modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-09-04 12:28:55
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
539 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-09-04 12:28:29
card
stringlengths
11
1.01M
AMAISIENG/finetuned_model5
AMAISIENG
2024-01-03T07:41:24Z
12
0
transformers
[ "transformers", "pytorch", "biogpt", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T07:29:21Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuned_model5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_model5 This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 445 | 1.6290 | | 2.0608 | 2.0 | 890 | 1.4244 | | 1.5644 | 3.0 | 1335 | 1.3739 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
nkthakur/flan-t5-small-translator
nkthakur
2024-01-03T07:31:41Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "dataset:opus_books", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-02T10:45:08Z
--- license: apache-2.0 base_model: google/flan-t5-small tags: - generated_from_trainer metrics: - bleu model-index: - name: flan-t5-small-translator results: [] widget: - text: 'translate English to French: All creative skill levels are welcome.' example_title: Translation datasets: - opus_books --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-small-translator This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [opus_books/en-fr](https://huggingface.co/datasets/opus_books/viewer/en-fr) dataset. It achieves the following results on the evaluation set: - Loss: nan - Bleu: 1.078 - Gen Len: 18.0374 ## Sample Request Try this sentence - `translate English to French: what is love?` You should get response like - `Qu'est-ce que l'amour?` > Ensure that you are prepending `translate English to French: ` for all translations ## Intended uses & limitations > This model has been trained only on en-fr subset of OPUS dataset. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-----:|:-------:| | 0.0 | 1.0 | 6355 | nan | 1.078 | 18.0374 | | 0.0 | 2.0 | 12710 | nan | 1.078 | 18.0374 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
Kshitij2406/GPT_Test_Run
Kshitij2406
2024-01-03T07:23:27Z
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-01-03T07:19:42Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
ncsgobubble/rollercoaster_emotions_v3
ncsgobubble
2024-01-03T07:17:56Z
2
1
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:adapter:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-03T07:17:45Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-chat-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
ramathuzen/ppo-CartPole-v2
ramathuzen
2024-01-03T07:12:15Z
0
0
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T07:12:10Z
--- tags: - LunarLander-v2 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: -176.44 +/- 91.86 name: mean_reward verified: false --- # PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'ramathuzen/ppo-CartPole-v2' 'batch_size': 512 'minibatch_size': 128} ```
adityarra07/whisper-medium-gabriel_fold_6
adityarra07
2024-01-03T07:02:33Z
2
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-03T05:15:44Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-gabriel_fold_6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-gabriel_fold_6 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2775 - Wer: 10.3823 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7001 | 1.0 | 169 | 0.2615 | 11.8744 | | 0.1175 | 2.0 | 338 | 0.2532 | 11.4081 | | 0.0423 | 3.0 | 507 | 0.2481 | 10.8486 | | 0.0147 | 4.0 | 676 | 0.2615 | 10.8486 | | 0.0042 | 5.0 | 845 | 0.2720 | 10.6310 | | 0.0014 | 6.0 | 1014 | 0.2775 | 10.3823 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
ncsgobubble/rollercoaster_emotions_v2
ncsgobubble
2024-01-03T07:02:19Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "region:us" ]
null
2024-01-03T07:02:08Z
--- library_name: peft base_model: meta-llama/Llama-2-7b-hf --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.1
AlfredBink/bart-cnn-samsum-peft-trained-x
AlfredBink
2024-01-03T06:56:56Z
4
0
transformers
[ "transformers", "tensorboard", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-03T06:25:08Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer model-index: - name: bart-cnn-samsum-peft-trained-x results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-samsum-peft-trained-x This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0489 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7177 | 1.0 | 200 | 2.2686 | | 0.1079 | 2.0 | 400 | 0.0782 | | 0.0679 | 3.0 | 600 | 0.0565 | | 0.0639 | 4.0 | 800 | 0.0528 | | 0.052 | 5.0 | 1000 | 0.0509 | | 0.0542 | 6.0 | 1200 | 0.0498 | | 0.0545 | 7.0 | 1400 | 0.0491 | | 0.0542 | 8.0 | 1600 | 0.0489 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
dil-gregkowalski/ppo-Pyramids
dil-gregkowalski
2024-01-03T06:53:47Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
reinforcement-learning
2024-01-03T06:50:16Z
--- library_name: ml-agents tags: - Pyramids - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Pyramids --- # **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dil-gregkowalski/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Kshitij2406/GPT_Test_Train
Kshitij2406
2024-01-03T06:51:15Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "base_model:adapter:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-01-03T06:46:19Z
--- library_name: peft base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
AMAISIENG/finetuned_model4
AMAISIENG
2024-01-03T06:43:07Z
14
0
transformers
[ "transformers", "pytorch", "biogpt", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T06:30:57Z
--- license: mit tags: - generated_from_trainer model-index: - name: finetuned_model4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_model4 This model is a fine-tuned version of [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3739 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 445 | 1.6290 | | 2.0608 | 2.0 | 890 | 1.4244 | | 1.5644 | 3.0 | 1335 | 1.3739 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
kunheekim/style-aware-discriminator
kunheekim
2024-01-03T06:40:02Z
0
4
null
[ "image-to-image", "pytorch", "en", "dataset:huggan/AFHQ", "dataset:huggan/AFHQv2", "dataset:huggan/CelebA-HQ", "arxiv:2203.15375", "region:us" ]
image-to-image
2022-09-04T13:03:31Z
--- language: - en thumbnail: https://github.com/kunheek/style-aware-discriminator/raw/main/assets/teaser.png tags: - image-to-image - pytorch datasets: - huggan/AFHQ - huggan/AFHQv2 - huggan/CelebA-HQ metrics: - fid --- # Style-Aware Discriminator Pre-trained weights for [A Style-Aware Discriminator for Controllable Image Translation](https://arxiv.org/abs/2203.15375). Please check the [official repository](https://github.com/kunheek/style-aware-discriminator) for more details. # Citation ```sh @InProceedings{kim2022style, title={A Style-Aware Discriminator for Controllable Image Translation}, author={Kim, Kunhee and Park, Sanghun and Jeon, Eunyeong and Kim, Taehun and Kim, Daijin}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2022}, pages={18239--18248} } ```
BJ-1018/billsum_model
BJ-1018
2024-01-03T06:38:27Z
1
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-02T12:20:30Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer model-index: - name: billsum_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # billsum_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 25 | 3.8034 | 0.1466 | 0.0502 | 0.1209 | 0.1214 | 19.0 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.2+cpu - Datasets 2.16.1 - Tokenizers 0.13.3
aodianyun/chatglm3-6b-32k-openvino
aodianyun
2024-01-03T06:32:21Z
1
0
transformers
[ "transformers", "openvino", "chatglm", "glm", "custom_code", "zh", "en", "endpoints_compatible", "region:us" ]
null
2024-01-02T06:16:31Z
--- language: - zh - en tags: - glm - chatglm - openvino --- # ChatGLM3-6B-32K-openvino ## 介绍 (Introduction) 基于ChatGLM3-6B-32K模型进行openvino转换处理。 ## 软件依赖 (Dependencies) ```shell pip install optimum[openvino] ```
hxgdzyuyi/qgyh
hxgdzyuyi
2024-01-03T06:28:13Z
4
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T06:28:08Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A photo of <s0><s1> output: url: image-0.png - text: A photo of <s0><s1> output: url: image-1.png - text: A photo of <s0><s1> output: url: image-2.png - text: A photo of <s0><s1> output: url: image-3.png - text: A photo of <s0><s1> output: url: image-4.png - text: A photo of <s0><s1> output: url: image-5.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - hxgdzyuyi/qgyh <Gallery /> ## Model description ### These are hxgdzyuyi/qgyh LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`qgyh.safetensors` here 💾](/hxgdzyuyi/qgyh/blob/main/qgyh.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:qgyh:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`qgyh_emb.safetensors` here 💾](/hxgdzyuyi/qgyh/blob/main/qgyh_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `qgyh_emb` to your prompt. For example, `A photo of qgyh_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('hxgdzyuyi/qgyh', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='hxgdzyuyi/qgyh', filename='qgyh_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/hxgdzyuyi/qgyh/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
J001/distilhubert-finetuned-gtzan
J001
2024-01-03T06:22:52Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2024-01-03T05:00:50Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan model-index: - name: distilhubert-finetuned-gtzan results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1599 - eval_accuracy: 0.8 - eval_runtime: 2.7351 - eval_samples_per_second: 36.562 - eval_steps_per_second: 4.753 - epoch: 5.0 - step: 565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
oshizo/japanese-sexual-moderation
oshizo
2024-01-03T06:08:46Z
7
2
transformers
[ "transformers", "pytorch", "luke", "text-classification", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-17T13:19:51Z
--- license: mit --- --- **v2モデルを以下のリンク先にリリースしました** [oshizo/japanese-sexual-moderation-v2](https://huggingface.co/oshizo/japanese-sexual-moderation-v2) --- japanese-sexual-moderationは、[studio-ousia/luke-japanese-large-lite](https://huggingface.co/studio-ousia/luke-japanese-large-lite)をファインチューニングしたモデルです。 短文が性的かどうかをスコアリングします。 20230/9/17時点のバージョンは限られたデータ数で訓練されており、スコアリングの傾向にはデータセットに起因するバイアスがある可能性があります。 このモデルは[japanese-llm-roleplay-benchmark](https://github.com/oshizo/japanese-llm-roleplay-benchmark)でのERPスコアを算出するために作成されました。 ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import numpy as np model_id = "oshizo/japanese-sexual-moderation" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained( model_id, problem_type="multi_label_classification", num_labels=1 ) text = "富士山は日本で一番高い山です。" with torch.no_grad(): encoding = tokenizer(text, return_tensors="pt") score = model(**encoding).logits # tensor([[-2.7863]]) ```
cylee/bloom_prompt_tuning_1704261411.374676
cylee
2024-01-03T06:08:20Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-03T06:08:19Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.4.0
dil-gregkowalski/ppo-SnowballTarget
dil-gregkowalski
2024-01-03T06:06:36Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
reinforcement-learning
2024-01-03T06:06:32Z
--- library_name: ml-agents tags: - SnowballTarget - deep-reinforcement-learning - reinforcement-learning - ML-Agents-SnowballTarget --- # **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: dil-gregkowalski/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
smallfish166/distilbert-base-uncased-finetuned-imdb
smallfish166
2024-01-03T05:59:29Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2024-01-03T05:52:03Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.4406 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6819 | 1.0 | 157 | 2.4978 | | 2.5872 | 2.0 | 314 | 2.4488 | | 2.525 | 3.0 | 471 | 2.4836 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
sawthiha/segformer-b0-finetuned-deprem-satellite
sawthiha
2024-01-03T05:59:08Z
51
0
transformers
[ "transformers", "tf", "safetensors", "segformer", "vision", "image-segmentation", "generated_from_trainer", "dataset:deprem-ml/deprem_satellite_semantic_whu_dataset", "base_model:nvidia/segformer-b0-finetuned-ade-512-512", "base_model:finetune:nvidia/segformer-b0-finetuned-ade-512-512", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2024-01-01T15:08:48Z
--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-deprem-satellite results: [] widget: - src: >- https://datasets-server.huggingface.co/assets/deprem-ml/deprem_satellite_semantic_whu_dataset/--/default/train/3/image/image.jpg example_title: Example 1 - src: >- https://datasets-server.huggingface.co/assets/deprem-ml/deprem_satellite_semantic_whu_dataset/--/default/train/9/image/image.jpg example_title: Example 2 datasets: - deprem-ml/deprem_satellite_semantic_whu_dataset --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # segformer-b0-finetuned-deprem-satellite This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the deprem-ml/deprem_satellite_semantic_whu_dataset dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0641 - eval_mean_iou: 0.9849 - eval_mean_accuracy: 0.9933 - eval_overall_accuracy: 0.9933 - eval_runtime: 94.2835 - eval_samples_per_second: 10.988 - eval_steps_per_second: 2.206 - epoch: 4.18 - step: 1980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 10 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.0
taku-yoshioka/test4
taku-yoshioka
2024-01-03T05:26:51Z
0
0
transformers
[ "transformers", "pytorch", "safetensors", "trl", "ppo", "reinforcement-learning", "license:apache-2.0", "endpoints_compatible", "region:us" ]
reinforcement-learning
2024-01-03T05:26:48Z
--- license: apache-2.0 tags: - trl - ppo - transformers - reinforcement-learning --- # TRL Model This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to guide the model outputs according to a value, function, or human feedback. The model can be used for text generation. ## Usage To use this model for inference, first install the TRL library: ```bash python -m pip install trl ``` You can then generate text as follows: ```python from transformers import pipeline generator = pipeline("text-generation", model="taku-yoshioka//tmp/tmp6uvat143/taku-yoshioka/test4") outputs = generator("Hello, my llama is cute") ``` If you want to use the model for training or to obtain the outputs from the value head, load the model as follows: ```python from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead tokenizer = AutoTokenizer.from_pretrained("taku-yoshioka//tmp/tmp6uvat143/taku-yoshioka/test4") model = AutoModelForCausalLMWithValueHead.from_pretrained("taku-yoshioka//tmp/tmp6uvat143/taku-yoshioka/test4") inputs = tokenizer("Hello, my llama is cute", return_tensors="pt") outputs = model(**inputs, labels=inputs["input_ids"]) ```
Mani429/Taxi-v3
Mani429
2024-01-03T05:21:36Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T05:21:19Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.52 +/- 2.67 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Mani429/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LoneStriker/tora-70b-v1.0-4.65bpw-h6-exl2
LoneStriker
2024-01-03T05:15:59Z
7
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "math", "en", "dataset:gsm8k", "dataset:competition_math", "arxiv:2309.17452", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T04:59:44Z
--- license: llama2 datasets: - gsm8k - competition_math language: - en metrics: - exact_match library_name: transformers pipeline_tag: text-generation tags: - code - math --- <h1 align="center"> ToRA: A Tool-Integrated Reasoning Agent <br> for Mathematical Problem Solving </h1> <p align="center"> <a href="https://microsoft.github.io/ToRA/"><b>[🌐 Website]</b></a> • <a href="https://arxiv.org/abs/2309.17452"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/llm-agents"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/microsoft/ToRA"><b>[🐱 GitHub]</b></a> <br> <a href="https://twitter.com/zhs05232838/status/1708860992631763092"><b>[🐦 Twitter]</b></a> • <a href="https://www.reddit.com/r/LocalLLaMA/comments/1703k6d/tora_a_toolintegrated_reasoning_agent_for/"><b>[💬 Reddit]</b></a> • <a href="https://notes.aimodels.fyi/researchers-announce-tora-training-language-models-to-better-understand-math-using-external-tools/">[🍀 Unofficial Blog]</a> <!-- <a href="#-quick-start">Quick Start</a> • --> <!-- <a href="#%EF%B8%8F-citation">Citation</a> --> </p> <p align="center"> Repo for "<a href="https://arxiv.org/abs/2309.17452" target="_blank">ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving</a>" </p> ## 🔥 News - [2023/10/08] 🔥🔥🔥 All ToRA models released at [HuggingFace](https://huggingface.co/llm-agents)!!! - [2023/09/29] ToRA paper, repo, and website released. ## 💡 Introduction ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical reasoning problems by interacting with tools, e.g., computation libraries and symbolic solvers. ToRA series seamlessly integrate natural language reasoning with the utilization of external tools, thereby amalgamating the analytical prowess of language and the computational efficiency of external tools. | Model | Size | GSM8k | MATH | AVG@10 math tasks<sup>&dagger;</sup> | |---|---|---|---|---| | GPT-4 | - | 92.0 | 42.5 | 78.3 | | GPT-4 (PAL) | - | 94.2 | 51.8 | 86.4 | | [ToRA-7B](https://huggingface.co/llm-agents/tora-7b-v1.0) | 7B | 68.8 | 40.1 | 62.4| | [ToRA-Code-7B](https://huggingface.co/llm-agents/tora-code-7b-v1.0) | 7B | 72.6 | 44.6 | 66.5| | [ToRA-13B](https://huggingface.co/llm-agents/tora-13b-v1.0) | 13B | 72.7 | 43.0 | 65.9| | [ToRA-Code-13B](https://huggingface.co/llm-agents/tora-code-13b-v1.0) | 13B | 75.8 | 48.1 | 71.3 | | [ToRA-Code-34B<sup>*</sup>](https://huggingface.co/llm-agents/tora-code-34b-v1.0) | 34B | 80.7 | **51.0** | 74.8 | | [ToRA-70B](https://huggingface.co/llm-agents/tora-70b-v1.0) | 70B | **84.3** | 49.7 | **76.9** | - <sup>*</sup>ToRA-Code-34B is currently the first and only open-source model to achieve over 50% accuracy (pass@1) on the MATH dataset, which significantly outperforms GPT-4’s CoT result (51.0 vs. 42.5), and is competitive with GPT-4 solving problems with programs. By open-sourcing our codes and models, we hope more breakthroughs will come! - <sup>&dagger;</sup>10 math tasks include GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, SingleEQ, SingleOP, AddSub, and MultiArith. ## ⚡️ Training The models are trained on ToRA-Corpus 16k, which contains tool-integrated reasoning trajectories of MATH and GSM8k from GPT-4. We use imitation learning (i.e., SFT) to fine-tune the models, and then apply our proposed *output space shaping* to improve tool-integrated reasoning behaviors. Please refer to the [paper](https://arxiv.org/pdf/2309.17452.pdf) for more details. ## 🪁 Inference & Evaluation Please refer to ToRA's [GitHub repo](https://github.com/microsoft/ToRA) for inference, evaluation, and training code. ## ☕️ Citation If you find this repository helpful, please consider citing our paper: ``` @misc{gou2023tora, title={ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving}, author={Zhibin Gou and Zhihong Shao and Yeyun Gong and yelong shen and Yujiu Yang and Minlie Huang and Nan Duan and Weizhu Chen}, year={2023}, eprint={2309.17452}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
yuntaeyang/Yi-6B-ko-dpo
yuntaeyang
2024-01-03T05:03:51Z
1
0
peft
[ "peft", "safetensors", "llama", "region:us" ]
null
2024-01-03T04:47:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
Reni743/my_awesome_eli5_mlm_model
Reni743
2024-01-03T05:01:29Z
4
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-21T09:06:04Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_keras_callback model-index: - name: Reni743/my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Reni743/my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0207 - Validation Loss: 1.8241 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0207 | 1.8241 | 0 | ### Framework versions - Transformers 4.36.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
cuongdz01/layoutlm-cord-3
cuongdz01
2024-01-03T05:00:28Z
6
0
transformers
[ "transformers", "tensorboard", "safetensors", "layoutlm", "token-classification", "generated_from_trainer", "base_model:microsoft/layoutlm-base-uncased", "base_model:finetune:microsoft/layoutlm-base-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-03T04:49:37Z
--- license: mit base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-cord-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlm-cord-3 This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1551 - Enu.cnt: {'precision': 0.9817351598173516, 'recall': 0.9772727272727273, 'f1': 0.979498861047836, 'number': 220} - Enu.discountprice: {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} - Enu.etc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} - Enu.itemsubtotal: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} - Enu.nm: {'precision': 0.972, 'recall': 0.9681274900398407, 'f1': 0.9700598802395209, 'number': 251} - Enu.num: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} - Enu.price: {'precision': 0.9683794466403162, 'recall': 0.9959349593495935, 'f1': 0.9819639278557115, 'number': 246} - Enu.sub.cnt: {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} - Enu.sub.nm: {'precision': 0.9375, 'recall': 0.967741935483871, 'f1': 0.9523809523809523, 'number': 31} - Enu.sub.price: {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} - Enu.unitprice: {'precision': 0.9242424242424242, 'recall': 0.9104477611940298, 'f1': 0.9172932330827067, 'number': 67} - Otal.cashprice: {'precision': 0.9538461538461539, 'recall': 0.9117647058823529, 'f1': 0.9323308270676691, 'number': 68} - Otal.changeprice: {'precision': 0.9642857142857143, 'recall': 0.9642857142857143, 'f1': 0.9642857142857143, 'number': 56} - Otal.creditcardprice: {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} - Otal.emoneyprice: {'precision': 0.5, 'recall': 1.0, 'f1': 0.6666666666666666, 'number': 2} - Otal.menuqty Cnt: {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} - Otal.menutype Cnt: {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} - Otal.total Etc: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} - Otal.total Price: {'precision': 0.9484536082474226, 'recall': 0.968421052631579, 'f1': 0.9583333333333333, 'number': 95} - Ub Total.discount Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} - Ub Total.etc: {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} - Ub Total.service Price: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} - Ub Total.subtotal Price: {'precision': 0.9402985074626866, 'recall': 0.9692307692307692, 'f1': 0.9545454545454547, 'number': 65} - Ub Total.tax Price: {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} - Overall Precision: 0.9560 - Overall Recall: 0.9560 - Overall F1: 0.9560 - Overall Accuracy: 0.9732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Enu.cnt | Enu.discountprice | Enu.etc | Enu.itemsubtotal | Enu.nm | Enu.num | Enu.price | Enu.sub.cnt | Enu.sub.nm | Enu.sub.price | Enu.unitprice | Otal.cashprice | Otal.changeprice | Otal.creditcardprice | Otal.emoneyprice | Otal.menuqty Cnt | Otal.menutype Cnt | Otal.total Etc | Otal.total Price | Ub Total.discount Price | Ub Total.etc | Ub Total.service Price | Ub Total.subtotal Price | Ub Total.tax Price | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.2284 | 1.0 | 25 | 1.3305 | {'precision': 0.7640449438202247, 'recall': 0.9272727272727272, 'f1': 0.8377823408624229, 'number': 220} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.6494252873563219, 'recall': 0.900398406374502, 'f1': 0.7545909849749582, 'number': 251} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.5171503957783641, 'recall': 0.7967479674796748, 'f1': 0.6272, 'number': 246} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 67} | {'precision': 0.25, 'recall': 0.4117647058823529, 'f1': 0.3111111111111111, 'number': 68} | {'precision': 0.11428571428571428, 'recall': 0.14285714285714285, 'f1': 0.12698412698412698, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.2978723404255319, 'recall': 0.5894736842105263, 'f1': 0.3957597173144876, 'number': 95} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.047619047619047616, 'recall': 0.046153846153846156, 'f1': 0.046875, 'number': 65} | {'precision': 0.08450704225352113, 'recall': 0.13953488372093023, 'f1': 0.10526315789473684, 'number': 43} | 0.4802 | 0.5618 | 0.5178 | 0.6786 | | 1.0492 | 2.0 | 50 | 0.6552 | {'precision': 0.8699186991869918, 'recall': 0.9727272727272728, 'f1': 0.9184549356223175, 'number': 220} | {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.823321554770318, 'recall': 0.9282868525896414, 'f1': 0.8726591760299625, 'number': 251} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.7363013698630136, 'recall': 0.8739837398373984, 'f1': 0.7992565055762081, 'number': 246} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.4, 'recall': 0.12903225806451613, 'f1': 0.1951219512195122, 'number': 31} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 20} | {'precision': 0.88, 'recall': 0.3283582089552239, 'f1': 0.4782608695652174, 'number': 67} | {'precision': 0.7272727272727273, 'recall': 0.8235294117647058, 'f1': 0.7724137931034483, 'number': 68} | {'precision': 0.6575342465753424, 'recall': 0.8571428571428571, 'f1': 0.7441860465116279, 'number': 56} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 16} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.5, 'recall': 0.5172413793103449, 'f1': 0.5084745762711865, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.7685185185185185, 'recall': 0.8736842105263158, 'f1': 0.8177339901477831, 'number': 95} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 12} | {'precision': 0.8260869565217391, 'recall': 0.8769230769230769, 'f1': 0.8507462686567164, 'number': 65} | {'precision': 0.3387096774193548, 'recall': 0.4883720930232558, 'f1': 0.4, 'number': 43} | 0.7539 | 0.7504 | 0.7521 | 0.8206 | | 0.5737 | 3.0 | 75 | 0.3999 | {'precision': 0.8693877551020408, 'recall': 0.9681818181818181, 'f1': 0.9161290322580645, 'number': 220} | {'precision': 0.6666666666666666, 'recall': 0.6, 'f1': 0.631578947368421, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.8534798534798534, 'recall': 0.9282868525896414, 'f1': 0.8893129770992366, 'number': 251} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 0.983739837398374, 'f1': 0.9490196078431372, 'number': 246} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.5833333333333334, 'recall': 0.45161290322580644, 'f1': 0.509090909090909, 'number': 31} | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 20} | {'precision': 0.8676470588235294, 'recall': 0.8805970149253731, 'f1': 0.874074074074074, 'number': 67} | {'precision': 0.8923076923076924, 'recall': 0.8529411764705882, 'f1': 0.8721804511278195, 'number': 68} | {'precision': 0.8524590163934426, 'recall': 0.9285714285714286, 'f1': 0.888888888888889, 'number': 56} | {'precision': 0.631578947368421, 'recall': 0.75, 'f1': 0.6857142857142857, 'number': 16} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.5714285714285714, 'recall': 0.6896551724137931, 'f1': 0.625, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9090909090909091, 'recall': 0.9473684210526315, 'f1': 0.9278350515463918, 'number': 95} | {'precision': 0.6666666666666666, 'recall': 0.2857142857142857, 'f1': 0.4, 'number': 7} | {'precision': 0.5, 'recall': 0.3333333333333333, 'f1': 0.4, 'number': 9} | {'precision': 0.75, 'recall': 0.75, 'f1': 0.75, 'number': 12} | {'precision': 0.8985507246376812, 'recall': 0.9538461538461539, 'f1': 0.9253731343283582, 'number': 65} | {'precision': 0.7169811320754716, 'recall': 0.8837209302325582, 'f1': 0.7916666666666666, 'number': 43} | 0.8538 | 0.8663 | 0.8600 | 0.9018 | | 0.3586 | 4.0 | 100 | 0.2909 | {'precision': 0.8801652892561983, 'recall': 0.9681818181818181, 'f1': 0.922077922077922, 'number': 220} | {'precision': 0.875, 'recall': 0.7, 'f1': 0.7777777777777777, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.8981132075471698, 'recall': 0.9482071713147411, 'f1': 0.9224806201550388, 'number': 251} | {'precision': 1.0, 'recall': 0.6363636363636364, 'f1': 0.7777777777777778, 'number': 11} | {'precision': 0.9315589353612167, 'recall': 0.9959349593495935, 'f1': 0.962671905697446, 'number': 246} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 17} | {'precision': 0.7586206896551724, 'recall': 0.7096774193548387, 'f1': 0.7333333333333333, 'number': 31} | {'precision': 1.0, 'recall': 0.65, 'f1': 0.787878787878788, 'number': 20} | {'precision': 0.8823529411764706, 'recall': 0.8955223880597015, 'f1': 0.888888888888889, 'number': 67} | {'precision': 0.921875, 'recall': 0.8676470588235294, 'f1': 0.893939393939394, 'number': 68} | {'precision': 0.8983050847457628, 'recall': 0.9464285714285714, 'f1': 0.9217391304347826, 'number': 56} | {'precision': 0.6111111111111112, 'recall': 0.6875, 'f1': 0.6470588235294118, 'number': 16} | {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 2} | {'precision': 0.7419354838709677, 'recall': 0.7931034482758621, 'f1': 0.7666666666666667, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9175257731958762, 'recall': 0.9368421052631579, 'f1': 0.9270833333333333, 'number': 95} | {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 0.8461538461538461, 'recall': 0.9166666666666666, 'f1': 0.8799999999999999, 'number': 12} | {'precision': 0.9393939393939394, 'recall': 0.9538461538461539, 'f1': 0.9465648854961831, 'number': 65} | {'precision': 0.9318181818181818, 'recall': 0.9534883720930233, 'f1': 0.942528735632184, 'number': 43} | 0.8957 | 0.9026 | 0.8992 | 0.9337 | | 0.2476 | 5.0 | 125 | 0.2116 | {'precision': 0.963963963963964, 'recall': 0.9727272727272728, 'f1': 0.9683257918552037, 'number': 220} | {'precision': 0.875, 'recall': 0.7, 'f1': 0.7777777777777777, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9224806201550387, 'recall': 0.9482071713147411, 'f1': 0.9351669941060905, 'number': 251} | {'precision': 1.0, 'recall': 0.6363636363636364, 'f1': 0.7777777777777778, 'number': 11} | {'precision': 0.9496124031007752, 'recall': 0.9959349593495935, 'f1': 0.9722222222222223, 'number': 246} | {'precision': 0.9333333333333333, 'recall': 0.8235294117647058, 'f1': 0.8749999999999999, 'number': 17} | {'precision': 0.78125, 'recall': 0.8064516129032258, 'f1': 0.7936507936507936, 'number': 31} | {'precision': 1.0, 'recall': 0.75, 'f1': 0.8571428571428571, 'number': 20} | {'precision': 0.8823529411764706, 'recall': 0.8955223880597015, 'f1': 0.888888888888889, 'number': 67} | {'precision': 0.9375, 'recall': 0.8823529411764706, 'f1': 0.9090909090909091, 'number': 68} | {'precision': 0.9310344827586207, 'recall': 0.9642857142857143, 'f1': 0.9473684210526316, 'number': 56} | {'precision': 0.7368421052631579, 'recall': 0.875, 'f1': 0.7999999999999999, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 0.75, 'recall': 0.8275862068965517, 'f1': 0.7868852459016394, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9285714285714286, 'recall': 0.9578947368421052, 'f1': 0.9430051813471502, 'number': 95} | {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7} | {'precision': 0.875, 'recall': 0.7777777777777778, 'f1': 0.823529411764706, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9393939393939394, 'recall': 0.9538461538461539, 'f1': 0.9465648854961831, 'number': 65} | {'precision': 0.9545454545454546, 'recall': 0.9767441860465116, 'f1': 0.9655172413793104, 'number': 43} | 0.9273 | 0.9266 | 0.9269 | 0.9515 | | 0.1798 | 6.0 | 150 | 0.1988 | {'precision': 0.960352422907489, 'recall': 0.990909090909091, 'f1': 0.9753914988814317, 'number': 220} | {'precision': 0.75, 'recall': 0.6, 'f1': 0.6666666666666665, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9266409266409267, 'recall': 0.9561752988047809, 'f1': 0.9411764705882354, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.953307392996109, 'recall': 0.9959349593495935, 'f1': 0.9741550695825051, 'number': 246} | {'precision': 1.0, 'recall': 0.9411764705882353, 'f1': 0.9696969696969697, 'number': 17} | {'precision': 0.8064516129032258, 'recall': 0.8064516129032258, 'f1': 0.8064516129032258, 'number': 31} | {'precision': 0.9411764705882353, 'recall': 0.8, 'f1': 0.8648648648648648, 'number': 20} | {'precision': 0.8695652173913043, 'recall': 0.8955223880597015, 'f1': 0.8823529411764706, 'number': 67} | {'precision': 0.9242424242424242, 'recall': 0.8970588235294118, 'f1': 0.9104477611940298, 'number': 68} | {'precision': 0.9310344827586207, 'recall': 0.9642857142857143, 'f1': 0.9473684210526316, 'number': 56} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 2} | {'precision': 0.71875, 'recall': 0.7931034482758621, 'f1': 0.7540983606557378, 'number': 29} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9278350515463918, 'recall': 0.9473684210526315, 'f1': 0.9374999999999999, 'number': 95} | {'precision': 0.8571428571428571, 'recall': 0.8571428571428571, 'f1': 0.8571428571428571, 'number': 7} | {'precision': 0.875, 'recall': 0.7777777777777778, 'f1': 0.823529411764706, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9402985074626866, 'recall': 0.9692307692307692, 'f1': 0.9545454545454547, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9265 | 0.9359 | 0.9312 | 0.9549 | | 0.1404 | 7.0 | 175 | 0.1749 | {'precision': 0.9861751152073732, 'recall': 0.9727272727272728, 'f1': 0.9794050343249429, 'number': 220} | {'precision': 0.875, 'recall': 0.7, 'f1': 0.7777777777777777, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9404761904761905, 'recall': 0.9442231075697212, 'f1': 0.9423459244532804, 'number': 251} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9682539682539683, 'recall': 0.991869918699187, 'f1': 0.9799196787148594, 'number': 246} | {'precision': 0.8095238095238095, 'recall': 1.0, 'f1': 0.8947368421052632, 'number': 17} | {'precision': 0.7142857142857143, 'recall': 0.967741935483871, 'f1': 0.821917808219178, 'number': 31} | {'precision': 0.9047619047619048, 'recall': 0.95, 'f1': 0.9268292682926829, 'number': 20} | {'precision': 0.8970588235294118, 'recall': 0.9104477611940298, 'f1': 0.9037037037037037, 'number': 67} | {'precision': 0.967741935483871, 'recall': 0.8823529411764706, 'f1': 0.923076923076923, 'number': 68} | {'precision': 0.9482758620689655, 'recall': 0.9821428571428571, 'f1': 0.9649122807017544, 'number': 56} | {'precision': 0.6842105263157895, 'recall': 0.8125, 'f1': 0.742857142857143, 'number': 16} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 2} | {'precision': 0.8387096774193549, 'recall': 0.896551724137931, 'f1': 0.8666666666666666, 'number': 29} | {'precision': 0.5, 'recall': 0.2857142857142857, 'f1': 0.36363636363636365, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9381443298969072, 'recall': 0.9578947368421052, 'f1': 0.9479166666666666, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 0.9166666666666666, 'recall': 0.9166666666666666, 'f1': 0.9166666666666666, 'number': 12} | {'precision': 0.9264705882352942, 'recall': 0.9692307692307692, 'f1': 0.9473684210526316, 'number': 65} | {'precision': 0.9130434782608695, 'recall': 0.9767441860465116, 'f1': 0.9438202247191011, 'number': 43} | 0.9312 | 0.9420 | 0.9366 | 0.9592 | | 0.1111 | 8.0 | 200 | 0.1745 | {'precision': 0.9817351598173516, 'recall': 0.9772727272727273, 'f1': 0.979498861047836, 'number': 220} | {'precision': 0.7, 'recall': 0.7, 'f1': 0.7, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9409448818897638, 'recall': 0.952191235059761, 'f1': 0.9465346534653465, 'number': 251} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9606299212598425, 'recall': 0.991869918699187, 'f1': 0.976, 'number': 246} | {'precision': 0.85, 'recall': 1.0, 'f1': 0.9189189189189189, 'number': 17} | {'precision': 0.8285714285714286, 'recall': 0.9354838709677419, 'f1': 0.8787878787878788, 'number': 31} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.8955223880597015, 'recall': 0.8955223880597015, 'f1': 0.8955223880597015, 'number': 67} | {'precision': 0.967741935483871, 'recall': 0.8823529411764706, 'f1': 0.923076923076923, 'number': 68} | {'precision': 0.9152542372881356, 'recall': 0.9642857142857143, 'f1': 0.9391304347826087, 'number': 56} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 1.0, 'recall': 0.5, 'f1': 0.6666666666666666, 'number': 2} | {'precision': 0.8387096774193549, 'recall': 0.896551724137931, 'f1': 0.8666666666666666, 'number': 29} | {'precision': 0.6666666666666666, 'recall': 0.2857142857142857, 'f1': 0.4, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9381443298969072, 'recall': 0.9578947368421052, 'f1': 0.9479166666666666, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9402985074626866, 'recall': 0.9692307692307692, 'f1': 0.9545454545454547, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9377 | 0.9420 | 0.9399 | 0.9626 | | 0.0999 | 9.0 | 225 | 0.1637 | {'precision': 0.9773755656108597, 'recall': 0.9818181818181818, 'f1': 0.9795918367346939, 'number': 220} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.952755905511811, 'recall': 0.9641434262948207, 'f1': 0.9584158415841584, 'number': 251} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.95703125, 'recall': 0.9959349593495935, 'f1': 0.9760956175298804, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.9242424242424242, 'recall': 0.9104477611940298, 'f1': 0.9172932330827067, 'number': 67} | {'precision': 0.953125, 'recall': 0.8970588235294118, 'f1': 0.9242424242424244, 'number': 68} | {'precision': 0.9, 'recall': 0.9642857142857143, 'f1': 0.9310344827586207, 'number': 56} | {'precision': 0.8125, 'recall': 0.8125, 'f1': 0.8125, 'number': 16} | {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2} | {'precision': 0.9, 'recall': 0.9310344827586207, 'f1': 0.9152542372881356, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9587628865979382, 'recall': 0.9789473684210527, 'f1': 0.96875, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.875, 'recall': 0.7777777777777778, 'f1': 0.823529411764706, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9264705882352942, 'recall': 0.9692307692307692, 'f1': 0.9473684210526316, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9463 | 0.9529 | 0.9496 | 0.9694 | | 0.0847 | 10.0 | 250 | 0.1764 | {'precision': 0.9773755656108597, 'recall': 0.9818181818181818, 'f1': 0.9795918367346939, 'number': 220} | {'precision': 0.8, 'recall': 0.8, 'f1': 0.8000000000000002, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9606299212598425, 'recall': 0.9721115537848606, 'f1': 0.9663366336633663, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9607843137254902, 'recall': 0.9959349593495935, 'f1': 0.9780439121756488, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.8387096774193549, 'recall': 0.8387096774193549, 'f1': 0.8387096774193549, 'number': 31} | {'precision': 0.9473684210526315, 'recall': 0.9, 'f1': 0.9230769230769231, 'number': 20} | {'precision': 0.9242424242424242, 'recall': 0.9104477611940298, 'f1': 0.9172932330827067, 'number': 67} | {'precision': 0.9545454545454546, 'recall': 0.9264705882352942, 'f1': 0.9402985074626866, 'number': 68} | {'precision': 0.9310344827586207, 'recall': 0.9642857142857143, 'f1': 0.9473684210526316, 'number': 56} | {'precision': 0.8125, 'recall': 0.8125, 'f1': 0.8125, 'number': 16} | {'precision': 0.3333333333333333, 'recall': 0.5, 'f1': 0.4, 'number': 2} | {'precision': 0.8666666666666667, 'recall': 0.896551724137931, 'f1': 0.8813559322033899, 'number': 29} | {'precision': 1.0, 'recall': 0.42857142857142855, 'f1': 0.6, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9285714285714286, 'recall': 0.9578947368421052, 'f1': 0.9430051813471502, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9264705882352942, 'recall': 0.9692307692307692, 'f1': 0.9473684210526316, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9447 | 0.9498 | 0.9472 | 0.9656 | | 0.0761 | 11.0 | 275 | 0.1647 | {'precision': 0.9818181818181818, 'recall': 0.9818181818181818, 'f1': 0.9818181818181818, 'number': 220} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9682539682539683, 'recall': 0.9721115537848606, 'f1': 0.9701789264413518, 'number': 251} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | {'precision': 0.9645669291338582, 'recall': 0.9959349593495935, 'f1': 0.98, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.9354838709677419, 'recall': 0.9354838709677419, 'f1': 0.9354838709677419, 'number': 31} | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.9384615384615385, 'recall': 0.9104477611940298, 'f1': 0.9242424242424243, 'number': 67} | {'precision': 0.9538461538461539, 'recall': 0.9117647058823529, 'f1': 0.9323308270676691, 'number': 68} | {'precision': 0.9473684210526315, 'recall': 0.9642857142857143, 'f1': 0.9557522123893805, 'number': 56} | {'precision': 0.8125, 'recall': 0.8125, 'f1': 0.8125, 'number': 16} | {'precision': 0.3333333333333333, 'recall': 0.5, 'f1': 0.4, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9484536082474226, 'recall': 0.968421052631579, 'f1': 0.9583333333333333, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9264705882352942, 'recall': 0.9692307692307692, 'f1': 0.9473684210526316, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9537 | 0.9560 | 0.9548 | 0.9711 | | 0.0648 | 12.0 | 300 | 0.1609 | {'precision': 0.9863013698630136, 'recall': 0.9818181818181818, 'f1': 0.9840546697038723, 'number': 220} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.9721115537848606, 'recall': 0.9721115537848606, 'f1': 0.9721115537848606, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9683794466403162, 'recall': 0.9959349593495935, 'f1': 0.9819639278557115, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.8787878787878788, 'recall': 0.9354838709677419, 'f1': 0.90625, 'number': 31} | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.9393939393939394, 'recall': 0.9253731343283582, 'f1': 0.9323308270676692, 'number': 67} | {'precision': 0.9538461538461539, 'recall': 0.9117647058823529, 'f1': 0.9323308270676691, 'number': 68} | {'precision': 0.9152542372881356, 'recall': 0.9642857142857143, 'f1': 0.9391304347826087, 'number': 56} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.3333333333333333, 'recall': 0.5, 'f1': 0.4, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.92, 'recall': 0.968421052631579, 'f1': 0.9435897435897437, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.875, 'recall': 0.7777777777777778, 'f1': 0.823529411764706, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.953125, 'recall': 0.9384615384615385, 'f1': 0.9457364341085271, 'number': 65} | {'precision': 0.9555555555555556, 'recall': 1.0, 'f1': 0.9772727272727273, 'number': 43} | 0.9515 | 0.9544 | 0.9529 | 0.9702 | | 0.0554 | 13.0 | 325 | 0.1558 | {'precision': 0.9861751152073732, 'recall': 0.9727272727272728, 'f1': 0.9794050343249429, 'number': 220} | {'precision': 0.8, 'recall': 0.8, 'f1': 0.8000000000000002, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.968, 'recall': 0.9641434262948207, 'f1': 0.9660678642714571, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9683794466403162, 'recall': 0.9959349593495935, 'f1': 0.9819639278557115, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.90625, 'recall': 0.9354838709677419, 'f1': 0.9206349206349206, 'number': 31} | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.9393939393939394, 'recall': 0.9253731343283582, 'f1': 0.9323308270676692, 'number': 67} | {'precision': 0.9692307692307692, 'recall': 0.9264705882352942, 'f1': 0.9473684210526316, 'number': 68} | {'precision': 0.9310344827586207, 'recall': 0.9642857142857143, 'f1': 0.9473684210526316, 'number': 56} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.3333333333333333, 'recall': 0.5, 'f1': 0.4, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9484536082474226, 'recall': 0.968421052631579, 'f1': 0.9583333333333333, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9402985074626866, 'recall': 0.9692307692307692, 'f1': 0.9545454545454547, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9536 | 0.9536 | 0.9536 | 0.9724 | | 0.0517 | 14.0 | 350 | 0.1571 | {'precision': 0.981651376146789, 'recall': 0.9727272727272728, 'f1': 0.9771689497716896, 'number': 220} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.968, 'recall': 0.9641434262948207, 'f1': 0.9660678642714571, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9683794466403162, 'recall': 0.9959349593495935, 'f1': 0.9819639278557115, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.9375, 'recall': 0.967741935483871, 'f1': 0.9523809523809523, 'number': 31} | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.9242424242424242, 'recall': 0.9104477611940298, 'f1': 0.9172932330827067, 'number': 67} | {'precision': 0.9692307692307692, 'recall': 0.9264705882352942, 'f1': 0.9473684210526316, 'number': 68} | {'precision': 0.9473684210526315, 'recall': 0.9642857142857143, 'f1': 0.9557522123893805, 'number': 56} | {'precision': 0.7222222222222222, 'recall': 0.8125, 'f1': 0.7647058823529411, 'number': 16} | {'precision': 0.5, 'recall': 0.5, 'f1': 0.5, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9484536082474226, 'recall': 0.968421052631579, 'f1': 0.9583333333333333, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9545454545454546, 'recall': 0.9692307692307692, 'f1': 0.9618320610687022, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9551 | 0.9536 | 0.9544 | 0.9719 | | 0.05 | 15.0 | 375 | 0.1551 | {'precision': 0.9817351598173516, 'recall': 0.9772727272727273, 'f1': 0.979498861047836, 'number': 220} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 6} | {'precision': 0.972, 'recall': 0.9681274900398407, 'f1': 0.9700598802395209, 'number': 251} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 0.9683794466403162, 'recall': 0.9959349593495935, 'f1': 0.9819639278557115, 'number': 246} | {'precision': 0.8947368421052632, 'recall': 1.0, 'f1': 0.9444444444444444, 'number': 17} | {'precision': 0.9375, 'recall': 0.967741935483871, 'f1': 0.9523809523809523, 'number': 31} | {'precision': 0.95, 'recall': 0.95, 'f1': 0.9500000000000001, 'number': 20} | {'precision': 0.9242424242424242, 'recall': 0.9104477611940298, 'f1': 0.9172932330827067, 'number': 67} | {'precision': 0.9538461538461539, 'recall': 0.9117647058823529, 'f1': 0.9323308270676691, 'number': 68} | {'precision': 0.9642857142857143, 'recall': 0.9642857142857143, 'f1': 0.9642857142857143, 'number': 56} | {'precision': 0.7647058823529411, 'recall': 0.8125, 'f1': 0.787878787878788, 'number': 16} | {'precision': 0.5, 'recall': 1.0, 'f1': 0.6666666666666666, 'number': 2} | {'precision': 0.9032258064516129, 'recall': 0.9655172413793104, 'f1': 0.9333333333333333, 'number': 29} | {'precision': 0.8, 'recall': 0.5714285714285714, 'f1': 0.6666666666666666, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9484536082474226, 'recall': 0.968421052631579, 'f1': 0.9583333333333333, 'number': 95} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 7} | {'precision': 0.7777777777777778, 'recall': 0.7777777777777778, 'f1': 0.7777777777777778, 'number': 9} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 12} | {'precision': 0.9402985074626866, 'recall': 0.9692307692307692, 'f1': 0.9545454545454547, 'number': 65} | {'precision': 0.9772727272727273, 'recall': 1.0, 'f1': 0.9885057471264368, 'number': 43} | 0.9560 | 0.9560 | 0.9560 | 0.9732 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.16.1 - Tokenizers 0.15.0
royallab/Kimiko-10.7B-v3-exl2
royallab
2024-01-03T04:58:18Z
0
0
null
[ "en", "region:us" ]
null
2024-01-03T03:04:23Z
--- language: - en --- ## Information This is a Exl2 quantized version of [Kimiko-10.7B-v3](https://huggingface.co/nRuaif/Kimiko-10.7B-v3) Please refer to the original creator for more information. Calibration dataset: Exllamav2 default ## Branches: - main: Measurement files - 4bpw: 4 bits per weight - 5bpw: 5 bits per weight - 6bpw: 6 bits per weight ## Notes - 6bpw is recommended for the best quality to vram usage ratio (assuming you have enough vram). - Please ask for more bpws in the community tab if necessary. ## Run in TabbyAPI TabbyAPI is a pure exllamav2 FastAPI server developed by us. You can find TabbyAPI's source code here: [https://github.com/theroyallab/TabbyAPI](https://github.com/theroyallab/TabbyAPI) If you don't have huggingface-cli, please run `pip install huggingface_hub`. To run this model, follow these steps: 1. Make a directory inside your models folder called `Kimiko-10.7B-v3-exl2` 2. Open a terminal inside your models folder 3. Run `huggingface-cli download royallab/Kimiko-10.7B-v3-exl2 --revision 4bpw --local-dir Kimiko-10.7B-v3-exl2 --local-dir-use-symlinks False` 1. The `--revision` flag corresponds to the branch name on the model repo. Please select the appropriate bpw branch for your system. 4. Inside TabbyAPI's config.yml, set `model_name` to `Kimiko-10.7B-v3-exl2` or you can use the `/model/load` endpoint after launching. 5. Launch TabbyAPI inside your python env by running `python main.py` ## Donate? All my infrastructure and cloud expenses are paid out of pocket. If you'd like to donate, you can do so here: https://ko-fi.com/kingbri You should not feel obligated to donate, but if you do, I'd appreciate it. ---
RR6/my_awesome_eli5_mlm_model
RR6
2024-01-03T04:57:05Z
3
0
transformers
[ "transformers", "tf", "roberta", "fill-mask", "generated_from_keras_callback", "base_model:distilbert/distilroberta-base", "base_model:finetune:distilbert/distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-11-27T04:24:16Z
--- license: apache-2.0 base_model: distilroberta-base tags: - generated_from_keras_callback model-index: - name: RR6/my_awesome_eli5_mlm_model results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # RR6/my_awesome_eli5_mlm_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8759 - Validation Loss: 1.8204 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.0352 | 1.8056 | 0 | | 1.9320 | 1.7912 | 1 | | 1.8759 | 1.8204 | 2 | ### Framework versions - Transformers 4.36.2 - TensorFlow 2.15.0 - Datasets 2.16.1 - Tokenizers 0.15.0
aaa12963337/msi-nat-mini
aaa12963337
2024-01-03T04:47:43Z
15
0
transformers
[ "transformers", "safetensors", "nat", "image-classification", "generated_from_trainer", "dataset:imagefolder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-14T12:13:53Z
--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: msi-nat-mini results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6308708414872799 - name: F1 type: f1 value: 0.47632740072381147 - name: Precision type: precision value: 0.6193914388860238 - name: Recall type: recall value: 0.3869512686266613 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-nat-mini This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8600 - Accuracy: 0.6309 - F1: 0.4763 - Precision: 0.6194 - Recall: 0.3870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5496 | 1.0 | 2015 | 0.7573 | 0.5955 | 0.4196 | 0.5559 | 0.3369 | | 0.4807 | 2.0 | 4031 | 0.7416 | 0.6309 | 0.4981 | 0.6074 | 0.4222 | | 0.4235 | 3.0 | 6047 | 0.7680 | 0.6325 | 0.5047 | 0.6076 | 0.4317 | | 0.3879 | 4.0 | 8063 | 0.7875 | 0.6339 | 0.4923 | 0.6179 | 0.4092 | | 0.3702 | 5.0 | 10078 | 0.7923 | 0.6383 | 0.5128 | 0.6168 | 0.4388 | | 0.3568 | 6.0 | 12094 | 0.8311 | 0.6313 | 0.4969 | 0.6090 | 0.4197 | | 0.3661 | 7.0 | 14110 | 0.8345 | 0.6316 | 0.4843 | 0.6166 | 0.3987 | | 0.354 | 8.0 | 16126 | 0.8501 | 0.6305 | 0.4800 | 0.6162 | 0.3931 | | 0.3569 | 9.0 | 18141 | 0.8552 | 0.6318 | 0.4809 | 0.6193 | 0.3931 | | 0.3536 | 10.0 | 20150 | 0.8600 | 0.6309 | 0.4763 | 0.6194 | 0.3870 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
Kshitij2406/GPT_Test_F
Kshitij2406
2024-01-03T04:25:08Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b", "base_model:adapter:tiiuae/falcon-7b", "region:us" ]
null
2024-01-03T04:15:15Z
--- library_name: peft base_model: tiiuae/falcon-7b --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
LoneStriker/tora-70b-v1.0-4.0bpw-h6-exl2
LoneStriker
2024-01-03T04:22:12Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "math", "en", "dataset:gsm8k", "dataset:competition_math", "arxiv:2309.17452", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T04:08:11Z
--- license: llama2 datasets: - gsm8k - competition_math language: - en metrics: - exact_match library_name: transformers pipeline_tag: text-generation tags: - code - math --- <h1 align="center"> ToRA: A Tool-Integrated Reasoning Agent <br> for Mathematical Problem Solving </h1> <p align="center"> <a href="https://microsoft.github.io/ToRA/"><b>[🌐 Website]</b></a> • <a href="https://arxiv.org/abs/2309.17452"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/llm-agents"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/microsoft/ToRA"><b>[🐱 GitHub]</b></a> <br> <a href="https://twitter.com/zhs05232838/status/1708860992631763092"><b>[🐦 Twitter]</b></a> • <a href="https://www.reddit.com/r/LocalLLaMA/comments/1703k6d/tora_a_toolintegrated_reasoning_agent_for/"><b>[💬 Reddit]</b></a> • <a href="https://notes.aimodels.fyi/researchers-announce-tora-training-language-models-to-better-understand-math-using-external-tools/">[🍀 Unofficial Blog]</a> <!-- <a href="#-quick-start">Quick Start</a> • --> <!-- <a href="#%EF%B8%8F-citation">Citation</a> --> </p> <p align="center"> Repo for "<a href="https://arxiv.org/abs/2309.17452" target="_blank">ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving</a>" </p> ## 🔥 News - [2023/10/08] 🔥🔥🔥 All ToRA models released at [HuggingFace](https://huggingface.co/llm-agents)!!! - [2023/09/29] ToRA paper, repo, and website released. ## 💡 Introduction ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical reasoning problems by interacting with tools, e.g., computation libraries and symbolic solvers. ToRA series seamlessly integrate natural language reasoning with the utilization of external tools, thereby amalgamating the analytical prowess of language and the computational efficiency of external tools. | Model | Size | GSM8k | MATH | AVG@10 math tasks<sup>&dagger;</sup> | |---|---|---|---|---| | GPT-4 | - | 92.0 | 42.5 | 78.3 | | GPT-4 (PAL) | - | 94.2 | 51.8 | 86.4 | | [ToRA-7B](https://huggingface.co/llm-agents/tora-7b-v1.0) | 7B | 68.8 | 40.1 | 62.4| | [ToRA-Code-7B](https://huggingface.co/llm-agents/tora-code-7b-v1.0) | 7B | 72.6 | 44.6 | 66.5| | [ToRA-13B](https://huggingface.co/llm-agents/tora-13b-v1.0) | 13B | 72.7 | 43.0 | 65.9| | [ToRA-Code-13B](https://huggingface.co/llm-agents/tora-code-13b-v1.0) | 13B | 75.8 | 48.1 | 71.3 | | [ToRA-Code-34B<sup>*</sup>](https://huggingface.co/llm-agents/tora-code-34b-v1.0) | 34B | 80.7 | **51.0** | 74.8 | | [ToRA-70B](https://huggingface.co/llm-agents/tora-70b-v1.0) | 70B | **84.3** | 49.7 | **76.9** | - <sup>*</sup>ToRA-Code-34B is currently the first and only open-source model to achieve over 50% accuracy (pass@1) on the MATH dataset, which significantly outperforms GPT-4’s CoT result (51.0 vs. 42.5), and is competitive with GPT-4 solving problems with programs. By open-sourcing our codes and models, we hope more breakthroughs will come! - <sup>&dagger;</sup>10 math tasks include GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, SingleEQ, SingleOP, AddSub, and MultiArith. ## ⚡️ Training The models are trained on ToRA-Corpus 16k, which contains tool-integrated reasoning trajectories of MATH and GSM8k from GPT-4. We use imitation learning (i.e., SFT) to fine-tune the models, and then apply our proposed *output space shaping* to improve tool-integrated reasoning behaviors. Please refer to the [paper](https://arxiv.org/pdf/2309.17452.pdf) for more details. ## 🪁 Inference & Evaluation Please refer to ToRA's [GitHub repo](https://github.com/microsoft/ToRA) for inference, evaluation, and training code. ## ☕️ Citation If you find this repository helpful, please consider citing our paper: ``` @misc{gou2023tora, title={ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving}, author={Zhibin Gou and Zhihong Shao and Yeyun Gong and yelong shen and Yujiu Yang and Minlie Huang and Nan Duan and Weizhu Chen}, year={2023}, eprint={2309.17452}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
learn3r/longt5_xl_govreport_4096_memsum_e30
learn3r
2024-01-03T04:15:12Z
1
0
transformers
[ "transformers", "pytorch", "longt5", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-01-01T09:25:17Z
--- tags: - generated_from_trainer model-index: - name: longt5_xl_govreport_4096_memsum_e30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longt5_xl_govreport_4096_memsum_e30 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1073 | 1.0 | 68 | 2.4897 | | 0.0937 | 1.99 | 136 | 2.7041 | | 0.0879 | 2.99 | 204 | 2.6437 | | 0.0821 | 3.99 | 272 | 2.8059 | | 0.0693 | 5.0 | 341 | 2.9269 | | 0.0675 | 6.0 | 409 | 2.8654 | | 0.0622 | 6.99 | 477 | 2.9698 | | 0.065 | 7.99 | 545 | 2.8929 | | 0.0578 | 8.99 | 613 | 2.9282 | | 0.0528 | 9.97 | 680 | 2.9364 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
Kshitij2406/GPT_Test_Falcon
Kshitij2406
2024-01-03T04:08:11Z
4
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:tiiuae/falcon-7b-instruct", "base_model:adapter:tiiuae/falcon-7b-instruct", "region:us" ]
null
2024-01-03T03:57:52Z
--- library_name: peft base_model: tiiuae/falcon-7b-instruct --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
nrshoudi/wav2vec-arabic-V2-50
nrshoudi
2024-01-03T03:44:39Z
6
0
transformers
[ "transformers", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-xls-r-300m", "base_model:finetune:facebook/wav2vec2-xls-r-300m", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-03T00:28:05Z
--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec-arabic-V2-50 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec-arabic-V2-50 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3408 - Wer: 0.0460 - Per: 0.0347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Per | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 10.1558 | 1.0 | 818 | 3.2108 | 1.0 | 1.0 | | 3.0783 | 2.0 | 1636 | 2.0778 | 0.9260 | 0.9396 | | 0.7602 | 3.0 | 2454 | 0.3836 | 0.1023 | 0.0870 | | 0.2361 | 4.0 | 3272 | 0.3251 | 0.0668 | 0.0517 | | 0.1602 | 5.0 | 4090 | 0.3240 | 0.0664 | 0.0515 | | 0.1216 | 6.0 | 4908 | 0.3268 | 0.0673 | 0.0531 | | 0.1078 | 7.0 | 5726 | 0.3501 | 0.0608 | 0.0465 | | 0.0933 | 8.0 | 6544 | 0.3451 | 0.0538 | 0.0402 | | 0.0713 | 9.0 | 7362 | 0.3658 | 0.0539 | 0.0407 | | 0.0687 | 10.0 | 8180 | 0.3106 | 0.0519 | 0.0386 | | 0.0561 | 11.0 | 8998 | 0.3322 | 0.0529 | 0.0396 | | 0.0516 | 12.0 | 9816 | 0.3243 | 0.0484 | 0.0361 | | 0.0392 | 13.0 | 10634 | 0.3412 | 0.0475 | 0.0354 | | 0.037 | 14.0 | 11452 | 0.3370 | 0.0477 | 0.0359 | | 0.0318 | 15.0 | 12270 | 0.3250 | 0.0466 | 0.0358 | | 0.0291 | 16.0 | 13088 | 0.3451 | 0.0477 | 0.0359 | | 0.025 | 17.0 | 13906 | 0.3713 | 0.0486 | 0.0368 | | 0.0274 | 18.0 | 14724 | 0.3299 | 0.0459 | 0.0346 | | 0.0208 | 19.0 | 15542 | 0.3451 | 0.0463 | 0.0349 | | 0.0187 | 20.0 | 16360 | 0.3408 | 0.0460 | 0.0347 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
LoneStriker/tora-70b-v1.0-3.0bpw-h6-exl2
LoneStriker
2024-01-03T03:27:29Z
4
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "math", "en", "dataset:gsm8k", "dataset:competition_math", "arxiv:2309.17452", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T03:16:53Z
--- license: llama2 datasets: - gsm8k - competition_math language: - en metrics: - exact_match library_name: transformers pipeline_tag: text-generation tags: - code - math --- <h1 align="center"> ToRA: A Tool-Integrated Reasoning Agent <br> for Mathematical Problem Solving </h1> <p align="center"> <a href="https://microsoft.github.io/ToRA/"><b>[🌐 Website]</b></a> • <a href="https://arxiv.org/abs/2309.17452"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/llm-agents"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/microsoft/ToRA"><b>[🐱 GitHub]</b></a> <br> <a href="https://twitter.com/zhs05232838/status/1708860992631763092"><b>[🐦 Twitter]</b></a> • <a href="https://www.reddit.com/r/LocalLLaMA/comments/1703k6d/tora_a_toolintegrated_reasoning_agent_for/"><b>[💬 Reddit]</b></a> • <a href="https://notes.aimodels.fyi/researchers-announce-tora-training-language-models-to-better-understand-math-using-external-tools/">[🍀 Unofficial Blog]</a> <!-- <a href="#-quick-start">Quick Start</a> • --> <!-- <a href="#%EF%B8%8F-citation">Citation</a> --> </p> <p align="center"> Repo for "<a href="https://arxiv.org/abs/2309.17452" target="_blank">ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving</a>" </p> ## 🔥 News - [2023/10/08] 🔥🔥🔥 All ToRA models released at [HuggingFace](https://huggingface.co/llm-agents)!!! - [2023/09/29] ToRA paper, repo, and website released. ## 💡 Introduction ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical reasoning problems by interacting with tools, e.g., computation libraries and symbolic solvers. ToRA series seamlessly integrate natural language reasoning with the utilization of external tools, thereby amalgamating the analytical prowess of language and the computational efficiency of external tools. | Model | Size | GSM8k | MATH | AVG@10 math tasks<sup>&dagger;</sup> | |---|---|---|---|---| | GPT-4 | - | 92.0 | 42.5 | 78.3 | | GPT-4 (PAL) | - | 94.2 | 51.8 | 86.4 | | [ToRA-7B](https://huggingface.co/llm-agents/tora-7b-v1.0) | 7B | 68.8 | 40.1 | 62.4| | [ToRA-Code-7B](https://huggingface.co/llm-agents/tora-code-7b-v1.0) | 7B | 72.6 | 44.6 | 66.5| | [ToRA-13B](https://huggingface.co/llm-agents/tora-13b-v1.0) | 13B | 72.7 | 43.0 | 65.9| | [ToRA-Code-13B](https://huggingface.co/llm-agents/tora-code-13b-v1.0) | 13B | 75.8 | 48.1 | 71.3 | | [ToRA-Code-34B<sup>*</sup>](https://huggingface.co/llm-agents/tora-code-34b-v1.0) | 34B | 80.7 | **51.0** | 74.8 | | [ToRA-70B](https://huggingface.co/llm-agents/tora-70b-v1.0) | 70B | **84.3** | 49.7 | **76.9** | - <sup>*</sup>ToRA-Code-34B is currently the first and only open-source model to achieve over 50% accuracy (pass@1) on the MATH dataset, which significantly outperforms GPT-4’s CoT result (51.0 vs. 42.5), and is competitive with GPT-4 solving problems with programs. By open-sourcing our codes and models, we hope more breakthroughs will come! - <sup>&dagger;</sup>10 math tasks include GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, SingleEQ, SingleOP, AddSub, and MultiArith. ## ⚡️ Training The models are trained on ToRA-Corpus 16k, which contains tool-integrated reasoning trajectories of MATH and GSM8k from GPT-4. We use imitation learning (i.e., SFT) to fine-tune the models, and then apply our proposed *output space shaping* to improve tool-integrated reasoning behaviors. Please refer to the [paper](https://arxiv.org/pdf/2309.17452.pdf) for more details. ## 🪁 Inference & Evaluation Please refer to ToRA's [GitHub repo](https://github.com/microsoft/ToRA) for inference, evaluation, and training code. ## ☕️ Citation If you find this repository helpful, please consider citing our paper: ``` @misc{gou2023tora, title={ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving}, author={Zhibin Gou and Zhihong Shao and Yeyun Gong and yelong shen and Yujiu Yang and Minlie Huang and Nan Duan and Weizhu Chen}, year={2023}, eprint={2309.17452}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
alirzb/S5_M1_fold4_swint_42510045
alirzb
2024-01-03T03:25:18Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T01:33:53Z
--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S5_M1_fold4_swint_42510045 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.999194035865404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold4_swint_42510045 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0046 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0062 | 1.0 | 310 | 0.0110 | 0.9976 | | 0.0102 | 2.0 | 620 | 0.0111 | 0.9968 | | 0.011 | 3.0 | 930 | 0.0105 | 0.9976 | | 0.0001 | 4.0 | 1241 | 0.0056 | 0.9990 | | 0.0003 | 5.0 | 1550 | 0.0046 | 0.9992 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
tiagoblima/t5_large-qg-aas
tiagoblima
2024-01-03T03:23:27Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/qg_squad_v1_pt", "base_model:unicamp-dl/ptt5-large-t5-vocab", "base_model:finetune:unicamp-dl/ptt5-large-t5-vocab", "license:mit", "region:us" ]
null
2023-12-31T14:50:01Z
--- license: mit base_model: unicamp-dl/ptt5-large-t5-vocab tags: - generated_from_trainer datasets: - tiagoblima/qg_squad_v1_pt model-index: - name: t5_large-qg-aas results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large-qg-aas This model is a fine-tuned version of [unicamp-dl/ptt5-large-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-large-t5-vocab) on the tiagoblima/qg_squad_v1_pt dataset. It achieves the following results on the evaluation set: - Loss: 4.9208 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.0267 | 1.0 | 808 | 6.6599 | | 5.1565 | 2.0 | 1616 | 5.7159 | | 4.7181 | 3.0 | 2424 | 5.2321 | | 4.4869 | 4.0 | 3232 | 4.9931 | | 4.4539 | 5.0 | 4040 | 4.9208 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0
adityarra07/whisper-medium-gabriel_fold_4
adityarra07
2024-01-03T03:14:00Z
1
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-03T01:21:16Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-gabriel_fold_4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-gabriel_fold_4 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2132 - Wer: 9.6024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6975 | 1.0 | 169 | 0.2328 | 24.6539 | | 0.1201 | 2.0 | 338 | 0.1991 | 10.1031 | | 0.0441 | 3.0 | 507 | 0.2071 | 9.8969 | | 0.0173 | 4.0 | 676 | 0.2069 | 9.7202 | | 0.0056 | 5.0 | 845 | 0.2120 | 9.8675 | | 0.0018 | 6.0 | 1014 | 0.2132 | 9.6024 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
andresesevilla/zoe_LoRA
andresesevilla
2024-01-03T03:03:58Z
1
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-03T03:03:53Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of ZOE person license: openrail++ --- # SDXL LoRA DreamBooth - andresesevilla/zoe_LoRA <Gallery /> ## Model description These are andresesevilla/zoe_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of ZOE person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](andresesevilla/zoe_LoRA/tree/main) them in the Files & versions tab.
kanishka/smolm-autoreg-bpe-counterfactual-babylm-aann-prototypical_only-seed_211-1e-3
kanishka
2024-01-03T02:55:27Z
3
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T04:25:57Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual-babylm-prototypical_only-seed_211-1e-3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-counterfactual-babylm-prototypical_only-seed_211-1e-3 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.3871 - Accuracy: 0.4118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 211 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.6086 | 1.0 | 18593 | 3.7866 | 0.3570 | | 3.3876 | 2.0 | 37186 | 3.5895 | 0.3814 | | 3.2566 | 3.0 | 55779 | 3.4826 | 0.3920 | | 3.1766 | 4.0 | 74372 | 3.4033 | 0.3996 | | 3.1188 | 5.0 | 92965 | 3.4073 | 0.4015 | | 3.0796 | 6.0 | 111558 | 3.3821 | 0.4045 | | 3.0412 | 7.0 | 130151 | 3.3505 | 0.4082 | | 3.0092 | 8.0 | 148744 | 3.3533 | 0.4078 | | 2.9817 | 9.0 | 167337 | 3.3516 | 0.4085 | | 2.9541 | 10.0 | 185930 | 3.3482 | 0.4095 | | 2.9354 | 11.0 | 204523 | 3.3638 | 0.4100 | | 2.9126 | 12.0 | 223116 | 3.3272 | 0.4119 | | 2.8898 | 13.0 | 241709 | 3.3513 | 0.4110 | | 2.8735 | 14.0 | 260302 | 3.3416 | 0.4124 | | 2.8536 | 15.0 | 278895 | 3.3536 | 0.4122 | | 2.8328 | 16.0 | 297488 | 3.3505 | 0.4125 | | 2.8111 | 17.0 | 316081 | 3.3719 | 0.4116 | | 2.7953 | 18.0 | 334674 | 3.3815 | 0.4117 | | 2.7733 | 19.0 | 353267 | 3.3844 | 0.4118 | | 2.7618 | 20.0 | 371860 | 3.3871 | 0.4118 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.14.1
alirzb/S5_M1_fold3_swint_42510044
alirzb
2024-01-03T02:54:31Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T01:09:31Z
--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S5_M1_fold3_swint_42510044 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.999194035865404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold3_swint_42510044 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0024 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0448 | 1.0 | 310 | 0.0119 | 0.9966 | | 0.0077 | 2.0 | 620 | 0.0027 | 0.9994 | | 0.0005 | 3.0 | 930 | 0.0037 | 0.9988 | | 0.0001 | 4.0 | 1241 | 0.0017 | 0.9992 | | 0.0001 | 5.0 | 1550 | 0.0024 | 0.9992 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
umm-maybe/AI-image-detector
umm-maybe
2024-01-03T02:51:55Z
4,694
54
transformers
[ "transformers", "pytorch", "autotrain", "vision", "image-classification", "license:cc-by-4.0", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
image-classification
2022-10-04T17:12:25Z
--- tags: - autotrain - vision - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 7.940487247386902 license: cc-by-4.0 --- *__NOTE__: Unless you are trying to detect imagery generated using older models such as VQGAN+CLIP, please use the [updated version](https://huggingface.co/Organika/sdxl-detector) of this detector instead.* This model is a proof-of-concept demonstration of using a ViT model to predict whether an artistic image was generated using AI. It was created in October 2022, and as such, the training data did not include any samples generated by Midjourney 5, SDXL, or DALLE-3. It still may be able to correctly identify samples from these more recent models due to being trained on outputs of their predecessors. Furthermore the intended scope of this tool is artistic images; that is to say, it is not a deepfake photo detector, and general computer imagery (webcams, screenshots, etc.) may throw it off. In general, this tool can only serve as one of many potential indicators that an image was AI-generated. Images scoring as very probably artificial (e.g. 90% or higher) could be referred to a human expert for further investigation, if needed. For more information please see the blog post describing this project at: https://medium.com/@matthewmaybe/can-an-ai-learn-to-identify-ai-art-545d9d6af226 # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1519658722 - CO2 Emissions (in grams): 7.9405 ## Validation Metrics - Loss: 0.163 - Accuracy: 0.942 - Precision: 0.938 - Recall: 0.978 - AUC: 0.980 - F1: 0.958 # License Notice This work is licensed under a [Creative Commons Attribution-NoDerivatives 4.0 International License](https://creativecommons.org/licenses/by-nd/4.0/). You may distribute and make this model available to others as part of your own web page, app, or service so long as you provide attribution. However, use of this model within text-to-image systems to evade AI image detection would be considered a "derivative work" and as such prohibited by the license terms.
kanishka/smolm-autoreg-bpe-counterfactual-babylm-aann-no_prototypical-seed_211-3e-4
kanishka
2024-01-03T02:51:28Z
3
0
transformers
[ "transformers", "safetensors", "opt", "text-generation", "generated_from_trainer", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T04:24:26Z
--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: smolm-autoreg-bpe-counterfactual-babylm-no_prototypical-seed_211-3e-4 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # smolm-autoreg-bpe-counterfactual-babylm-no_prototypical-seed_211-3e-4 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.4074 - Accuracy: 0.4086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 64 - seed: 211 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 3.7439 | 1.0 | 18593 | 3.9121 | 0.3459 | | 3.438 | 2.0 | 37186 | 3.6178 | 0.3756 | | 3.2947 | 3.0 | 55779 | 3.4715 | 0.3901 | | 3.2076 | 4.0 | 74372 | 3.4140 | 0.3965 | | 3.1477 | 5.0 | 92965 | 3.3983 | 0.3996 | | 3.1015 | 6.0 | 111558 | 3.3692 | 0.4021 | | 3.0662 | 7.0 | 130151 | 3.3772 | 0.4036 | | 3.0315 | 8.0 | 148744 | 3.3735 | 0.4036 | | 3.0003 | 9.0 | 167337 | 3.3651 | 0.4057 | | 2.9732 | 10.0 | 185930 | 3.3708 | 0.4063 | | 2.9496 | 11.0 | 204523 | 3.3636 | 0.4073 | | 2.9243 | 12.0 | 223116 | 3.3660 | 0.4085 | | 2.9041 | 13.0 | 241709 | 3.3552 | 0.4089 | | 2.8866 | 14.0 | 260302 | 3.3649 | 0.4087 | | 2.8654 | 15.0 | 278895 | 3.3720 | 0.4086 | | 2.846 | 16.0 | 297488 | 3.3842 | 0.4086 | | 2.8252 | 17.0 | 316081 | 3.3945 | 0.4084 | | 2.8084 | 18.0 | 334674 | 3.4002 | 0.4086 | | 2.7871 | 19.0 | 353267 | 3.3996 | 0.4087 | | 2.7718 | 20.0 | 371860 | 3.4074 | 0.4086 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.14.1
alirzb/S5_M1_fold2_swint_42510043
alirzb
2024-01-03T02:48:59Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T00:53:27Z
--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S5_M1_fold2_swint_42510043 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.998589562764457 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold2_swint_42510043 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0066 - Accuracy: 0.9986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0158 | 1.0 | 310 | 0.0185 | 0.9950 | | 0.001 | 2.0 | 620 | 0.0113 | 0.9968 | | 0.0001 | 3.0 | 930 | 0.0057 | 0.9986 | | 0.0004 | 4.0 | 1241 | 0.0077 | 0.9988 | | 0.0065 | 5.0 | 1550 | 0.0066 | 0.9986 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
xnscdev/taxi-v3
xnscdev
2024-01-03T02:45:49Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T02:45:44Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.48 +/- 2.63 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="xnscdev/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
AlfredBink/bart-cnn-samsum-peft-trained
AlfredBink
2024-01-03T02:45:42Z
0
0
null
[ "tensorboard", "safetensors", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "region:us" ]
null
2024-01-03T02:04:32Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer model-index: - name: bart-cnn-samsum-peft-trained results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-samsum-peft-trained This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.917 | 1.0 | 100 | 3.4752 | | 2.7459 | 2.0 | 200 | 2.3807 | | 0.6179 | 3.0 | 300 | 0.4225 | | 0.086 | 4.0 | 400 | 0.0840 | | 0.0725 | 5.0 | 500 | 0.0653 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
xnscdev/q-FrozenLake-v1-4x4-noSlippery
xnscdev
2024-01-03T02:43:25Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T02:43:20Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="xnscdev/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Chat-Error/Kimiko-10.7B-v3
Chat-Error
2024-01-03T02:40:11Z
194
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "dataset:nRuaif/Kimiko_v3-v0.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T23:13:17Z
--- datasets: - nRuaif/Kimiko_v3-v0.1 --- Experiment model train with my new data. prompt format is Alpaca, you can add (length:tiny), (length:long) to the end of ### Response: to control leng
yupengchen/Reinforce-cartpole
yupengchen
2024-01-03T02:37:21Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T02:37:09Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-cartpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 500.00 +/- 0.00 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
LoneStriker/tora-70b-v1.0-2.4bpw-h6-exl2
LoneStriker
2024-01-03T02:36:16Z
2
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "code", "math", "en", "dataset:gsm8k", "dataset:competition_math", "arxiv:2309.17452", "license:llama2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-03T02:27:41Z
--- license: llama2 datasets: - gsm8k - competition_math language: - en metrics: - exact_match library_name: transformers pipeline_tag: text-generation tags: - code - math --- <h1 align="center"> ToRA: A Tool-Integrated Reasoning Agent <br> for Mathematical Problem Solving </h1> <p align="center"> <a href="https://microsoft.github.io/ToRA/"><b>[🌐 Website]</b></a> • <a href="https://arxiv.org/abs/2309.17452"><b>[📜 Paper]</b></a> • <a href="https://huggingface.co/llm-agents"><b>[🤗 HF Models]</b></a> • <a href="https://github.com/microsoft/ToRA"><b>[🐱 GitHub]</b></a> <br> <a href="https://twitter.com/zhs05232838/status/1708860992631763092"><b>[🐦 Twitter]</b></a> • <a href="https://www.reddit.com/r/LocalLLaMA/comments/1703k6d/tora_a_toolintegrated_reasoning_agent_for/"><b>[💬 Reddit]</b></a> • <a href="https://notes.aimodels.fyi/researchers-announce-tora-training-language-models-to-better-understand-math-using-external-tools/">[🍀 Unofficial Blog]</a> <!-- <a href="#-quick-start">Quick Start</a> • --> <!-- <a href="#%EF%B8%8F-citation">Citation</a> --> </p> <p align="center"> Repo for "<a href="https://arxiv.org/abs/2309.17452" target="_blank">ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving</a>" </p> ## 🔥 News - [2023/10/08] 🔥🔥🔥 All ToRA models released at [HuggingFace](https://huggingface.co/llm-agents)!!! - [2023/09/29] ToRA paper, repo, and website released. ## 💡 Introduction ToRA is a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical reasoning problems by interacting with tools, e.g., computation libraries and symbolic solvers. ToRA series seamlessly integrate natural language reasoning with the utilization of external tools, thereby amalgamating the analytical prowess of language and the computational efficiency of external tools. | Model | Size | GSM8k | MATH | AVG@10 math tasks<sup>&dagger;</sup> | |---|---|---|---|---| | GPT-4 | - | 92.0 | 42.5 | 78.3 | | GPT-4 (PAL) | - | 94.2 | 51.8 | 86.4 | | [ToRA-7B](https://huggingface.co/llm-agents/tora-7b-v1.0) | 7B | 68.8 | 40.1 | 62.4| | [ToRA-Code-7B](https://huggingface.co/llm-agents/tora-code-7b-v1.0) | 7B | 72.6 | 44.6 | 66.5| | [ToRA-13B](https://huggingface.co/llm-agents/tora-13b-v1.0) | 13B | 72.7 | 43.0 | 65.9| | [ToRA-Code-13B](https://huggingface.co/llm-agents/tora-code-13b-v1.0) | 13B | 75.8 | 48.1 | 71.3 | | [ToRA-Code-34B<sup>*</sup>](https://huggingface.co/llm-agents/tora-code-34b-v1.0) | 34B | 80.7 | **51.0** | 74.8 | | [ToRA-70B](https://huggingface.co/llm-agents/tora-70b-v1.0) | 70B | **84.3** | 49.7 | **76.9** | - <sup>*</sup>ToRA-Code-34B is currently the first and only open-source model to achieve over 50% accuracy (pass@1) on the MATH dataset, which significantly outperforms GPT-4’s CoT result (51.0 vs. 42.5), and is competitive with GPT-4 solving problems with programs. By open-sourcing our codes and models, we hope more breakthroughs will come! - <sup>&dagger;</sup>10 math tasks include GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, SingleEQ, SingleOP, AddSub, and MultiArith. ## ⚡️ Training The models are trained on ToRA-Corpus 16k, which contains tool-integrated reasoning trajectories of MATH and GSM8k from GPT-4. We use imitation learning (i.e., SFT) to fine-tune the models, and then apply our proposed *output space shaping* to improve tool-integrated reasoning behaviors. Please refer to the [paper](https://arxiv.org/pdf/2309.17452.pdf) for more details. ## 🪁 Inference & Evaluation Please refer to ToRA's [GitHub repo](https://github.com/microsoft/ToRA) for inference, evaluation, and training code. ## ☕️ Citation If you find this repository helpful, please consider citing our paper: ``` @misc{gou2023tora, title={ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving}, author={Zhibin Gou and Zhihong Shao and Yeyun Gong and yelong shen and Yujiu Yang and Minlie Huang and Nan Duan and Weizhu Chen}, year={2023}, eprint={2309.17452}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
alirzb/S5_M1_fold1_swint_42510042
alirzb
2024-01-03T02:27:19Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-03T00:33:51Z
--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S5_M1_fold1_swint_42510042 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.999194035865404 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold1_swint_42510042 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0038 - Accuracy: 0.9992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0406 | 1.0 | 310 | 0.0068 | 0.9978 | | 0.0007 | 2.0 | 620 | 0.0046 | 0.9986 | | 0.0003 | 3.0 | 930 | 0.0036 | 0.9990 | | 0.0001 | 4.0 | 1241 | 0.0025 | 0.9994 | | 0.0001 | 5.0 | 1550 | 0.0038 | 0.9992 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ
TheBloke
2024-01-03T02:25:07Z
9
3
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "base_model:OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k", "base_model:quantized:OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-01-03T00:27:29Z
--- base_model: OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k inference: false language: - zh - en - fr - de - ja - ko - it - ru library_name: transformers license: apache-2.0 model_creator: OpenBuddy model_name: Openbuddy Mixtral 7Bx8 V16.3 32K model_type: mixtral pipeline_tag: text-generation prompt_template: "You are a helpful, respectful and honest INTP-T AI Assistant named\ \ Buddy. You are talking to a human User.\nAlways answer as helpfully and logically\ \ as possible, while being safe. Your answers should not include any harmful, political,\ \ religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please\ \ ensure that your responses are socially unbiased and positive in nature.\nIf a\ \ question does not make any sense, or is not factually coherent, explain why instead\ \ of answering something not correct. If you don't know the answer to a question,\ \ please don't share false information.\nYou like to use emojis. You can speak fluently\ \ in many languages, for example: English, Chinese.\nYou cannot access the internet,\ \ but you have vast knowledge, cutoff: 2021-09.\nYou are trained by OpenBuddy team,\ \ (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based\ \ on LLaMA and Falcon transformers model, not related to GPT or OpenAI.\n\nUser:\ \ {prompt}\nAssistant: \n" quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Openbuddy Mixtral 7Bx8 V16.3 32K - AWQ - Model creator: [OpenBuddy](https://huggingface.co/OpenBuddy) - Original model: [Openbuddy Mixtral 7Bx8 V16.3 32K](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k) <!-- description start --> ## Description This repo contains AWQ model files for [OpenBuddy's Openbuddy Mixtral 7Bx8 V16.3 32K](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). **MIXTRAL AWQ** This is a Mixtral AWQ model. For AutoAWQ inference, please install AutoAWQ 0.1.8 or later. Support via Transformers is also available, but currently requires installing Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers.git` vLLM: version 0.2.6 is confirmed to support Mixtral AWQs. TGI: I tested version 1.3.3 and it loaded the model fine, but I was not able to get any output back. Further testing/debug is required. (Let me know if you get it working!) ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. AWQ models are supported by (note that not all of these may support Mixtral models yet - see above): - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF) * [OpenBuddy's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: OpenBuddy ``` You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. User: {prompt} Assistant: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 24.73 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `openbuddy-mixtral-7bx8-v16.3-32k-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. User: {prompt} Assistant: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. User: {prompt} Assistant: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. User: {prompt} Assistant: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: OpenBuddy's Openbuddy Mixtral 7Bx8 V16.3 32K # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
xiaol/MyPdfChat-RWKV
xiaol
2024-01-03T02:24:09Z
0
0
null
[ "en", "zh", "de", "fr", "ar", "pl", "ja", "ko", "license:apache-2.0", "region:us" ]
null
2024-01-03T02:21:44Z
--- license: apache-2.0 language: - en - zh - de - fr - ar - pl - ja - ko --- Copy from this [model card](https://huggingface.co/MyPdfChat/MyPdfChat) # MyPdfChat - Private PDF Chat based on LLM can run on any PC. **MyPdfChat** is using a private 7B RWKV language model designed to run locally and facilitate secure PDF-based chat conversations. With RWKV, you can have confidential and encrypted conversations in PDF format, ensuring the privacy of your discussions. ## Features - **Privacy**: MyPdfChat runs locally on your machine, ensuring that your conversations remain private and secure. - **PDF Chat**: MyPdfChat enables you to have chat conversations within PDF documents, providing a unique and secure communication method. - **Encryption**: All chat messages are encrypted to protect the confidentiality of your discussions. - **Offline Access**: Since RWKV runs locally, you can use it even without an internet connection. ## Installation - To install MyPdfChat from the release, follow these instructions: - ### Step 1: - Download the Release1. Go to the [Mychatpdf huggingface repo](https://huggingface.co/MyPdfChat/MyPdfChat).2. Download the latest release zip (`mychatpdf-vX.X.X.zip`). - ### Step 2: - Extract the Release1. Locate the downloaded `mychatpdf-vX.X.X.zip` file on your system.2. Extract the contents of the zip file to a directory of your choice. - ### Step 3: - double click the MyPdfchat.exe ## Usage1. - chat with you PDF file ## Contributions - Contributions to MyPdfChat are welcome! If you encounter any issues or have suggestions for improvements, please open an issue on the [GitHub repository](https://github.com/mypdfchat/MypdfChat). ## License - MyPdfChat is released under the [MIT License](https://opensource.org/licenses/MIT). ## Acknowledgements - We would like to thank the open-source community for their invaluable contributions to the development of MyPdfChat. ## Contact - For any inquiries or support, please contact us at [email protected]---Thank you for using RWKV! We hope you enjoy your private and secure PDF chat experience.
TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF
TheBloke
2024-01-03T02:24:00Z
105
12
transformers
[ "transformers", "gguf", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "base_model:OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k", "base_model:quantized:OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k", "license:apache-2.0", "region:us" ]
text-generation
2024-01-02T23:00:23Z
--- base_model: OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k inference: false language: - zh - en - fr - de - ja - ko - it - ru library_name: transformers license: apache-2.0 model_creator: OpenBuddy model_name: Openbuddy Mixtral 7Bx8 V16.3 32K model_type: mixtral pipeline_tag: text-generation prompt_template: "You are a helpful, respectful and honest INTP-T AI Assistant named\ \ Buddy. You are talking to a human User.\nAlways answer as helpfully and logically\ \ as possible, while being safe. Your answers should not include any harmful, political,\ \ religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please\ \ ensure that your responses are socially unbiased and positive in nature.\nIf a\ \ question does not make any sense, or is not factually coherent, explain why instead\ \ of answering something not correct. If you don't know the answer to a question,\ \ please don't share false information.\nYou like to use emojis. You can speak fluently\ \ in many languages, for example: English, Chinese.\nYou cannot access the internet,\ \ but you have vast knowledge, cutoff: 2021-09.\nYou are trained by OpenBuddy team,\ \ (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based\ \ on LLaMA and Falcon transformers model, not related to GPT or OpenAI.\n\nUser:\ \ {prompt}\nAssistant: \n" quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Openbuddy Mixtral 7Bx8 V16.3 32K - GGUF - Model creator: [OpenBuddy](https://huggingface.co/OpenBuddy) - Original model: [Openbuddy Mixtral 7Bx8 V16.3 32K](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k) <!-- description start --> ## Description This repo contains GGUF format model files for [OpenBuddy's Openbuddy Mixtral 7Bx8 V16.3 32K](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF) * [OpenBuddy's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenBuddy/openbuddy-mixtral-7bx8-v16.3-32k) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: OpenBuddy ``` You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User. Always answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. You like to use emojis. You can speak fluently in many languages, for example: English, Chinese. You cannot access the internet, but you have vast knowledge, cutoff: 2021-09. You are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI. User: {prompt} Assistant: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [openbuddy-mixtral-7bx8-v16.3-32k.Q2_K.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q2_K.gguf) | Q2_K | 2 | 15.67 GB| 18.17 GB | smallest, significant quality loss - not recommended for most purposes | | [openbuddy-mixtral-7bx8-v16.3-32k.Q3_K_M.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q3_K_M.gguf) | Q3_K_M | 3 | 20.39 GB| 22.89 GB | very small, high quality loss | | [openbuddy-mixtral-7bx8-v16.3-32k.Q4_0.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q4_0.gguf) | Q4_0 | 4 | 26.47 GB| 28.97 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf) | Q4_K_M | 4 | 26.47 GB| 28.97 GB | medium, balanced quality - recommended | | [openbuddy-mixtral-7bx8-v16.3-32k.Q5_0.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q5_0.gguf) | Q5_0 | 5 | 32.26 GB| 34.76 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openbuddy-mixtral-7bx8-v16.3-32k.Q5_K_M.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q5_K_M.gguf) | Q5_K_M | 5 | 32.26 GB| 34.76 GB | large, very low quality loss - recommended | | [openbuddy-mixtral-7bx8-v16.3-32k.Q6_K.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q6_K.gguf) | Q6_K | 6 | 38.41 GB| 40.91 GB | very large, extremely low quality loss | | [openbuddy-mixtral-7bx8-v16.3-32k.Q8_0.gguf](https://huggingface.co/TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF/blob/main/openbuddy-mixtral-7bx8-v16.3-32k.Q8_0.gguf) | Q8_0 | 8 | 49.67 GB| 52.17 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF and below it, a specific filename to download, such as: openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/openbuddy-mixtral-7bx8-v16.3-32k-GGUF openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User.\nAlways answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\nYou like to use emojis. You can speak fluently in many languages, for example: English, Chinese.\nYou cannot access the internet, but you have vast knowledge, cutoff: 2021-09.\nYou are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI.\n\nUser: {prompt}\nAssistant:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "You are a helpful, respectful and honest INTP-T AI Assistant named Buddy. You are talking to a human User.\nAlways answer as helpfully and logically as possible, while being safe. Your answers should not include any harmful, political, religious, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\nYou like to use emojis. You can speak fluently in many languages, for example: English, Chinese.\nYou cannot access the internet, but you have vast knowledge, cutoff: 2021-09.\nYou are trained by OpenBuddy team, (https://openbuddy.ai, https://github.com/OpenBuddy/OpenBuddy), you are based on LLaMA and Falcon transformers model, not related to GPT or OpenAI.\n\nUser: {prompt}\nAssistant:", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./openbuddy-mixtral-7bx8-v16.3-32k.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: OpenBuddy's Openbuddy Mixtral 7Bx8 V16.3 32K # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。 <!-- original-model-card end -->
LoicSteve/Reinforce-CartPole-v1
LoicSteve
2024-01-03T02:23:31Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T02:06:39Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 490.90 +/- 27.30 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Obrolin/Kesehatan-7B-v0.1
Obrolin
2024-01-03T02:20:32Z
219
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "medical", "conversational", "id", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-31T16:31:43Z
--- license: cc-by-nc-4.0 language: - id pipeline_tag: text-generation tags: - medical --- ## Obrolin Kesehatan! Sesuai dengan namanya, Kesehatan! model AI ini telah dilatih dengan berbagai dataset di bidang kesehatan dalam Bahasa Indonesia seperti penyakit, obat-obatan, dan lain lain yang berhubungan dengan kesehatan! **Meskipun "Obrolin Kesehatan" dirancang untuk memberikan informasi kesehatan yang bermanfaat, perlu diingat bahwa jawaban yang dihasilkan oleh model ini tidak selalu akurat dan tidak dapat menggantikan konsultasi langsung dengan dokter** Anggap temen ngobrol aja ya :) --- *As the name suggests, Health! This AI model has been drilled with various datasets in the health sector in Bahasa Indonesia such as diseases, medicines, and others related to health!* ***Although "Obrolin Kesehatan" is designed to provide useful health information, please remember that the answers generated by this model are not always accurate and cannot replace direct consultation with a doctor*** Just think of it as friends, okay? :) ## System Prompt (Optional) : ``` Kamu adalah Obrolin, asisten AI yang memiliki pengetahuan di bidang kesehatan ``` ## Output Example : ![i1](https://huggingface.co/Obrolin/Kesehatan-7B/resolve/main/2.png) ![i2](https://huggingface.co/Obrolin/Kesehatan-7B/resolve/main/1.png) *SillyTavern default settings, Q8_0.GGUF* ## Still in alpha build, don't expect perfection just yet :) ## License This model is made available under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/), which allows anyone to share and adapt the material for non-commercial purposes, with appropriate attribution. ## Based on [azale-ai/Starstreak-7b-beta](https://huggingface.co/azale-ai/Starstreak-7b-beta)! ``` @software{Hafidh_Soekma_Startstreak_7b_beta_2023, author = {Hafidh Soekma Ardiansyah}, month = october, title = {Startstreak: Traditional Indonesian Multilingual Language Model}, url = {\url{https://huggingface.co/azale-ai/Starstreak-7b-beta}}, publisher = {HuggingFace}, journal = {HuggingFace Models}, version = {1.0}, year = {2023} } ``` ## Citation ``` @misc{Obrolin/Kesehatan-7B, author = {Arkan Bima}, title = {Obrolin Kesehatan}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/Obrolin/Kesehatan-7B}}, version = {0.1}, year = {2024}, } ```
Berkem/finetune_deepspeed_deepseek
Berkem
2024-01-03T02:06:05Z
6
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "base_model:deepseek-ai/deepseek-coder-6.7b-instruct", "base_model:finetune:deepseek-ai/deepseek-coder-6.7b-instruct", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T12:34:03Z
--- license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - generated_from_trainer model-index: - name: finetune_deepspeed_deepseek results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetune_deepspeed_deepseek This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2286 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 4 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1482 | 1.0 | 1559 | 0.2420 | | 0.0969 | 2.0 | 3118 | 0.2178 | | 0.0761 | 3.0 | 4677 | 0.1981 | | 0.0561 | 4.0 | 6236 | 0.1966 | | 0.0469 | 5.0 | 7795 | 0.1977 | | 0.0401 | 6.0 | 9354 | 0.1979 | | 0.032 | 7.0 | 10913 | 0.2009 | | 0.028 | 8.0 | 12472 | 0.2091 | | 0.0254 | 9.0 | 14031 | 0.2252 | | 0.0275 | 10.0 | 15590 | 0.2286 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
BWangila/q-FrozenLake-v1-4x4-noSlippery
BWangila
2024-01-03T02:06:03Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T02:05:59Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="BWangila/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
tiagoblima/t5_base-qg-aas
tiagoblima
2024-01-03T02:04:32Z
0
0
null
[ "safetensors", "generated_from_trainer", "dataset:tiagoblima/qg_squad_v1_pt", "base_model:unicamp-dl/ptt5-base-t5-vocab", "base_model:finetune:unicamp-dl/ptt5-base-t5-vocab", "license:mit", "region:us" ]
null
2024-01-02T23:16:03Z
--- license: mit base_model: unicamp-dl/ptt5-base-t5-vocab tags: - generated_from_trainer datasets: - tiagoblima/qg_squad_v1_pt model-index: - name: t5_base-qg-aas results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_base-qg-aas This model is a fine-tuned version of [unicamp-dl/ptt5-base-t5-vocab](https://huggingface.co/unicamp-dl/ptt5-base-t5-vocab) on the tiagoblima/qg_squad_v1_pt dataset. It achieves the following results on the evaluation set: - Loss: 5.5207 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 64 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 6.307 | 1.0 | 808 | 7.2623 | | 5.5213 | 2.0 | 1616 | 6.3641 | | 5.1108 | 3.0 | 2424 | 5.8625 | | 4.8497 | 4.0 | 3232 | 5.6018 | | 4.8246 | 5.0 | 4040 | 5.5207 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
ntc-ai/SDXL-LoRA-slider.crowd-of-people
ntc-ai
2024-01-03T02:02:14Z
21
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion-xl", "lora", "template:sd-lora", "template:sdxl-lora", "sdxl-sliders", "ntcai.xyz-sliders", "concept", "en", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:mit", "region:us" ]
text-to-image
2024-01-03T02:02:11Z
--- language: - en thumbnail: "images/evaluate/crowd of people.../crowd of people_17_3.0.png" widget: - text: crowd of people output: url: images/crowd of people_17_3.0.png - text: crowd of people output: url: images/crowd of people_19_3.0.png - text: crowd of people output: url: images/crowd of people_20_3.0.png - text: crowd of people output: url: images/crowd of people_21_3.0.png - text: crowd of people output: url: images/crowd of people_22_3.0.png tags: - text-to-image - stable-diffusion-xl - lora - template:sd-lora - template:sdxl-lora - sdxl-sliders - ntcai.xyz-sliders - concept - diffusers license: "mit" inference: false instance_prompt: "crowd of people" base_model: "stabilityai/stable-diffusion-xl-base-1.0" --- # ntcai.xyz slider - crowd of people (SDXL LoRA) | Strength: -3 | Strength: 0 | Strength: 3 | | --- | --- | --- | | <img src="images/crowd of people_17_-3.0.png" width=256 height=256 /> | <img src="images/crowd of people_17_0.0.png" width=256 height=256 /> | <img src="images/crowd of people_17_3.0.png" width=256 height=256 /> | | <img src="images/crowd of people_19_-3.0.png" width=256 height=256 /> | <img src="images/crowd of people_19_0.0.png" width=256 height=256 /> | <img src="images/crowd of people_19_3.0.png" width=256 height=256 /> | | <img src="images/crowd of people_20_-3.0.png" width=256 height=256 /> | <img src="images/crowd of people_20_0.0.png" width=256 height=256 /> | <img src="images/crowd of people_20_3.0.png" width=256 height=256 /> | ## Download Weights for this model are available in Safetensors format. ## Trigger words You can apply this LoRA with trigger words for additional effect: ``` crowd of people ``` ## Use in diffusers ```python from diffusers import StableDiffusionXLPipeline from diffusers import EulerAncestralDiscreteScheduler import torch pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/martyn/sdxl-turbo-mario-merge-top-rated/blob/main/topRatedTurboxlLCM_v10.safetensors") pipe.to("cuda") pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Load the LoRA pipe.load_lora_weights('ntc-ai/SDXL-LoRA-slider.crowd-of-people', weight_name='crowd of people.safetensors', adapter_name="crowd of people") # Activate the LoRA pipe.set_adapters(["crowd of people"], adapter_weights=[2.0]) prompt = "medieval rich kingpin sitting in a tavern, crowd of people" negative_prompt = "nsfw" width = 512 height = 512 num_inference_steps = 10 guidance_scale = 2 image = pipe(prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0] image.save('result.png') ``` ## Support the Patreon If you like this model please consider [joining our Patreon](https://www.patreon.com/NTCAI). By joining our Patreon, you'll gain access to an ever-growing library of over 820+ unique and diverse LoRAs, covering a wide range of styles and genres. You'll also receive early access to new models and updates, exclusive behind-the-scenes content, and the powerful LoRA slider creator, allowing you to craft your own custom LoRAs and experiment with endless possibilities. Your support on Patreon will allow us to continue developing and refining new models. ## Other resources - [CivitAI](https://civitai.com/user/ntc) - Follow ntc on Civit for even more LoRAs - [ntcai.xyz](https://ntcai.xyz) - See ntcai.xyz to find more articles and LoRAs
aaa12963337/msi-nat-mini-pretrain
aaa12963337
2024-01-03T01:47:13Z
11
0
transformers
[ "transformers", "safetensors", "nat", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:shi-labs/nat-mini-in1k-224", "base_model:finetune:shi-labs/nat-mini-in1k-224", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-12-14T10:51:48Z
--- license: mit base_model: shi-labs/nat-mini-in1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: msi-nat-mini-pretrain results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8704735376044568 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # msi-nat-mini-pretrain This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.8705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1151 | 1.0 | 1562 | 0.2480 | 0.9242 | | 0.0453 | 2.0 | 3125 | 0.5128 | 0.8816 | | 0.0466 | 3.0 | 4686 | 0.6286 | 0.8705 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0
iamdanialkamali/Reinforce-1
iamdanialkamali
2024-01-03T01:23:54Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T01:08:49Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 18.00 +/- 5.27 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
andrew-ye/rl_course_vizdoom_health_gathering_supreme
andrew-ye
2024-01-03T01:19:39Z
0
0
sample-factory
[ "sample-factory", "tensorboard", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2024-01-03T01:19:24Z
--- library_name: sample-factory tags: - deep-reinforcement-learning - reinforcement-learning - sample-factory model-index: - name: APPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: doom_health_gathering_supreme type: doom_health_gathering_supreme metrics: - type: mean_reward value: 9.46 +/- 5.85 name: mean_reward verified: false --- A(n) **APPO** model trained on the **doom_health_gathering_supreme** environment. This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory. Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/ ## Downloading the model After installing Sample-Factory, download the model with: ``` python -m sample_factory.huggingface.load_from_hub -r andrew-ye/rl_course_vizdoom_health_gathering_supreme ``` ## Using the model To run the model after download, use the `enjoy` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme ``` You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag. See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details ## Training with this model To continue training with this model, use the `train` script corresponding to this environment: ``` python -m .usr.local.lib.python3.10.dist-packages.colab_kernel_launcher --algo=APPO --env=doom_health_gathering_supreme --train_dir=./train_dir --experiment=rl_course_vizdoom_health_gathering_supreme --restart_behavior=resume --train_for_env_steps=10000000000 ``` Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
adityarra07/whisper-medium-gabriel_fold_3
adityarra07
2024-01-03T01:14:56Z
6
0
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-02T23:23:54Z
--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium-gabriel_fold_3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-medium-gabriel_fold_3 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2630 - Wer: 9.1024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6922 | 1.0 | 169 | 0.2475 | 20.0444 | | 0.1187 | 2.0 | 338 | 0.2261 | 9.3879 | | 0.0417 | 3.0 | 507 | 0.2316 | 9.1976 | | 0.0152 | 4.0 | 676 | 0.2547 | 10.0856 | | 0.0046 | 5.0 | 845 | 0.2599 | 8.9439 | | 0.0018 | 6.0 | 1014 | 0.2630 | 9.1024 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
alirzb/S5_M1_fold2_deit_42510038
alirzb
2024-01-03T01:06:05Z
7
0
transformers
[ "transformers", "tensorboard", "safetensors", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-02T23:23:39Z
--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S5_M1_fold2_deit_42510038 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.998388071730808 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S5_M1_fold2_deit_42510038 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0084 - Accuracy: 0.9984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0038 | 1.0 | 310 | 0.0085 | 0.9980 | | 0.0104 | 2.0 | 620 | 0.0051 | 0.9980 | | 0.0016 | 3.0 | 930 | 0.0107 | 0.9984 | | 0.0001 | 4.0 | 1241 | 0.0067 | 0.9988 | | 0.0 | 5.0 | 1550 | 0.0084 | 0.9984 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
adlumal/auslaw-embed-v1.0
adlumal
2024-01-03T00:51:55Z
10
7
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "law", "australia", "legal", "auslaw", "en", "dataset:umarbutler/open-australian-legal-corpus", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-01-02T23:27:49Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - law - australia - legal - auslaw license: apache-2.0 datasets: - umarbutler/open-australian-legal-corpus language: - en --- # AusLaw Embedding Model v1.0 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model is a fine-tune of [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) using the HCA case law in the [Open Australian Legal Corpus](https://huggingface.co/datasets/umarbutler/open-australian-legal-corpus) by Umar Butler. The PDF/OCR cases were not used. The cases were split into < 512 context chunks using the bge-small-en tokeniser and [semchunk](https://github.com/umarbutler/semchunk). [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) was used to generate a legal question for each context chunk. 129,137 context-question pairs were used for training. 14,348 context-question pairs were used for evaluation (see the table below for results). Using a 10% subset of the val dataset the following hit-rate performance was reached and is compared to the base model and OpenAI's default ada embedding model. | **Model** | **Avg. hit-rate** | |---------------------------|-------------------| | BAAI/bge-small-en | 89% | | OpenAI | 92% | | adlumal/auslaw-embed-v1.0 | **97%** | ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('adlumal/auslaw-embed-v1.0') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results The model was evauluated on 10% of the available data. The automated eval results for the final step are presented below. | Eval | Score | |------------------------|--------------| | cos_sim-Accuracy@1 | 0.730206301 | | cos_sim-Accuracy@3 | 0.859562308 | | cos_sim-Accuracy@5 | 0.892737664 | | cos_sim-Accuracy@10 | 0.928352384 | | cos_sim-Precision@1 | 0.730206301 | | cos_sim-Recall@1 | 0.730206301 | | cos_sim-Precision@3 | 0.286520769 | | cos_sim-Recall@3 | 0.859562308 | | cos_sim-Precision@5 | 0.178547533 | | cos_sim-Recall@5 | 0.892737664 | | cos_sim-Precision@10 | 0.092835238 | | cos_sim-Recall@10 | 0.928352384 | | cos_sim-MRR@10 | 0.801075782 | | cos_sim-NDCG@10 | 0.832189447 | | cos_sim-MAP@100 | 0.803593645 | | dot_score-Accuracy@1 | 0.730136604 | | dot_score-Accuracy@3 | 0.859562308 | | dot_score-Accuracy@5 | 0.892737664 | | dot_score-Accuracy@10 | 0.928352384 | | dot_score-Precision@1 | 0.730136604 | | dot_score-Recall@1 | 0.730136604 | | dot_score-Precision@3 | 0.286520769 | | dot_score-Recall@3 | 0.859562308 | | dot_score-Precision@5 | 0.178547533 | | dot_score-Recall@5 | 0.892737664 | | dot_score-Precision@10 | 0.092835238 | | dot_score-Recall@10 | 0.928352384 | | dot_score-MRR@10 | 0.801040934 | | dot_score-NDCG@10 | 0.832163724 | | dot_score-MAP@100 | 0.803558796 | ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 2583 with parameters: ``` {'batch_size': 50, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 516, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors ```bibtex @misc{malec-2024-auslaw-embed-v1, author = {Malec, Adrian Lucas}, year = {2024}, title = {AusLaw Embedding v1.0}, publisher = {Hugging Face}, version = {1.0}, url = {https://huggingface.co/adlumal/auslaw-embed-v1.0} } ```
alirzb/S2_M1_R3_swint_42509601
alirzb
2024-01-03T00:30:09Z
28
0
transformers
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/swin-base-patch4-window7-224", "base_model:finetune:microsoft/swin-base-patch4-window7-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-02T22:52:01Z
--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S2_M1_R3_swint_42509601 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9995166747220879 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S2_M1_R3_swint_42509601 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0038 - Accuracy: 0.9995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0242 | 1.0 | 258 | 0.0034 | 0.9993 | | 0.0004 | 2.0 | 517 | 0.0029 | 0.9995 | | 0.0001 | 3.0 | 776 | 0.0054 | 0.9990 | | 0.0001 | 4.0 | 1035 | 0.0048 | 0.9990 | | 0.0001 | 4.99 | 1290 | 0.0038 | 0.9995 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
nrshoudi/hubert-large-ls960-ft-V2-5
nrshoudi
2024-01-03T00:08:52Z
8
0
transformers
[ "transformers", "safetensors", "hubert", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/hubert-large-ls960-ft", "base_model:finetune:facebook/hubert-large-ls960-ft", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-01-02T23:00:00Z
--- license: apache-2.0 base_model: facebook/hubert-large-ls960-ft tags: - generated_from_trainer metrics: - wer model-index: - name: hubert-large-ls960-ft-V2-5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-large-ls960-ft-V2-5 This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5760 - Wer: 0.1085 - Per: 0.0892 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Per | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 19.707 | 1.0 | 82 | 3.5254 | 1.0 | 1.0 | | 3.4906 | 2.0 | 164 | 3.2483 | 1.0 | 1.0 | | 3.233 | 3.0 | 246 | 3.1368 | 1.0 | 1.0 | | 3.0468 | 4.0 | 328 | 2.9600 | 1.0 | 1.0 | | 2.6751 | 5.0 | 410 | 2.3348 | 1.0 | 1.0 | | 2.0881 | 6.0 | 492 | 1.7351 | 0.8568 | 0.8726 | | 1.4875 | 7.0 | 574 | 1.2264 | 0.6059 | 0.6134 | | 1.0922 | 8.0 | 656 | 0.9666 | 0.4068 | 0.3972 | | 0.8148 | 9.0 | 738 | 0.7746 | 0.3249 | 0.3138 | | 0.6332 | 10.0 | 820 | 0.6755 | 0.2477 | 0.2313 | | 0.4797 | 11.0 | 902 | 0.6262 | 0.1612 | 0.1410 | | 0.3807 | 12.0 | 984 | 0.5765 | 0.1384 | 0.1172 | | 0.3195 | 13.0 | 1066 | 0.5666 | 0.1191 | 0.0992 | | 0.2526 | 14.0 | 1148 | 0.5759 | 0.1165 | 0.0970 | | 0.2417 | 15.0 | 1230 | 0.5460 | 0.1138 | 0.0946 | | 0.2072 | 16.0 | 1312 | 0.5551 | 0.1095 | 0.0912 | | 0.1881 | 17.0 | 1394 | 0.5745 | 0.1102 | 0.0917 | | 0.1888 | 18.0 | 1476 | 0.5731 | 0.1094 | 0.0907 | | 0.202 | 19.0 | 1558 | 0.5774 | 0.1081 | 0.0893 | | 0.1813 | 20.0 | 1640 | 0.5760 | 0.1085 | 0.0892 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
saludobuenas/test3
saludobuenas
2024-01-03T00:07:32Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:bigscience/bloom-7b1", "base_model:adapter:bigscience/bloom-7b1", "region:us" ]
null
2023-12-13T06:20:34Z
--- library_name: peft base_model: bigscience/bloom-7b1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
TheBloke/Pallas-0.5-LASER-0.6-AWQ
TheBloke
2024-01-03T00:02:59Z
8
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "base_model:Mihaiii/Pallas-0.5-LASER-0.6", "base_model:quantized:Mihaiii/Pallas-0.5-LASER-0.6", "license:other", "autotrain_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-01-02T22:49:03Z
--- base_model: Mihaiii/Pallas-0.5-LASER-0.6 inference: false license: other license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE license_name: yi-license metrics: - accuracy model_creator: Mihai model_name: Pallas 0.5 LASER 0.6 model_type: yi prompt_template: 'SYSTEM: {system_message} USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Pallas 0.5 LASER 0.6 - AWQ - Model creator: [Mihai](https://huggingface.co/Mihaiii) - Original model: [Pallas 0.5 LASER 0.6](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6) <!-- description start --> ## Description This repo contains AWQ model files for [Mihai's Pallas 0.5 LASER 0.6](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). ### About AWQ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings. AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead. It is supported by: - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code <!-- description end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF) * [Mihai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Orca-Vicuna ``` SYSTEM: {system_message} USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- README_AWQ.md-provided-files start --> ## Provided files, and AWQ parameters I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered. Models are released as sharded safetensors files. | Branch | Bits | GS | AWQ Dataset | Seq Len | Size | | ------ | ---- | -- | ----------- | ------- | ---- | | [main](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 8192 | 19.23 GB <!-- README_AWQ.md-provided-files end --> <!-- README_AWQ.md-text-generation-webui start --> ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui) Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/Pallas-0.5-LASER-0.6-AWQ`. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done". 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `Pallas-0.5-LASER-0.6-AWQ` 7. Select **Loader: AutoAWQ**. 8. Click Load, and the model will load and is now ready for use. 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started! <!-- README_AWQ.md-text-generation-webui end --> <!-- README_AWQ.md-use-from-vllm start --> ## Multi-user inference server: vLLM Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/). - Please ensure you are using vLLM version 0.2 or later. - When using vLLM as a server, pass the `--quantization awq` parameter. For example: ```shell python3 -m vllm.entrypoints.api_server --model TheBloke/Pallas-0.5-LASER-0.6-AWQ --quantization awq --dtype auto ``` - When using vLLM from Python code, again set `quantization=awq`. For example: ```python from vllm import LLM, SamplingParams prompts = [ "Tell me about AI", "Write a story about llamas", "What is 291 - 150?", "How much wood would a woodchuck chuck if a woodchuck could chuck wood?", ] prompt_template=f'''SYSTEM: {system_message} USER: {prompt} ASSISTANT: ''' prompts = [prompt_template.format(prompt=prompt) for prompt in prompts] sampling_params = SamplingParams(temperature=0.8, top_p=0.95) llm = LLM(model="TheBloke/Pallas-0.5-LASER-0.6-AWQ", quantization="awq", dtype="auto") outputs = llm.generate(prompts, sampling_params) # Print the outputs. for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` <!-- README_AWQ.md-use-from-vllm start --> <!-- README_AWQ.md-use-from-tgi start --> ## Multi-user inference server: Hugging Face Text Generation Inference (TGI) Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0` Example Docker parameters: ```shell --model-id TheBloke/Pallas-0.5-LASER-0.6-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096 ``` Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later): ```shell pip3 install huggingface-hub ``` ```python from huggingface_hub import InferenceClient endpoint_url = "https://your-endpoint-url-here" prompt = "Tell me about AI" prompt_template=f'''SYSTEM: {system_message} USER: {prompt} ASSISTANT: ''' client = InferenceClient(endpoint_url) response = client.text_generation(prompt, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, repetition_penalty=1.1) print(f"Model output: ", response) ``` <!-- README_AWQ.md-use-from-tgi end --> <!-- README_AWQ.md-use-from-python start --> ## Inference from Python code using Transformers ### Install the necessary packages - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later. - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later. ```shell pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0" ``` Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0. If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command: ```shell pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl ``` If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead: ```shell pip3 uninstall -y autoawq git clone https://github.com/casper-hansen/AutoAWQ cd AutoAWQ pip3 install . ``` ### Transformers example code (requires Transformers 4.35.0 and later) ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name_or_path = "TheBloke/Pallas-0.5-LASER-0.6-AWQ" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, low_cpu_mem_usage=True, device_map="cuda:0" ) # Using the text streamer to stream output one token at a time streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "Tell me about AI" prompt_template=f'''SYSTEM: {system_message} USER: {prompt} ASSISTANT: ''' # Convert prompt to tokens tokens = tokenizer( prompt_template, return_tensors='pt' ).input_ids.cuda() generation_params = { "do_sample": True, "temperature": 0.7, "top_p": 0.95, "top_k": 40, "max_new_tokens": 512, "repetition_penalty": 1.1 } # Generate streamed output, visible one token at a time generation_output = model.generate( tokens, streamer=streamer, **generation_params ) # Generation without a streamer, which will include the prompt in the output generation_output = model.generate( tokens, **generation_params ) # Get the tokens from the output, decode them, print them token_output = generation_output[0] text_output = tokenizer.decode(token_output) print("model.generate output: ", text_output) # Inference is also possible via Transformers' pipeline from transformers import pipeline pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, **generation_params ) pipe_output = pipe(prompt_template)[0]['generated_text'] print("pipeline output: ", pipe_output) ``` <!-- README_AWQ.md-use-from-python end --> <!-- README_AWQ.md-compatibility start --> ## Compatibility The files provided are tested to work with: - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`. - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later. - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later. - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later. - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later. <!-- README_AWQ.md-compatibility end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Mihai's Pallas 0.5 LASER 0.6 This model has a [LASER](https://pratyushasharma.github.io/laser/) intervention on [Mihaiii/Pallas-0.5-LASER-0.5](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.5) . Configs used: - lnum: 51 - lnames: mlp (meaning: ["mlp.gate_proj.weight", "mlp.up_proj.weight", "mlp.down_proj.weight"]) - rate: 8 - dataset: bigbench (subset: causal_judgement) - intervention type: rank-reduction |Name|Validation acc (higher is better)|Validation logloss (lower is better)|Test acc (higher is better)|Test logloss (lower is better)| |---|---|---|---|---| |Pallas-0.5|55.263|1.650|60.526|1.463| |Pallas-0.5-LASER-0.1|55.263|1.639|61.184|1.451| |Pallas-0.5-LASER-0.2|55.263|1.646|61.184|1.458| |Pallas-0.5-LASER-0.3|55.263|1.575|61.842|1.382| |Pallas-0.5-LASER-0.4|55.263|1.525|61.842|1.326| |Pallas-0.5-LASER-0.5|55.263|1.484|61.842|1.297| |Pallas-0.5-LASER-0.6|55.263|1.455|61.184|1.283| In order to replicate on a single A100, you can use [my branch](https://github.com/Mihaiii/laser/tree/allow-Yi-on-one-A100) (the original code will throw OOM for 34b models). # Prompt Format: ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ```
isotnek/Reinforce-pixel_copter
isotnek
2024-01-03T00:02:57Z
0
0
null
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-12-24T18:01:54Z
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-pixel_copter results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 25.00 +/- 19.99 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Tatterdemalion/Mixtral-8x7B-Instruct-limarp-v0.1-GGUF
Tatterdemalion
2024-01-02T23:45:30Z
11
1
null
[ "gguf", "endpoints_compatible", "region:us", "conversational" ]
null
2024-01-02T19:25:36Z
GGUF quants of https://huggingface.co/Doctor-Shotgun/Mixtral-8x7B-Instruct-limarp-v0.1
AlephNull/deep-RL
AlephNull
2024-01-02T23:41:41Z
4
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-12-25T02:00:22Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO_relu_128 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 274.92 +/- 22.95 name: mean_reward verified: false --- # **PPO_relu_128** Agent playing **LunarLander-v2** This is a trained model of a **PPO_relu_128** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Perselope/carpole
Perselope
2024-01-02T23:40:59Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-02T23:40:51Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: carpole results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.72 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="Perselope/carpole", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Perselope/Lake
Perselope
2024-01-02T23:35:11Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-02T23:35:04Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: Lake results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Perselope/Lake", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LoneStriker/deepseek-llm-67b-Spicy-3.1-1-6.0bpw-h6-exl2
LoneStriker
2024-01-02T23:15:40Z
5
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:unalignment/spicy-3.1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T04:55:07Z
--- license: other license_name: deepseek license_link: LICENSE datasets: - unalignment/spicy-3.1 --- <p align="center"> <img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true"> </p> <p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p> <hr> # Fine-tune of Deepseek 67B Fine-tuned with jondurbin's unalignment/spicy-3.1 for 1 epoch. ### 1. Introduction of Deepseek LLM Introducing DeepSeek LLM, an advanced language model comprising 67 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community. ### 2. Model Summary `deepseek-llm-67b-base` is a 67B parameter model with Grouped-Query Attention trained on 2 trillion tokens from scratch. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM) - **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/) ### 3. How to Use Here give some examples of how to use our model. #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/deepseek-llm-67b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).
espnet/voxcelebs12_ecapa_frozen
espnet
2024-01-02T23:14:09Z
5
0
espnet
[ "espnet", "audio", "speaker-recognition", "multilingual", "dataset:voxceleb", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2024-01-02T23:12:57Z
--- tags: - espnet - audio - speaker-recognition language: multilingual datasets: - voxceleb license: cc-by-4.0 --- ## ESPnet2 SPK model ### `espnet/voxcelebs12_ecapa_frozen` This model was trained by Jungjee using voxceleb recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout d9646a75807a30afff85a83155247a81cc7fe389 pip install -e . cd egs2/voxceleb/spk1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_ecapa_frozen ``` <!-- Generated by scripts/utils/show_spk_result.py --> # RESULTS ## Environments date: 2024-01-02 18:13:10.597501 - python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0] - espnet version: 202310 - pytorch version: 2.0.1 | | Mean | Std | |---|---|---| | Target | 8.0224 | 2.7891 | | Non-target | 1.9364 | 1.9364 | | Model name | EER(%) | minDCF | |---|---|---| | conf/tuning/train_ecapa_Vox12_emb192_torchmelspec_subcentertopk_wavlm | 0.638 | 0.04994 | ## SPK config <details><summary>expand</summary> ``` config: conf/tuning/train_ecapa_Vox12_emb192_torchmelspec_subcentertopk_wavlm.yaml print_config: false log_level: INFO drop_last_iter: true dry_run: false iterator_type: category valid_iterator_type: sequence output_dir: exp/spk_train_ecapa_Vox12_emb192_torchmelspec_subcentertopk_wavlm_raw_sp ngpu: 1 seed: 0 num_workers: 8 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 37387 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: true cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - eer - min keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 9999 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - frontend.upstream num_iters_per_epoch: null batch_size: 512 valid_batch_size: 40 batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/spk_stats_16k_sp/train/speech_shape valid_shape_file: - exp/spk_stats_16k_sp/valid/speech_shape batch_type: folded valid_batch_type: null fold_length: - 120000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] train_data_path_and_name_and_type: - - dump/raw/voxceleb12_devs_sp/wav.scp - speech - sound - - dump/raw/voxceleb12_devs_sp/utt2spk - spk_labels - text valid_data_path_and_name_and_type: - - dump/raw/voxceleb1_test/trial.scp - speech - sound - - dump/raw/voxceleb1_test/trial2.scp - speech2 - sound - - dump/raw/voxceleb1_test/trial_label - spk_labels - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 weight_decay: 5.0e-05 amsgrad: false scheduler: cosineannealingwarmuprestarts scheduler_conf: first_cycle_steps: 71280 cycle_mult: 1.0 max_lr: 0.001 min_lr: 5.0e-06 warmup_steps: 1000 gamma: 0.75 init: null use_preprocessor: true input_size: null target_duration: 3.0 spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt spk_num: 21615 sample_rate: 16000 num_eval: 10 rir_scp: '' model_conf: extract_feats_in_collect_stats: false frontend: s3prl frontend_conf: frontend_conf: upstream: wavlm_large download_dir: ./hub multilayer_feature: true specaug: null specaug_conf: {} normalize: utterance_mvn normalize_conf: norm_vars: false encoder: ecapa_tdnn encoder_conf: model_scale: 8 ndim: 1024 output_size: 1536 pooling: chn_attn_stat pooling_conf: {} projector: rawnet3 projector_conf: output_size: 192 preprocessor: spk preprocessor_conf: target_duration: 3.0 sample_rate: 16000 num_eval: 5 noise_apply_prob: 0.5 noise_info: - - 1.0 - dump/raw/musan_speech.scp - - 4 - 7 - - 13 - 20 - - 1.0 - dump/raw/musan_noise.scp - - 1 - 1 - - 0 - 15 - - 1.0 - dump/raw/musan_music.scp - - 1 - 1 - - 5 - 15 rir_apply_prob: 0.5 rir_scp: dump/raw/rirs.scp loss: aamsoftmax_sc_topk loss_conf: margin: 0.3 scale: 30 K: 3 mp: 0.06 k_top: 5 required: - output_dir version: '202308' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
TheBloke/Pallas-0.5-LASER-0.6-GGUF
TheBloke
2024-01-02T23:10:42Z
125
3
transformers
[ "transformers", "gguf", "yi", "base_model:Mihaiii/Pallas-0.5-LASER-0.6", "base_model:quantized:Mihaiii/Pallas-0.5-LASER-0.6", "license:other", "region:us" ]
null
2024-01-02T22:49:03Z
--- base_model: Mihaiii/Pallas-0.5-LASER-0.6 inference: false license: other license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE license_name: yi-license metrics: - accuracy model_creator: Mihai model_name: Pallas 0.5 LASER 0.6 model_type: yi prompt_template: 'SYSTEM: {system_message} USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Pallas 0.5 LASER 0.6 - GGUF - Model creator: [Mihai](https://huggingface.co/Mihaiii) - Original model: [Pallas 0.5 LASER 0.6](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6) <!-- description start --> ## Description This repo contains GGUF format model files for [Mihai's Pallas 0.5 LASER 0.6](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF) * [Mihai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.6) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Orca-Vicuna ``` SYSTEM: {system_message} USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [pallas-0.5-laser-0.6.Q2_K.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q2_K.gguf) | Q2_K | 2 | 14.56 GB| 17.06 GB | smallest, significant quality loss - not recommended for most purposes | | [pallas-0.5-laser-0.6.Q3_K_S.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q3_K_S.gguf) | Q3_K_S | 3 | 14.96 GB| 17.46 GB | very small, high quality loss | | [pallas-0.5-laser-0.6.Q3_K_M.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q3_K_M.gguf) | Q3_K_M | 3 | 16.64 GB| 19.14 GB | very small, high quality loss | | [pallas-0.5-laser-0.6.Q3_K_L.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q3_K_L.gguf) | Q3_K_L | 3 | 18.14 GB| 20.64 GB | small, substantial quality loss | | [pallas-0.5-laser-0.6.Q4_0.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q4_0.gguf) | Q4_0 | 4 | 19.47 GB| 21.97 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [pallas-0.5-laser-0.6.Q4_K_S.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q4_K_S.gguf) | Q4_K_S | 4 | 19.55 GB| 22.05 GB | small, greater quality loss | | [pallas-0.5-laser-0.6.Q4_K_M.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q4_K_M.gguf) | Q4_K_M | 4 | 20.66 GB| 23.16 GB | medium, balanced quality - recommended | | [pallas-0.5-laser-0.6.Q5_0.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q5_0.gguf) | Q5_0 | 5 | 23.71 GB| 26.21 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [pallas-0.5-laser-0.6.Q5_K_S.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q5_K_S.gguf) | Q5_K_S | 5 | 23.71 GB| 26.21 GB | large, low quality loss - recommended | | [pallas-0.5-laser-0.6.Q5_K_M.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q5_K_M.gguf) | Q5_K_M | 5 | 24.32 GB| 26.82 GB | large, very low quality loss - recommended | | [pallas-0.5-laser-0.6.Q6_K.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q6_K.gguf) | Q6_K | 6 | 28.22 GB| 30.72 GB | very large, extremely low quality loss | | [pallas-0.5-laser-0.6.Q8_0.gguf](https://huggingface.co/TheBloke/Pallas-0.5-LASER-0.6-GGUF/blob/main/pallas-0.5-laser-0.6.Q8_0.gguf) | Q8_0 | 8 | 36.54 GB| 39.04 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Pallas-0.5-LASER-0.6-GGUF and below it, a specific filename to download, such as: pallas-0.5-laser-0.6.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Pallas-0.5-LASER-0.6-GGUF pallas-0.5-laser-0.6.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Pallas-0.5-LASER-0.6-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Pallas-0.5-LASER-0.6-GGUF pallas-0.5-laser-0.6.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m pallas-0.5-laser-0.6.Q4_K_M.gguf --color -c 200000 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: {system_message}\nUSER: {prompt}\nASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 200000` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./pallas-0.5-laser-0.6.Q4_K_M.gguf", # Download the model file first n_ctx=200000, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "SYSTEM: {system_message}\nUSER: {prompt}\nASSISTANT:", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./pallas-0.5-laser-0.6.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Mihai's Pallas 0.5 LASER 0.6 This model has a [LASER](https://pratyushasharma.github.io/laser/) intervention on [Mihaiii/Pallas-0.5-LASER-0.5](https://huggingface.co/Mihaiii/Pallas-0.5-LASER-0.5) . Configs used: - lnum: 51 - lnames: mlp (meaning: ["mlp.gate_proj.weight", "mlp.up_proj.weight", "mlp.down_proj.weight"]) - rate: 8 - dataset: bigbench (subset: causal_judgement) - intervention type: rank-reduction |Name|Validation acc (higher is better)|Validation logloss (lower is better)|Test acc (higher is better)|Test logloss (lower is better)| |---|---|---|---|---| |Pallas-0.5|55.263|1.650|60.526|1.463| |Pallas-0.5-LASER-0.1|55.263|1.639|61.184|1.451| |Pallas-0.5-LASER-0.2|55.263|1.646|61.184|1.458| |Pallas-0.5-LASER-0.3|55.263|1.575|61.842|1.382| |Pallas-0.5-LASER-0.4|55.263|1.525|61.842|1.326| |Pallas-0.5-LASER-0.5|55.263|1.484|61.842|1.297| |Pallas-0.5-LASER-0.6|55.263|1.455|61.184|1.283| In order to replicate on a single A100, you can use [my branch](https://github.com/Mihaiii/laser/tree/allow-Yi-on-one-A100) (the original code will throw OOM for 34b models). # Prompt Format: ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ``` <!-- original-model-card end -->
espnet/voxcelebs12_ska_mel
espnet
2024-01-02T23:10:38Z
7
0
espnet
[ "espnet", "audio", "speaker-recognition", "multilingual", "dataset:voxceleb", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2024-01-02T22:40:51Z
--- tags: - espnet - audio - speaker-recognition language: multilingual datasets: - voxceleb license: cc-by-4.0 --- ## ESPnet2 SPK model ### `espnet/voxcelebs12_ska_mel` This model was trained by Jungjee using voxceleb recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout d9646a75807a30afff85a83155247a81cc7fe389 pip install -e . cd egs2/voxceleb/spk1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_ska_mel ``` <!-- Generated by scripts/utils/show_spk_result.py --> # RESULTS ## Environments date: 2024-01-02 18:09:41.334841 - python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0] - espnet version: 202310 - pytorch version: 2.0.1 | | Mean | Std | |---|---|---| | Target | 8.1349 | 3.5908 | | Non-target | 2.3247 | 2.3247 | | Model name | EER(%) | minDCF | |---|---|---| | conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk | 0.729 | 0.04574 | ## SPK config <details><summary>expand</summary> ``` config: conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk.yaml print_config: false log_level: INFO drop_last_iter: true dry_run: false iterator_type: category valid_iterator_type: sequence output_dir: exp/spk_train_ska_Vox12_emb192_torchmelspec_subcentertopk_raw_sp ngpu: 1 seed: 0 num_workers: 6 num_att_plot: 0 dist_backend: nccl dist_init_method: env:// dist_world_size: 4 dist_rank: 0 local_rank: 0 dist_master_addr: localhost dist_master_port: 34991 dist_launcher: null multiprocessing_distributed: true unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: true cudnn_deterministic: false collect_stats: false write_collected_feats: false max_epoch: 40 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - eer - min keep_nbest_models: 3 nbest_averaging_interval: 0 grad_clip: 9999 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: true log_interval: 100 use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false use_lora: false save_lora_only: true lora_conf: {} pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 512 valid_batch_size: 40 batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/spk_stats_16k_sp/train/speech_shape valid_shape_file: - exp/spk_stats_16k_sp/valid/speech_shape batch_type: folded valid_batch_type: null fold_length: - 120000 sort_in_batch: descending shuffle_within_batch: false sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 chunk_excluded_key_prefixes: [] chunk_default_fs: null train_data_path_and_name_and_type: - - dump/raw/voxceleb12_devs_sp/wav.scp - speech - sound - - dump/raw/voxceleb12_devs_sp/utt2spk - spk_labels - text valid_data_path_and_name_and_type: - - dump/raw/voxceleb1_test/trial.scp - speech - sound - - dump/raw/voxceleb1_test/trial2.scp - speech2 - sound - - dump/raw/voxceleb1_test/trial_label - spk_labels - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 allow_multi_rates: false valid_max_cache_size: null exclude_weight_decay: false exclude_weight_decay_conf: {} optim: adam optim_conf: lr: 0.001 weight_decay: 5.0e-05 amsgrad: false scheduler: cosineannealingwarmuprestarts scheduler_conf: first_cycle_steps: 71280 cycle_mult: 1.0 max_lr: 0.001 min_lr: 5.0e-06 warmup_steps: 1000 gamma: 0.75 init: null use_preprocessor: true input_size: null target_duration: 3.0 spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt spk_num: 21615 sample_rate: 16000 num_eval: 10 rir_scp: '' model_conf: extract_feats_in_collect_stats: false frontend: melspec_torch frontend_conf: preemp: true n_fft: 512 log: true win_length: 400 hop_length: 160 n_mels: 80 normalize: mn specaug: null specaug_conf: {} normalize: null normalize_conf: {} encoder: ska_tdnn encoder_conf: model_scale: 8 ndim: 1024 ska_dim: 128 output_size: 1536 pooling: chn_attn_stat pooling_conf: {} projector: ska_tdnn projector_conf: output_size: 192 preprocessor: spk preprocessor_conf: target_duration: 3.0 sample_rate: 16000 num_eval: 5 noise_apply_prob: 0.5 noise_info: - - 1.0 - dump/raw/musan_speech.scp - - 4 - 7 - - 13 - 20 - - 1.0 - dump/raw/musan_noise.scp - - 1 - 1 - - 0 - 15 - - 1.0 - dump/raw/musan_music.scp - - 1 - 1 - - 5 - 15 rir_apply_prob: 0.5 rir_scp: dump/raw/rirs.scp loss: aamsoftmax_sc_topk loss_conf: margin: 0.3 scale: 30 K: 3 mp: 0.06 k_top: 5 required: - output_dir version: '202310' distributed: true ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
ManBib/faster-whisper-readme
ManBib
2024-01-02T23:03:50Z
1
0
transformers
[ "transformers", "endpoints_compatible", "region:us" ]
null
2023-11-06T11:05:22Z
# Faster Whisper Transcription Service ## Overview This project uses the `faster_whisper` Python package to provide an API endpoint for audio transcription. It utilizes OpenAI's Whisper model (large-v3) for accurate and efficient speech-to-text conversion. The service is designed to be deployed on Hugging Face endpoints. ## Features - **Efficient Transcription**: Utilizes the large-v3 Whisper model for high-quality transcription. - **Multilingual Support**: Supports transcription in various languages, with default language set to German (de). - **Segmented Output**: Returns transcribed text with segment IDs and timestamps for each transcribed segment. ## Usage ```python import requests import os # Sample data dict with the link to the video file and the desired language for transcription DATA = { "inputs": "<base64_encoded_audio>", "language": "de", "task": "transcribe" } HF_ACCESS_TOKEN = os.environ.get("HF_TRANSCRIPTION_ACCESS_TOKEN") API_URL = os.environ.get("HF_TRANSCRIPTION_ENDPOINT") HEADERS = { "Authorization": HF_ACCESS_TOKEN, "Content-Type": "application/json" } response = requests.post(API_URL, headers=HEADERS, json=DATA) print(response) ``` ## Logging Logging is set up to debug level, providing detailed information during the transcription process, including the length of decoded bytes, the progress of segments being transcribed, and a confirmation once the inference is completed. ## Deployment This service is intended for deployment on Hugging Face endpoints. Ensure you follow Hugging Face's guidelines for deploying model endpoints.
parksanha/xlm-roberta-base-finetuned-panx-de
parksanha
2024-01-02T22:54:46Z
5
0
transformers
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2024-01-02T22:51:51Z
--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1353 - F1: 0.8652 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2582 | 1.0 | 525 | 0.1535 | 0.8259 | | 0.1285 | 2.0 | 1050 | 0.1356 | 0.8534 | | 0.0802 | 3.0 | 1575 | 0.1353 | 0.8652 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
alirzb/S2_M1_R3_deit_42509578
alirzb
2024-01-02T22:53:51Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-02T21:27:03Z
--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S2_M1_R3_deit_42509578 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9990333494441759 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S2_M1_R3_deit_42509578 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0060 - Accuracy: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0149 | 1.0 | 258 | 0.0100 | 0.9973 | | 0.004 | 2.0 | 517 | 0.0058 | 0.9988 | | 0.0097 | 3.0 | 776 | 0.0074 | 0.9986 | | 0.0002 | 4.0 | 1035 | 0.0041 | 0.9993 | | 0.0 | 4.99 | 1290 | 0.0060 | 0.9990 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
LoneStriker/openbuddy-mixtral-7bx8-v16.3-32k-5.0bpw-h6-exl2
LoneStriker
2024-01-02T22:49:04Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-02T22:08:34Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
alirzb/S1_M1_R3_deit_42509575
alirzb
2024-01-02T22:48:03Z
9
0
transformers
[ "transformers", "tensorboard", "safetensors", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-02T20:57:31Z
--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S1_M1_R3_deit_42509575 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9990228649599374 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R3_deit_42509575 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0039 - Accuracy: 0.9990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0046 | 1.0 | 320 | 0.0065 | 0.9973 | | 0.0027 | 2.0 | 640 | 0.0124 | 0.9975 | | 0.0001 | 3.0 | 960 | 0.0013 | 0.9994 | | 0.0 | 4.0 | 1280 | 0.0028 | 0.9992 | | 0.0 | 5.0 | 1600 | 0.0039 | 0.9990 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
LoneStriker/openbuddy-mixtral-7bx8-v16.3-32k-4.0bpw-h6-exl2
LoneStriker
2024-01-02T22:43:17Z
6
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-02T22:07:16Z
--- language: - zh - en - fr - de - ja - ko - it - ru pipeline_tag: text-generation inference: false library_name: transformers license: apache-2.0 --- # OpenBuddy - Open Multilingual Chatbot GitHub and Usage Guide: [https://github.com/OpenBuddy/OpenBuddy](https://github.com/OpenBuddy/OpenBuddy) Website and Demo: [https://openbuddy.ai](https://openbuddy.ai) Evaluation result of this model: [Evaluation.txt](Evaluation.txt) ![Demo](https://raw.githubusercontent.com/OpenBuddy/OpenBuddy/main/media/demo.png) # Copyright Notice Base model: https://huggingface.co/mistralai/Mixtral-8x7B-v0.1 License: Apache 2.0 ## Disclaimer All OpenBuddy models have inherent limitations and may potentially produce outputs that are erroneous, harmful, offensive, or otherwise undesirable. Users should not use these models in critical or high-stakes situations that may lead to personal injury, property damage, or significant losses. Examples of such scenarios include, but are not limited to, the medical field, controlling software and hardware systems that may cause harm, and making important financial or legal decisions. OpenBuddy is provided "as-is" without any warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. In no event shall the authors, contributors, or copyright holders be liable for any claim, damages, or other liabilities, whether in an action of contract, tort, or otherwise, arising from, out of, or in connection with the software or the use or other dealings in the software. By using OpenBuddy, you agree to these terms and conditions, and acknowledge that you understand the potential risks associated with its use. You also agree to indemnify and hold harmless the authors, contributors, and copyright holders from any claims, damages, or liabilities arising from your use of OpenBuddy. ## 免责声明 所有OpenBuddy模型均存在固有的局限性,可能产生错误的、有害的、冒犯性的或其他不良的输出。用户在关键或高风险场景中应谨慎行事,不要使用这些模型,以免导致人身伤害、财产损失或重大损失。此类场景的例子包括但不限于医疗领域、可能导致伤害的软硬件系统的控制以及进行重要的财务或法律决策。 OpenBuddy按“原样”提供,不附带任何种类的明示或暗示的保证,包括但不限于适销性、特定目的的适用性和非侵权的暗示保证。在任何情况下,作者、贡献者或版权所有者均不对因软件或使用或其他软件交易而产生的任何索赔、损害赔偿或其他责任(无论是合同、侵权还是其他原因)承担责任。 使用OpenBuddy即表示您同意这些条款和条件,并承认您了解其使用可能带来的潜在风险。您还同意赔偿并使作者、贡献者和版权所有者免受因您使用OpenBuddy而产生的任何索赔、损害赔偿或责任的影响。
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned_humanMix_Seed115
behzadnet
2024-01-02T22:26:49Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-02T22:26:47Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
behzadnet/Llama-2-7b-chat-hf-sharded-bf16-fine-tuned-adapters_humanMix_Seed115
behzadnet
2024-01-02T22:26:41Z
0
0
peft
[ "peft", "arxiv:1910.09700", "base_model:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "base_model:adapter:Trelis/Llama-2-7b-chat-hf-sharded-bf16", "region:us" ]
null
2024-01-02T22:26:34Z
--- library_name: peft base_model: Trelis/Llama-2-7b-chat-hf-sharded-bf16 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
alirzb/S1_M1_R1_deit_42509573
alirzb
2024-01-02T22:16:10Z
8
0
transformers
[ "transformers", "tensorboard", "safetensors", "deit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-01-02T20:57:27Z
--- license: apache-2.0 base_model: facebook/deit-base-distilled-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: S1_M1_R1_deit_42509573 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9987801902903147 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # S1_M1_R1_deit_42509573 This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0037 - Accuracy: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0237 | 1.0 | 256 | 0.0053 | 0.9983 | | 0.0014 | 2.0 | 512 | 0.0056 | 0.9985 | | 0.0 | 3.0 | 768 | 0.0023 | 0.9993 | | 0.0 | 4.0 | 1025 | 0.0037 | 0.9988 | | 0.0 | 5.0 | 1280 | 0.0037 | 0.9988 | ### Framework versions - Transformers 4.36.2 - Pytorch 1.11.0+cu102 - Datasets 2.16.0 - Tokenizers 0.15.0
jordyvl/2024-01-02_one_stage_subgraphs_weighted_txt_vis_conc_1_4_8_12_ramp
jordyvl
2024-01-02T22:10:38Z
4
0
transformers
[ "transformers", "pytorch", "layoutlmv3", "text-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-01-02T16:58:49Z
--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: 2024-01-02_one_stage_subgraphs_weighted_txt_vis_conc_1_4_8_12_ramp results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 2024-01-02_one_stage_subgraphs_weighted_txt_vis_conc_1_4_8_12_ramp This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8574 - Accuracy: 0.77 - Exit 0 Accuracy: 0.2 - Exit 1 Accuracy: 0.3 - Exit 2 Accuracy: 0.1125 - Exit 3 Accuracy: 0.2725 - Exit 4 Accuracy: 0.2675 - Exit 5 Accuracy: 0.51 - Exit 6 Accuracy: 0.55 - Exit 7 Accuracy: 0.63 - Exit 8 Accuracy: 0.525 - Exit 9 Accuracy: 0.3425 - Exit 10 Accuracy: 0.445 - Exit 11 Accuracy: 0.6875 - Exit 12 Accuracy: 0.7575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 24 - total_train_batch_size: 192 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 60 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Exit 0 Accuracy | Exit 1 Accuracy | Exit 2 Accuracy | Exit 3 Accuracy | Exit 4 Accuracy | Exit 5 Accuracy | Exit 6 Accuracy | Exit 7 Accuracy | Exit 8 Accuracy | Exit 9 Accuracy | Exit 10 Accuracy | Exit 11 Accuracy | Exit 12 Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:----------------:|:----------------:|:----------------:| | No log | 0.96 | 4 | 2.7477 | 0.1025 | 0.07 | 0.0625 | 0.0625 | 0.0625 | 0.06 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.06 | | No log | 1.96 | 8 | 2.7020 | 0.1275 | 0.0775 | 0.0625 | 0.0625 | 0.0625 | 0.0575 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.06 | | No log | 2.96 | 12 | 2.6514 | 0.19 | 0.08 | 0.0625 | 0.0625 | 0.0625 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.065 | | No log | 3.96 | 16 | 2.5720 | 0.215 | 0.095 | 0.065 | 0.0625 | 0.0625 | 0.06 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0925 | | No log | 4.96 | 20 | 2.5033 | 0.2375 | 0.1 | 0.0675 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.1475 | | No log | 5.96 | 24 | 2.4003 | 0.275 | 0.115 | 0.08 | 0.0625 | 0.0625 | 0.0625 | 0.0775 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.1525 | | No log | 6.96 | 28 | 2.3192 | 0.3 | 0.12 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.09 | 0.075 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.1625 | | No log | 7.96 | 32 | 2.2199 | 0.3325 | 0.1325 | 0.0875 | 0.0625 | 0.0625 | 0.0625 | 0.1025 | 0.075 | 0.065 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.185 | | No log | 8.96 | 36 | 2.1335 | 0.36 | 0.1425 | 0.1025 | 0.0625 | 0.0625 | 0.0625 | 0.1375 | 0.09 | 0.07 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.235 | | No log | 9.96 | 40 | 2.0290 | 0.4 | 0.1475 | 0.1025 | 0.0625 | 0.0625 | 0.06 | 0.15 | 0.0925 | 0.0725 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.27 | | No log | 10.96 | 44 | 1.9285 | 0.4525 | 0.155 | 0.1025 | 0.0625 | 0.065 | 0.0675 | 0.1725 | 0.1225 | 0.08 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.305 | | No log | 11.96 | 48 | 1.8071 | 0.495 | 0.155 | 0.1075 | 0.0625 | 0.0775 | 0.0825 | 0.2025 | 0.135 | 0.0925 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.355 | | No log | 12.96 | 52 | 1.7194 | 0.5375 | 0.16 | 0.1075 | 0.0625 | 0.0775 | 0.0875 | 0.22 | 0.1625 | 0.1025 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.37 | | No log | 13.96 | 56 | 1.5732 | 0.6 | 0.1625 | 0.11 | 0.0625 | 0.08 | 0.0775 | 0.2425 | 0.2125 | 0.14 | 0.0625 | 0.0625 | 0.0625 | 0.0625 | 0.43 | | No log | 14.96 | 60 | 1.5141 | 0.6125 | 0.16 | 0.115 | 0.0625 | 0.0825 | 0.09 | 0.29 | 0.245 | 0.18 | 0.0625 | 0.065 | 0.0625 | 0.0625 | 0.4325 | | No log | 15.96 | 64 | 1.4049 | 0.65 | 0.1575 | 0.1175 | 0.0625 | 0.0925 | 0.1 | 0.3275 | 0.2725 | 0.24 | 0.0675 | 0.065 | 0.0625 | 0.0625 | 0.51 | | No log | 16.96 | 68 | 1.3476 | 0.665 | 0.16 | 0.115 | 0.0625 | 0.095 | 0.1025 | 0.345 | 0.285 | 0.2625 | 0.0675 | 0.075 | 0.0625 | 0.0625 | 0.5275 | | No log | 17.96 | 72 | 1.2825 | 0.6925 | 0.16 | 0.1175 | 0.0625 | 0.1025 | 0.11 | 0.35 | 0.2875 | 0.2925 | 0.0675 | 0.075 | 0.065 | 0.0625 | 0.55 | | No log | 18.96 | 76 | 1.2102 | 0.71 | 0.16 | 0.1175 | 0.0625 | 0.1025 | 0.135 | 0.365 | 0.29 | 0.31 | 0.0675 | 0.0775 | 0.08 | 0.0625 | 0.5925 | | No log | 19.96 | 80 | 1.1664 | 0.725 | 0.16 | 0.1175 | 0.0625 | 0.1125 | 0.1325 | 0.3675 | 0.3075 | 0.365 | 0.0775 | 0.0775 | 0.08 | 0.0625 | 0.6025 | | No log | 20.96 | 84 | 1.1363 | 0.735 | 0.16 | 0.12 | 0.0625 | 0.115 | 0.145 | 0.3725 | 0.3275 | 0.3775 | 0.0775 | 0.075 | 0.07 | 0.0625 | 0.6175 | | No log | 21.96 | 88 | 1.0745 | 0.74 | 0.16 | 0.1225 | 0.0625 | 0.1175 | 0.1325 | 0.375 | 0.355 | 0.4175 | 0.0775 | 0.0825 | 0.065 | 0.0625 | 0.6275 | | No log | 22.96 | 92 | 1.0377 | 0.7525 | 0.16 | 0.13 | 0.0625 | 0.115 | 0.1575 | 0.38 | 0.3775 | 0.4125 | 0.0825 | 0.075 | 0.07 | 0.0625 | 0.64 | | No log | 23.96 | 96 | 1.0321 | 0.74 | 0.16 | 0.1375 | 0.0625 | 0.115 | 0.165 | 0.3825 | 0.385 | 0.4375 | 0.08 | 0.0975 | 0.07 | 0.0625 | 0.66 | | No log | 24.96 | 100 | 0.9702 | 0.76 | 0.1625 | 0.15 | 0.0625 | 0.11 | 0.1725 | 0.385 | 0.4075 | 0.455 | 0.0825 | 0.0975 | 0.0725 | 0.0625 | 0.68 | | No log | 25.96 | 104 | 0.9861 | 0.7525 | 0.1675 | 0.1525 | 0.0625 | 0.1125 | 0.1825 | 0.395 | 0.4 | 0.4675 | 0.0825 | 0.115 | 0.0675 | 0.07 | 0.6825 | | No log | 26.96 | 108 | 0.9339 | 0.7525 | 0.16 | 0.15 | 0.0625 | 0.1175 | 0.195 | 0.4075 | 0.4275 | 0.4825 | 0.0875 | 0.13 | 0.07 | 0.095 | 0.7025 | | No log | 27.96 | 112 | 0.9362 | 0.7575 | 0.1625 | 0.1425 | 0.0625 | 0.1175 | 0.1925 | 0.4175 | 0.43 | 0.515 | 0.095 | 0.14 | 0.0675 | 0.105 | 0.71 | | No log | 28.96 | 116 | 0.8872 | 0.755 | 0.165 | 0.15 | 0.0625 | 0.1175 | 0.2 | 0.4275 | 0.4325 | 0.53 | 0.095 | 0.1425 | 0.07 | 0.125 | 0.7425 | | No log | 29.96 | 120 | 0.8939 | 0.7675 | 0.1625 | 0.15 | 0.0625 | 0.1175 | 0.2 | 0.4475 | 0.4325 | 0.55 | 0.1 | 0.1425 | 0.085 | 0.1325 | 0.7175 | | No log | 30.96 | 124 | 0.8767 | 0.7475 | 0.16 | 0.1575 | 0.0625 | 0.12 | 0.195 | 0.4425 | 0.4475 | 0.545 | 0.1 | 0.1525 | 0.0925 | 0.2025 | 0.7575 | | No log | 31.96 | 128 | 0.8658 | 0.76 | 0.165 | 0.17 | 0.0625 | 0.1225 | 0.195 | 0.455 | 0.455 | 0.555 | 0.1025 | 0.1375 | 0.11 | 0.245 | 0.7375 | | No log | 32.96 | 132 | 0.8736 | 0.7625 | 0.165 | 0.1875 | 0.0625 | 0.125 | 0.195 | 0.465 | 0.45 | 0.5625 | 0.105 | 0.155 | 0.0975 | 0.275 | 0.7575 | | No log | 33.96 | 136 | 0.8380 | 0.7625 | 0.1675 | 0.21 | 0.0625 | 0.125 | 0.195 | 0.465 | 0.4625 | 0.565 | 0.1175 | 0.13 | 0.115 | 0.3225 | 0.755 | | No log | 34.96 | 140 | 0.8386 | 0.7725 | 0.1675 | 0.2325 | 0.0625 | 0.1275 | 0.1975 | 0.4675 | 0.4575 | 0.575 | 0.12 | 0.125 | 0.13 | 0.345 | 0.765 | | No log | 35.96 | 144 | 0.8610 | 0.755 | 0.17 | 0.2425 | 0.0625 | 0.1275 | 0.19 | 0.4625 | 0.4725 | 0.5875 | 0.13 | 0.105 | 0.18 | 0.39 | 0.755 | | No log | 36.96 | 148 | 0.8444 | 0.76 | 0.17 | 0.255 | 0.0625 | 0.1325 | 0.2 | 0.4575 | 0.4675 | 0.595 | 0.12 | 0.1475 | 0.22 | 0.445 | 0.7525 | | No log | 37.96 | 152 | 0.8845 | 0.75 | 0.1725 | 0.2725 | 0.0625 | 0.1375 | 0.205 | 0.46 | 0.475 | 0.59 | 0.1425 | 0.175 | 0.255 | 0.45 | 0.7575 | | No log | 38.96 | 156 | 0.8464 | 0.7625 | 0.18 | 0.275 | 0.0625 | 0.145 | 0.2075 | 0.4675 | 0.4825 | 0.5925 | 0.18 | 0.22 | 0.265 | 0.51 | 0.755 | | No log | 39.96 | 160 | 0.8539 | 0.7575 | 0.1825 | 0.2825 | 0.065 | 0.1475 | 0.215 | 0.48 | 0.515 | 0.6025 | 0.2 | 0.2425 | 0.2725 | 0.5275 | 0.755 | | No log | 40.96 | 164 | 0.8697 | 0.76 | 0.185 | 0.2775 | 0.0675 | 0.1525 | 0.23 | 0.485 | 0.5325 | 0.605 | 0.2175 | 0.21 | 0.29 | 0.53 | 0.7625 | | No log | 41.96 | 168 | 0.8395 | 0.775 | 0.185 | 0.2825 | 0.075 | 0.16 | 0.2225 | 0.4925 | 0.54 | 0.6 | 0.225 | 0.225 | 0.2875 | 0.5725 | 0.77 | | No log | 42.96 | 172 | 0.8570 | 0.7675 | 0.1875 | 0.285 | 0.08 | 0.1575 | 0.2275 | 0.485 | 0.5475 | 0.61 | 0.2325 | 0.2325 | 0.3075 | 0.6075 | 0.7525 | | No log | 43.96 | 176 | 0.8462 | 0.765 | 0.195 | 0.28 | 0.08 | 0.165 | 0.2325 | 0.49 | 0.5425 | 0.6125 | 0.2475 | 0.2425 | 0.3125 | 0.6225 | 0.755 | | No log | 44.96 | 180 | 0.8563 | 0.765 | 0.195 | 0.2825 | 0.085 | 0.1775 | 0.235 | 0.495 | 0.535 | 0.6075 | 0.2975 | 0.22 | 0.3175 | 0.62 | 0.75 | | No log | 45.96 | 184 | 0.8670 | 0.7675 | 0.195 | 0.28 | 0.085 | 0.1825 | 0.24 | 0.4975 | 0.54 | 0.615 | 0.3525 | 0.215 | 0.325 | 0.6375 | 0.76 | | No log | 46.96 | 188 | 0.8708 | 0.77 | 0.195 | 0.29 | 0.0925 | 0.185 | 0.2375 | 0.4975 | 0.535 | 0.6125 | 0.365 | 0.2275 | 0.3175 | 0.64 | 0.7575 | | No log | 47.96 | 192 | 0.8535 | 0.7675 | 0.19 | 0.29 | 0.095 | 0.2075 | 0.24 | 0.4975 | 0.5375 | 0.6125 | 0.4025 | 0.24 | 0.35 | 0.6575 | 0.755 | | No log | 48.96 | 196 | 0.8592 | 0.765 | 0.19 | 0.285 | 0.0975 | 0.2175 | 0.2425 | 0.495 | 0.54 | 0.615 | 0.4175 | 0.2375 | 0.365 | 0.6575 | 0.7475 | | No log | 49.96 | 200 | 0.8717 | 0.765 | 0.19 | 0.2925 | 0.1 | 0.235 | 0.25 | 0.5 | 0.545 | 0.6125 | 0.4325 | 0.25 | 0.3725 | 0.66 | 0.76 | | No log | 50.96 | 204 | 0.8684 | 0.765 | 0.1925 | 0.2975 | 0.105 | 0.245 | 0.2575 | 0.5025 | 0.545 | 0.61 | 0.4475 | 0.2775 | 0.3775 | 0.675 | 0.7625 | | No log | 51.96 | 208 | 0.8662 | 0.76 | 0.1925 | 0.295 | 0.1025 | 0.245 | 0.2625 | 0.5025 | 0.55 | 0.6175 | 0.455 | 0.2925 | 0.39 | 0.68 | 0.76 | | No log | 52.96 | 212 | 0.8718 | 0.7625 | 0.1925 | 0.295 | 0.1075 | 0.2525 | 0.2625 | 0.5025 | 0.55 | 0.6225 | 0.485 | 0.3075 | 0.4125 | 0.6825 | 0.755 | | No log | 53.96 | 216 | 0.8798 | 0.76 | 0.195 | 0.295 | 0.11 | 0.265 | 0.2625 | 0.505 | 0.5475 | 0.6275 | 0.495 | 0.3175 | 0.4275 | 0.68 | 0.7475 | | No log | 54.96 | 220 | 0.8703 | 0.7575 | 0.2 | 0.2975 | 0.11 | 0.2675 | 0.2675 | 0.5075 | 0.545 | 0.6225 | 0.4975 | 0.3275 | 0.435 | 0.6825 | 0.745 | | No log | 55.96 | 224 | 0.8622 | 0.765 | 0.2 | 0.3 | 0.11 | 0.265 | 0.27 | 0.51 | 0.545 | 0.625 | 0.505 | 0.33 | 0.435 | 0.69 | 0.7525 | | No log | 56.96 | 228 | 0.8590 | 0.77 | 0.2 | 0.3 | 0.11 | 0.27 | 0.2675 | 0.5125 | 0.5475 | 0.6325 | 0.5075 | 0.34 | 0.4375 | 0.6875 | 0.76 | | No log | 57.96 | 232 | 0.8572 | 0.7725 | 0.2 | 0.3025 | 0.11 | 0.27 | 0.2675 | 0.51 | 0.5475 | 0.6325 | 0.5175 | 0.34 | 0.44 | 0.6875 | 0.7575 | | No log | 58.96 | 236 | 0.8570 | 0.7725 | 0.2 | 0.3025 | 0.1125 | 0.2725 | 0.2675 | 0.51 | 0.55 | 0.6325 | 0.5225 | 0.34 | 0.445 | 0.6875 | 0.76 | | No log | 59.96 | 240 | 0.8574 | 0.77 | 0.2 | 0.3 | 0.1125 | 0.2725 | 0.2675 | 0.51 | 0.55 | 0.63 | 0.525 | 0.3425 | 0.445 | 0.6875 | 0.7575 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1.post200 - Datasets 2.9.0 - Tokenizers 0.13.2
yy0514/llama2-7b-chat-qlora-lek-train-4-epochs-run1
yy0514
2024-01-02T22:07:16Z
0
0
null
[ "safetensors", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2024-01-02T22:06:52Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: llama2-7b-qlora-lek-train-more-epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama2-7b-qlora-lek-train-more-epochs This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0
multimodalart/medieval-animals-lora
multimodalart
2024-01-02T22:06:19Z
9
1
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-02T22:06:08Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: a drawing of a woman and a demon with a blanket in the style of <s0><s1> output: url: image-0.png - text: a bear playing a flute in a medieval manuscript in the style of <s0><s1> output: url: image-1.png - text: a drawing of a bat with wings and a bat's head in the style of <s0><s1> output: url: image-2.png - text: a drawing of a bat with a sign that reads "hic" in the style of <s0><s1> output: url: image-3.png - text: a drawing of a mouse playing with a wheel in the style of <s0><s1> output: url: image-4.png - text: a cat wearing a crown sits on a throne in the style of <s0><s1> output: url: image-5.png - text: a horse with a tree and a bird in the middle of the page in the style of <s0><s1> output: url: image-6.png - text: a monkey with a pipe sitting on the ground in the style of <s0><s1> output: url: image-7.png - text: a small dragon with wings and a tail in the style of <s0><s1> output: url: image-8.png - text: a snail is sitting on a branch with a snake in the style of <s0><s1> output: url: image-9.png - text: a medieval illustration of a man eating a fish in the style of <s0><s1> output: url: image-10.png - text: a cat playing a lute in a medieval manuscript in the style of <s0><s1> output: url: image-11.png - text: a painting of a cat playing a trumpet in the style of <s0><s1> output: url: image-12.png - text: a closeup of an owl in a medieval manuscript in the style of <s0><s1> output: url: image-13.png - text: a medieval illustration of a rabbit carrying a basket in the style of <s0><s1> output: url: image-14.png - text: a medieval illustration of a dog riding a duck in the style of <s0><s1> output: url: image-15.png - text: a drawing of a lion with a man's face on it in the style of <s0><s1> output: url: image-16.png - text: a medieval illustration of a dog riding a horse in the style of <s0><s1> output: url: image-17.png - text: a cat is sitting on a green plate with flowers in the style of <s0><s1> output: url: image-18.png - text: an illustration of an owl in a medieval manuscript in the style of <s0><s1> output: url: image-19.png - text: a drawing of a hairy creature with red shoes in the style of <s0><s1> output: url: image-20.png - text: a medieval illustration of a man being attacked by a dog in the style of <s0><s1> output: url: image-21.png - text: a cat is sitting on a blue and gold background in the style of <s0><s1> output: url: image-22.png - text: an illustration of a unicorn with a horn in the style of <s0><s1> output: url: image-23.png - text: a cat playing a harp in a medieval manuscript in the style of <s0><s1> output: url: image-24.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: in the style of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - multimodalart/medieval-animals-lora <Gallery /> ## Model description ### These are multimodalart/medieval-animals-lora LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`medieval-animals-lora.safetensors` here 💾](/multimodalart/medieval-animals-lora/blob/main/medieval-animals-lora.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:medieval-animals-lora:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`medieval-animals-lora_emb.safetensors` here 💾](/multimodalart/medieval-animals-lora/blob/main/medieval-animals-lora_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `medieval-animals-lora_emb` to your prompt. For example, `in the style of medieval-animals-lora_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('multimodalart/medieval-animals-lora', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='multimodalart/medieval-animals-lora', filename='medieval-animals-lora_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('in the style of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/multimodalart/medieval-animals-lora/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
MugoSquero/LMCocktail-phi-2-v1.1
MugoSquero
2024-01-02T22:02:53Z
18
0
transformers
[ "transformers", "safetensors", "phi-msft", "text-generation", "custom_code", "en", "arxiv:2311.13534", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T19:26:06Z
--- pipeline_tag: text-generation tags: - phi-msft language: - en library_name: transformers --- # LM-Cocktail phi-2 v1.1 This is a 0.5-0.5 merge of two models based on phi-2. Here are the models used to create this merge: 1. [venkycs/phi-2-instruct](https://huggingface.co/venkycs/phi-2-instruct) 2. [Yhyu13/phi-2-sft-dpo-gpt4_en-ep1](https://huggingface.co/Yhyu13/phi-2-sft-dpo-gpt4_en-ep1) I named this model "LMCocktail phi-2 v1.1" because I see it as a continuation of the [v1](https://huggingface.co/Yhyu13/LMCocktail-phi-2-v1). I used [Yhyu13/phi-2-sft-dpo-gpt4_en-ep1](https://huggingface.co/Yhyu13/phi-2-sft-dpo-gpt4_en-ep1) and it "outputs significantly longer result" than the one used in v1 by Yhyu13. I also used [venkycs/phi-2-instruct](https://huggingface.co/venkycs/phi-2-instruct) "a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on the filtered [ultrachat200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset using the SFT technique". The main reason I created this model was to merge it with [cognitivecomputations/dolphin-2_6-phi-2](https://huggingface.co/cognitivecomputations/dolphin-2_6-phi-2), and I will create a repo for it when I do it. # Code The LM-cocktail is novel technique for merging multiple models: https://arxiv.org/abs/2311.13534 Code is backed up by this repo: https://github.com/FlagOpen/FlagEmbedding.git Merging script is available under the [./scripts](./scripts) folder.
miftahmoha/hermeszl
miftahmoha
2024-01-02T21:59:26Z
3
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B", "region:us" ]
null
2024-01-02T20:45:06Z
--- library_name: peft base_model: teknium/OpenHermes-2.5-Mistral-7B --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
Adleu/filip_dewinter_LoRA
Adleu
2024-01-02T21:57:33Z
4
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-02T21:57:28Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of TOK filip dewinter, license: openrail++ --- # SDXL LoRA DreamBooth - Adleu/filip_dewinter_LoRA <Gallery /> ## Model description These are Adleu/filip_dewinter_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of TOK filip dewinter, to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Adleu/filip_dewinter_LoRA/tree/main) them in the Files & versions tab.
daniel-gordon/Q-FrozenLake-4x4-noSlippery
daniel-gordon
2024-01-02T21:51:17Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2024-01-02T21:51:13Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: Q-FrozenLake-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="daniel-gordon/Q-FrozenLake-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
Asorteberg/testtwo
Asorteberg
2024-01-02T21:48:30Z
1
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:adapter:mistralai/Mistral-7B-Instruct-v0.2", "region:us" ]
null
2024-01-02T21:48:26Z
--- library_name: peft base_model: mistralai/Mistral-7B-Instruct-v0.2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
LoneStriker/deepseek-llm-67b-Spicy-3.1-1-4.65bpw-h6-exl2
LoneStriker
2024-01-02T21:41:15Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "dataset:unalignment/spicy-3.1", "license:other", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-12-04T03:07:05Z
--- license: other license_name: deepseek license_link: LICENSE datasets: - unalignment/spicy-3.1 --- <p align="center"> <img width="500px" alt="DeepSeek Chat" src="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/logo.png?raw=true"> </p> <p align="center"><a href="https://www.deepseek.com/">[🏠Homepage]</a> | <a href="https://chat.deepseek.com/">[🤖 Chat with DeepSeek LLM]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/images/qr.jpeg">[Wechat(微信)]</a> </p> <hr> # Fine-tune of Deepseek 67B Fine-tuned with jondurbin's unalignment/spicy-3.1 for 1 epoch. ### 1. Introduction of Deepseek LLM Introducing DeepSeek LLM, an advanced language model comprising 67 billion parameters. It has been trained from scratch on a vast dataset of 2 trillion tokens in both English and Chinese. In order to foster research, we have made DeepSeek LLM 7B/67B Base and DeepSeek LLM 7B/67B Chat open source for the research community. ### 2. Model Summary `deepseek-llm-67b-base` is a 67B parameter model with Grouped-Query Attention trained on 2 trillion tokens from scratch. - **Home Page:** [DeepSeek](https://deepseek.com/) - **Repository:** [deepseek-ai/deepseek-LLM](https://github.com/deepseek-ai/deepseek-LLM) - **Chat With DeepSeek LLM:** [DeepSeek-LLM](https://chat.deepseek.com/) ### 3. How to Use Here give some examples of how to use our model. #### Text Completion ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig model_name = "deepseek-ai/deepseek-llm-67b-base" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model.generation_config = GenerationConfig.from_pretrained(model_name) model.generation_config.pad_token_id = model.generation_config.eos_token_id text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) result = tokenizer.decode(outputs[0], skip_special_tokens=True) print(result) ``` ### 4. License This code repository is licensed under the MIT License. The use of DeepSeek LLM models is subject to the Model License. DeepSeek LLM supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-LLM/blob/main/LICENSE-MODEL) for more details. ### 5. Contact If you have any questions, please raise an issue or contact us at [service@deepseek.com](mailto:service@deepseek.com).
mongotom/mongo-tom-10k-llama70b-monsterapi
mongotom
2024-01-02T21:39:48Z
0
0
peft
[ "peft", "region:us" ]
null
2024-01-02T21:39:43Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
eyesss/man-ohwx
eyesss
2024-01-02T21:38:11Z
15
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
text-to-image
2024-01-02T21:38:04Z
--- tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora - template:sd-lora widget: - text: A photo of <s0><s1> a man wearing a hat and a woman wearing a hat output: url: image-0.png - text: A photo of <s0><s1> a man in a car taking a selfie output: url: image-1.png - text: A photo of <s0><s1> a man in a car taking a selfie output: url: image-2.png - text: A photo of <s0><s1> a man sitting in the back seat of a car output: url: image-3.png - text: A photo of <s0><s1> a man in a car taking a selfie output: url: image-4.png - text: A photo of <s0><s1> a smiling man in a white shirt in front of a window output: url: image-5.png - text: A photo of <s0><s1> a man with a mustache smiles for the camera output: url: image-6.png - text: A photo of <s0><s1> a smiling man in a blue shirt output: url: image-7.png base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: A photo of <s0><s1> license: openrail++ --- # SDXL LoRA DreamBooth - eyesss/man-ohwx <Gallery /> ## Model description ### These are eyesss/man-ohwx LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. ## Download model ### Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke - **LoRA**: download **[`man-ohwx.safetensors` here 💾](/eyesss/man-ohwx/blob/main/man-ohwx.safetensors)**. - Place it on your `models/Lora` folder. - On AUTOMATIC1111, load the LoRA by adding `<lora:man-ohwx:1>` to your prompt. On ComfyUI just [load it as a regular LoRA](https://comfyanonymous.github.io/ComfyUI_examples/lora/). - *Embeddings*: download **[`man-ohwx_emb.safetensors` here 💾](/eyesss/man-ohwx/blob/main/man-ohwx_emb.safetensors)**. - Place it on it on your `embeddings` folder - Use it by adding `man-ohwx_emb` to your prompt. For example, `A photo of man-ohwx_emb` (you need both the LoRA and the embeddings as they were trained together for this LoRA) ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('eyesss/man-ohwx', weight_name='pytorch_lora_weights.safetensors') embedding_path = hf_hub_download(repo_id='eyesss/man-ohwx', filename='man-ohwx_emb.safetensors' repo_type="model") state_dict = load_file(embedding_path) pipeline.load_textual_inversion(state_dict["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer) pipeline.load_textual_inversion(state_dict["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2) image = pipeline('A photo of <s0><s1>').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Trigger words To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens: to trigger concept `TOK` → use `<s0><s1>` in your prompt ## Details All [Files & versions](/eyesss/man-ohwx/tree/main). The weights were trained using [🧨 diffusers Advanced Dreambooth Training Script](https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py). LoRA for the text encoder was enabled. False. Pivotal tuning was enabled: True. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.