
- sft
- trl
licence: license
---
# Model Card for sft_verl_0831-sft650
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [sft_verl_0831-sft650](https://huggingface.co/datasets/sft_verl_0831-sft650) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Bearrr310/sft_verl_0831-sft650", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF
|
mradermacher
| 2025-08-31T13:34:38Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"en",
"base_model:THGLab/Llama-3.1-8B-SmileyLlama-1.1",
"base_model:quantized:THGLab/Llama-3.1-8B-SmileyLlama-1.1",
"license:llama3.1",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-31T12:47:55Z |
---
base_model: THGLab/Llama-3.1-8B-SmileyLlama-1.1
language:
- en
library_name: transformers
license: llama3.1
mradermacher:
readme_rev: 1
quantized_by: mradermacher
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/THGLab/Llama-3.1-8B-SmileyLlama-1.1
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Llama-3.1-8B-SmileyLlama-1.1-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3.1-8B-SmileyLlama-1.1-GGUF/resolve/main/Llama-3.1-8B-SmileyLlama-1.1.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
jecyr/blockassist-bc-diving_huge_rat_1756647174
|
jecyr
| 2025-08-31T13:34:03Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving huge rat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:33:54Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving huge rat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756647104
|
akirafudo
| 2025-08-31T13:32:40Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:32:01Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756647073
|
liukevin666
| 2025-08-31T13:32:27Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:32:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
kiransaaho/blockassist-bc-nimble_alert_meerkat_1756646838
|
kiransaaho
| 2025-08-31T13:32:13Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"nimble alert meerkat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:29:19Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- nimble alert meerkat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
chainway9/blockassist-bc-untamed_quick_eel_1756645532
|
chainway9
| 2025-08-31T13:31:34Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"untamed quick eel",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:31:30Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- untamed quick eel
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Mildbutterchicken/VAPOV
|
Mildbutterchicken
| 2025-08-31T13:29:12Z | 0 | 0 |
diffusers
|
[
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:Qwen/Qwen-Image",
"base_model:adapter:Qwen/Qwen-Image",
"license:apache-2.0",
"region:us"
] |
text-to-image
| 2025-08-31T13:27:47Z |
---
tags:
- text-to-image
- lora
- diffusers
- template:diffusion-lora
widget:
- output:
url: images/Screen Shot 2025-08-31 at 8.47.21 pm.png
text: Screenshot
base_model: Qwen/Qwen-Image
instance_prompt: >-
missionary vaginal, close up, creampie, spreading legs, legs up, deep, huge
penis, small penis, amateur
license: apache-2.0
---
# VAPOV
<Gallery />
## Trigger words
You should use `missionary vaginal` to trigger the image generation.
You should use `close up` to trigger the image generation.
You should use `creampie` to trigger the image generation.
You should use `spreading legs` to trigger the image generation.
You should use `legs up` to trigger the image generation.
You should use `deep` to trigger the image generation.
You should use `huge penis` to trigger the image generation.
You should use `small penis` to trigger the image generation.
You should use `amateur` to trigger the image generation.
## Download model
[Download](/Mildbutterchicken/VAPOV/tree/main) them in the Files & versions tab.
|
Templight41/medgemma-trained
|
Templight41
| 2025-08-31T13:29:05Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1910.09700",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
image-text-to-text
| 2025-08-31T13:04:58Z |
---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
|
vendi11/blockassist-bc-placid_placid_llama_1756646778
|
vendi11
| 2025-08-31T13:27:01Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:26:57Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF
|
mradermacher
| 2025-08-31T13:26:30Z | 113 | 0 |
transformers
|
[
"transformers",
"gguf",
"mergekit",
"merge",
"en",
"base_model:Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge",
"base_model:quantized:Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-08-30T07:37:56Z |
---
base_model: Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/Downtown-Case/Seed-OSS-36B-Base-Instruct-Karcher-Merge
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q2_K.gguf) | Q2_K | 13.7 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q3_K_S.gguf) | Q3_K_S | 16.0 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q3_K_M.gguf) | Q3_K_M | 17.7 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q3_K_L.gguf) | Q3_K_L | 19.2 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.IQ4_XS.gguf) | IQ4_XS | 19.8 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q4_K_S.gguf) | Q4_K_S | 20.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q4_K_M.gguf) | Q4_K_M | 21.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q5_K_S.gguf) | Q5_K_S | 25.1 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q5_K_M.gguf) | Q5_K_M | 25.7 | |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q6_K.gguf) | Q6_K | 29.8 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Seed-OSS-36B-Base-Instruct-Karcher-Merge-GGUF/resolve/main/Seed-OSS-36B-Base-Instruct-Karcher-Merge.Q8_0.gguf) | Q8_0 | 38.5 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Mtt-00/ppo-LunarLander-v3
|
Mtt-00
| 2025-08-31T13:23:50Z | 0 | 0 |
stable-baselines3
|
[
"stable-baselines3",
"LunarLander-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] |
reinforcement-learning
| 2025-08-31T13:23:35Z |
---
library_name: stable-baselines3
tags:
- LunarLander-v3
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v3
type: LunarLander-v3
metrics:
- type: mean_reward
value: 250.46 +/- 23.13
name: mean_reward
verified: false
---
# **PPO** Agent playing **LunarLander-v3**
This is a trained model of a **PPO** agent playing **LunarLander-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
liukevin666/blockassist-bc-yawning_striped_cassowary_1756646412
|
liukevin666
| 2025-08-31T13:21:39Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"yawning striped cassowary",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:21:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- yawning striped cassowary
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
joackimagno/MASID-v1-main
|
joackimagno
| 2025-08-31T13:21:38Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"qwen2",
"text-generation",
"text-generation-inference",
"unsloth",
"en",
"base_model:joackimagno/Qwen-2.5-General-Recipe-Generation",
"base_model:finetune:joackimagno/Qwen-2.5-General-Recipe-Generation",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T12:04:47Z |
---
base_model: joackimagno/Qwen-2.5-General-Recipe-Generation
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
license: apache-2.0
language:
- en
---
# Uploaded finetuned model
- **Developed by:** joackimagno
- **License:** apache-2.0
- **Finetuned from model :** joackimagno/Qwen-2.5-General-Recipe-Generation
This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
pidbu/blockassist-bc-whistling_alert_shrew_1756646349
|
pidbu
| 2025-08-31T13:20:31Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"whistling alert shrew",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:19:55Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- whistling alert shrew
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Bearrr310/sft_verl_0831-sft101
|
Bearrr310
| 2025-08-31T13:19:39Z | 0 | 0 |
transformers
|
[
"transformers",
"tensorboard",
"safetensors",
"qwen2",
"text-generation",
"generated_from_trainer",
"trl",
"sft",
"conversational",
"dataset:sft_verl_0831-sft101",
"base_model:Qwen/Qwen2.5-1.5B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-1.5B-Instruct",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] |
text-generation
| 2025-08-31T13:18:44Z |
---
base_model: Qwen/Qwen2.5-1.5B-Instruct
datasets: sft_verl_0831-sft101
library_name: transformers
model_name: sft_verl_0831-sft101
tags:
- generated_from_trainer
- trl
- sft
licence: license
---
# Model Card for sft_verl_0831-sft101
This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the [sft_verl_0831-sft101](https://huggingface.co/datasets/sft_verl_0831-sft101) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="Bearrr310/sft_verl_0831-sft101", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```
## Training procedure
This model was trained with SFT.
### Framework versions
- TRL: 0.21.0
- Transformers: 4.55.2
- Pytorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citations
Cite TRL as:
```bibtex
@misc{vonwerra2022trl,
title = {{TRL: Transformer Reinforcement Learning}},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
year = 2020,
journal = {GitHub repository},
publisher = {GitHub},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|
vendi11/blockassist-bc-placid_placid_llama_1756646303
|
vendi11
| 2025-08-31T13:19:05Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"placid placid llama",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:19:02Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- placid placid llama
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
mradermacher/mamba-gpt-7b-v1-GGUF
|
mradermacher
| 2025-08-31T13:18:29Z | 0 | 0 |
transformers
|
[
"transformers",
"gguf",
"gpt",
"llm",
"large language model",
"en",
"base_model:CobraMamba/mamba-gpt-7b-v1",
"base_model:quantized:CobraMamba/mamba-gpt-7b-v1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2025-08-31T12:26:53Z |
---
base_model: CobraMamba/mamba-gpt-7b-v1
language:
- en
library_name: transformers
license: apache-2.0
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- gpt
- llm
- large language model
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
<!-- ### quants: x-f16 Q4_K_S Q2_K Q8_0 Q6_K Q3_K_M Q3_K_S Q3_K_L Q4_K_M Q5_K_S Q5_K_M IQ4_XS -->
<!-- ### quants_skip: -->
<!-- ### skip_mmproj: -->
static quants of https://huggingface.co/CobraMamba/mamba-gpt-7b-v1
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#mamba-gpt-7b-v1-GGUF).***
weighted/imatrix quants are available at https://huggingface.co/mradermacher/mamba-gpt-7b-v1-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/mamba-gpt-7b-v1-GGUF/resolve/main/mamba-gpt-7b-v1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
|
Beijuka/multilingual-roberta-base-lumasaba-ner-v1
|
Beijuka
| 2025-08-31T13:18:04Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"roberta",
"token-classification",
"named-entity-recognition",
"lumasaba",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:FacebookAI/roberta-base",
"base_model:finetune:FacebookAI/roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T13:08:37Z |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- named-entity-recognition
- lumasaba
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-roberta-base-lumasaba-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9440993788819876
- name: Recall
type: recall
value: 0.9357045143638851
- name: F1
type: f1
value: 0.9398832016489179
- name: Accuracy
type: accuracy
value: 0.9348958333333334
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-roberta-base-lumasaba-ner-v1
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3357
- Precision: 0.9441
- Recall: 0.9357
- F1: 0.9399
- Accuracy: 0.9349
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 398 | 0.7383 | 0.7988 | 0.7533 | 0.7754 | 0.7568 |
| 1.1862 | 2.0 | 796 | 0.4723 | 0.8857 | 0.8457 | 0.8653 | 0.8432 |
| 0.4873 | 3.0 | 1194 | 0.4485 | 0.9198 | 0.8687 | 0.8935 | 0.8807 |
| 0.2817 | 4.0 | 1592 | 0.5033 | 0.8993 | 0.9187 | 0.9089 | 0.8989 |
| 0.2817 | 5.0 | 1990 | 0.3005 | 0.9416 | 0.9409 | 0.9413 | 0.9352 |
| 0.1806 | 6.0 | 2388 | 0.4968 | 0.9479 | 0.9097 | 0.9284 | 0.9220 |
| 0.1095 | 7.0 | 2786 | 0.5409 | 0.9118 | 0.9409 | 0.9261 | 0.9246 |
| 0.062 | 8.0 | 3184 | 0.5375 | 0.9282 | 0.9340 | 0.9311 | 0.9212 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
yaelahnal/blockassist-bc-mute_clawed_crab_1756645911
|
yaelahnal
| 2025-08-31T13:17:00Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"mute clawed crab",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:12:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- mute clawed crab
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
akirafudo/blockassist-bc-keen_fast_giraffe_1756646149
|
akirafudo
| 2025-08-31T13:16:12Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"keen fast giraffe",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:16:07Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- keen fast giraffe
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
2hpsatt/blockassist-bc-huge_deft_eagle_1756646103
|
2hpsatt
| 2025-08-31T13:15:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"huge deft eagle",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:15:47Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- huge deft eagle
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Loder-S/blockassist-bc-sprightly_knobby_tiger_1756644340
|
Loder-S
| 2025-08-31T13:14:36Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"sprightly knobby tiger",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:14:33Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- sprightly knobby tiger
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AssanaliAidarkhan/qwen-medical-rag
|
AssanaliAidarkhan
| 2025-08-31T13:14:06Z | 0 | 0 | null |
[
"license:apache-2.0",
"region:us"
] | null | 2025-08-31T11:08:03Z |
---
title: Qwen Medical RAG System
emoji: 🏥
colorFrom: green
colorTo: blue
sdk: gradio
app_file: app.py
pinned: false
license: apache-2.0
---
# Qwen Medical RAG System
Medical advisory system using Qwen 1.5 0.5B for ACL injury analysis.
## Knowledge Base Categories
This system provides advice for:
- `partial_acl_injury` - Partial ACL damage with some intact fibers
- `partial_acl_fiber_disruption` - Partial fiber disruption requiring evaluation
- `complete_acl_tear` - Complete ACL rupture requiring surgery
- `acl_sprain` - ACL strain with conservative treatment
## Files
- `medical_knowledge.json`: ACL medical knowledge base (4 categories)
- `rag_config.json`: System configuration
## Disclaimer
For research and educational purposes only. Not for clinical diagnosis.
Always consult qualified medical professionals.
|
m-a-p/TreePO-Qwen2.5-7B_fixed-div
|
m-a-p
| 2025-08-31T13:14:00Z | 10 | 0 | null |
[
"safetensors",
"qwen2",
"dataset:m-a-p/TreePO_data",
"arxiv:2508.17445",
"base_model:Qwen/Qwen2.5-7B",
"base_model:finetune:Qwen/Qwen2.5-7B",
"region:us"
] | null | 2025-08-26T11:56:23Z |
---
datasets:
- m-a-p/TreePO_data
base_model:
- Qwen/Qwen2.5-7B
---
We release the resources for the paper [TreePO](arxiv.org/abs/2508.17445):
- Checkpoint with average weighted subgroup advantages + more diverse intial divergence ([the final one](https://huggingface.co/m-a-p/TreePO-Qwen2.5-7B)).
- Checkpoint with average weighted subgroup advantages + [fixed divergence](https://huggingface.co/m-a-p/TreePO-Qwen2.5-7B_fixed-div). **← You are here.**
- The [training dataset](https://huggingface.co/datasets/m-a-p/TreePO_data) consisted of deepscaler and simplerl math reasoning.
More links:
- [Huggingface Paper](https://huggingface.co/papers/2508.17445)
- [Project Page](https://m-a-p.ai/TreePO)
- [X/Twitter Thread](https://x.com/yizhilll/status/1960616873180954854)
- [Github Repo](https://github.com/multimodal-art-projection/TreePO)
If you find this work useful, please consider citing the paper:
```bibtex
@misc{li2025treepo, title={TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling}, author={Yizhi Li and Qingshui Gu and Zhoufutu Wen and Ziniu Li and Tianshun Xing and Shuyue Guo and Tianyu Zheng and Xin Zhou and Xingwei Qu and Wangchunshu Zhou and Zheng Zhang and Wei Shen and Qian Liu and Chenghua Lin and Jian Yang and Ge Zhang and Wenhao Huang}, year={2025}, eprint={2508.17445}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.17445}, howpublished = {\url{https://m-a-p.ai/TreePO}} }
```
|
Xtoun/blockassist-bc-bristly_scaly_koala_1756645088
|
Xtoun
| 2025-08-31T13:13:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"bristly scaly koala",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:13:40Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- bristly scaly koala
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
m-a-p/TreePO-Qwen2.5-7B
|
m-a-p
| 2025-08-31T13:13:40Z | 6 | 2 | null |
[
"safetensors",
"qwen2",
"dataset:m-a-p/TreePO_data",
"arxiv:2508.17445",
"base_model:Qwen/Qwen2.5-7B",
"base_model:finetune:Qwen/Qwen2.5-7B",
"region:us"
] | null | 2025-08-26T11:23:00Z |
---
datasets:
- m-a-p/TreePO_data
base_model:
- Qwen/Qwen2.5-7B
---
We release the resources for the paper [TreePO](arxiv.org/abs/2508.17445):
- Checkpoint with average weighted subgroup advantages + more diverse intial divergence ([the final one](https://huggingface.co/m-a-p/TreePO-Qwen2.5-7B)). **← You are here.**
- Checkpoint with average weighted subgroup advantages + [fixed divergence](https://huggingface.co/m-a-p/TreePO-Qwen2.5-7B_fixed-div).
- The [training dataset](https://huggingface.co/datasets/m-a-p/TreePO_data) consisted of deepscaler and simplerl math reasoning.
More links:
- [Huggingface Paper](https://huggingface.co/papers/2508.17445)
- [Project Page](https://m-a-p.ai/TreePO)
- [X/Twitter Thread](https://x.com/yizhilll/status/1960616873180954854)
- [Github Repo](https://github.com/multimodal-art-projection/TreePO)
If you find this work useful, please consider citing the paper:
```bibtex
@misc{li2025treepo, title={TreePO: Bridging the Gap of Policy Optimization and Efficacy and Inference Efficiency with Heuristic Tree-based Modeling}, author={Yizhi Li and Qingshui Gu and Zhoufutu Wen and Ziniu Li and Tianshun Xing and Shuyue Guo and Tianyu Zheng and Xin Zhou and Xingwei Qu and Wangchunshu Zhou and Zheng Zhang and Wei Shen and Qian Liu and Chenghua Lin and Jian Yang and Ge Zhang and Wenhao Huang}, year={2025}, eprint={2508.17445}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2508.17445}, howpublished = {\url{https://m-a-p.ai/TreePO}} }
```
|
nick1880/blockassist-bc-barky_powerful_falcon_1756645890
|
nick1880
| 2025-08-31T13:12:16Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"barky powerful falcon",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:12:08Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- barky powerful falcon
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Anatolejdm/split_2x2_ViT_SO400M_14_SigLIP_384
|
Anatolejdm
| 2025-08-31T13:11:29Z | 0 | 0 |
peft
|
[
"peft",
"llava_mistral",
"arxiv:1910.09700",
"base_model:teknium/OpenHermes-2.5-Mistral-7B",
"base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B",
"region:us"
] | null | 2025-08-31T13:08:08Z |
---
library_name: peft
base_model: teknium/OpenHermes-2.5-Mistral-7B
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
### Framework versions
- PEFT 0.6.1
## Training procedure
### Framework versions
- PEFT 0.6.1
## Training procedure
### Framework versions
- PEFT 0.6.1
## Training procedure
### Framework versions
- PEFT 0.6.1
|
jecyr/blockassist-bc-diving_huge_rat_1756645787
|
jecyr
| 2025-08-31T13:10:57Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"diving huge rat",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:10:49Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- diving huge rat
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
Beijuka/deberta-v3-base-hausa-ner-v1
|
Beijuka
| 2025-08-31T13:09:00Z | 0 | 0 |
transformers
|
[
"transformers",
"safetensors",
"deberta-v2",
"token-classification",
"named-entity-recognition",
"hausa",
"african-language",
"pii-detection",
"generated_from_trainer",
"dataset:Beijuka/Multilingual_PII_NER_dataset",
"base_model:microsoft/deberta-v3-base",
"base_model:finetune:microsoft/deberta-v3-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] |
token-classification
| 2025-08-31T12:51:48Z |
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- named-entity-recognition
- hausa
- african-language
- pii-detection
- token-classification
- generated_from_trainer
datasets:
- Beijuka/Multilingual_PII_NER_dataset
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: multilingual-microsoft/deberta-v3-base-hausa-ner-v1
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Beijuka/Multilingual_PII_NER_dataset
type: Beijuka/Multilingual_PII_NER_dataset
args: 'split: train+validation+test'
metrics:
- name: Precision
type: precision
value: 0.9414141414141414
- name: Recall
type: recall
value: 0.9395161290322581
- name: F1
type: f1
value: 0.9404641775983855
- name: Accuracy
type: accuracy
value: 0.9834580791244733
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multilingual-microsoft/deberta-v3-base-hausa-ner-v1
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the Beijuka/Multilingual_PII_NER_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0729
- Precision: 0.9414
- Recall: 0.9395
- F1: 0.9405
- Accuracy: 0.9835
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 301 | 0.0915 | 0.8913 | 0.9010 | 0.8961 | 0.9739 |
| 0.16 | 2.0 | 602 | 0.0919 | 0.8879 | 0.9251 | 0.9061 | 0.9755 |
| 0.16 | 3.0 | 903 | 0.0760 | 0.8694 | 0.9429 | 0.9047 | 0.9758 |
| 0.0638 | 4.0 | 1204 | 0.0954 | 0.8875 | 0.9365 | 0.9113 | 0.9782 |
| 0.0475 | 5.0 | 1505 | 0.0770 | 0.9158 | 0.9257 | 0.9207 | 0.9784 |
| 0.0475 | 6.0 | 1806 | 0.0911 | 0.9120 | 0.9283 | 0.9201 | 0.9795 |
| 0.0355 | 7.0 | 2107 | 0.0878 | 0.8870 | 0.9371 | 0.9114 | 0.9771 |
| 0.0355 | 8.0 | 2408 | 0.1145 | 0.8882 | 0.9435 | 0.9150 | 0.9788 |
### Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
|
zaychez/blockassist-bc-large_tricky_mandrill_1756645695
|
zaychez
| 2025-08-31T13:08:58Z | 0 | 0 | null |
[
"gensyn",
"blockassist",
"gensyn-blockassist",
"minecraft",
"large tricky mandrill",
"arxiv:2504.07091",
"region:us"
] | null | 2025-08-31T13:08:53Z |
---
tags:
- gensyn
- blockassist
- gensyn-blockassist
- minecraft
- large tricky mandrill
---
# Gensyn BlockAssist
Gensyn's BlockAssist is a distributed extension of the paper [AssistanceZero: Scalably Solving Assistance Games](https://arxiv.org/abs/2504.07091).
|
AleksanderSav/test_model_2
|
AleksanderSav
| 2025-08-31T13:06:44Z | 4 | 0 |
transformers
|
[
"transformers",
"gguf",
"qwen3",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"base_model:quantized:unsloth/Qwen3-8B-unsloth-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | null | 2025-07-28T18:21:29Z |
---
base_model: unsloth/Qwen3-8B-unsloth-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3
- gguf
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** AleksanderSav
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Qwen3-8B-unsloth-bnb-4bit
This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
Subsets and Splits
Filtered Qwen2.5 Distill Models
Identifies specific configurations of models by filtering cards that contain 'distill', 'qwen2.5', '7b' while excluding certain base models and incorrect model ID patterns, uncovering unique model variants.
Filtered Model Cards Count
Finds the count of entries with specific card details that include 'distill', 'qwen2.5', '7b' but exclude certain base models, revealing valuable insights about the dataset's content distribution.
Filtered Distill Qwen 7B Models
Filters for specific card entries containing 'distill', 'qwen', and '7b', excluding certain strings and patterns, to identify relevant model configurations.
Filtered Qwen-7b Model Cards
The query performs a detailed filtering based on specific keywords and excludes certain entries, which could be useful for identifying a specific subset of cards but does not provide deeper insights or trends.
Filtered Qwen 7B Model Cards
The query filters for specific terms related to "distilled" or "distill", "qwen", and "7b" in the 'card' column but excludes certain base models, providing a limited set of entries for further inspection.
Qwen 7B Distilled Models
The query provides a basic filtering of records to find specific card names that include keywords related to distilled Qwen 7b models, excluding a particular base model, which gives limited insight but helps in focusing on relevant entries.
Qwen 7B Distilled Model Cards
The query filters data based on specific keywords in the modelId and card fields, providing limited insight primarily useful for locating specific entries rather than revealing broad patterns or trends.
Qwen 7B Distilled Models
Finds all entries containing the terms 'distilled', 'qwen', and '7b' in a case-insensitive manner, providing a filtered set of records but without deeper analysis.
Distilled Qwen 7B Models
The query filters for specific model IDs containing 'distilled', 'qwen', and '7b', providing a basic retrieval of relevant entries but without deeper analysis or insight.
Filtered Model Cards with Distill Qwen2.
Filters and retrieves records containing specific keywords in the card description while excluding certain phrases, providing a basic count of relevant entries.
Filtered Model Cards with Distill Qwen 7
The query filters specific variations of card descriptions containing 'distill', 'qwen', and '7b' while excluding a particular base model, providing limited but specific data retrieval.
Distill Qwen 7B Model Cards
The query filters and retrieves rows where the 'card' column contains specific keywords ('distill', 'qwen', and '7b'), providing a basic filter result that can help in identifying specific entries.