modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-05 00:41:53
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-05 00:41:31
card
stringlengths
11
1.01M
Hate-speech-CNERG/Rationale_predictor
Hate-speech-CNERG
2023-07-26T23:39:18Z
41
0
transformers
[ "transformers", "pytorch", "bert", "social science", "hatespeech", "rationale_predictions", "en", "dataset:hatexplain", "arxiv:2211.17046", "arxiv:1910.09700", "license:bigscience-openrail-m", "endpoints_compatible", "region:us" ]
null
2023-07-26T21:12:12Z
--- license: bigscience-openrail-m datasets: - hatexplain language: - en metrics: - f1 - accuracy tags: - social science - hatespeech - rationale_predictions --- # Model Card for Rationale Predictor <!-- Provide a quick summary of what the model is/does. --> This model provides the class labels either toxic or not toxic as well as the rationales predicted which indicates the explanation of why something as toxic. This model is part of the ECAI paper - "Rationale-Guided Few-Shot Classification to Detect Abusive Language " ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Punyajoy Saha - **Model type:** bert-base-uncased - **Language(s) (NLP):** english - **Finetuned from model [optional]:** See the [BERT base uncased model](https://huggingface.co/bert-base-uncased) for more information about the BERT base model. ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/punyajoy/RGFS_ECAI - **Paper [optional]:** https://arxiv.org/abs/2211.17046 ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> This model can be directly used to predict some post as toxic/non-toxic and predicting the rationales behind it ## How to Get Started with the Model Use the code below to get started with the model. Please use the **Model_Rational_Label** class inside [models.py](models.py) to load the models. The default prediction in this hosted inference API may be wrong due to the use of different class initialisations. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification ### from models.py from models import * tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two") model = Model_Rational_Label.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two") inputs = tokenizer("He is a great guy", return_tensors="pt") prediction_logits, _ = model(input_ids=inputs['input_ids'],attention_mask=inputs['attention_mask']) ``` [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
asenella/ms_JNFDcca_beta_25_scale_False_seed_1
asenella
2023-07-26T23:30:00Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T23:29:58Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_JNFDcca_beta_10_scale_True_seed_2
asenella
2023-07-26T23:29:23Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T23:29:20Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
ogwerset/eeee
ogwerset
2023-07-26T23:26:48Z
0
0
null
[ "region:us" ]
null
2023-07-26T23:26:40Z
git lfs install git clone https://huggingface.co/lj1995/VoiceConversionWebUI
asenella/ms_JNFDcca_beta_5_scale_False_seed_1
asenella
2023-07-26T23:21:49Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T23:21:46Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
UWECProgrammer/setfit-model-one
UWECProgrammer
2023-07-26T23:18:47Z
4
0
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
text-classification
2023-07-26T23:12:11Z
--- license: apache-2.0 tags: - setfit - sentence-transformers - text-classification pipeline_tag: text-classification --- # UWECProgrammer/setfit-model-one This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("UWECProgrammer/setfit-model-one") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
asenella/ms_JNFDcca_beta_5_scale_False_seed_0
asenella
2023-07-26T23:09:19Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T23:09:17Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
Za88yes/Liza
Za88yes
2023-07-26T23:02:51Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-07-26T23:00:41Z
--- license: creativeml-openrail-m ---
lukelarue/ppo-LunarLander-v2
lukelarue
2023-07-26T22:57:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T22:57:25Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 256.53 +/- 16.23 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
MarkChen1214/ppo-LunarLander-v2
MarkChen1214
2023-07-26T22:46:10Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T22:45:49Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 254.12 +/- 16.40 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
giocs2017/whisper-small-dv
giocs2017
2023-07-26T22:44:06Z
85
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dv", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-26T18:32:00Z
--- language: - dv license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Dv - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13 type: mozilla-foundation/common_voice_13_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 19.90437677338636 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small Dv - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset. It achieves the following results on the evaluation set: - Loss: 0.3112 - Wer Ortho: 37.2107 - Wer: 19.9044 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.1298 | 1.79 | 500 | 0.3112 | 37.2107 | 19.9044 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
NasimB/guten-no-merge-rarity-6p5k
NasimB
2023-07-26T22:40:56Z
159
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:generator", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T10:05:07Z
--- license: mit tags: - generated_from_trainer datasets: - generator model-index: - name: guten-no-merge-rarity-6p5k results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # guten-no-merge-rarity-6p5k This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 4.0789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.22 | 0.58 | 500 | 5.1030 | | 4.795 | 1.16 | 1000 | 4.6580 | | 4.4099 | 1.74 | 1500 | 4.3859 | | 4.1138 | 2.33 | 2000 | 4.2426 | | 3.9581 | 2.91 | 2500 | 4.1256 | | 3.7289 | 3.49 | 3000 | 4.0779 | | 3.6364 | 4.07 | 3500 | 4.0303 | | 3.4294 | 4.65 | 4000 | 4.0034 | | 3.3391 | 5.23 | 4500 | 3.9985 | | 3.2326 | 5.81 | 5000 | 3.9943 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.11.0+cu113 - Datasets 2.13.0 - Tokenizers 0.13.3
asenella/ms_JNFDcca_beta_10_scale_True_seed_0
asenella
2023-07-26T22:29:22Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T22:29:20Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_JNFDcca_beta_5_scale_True_seed_0
asenella
2023-07-26T22:23:29Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T22:23:25Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
ChairWorm/dqn-SpaceInvadersNoFrameskip-v4
ChairWorm
2023-07-26T22:05:57Z
0
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T22:05:29Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 329.00 +/- 157.97 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ChairWorm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga ChairWorm -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga ChairWorm ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 100000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
Korventenn/fr_en-t5-small
Korventenn
2023-07-26T22:04:21Z
105
0
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "fr", "en", "dataset:giga_fren", "dataset:opus100", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-08T16:47:50Z
--- license: apache-2.0 datasets: - giga_fren - opus100 language: - fr - en --- # Model Card for fr_en-t5-small <!-- Provide a quick summary of what the model is/does. --> This model has been optimized for French and English language processing while minimizing overall size. To achieve this, I only retained relevant parameters and tokens specific to these two languages, ensuring that performance remains as good as the original mt5. ## Model Details I used a method outlined in a [blog post](https://towardsdatascience.com/how-to-adapt-a-multilingual-t5-model-for-a-single-language-b9f94f3d9c90) by David Dale to downsize the multilingual T5 model for French and English use cases specifically. By utilizing the giga_fren dataset, I was able to successfully reduce the total number of tokens and decrease both the model and tokenizer sizes by 67% and 80% respectively. ### Model Description - **Developed by:** Korventenn - **Model type:** mt5 - **Language(s) (NLP):** French and English - **License:** Apache 2.0 - **Generated from model:** mt5-small ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://colab.research.google.com/drive/1ag0u1WKdvuBeYTz1TrPAGucumiaYmqeW?usp=sharing ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> You can use the raw model for any sequence to sequence task that is focused on either french, english or both. ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Korventenn/fr_en-t5-small") model = AutoModelForSeq2SeqLM.from_pretrained("Korventenn/fr_en-t5-small") ``` ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [giga_fren](https://huggingface.co/datasets/giga_fren) [opus100](https://huggingface.co/datasets/opus100)
annazhong/vit-base-patch16-224-finetuned-feature-maps-v3
annazhong
2023-07-26T22:01:12Z
168
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224", "base_model:finetune:google/vit-base-patch16-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-25T21:33:03Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-finetuned-feature-maps-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-feature-maps-v3 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0989 - Accuracy: 0.3810 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 150 - eval_batch_size: 150 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 600 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.0989 | 0.3810 | | No log | 2.0 | 2 | 1.1292 | 0.3651 | | No log | 3.0 | 3 | 1.0972 | 0.3810 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
osuna/roberta-large-bne-sqac-finetuned-squad
osuna
2023-07-26T21:36:22Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:corpusasegurador", "base_model:PlanTL-GOB-ES/roberta-large-bne-sqac", "base_model:finetune:PlanTL-GOB-ES/roberta-large-bne-sqac", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-07-12T09:15:10Z
--- license: apache-2.0 base_model: PlanTL-GOB-ES/roberta-large-bne-sqac tags: - generated_from_trainer datasets: - corpusasegurador model-index: - name: roberta-large-bne-sqac-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-bne-sqac-finetuned-squad This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-large-bne-sqac](https://huggingface.co/PlanTL-GOB-ES/roberta-large-bne-sqac) on the corpusasegurador dataset. It achieves the following results on the evaluation set: - Loss: 2.3469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 3.6907 | | No log | 2.0 | 6 | 2.7403 | | No log | 3.0 | 9 | 2.3469 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
teilomillet/a2c-PandaReachDense-v2
teilomillet
2023-07-26T21:36:00Z
4
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T21:33:09Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v2 type: PandaReachDense-v2 metrics: - type: mean_reward value: -1.30 +/- 0.23 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
alka3tras/custom_whisper_cz_finetuned1
alka3tras
2023-07-26T21:28:15Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-26T21:25:30Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0
nghugface/model-storage
nghugface
2023-07-26T20:59:34Z
0
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-07-26T16:53:45Z
--- library_name: transformers ---
s3nh/LLaMa-Open-Instruct-Uncensored-70K-7B-Merged-GGML
s3nh
2023-07-26T20:52:05Z
0
4
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-26T20:39:51Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/xzuyn/LLaMa-Open-Instruct-Uncensored-70K-7B-Merged. ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card
alarazin/lora-trained-xl
alarazin
2023-07-26T20:45:01Z
0
1
diffusers
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-0.9", "base_model:adapter:stabilityai/stable-diffusion-xl-base-0.9", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-26T18:41:12Z
--- license: creativeml-openrail-m base_model: stabilityai/stable-diffusion-xl-base-0.9 instance_prompt: a photo of sks dog tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - alarazin/lora-trained-xl These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-0.9. The weights were trained on a photo of sks dog using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: None. ## License [SDXL 0.9 Research License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/LICENSE.md)
gngpostalsrvc/BERiT
gngpostalsrvc
2023-07-26T20:42:30Z
193
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "arxiv:1905.11901", "arxiv:2110.01938", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-03-03T01:09:07Z
--- license: mit tags: - generated_from_trainer model-index: - name: BERiT results: [] --- # BERiT This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the [Tanakh dataset](https://huggingface.co/datasets/gngpostalsrvc/Tanakh). It achieves the following results on the evaluation set: - Loss: 3.9931 ## Model description BERiT is a masked-language model for Biblical Hebrew, a low-resource ancient language preserved primarily in the text of the Hebrew Bible. Building on the work of [Sennrich and Zhang (2019)](https://arxiv.org/abs/1905.11901) and [Wdowiak (2021)](https://arxiv.org/abs/2110.01938) on low-resource machine translation, it employs a modified version of the encoder block from Wdowiak’s Seq2Seq model. Accordingly, BERiT is much smaller than models designed for modern languages like English. It features a single attention block with four attention heads, smaller embedding and feedforward dimensions (256 and 1024), a smaller max input length (128), and an aggressive dropout rate (.5) at both the attention and feedforward layers. The BERiT tokenizer performs character level byte-pair encoding using a 2000 word base vocabulary, which has been enriched with common grammatical morphemes. ## How to Use ``` from transformers import RobertaModel, RobertaTokenizerFast BERiT_tokenizer = RobertaTokenizerFast.from_pretrained('gngpostalsrvc/BERiT') BERiT = RobertaModel.from_pretrained('gngpostalsrvc/BERiT') ``` ## Training procedure BERiT was trained on the Tanakh dataset for 150 epochs using a Tesla T4 GPU. Further training did not yield significant improvements in performance. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 150 ### Framework versions - Transformers 4.24.7 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
teilomillet/a2c-AntBulletEnv-v0
teilomillet
2023-07-26T20:41:24Z
0
0
stable-baselines3
[ "stable-baselines3", "AntBulletEnv-v0", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T20:40:15Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1210.59 +/- 73.36 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Emperor-WS/ppo-PyramidsRND
Emperor-WS
2023-07-26T20:33:28Z
2
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-26T20:33:25Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Emperor-WS/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Gikubu/Gikubu_bert_base
Gikubu
2023-07-26T20:30:55Z
104
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-26T17:57:27Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer model-index: - name: Gikubu_bert_base results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Gikubu_bert_base This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6490 - Rmse: 0.7145 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.6478 | 1.0 | 1000 | 0.7235 | 0.6742 | | 0.5231 | 2.0 | 2000 | 0.6490 | 0.7145 | | 0.3654 | 3.0 | 3000 | 0.9078 | 0.6434 | | 0.2606 | 4.0 | 4000 | 1.2709 | 0.6738 | | 0.1703 | 5.0 | 5000 | 1.6260 | 0.6595 | | 0.0859 | 6.0 | 6000 | 1.9016 | 0.6592 | | 0.0593 | 7.0 | 7000 | 1.9951 | 0.6656 | | 0.0412 | 8.0 | 8000 | 2.1283 | 0.6771 | | 0.0357 | 9.0 | 9000 | 2.1523 | 0.6819 | | 0.028 | 10.0 | 10000 | 2.1537 | 0.6786 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
milktruck/ppo-LunarLander-v2
milktruck
2023-07-26T20:27:35Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T19:54:33Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 279.56 +/- 17.99 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
bk6000/ppo-Pyramid
bk6000
2023-07-26T20:27:08Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-26T20:27:06Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: bk6000/ppo-Pyramid 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
MatteoColavita/q-Taxi-V3
MatteoColavita
2023-07-26T20:23:03Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T20:23:01Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-V3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="MatteoColavita/q-Taxi-V3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MatteoColavita/q-FrozenLake-v1-4x4-noSlippery
MatteoColavita
2023-07-26T20:18:08Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T20:18:06Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="MatteoColavita/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Emperor-WS/ppo-SnowballTarget
Emperor-WS
2023-07-26T20:15:24Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-26T20:15:18Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: Emperor-WS/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Eitanli/flan-t5-base-ingredient-checkpoint
Eitanli
2023-07-26T20:13:15Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-26T12:52:45Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: flan-t5-base-ingredient-checkpoint results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-ingredient-checkpoint This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 42.8553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 40.0 | 0.03 | 1 | 42.8553 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
daverbj/falcon7bSolr
daverbj
2023-07-26T20:09:56Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T20:09:03Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0.dev0
digitaljungle/lander1
digitaljungle
2023-07-26T20:08:28Z
1
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T20:08:09Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 231.27 +/- 76.18 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
sd-concepts-library/seismic-image
sd-concepts-library
2023-07-26T20:07:06Z
0
0
null
[ "base_model:runwayml/stable-diffusion-v1-5", "base_model:finetune:runwayml/stable-diffusion-v1-5", "license:mit", "region:us" ]
null
2023-07-26T20:07:04Z
--- license: mit base_model: runwayml/stable-diffusion-v1-5 --- ### seismic-image on Stable Diffusion This is the `<seismic-image>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<seismic-image> 0](https://huggingface.co/sd-concepts-library/seismic-image/resolve/main/concept_images/signal)
asenella/JNFDcca_beta_10_scale_False_seed_2
asenella
2023-07-26T19:58:09Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T19:57:55Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
aman38649/distilbert-base-uncased-finetuned-imdb
aman38649
2023-07-26T19:56:25Z
79
0
transformers
[ "transformers", "tf", "distilbert", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-07-26T19:52:36Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: aman38649/distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aman38649/distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.8608 - Validation Loss: 2.5995 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -688, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.8608 | 2.5995 | 0 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
karinthommen/spontaneous-whisper-v4-2
karinthommen
2023-07-26T19:56:24Z
4
0
transformers
[ "transformers", "pytorch", "tensorboard", "whisper", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-07-26T05:32:06Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: spontaneous-whisper-v4-2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spontaneous-whisper-v4-2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
shiven23/llama2_finetuned_chatbot
shiven23
2023-07-26T19:53:31Z
0
0
null
[ "tensorboard", "generated_from_trainer", "region:us" ]
null
2023-07-26T19:44:48Z
--- tags: - generated_from_trainer model-index: - name: llama2_finetuned_chatbot results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2_finetuned_chatbot This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
asenella/JNFDcca_beta_5_scale_False_seed_1
asenella
2023-07-26T19:47:08Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-26T19:46:55Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
bk6000/ppo-SnowballTarget
bk6000
2023-07-26T19:45:47Z
5
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2023-07-26T19:45:44Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: bk6000/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Krainez/unit1-hw
Krainez
2023-07-26T19:41:38Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T19:35:41Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 278.33 +/- 21.42 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Tap-M/Luna-AI-Llama2-Uncensored-FP16
Tap-M
2023-07-26T19:31:37Z
1,564
10
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:cc-by-sa-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-19T18:16:03Z
--- license: cc-by-sa-4.0 --- <div style="width: 800px; margin: auto;"> <h2>Model Description</h2> <p>“Luna AI Llama2 Uncensored” is a Llama2 based Chat model <br />fine-tuned on over 40,000 long form chat discussions <br /> This model was fine-tuned by Tap, the creator of Luna AI. <br /> <h2>Model Training</h2> <p>The fine-tuning process was performed on an 8x a100 80GB machine. <br />The model was trained on synthetic outputs which include multiple rounds of chats between Human & AI. </p> <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ">4bit GPTQ Version provided by @TheBloke - for GPU inference</a><br /> <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGML">GGML Version provided by @TheBloke - For CPU inference</a> <h2>Prompt Format</h2> <p>The model follows the Vicuna 1.1/ OpenChat format:</p> ``` USER: I have difficulties in making friends, and I really need someone to talk to. Would you be my friend? ASSISTANT: Of course! Friends are always here for each other. What do you like to do? ``` <h2>Benchmark Results</h2> |||||| |---:|---:|---:|---:|---:| |Task|Version| Metric |Value |Stderr| |arc_challenge|0|acc_norm|0.5512|0.0146| |hellaswag|0|||| |mmlu|1|acc_norm|0.46521|0.036| |truthfulqa_mc|1|mc2|0.4716|0.0155| |Average|-|-|0.5114|0.0150| </div>
StKirill/ppo-Huggy
StKirill
2023-07-26T19:22:14Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-07-26T19:22:10Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: StKirill/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
dimonyara/redpj7B-lora-int8-650
dimonyara
2023-07-26T19:13:31Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T19:13:29Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
dariowsz/Reinforce-Pixelcopter-PLE-v0
dariowsz
2023-07-26T19:12:33Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T19:12:27Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-PLE-v0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 38.30 +/- 28.26 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
zarakiquemparte/lunaboros-7b
zarakiquemparte
2023-07-26T19:02:34Z
3
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T23:01:03Z
Lunaboros This model uses Luna-Ai-LLama2 as a base and merged with Airoboros L2 7B GPT4 1.4.1 Peft Base Model https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored-FP16 Pefts Airoboros L2 7B GPT4 1.4.1: https://huggingface.co/jondurbin/airoboros-l2-7b-gpt4-1.4.1-peft
digiplay/YabaL_Mix_v3
digiplay
2023-07-26T18:51:31Z
0
0
null
[ "license:other", "region:us" ]
null
2023-07-26T18:47:45Z
--- license: other --- Model info : https://civitai.com/models/28648?modelVersionId=102210
aman38649/bert-finetuned-ner
aman38649
2023-07-26T18:49:03Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-07-26T18:35:46Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: aman38649/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # aman38649/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0262 - Validation Loss: 0.0535 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.1783 | 0.0627 | 0 | | 0.0461 | 0.0532 | 1 | | 0.0262 | 0.0535 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
mit-han-lab/vicuna-33b-v1.3-4bit-g128-awq
mit-han-lab
2023-07-26T18:39:22Z
5
0
transformers
[ "transformers", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "region:us" ]
text-generation
2023-07-26T01:26:50Z
--- inference: false --- # vicuna-33b-v1.3-4bit-g128-awq Vicuna is a chat assistant trained by [LMSYS](https://lmsys.org/). This is a 4-bit AWQ quantized Vicuna v1.3 model. [AWQ](https://github.com/mit-han-lab/llm-awq) is an **efficient and accurate** low-bit weight quantization (INT3/4) for LLMs, supporting instruction-tuned models and multi-modal LMs. ## Reference If you find AWQ useful or relevant to your research, please kindly cite the paper: ```bibtex @article{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023} } ``` ## Vicuna Model Card ### Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). #### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/
mit-han-lab/vicuna-13b-v1.3-4bit-g128-awq
mit-han-lab
2023-07-26T18:37:48Z
3
0
transformers
[ "transformers", "llama", "text-generation", "arxiv:2302.13971", "arxiv:2306.05685", "autotrain_compatible", "region:us" ]
text-generation
2023-07-26T01:14:53Z
--- inference: false --- # vicuna-13b-v1.3-4bit-g128-awq Vicuna is a chat assistant trained by [LMSYS](https://lmsys.org/). This is a 4-bit AWQ quantized Vicuna v1.3 model. [AWQ](https://github.com/mit-han-lab/llm-awq) is an **efficient and accurate** low-bit weight quantization (INT3/4) for LLMs, supporting instruction-tuned models and multi-modal LMs. ## Reference If you find AWQ useful or relevant to your research, please kindly cite the paper: ```bibtex @article{lin2023awq, title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration}, author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song}, journal={arXiv}, year={2023} } ``` ## Vicuna Model Card ### Model Details Vicuna is a chat assistant trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture. - **License:** Non-commercial license - **Finetuned from model:** [LLaMA](https://arxiv.org/abs/2302.13971). #### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/
s3nh/GOAT-7B-Community-GPTQ
s3nh
2023-07-26T18:37:17Z
7
1
transformers
[ "transformers", "llama", "text-generation", "text-generation-inference", "en", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T18:34:23Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GPTQ Format model files for [This project](https://huggingface.co/GOAT-AI/GOAT-7B-Community/edit/main/README.md). # Original model card # Model description - **Base Architecture:** LLaMA 2 7B flavour - **Dataset size:** 72K multi-turn dialogues - **License:** llama2 - **Context window length:** 4096 tokens ### Learn more - **Blog:** https://www.blog.goat.ai/goat-7b-community-tops-among-7b-models/ - **Paper:** Coming soon - **Demo:** https://3f3fb57083197123c8.gradio.live/ ## Uses The main purpose of GOAT-7B-Community is to facilitate research on large language models and chatbots. It is specifically designed for researchers and hobbyists working in the fields of natural language processing, machine learning, and artificial intelligence. ## Usage Usage can be either self-hosted via `transformers` or used with Spaces ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "GOAT-7B-Community model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 ) ``` ## Training dataset Training dataset was collected from users conversations with GoatChat app and OpenAssistant. We will not release the dataset. ## Evaluation GOAT-7B-Community model is evaluated against common metrics for evaluating language models, including MMLU and BigBench Hard. We still continue to evaluate all our models and will share details soon. - **MMLU:** 49.31 - **BBH:** 35.7 ## License GOAT-7B-Community model is based on [Meta's LLaMA-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), and using own datasets. GOAT-7B-Community model weights are available under LLAMA-2 license. Note that the GOAT-7B-Community model weights require access to the LLaMA-2 model weighs. The GOAT-7B-Community model is based on LLaMA-2 and should be used according to the LLaMA-2 license. ### Risks and Biases GOAT-7B-Community model can produce factually incorrect output and should not be relied on to deliver factually accurate information. The model was trained on various private and public datasets. Therefore, the GOAT-7B-Community model could possibly generate wrong, biased, or otherwise offensive outputs.
s3nh/GOAT-7B-Community-GGML
s3nh
2023-07-26T18:36:29Z
0
2
null
[ "text-generation-inference", "text-generation", "en", "license:cc-by-sa-4.0", "region:us" ]
text-generation
2023-07-25T06:35:56Z
--- license: cc-by-sa-4.0 language: - en tags: - text-generation-inference pipeline_tag: text-generation --- ## Original model card Buy me a coffee if you like this project ;) <a href="https://www.buymeacoffee.com/s3nh"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> #### Description GGML Format model files for [This project](https://huggingface.co/GOAT-AI/GOAT-7B-Community/edit/main/README.md). ### inference ```python import ctransformers from ctransformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file, gpu_layers=32, model_type="llama") manual_input: str = "Tell me about your last dream, please." llm(manual_input, max_new_tokens=256, temperature=0.9, top_p= 0.7) ``` # Original model card # Model description - **Base Architecture:** LLaMA 2 7B flavour - **Dataset size:** 72K multi-turn dialogues - **License:** llama2 - **Context window length:** 4096 tokens ### Learn more - **Blog:** https://www.blog.goat.ai/goat-7b-community-tops-among-7b-models/ - **Paper:** Coming soon - **Demo:** https://3f3fb57083197123c8.gradio.live/ ## Uses The main purpose of GOAT-7B-Community is to facilitate research on large language models and chatbots. It is specifically designed for researchers and hobbyists working in the fields of natural language processing, machine learning, and artificial intelligence. ## Usage Usage can be either self-hosted via `transformers` or used with Spaces ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "GOAT-7B-Community model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16 ) ``` ## Training dataset Training dataset was collected from users conversations with GoatChat app and OpenAssistant. We will not release the dataset. ## Evaluation GOAT-7B-Community model is evaluated against common metrics for evaluating language models, including MMLU and BigBench Hard. We still continue to evaluate all our models and will share details soon. - **MMLU:** 49.31 - **BBH:** 35.7 ## License GOAT-7B-Community model is based on [Meta's LLaMA-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf), and using own datasets. GOAT-7B-Community model weights are available under LLAMA-2 license. Note that the GOAT-7B-Community model weights require access to the LLaMA-2 model weighs. The GOAT-7B-Community model is based on LLaMA-2 and should be used according to the LLaMA-2 license. ### Risks and Biases GOAT-7B-Community model can produce factually incorrect output and should not be relied on to deliver factually accurate information. The model was trained on various private and public datasets. Therefore, the GOAT-7B-Community model could possibly generate wrong, biased, or otherwise offensive outputs.
Yaxin1992/llama2-13b-1800
Yaxin1992
2023-07-26T18:30:24Z
0
0
null
[ "tensorboard", "generated_from_trainer", "base_model:meta-llama/Llama-2-13b-hf", "base_model:finetune:meta-llama/Llama-2-13b-hf", "region:us" ]
null
2023-07-26T15:31:03Z
--- base_model: meta-llama/Llama-2-13b-hf tags: - generated_from_trainer model-index: - name: llama2-13b-1800 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-13b-1800 This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1800 ### Training results ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Nhat1904/git-base-pokemon
Nhat1904
2023-07-26T18:28:15Z
60
0
transformers
[ "transformers", "pytorch", "tensorboard", "git", "image-text-to-text", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-07-26T18:25:13Z
--- license: mit tags: - generated_from_trainer model-index: - name: git-base-pokemon results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # git-base-pokemon This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
LeoCordoba/beto2beto-mlsum
LeoCordoba
2023-07-26T18:22:24Z
116
1
transformers
[ "transformers", "pytorch", "safetensors", "encoder-decoder", "text2text-generation", "summarization", "spanish", "beto", "es", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
summarization
2022-03-02T23:29:04Z
--- language: es tags: - summarization - spanish - encoder-decoder - beto license: apache-2.0 datasets: - mlsum - es model-index: - name: beto2beto-mlsum results: - task: type: summarization # Required. Example: automatic-speech-recognition name: abstractive summarization # Optional. Example: Speech Recognition dataset: type: mlsum # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: mlsum-es # Required. Example: Common Voice zh-CN args: es # Optional. Example: zh-CN metrics: - name: rouge1 type: rouge1 value: 25.8639 - name: rouge2 type: rouge2 value: 8.911 - name: rougeL type: rougeL value: 21.2426 - name: rougeLsum type: rougeLsum value: 21.5859 widget: - text: | La chocotorta, el tradicional y práctico antojo dulce de los argentinos, fue elegida como el mejor postre del mundo por críticos de restaurants internacionales, a casi 40 años de su creación. El ránking Taste Atlas ubicó primero en su lista al postre insignia local de galletitas, queso crema y dulce de leche, por delante del helado de pistacho italiano y la tarta alemana de manzana. “Este postre argentino sin hornear fue influenciado por la cocina italiana y se inspiró en el famoso tiramisú italiano. Está elaborado con tres ingredientes básicos argentinos: galletas de chocolate, dulce de leche y queso crema”, explica la página web que exhorta a los turistas de todo el mundo a que prueben la chocotorta. En la votación, superó también a los waffles belgas y el zserbó húngaro. A nivel local le sigue el alfajor, con 4,2 puntos contra los 4,7 de la torta. En el texto que acompaña al listón dorado de “postre número uno", los expertos enseñan además cómo se hacen las chocotortas, paso por paso. “Las galletas se ablandan en leche y se cubren con una combinación de queso crema y dulce de leche. Las formas de la chocotorta pueden variar, mientras que las galletas se pueden remojar con leche con chocolate, café o incluso licor de café”, detallan. Por último, adjudican su creación a una “campaña de márketing” diseñada para promover las galletitas icónicas que le dan su nombre. La chocotorta, infaltable en los cumpleaños argentinos, fue creada en 1982 por una creativa de las agencias más importantes del país, Marité Mabragaña. --- ## beto2beto-mlsum This model was trained on the Spanish section of MLSum: https://paperswithcode.com/sota/abstractive-text-summarization-on-mlsum. ## Hyperparameters { "dataset_config": "es", "dataset_name": "mlsum", "do_eval": true, "do_predict": true, "do_train": true, "fp16": true, "max_target_length": 64, "num_train_epochs": 10, "per_device_eval_batch_size": 4, "per_device_train_batch_size": 4, "predict_with_generate": true, "sagemaker_container_log_level": 20, "sagemaker_program": "run_summarization.py", "seed": 7, "summary_column": "summary", "text_column": "text" } ## Usage ## Results | metric | score | | --- | ----- | | validation_loss | 2.5021677017211914 | | validation_rouge1 | 26.1256 | | validation_rouge2 | 9.2552 | | validation_rougeL | 21.4899 | | validation_rougeLsum | 21.8194 | | test_loss | 2.57672381401062 | | test_rouge1 | 25.8639 | | test_rouge2 | 8.911 | | test_rougeL | 21.2426 | | test_rougeLsum | 21.5859 |
tom-xyz/falcon7b-lora-comms_001
tom-xyz
2023-07-26T18:16:44Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-21T08:08:50Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
asenella/ms_MVTCAE_beta_25_scale_True_seed_1
asenella
2023-07-26T18:06:44Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T10:19:27Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MVTCAE_beta_25_scale_False_seed_0
asenella
2023-07-26T18:06:38Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T09:54:28Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MVTCAE_beta_25_scale_True_seed_0
asenella
2023-07-26T18:06:33Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T09:41:59Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
dev-ninja/flan-t5-base-op
dev-ninja
2023-07-26T18:01:53Z
103
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-07-26T17:26:08Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer model-index: - name: flan-t5-base-op results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-op This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
Q-bert/ChessGPT
Q-bert
2023-07-26T18:00:51Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "feature-extraction", "text-generation", "license:mit", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-19T16:54:06Z
--- license: mit pipeline_tag: text-generation ---
ChairWorm/q-Taxi-v3
ChairWorm
2023-07-26T17:57:25Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T17:14:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="ChairWorm/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
asenella/ms_MoPoE_beta_5_scale_False_seed_3
asenella
2023-07-26T17:55:59Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T09:20:53Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_5_scale_False_seed_2
asenella
2023-07-26T17:55:57Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T07:56:31Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_5_scale_False_seed_0
asenella
2023-07-26T17:55:53Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:48:12Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_5_scale_True_seed_3
asenella
2023-07-26T17:55:51Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T08:51:14Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_5_scale_True_seed_0
asenella
2023-07-26T17:55:44Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:39:53Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
DarkAirforce/ppo-PyramidsRND
DarkAirforce
2023-07-26T17:55:43Z
1
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2023-07-26T17:47:23Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: DarkAirforce/ppo-PyramidsRND 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
asenella/ms_MoPoE_beta_10_scale_False_seed_3
asenella
2023-07-26T17:55:42Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T09:25:07Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_10_scale_False_seed_2
asenella
2023-07-26T17:55:40Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T09:10:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_10_scale_False_seed_0
asenella
2023-07-26T17:55:35Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:46:07Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_10_scale_True_seed_3
asenella
2023-07-26T17:55:33Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T08:51:28Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_10_scale_True_seed_2
asenella
2023-07-26T17:55:31Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T07:23:44Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_25_scale_False_seed_1
asenella
2023-07-26T17:55:20Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:41:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_25_scale_False_seed_0
asenella
2023-07-26T17:55:18Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:45:50Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
asenella/ms_MoPoE_beta_25_scale_True_seed_0
asenella
2023-07-26T17:55:11Z
0
0
null
[ "multivae", "en", "license:apache-2.0", "region:us" ]
null
2023-07-14T06:46:22Z
--- language: en tags: - multivae license: apache-2.0 --- ### Downloading this model from the Hub This model was trained with multivae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from multivae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
quantumaikr/QuantumLM
quantumaikr
2023-07-26T17:52:39Z
1,511
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-22T13:19:17Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation --- # QuantumLM ## Model Description `QuantumLM` is a Llama2 13B model finetuned on an Wizard-Orca style Dataset ## Usage Start chatting with `QuantumLM` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("quantumaikr/QuantumLM", use_fast=False) model = AutoModelForCausalLM.from_pretrained("quantumaikr/QuantumLM", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") system_prompt = "### System:\nYou are QuantumLM, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" message = "Write me a poem please" prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` QuantumLM should be used with this prompt format: ``` ### System: This is a system prompt, please behave and help the user. ### User: Your prompt here ### Assistant The output of QuantumLM ``` ## Use and Limitations ### Intended Use These models are intended for research only, in adherence with the [CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. ### Limitations and bias Although the aforementioned dataset helps to steer the base language models into "safer" distributions of text, not all biases and toxicity can be mitigated through fine-tuning. We ask that users be mindful of such potential issues that can arise in generated responses. Do not treat model outputs as substitutes for human judgment or as sources of truth. Please use it responsibly.
quantumaikr/QuantumLM-llama-2-70b-QLoRA-fp16
quantumaikr
2023-07-26T17:51:18Z
14
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T10:43:22Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation --- # QuantumLM ## Model Description `QuantumLM` is a Llama2 70B model finetuned on an guanaco Dataset ## Usage Start chatting with `QuantumLM-70B-hf` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("quantumaikr/QuantumLM-70B-hf") model = AutoModelForCausalLM.from_pretrained("quantumaikr/QuantumLM-70B-hf", torch_dtype=torch.bfloat16, device_map="auto") system_prompt = "### System:\nYou are QuantumLM, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" message = "Write me a poem please" prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` QuantumLM should be used with this prompt format: ``` ### System: This is a system prompt, please behave and help the user. ### User: Your prompt here ### Assistant The output of QuantumLM ``` ## Use and Limitations ### Intended Use These models are intended for research only, in adherence with the [CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. ### Limitations and bias Although the aforementioned dataset helps to steer the base language models into "safer" distributions of text, not all biases and toxicity can be mitigated through fine-tuning. We ask that users be mindful of such potential issues that can arise in generated responses. Do not treat model outputs as substitutes for human judgment or as sources of truth. Please use it responsibly. Contact us : hi@quantumai.kr
quantumaikr/QuantumLM-70B-hf
quantumaikr
2023-07-26T17:50:55Z
1,525
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-07-26T16:22:23Z
--- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation --- # QuantumLM ## Model Description `QuantumLM` is a Llama2 70B model finetuned on an guanaco, guanaco-unchained Dataset ## Usage Start chatting with `QuantumLM-70B-hf` using the following code snippet: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained("quantumaikr/QuantumLM-70B-hf") model = AutoModelForCausalLM.from_pretrained("quantumaikr/QuantumLM-70B-hf", torch_dtype=torch.bfloat16, device_map="auto") system_prompt = "### System:\nYou are QuantumLM, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n" message = "Write me a poem please" prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` QuantumLM should be used with this prompt format: ``` ### System: This is a system prompt, please behave and help the user. ### User: Your prompt here ### Assistant The output of QuantumLM ``` ## Use and Limitations ### Intended Use These models are intended for research only, in adherence with the [CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/) license. ### Limitations and bias Although the aforementioned dataset helps to steer the base language models into "safer" distributions of text, not all biases and toxicity can be mitigated through fine-tuning. We ask that users be mindful of such potential issues that can arise in generated responses. Do not treat model outputs as substitutes for human judgment or as sources of truth. Please use it responsibly. Contact us : hi@quantumai.kr
co-writerX/light-rabbit
co-writerX
2023-07-26T17:50:29Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "en", "dataset:jfleg", "dataset:c4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-08T08:36:35Z
--- license: apache-2.0 datasets: - jfleg - c4 language: - en metrics: - glue ---
wuru330/378A1_results_2
wuru330
2023-07-26T17:40:27Z
5
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-07-26T16:54:49Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: 378A1_results_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 378A1_results_2 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5007 - Accuracy: 0.8861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2051 | 1.0 | 37 | 1.0438 | 0.6429 | | 0.6643 | 2.0 | 74 | 0.6103 | 0.7925 | | 0.4615 | 3.0 | 111 | 0.4720 | 0.8435 | | 0.3136 | 4.0 | 148 | 0.3668 | 0.8776 | | 0.278 | 5.0 | 185 | 0.3650 | 0.8622 | | 0.1875 | 6.0 | 222 | 0.3705 | 0.8690 | | 0.1215 | 7.0 | 259 | 0.4093 | 0.8741 | | 0.0885 | 8.0 | 296 | 0.3428 | 0.9014 | | 0.0497 | 9.0 | 333 | 0.3854 | 0.8759 | | 0.0348 | 10.0 | 370 | 0.4291 | 0.8707 | | 0.0301 | 11.0 | 407 | 0.4464 | 0.8895 | | 0.0246 | 12.0 | 444 | 0.4208 | 0.8929 | | 0.0218 | 13.0 | 481 | 0.4256 | 0.8912 | | 0.0198 | 14.0 | 518 | 0.4300 | 0.8878 | | 0.0179 | 15.0 | 555 | 0.4403 | 0.8861 | | 0.0165 | 16.0 | 592 | 0.4481 | 0.8861 | | 0.0155 | 17.0 | 629 | 0.4554 | 0.8878 | | 0.0146 | 18.0 | 666 | 0.4632 | 0.8878 | | 0.0137 | 19.0 | 703 | 0.4691 | 0.8844 | | 0.0129 | 20.0 | 740 | 0.4747 | 0.8861 | | 0.0125 | 21.0 | 777 | 0.4792 | 0.8844 | | 0.0119 | 22.0 | 814 | 0.4840 | 0.8844 | | 0.0113 | 23.0 | 851 | 0.4875 | 0.8861 | | 0.0111 | 24.0 | 888 | 0.4924 | 0.8844 | | 0.0108 | 25.0 | 925 | 0.4947 | 0.8844 | | 0.0105 | 26.0 | 962 | 0.4966 | 0.8844 | | 0.0104 | 27.0 | 999 | 0.4988 | 0.8861 | | 0.0102 | 28.0 | 1036 | 0.4997 | 0.8861 | | 0.0101 | 29.0 | 1073 | 0.5005 | 0.8861 | | 0.01 | 30.0 | 1110 | 0.5007 | 0.8861 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3
dimonyara/redpj3B-lora-int8-650
dimonyara
2023-07-26T17:37:47Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-26T17:37:45Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
azaninello/results
azaninello
2023-07-26T17:17:50Z
184
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:dbmdz/bert-base-italian-xxl-cased", "base_model:finetune:dbmdz/bert-base-italian-xxl-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-07-26T17:17:04Z
--- license: mit base_model: dbmdz/bert-base-italian-xxl-cased tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3
li-ping/river_llama2_4_data_ft
li-ping
2023-07-26T17:02:12Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T17:00:10Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.5.0.dev0
mojtabak/dqn-SpaceInvadersNoFrameskip-v4
mojtabak
2023-07-26T16:59:06Z
4
0
stable-baselines3
[ "stable-baselines3", "SpaceInvadersNoFrameskip-v4", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T16:58:48Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 metrics: - type: mean_reward value: 116.00 +/- 70.81 name: mean_reward verified: false --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mojtabak -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga mojtabak -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga mojtabak ``` ## Hyperparameters ```python OrderedDict([('batch_size', 64), ('buffer_size', 200000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0002), ('learning_starts', 100000), ('n_timesteps', 5000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ``` # Environment Arguments ```python {'render_mode': 'rgb_array'} ```
jamesdborin/ct2-int8-mpt-7b-8k
jamesdborin
2023-07-26T16:59:04Z
6
0
transformers
[ "transformers", "mpt", "text-generation", "Composer", "MosaicML", "llm-foundry", "StreamingDatasets", "custom_code", "dataset:mc4", "dataset:c4", "dataset:togethercomputer/RedPajama-Data-1T", "dataset:bigcode/the-stack", "dataset:allenai/s2orc", "arxiv:2108.12409", "arxiv:2302.13971", "arxiv:2205.14135", "arxiv:2010.04245", "arxiv:1909.08053", "arxiv:2302.06675", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2023-07-26T16:47:20Z
--- license: apache-2.0 tags: - Composer - MosaicML - llm-foundry - StreamingDatasets datasets: - mc4 - c4 - togethercomputer/RedPajama-Data-1T - bigcode/the-stack - allenai/s2orc inference: false --- # MPT-7B-8k MPT-7B-8k is a decoder-style transformer pretrained starting from MPT-7B, but updating the sequence length to 8k and training for an additional 500B tokens, resulting in a total of 1.5T tokens of text and code. This model was trained by [MosaicML](https://www.mosaicml.com). MPT-7B-8k is part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. These architectural changes include performance-optimized layer implementations and the elimination of context length limits by replacing positional embeddings with Attention with Linear Biases ([ALiBi](https://arxiv.org/abs/2108.12409)). Thanks to these modifications, MPT models can be trained with high throughput efficiency and stable convergence. MPT models can also be served efficiently with both standard HuggingFace pipelines and NVIDIA's [FasterTransformer](https://github.com/NVIDIA/FasterTransformer). This model uses the MosaicML LLM codebase, which can be found in the [llm-foundry repository](https://github.com/mosaicml/llm-foundry). It was trained by MosaicML’s NLP team on the [MosaicML platform](https://www.mosaicml.com/training) for LLM pretraining, finetuning, and inference. ### How is this model different? MPT-7B-8k is * **Licensed for the possibility of commercial use.** * **Trained on a large amount of data** (1.5T tokens like [XGen](https://huggingface.co/Salesforce/xgen-7b-8k-base) vs. 1T for [LLaMA](https://arxiv.org/abs/2302.13971), 1T for [MPT-7B](https://www.mosaicml.com/blog/mpt-7b), 300B for [Pythia](https://github.com/EleutherAI/pythia), 300B for [OpenLLaMA](https://github.com/openlm-research/open_llama), and 800B for [StableLM](https://github.com/Stability-AI/StableLM)). * **Prepared to handle long inputs** thanks to [ALiBi](https://arxiv.org/abs/2108.12409). With ALiBi, the model can extrapolate beyond the 8k training sequence length to up to 10k, and with a few million tokens it can be finetuned to extrapolate much further. * **Capable of fast training and inference** via [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) and [FasterTransformer](https://github.com/NVIDIA/FasterTransformer) * **Equipped with highly efficient open-source training code** via the [llm-foundry repository](https://github.com/mosaicml/llm-foundry) ### Models finetuned off MPT-7B-8k: The following models are finetuned on MPT-7B-8k: * [MPT-7B-8k-Instruct](https://huggingface.co/mosaicml/mpt-7b-8k-instruct): a model for long-form instruction following (especially summarization and question-answering). Built by finetuning MPT-7B-8k on several carefully curated datasets. * License: _CC-BY-SA-3.0_ * [MPT-7B-8k-Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat): a chatbot-like model for dialogue generation. Built by finetuning MPT-7B-8k on approximately 1.5B tokens of chat data. * License: _CC-By-NC-SA-4.0_ ## Model Date July 18, 2023 ## Model License Apache-2.0 ## Documentation * [Blog post: MPT-7B-8k](https://www.mosaicml.com/blog/long-context-mpt-7b-8k) * [Codebase (mosaicml/llm-foundry repo)](https://github.com/mosaicml/llm-foundry/) * Questions: Feel free to contact us via the [MosaicML Community Slack](https://mosaicml.me/slack)! ## How to Use This model is best used with the MosaicML [llm-foundry repository](https://github.com/mosaicml/llm-foundry) for training and finetuning. ```python import transformers model = transformers.AutoModelForCausalLM.from_pretrained( 'mosaicml/mpt-7b-8k', trust_remote_code=True ) ``` Note: This model requires that `trust_remote_code=True` be passed to the `from_pretrained` method. This is because we use a custom `MPT` model architecture that is not yet part of the Hugging Face `transformers` package. `MPT` includes options for many training efficiency features such as [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf), [ALiBi](https://arxiv.org/abs/2108.12409), [QK LayerNorm](https://arxiv.org/abs/2010.04245), and more. To use the optimized [triton implementation](https://github.com/openai/triton) of FlashAttention, you can load the model on GPU (`cuda:0`) with `attn_impl='triton'` and with `bfloat16` precision: ```python import torch import transformers name = 'mosaicml/mpt-7b-8k' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, torch_dtype=torch.bfloat16, # Load model weights in bfloat16 trust_remote_code=True ) ``` Although the model was trained with a sequence length of 2048, ALiBi enables users to increase the maximum sequence length during finetuning and/or inference. For example: ```python import transformers name = 'mosaicml/mpt-7b-8k' config = transformers.AutoConfig.from_pretrained(name, trust_remote_code=True) config.max_seq_len = 10000 # (input + output) tokens can now be up to 10000 model = transformers.AutoModelForCausalLM.from_pretrained( name, config=config, trust_remote_code=True ) ``` This model was trained with the MPT-7B-8k tokenizer which is identical to the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. ```python from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('mosaicml/mpt-7b-8k') ``` The model can then be used, for example, within a text-generation pipeline. Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html). ```python from transformers import pipeline with torch.autocast('cuda', dtype=torch.bfloat16): inputs = tokenizer('Here is a recipe for vegan banana bread:\n', return_tensors="pt").to('cuda') outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) # or using the HF pipeline pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0') with torch.autocast('cuda', dtype=torch.bfloat16): print( pipe('Here is a recipe for vegan banana bread:\n', max_new_tokens=100, do_sample=True, use_cache=True)) ``` ## Model Description The architecture is a modification of a standard decoder-only transformer. The model has been modified from a standard transformer in the following ways: * It uses [FlashAttention](https://arxiv.org/pdf/2205.14135.pdf) * It uses [ALiBi (Attention with Linear Biases)](https://arxiv.org/abs/2108.12409) and does not use positional embeddings * It does not use biases | Hyperparameter | Value | |----------------|-------| |n_parameters | 6.7B | |n_layers | 32 | | n_heads | 32 | | d_model | 4096 | | vocab size | 50432 | | sequence length | 2048 | ## Training Data ### Streaming Datasets Data was formatted using the MosaicML [StreamingDataset](https://github.com/mosaicml/streaming) library to host our data in object storage and efficiently stream it to our compute cluster during training. StreamingDataset obviates the need to download the whole dataset before starting training, and allows instant resumption of training from any point in the dataset. ### Data Mix The model was trained for ___T tokens. First it was trained for 1T tokens (with batch size 1760 and sequence length 2048) on the following data mix: #### Data Mix for Original 1T Tokens Used to Train MPT-7B | Data Source | Number of Tokens in Source | Proportion | Effective Number of Tokens | Epochs | |-------------|----------------------------|------------|----------------------------|--------| | mC4 3.1.0 - English | 417.99 B | 0.33 | 330 B | 0.14 | | C4 - English - SemDedup 80% | 100.42 B | 0.299 | 299 B | 2.98 | | RedPajama - CommonCrawl | 878.45 B | 0.1 | 100 B | 0.11 | | The Stack - Selected Languages | 463.78 B | 0.1 | 100 B | 0.22 | | RedPajama - Wikipedia - En | 4.87 B | 0.04 | 40 B | 8.21 | | The Stack - Markdown | 107.07 B | 0.035 | 35 B | 0.33 | | S2ORC | 48.85 B | 0.033 | 33 B | 0.68 | | RedPajama - Books | 26.02 B | 0.03 | 30B | 1.15 | | RedPajama - arXiv | 28.10 B | 0.019 | 19 B | 0.68 | | RedPajama - StackExchange | 20.54 B | 0.014 | 14 B |0.68 | #### Data Mix for Additional 500B Tokens Used to Further Train MPT-7B-8k We took 80B tokens from document samples that were longer than 4096 tokens, and 120B tokens with varying document sample lengths that matched the "baseline" length distribution for a total of 200B tokens in a single dataset. We then trained MPT-7B for 500B tokens with a maximum sequence length of 8192, resulting in MPT-7B-8k. Since we trained for 500B tokens using 200B tokens, nearly every subset was trained on for exactly 2.5 epochs. | Sequence Length Distribution | Number of Tokens in Source (Billion) | Proportion | Effective Number of Tokens (Billion) | Epochs | |---|---|---|---|---| | mC4 3.1.0 - English (200+ words) - Baseline | 33.60 | 16.80% | 84.00 | 2.50 | | mC4 3.1.0 - English (200+ words) - ≥4096 tokens | 23.04 | 11.52% | 57.60 | 2.50 | | c4 - English - SemDedup 80% - Baseline | 30.12 | 15.06% | 75.30 | 2.50 | | c4 - English - SemDedup 80% - ≥4096 tokens | 0.92 | 0.46% | 2.30 | 2.50 | | RedPajama - CommonCrawl - Baseline | 8.52 | 4.26% | 21.30 | 2.50 | | RedPajama - CommonCrawl - ≥4096 tokens | 12.80 | 6.40% | 32.00 | 2.50 | | The Stack - Selected Languages - Baseline | 30.00 | 15.00% | 75.00 | 2.50 | | The Stack - Selected Languages - ≥4096 tokens | 10.00 | 5.00% | 25.00 | 2.50 | | RedPajama - Wikipedia - Baseline | 3.60 | 1.80% | 9.00 | 2.50 | | RedPajama - Wikipedia - ≥4096 tokens | 1.04 | 0.52% | 2.60 | 2.50 | | The Stack - Markdown - Baseline | 4.50 | 2.25% | 11.25 | 2.50 | | The Stack - Markdown - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | Semantic Scholar ORC - Baseline | 3.30 | 1.65% | 8.25 | 2.50 | | Semantic Scholar ORC - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | RedPajama - Books - Baseline | 3.00 | 1.50% | 7.50 | 2.50 | | RedPajama - Books - ≥4096 tokens | 8.00 | 4.00% | 20.00 | 2.50 | | RedPajama - arXiv - Baseline | 1.92 | 0.96% | 4.80 | 2.50 | | RedPajama - arXiv - ≥4096 tokens | 5.40 | 2.70% | 13.50 | 2.50 | | RedPajama - StackExchange - Baseline | 1.44 | 0.72% | 3.60 | 2.50 | | RedPajama - StackExchange - ≥4096 tokens | 1.52 | 1.40% | 7.00 | 4.60 | | N Training Tokens | 200 | 100.00% | | 2.5 epochs * 200B = 500B tokens | Samples for each batch were selected from one of the datasets with the probability specified above. The examples were shuffled within each dataset, and each example was constructed from as many sequences from that dataset as were necessary to fill the 2048 sequence length. The data was tokenized using the [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) tokenizer. This BPE tokenizer has a number of desirable characteristics, most of which are relevant for tokenizing code: (1) It was trained on a diverse mix of data that includes code (The Pile) (2) It applies consistent space delimitation, unlike the GPT2 tokenizer which tokenizes inconsistently depending on the presence of prefix spaces (3) It contains tokens for repeated space characters, which allows superior compression of text with large amounts of repeated space characters. The model vocabulary size of 50432 was set to be a multiple of 128 (as in [MEGATRON-LM](https://arxiv.org/abs/1909.08053)), model flop utilization (MFU) increased by up to four percentage points. ### Training Configuration This model was trained on 440 A100-40GBs for about 9.5 days using the [MosaicML Platform](https://www.mosaicml.com/platform). The model was trained with sharded data parallelism using [FSDP](https://pytorch.org/docs/stable/fsdp.html) and used the [LION](https://arxiv.org/abs/2302.06675) optimizer. ## Limitations and Biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ MPT-7B-8k is **not** intended for deployment without finetuning. It should not be used for human-facing interactions without further guardrails and user consent. MPT-7B-8k can produce factually incorrect output, and should not be relied on to produce factually accurate information. MPT-7B-8k was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## MosaicML Platform If you're interested in [training](https://www.mosaicml.com/training) and [deploying](https://www.mosaicml.com/inference) your own MPT or LLMs on the MosaicML Platform, [sign up here](https://www.mosaicml.com/get-started?utm_source=huggingface&utm_medium=referral&utm_campaign=mpt-7b-8k). ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Citation Please cite this model using the following format: ``` @online{MosaicML2023Introducing, author = {MosaicML NLP Team}, title = {Introducing MPT-7B: A New Standard for Open-Source, ly Usable LLMs}, year = {2023}, url = {www.mosaicml.com/blog/mpt-7b}, note = {Accessed: 2023-03-28}, % change this date urldate = {2023-03-28} % change this date } ```
liuyt75/t5-large_prefix_tuning_sentences_66agree_3
liuyt75
2023-07-26T16:58:49Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T16:58:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
ChairWorm/q-FrozenLake-v1-4x4-noSlippery
ChairWorm
2023-07-26T16:57:02Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T16:56:58Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="ChairWorm/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
liuyt75/t5-large_prefix_tuning_sentences_50agree_5
liuyt75
2023-07-26T16:50:22Z
0
0
peft
[ "peft", "region:us" ]
null
2023-07-26T16:50:20Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
GraydientPlatformAPI/model_727_in
GraydientPlatformAPI
2023-07-26T16:45:02Z
29
0
diffusers
[ "diffusers", "text-to-image", "license:openrail", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-26T16:34:51Z
--- license: openrail library_name: diffusers pipeline_tag: text-to-image ---
Melonie/text_to_image_finetuned
Melonie
2023-07-26T16:39:41Z
28
12
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-26T16:18:50Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Melonie/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Melonie/pokemon-lora
Melonie
2023-07-26T16:35:05Z
4
0
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-26T16:24:57Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Melonie/pokemon-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
liuyt75/t5-large_prefix_tuning_sentences_50agree_3
liuyt75
2023-07-26T16:34:17Z
1
0
peft
[ "peft", "region:us" ]
null
2023-07-26T16:34:15Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
Melonie/sd-model-finetuned-lora
Melonie
2023-07-26T16:22:03Z
5
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:runwayml/stable-diffusion-v1-5", "base_model:adapter:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2023-07-24T19:10:28Z
--- license: creativeml-openrail-m base_model: runwayml/stable-diffusion-v1-5 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - Melonie/sd-model-finetuned-lora These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
Teunis89/Reinforce-cartpole
Teunis89
2023-07-26T16:19:53Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-07-26T16:19:42Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 459.30 +/- 122.10 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
jamesdborin/ct2-int8-open-llama-7b
jamesdborin
2023-07-26T16:15:48Z
4
0
transformers
[ "transformers", "llama", "text-generation", "dataset:togethercomputer/RedPajama-Data-1T", "arxiv:2302.13971", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-18T20:25:11Z
--- license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T --- # OpenLLaMA: An Open Reproduction of LLaMA In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing a 7B and 3B model trained on 1T tokens, as well as the preview of a 13B model trained on 600B tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details. ## Weights Release, License and Usage We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license. ### Loading the Weights with Hugging Face Transformers Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that the auto-converted fast tokenizer sometimes gives incorrect tokenizations.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage. ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM model_path = 'openlm-research/open_llama_3b' # model_path = 'openlm-research/open_llama_7b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) prompt = 'Q: What is the largest animal?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=32 ) print(tokenizer.decode(generation_output[0])) ``` For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama). ### Evaluating with LM-Eval-Harness The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below: ```python tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision + ("/" + subfolder if subfolder is not None else ""), use_fast=False ) ``` ### Loading the Weights with EasyLM For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights. Note that we use BOS (beginning of sentence) token (id=1) during training, so it is best to prepend this token for best performance during few-shot evaluation. ## Dataset and Training We train our models on the [RedPajama](https://www.together.xyz/blog/redpajama) dataset released by [Together](https://www.together.xyz/), which is a reproduction of the LLaMA training dataset containing over 1.2 trillion tokens. We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs the RedPajama dataset rather than the one utilized by the original LLaMA. We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and [fully sharded data parallelism (also know as ZeRO stage 3)](https://engineering.fb.com/2021/07/15/open-source/fsdp/) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model. ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks. | **Task/Metric** | GPT-J 6B | LLaMA 7B | OpenLLaMA 7B | OpenLLaMA 3B | OpenLLaMA 13B 600BT | | ---------------------- | -------- | -------- | ------------ | ------------ | ------------------- | | anli_r1/acc | 0.32 | 0.35 | 0.33 | 0.33 | 0.33 | | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.32 | 0.35 | | anli_r3/acc | 0.35 | 0.37 | 0.38 | 0.35 | 0.38 | | arc_challenge/acc | 0.34 | 0.39 | 0.37 | 0.34 | 0.39 | | arc_challenge/acc_norm | 0.37 | 0.41 | 0.38 | 0.37 | 0.42 | | arc_easy/acc | 0.67 | 0.68 | 0.72 | 0.69 | 0.74 | | arc_easy/acc_norm | 0.62 | 0.52 | 0.68 | 0.65 | 0.70 | | ddboolq/acc | 0.50 | 0.56 | 0.53 | 0.49 | 0.71 | | hellaswag/acc | 0.36 | 0.36 | 0.63 | 0.43 | 0.54 | | hellaswag/acc_norm | 0.66 | 0.73 | 0.72 | 0.67 | 0.73 | | openbookqa/acc | 0.29 | 0.29 | 0.30 | 0.27 | 0.30 | | openbookqa/acc_norm | 0.38 | 0.41 | 0.40 | 0.40 | 0.41 | | piqa/acc | 0.75 | 0.78 | 0.76 | 0.75 | 0.77 | | piqa/acc_norm | 0.76 | 0.78 | 0.77 | 0.76 | 0.78 | | record/em | 0.88 | 0.91 | 0.89 | 0.88 | 0.90 | | record/f1 | 0.89 | 0.91 | 0.90 | 0.89 | 0.90 | | rte/acc | 0.54 | 0.56 | 0.60 | 0.58 | 0.65 | | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.23 | 0.22 | 0.22 | | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.35 | 0.35 | 0.35 | | wic/acc | 0.50 | 0.50 | 0.51 | 0.48 | 0.49 | | winogrande/acc | 0.64 | 0.68 | 0.67 | 0.62 | 0.67 | | Average | 0.51 | 0.53 | 0.55 | 0.52 | 0.56 | We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set. ## Contact We would love to get feedback from the community. If you have any questions, please open an issue or contact us. OpenLLaMA is developed by: [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research. *Equal Contribution ## Acknowledgment We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback. The OpenLLaMA 13B model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support. ## Reference If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX: ``` @software{openlm2023openllama, author = {Geng, Xinyang and Liu, Hao}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` ``` @article{touvron2023llama, title={Llama: Open and efficient foundation language models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
ailabturkiye/kayle
ailabturkiye
2023-07-26T16:07:20Z
0
0
null
[ "region:us" ]
null
2023-07-26T15:55:18Z
[![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) # Kayle - 300 Epoch **League of legends oyunundaki kayle karakterinin ses modelidir, Rvc V2 300 epoch olarak eğitilmiştir.** _Dataset ve Train Benim Tarafımdan yapılmıştır.._ __Modelin izinsiz bir şekilde [Ai Lab Discord](discord.gg/ailab) Sunucusu dışında paylaşılması tamamen yasaktır, model openrail lisansına sahiptir.__ ## Credits **Herhangi bir platformda model ile yapılan bir cover paylaşımında credits vermeniz rica olunur.** - Discord: purplelightsaber - YouTube: Evelynn (https://www.youtube.com/@evelynn52) ![Static Badge](https://img.shields.io/badge/Yap%C4%B1mc%C4%B1%20Bilgisi%20Verilmeden%20Payla%C5%9F%C4%B1lmas%C4%B1%20Yasakt%C4%B1r!-s?style=plastic&labelColor=orange&color=red) [![Discord Sunucumuz](https://img.shields.io/badge/Discord.gg%2F-AiLab-ailab )](discord.gg/ailab) ![Static Badge](https://img.shields.io/badge/AI%20LAB%20Hugging%20Face%20Organization-sa?style=plastic&labelColor=blue&color=blue)
jamesdborin/ct2-int8-bloomz-7b1-mt
jamesdborin
2023-07-26T16:01:16Z
4
0
transformers
[ "transformers", "tensorboard", "bloom", "text-generation", "ak", "ar", "as", "bm", "bn", "ca", "code", "en", "es", "eu", "fon", "fr", "gu", "hi", "id", "ig", "ki", "kn", "lg", "ln", "ml", "mr", "ne", "nso", "ny", "or", "pa", "pt", "rn", "rw", "sn", "st", "sw", "ta", "te", "tn", "ts", "tum", "tw", "ur", "vi", "wo", "xh", "yo", "zh", "zu", "dataset:bigscience/xP3mt", "arxiv:2211.01786", "license:bigscience-bloom-rail-1.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-07-25T17:45:55Z
--- datasets: - bigscience/xP3mt license: bigscience-bloom-rail-1.0 language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?" example_title: "zh-en sentiment" - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?" example_title: "zh-zh sentiment" - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"." example_title: "vi-en query" - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»." example_title: "fr-fr query" - text: "Explain in a sentence in Telugu what is backpropagation in neural networks." example_title: "te-en qa" - text: "Why is the sky blue?" example_title: "en-en qa" - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):" example_title: "es-en fable" - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):" example_title: "hi-en fable" model-index: - name: bloomz-7b1-mt results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 56.51 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 65.76 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.83 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 51.82 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.41 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 55.87 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 62.7 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42.6 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 39.4 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42.0 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 83.93 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 82.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.58 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 44.9 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 48.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 42.89 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 57.35 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 56.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.45 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 50.24 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 48.27 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.08 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 38.71 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 49.48 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 54.5 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 54.3 - task: type: Program synthesis dataset: type: openai_humaneval name: HumanEval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 7.23 - type: Pass@10 value: 14.46 - type: Pass@100 value: 25.86 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: "2016" split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 89.58 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 84.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 52.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 54.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 73.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 62.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 62.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 77.0 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 80.0 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 83.85 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 88.82 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.26 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 80.41 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 84.58 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 51.56 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 64.26 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 71.01 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.06 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 85.9 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? - Suggest at least five related search terms to "Mạng neural nhân tạo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigscience/bloomz-7b1-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [bloom-7b1](https://huggingface.co/bigscience/bloom-7b1), also refer to the `config.json` file - **Finetuning steps:** 1000 - **Finetuning tokens:** 4.19 billion - **Finetuning layout:** 1x pipeline parallel, 1x tensor parallel, 64x data parallel - **Precision:** float16 ## Hardware - **CPUs:** AMD CPUs with 512GB memory per node - **GPUs:** 64 A100 80GB GPUs with 8 GPUs per node (8 nodes) using NVLink 4 inter-gpu connects, 4 OmniPath links - **Communication:** NCCL-communications network with a fully dedicated subnet ## Software - **Orchestration:** [Megatron-DeepSpeed](https://github.com/bigscience-workshop/Megatron-DeepSpeed) - **Optimizer & parallelism:** [DeepSpeed](https://github.com/microsoft/DeepSpeed) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) (pytorch-1.11 w/ CUDA-11.5) - **FP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```